
 
 

 

  

Abstract— Current work is described wherein simplified 
versions of the Novamente Cognition Engine (NCE) are being 
used to control virtual agents in virtual worlds such as game 
engines and Second Life.  In this context, an IRC (imitation-
reinforcement-correction) methodology is being used to teach 
the agents various behaviors, including simple tricks and 
communicative acts.   Here we describe how this work may 
potentially be exploited and extended to yield a pathway 
toward giving the NCE robust, ultimately human-level natural 
language conversation capability.  The  pathway starts via 
using the current system to instruct NCE-controlled agents in 
semiosis and gestural communication; and then continues via 
integration of a particular sort of hybrid rule-based/statistical 
NLP system (which is currently partially complete) into the 
NCE-based virtual agent system, in such a way as to allow 
experiential adaptation of the rules underlying the NLP system, 
in a manner that builds on the agent’s knowledge of semiosis 
and gesture.  

I. INTRODUCTION 

Artificial intelligence technology currently does a lot of 
interesting and valuable things, but, it lacks the broad-based, 
creative general intelligence possessed by humans, a fact 
that has led Ray Kurzweil [1] to introduce an explicit 
distinction between purpose-specific “narrow-AI” and more 
flexible, autonomous “strong AI” (his term) or “Artificial 
General Intelligence” (AGI, our preferred term) [2].  A 
growing and increasingly vocal minority of the AI research 
community now believes that powerful artifical general 
intelligence (AGI) at the human level and beyond is 
reasonably likely to occur within the present century [3].  A 
smaller minority believes that AGI at the human level or 
beyond could be achieved more rapidly, even within the next 
1-2 decades, if a sufficiently concerted effort were exerted in 
connection with the right set of ideas.  We belong to the 
latter, smaller, more ambitious and optimistic minority. 
  Furthermore, we do not believe there is any single 
“golden path” to powerful AGI: rather we suggest that, due 
to the broad and heterogeneous nature of intelligence itself, 
there are bound to be multiple pathways, which will have 
different strengths and weaknesses at different stages in their 
development.  For instance, closely neuromorphic 
architectures (such as [4, 5]; see [6] for a survey) will most 
likely have early strengths related to perception and action 
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processing, whereas architectures based on explicit logic 
(such as [7,8]; see also [6]) will most likely have early 
strengths in language and mathematics.   
 Our own venture in practical AGI design and engineering, 
the Novamente Cognition Engine or NCE [9,10,11], is 
integrative in nature, relying on a weighted-labeled-
hypergraph knowledge representation that fuses 
connectionist and logicist ideas, and incorporating a number 
of probabilistic learning mechanisms including PLN 
probabilistic logical inference [12, 13] and MOSES 
probabilistic evolutionary learning [14, 15].  Components of 
the NCE have been utilized in a variety of commercial 
applications, mainly involving data mining and language 
processing; and a simplified version of the NCE is now 
being used to control embodied virtual agents in virtual 
worlds such as game engines and Second Life [16].  We 
have argued elsewhere [17] that virtual-world embodiment 
provides a powerful medium for the experiential and 
instructional education of AGI systems. 
 While there are many potential paths to powerful AGI, the 
one we will discuss here is specific and language-centric.  It 
seems clear that, once an AGI system has been created that 
is capable of reasonably robust and general NL conversation, 
then a massive acceleration of AGI progress will follow.  
Once we can really, flexibly talk to an AGI, we will be able 
to teach it all sorts of things, and we will be able to very 
sensitively gauge the impact of various internal changes on 
the AGI’s general intelligence.  So one interesting class of 
pathways to AGI consist of those that focus on language 
comprehension and production at a fairly early stage.  Note 
that this is different than focusing initially on creating AGIs 
that can pass the Turing Test [18].  The ability to fool a 
judge that one is human is a specific cognitive ability that is 
not necessarily implied by a useful and robust NL capability.  
We are not particularly interested in creating AGIs that are 
effective “impersonators,” but rather effective 
communicators, learners and creators. 
 Suppose one decides that creating a passably generally-
intelligent English conversationalist is a useful goal for an 
AGI project.  What then is the right approach in terms of 
AGI architecture, embodiment, knowledge representation, 
learning, instructional methodology, and so forth?  There are 
many different possibilities on all these fronts: chat-bot-style 
conversation versus robotic or virtually-embodied 
conversation; a human-created NLP framework versus 
language learning via a generalized learning faculty; etc.  
Here we describe a specific pathway toward robust NL 
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conversation, which was conceived with the NCE in mind, 
but also has potential applicability beyond this particular 
AGI architecture.   The pathway we describe here combines 
normally-disparate aspects: It is not initially focused on 
language but on embodied sensorimotor learning; yet it also 
involves the creation and ensuing adaptation of a human-
coded NLP functionality.   
 In brief, we suggest that the best route to creating a 
conversationally-capable AI is to begin with a virtually-
embodied AI with a flexible learning capability, and instruct 
this AGI in the ways of semiosis and gesture.  Once this 
foundation has been learned, it then makes sense to interact 
with the AGI linguistically.  Potentially, this may be done 
via de-novo language learning; or, in what we suggest may 
be the most efficacious route, it may be done via supplying 
the AGI with a fully-featured but internally-very-flexible 
NLP subsystem, which may then be adapted based on the 
system’s experience, which critically include semiotic and 
gestural interactions.   The main content of this paper is a 
detailed discussion (insofar as space permits) of this multi-
stage route to achieving advanced conversational ability in 
virtually-embodied AGI’s.  Before presenting this 
discussion, however, we review some of our current work on 
teaching virtually-embodied NCE-based agents, which 
forms the early stages of the proposed pathway to advanced 
NLP. 
   

II. THE NOVAMENTE COGNITION ENGINE 
One may decompose the overall task of creating a powerful 
AGI system into four aspects (which of course are not 
entirely distinct, but still are usefully distinguished): 
 -- 1. Cognitive architecture (the overall design of an AGI 
system: what parts does it have, how do they connect to each 
other) 
 -- 2. Knowledge representation (how does the system 
internally store declarative, procedural and episodic 
knowledge; and how does it create its own representation for 
knowledge of these sorts in new domains it encounters) 
 -- 3. Learning (how does it learn new knowledge of the 
types mentioned above; and how does it learn how to learn, 
and so on) 
 -- 4.  Teaching methodology (how is it coupled with other 
systems so as to enable it to gain new knowledge about 
itself, the world and others) 
 We now briefly review how these four aspects are handled 
in the NCE.  For a more in-depth discussion of the NCE the 
reader is referred to [9-11]. 
 -- 1. The NCE’s high-level cognitive architecture is 
motivated by human cognitive science and is roughly 
analogous to Stan Franklin’s LIDA architecture [19].  It 
consists of a division into a number of interconnected 
functional units corresponding to different specialized 
capabilities such as perception, motor control and language, 
and also an “attentional focus” unit corresponding to 
intensive integrative processing.  A diagrammatic depiction 
is given in [9]. 
 -- 2. Within each functional unit,  knowledge 
representation is enabled via an AtomTable software object 

that contains nodes and links (collectively called Atoms) of 
various types representing declarative, procedural and 
episodic knowledge both symbolically and subsymbolically.  
Each unit also contains a collection of MindAgent objects 
implementing cognitive, perception or action processes that 
act on this AtomTable, and/or interact with the outside 
world. 
 -- 3.  In addition to a number of specialized learning 
algorithms associated with particular functional units, the 
NCE is endowed with two powerful learning mechanisms 
embedded in MindAgents: the MOSES probabilistic-
program-evolution module (based on [14,15]), and the 
Probabilistic Logic Networks module for probabilistic 
logical inference [12,13].  These are used both to learn 
procedural and declarative knowledge, and to regulate the 
attention of the MindAgents as they shift from one focus to 
another, using an economic attention-allocation mechanism 
that leads to subtle nonlinear dynamics and associated 
emergent complexity including spontaneous creative 
emergence of new concepts, plans, procedures, etc. 
 -- 4.  Teaching methodology is the main subject of this 
paper.  We advocate a virtually-embodied approach which 
integrates linguistic with nonlinguistic instruction, and also 
autonomous learning via spontaneous exploration of the 
virtual world. 

III. VIRTUALLY EMBODIED LEARNING WITH THE NCE 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Screenshot of a virtual animal in Second Life, controlled by the 
NCE-based AGI architecture described in this section. 
 
 
In this section we briefly describe our current work using a 
simplified version of the Novamente Cognition Engine (the 
so-called “Virtual Animal Brain” or VAB) to control virtual 
animals in the Second Life virtual world.  Figure 1 above 
shows an example virtual animal controlled by the VAB, 
interacting with a human-controlled avatar in the context of 
learning to play soccer.  Figure 2 gives a high-level 
architecture diagram for the VAB, which is a simplification 
of the overall NCE architecture as diagrammed in [9]. 
 The capabilities of the VAB-controlled virtual animals, in 
their current form, include 
 -- Spontaneous exploration of the environment 
 -- Automated enactment of a set of simple predefined 
behaviors 



 
 

 

 -- Flexible trainability: i.e., (less efficient) learning of 
behaviors invented by teachers on the fly 
 -- Communication with the animals, for training of new 
behaviors and a few additional purposes, occurs in a special 
subset of English called ACL (Animal Command Language) 
 -- Individuality: each animal has its own distinct 
personality 
 -- Spontaneous learning of new behaviors, without need 
for explicit training 
 Capabilities intended to be added in future VAB versions 
include 
 -- Recognition of novel categories of objects, and 
integration of object recognition into learning 
 -- Generalization based on prior learning, so as to be able 
to transfer old tricks to new contexts  
 -- Use of computational linguistics to achieve a more 
flexible conversational facility (this will be discussed 
extensively in a later section) 
 The VAB architecture is not particular to Second Life, but 
has been guided somewhat by the particular limitations of 
Second Life.  In particular, Second Life does not 
conveniently lend itself to highly detailed perceptual and 
motoric interaction, so we have not dealt with issues related 
to these in the current version of the VAB.  However, we 
have dealt with some of these issues in a prior version of the 
VAB, which was connected to the AGISim framework, a 
wrapper for the open-source game engine CrystalSpace [20].   
 
 

 
 
Fig. 2.  High-level diagram depicting VAB software architecture. The 

NLP, object recognition and PLN components are missing from the 
architecture that will initially be commercially deployed but are present in 
Novamente LLC’s internal research codebase. 

 
Instruction of VAB-controlled agents takes place 

according to a methodology we call IRC learning and is 
described in detail in [16], involving three interacting 
aspects: 
 -- Imitative learning: The teacher acts out a behavior, 
showing the student by example what he wants the student 
to do 
 -- Reinforcement learning: The student tries to do the 
behavior himself, and the teacher gives him feedback on 
how well he did 

 -- Corrective learning: As the student attempts the 
behavior, the teacher actively corrects (i.e. changes) the 
student’s actions, guiding him toward correct performance 

The combination of these three sorts of instruction 
appears to us critical, for learning of complex embodied 
behaviors and also, further along, for language learning.  
Current experimentation with the IRC methodology has been 
interesting and successful, resulting in a framework allowing 
human-controlled avatars to teach VAB-controlled agents a 
variety of behaviors such as fetching objects, deliving 
objects, going to desired locations, doing dances, and so 
forth. 

The VAB work has been described in more depth in [16] 
and we will not repeat that discussion here; our present goal 
is, rather, to explain how one may potentially use an 
expanded version of it as a platform for creating NCE-
controlled virtual agents with robust conversational 
capability.  The path that we see from the VAB to robust 
English conversation has a series of stages, which we will 
now describe. 

IV. TEACHING SEMIOSIS 
 The foundation of communication is semiosis.  So before 
turning to the instruction of gesture or verbal language, we 
will treat the instruction of semiosis in itself, in a few 
relatively simple examples intended to make the principles 
clear.  We will structure our discussion of semiotic learning 
according to Charles Sanders Peirce’s theory of semiosis 
[21], in which there are three basic types of signs: icons, 
indices and symbols.    
 In Peirce’s ontology of semiosis, an icon is a sign that 
physically resembles what it stands for.  Representational 
pictures, for example, are icons because they look like the 
thing they represent.  Onomatopoeic words are icons, as they 
sound like the object or fact they signify.  The iconicity of an 
icon need not be immediate to appreciate. The fact that 
“kirikiriki” is iconic for a rooster’s crow is not obvious to 
English-speakers yet it is to many Spanish-speakers; and the 
the converse is true for “cock-a-doodle-doo.” 
 Next, an index is a sign whose occurrence 
probabilistically implies the occurrence of some other event 
or object (for reasons other than the habitual usage of the 
sign in connection with the event or object among some 
community of communicating agents). The index can be the 
cause of the signified thing, or its consequence, or merely be 
correlated to it.  For example, a smile on your face is an 
index of your happy state of mind.  Loud music and the 
sound of many people moving and talking in a room is an 
index for a party in the room.  On the whole, more 
contextual background knowledge is required to appreciate 
an index than an icon. 
 Finally, any sign that is not an icon or index is a symbol.  
More explicitly, one may say that a symbol is a sign whose 
relation to the signified thing is conventional or arbitrary.  
For instance, the stop sign is a symbol for the imperative to 
stop; the word “dog” is a symbol for the concept it refers to.  
 The distinction between the various types of signs is not 
always obvious, and some signs may have multiple aspects.  



 
 

 

For instance, the thumbs-up gesture is a symbol for positive 
emotion or encouragement.  It is not an index -- unlike a 
smile which is an index for happiness because smiling is 
intrinsically biologically tied to happiness, there is no 
intrinsic connection between the thumbs-up signal and 
positive emotion or encouragement.  On the other hand, one 
might argue that the thumbs-up signal is very weakly iconic , 
in that its up-ness resembles the subjective up-ness of a 
positive emotion (note that in English an idiom for happiness 
is “feeling up”).   
 Teaching an embodied virtual agent to recognize simple 
icons is a relatively straightforward learning task.  For 
instance, suppose one wanted to teach an agent that in order 
to get the teacher to give it a certain type of object, it should 
go to a box full of pictures and select a picture of an object 
of that type, and bring it to the teacher.  One way this may 
occur in a NCE-controlled agent is for the agent to learn a 
rule of the following form (the semantics of the notation will 
be defined in following paragraphs)1 
 
Implication 
 AND 
  Context 
   Visual 
   Similarity $X $Y 
 PredictiveImplication 
  SequentialAnd 
   Execution goto box 
   Execution grab $X  
   Execution goto teacher 
  Evaluation give me teacher $Y 
 
While not a trivial learning problem, this is straightforward 
to an NCE-controlled agent that is primed to consider visual 
similarities as significant (i.e. is primed to consider the 
visual-appearance context within its search for patterns in its 
experience). 
 The notation in the above and following examples will 
hopefully be largely transparent to the reader, and has been 
defined formally and discussed extensively in [9].  Called 
“PLN notation” it is a textual notation used to depict nodes 
and links that exist in the AtomTable knowledge store of a 
NCE-based AGI system.  Here we will define the notation 
only concisely and semi-formally, due to space 
considerations and to avoid redundancy with prior 
publications.   
 -- Indentation is used to signify nesting as in Python and 
other programming languages.   

 
1 A technical note on VAB knowledge representation and learning.  The 

prior version of the VAB used with the AGISim virtual world used PLN as 
its primary learning mechanism; the current version used with Second Life 
uses MOSES as its primary learning mechanism.  PLN-learned procedures 
are represented in the NCE AtomTable in a node-and-link format directly 
resembling the examples given here.  On the other hand, MOSES-learned 
procedures  are represented in the NCE as programs in an internal 
programming language called Combo.  PLN-learned procedures are then 
translated into Combo for execution purposes; whereas MOSES-learned 
procedures are translated into logical Atoms for inference purposes.  Here 
we depict all learned procedures using PLN-style, Atom notation, for sake 
of simplicity and consistency. 

 -- Each line begins with a keyword indicating a 
relationship type (Implication, Context,...) or ontological 
category (Visual, Experience,...) that is built into the NCE 
framework.   
 -- Terms such as $X and $Y denote variables, which are 
unbound by default but may become bound via nesting 
within (crisply, probabilistically, or fuzzily) quantified 
expressions.   
 -- Terms such as goto, box, etc. represent actions, entities 
or categories that the system knows about, either via initial 
programming, instruction or learning.   
 -- The relationship (Execution A B) denotes the execution 
of the procedure A on the argument or argument-list B.   
 -- The relationship (Evaluation A B) denotes the 
evaluation of the predicate A on the argument or argument-
list B.   
 -- The relationship (Implication A B) denotes a 
probabilistic implication between expression A and 
expression B, which in the absence of quantification on the 
variables in A and B, has a truth value interpreted via 
averaging over all values for these variables, according to a 
probability distribution inferred from the system’s 
experience.   
 -- A PredictiveImplication relationship denotes an 
Implication in which the first argument is constrained to 
occur before the second, in the calculation of the 
probabilistic truth value.   
 -- The SequentialAND relationship indicates a temporal 
sequencing of its arguments (which must be Execution 
relationships); if precise timing needs to be specified then 
more complex constructs must be used, but those won’t be 
needed here.   
 -- The Similarity relationship connotes a probabilistic 
similarity between its arguments.   
 -- The Context relationship restricts all terms and 
relationships within the scope of its second argument, to the 
context defined by its first argument.   
 As all these relationship types may be graphically 
depicted as link-labels and all terms may be graphically 
depicted as node-labels, a nested relationship-set like the one 
depicted above may be graphically depicted as a network of 
labeled nodes and links, including links pointing to links.  In 
this sense the knowledge representation used in the NCE, 
and illustrated in these examples, may be viewed as a rich 
kind of semantic net, which is mathematically a sort of 
weighted, labeled hypergraph. 
 Next, proceeding from icons to indices: Suppose one 
wanted to teach an agent that in order to get the teacher to 
give it a certain type of object, it should go to a box full of 
pictures and select a picture of an object that has commonly 
been used together with objects of that type, and bring it to 
the teacher.  This is a combination of iconic and indexical 
semiosis, and would be achieved via the agent learning a 
rule of the form 
 
Implication 
 AND 
  Context 
   Visual 



 
 

 

   Similarity $X $Z 
  Context 
   Experience 
   SpatioTemporalAssociation $Z $Y 
 PredictiveImplication 
  SequentialAnd 
   Execution goto box 
   Execution grab $X  
   Execution goto teacher 
  Evaluation give me teacher $Y 
 
 Symbolism, finally, may be seen to emerge as a fairly 
straightforward extension of indexing.  After all, how does 
an agent come to learn that a certain symbol refers to a 
certain entity?  An advanced linguistic agent can learn this 
via explicit verbal instruction, e.g.  one may tell it “The 
word ‘hideous’ means ‘very ugly’.”   But in the early stages 
of language learning, this sort of instructional device is not 
available, and so the way an agent learns that a word is 
associated with an object or an action is through 
spatiotemporal association.    For instance, suppose the 
teacher wants to teach the agent to dance every time the 
teacher says the word “dance” – a very simple example of 
symbolism.  Assuming the agent already knows how to 
dance, this merely requires the agent learn the implication 
 
PredictiveImplication 
 SequentialAND 
  Evaluation say teacher me “dance”  
  Execution dance 
 give teacher me Reward 
 
And, once this has been learned, then simultaneously the 
relationship 
 
SpatioTemporalAssociation dance “dance” 
 
will be learned.   What’s interesting is what happens after a 
number of associations of this nature have been learned.  
Then, the system may infer a general rule of the form 
 
Implication 
 AND 
  SpatioTemporalAssociation $X $Z 
  HasType $X GroundedSchema 
 PredictiveImplication 
  SequentialAND 
   Evaluation say teacher me $Z 
   Execution $X 
  Evaluation give teacher me Reward 
 
This implication represents the general rule that if the 
teacher says a word corresponding to an action the agent 
knows how to do, and the agent does it, then the agent may 
get a reward from the teacher.  Abstracting this from a 
number of pertinent examples is a relatively straightforward 
feat of probabilistic inference for the PLN inference engine. 
 Of course, the above implication is overly simplistic, and 
would lead an agent to stupidly start walking every time its 

teacher used the word “walk” in conversation and the agent 
overheard it.  To be useful in a realistic social context, the 
implication must be made more complex so as to include 
some of the pragmatic surround in which the teacher utters 
the word or phrase $Z.   
 At this point we have experimented with making our AI 
system learn simple word-object associations and word-
action associations, but haven’t attempted to learn properly 
contextualized associations as would be useful in realistic 
social contexts – but we are optimistic that learning more 
fully contextualized knowledge of this sort is within the 
scope of our system, and look forward to experimenting with 
this during the coming year.  

V. TEACHING GESTURAL COMMUNICATION 
 Based on the ideas described above, it is relatively 
straightforward to teach virtually embodied agents the 
elements of gestural comunication.  This is important for 
two reasons: gestural communication is extremely useful 
unto itself, as one sees from its role in communication 
among young children and primates [22]; and, gestural 
communication forms a foundation for verbal 
communication, during the typical course of human 
language learning [23].  Note for instance the study 
described in [22], which “reports empirical longitudinal data 
on the early stages of language development,” concluding 
that  
 

...the output systems of speech and gesture may draw on 
underlying brain mechanisms common to both language 
and motor functions. We analyze the spontaneous 
interaction with their parents of three typically-
developing children (2 M, 1 F) videotaped monthly at 
home between 10 and 23 months of age. Data analyses 
focused on the production of actions, representational 
and deictic gestures and words, and gesture-word 
combinations. Results indicate that there is a continuity 
between the production of the first action schemes, the 
first gestures and the first words produced by children. 
The relationship between gestures and words changes 
over time. The onset of two-word speech was preceded 
by the emergence of gesture-word combinations. 

 
If young children learn language as a continuous outgrowth 
of gestural communication, perhaps the same approach may 
be effective for (virtually or physically) embodied AI’s. 
 An example of an iconic gesture occurs when one smiles 
explicitly to illustrate to some other agent that one is happy. 
Smiling is a natural expression of happiness, but of course 
one doesn’t always smile when one’s happy. The reason that 
explicit smiling is iconic is that the explicit smile actually 
resembles the unintentional smile, which is what it “stands 
for.” 
 This kind of iconic gesture may emerge in a socially-
embedded learning agent through a very simple logic.  
Suppose that when the agent is happy, it benefits from its 
nearby friends being happy as well, so that they may then do 
happy things together.  And suppose that the agent has 
noticed that when it smiles, this has a statistical tendency to 



 
 

 

make its friends happy.  Then, when it is happy and near its 
friends, it will have a good reason to smile.  So through very 
simple probabilistic reasoning, the use of explicit smiling as 
a communicative tool may result.   
 But what if the agent is not actually happy, but still wants 
some other agent to be happy?  Using the reasoning from the 
prior paragraph, it will likely figure out to smile to make the 
other agent happy – even though it isn’t actually happy. 
 Another simple example of an iconic gesture would be 
moving one’s hands towards one’s mouth, mimicking the 
movements of feeding oneself, when one wants to eat.   
Many analogous iconic gestures exist, such as doing a small 
solo part of a two-person dance to indicate that one wants to 
do the whole dance together with another person.  The 
general rule an agent needs to learn in order to generate 
iconic gestures of this nature that, in the context of shared 
activity, mimicking part of a process will sometimes serve 
the function of evoking that whole process.   
 This sort of iconic gesture may be learned in essentially 
the same way as an indexical gesture such as a dog 
repeatedly drawing the owner’s attention to the owner’s 
backpack, when the dog wants to go outside.  The dog 
doesn’t actually care about going outside with the backpack 
– he would just as soon go outside without it – but he knows 
the backpack is correlated with going outside, which is his 
actual interest. 
 The general rule here is 
 
R := 
Implication 
 SimultaneousImplication  
  Execution $X  
  $Y 
 PredictiveImplication 
  $X 
  $Y 
 
I.e., if doing $X often correlates with $Y, then maybe doing 
$X will bring about $Y.  This sort of rule can bring about a 
lot of silly “superstitious” behavior but  also can be 
particularly effective in social contexts, meaning in formal 
terms that 
 
Context 
 near_teacher 
 R 
 
holds with a higher truth value than R itself.  This is a very 
small conglomeration of semantic nodes and links yet it 
encapsulates a very important communicational pattern: that 
if you want something to happen, and act out part of it – or 
something historically associated with it -- around your 
teacher, then the thing may happen.  
 Many other cases of iconic gesture are more complex and 
mix iconic with symbolic aspects.  For instance, one waves 
one hand away from oneself, to try to get someone else to go 
away.  The hand is moving, roughly speaking, in the 
direction one wants the other to move in.  However, 
understanding the meaning of this gesture requires a bit of 

savvy or experience.  One one does grasp it, however, then 
one can understand its nuances: For instance, if I wave my 
hand in an arc leading from your direction toward the 
direction of the door, maybe that means I want you to go out 
the door. 
 Purely symbolic (or nearly so) gestures include the 
thumbs-up symbol mentioned above, and many others 
including valence-indicating symbols like a nodded head for 
YES, a shaken-side-to-side head for NO, and shrugged 
shoulders for “I don’t know.”  Each of these valence-
indicating symbols actually indicates a fairly complex 
concept, which is learned from experience partly via 
attention to the symbol itself.  So, an agent may learn that 
the nodded head corresponds with situations where the 
teacher gives it a reward, and also with situations where the 
agent makes a request and the teacher complies.  The cluster 
of situations corresponding to the nodded-head then forms 
the agent’s initial concept of “positive valence,” which 
encompasses, loosely speaking, both the good and the true. 

 Summarizing our discussion of gestural 
communication: An awful lot of language exists between 
intelligent agents even if no word is ever spoken.  And, our 
belief is that these sorts of non-verbal semiosis form the best 
possible context for the learning of verbal language, and that 
to attack verbal language learning outside this sort of context 
is to make an intrinsically-difficult problem even harder than 
it has to be.  And this leads us to the final part of the paper, 
which is a bit more speculative and adventuresome. The 
material in this section and the prior ones describes 
experiments of the sort we are currently carrying out with 
our virtual agent control software.  We have not yet 
demonstrated all the forms of semiosis and non-linguistic 
communication described in the last section using our virtual 
agent control system, but we have demonstrated some of 
them and are actively working on extending our system’s 
capabilities.   In the following section, we venture a bit 
further into the realm of hypothesis and describe some 
functionalities that are beyond the scope of our current 
virtual agent control software, but that we hope to put into 
place gradually during the next 1-2 years.  The basic goal of 
this work is to move from non-verbal to verbal 
communication. 

VI. TEACHING VERBAL COMMUNICATION 
A purist approach to endowing embodied virtual agents 

with linguistic facility would be to provide them with zero 
“linguistic hard-wiring” and have them learn to 
communicate linguistically entirely based on (embodied, 
interactive) experience.  Whether human language learning 
is pure in this sense is a matter of some contention, as human 
psycho- and neuro-linguistics are not yet advanced enough 
to tell us what kind (if any) of linguistic knowledge comes 
wired into the human brain [24].  But in any case, our 
current suspicion is that this would not be the optimal path to 
creating intelligent virtual agents with robust linguistic 
facility.  Rather, it seems more practical to create virtual 
agents with in-built linguistic capability that is designed and 



 
 

 

programmed with ongoing experience-based adaptation in 
mind.  This approach requires significant care, but also has 
dramatic potential for acceleration of progress, because of 
the wide variety of powerful computational linguistics tools 
that have been developed over the last few years. 

A simplistic dichotomous analysis of computational 
linguistics frameworks would divide them into statistical 
learning approaches versus expert-rule-based approaches.  
So far, pure statistics based approaches have proved 
effective for information retrieval applications and for some 
specific linguistic tasks such as word sense disambiguation.  
Furthermore, some impressive systems have been built in 
which purely statistical or machine learning algorithms are 
used to determine appropriate conversational responses to 
linguistic inputs [5,25].   

However, if one wishes to create a system that carries out 
abstract reasoning based on information gained from 
language, currently the only workable approach is to use an 
expert-rule-based approach, involving a syntax parser with 
hand-built rules, that maps sentences into logical 
relationships (and inversely, though less work has been done 
on this, a language generator with hand-built rules that maps 
logical relationships into sentences).  Now, it may be argued 
that explicit logical reasoning is the wrong approach to AI 
altogether, and that one should instead build out and train a 
neural net or some other sort of purely subsymbolic adaptive 
learning system to the point where it can implicitly carry out 
functions similar to those we call logical reasoning.  But 
realistically, the current state of the art seems quite far from 
this.   

Our approach in the NCE has been to combine symbolic 
and subsymbolic representations and learning methods; and 
this means that in the linguistic domain, though we are able 
to make use of statistical and machine learning methods, we 
are also eager to make use of expert-rule-based methods 
with their ability to speak directly to the formal-logic-based 
aspect of the NCE.  As it happens, the judicious combination 
of statistical and expert-rule-based methods is increasingly 
common in the computational linguistics world, so our 
deployment of this sort of combination in the NCE context is 
not all that unusual.  As an example of the rules+statistics 
combination in the computational linguistics literature, 
Dekang Lin’s MiniPar system applies expert rules to carry 
out parsing, but then uses statistical methods to rank the 
parses produced by the rule-based parser, and uses statistical 
analysis of the parses produced by the parser to 
automatically divide words into semantic categories [26,27]. 

Of all the computational linguistics approaches in the 
literature, Word Grammar [28] is probably the closest one to 
the NCE in overall philosophy, and the most amenable to 
experiential adaptive learning.  However, Word Grammar is 
not currently very mature as a computational framework, 
and so we are making use of other tools, though deploying 
them in a somewhat Word Grammar like way.   

Our current computational linguistics framework contains 
the following components, some original and some created 

by others and integrated into our framework: 
-- 1. An entity extractor drawn from the GATE [29] 

framework  
-- 2. The link parser, a dependency grammar parser [30], 

which relies on an extensive association of words with 
syntactic link types called the “link grammar dictionary” 

-- 3. RelEx, a rule-based system mapping the output of the 
link parser into higher-level semantic relationships 

-- 4. RelEx2Frame, a rule-based system mapping the 
output of RelEx into frame-element relationships (some 
directly drawn from FrameNet [31], some created 
analogously to those in FrameNet) 

-- 5. A statistical parse ranker, that ranks the parses 
output by RelEx based on probabilities estimated for their 
component links according to frequency in a corpus 

-- 6. Word sense disambiguation and reference resolution 
algorithms based on statistical analysis of the RelEx 
interpretations of the sentences in a corpus 

-- 7. RelExpress, a language generation system that uses 
the link grammar dictionary to translate RelEx output into 
natural language sentences.  Components 1-6 mentioned 
above have to do with language comprehension, but many 
have correlates within RelEx press: e.g. word-selection and 
reference-insertion are the correlates of word sense 
disambiguation and reference resolution; expression ranking 
is the correlate of parse ranking.  The algorithms used for 
each comprehension component and its generation correlate 
are related and there is often significant shared software.  

Components 1-3 are fairly mature and have been used by 
Novamente LLC in commercial projects; see [32] for a 
description of a prototype application using RelEx, the link 
parser, PLN and specialized entity extractors to carry out 
simple inferences on knowledge extracted from PubMed 
research abstracts.  Components 4-5 are less mature, and 
components 5-7 are still in an early stage of software 
development, and not fully functional.  In order to be used 
for conversation, these components must be controlled by a 
“discourse management” subsystem, which in the NCE is 
integrated with the overall NCE action-selection framework; 
this subsystem includes various procedures that deal with 
linguistic-pragmatics issues such as conversational 
implicature, and also falls into the “early stage” category. 

It is interesting to enumerate the aspects in which each of 
the above components appears to be capable of tractable 
adaptation via experiential, embodied learning: 

-- 1. Words and phrases that are found to be 
systematically associated with particular objects in the 
world, may be added to the “gazeteer list” used by the entity 
extractor 

-- 2. The link parser dictionary may be automatically 
extended.  In cases where the agent hears a sentence that is 
supposed to describe a certain situation, and realizes that in 
order for the sentence to be mapped into a set of logical 
relationships accurately describing the situation, it would be 
necessary for a certain word to have a certain syntactic link 
that it doesn’t have, then the link parser dictionary may be 



 
 

 

modified to add the link to the word.  (On the other hand, 
creating new link parser link types seems like a very difficult 
sort of learning – not to say it is unaddressable, but it will 
not be our focus in the near term.) 

-- 3. Similar to with the link parser dictionary, if it is 
apparent that to interpret an utterance in accordance with 
reality a RelEx rule must be added or modified, this may be 
automatically done.  The RelEx rules are expressed in the 
format of relatively simple logical implications between 
Boolean combinations of syntactic and semantic 
relationships, so that learning and modifying them is within 
the scope of a probabilistic logic system such as 
Novamente’s PLN inference engine. 

-- 4. The rules used by RelEx2Frame may be 
experientially modified quite analogously to those used by 
RelEx 

-- 5.  Our current statistical parse ranker ranks an 
interpretation of a sentence based on the frequency of 
occurrence of its component links across a parsed corpus.  A 
deeper approach, however, would be to rank an 
interpretation based on its commonsensical plausibility, as 
inferred from experienced-world-knowledge as well as 
corpus-derived knowledge.  Again, this is within the scope 
of what an inference engine such as PLN should be able to 
do. 

-- 6. Our word sense disambiguation and reference 
resolution algorithms involve probabilistic estimations that 
could be extended to refer to the experienced world as well 
as to a parsed corpus.  For example, in assessing which sense 
of the noun “run” is intended in a certain context, the system 
could check whether stockings, or sports-events or series-of-
events, are more prominent in the currently-observed 
situation. In assessing the sentence “The children kicked the 
dogs, and then they laughed,” the system could map “they” 
into “children” via experientially-acquired knowledge that 
children laugh much more often than dogs. 

-- 7. RelExpress uses the link parser dictionary, treated 
above, and also uses rules analogous to (but inverse to) 
RelEx rules, mapping semantic relations into brief word-
sequences.  The “gold standard” for RelExpress is whether, 
when it produces a sentence S from a set R of semantic 
relationships, the feeding of S into the language 
comprehension subsystem produces R (or a close 
approximation) as output.  Thus, as the semantic mapping 
rules in RelEx and RelEx2Frame adapt to experience, the 
rules used in RelExpress must adapt accordingly, which 
poses an inference problem unto itself. 

All in all, when one delves in detail into the components 
that make up our hybrid statistical/rule-based NLP system, 
one sees there is a strong opportunity for experiential 
adaptive learning to substantially modify nearly every aspect 
of the NLP system, while leaving the basic framework 
intact. 

This approach, we suggest, may provide means of dealing 
with a number of problems that have systematically vexed 
existing linguistic approaches.  One example is parse 

ranking for complex sentences: this seems almost entirely a 
matter of the ability to assess the semantic plausibility of 
different parses, and doing this based on statistical corpus 
analysis seems unreasonable.  One needs knowledge about a 
world to ground reasoning about plausiblity. 

Another example is preposition disambiguation, a topic 
that is barely dealt with at all in the computational linguistics 
literature (see e.g. [33] for an indication of the state of the 
art).  Consider the problem of assessing which meaning of 
“with” is intended in sentences like “I ate dinner with a 
fork”, “I ate dinner with my sister”, “I ate dinner with 
dessert.” In performing this sort of judgment, an embodied 
system may use knowledge about which interpretations have 
matched observed reality in the case of similar utterances it 
has processed in the past, and for which it has directly seen 
the situations referred to by the utterances.  If it has seen in 
the past, through direct embodied experience, that when 
someone said “I ate cereal with a spoon,” they meant that the 
spoon was their tool not part of their food or their eating-
partner; then when it hears “I ate dinner with a fork,” it may 
match “cereal” to “dinner” and “spoon” to “fork” (based on 
probabilistic similarity measurement) and infer that the 
interpretation of “with” in the latter sentence should also be 
to denote a tool. 

How does this approach to computational language 
understanding tie in with gestural and general semiotic 
learning as we discussed earlier?  The study of child 
language has shown that early language use is not purely 
verbal by any means, but is in fact a complex combination of 
verbal and gestural communication [23].  With the exception 
of point 1 (entity extraction) above, every one of our 
instances of experiential modification of our language 
framework listed above involves the use of an understanding 
of what situation actually exists in the world, to help the 
system identify what the logical relationships output by the 
NLP system are supposed to be in a certain context.  But a 
large amount of early-stage linguistic communication is 
social in nature, and a large amount of the remainder has to 
do with the body’s relationship to physical objects.  And, in 
understanding “what actually exists in the world” regarding 
social and physical relationships, a full understanding of 
gestural communication is important.  So, the overall 
pathway we propose for achieving robust, ultimately human-
level NLP functionality is as follows: 

-- 1. The capability for learning diverse instances of 
semiosis is established 

-- 2. Gestural communication is mastered, via nonverbal 
imitative/reinforcement/corrective learning mechanisms 
such as we are now utilizing for our embodied virtual agents 

-- 3. Gestural communication, combined with observation 
of and action in the world and verbal interaction with 
teachers, allows the system to adapt numerous aspects of its 
initial NLP engine to allow it to more effectively interpret 
simple sentences pertaining to social and physical 
relationships 

-- 4. Finally, given the ability to effectively interpret and 



 
 

 

produce these simple and practical sentences, probabilistic 
logical inference allows the system to gradually extend this 
ability to more and more complex and abstract senses, 
incrementally adapting aspects of the NLP engine as its 
scope broadens. 

Our current work focuses on steps 1 and 2, and on 
building out and tuning the initial NLP engine to be used in 
step 3.  While not a “pure experiential learning” 
methodology, we believe this is a pragmatic approach which 
stands a reasonably high chance of success in the relatively 
near term – utilizing the power of experiential learning, but 
rather than making it learn everything from scratch, allowing 
it to use appropriately architected computational-linguistics 
tools as an initial condition. 

VII. THE ROLE OF NON-VERBAL UTTERANCES AND 
PHONOLOGY IN LANGUAGE LEARNING 

 
In this brief section we will mention another potentially 

important factor that we have intentionally omitted in the 
above analysis – but that may wind up being very important, 
and that can certainly be taken into account in our 
framework if this proves necessary.  We have argued that 
gesture is an important predecessor to language in human 
children, and that incorporating it in AI language learning 
may be valuable.  But there is another aspect of early 
language use that plays a similar role to gesture, which we 
have left out in the above discussion: this is the acoustic 
aspects of speech. 

Clearly, pre-linguistic children make ample use of 
communicative sounds of various sorts.  These sounds may 
be iconic, indexical or symbolic; and they may have a great 
deal of subtlety.  Steven Mithen [34] has argued that non-
verbal utterances constitute a kind of proto-language, and 
that both music and language evolved out of this.  Their role 
in language learning is well-documented also [35].   

We are uncertain as to whether an exclusive focus on text 
rather than speech  would critically impair the language 
learning process of an AI system.  We are fairly strongly 
convinced of the importance of gesture because it seems 
bound up with the importance of semiosis – gesture, it 
seems, is how young children learn flexible semiotic 
communication skills, and then these skills are gradually 
ported from the gestural to the verbal domain. Semiotically, 
on the other hand, phonology doesn’t seem to give anything 
special beyond what gesture gives.  What it does give is an 
added subtlety of emotional expressiveness – something that 
is largely missing from virtual agents as implemented today, 
due to the lack of really fine-grained facial expressions.  
Also, it provides valuable clues to parsing, in that groups of 
words that are syntactically bound together are often phrased 
together acoustically. 

If one wished to incorporate acoustics into the framework 
described above, it would not be objectionably difficult on a 
technical level.  Speech-to-text [36] and text-to-speech 
software [37] both exist, but neither have been developed 

with a view specifically toward conveyance of emotional 
information.   One could approach the problem of assessing 
the emotional state of an utterance based on its sound as a 
supervised categorization problem, to be solved via 
supplying a machine learning algorithm with training data 
consisting of human-created pairs of the form (utterance, 
emotional valence).  Similarly, one could tune the 
dependence of text-to-speech software for appropriate 
emotional expressiveness based on the same training corpus.  
This would represent significant additional effort but would 
not be as difficult as some other aspects of the programme 
described here. 

In sum, this is a direction that we are open to explore, yet 
uncertain of its necessity, so depending on various practical 
considerations we may wind up deferring it until/unless its 
critical nature becomes clearer via theory or 
experimentation. 

CONCLUSION 
 
 Beginning with our current applied work creating 

virtual animals that learn non-verbal behaviors via 
interacting with human-controlled agents in Second Life and 
other virtual worlds, we have traced a path via which virtual 
embodiment may potentially be used to enable AI systems to 
acquire robust linguistic communication faculties.  There are 
many steps along this path, and hence many potential points 
of failure; but we believe this is the most cognitively and 
computationally plausible pathway  yet articulated for 
transitioning from the current primitive state of AI systems 
into the desired future state wherein it is possible to 
communicate complex ideas with AI systems using natural 
language.  As we view robust NL communication as the 
Rubicon which, once crossed, will allow the pace of AI 
development to accelerate extremely rapidly, we view this as 
an extremely important train of thought and endeavor. 
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