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Abstract

A high-level outline is given, suggesting a research direction aimed
at unifying the Standard Model with general relativity within a common
information-based framework. Spacetime is modeled spacetime using dis-
crete “causal webs”, defined as causal sets that have ternary rather than
binary directed links, and a dynamic in which each ternary link prop-
agates local values from its sources to its target using multiplication in
an appropriate algebra. One then looks at spaces of (real and complex)
probability distributions over the space of “causal web histories.” One
can then model dynamics as movement along geodesics in this space of
probability distributions (under the Fisher-Rao metric).

The emergence of gravitation in this framework (as a kind of “entropic
force”) is derived from Matsuoka’s work founding General Relativity in
information geometry; the emergence of quantum theory is largely im-
plicit in work by Goyal and others founding the basic formalism of quan-
tum states, measurements and observables in information geometry. It is
suggested that these various prior works can be unified by viewing quan-
tum theory as consequent from information geometry on complex-valued
probability distributions; and general relativity as consequent from the
geometry of associated real probability distributions. Further, quantum
dynamics is known to be derivable from the correspondence principle and
basic properties of classical mechanics; but the latter is an approxima-
tion to general relativity – which as Matsuoka has shown is information-
geometric, thus strongly suggesting that quantum dynamics also can be
seen as emergent from information geometry. It is hypothesized that the
Standard Model, beyond basic quantum mechanics, could potentially be
obtained from this approach via appropriate choice of the “local field”
algebra propagated within the underlying causal webs.

In addition to mathematical elegance, this approach to physics uni-
fication has the conceptual advantage of highlighting the parallels be-
tween physical dynamics and mental inference (given the close ties be-
tween Bayesian inference and information geometry).
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1 Introduction

The idea of founding physics in the theory of information, in some sense or
another, is no longer particularly radical [12] [24]. However, the prevailing
paradigms of research on the “grand unification” of general relativistic gravita-
tional theory with quantum theory and its extensions (quantum field theory and
the Standard Model), string theory and loop quantum gravity, are not directly
informational in nature. Here I argue for grand unification via founding the var-
ious physics theories involved directly in an information-theoretic framework.

I will draw together here two strains of recent physics thinking, both rich
and diverse in themselves. One is information geometry; the other is causal set
theory.

Regarding information geometry: Various prior authors have shown, sep-
arately, that both general relativity (GR) and quantum mechanics (QM) can
be formulated formulated in terms of the Fisher-Rao metric (the natural met-
ric on the space of probability distributions, which lies at the heart of infor-
mation geometry theory 1). There are significant differences in how GR and
QM present themselves information-geometrically, e.g. regarding the role of
complex-number amplitudes in quantum dynamics. However, it seems that

1I will make no effort to outline the basic ideas of information geometry here. The classic
reference is Amari’s book [1]. The Wikipedia pages on Information Geometry 2 and Fisher
Information 3 are reasonably explanatory for the reader who has some familiar with statistics
and differential geometry. John Baez has also presented an excellent online tutorial in a series
of blog posts [3] 4.
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these differences can be managed, enabling GR and QM to be viewed as differ-
ent aspects of the same geometric dynamics on probability distribution spaces.
Further, the Lorentzian structure of spacetime can be seen to emerge naturally
from the nature of the Fisher-Rao metric as applied to the relevant types of
probability distributions.

Causal sets, on the other hand, are a simple discrete model that appears
a strong candidate as a discrete analogue of continuous spacetime [13]. The
mathematics of causal sets and dynamics thereupon has been explored signifi-
cantly in recent years [26]. However, by and large, it’s fair to say that causal
set theory mainly provides a structure and doesn’t say much about dynamics.
I suggest here an extension to causal sets called causal webs, that replaces the
binary arrows in causal sets with ternary arrows, and models low-level dynam-
ics in terms of abstract-algebraic operations on these arrows (i.e. the local-field
values at the source of an arrow, multiply to yield the local-field value at the
target of the arrow).

Putting these two strains together, one can look at spaces of real and
complex valued probability distributions over spaces of causal web
histories. I hypothesize that physics can be effectively modeled in terms of
information geometry on such spaces.

This is blatantly a concept paper rather than a detailed treatment; the ideas
given here are speculative with many gaps to be filled.

Speculating even further, I suggest these ideas might also have value as a
means of exploring the relation between physics and intelligence, given the role
of Bayesian inference and information geometry in models of cognition, and the
generally vexatious nature of mind-world interactions in quantum measurement
as modeled within current physics paradigms.

I will proceed here from the “top down” – beginning with ways of viewing
gravitation and quantum theory in terms of information geometry; and then
moving on to the question of what is the fundamental space over which one’s
probability distributions are defined (I suggest causal web histories).

2 General Relativity from Information Geome-
try

The most promising direction regarding grounding gravitational physics in in-
formational concepts, appears to be recent work connecting general relativity
with entropic and information-geometric mathematics.

In 2011, Verlinde published a paper on “gravitation as an entropic force”
[25], which attracted considerable attention to a line of research that had been
around for some time [11] [17]. Thanu Padmanabhan is perhaps the best known
researcher in this area, and his recent paper “General Relativity from a Ther-
modynamic Perspective” contains an up-to-date and fairly thorough literature
review [16] 5.

5http://arxiv.org/abs/1312.3253
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However, the most explicit connection between gravitation and the Fisher-
Rao metric has been drawn in a 2013 paper by Hiroaki Matsueda, titled “Emer-
gent General Relativity from Fisher Information Metric” [15] 6. In this work,
Matsueda shows that the Fisher-Rao metric between two appropriately defined
distributions from the exponential family (on 3D space) gives rise to the Ein-
stein equations (the crux of General Relativity) on 3+1D spacetime. As he put
it, he derives the Einstein equation directly as the equation of ”coarse-grained
quantum state.”

In the discrete case, he considers a system with internal state depending on
a parameter vector

θ = (θ1, , θn)

and n possible measurement outcomes with probabilities

pi(x, θ)

that sum to 1. He derives the Einstein equation from the Fisher-Rao metric of
such distributions; and, looking at an exponential distribution

p(x, θ) = e

(∑
µ
θµF

µ
)
−φ(θ)

he does some nice analysis to conclude that φ behaves like a classical scalar
field.

Matsueda’s analysis is not without technical issues; for instance, his equa-
tion [80] appears to be a fairly crude approximation without a rigorously given
justification. While it appears essentially correct, his derivation seems to require
some tightening. But it represents a highly evocative direction of investigation.

3 Lorentzian Spacetime from Information Ge-
ometry

Closely related to Matsueda’s calculations, in 1998 Carlos C. Rodriguez [21]
7 provided an elegant mathematical demonstration that the 3+1 dimensional
structure of spacetime emerges naturally from the mathematics of the Fisher-
Rao metric on spaces of radially symmetric probability distributions. He looks at
Gaussian (or other radially symmetric) distributions on 3D space, and considers
them as a space under the Fisher-Rao metric; and then shows that this leads to
matrices looking suspiciously like familiar 3 space dimensions, 1 time dimension
matrices from physics. This leads him to the tantalizing aphorism “There is no
time, only uncertainty.”

In essence, Rodriguez’s probability distributions are characterized by a single
radial dimension, and then the three-dimensional location of the distribution’s

6http://arxiv.org/pdf/1310.1831v2.pdf
7http://arxiv.org/abs/physics/9808009
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mean. When the Fisher-Rao metric is calculated, the algebra comes out equiva-
lent to the consideration of the radial dimension as imaginary, compared to the
other three dimensions being real. So one recovers the structure of Minkowski
space, without really trying.

While Rodriguez’s calculations pertain to strictly radially symmetric distri-
butions, it seems likely that the same results will hold for other distributions
that are characterized via a 3D mean, and then a single real parameter governing
deviation from the mean, whether or not strict symmetry holds. For instance,
one suspects that a similar Minkowski-like property would emerge from the
exponential distributions that Matsueda studies, mentioned above.

4 The Mysterious Complex-ity of Quantum Me-
chanics

Excitingly, as I will review in Section 5 below, it also seems feasible to de-
rive many of the key aspects of quantum mechanics from information-geometric
mathematics. However, significant and intriguing subtleties emerge here due to
the role of complex numbers in quantum mechanics. This should not be sur-
prising since, generally speaking, most of the perplexing “mystery” of quantum
mechanics can be boiled down to QM’s use of complex numbers where one would
intuitively expect to see real numbers, in the connection of quantifying degrees
of uncertainty.

The usage of complex numbers to quantify uncertainty can be justified or
formalized in various ways. For example, Lucien Hardy [10] 8 derives quantum
theory from a small set of commonsensical axioms, plus the idea that time is
infinitely divisible, in the sense that there should exist continuous transforma-
tions between (pure) states. The core idea here has been summarized by Scott
Aaronson on his blog 9 , in the context of presenting a number of reasons why
Nature uses complex instead of real numbers to measure uncertainty, including
the assumption that

“for every linear transformation U that we can apply to a state, there must
be another transformation V such that V 2 = U . This is basically a continuity
assumption: we’re saying that, if it makes sense to apply an operation for one
second, then it ought to make sense to apply that same operation for only half
a second”
This continuity assumption, it turns out, yields pretty simply the conclusion
that one needs to work with complex rather than real numbers.

Saul Youssef [28] [29] 10 has shown that, if one takes all the standard axioms
of probability theory except the one saying a probability has to be a real number,
one can also get three exotic probability theories with complex, quaternionic
and octonionic probabilities respectively. Furthermore, he has shown that, if

8http://arxiv.org/abs/quant-ph/01010
9http://www.scottaaronson.com/democritus/lec9.html

10see a list of Youssef’s relevant papers at the end of the directory page http://physics.

bu.edu/~youssef/quantum/quantum_refs.html
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one assumes probabilities are measured via complex numbers, then in essence
quantum theory (the Schroedinger equation) basically falls right out.

John Baez has demonstrated that Feynman’s formula for the amplitude of
a path being followed by a quantum system, is equivalent to the principle of
stationary ”quantropy” [4] 11 – where what he means by ”quantropy” is complex
valued entropy, i.e. entropy on complex numbers. This is basically entropy on
complex-valued “exotic” probabilities, although Baez doesn’t call it that. To
find the distribution of amplitudes across the various paths a quantum system
might take, look for the distribution that has stationary quantropy – subject to
the constraints that the sum of the amplitudes of the various possible outcomes
is 1; and that some weighted sum of the amplitudes has a fixed value (note
that he calls the weights the actions of the outcomes; and calls the outcomes
histories).

Note that Baez doesn’t show that a quantum system follows a path that
makes quantropy stationary. What he shows is that the (complex) probability
distribution over possible paths (or ”histories”, which is a clearer term than
”paths” in quantum ontology) x is a stationary-quantropy distribution, which
looks like

a(x) = e−λA(x)/Z

where Z is a partition function and λ is a (real) parameter called the “classical-
ity.”

Unsurprisingly, the exponential distribution Baez derives from his stationary-
quantropy formalism, has the same basic form as the distribution Matsueda
assumes for his probability distributions, from which he derives GR (this is un-
surprising because they’re both taking their cue from the Boltzmann equation).
The only big difference is that Baez’s distribution is complex-valued, whereas
the distribution Matsueda looks at is real-valued. Also, Matsueda looks at a
more general distributional form, leaving room for more parameters, which is
useful if one wants to take into account a fuller spectrum of microphysical phe-
nomena.

It would appear, however, that Matsueda’s math would work perfectly well
if one began with a probability distribution outputting exotic, complex-valued
probabilities instead. So if one wished, one could likely take Baez’s exotic quan-
tum distributions and use them as the basis for a Matsueda-style analysis.

5 Quantum Theoretic Apparatus from Informa-
tion Geometry

In his paper “From information geometry to quantum theory. Philip Goyal [9]
12 has shown that one can derive the basic mathematics of quantum states,
observables and measurements from a series of assumptions, one of which is

11http://arxiv.org/pdf/1311.0813v2.pdf
12http://iopscience.iop.org/1367-2630/12/2/023012/fulltext/
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that changes of state should preserve distances in the Fisher-Rao metric, on the
space of probability distributions corresponding to the probabilities of possible
outcomes of measuring a system. This shows that much of the apparatus of
quantum mechanics can be derived from information geometry, in a simpler
and more direct way than Matsueda’s derivation of the Einstein equation from
information geometry.

Goyal’s use of information geometry relies directly and essentially on the
well-known fact that the Fisher-Rao metric is equivalent to the Euclidean met-
ric, after an appropriate change of variable.. The Euclidean metric on square
roots of probabilities, essentially gives you the Fisher-Rao metric on proba-
bilities (a fact that is often obscured due to the Fisher-Rao metric generally
being given in parametric form). Quantum-mechanical amplitudes are related
to square roots of probabilities. Quantum observation is based on multiplica-
tion by unitary matrices on complex vectors, which need to preserve Euclidean
distances in complex vector space; but this corresponds precisely to preservation
of the Fisher-Rao metric in the space of squares of the complex vector entries.
So, the quantum theory axiomatics aside, the appearance of information ge-
ometry in Goyal’s paper emerge elegantly and fairly straightforwardly from the
mathematical correspondence of the Fisher and Euclidean metrics.

The relation between Goyal’s treatment and Baez’s, mentioned above, is
interesting and slightly subtle. Goyal uses the fact that QM’s orthogonal ob-
servation transformations on complex amplitude space are, in essence, equiva-
lent to Fisher-Rao-metric-preserving transformations on real probability space.
Baez looks at complex-valued entropy and shows that QM’s distribution of am-
plitudes to possible paths is a stationary-complex-entropy distribution. What
Goyal shows is that the amplitudes assigned by Baez’s distribution are trans-
formed under observation via orthogonal transformations, which correspond to
Fisher-Rao-metric preserving distributions on real numbers corresponding to
these amplitudes.

There does not seem to be a fleshed-out formal theory of information ge-
ometry on complex probability distributions, such as the ones Baez looks at.
However, it seems very likely that the key results of information geometry will
continue to hold if the real probabilities are replaced with complex ones 13

6 Quantum Dynamics via a Correspondence
Principle

Goyal [9], discussed above, derives the apparatus of quantum states, observa-
tions and measurements from information-geometric assumptions, but doesn’t
derive the Schroedinger equation or any other formulation of quantum dynam-
ics. However, in a follow-up paper [8] 14, Goyal does derive the Schroedinger
equation in a related way, via connecting his information-geometric analyses

13Replacing them with quaternionic or octonionic probabilities might lead to subtler issues.
14http://arxiv.org/abs/0805.2765
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with a version of the Correspondence Principle – in essence, deriving quantum
dynamics from the combination of information-geometric assumptions, and the
assumption of agreement with classical mechanics in the statistical limit.

In their paper “Information geometry, dynamics and discrete quantum me-
chanics, Reginatto and Hall present a similar derivation of quantum theory from
information geometry, using different axioms [20] 15. Like Goyal, they simplify
things by looking at the discrete case, which is however sufficient for explaining
all experiments. And also similar to Goyal, but in this respect more elegantly,
they derive quantum dynamics via the requirement to generate the symplectic
structure of Hamiltonian dynamics in the statistical limit.

6.1 General Relativity and the Correspondence Principle

While the correspondence principle is normally formulated using classical me-
chanics, it has also been articulated using general relativity as the ”classical”
limit of quantum theory [7]. Furthermore, it is known that GR has symplec-
tic structure [2] 16, similar to that of classical, Hamiltonian dynamics, though
more complex to unravel. This suggests (but doesn’t quite prove) that the use
of ”agreement with classical physics in the limit” as a method of deriving the
Schroedinger equation from the basic apparatus of quantum states and observ-
ables, a la Goyal, could be done equally well using ”agreement with GR in the
limit, under appropriate conditions” instead. This is interesting in the present
context, because if Matsueda is correct then GR can be derived from information
geometry. So, if

• information geometry gives us both GR, and the basic states/observables
machinery of QM

• putting GR and basic QM states/observables machinery together yields
the equation of quantum dynamics

then, putting the pieces together (and sweeping just a few “details” under the
rug!), one has a derivation of GR and QM both from underlying information-
geometric assumptions.

7 Putting Together the Information-Geometric
Pieces

What happens when we put these various information-geometric pieces to-
gether?

Adjusting Matsueda’s formalism slightly, lets initially look at a discrete sys-
tem, with internal state depending on a parameter vector

θ = (θ1, , θn)

15http://arxiv.org/abs/1207.6718
16http://arxiv.org/abs/gr-qc/0109014
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and n possible measurement outcomes with complex-number amplitudes

ai(x, θ)

that sum to 1. If we assume that local complex-probability distributions are
chosen to make complex-valued entropy stationary, then we arrive at a collection
of complex exponential distributions, with different means, of the form

a(x, θ) = e

(∑
µ
θµA

µ
)
−φ(θ)

Performing a Matsueda-like derivation on such a complex-valued distribution,
would yield a variant of the Einstein equation on complex vectors; standard GR
would ensue from looking at the real parts.

If we have a parameter θi that behaves roughly like a radial variable (such
as the classicality, which emerges naturally from stationary complex-entropy
as Baez shows), then, following Rodriguez, the corresponding component in
the matrix representing the Fisher-Rao metric will likely behave like a time
coordinate in Minkowski space.

Quantum observation of a local system involves transformation that or-
thogonally transform the amplitude values, which, as Goyal notes, means they
preserve the Fisher-Rao metric on the underlying real values. As Matsueda’s
model of gravitational dynamics involves gravitation pulling objects along short-
est paths in Fisher-Rao metric space, this means that quantum observation
leaves gravitational trajectories invariant (as it maps shortest paths into short-
est paths).

The Schroedinger equation is a local approximation of classical dynamics in
many circumstances; and one suspects, of GR in other circumstances. Classical
fields emerge statistically via φ as Matsueda notes; and quantum dynamics
emerges from looking at the complex amplitudes ai on the smaller scale.

GR dynamics follows shortest paths in the Fisher-Rao metric emerging from
the space of local distributions; complex QM dynamics follows paths within the
local distributions that have emerged to maximize complex-entropy. Further, it
is known that the shortest paths in the Fisher-Rao space are paths along which
mutual information progressively increases [5].

The conventional objections to putting QM and GR together – that one
regards linear transformations infinite-dimensional Hilbert space, whereas the
other regards nonlinear dynamics on 4 dimensional spacetime – become wholly
irrelevant in this framework. Both physical theories are viewed as having to do
with dynamics on spaces of discrete probability distributions. This represents
a more direct perspective, since experimentally, we don’t have 4D continuous
spacetime or infinite-dimensional Hilbert space, we just have discrete sets of
measurements with various estimated probabilities.

7.1 Incorporating the Rest of the Standard Model

So far we have discussed basic quantum mechanics and general relativity. What
about all the other aspects of the Standard Model, beyond ordinary QM? Very
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broadly speaking, many approaches would be possible here:

1. packing more complex structure into Matsueda’s θ vector

2. moving to quaternionic or octonionic valued probability distributions,
rather than the complex valued distributions used for quantum mechanics

3. move to a more fundamental framework, making different hypotheses re-
garding the space over which the probability distributions utilized extend

Regarding the quaternion/octonion possibility, it would be interesting to see
if some analogue of Baez’s quantropy-based analysis of QM, could be done using
quaternionic or octonionic analogues of entropy, yielding e.g. chromodynamics
as a result. Mathematical relationships between chromodynamics and these
other division algebras hint at such a possibility [19] 17 [18] 18 but much remains
unclear.

However, currently the direction that excites me most is the latter – moving
beyond a continuous spacetime and continuous parameter vector model, and
looking at how to formulate information-geometric physics over more funda-
mental discrete structures. This brings us on to the notion of causal webs.

8 Causal Webs

The above treatment has been fairly top-down and abstract, in the sense that it
has described gravitation and quantum mechanics as potentially derivable from
spaces of probability distributions – but hasn’t gotten concrete about exactly
what these probability distributions extend over. Further, while the treatment
has been “informational” in the sense of relying on information geometry, it has
also been somewhat traditional in its reliance on an underlying spacetime con-
tinuum, with respect to which the various probability distributions are implicitly
defined.

Now I’m going to get more concrete, and also a bit more radical. I’m going
to suggest a novel discrete model of the spacetime continuum and local fields
defined thereon, and then propose that the information-geometric structures
reviewed in previous sections can be made to play nicely on these novel discreta,
which I call “causal webs.”

The path to causal webs begins with causal sets, a well known approach to
quantum gravity that is founded on a theorem by David Malament [14], stat-
ing that if there is a bijective map between two past and future distinguishing
spacetimes that preserves their causal structure, this implies the map is a con-
formal isomorphism. Malament’s theorem implies that the causal structure of a
spacetime continuum, as used in relativity theory, can be captured a by discrete
graph, in which two nodes are connected by an arrow if events at the source
node can causally impact events at the target node.

17http://arxiv.org/abs/1006.5552
18http://vixra.org/abs/1311.0101
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Sorkin [13] has been the primary driver behind the development of causal
set theory, but the deepest and most rigorous treatment of the ideas has been
given in a recent paper by Benjamin Dribus [6] 19. As well as clarifying the
formalism in a very elegant way, he defines a rather general propagator on
causal sets, and formulates a causal-set analogue of the Schrodinger equation.
Dribus’s causal-set propagator deals with any map from chains (where a chain
is a series of causal sets, each one extending its predecessor) into amplitudes.
Roughly speaking, it has to do with the amplitude of one causal set C getting
“grown” into another causal set C’ via a sequential growth process (see [26] for
an overview of sequential growth processes in causal set theory, and their use
for formulating dynamics on causal sets). It allows background-independent
Feynman sums to be made over spacetime discreta, via giving an amplitude
distribution over causal sets representing such discreta.

Further, though Dribus does not explore the implications of this, his for-
malism also allows one to construct chains from elements that are tagged with
particular structures – i.e. it covers the case where each node of the causal set
is tagged with some sort of “local field value.” This is potentially important,
because one route to constructing a full theory of physics based on causal sets
is to go beyond a causal set as a bunch of nodes connected by arrows and move
to some sort of formalism involving nodes, with multidimensional ’field’ values
attached to them, connected by arrows. I.e. one might want to look at some sort
of field defined over causal sets.

In fact my suggestion is to go one step further, and look at a “causal web”
formulation wherein one has links like

{A,B} → C

and the nodes A,B and C have structure SA, SB , SC attached to it – represent-
ing the ’local field’ information at the node A, B or C.

One may then posit a rule assigning an amplitude to each possible “transi-
tion”

{SA, SB} → SC

For instance, if one views the structures SX as elements of an algebra with
operator ∗, one can set

SC(t+ 1) = SA(t) ∗ SB(t)

where t represents a kind of “proto-time”, distinct from (and underlying) the
Lorentzian time of relativistic physics.

Then, given a causal web C ′ and a sub-web C of C ′, one could calculate
the amplitude of C “growing” into C ′ – thus yielding an amplitude distribution
over causal webs, similar to the amplitude distribution Dribus constructs over
causal sets. It seems to me that Dribus’s overall causal set formalism could be
straightforwardly, if laboriously, extended to this sort of causal web...

19http://arxiv-web3.library.cornell.edu/pdf/1311.2148v3.pdf
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I suspect one could show that continuous field theories, within fairly broad
conditions, can be emulated by causal webs within arbitrarily small errors. Con-
ceptually, causal webs are a bit like discrete reaction-diffusion equations; and
it’s known that discrete reaction-diffusion equations can be mapped into discrete
quantum field theories. However, I’m not advocating this sort of approximation-
theoretic analysis as the best route to develop causal web based physics.

Rather, I suspect that it may be possible to choose an appropriate abstract
algebra, and make the SX elements of this algebra. One promising option here
is E8, which is know to contain the key algebras of the Standard Model within
it in various ways [23] 20[18] 21; but that is not the only option, and I haven’t
yet explored this carefully.

The proto-temporal dynamics of a causal web generates a causal web history.

8.1 Information Geometry on the Space of Causal Web
Histories

Getting back to the information-geometric considerations discussed above – I
suggest that causal web histories comprise a very interesting candidate for the
role of the underlying space on which to construct the probability distributions
information geometry requires. I suggest that it may be very interesting to look
at (real and complex valued) probability distributions over causal web histories.

The distribution centered at a history C would assign an amplitude to C ′

based on the probability of growing C into C ′.
Potentially, one could show that the maximum-quantropy distribution of

this sort, has a Boltzmann-distribution-like form, where the ”energy function”
in the exponent of the distribution is derived from the underlying rules assign-
ing amplitudes to the transitions → described above in terms of the algebraic
operator ∗.

General relativity could then, perhaps, be seen to emerge Matsueda-like from
the Fisher metric among these local distributions.

Putting all these pieces together, one would have a complete picture, com-
prising

• causal webs as underlying pregeometry, endowed with algebraic causal-
web dynamics as proto-temporal pre-dynamics

• local spacetime as a stationary-quantropy amplitude distribution over
causal web histories (where the causal webs are endowed with algebraic
structures serving as discrete equivalents to fields)

• global spacetime as Fisher-metric space over these distributions

• quantum mechanics as linear dynamics on local spacetime

• gravitation as global, entropic (nonlinear) dynamics on this global space-
time

20ttp://vixra.org/pdf/1405.0030vD.pdf
21http://vixra.org/abs/1311.0101
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9 Conclusion

I have presented here a complex train of thought connecting a number of existing
research results, which themselves possess varying degrees of solidity. There are
some substantial gaps in this train of thought, that are in need of filling-in
via the performance of non-trivial mathematical derivations. In short, what
is outlined here is more a direction for research than a completed theoretical
development.

However, it should be noted that the most popular approaches to grand
unification are also, at this point, highly speculative as well – and further-
more are significantly more complicated than the approach presented here. The
information-geometric approach to grand unification proceeds relatively directly
from the conceptual, philosophical idea of grounding physics in the geometry
of the space of probability distributions. Physical laws are then seen to emerge
from simple information-theoretic principles such as:

• preservation of the information metric

• choice of probability distributions that minimize (real or complex) entropy

• following geodesics in information-metric space

Implementing this in the context of causal webs enables a fully discrete,
information-theoretic framework for modeling spacetime and the full gamut of
physical dynamics occurring therein.

While plenty of work remains to be done to make the different pieces of this
vision fit together, the simplicity and solidity of the information-geometric and
causal-set-theoretic foundations outlined makes me optimistic that the research
program outlined maybe possible to complete.

Furthermore, digressing a bit toward conceptual and interpretational issues,
the parallels between inference (cognitive activity) and physical dynamics that
the information-geometric approach reveals, are striking to say the least. Part
of Wheeler’s original motivation for proposing ”it from bit” [27] was to help
close the mind-world gap in physics theory. My strong suspicion is that a
mature unified physics developed along the lines suggested here, would not only
provide a unified basis for handling all the known forces, but would also provide
a physical foundation for exploring the mind-body relationship in a deeper way
that current physics theories allow.

Along these lines, one of the biggest mind/matter worries in modern science
is quantum measurement. I tend to favor the relational interpretation of quan-
tum mechanics [22], in which there is no wave function collapse, but the state
of a quantum system is understood to be observer-dependent. In the proposed
approach, both the system and the observer would be represented as probability
distributions over causal web histories. Interaction would be reflected by prob-
abilistic dependency between the distributions, and would be mediated by light
cone considerations as embedded in the underlying causal webs. In this way,
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the decoherence-inducing interaction that characterizes quantum measurement,
would represented in terms of a key aspect of probabilistic inference.

Lots of interesting possibilities and concepts! But at the present time, this
is all just tantalizing conjecture. I have elaborated these ideas here in hope of
inspiring others to join me in working out the details, a journey that no doubt
will lead to many fascinating surprises.
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