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1 Introduction

The notion of a “second-order probability” (a probability distribution defined over a space
of probability distributions), while not exactly commonplace, has become less obscure in
recent decades due to the advent of imprecise probability theory as developed by Peter
Walley [1] and others [2]. It is straightforward to generalize the notion further to third-
order probabilities and so forth; and the reason these notions are rarely discussed is not so
much that there are mathematical difficulties, but rather that no one has seen much use
for them.

However, so far as we have been able to tell, the notion of infinite-order probabilities
has not been previously discussed. Intuitively, the notion of an infinite-order probability is
simply “a probability distribution of probability distributions of probability distributions of
... of probability distributions.” The goal of this paper is to briefly introduce these novel
mathematical objects; and then to explain their apparent importance in the domain of
semantics, via their ability to synthesize uncertain semantics with self-referential semantics.

2 Infinite-Order Probabilities as Hypersets

An infinite-order probability distribution (or ipdf, for short) is defined as a set S of elements,
each one of which is a function F : S → [0, 1] with the property that

∑
s∈S F (s) = 1 (if S

is finite, resulting in a “discrete ipdf”), or
∫
s∈S F (s)ds = 1 (if S is infinite, resulting in a

“continuous ipdf”).
So, in short, an ipdf is a probability distribution over ipdf’s. This violates the axiom

of foundation and hence is not allowed in ordinary Zermelo-Frankel set theory; but it is
permitted in variant set theories, for instance if one invokes the Anti-Foundation Axiom
(AFA). In Section 5 below, we use the Solution Lemma stated in [4] to show that discrete
ipdf’s exist in set theory under the AFA. It is not hard to see that some continuous ipdf’s
may also exist according to the AFA.
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3 Mean-Indexed Infinite-Order Probabilities

For the rest of the paper we will restrict attention to a particular subset of the class of
discrete ipdf’s, which we call mean-indexed ipdf’s. These are by no means the only ipdf’s
of interest, but they are the only kind we have explored in depth so far. A mean-indexed
ipdf (or mipdf for short) is an ipdf for which there is a linear space X so that each each
element F

• has a value µF , drawn from X, called the “mean” associated with it

• has an ordinary, first-order pdf over S associated with it

If the elements of S are indexed Fi, the means may be denoted µi and the associated
first-order pdf’s may be denoted fi.

In a mean-indexed ipdf, each ipdf element is essentially defined as a first-order pdf over
the space of ipdf elements. This sort of ipdf is particularly easy to grasp onto, allowing for
the convenient performance of practical numerical calculations.

Note that in the above characterization, there is no connection between µi and fi except
that both are associated with Fi. This obviously doesn’t make much sense. The connection
is supplied by the notion of the consistency of a mean-indexed ipdf, which we now define.
Given a discrete mipdf S, the totality of first-order pdf’s fi in S may be represented as a
weight matrix W = {wij}, with the property that each row sums to 1. The implicit mean
of an element Fi may then be defined as νi =

∑
i wijµj . I.e., the mean of an ipdf element

Fi is a weighted sum of the means of the other ipdf elements Fj , where the weighting
is given by the coefficients associated with Fi. We then define a discrete mipdf S to be
mean-consistent iff for all elements Fi of S, νi = µi. I.e., this means that for each element,
the implicit mean equals the actual mean.

For any given weight matrix W , a consistent mipdf associated with W may be obtained
by setting µi = vi where v is the vector that satisfies v = vW . That is, v must be a left
eigenvector of W corresponding to the eigenvalue 1. The existence of such a vector is
guaranteed by the Perron-Frobenius Theorem [5].

4 Constructing MIPDF’s with the Probabilistic Solution Lemma

It seems an attractive idea to generalize Aczel’s [4] Solution Lemma, a fundamental result
in hyperset theory, to address ipdf’s rather than crisp solutions to hyperset equations.
In this section we will develop a Finite Probabilistic Solution Lemma, along these lines,
restricted to hypersets associated with (to use a terminology to be introduced just below)
finite apg’s. The proof of this is a combination of AFA set theory and Markov matrix
theory. Extension to more general hypersets will be left for another paper.

First we review some basic concepts of AFA set theory, which may be presented in simple
graph-theoretic terms. A digraph (G, E) consists of a set G of entities called ”nodes,” and a
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set E of ordered pairs of nodes, these pairs being called edges. The most common examples
of graphs are finite graphs; however, the concept of an infinite graph presents no difficulties.
If (n, m) is an element of E, I will write n → m, and call m the child of n, and n the parent
of m. Fix a set A of tags. Then a tagged digraph (G, E, t) is a digraph together with
a function t that assigns a tag drawn from A to each childless node of G. Next, define
an accessible pointed graph (apg) (G, E, t, p) to consist of a tagged digraph together with
a distinguished node p which has the property that every node can be reached by some
finite path from p. And define a decoration of an apg as a set-valued function d with
domain G, satisfying d(n) = t(n) if n is childless and d(n) = {d(m) : n → m} otherwise.
That is, a decoration assigns to each childless node its tag, and to each parent node n
those nodes m which are its children. Finally, let us say that an apg pictures a set b if
there is a decoration d of the graph so that d(p) = b; that is, so that b is the set which
decorates the distinguished node. Aczel’s Anti-Foundation Axiom (AFA), whose formal
definition in terms of bisimulations is moderately complex and will not be given here, has
the implication that Every apg pictures a unique set. According to AFA, then, all the sets
of standard set theory are still sets, but there are other sets too. Anything which is a set
according to this definition, but not the classical definition is a hyperset.

There are multiple variants of non-foundational set theory, but here we will we work
solely in ZFCU − +AFA, defined as Zermelo Fraenkel set theory with choice and ure-
lements (“atomic elements”), and the anti-foundation axiom AFA replacing the axiom of
foundation. Given this set-up, Aczel proves the Solution Lemma, which states roughly that
for any system of equations in indeterminates x, y, z, ..., say

x = a(x, y, ...)

y = b(x, y, ...)

z = c(x, y, ...)

...

where each indeterminate appears exactly once in the left-hand side of an equation,
then the system has a unique solution in the universe of hypersets.

The Solution Lemma may be more precisely formalized as follows. Given a collection
U of urelements, we will write V U for the hyperuniverse of sets with urelements from U
. Formally, we regard a collection of set indeterminates X as extra urelements, and write
V U [X] for V U ∪ X . By an equation in X , we mean an expression of the form x = a,
where x ∈ X , a ∈ V U [X]. By a system of equations in X we mean a family of equations
{x = ax|x ∈ X}, exactly one equation for each indeterminate x ∈ X . By an assignment
for X in V U we mean a function f : X → V which assigns an element f(x) of V to
each indeterminate x ∈ X. Any such assignment extends in a natural way to a function
f∗ : V U [X] → V U . Thus, given some a ∈ V U [X], one works with a canonical graph
depicting a, replacing any childless nodes tagged by an indeterminate x ∈ X with a graph
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depicting the set f(x). Typically, we write a(x, y, ...) for f∗(a), so that an assignment f is
a solution of an equation x = a(x, y, ...) if f∗(x) = a(f(x), f(y), ...). The Solution Lemma
then states that every system of equations in a collection of indeterminates over V has a
unique solution.

We now explore the generalization of the Solution Lemma to encompass mipdf’s. For
simplicity we restrict attention to the case of finite equation systems, which we define as
systems of equations that contain a finite set of equations, each of finite size. It is easy
to see that a finite equation system corresponds to a set of finite apg’s, one per equation.
Furthermore, it is useful to define a flat system of equations, which is one in which each
equation is of the form

xi = {xi1, xi2, ...}

Any finite equation system may straightforwardly be transformed into an equivalent
finite flat equation system, via the introduction of additional indeterminates. For instance

x = {Calvin, {y}}

y = {Hobbs, x}

may be flattened by replacing the first equation with the two equations

x = {Calvin, z}

z = {y}

Next we introduce the notion of a probabilistically tagged flat finite equation system or
ptff equation system, which is an flat equation system in which on the rhs of each equation,
each instance of each ur-element, and each instance of each indeterminate, is associated
with a probability value; and the probabilities used as tags on the rhs side of each individual
equation, sum to 1. For instance, an example of a ptff equation system would be

x = {(Calvin, .8), (z, .2)}

y = {(Hobbs, .5), (x, .5)}

z = {(y, 1)}

Any ptff equation system may be associated with an n×n stochastic matrix W , where
n is the sum of the number of equations and the number of urelements occurring in the
equations. If the row i corresponds to an urelement then Wii = 1 and the rest of the i’th
row is 0). So for instance the matrix corresponding to the above system of equations is
(using the ordering (x, y, z, Calvin, Hobbs):
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0 0 .2 .8 0
.5 0 0 0 .5
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

Suppose we have a ptff equation system PE, corresponding to a standard finite equation
system E. We then define a solution to PE as the combination of a solution to E (in the
standard sense given above), and an assignment of probability values to each indeterminate
in E, in a way that agrees with the stationary probability vector of the stochastic matrix W
corresponding to PE. Then by combining the Solution Lemma with the Perron-Frobenius
Theorem, it follows that

Lemma 4.1 (Finite Probabilistic Solution Lemma) Let PE be a probabilistically tagged
flat finite equation system (defined over ZFCU-+AFA). Then, PE has a unique solution.

which has the immediate consequence that

Theorem 4.1 Let PE be a probabilistically tagged flat finite equation system involving m
indeterminates and k urelements (defined over ZFCU-+AFA). Then, one may construct
a mean-consistent, mean-indexed infinite-order probability distribution S with n = m +
k elements Fi, one element corresponding to each indeterminate or urelement in PE,
via defining Fi(Fj) = wij where the latter is the (i, j) entry of the stochastic matrix W
associated with PE (and setting the mean µi of Fi equal to the i’th entry of the stationary
vector of W .

In essence, what we have shown is that if one takes any finite system of set equations,
and tags the constants and variables on the right hand sides of the equations in a reasonable
way, one obtains a correspondent infinite-order probability distribution. To make the above
arguments work for infinite systems of equations also seems feasible, but would require
hassling with measures more complex than the counting measure and hence lengthen the
argument, so we defer this to a future paper.

5 Uncertain Reasoning about Self-Referential Statements

The most obvious implications of this new sort of probability lie in the domain of semantics.
Infinite-order pdf’s allow us to intermix uncertainty with self-reference and mutual inter-
reference in a manner that has not been possible using previous formalisms. This opens the
door for various sorts of syntheses between semantic theories based on non-foundational
sets (such as situation semantics, see [3]) and semantic theories founded on notions of
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uncertainty (e.g. [2]); though the exploration of such syntheses in detail would go beyond
the scope of this brief paper.

As a simple example of knowledge that is most naturally represented using type-free
relationships, consider the set of relationships:

N1 = BensBeliefs

R1 = love(Ben, BensBeliefs)

R2 = believe(Ben, R1)

R2 ∈ N1

Intuitively, what this expresses is: Ben loves his beliefs; Ben believes that he loves
his beliefs; and finally, ”Ben believes that he loves his beliefs” is one of Ben’s beliefs. If
we take the standard set-theoretic approach of defining relationships as ordered tuples,
we then have N1 < R1 < R2 < N1, where A < B denotes “A is a member of B, or a
member of a member of B, etc.” The axiom of foundation is violated. But introducing
AFA and using the standard reduction of relations to sets, the above set of relationships
can be reduced to a system of set equations and then to a flat finite equation system as
defined above. One can then look at assignments of probability values to the terms in the
relationship-system, such as BensBeliefs and believe.

Finally, there is also an apparent connection to computational probabilistic inference. In
[6] the author has developed a system for inference using second-order probabilities, which
however is immediately seen to work identically on mean-consistent mipdf’s as on second-
order probability distributions. Type-free and typed relationships may be probabilistically
reasoned about in a seamlessly interoperative way. We believe this may serve as a quite
robust approach to practical reasoning about beliefs and social situations, but the details
are beyond the scope of this paper.
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