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Abstract. What set of concepts and formalizations might one use to
make a practically useful, theoretically rigorous theory of generally intel-
ligent systems? We present a novel perspective motivated by the OpenCog
AGI architecture, but intended to have a much broader scope. Types
of memory are viewed as categories, and mappings between memory
types as functors. Memory items are modeled using probability distribu-
tions, and memory subsystems are conceived as “mindspaces” — geomet-
ric spaces corresponding to different memory categories. Two different
metrics on mindspaces are considered: one based on algorithmic informa-
tion theory, and another based on traditional (Fisher information based)
“information geometry”. Three hypotheses regarding the geometry of
mind are then posited: 1) a syntaz-semantics correlation principle, stat-
ing that in a successful AGI system, these two metrics should be roughly
correlated; 2) a cognitive geometrodynamics principle, stating that on
the whole intelligent minds tend to follow geodesics in mindspace; 3)
a cognitive synergy principle, stating that shorter paths may be found
through the composite mindspace formed by considering multiple mem-
ory types together, than by following the geodesics in the mindspaces
corresponding to individual memory types.

1 Introduction

One of the many factors making AGI research difficult is the lack of a broadly
useful, powerful, practical theoretical and mathematical framework. Many the-
oretical and mathematical tools have played important roles in the creation and
analysis of contemporary proto-AGI systems; but by and large these have proved
more useful for dealing with parts of AGI systems than for treating AGI systems
holistically. And the general mathematical theory of AGI [11], though it has
inspired some practical work [12] [18], has not yet been connected with complex
AGI architectures in any nontrivial way.

This paper gives a rough sketch of a novel theoretical framework that we think
may have potential to help with progress toward AGI. While the framework has
been developed largely in the context of a quest to understand and improve the
dynamics of the OpenCog [10] AGI architecture, it is intended to be much more
broadly applicable. The key ingredients of the framework are: modeling multi-
ple memory types as mathematical categories (with functors mapping between
them), modeling memory items as probability distributions, and measuring dis-
tance between memory items using two metrics, one based on algorithmic infor-
mation theory and one on classical information geometry. Three core hypotheses
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are then presented: 1) a syntax-semantics correlation principle, stating that
in a successful AGI system, these two metrics should be roughly correlated; 2) a
cognitive geometrodynamics principle, stating that on the whole intelligent
minds tend to follow geodesics in mindspace; 3) a cognitive synergy princi-
ple, stating that shorter paths may be found through the composite mindspace
formed by considering multiple memory types together, than by following the
geodesics in the mindspaces corresponding to individual memory types.

2 A Simple Formal Model of Intelligent Agents

We utilize here a general formal model of intelligent agents called SRAM (Sim-
ple Realistic Agents Model), presented in [9] and inspired by the simpler agents
model in [11]. For space reasons we will not explicitly present SRAM here, but
only summarize the more relevant points. SRAM begins with a class of ac-
tive agents which observe and explore their environment and take actions in it,
which may affect the environment, and may bring the agent rewards. The agent’s
“history” consists of the actions, observations and rewards it has experienced.
Agents may also have “goals”, i.e. functions of their future history that they
seek to maximize in order to achieve reward.

SRAM also abstractly models agents’ short and long term memories. One
assumes the agent’s memory consists of separate memory stores corresponding to
multiple types of memory, e.g.: procedural (K proc), declarative (K pec), episodic
(Kgp) and attentional (K 44), which may be formally modeled as follows:

— an injective mapping O, : Kg, — H where H is the space of fuzzy sets of
subhistories (subhistories being “episodes” in this formalism)

— a mapping Op,oc : Kproc X M x W — A, where M is the set of memory
states, W is the set of (observation, goal, reward) triples, and A is the set of
actions (this maps each procedure object into a function that enacts actions
in the environment or memory, based on the memory state and current
world-state)

— amapping Opec : Kpee — L, where L is the set of expressions in some formal
language (which may for example be a logical language), which possesses
words corresponding to the observations, goals, reward values and actions in
our agent formalism

— a mapping Ga¢ : Kpee U Kproc U Kgp — V, where V is a set of “attention
values” indicating the importance of a memory to the agent at a given point
in time (for instance, OpenCog uses pairs (ST, LTI) indicating short and
long term importance values).

The vocabulary of actions contains memory-actions corresponding to the
operations of inserting the current observation, goal, reward or action into the
episodic and/or declarative memory store. The activity of the agent, at each
point in time, consists of enacting one or more of the procedures in the procedural
memory store (and a set of simultaneously executed procedures may be formally
modeled as a single one). Finally, SRAM’s workspace provides a medium for
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interaction between the different memory types (cf Baars’ “global workspace
theory” [2]). At each time-step, the agent may carry out an external action a; on
the environment, a memory action m; on the (long-term) memory, and an action
b; on its internal workspace, including insertions/deletions of observations,
goals, actions or reward-values from the workspace.

3 Modeling Memory Types Using Category Theory

Next we formalize the different types of memory critical for a human-like inte-
grative AGI system, in a manner that makes it easy to study mappings between
different memory types. One way to do this, introduced in [7], is to consider each
type of memory as a category, in the sense of category theory.

For example, we may model the space of procedures as a graph. We assume
there exists a set T' of “atomic transformations” on the category Cp;.o. of pro-
cedures, so that each ¢ € T maps an input procedure into a unique output
procedure. We then consider a labeled digraph whose nodes are objects in Cpyoc
(i.e. procedures), and which has a link labeled ¢ between procedure P; and Py if
t maps P; into P,. Morphisms on program space may then be taken as paths in
this digraph, i.e. as composite procedure transformations defined by sequences
of atomic procedure transformations. For example, in OpenCog procedures are
represented as ensembles of program trees, where program trees are defined in
the manner suggested in [16]; in this case one can consider tree edit operations
as defined in [3] as one’s atomic transformations.

The category Cpe. of declarative knowledge may be handled somewhat sim-
ilarly, via assuming the existence of a set of transformations between declarative
knowledge items, constructing a labeled digraph induced by these transforma-
tions, and defining morphisms as paths in this digraph. For example, if declar-
ative knowledge items are represented as expressions in some logical language,
then transformations may be naturally taken to correspond to inference steps
in the associated logic system. Morphisms then represent sequences of inference
steps that transform one logical expression into another.

Having defined memory types as categories, one can then look at functors
between these categories, e.g. transformations that map programs into logical
statements and vice versa. For instance a “procedure declaratization” is a functor
from K proc t0 K pec; in other words, a pair of mappings (r, ) so that r maps each
object in Kpy,. into some object in K pe.; and s maps each morphism fpyoc; in
Kpyoc into some morphism in Kpe., in a way that obeys s(frroc,i © fProc,j) =
s(fProc,i) o s(fProc,j)~

Similarly, we may define a “declaration procedurization” as a functor from
Kpee to Kproe. This formalism maps easily into many intuitively simple cases,
e.g.: the category blue versus the procedure isBlue that outputs a number in
[0,1] indicating the degree of blueness of its input; a procedure for multiplying
numbers, versus a verbal description of that procedure; a logical description of
the proof of a theorem based on some axioms; versus a procedure that produces
the theorem given the axioms as inputs.
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Episodic-declarative conversion is also important and may be similarly for-
malized; particular cases of this have received significant attention in the cog-
nitive science literature, referred to by the term “symbol grounding.” Concep-
tually, episode declaratization produces a declaration describing an episode-set
(naturally this declaration may be a conjunction of many simple declarations);
whereas declaration episodization produces an episode-set defined as the set of
episodes whose descriptions include a certain declaration. For example: the pred-
icate isCat(x) could be mapped into the fuzzy set E of episodes containing cats,
where the degree of membership of e in E could be measured as the degree to
which e contains a cat. In this case, the episode-set would commonly be called
the “grounding” of the predicate. Similarly, a relationship such as a certain sense
of the preposition “with” could be mapped into the set of episodes containing
relationships between physical entities that embody this word-sense.

Given this formalization of mappings between different memory types, we
see that a probability distribution over any one memory type, may naturally be
mapped into a probability distribution over all the different memory types, using
the functors mapping between them. However, additional uncertainty is generally
introduced in this mapping, meaning e.g. that a high-confidence distribution over
declarations may result in a lower-confidence distribution over procedures.

4 Metrics on Memory Spaces

Bringing together the ideas from the previous sections, we now explain how to
use the above ideas to define geometric structures for cognitive space, via defining
two metrics on the space of memory store dynamic states. Specifically, we define
the dynamic state or d-state of a memory store (e.g. attentional, procedural, etc.)
as the series of states of that memory store (as a whole) during a time-interval.
Generally speaking, it is necessary to look at d-states rather than instantaneous
memory states because sometimes memory systems may store information using
dynamical patterns rather than fixed structures.

It’s worth noting that, according to the metrics introduced here, the above-
described mappings between memory types are topologically continuous, but
involve considerable geometric distortion — so that e.g., two procedures that
are nearby in the procedure-based mindspace, may be distant in the declarative-
based mindspace. This observation will lead us to the notion of cognitive synergy,
below.

4.1 Information Geometry on Memory Spaces

Our first approach involves viewing memory store d-states as probability dis-
tributions. A d-state spanning time interval (p,q) may be viewed as a mapping
whose input is the state of the world and the other memory stores during a
given interval of time (r,s), and whose output is the state of the memory itself
during interval (¢,u). Various relations between these endpoints may be utilized,
achieving different definitions of the mapping e.g. p = r = t,¢ = s = u (in
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which case the d-state and its input and output are contemporaneous) or else
p=r,q=s =1 (in which case the output occurs after the simultaneous d-state
and input), etc. In many cases this mapping will be stochastic. If one assumes
that the input is an approximation of the state of the world and the other mem-
ory stores, then the mapping will nearly always be stochastic. So in this way,
we may model the total contents of a given memory store at a certain point in
time as a probability distribution. And the process of learning is then modeled
as one of coupled changes in multiple memory stores, in such a way as to enable
ongoingly improved achievement of system goals.

Having modeled memory store states as probability distributions, the prob-
lem of measuring distance between memory store states is reduced to the problem
of measuring distance between probability distributions. But this problem has a
well-known solution: the Fisher-Rao metric!

Fisher information is a statistical quantity which has a a variety of applica-
tions, ranging beyond statistical data analysis, including physics [5], psychology
and AT [1]. Put simply, FI is a formal way of measuring the amount of informa-
tion that an observable random variable X carries about an unknown parameter
0 upon which the probability of X depends. FI forms the basis of the Fisher-
Rao metric, which has been proved the only Riemannian metric on the space
of probability distributions satisfying certain natural properties regarding in-
variance with respect to coordinate transformations. Typically 6 in the FI is
considered to be a real multidimensional vector; however, [4] has presented a FI
variant that imposes basically no restrictions on the form of 6, which is what we
need here.

Suppose we have a random variable X with a probability function f(X,6)
that depends on a parameter # that lives in some space M that is not necessarily
a dimensional space. Let ' C R have a limit point at t € R, and let v: £ — M
be a path. We may then consider a function G(t) = In f(X,~(t)); and, letting
~v(0) = 6, we may then define the generalized Fisher information as Z(6), =

2
Tx(0), = B [ (& n f(X32(1)") 16].
Next, Dabak [4] has shown that the geodesic between 6 and 6’ is given by

the exponential weighted curve (y(t)) (z) = T J{((Zg))lljtt]{ ((;7,90//)):(11!7
condition that the log-likelihood ratios with respect to f(X,0) and f(X,€’) are
finite. It follows that if we use this form of curve, then the generalized Fisher
information reduces properly to the Fisher information in the case of dimensional
spaces. Also, along this sort of curve, the sum of the Kullback-Leibler distances
between 6 and ', known as the J-divergence, equals the integral of the Fisher

information along the geodesic connecting 6 and 6’.

under the weak

Finally, another useful step for our purposes is to bring Fisher information
together with imprecise and indefinite probabilities as discussed in [6]. For in-
stance an indefinite probability takes the form ((L,U), k,b) and represents an
envelope of probability distributions, whose means after £ more observations lie
in (L,U) with probability b. The Fisher-Rao metric between probability distri-
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butions is naturally extended to yield a metric between indefinite probability
distributions.

4.2 Algorithmic Distance on Memory Spaces

A conceptually quite different way to measure the distance between two d-states,
on the other hand, is using algorithmic information theory. Assuming a fixed
Universal Turing Machine M, one may define H(S1,S2) as the length of the
shortest self-delimiting program which, given as input d-state S7, produces as
output d-state Sz. A metric is then obtained via setting d(S1, S2) = (H (S, S2)+
H(S5,57)/2. This tells you the computational cost of transforming S; into Ss.

There are variations of this which may also be relevant; for instance [19]
defines the generalized complexity criterion Kg(x) = min;en{®(i,7)|L(p;)) =
x}, where L is a programming language, p; is the i’th program executable by
L under an enumeration in order of nonincreasing program length, 7; is the
execution time of the program p;, L(x) is the result of L executing p; to obtain
output z, and & is a function mapping pairs of integers into positive reals,
representing the trade-off between program length and memory. Via modulating
@, one may cause this complexity criterion to weight only program length (like
standard algorithmic information theory), only runtime (like the speed prior),
or to balance the two against each other in various ways.

Suppose one uses the generalized complexity criterion, but looking only at
programs p; that are given S; as input. Then Kg(S2), relative to this list of
programs, yields an asymmetric distance Hg (S, S2), which may be symmetrized
as above to yield dg(S7,S2). This gives a more flexible measure of how hard it
is to get to one of (S7,52) from the other one, in terms of both memory and
processing time.

One may discuss geodesics in this sort of algorithmic metric space, just as in
Fisher-Rao space. A geodesic in algorithmic metric space has the property that,
between any two points on the path, the integral of the algorithmic complexity
incurred while following the path is less than or equal to that which would be
incurred by following any other path between those two points. The algorithmic
metric is not equivalent to the Fisher-Rao metric, a fact that is consistent with
Cencov’s Theorem because the algorithmic metric is not Riemannian (i.e. it is
not locally approximated by a metric defined via any inner product).

5 Three Hypotheses About the Geometry of Mind

Now we present three hypotheses regarding generally intelligent systems, using
the conceptual and mathematical machinery we have built.
5.1 Hypothesis 1: Syntax-Semantics Correlation

The informational and algorithmic metrics, as defined above, are not equiva-
lent nor necessarily closely related; however, we hypothesize that on the whole,
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systems will operate more intelligently if the two metrics are well correlated,
implying that geodesics in one space should generally be relatively short paths
(even if not geodesics) in another.

This hypothesis is a more general version of the “syntax-semantics correla-
tion” property studied in [15] in the context of automated program learning.
There, it is shown empirically that program learning is more effective when pro-
grams with similar syntax also have similar behaviors. Here, we are suggesting
that an intelligent system will be more effective if memory stores with similar
structure and contents lead to similar effects (both externally to the agent, and
on other memory systems). Hopefully the basic reason for this is clear. If syntax-
semantics correlation holds, then learning based on the internal properties of the
memory store, can help figure out things about the external effects of the mem-
ory store. On the other hand, if it doesn’t hold, then it becomes quite difficult to
figure out how to adjust the internals of the memory to achieve desired effects.

The assumption of syntax-semantics correlation has huge implications for the
design of learning algorithms associated with memory stores. All of OpenCog’s
learning algorithms are built on this assumption. For, example OpenCog’s MOSES
procedure learning component [15] assumes syntax-semantics correlation for in-
dividual programs, from which it follows that the property holds also on the
level of the whole declarative memory store. And OpenCog’s PLN probabilis-
tic inference component [6] uses an inference control mechanism that seeks to
guide a new inference via analogy to prior similar inferences, thus embodying
an assumption that structurally similar inferences will lead to similar behaviors
(conclusions).

5.2 Hypothesis 2: Cognitive Geometrodynamics

In general relativity theory there is the notion of “geometrodynamics,” referring
to the feedback by which matter curves space, and then space determines the
movement of matter (via the rule that matter moves along geodesics in curved
spacetime) [17]. One may wonder whether an analogous feedback exists in cog-
nitive geometry. We hypothesize that the answer is yes, to a limited extent. On
the one hand, according to the above formalism, the curvature of mindspace
is induced by the knowledge in the mind. On the other hand, one may view
cognitive activity as approximately following geodesics in mindspace.

Let’s say an intelligent system has the goal of producing knowledge meeting
certain characteristics (and note that the desired achievement of a practical
system objective may be framed in this way, as seeking the true knowledge that
the objective has been achieved). The goal then corresponds to some set of d-
states for some of the mind’s memory stores. A simplified but meaningful view
of cognitive dynamics is, then, that the system seeks the shortest path from
the current d-state to the region in d-state space comprising goal d-states. For
instance, considering the algorithmic metric, this reduces to the statement that
at each time point, the system seeks to move itself along a path toward its
goal, in a manner that requires the minimum computational cost — i.e. along
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some algorithmic geodesic. And if there is syntax-semantics correlation, then
this movement is also approximately along a Fisher-Rao geodesic.

And as the system progresses from its current state toward its goal-state, it
is creating new memories — which then curve mindspace, possibly changing it
substantially from the shape it had before the system started moving toward its
goal. This is a feedback conceptually analogous to, though in detail very different
from, general-relativistic geometrodynamics.

There is some subtlety here related to fuzziness. A system’s goals may be
achievable to various degrees, so that the goal region may be better modeled
as a fuzzy set of lists of regions. Also, the system’s current state may be better
viewed as a fuzzy set than as a crisp set. This is the case with OpenCog, where
uncertain knowledge is labeled with confidence values along with probabilities; in
this case the confidence of a logical statement may be viewed as the fuzzy degree
with which it belongs to the system’s current state. But this doesn’t change the
overall cognitive-geometrodynamic picture, it just adds a new criterion; one may
say that the cognition seeks a geodesic from a high-degree portion of the current-
state region to a high-degree portion of the goal region.

5.3 Hypothesis 3: Cognitive Synergy

Cognitive synergy is a conceptual explanation of what makes it possible for cer-
tain sorts of integrative, multi-component cognitive systems to achieve powerful
general intelligence [8]. The notion pertains to systems that possess knowledge
creation (i.e. pattern recognition / formation / learning) mechanisms correspond-
ing to each multiple memory types. For such a system to display cognitive syn-
ergy, each of these cognitive processes must have the capability to recognize when
it lacks the information to perform effectively on its own; and in this case, to
dynamically and interactively draw information from knowledge creation mech-
anisms dealing with other types of knowledge. Further, this cross-mechanism
interaction must have the result of enabling the knowledge creation mechanisms
to perform much more effectively in combination than they would if operated
non-interactively.

How does cognitive synergy manifest itself in the geometric perspective we’'ve
sketched here? Perhaps the most straightforward way to explore it is to construct
a composite metric, merging together the individual metrics associated with
specific memory spaces.

In general, given N metrics dg(z,2),k = 1... N defined on the same finite
space M, we can define the ”min-combination” metric

n

dy,....dn (T,2) = MiNy —p =2 g e Mr(i)€{L,....N}i€{1,....n}.nEL E dr(iy (Vi Yit1)
i=0

This metric is conceptually similar to (and mathematically generalizes) min-cost
metrics like the Levenshtein distance used to compare strings [14]. To see that
it obeys the metric axioms is straightforward; the triangle inequality follows
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similarly to the case of the Levenshtein metric. In the case where M is infinite,
one replaces min with inf (the infimum) and things proceed similarly. The min-
combination distance from z to z tells you the length of the shortest path from
Z to z, using the understanding that for each portion of the path, one can choose
any one of the metrics being combined. Here we are concerned with cases such
as dsyn = ddP'r'auydDecydEpydAtt'

We can now articulate a geometric version of the principle of cognitive syn-
ergy. Basically: cognitive synergy occurs when the synergetic metric yields sig-
nificantly shorter distances between relevant states and goals than any of the
memory-type-specific metrics. Formally, one may say that:

Definition 1. An intelligent agent A (modeled by SRAM) displays cognitive
synergy to the extent

syn(A) =

/ (dsynergetic(z, 2) — min (dproc(x, 2), dpec(T, 2), dgp(x, 2), dan(x, 2))) du(z)du(z)

where u measures the relevance of a state to the system’s goal-achieving activity.

6 Next Steps

These ideas may be developed in both practical and theoretical directions. On
the practical side, we have already had an interesting preliminary success, re-
ported in [13] where we show that (in some small examples at any rate) replac-
ing OpenCog’s traditional algorithm for attentional learning with an explicitly
information-geometric algorithm leads to dramatic increases in the intelligence
of the attentional component. This work needs to be validated via implementa-
tion of a scalable version of the information geometry algorithm in question, and
empirical work also needs to be done to validate the (qualitatively fairly clear)
syntax-semantics correlation in this case. But tentatively, this seems to be an
early example of improvement to an AGI system resulting from modifying its
design to more explicitly exploit the mind-geometric principles outlined here.

For an intuition regarding future potential applications of cognitive geome-
try to OpenCog, the reader is referred to [8] where specific cognitive synergies
between the different learning algorithms in the OpenCog AGI architecture (as-
sociated with different types of memory) are discussed in an informal way. Each
of these synergies may be formalized in the geometric terms outlined here, and
doing so is part of our research programme going forward.

On the theoretical side, a mass of open questions looms. The geometry of
spaces defined by the min-combination metric is not yet well-understood, and
neither is the Fisher-Rao metric over nondimensional spaces or the algorith-
mic metric (especially in the case of generalized complexity criteria). Also the
interpretation of various classes of learning algorithms in terms of cognitive ge-
ometrodynamics is a subtle matter, and may prove especially fruitful for algo-
rithms already defined in probabilistic or information-theoretic terms.
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