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Preface

Please note, you are now reading a preliminary draft of this book.
It’s basically complete as regards contents, but still needs some
editing, and some formatting fixes. And it hasn’t been checked
thoroughly yet so some errors may remain. Reader beware.

This is a large book with an even larger goal: is to outline a practical
approach to creating software systems with general intelligence at the human
level and ultimately beyond.

Part I reviews various critical conceptual issues, then outlines the broad
sketches of the CogPrime

design for an AGI (Artificial General Intelligence) system and a method
for giving a young AGI system appropriate experience. Along the way a
formal theory of general intelligence is sketched, and a broad roadmap from
here to human-level artificial intelligence. Hints are also given regarding how
to eventually, potentially advance even beyond human level, including some
speculations about strongly self-modifying AGI architectures with flexibility
far exceeding that of the human brain.

Part II then digs into the details of CogPrime
’s multiple structures, processes and functions, culminating in an argument

as to why CogPrime
will be able to achieve human-level AGI, and a discussion of how a Cog-

Prime
-powered virtual agent or robot would handle some simple practical tasks

such as social play with blocks in a preschool context. In it, we first describe
the CogPrime

software architecture and knowledge representation in detail; then review
the cognitive cycle via which CogPrime

perceives and acts in the world and reflects on itself. We then turn to vari-
ous forms of learning: procedural, declarative (e.g. inference), simulative and
integrative. Methods of enabling natural language functionality in CogPrime

are then discussed; and then the volume concludes with a chapter summa-
rizing the argument that CogPrime
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can lead to human-level (and eventually perhaps greater) AGI, and a chap-
ter giving a thought experiment describing the internal dynamics via which
a completed CogPrime

system might solve the problem of obeying the request “Build me some-
thing with blocks that I haven’t seen before.”

The chapters here are written to be read in linear order; but the impatient
reader might wish to start with the first few chapters, then skim the final two
chapters, and then return to reading in linear order. The final two chapters
give a broad overview of why we think the CogPrime

design will work, in a way that depends on the technical details of the
previous chapters, but (perhaps) not so sensitively as to be incomprehensible
without them.

This is admittedly an unusual sort of book, mixing demonstrated conclu-
sions with unproved conjectures in a complex way, and aiming at an extraor-
dinarily ambitious goal. However, it is not mere armchair speculation – the
ideas described here are currently being used as the basis for an open-source
software project called OpenCog, which is being worked on by software de-
velopers around the world. Right now OpenCog embodies only a percentage
of the overall CogPrime

design. However, if OpenCog continues to attract sufficient funding or
volunteer interest, then the ideas presented in these volumes. will be validated
or refuted via practice.

We recall the words of Sir Edmund Hillary, who first scaled Everest, and
wrote a book titled: “Nothing Venture, Nothing Win.”

The writing of this book began in earnest in 2001, at which point it was
informally referred to as “The Novamente Book.” The original “Novamente
Book” manuscript ultimately got too big for its own britches, and subdivided
into a number of different works – The Hidden Pattern [Goe06a], a philosophy
of mind book published in 2006; Probabilistic Logic Networks [GIGH08], a
more technical work published in 2008; Real World Reasoning [GCG+11], a
sequel to Probabilistic Logic Networks published in 2011; and the two parts
of this book.

The ideas described in this book have been the collaborative creation of
multiple overlapping communities of people over a long period of time. The
core concepts of the CogPrime

design and the underlying theory were conceived by Ben Goertzel in the
period 1995-1996 when he was a Research Fellow at the University of Western
Australia; but those early ideas have been elaborated and improved by many
more people than can be listed here (as well as by Ben’s ongoing thinking and
research). The collaborative design process ultimately resulting in CogPrime

started in 1997 when Intelligenesis Corp. was formed – the Webmind AI
Engine created in Intelligenesis’s research group during 1997-2001 was the
predecessor to the Novamente Cognition Engine created at Novamente LLC
during 2001-2008, which was the predecessor to CogPrime
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. Many of the chapters here have co-authors beyond the three co-authors
of the book, but the set of chapter co-authors does not exhaust the set of
significant contributors to the ideas presented.

This is a draft version; appropriate acknowledgements will be inserted here
when we finalize the book! As a temporary stopgap we wish to express our
profound gratitude to the entire multi-multi-...-multiverse.

July 2012
Ben Goertzel

Cassio Pennachin
Nil Geisweiller
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Chapter 1
Introduction

1.1 AI Returns to Its Roots

Our goal in this book is straightforward: to present a conceptual and tech-
nical design for a thinking machine, a software program capable of the same
qualitative sort of general intelligence as human beings. We don’t know ex-
actly how far the design outlined here will be able to take us, but it seems
plausible that once fully implemented, tuned and tested, it will be able to
achieve general intelligence at the human level and in some respects perhaps
beyond.

We don’t view the design presented here, CogPrime , as the unique path
to advanced artificial general intelligence (AGI), nor as the ultimate end-
all of AGI research. We feel confident there are multiple possible paths to
advanced AGI, and that in following any of these paths, multiple theoretical
and practical lessons will be learned, leading to modifications of the ideas
possessed while along the early stages of the path. But our goal here is to
articulate one path that we believe makes sense to follow, one overall design
that we believe can work.

An outsider to the AI field might think this sort of book commonplace in
the research literature, but insiders know that’s far from the truth. The field
of Artificial Intelligence (AI) was founded in the mid 1950s with the aim of
constructing “thinking machines” - that is, computer systems with human-like
general intelligence, including humanoid robots that not only look but act and
think with intelligence equal to and ultimately greater than human beings.
But in the intervening years, the field has drifted far from its ambitious roots,
and this book represents part of a movement aimed at restoring the initial
goals of the AI field, but in a manner powered by new tools and new ideas
far beyond those available half a century ago.

After the first generation of AI researchers found the task of creating
human-level AGI very difficult given the technology of their time, the AI
field shifted focus toward what Ray Kurzweil has called "narrow AI" – the
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4 1 Introduction

understanding of particular specialized aspects of intelligence; and the cre-
ation AI systems displaying intelligence regarding specific tasks in relatively
narrow domains. In recent years, however, the situation has been changing.
More and more researchers have recognized the necessity – and feasibility –
of returning to the original goals of the field.

In the decades since the 1950s, cognitive science and neuroscience have
taught us a lot about what a cognitive architecture needs to look like to
support roughly human-like general intelligence. Computer hardware has ad-
vanced to the point where we can build distributed systems containing large
amounts of RAM and large numbers of processors, carrying out complex tasks
in real time. The AI field has spawned a host of ingenious algorithms and
data structures, which have been successfully deployed for a huge variety of
purposes.

Due to all this progress, increasingly, there has been a call for a transition
from the current focus on highly specialized “narrow AI” problem solving
systems, back to confronting the more difficult issues of “human level intelli-
gence” and more broadly “artificial general intelligence (AGI).” Recent years
have seen a growing number of special sessions, workshops and conferences
devoted specifically to AGI, including the annual BICA (Biologically Inspired
Cognitive Architectures) AAAI Symposium, and the international AGI con-
ference series (AGI-08 , AGI-09, AGI-10, AGI-11). And, even more exciting,
as reviewed in Chapter 4, there are a number of contemporary projects fo-
cused directly and explicitly on AGI (sometimes under the name "AGI",
sometimes using related terms such as "Human Level Intelligence").

In spite of all this progress, however, no one has yet clearly articulated a
detailed, systematic design for an AGI, with potential to yield general intel-
ligence at the human level and ultimately beyond. Perhaps the most compre-
hensive attempts in this direction have been the works of Stan Franklin and
Joscha Bach, to be discussed in Chapter 4; but as we will discuss later on,
while we believe both of their approaches are basically conceptually sound,
we also feel their designs have shortcomings and lacunae alongside their con-
siderable strengths.

In this spirit, our main goal in this lengthy two-part book is to outline a
novel design for a thinking machine – an AGI design which we believe has the
capability to produce software systems with intelligence at the human adult
level and ultimately beyond. Many of the technical details of this design
have been previously presented online in a wikibook [?]; and the basic ideas
of the design have been presented briefly in a series of conference papers
[?, GPPG06, Goe09b]. But the overall design has not been presented in a
coherent and systematic way before this book. In order to frame this design
properly, we also present a considerable number of broader theoretical and
conceptual ideas here, some more and some less technical in nature.

The AGI design presented here has not previously been granted a name in-
dependently of its particular software implementations, but for the purposes
of this book it needs a name, so we’ve christened itCogPrime . This fits with
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the name “OpenCogPrime ” that has already been used to describe the soft-
ware implementation of CogPrime within the open-source OpenCog AGI soft-
ware framework. The OpenCogPrime software, right now, implements only a
small fraction of the CogPrime design as described here. However, OpenCog
was designed specifically to enable efficient, scalable implementation of the
full CogPrime design (as well as to serve as a more general framework for
AGI R&D); and work currently proceeds in this direction, though there is a
lot of work still to be done and many challenges remain. 1

The CogPrime design is more comprehensive and thorough than anything
that has been presented in the literature previously, including the work of
others reviewed in Chapter 4. It covers all the key aspects of human intelli-
gence, and explains how they interoperate and how they can be implemented
in digital computer software. Part 1 of this work outlines CogPrime at a high
level, and makes a number of more general points about artificial general
intelligence and the path thereto; then Part 2 digs deeply into the technical
particulars of CogPrime . Even Part 2, however, doesn’t explain all the de-
tails of CogPrime that have been worked out so far, and it definitely doesn’t
explain all the implementation details that have gone into designing and
building OpenCogPrime . Creating a thinking machine is a large task, and
even the intermediate level of detail takes up a lot of pages.

1.2 The Secret Sauce

There is no consensus on why all the related technological and scientific
progress mentioned above has not yet yielded AI software systems with
human-like general intelligence. However, we hypothesize that the core reason
boils down to the following three points:

• Intelligence depends on the emergence of certain high-level structures and
dynamics across a system’s whole knowledge base;

• We have not discovered any one algorithm or approach capable of yielding
the emergence of these structures;

1 This brings up a terminological note: At several places in this Volume and the next
we will refer to the current CogPrime or OpenCog implementation; in all cases this refers
to OpenCog as of mid 2012. We realize the risk of mentioning the state of our software
system at time of writing: for future readers this may give the wrong impression, because
if our project goes well, more and more of CogPrime will get implemented and tested as
time goes on (e.g. within the OpenCog framework, under active development at time of
writing). However, not mentioning the current implementation at all seems an even worse
course to us, since we feel readers will be interested to know which of our ideas – at time
of writing – have been honed via practice and which have not. Online resources such as
http://opencog.org may be consulted by readers curious about the current state of
the main OpenCog implementation; though in future forks of the code may be created, or
other systems may be built using some or all of the ideas in this book, etc.

http://opencog.org
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• Achieving the emergence of these structures within a system formed by
integrating a number of different AI algorithms and structures requires
careful attention to the manner in which these algorithms and structures
are integrated; and so far the integration has not been done in the correct
way.

The human brain appears to be an integration of an assemblage of di-
verse structures and dynamics, built using common components and arranged
according to a sensible cognitive architecture. However, its algorithms and
structures have been honed by evolution to work closely together – they are
very tightly inter-adapted, in the same way that the different organs of the
body are adapted to work together. Due their close interoperation they give
rise to the overall systemic behaviors that characterize human-like general in-
telligence. We believe that the main missing ingredient in AI so far is cogni-
tive synergy: the fitting-together of different intelligent components into an
appropriate cognitive architecture, in such a way that the components richly
and dynamically support and assist each other, interrelating very closely in a
similar manner to the components of the brain or body and thus giving rise
to appropriate emergent structures and dynamics. Which leads us to one of
the central hypotheses underlying the CogPrime approach to AGI: that the
cognitive synergy ensuing from integrating multiple symbolic and
subsymbolic learning and memory components in an appropriate
cognitive architecture and environment, can yield robust intelli-
gence at the human level and ultimately beyond.

The reason this sort of intimate integration has not yet been explored
much is that it’s difficult on multiple levels, requiring the design of an archi-
tecture and its component algorithms with a view toward the structures and
dynamics that will arise in the system once it is coupled with an appropriate
environment. Typically, the AI algorithms and structures corresponding to
different cognitive functions have been developed based on divergent theoret-
ical principles, by disparate communities of researchers, and have been tuned
for effective performance on different tasks in different environments. Making
such diverse components work together in a truly synergetic and cooperative
way is a tall order, yet we believe that this – rather than some particular
algorithm, structure or architectural principle – is the “secret sauce” needed
to create human-level AGI based on technologies available today.

1.3 Extraordinary Proof?

There is a saying that “extraordinary claims require extraordinary proof” and
by that standard, if one believes that having a design for an advanced AGI
is an extraordinary claim, this book must be rated a failure. We don’t offer
extraordinary proof that CogPrime , once fully implemented and educated,
will be capable of human-level general intelligence and more.
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It would be nice if we could offer mathematical proof that CogPrime has
the potential we think it does, but at the current time mathematics is simply
not up to the job. We’ll pursue this direction briefly in 7 and other chapters,
where we’ll clarify exactly what kind of mathematical claim “CogPrime has
the potential for human-level intelligence” turns out to be. Once this has been
clarified, it will be clear that current mathematical knowledge does not yet
let us evaluate, or even fully formalize, this kind of claim. Perhaps one day
rigorous and detailed analyses of practical AGI designs will be feasible – and
we look forward to that day – but it’s not here yet.

Also, it would of course be profoundly exciting if we could offer dramatic
practical demonstrations of CogPrime ’s capabilities. We do have a partial
software implementation, in the OpenCogPrime system, but currently the
things OpenCogPrime does are too simple to really serve as proofs of Cog-
Prime ’s power for advanced AGI. We have used some CogPrime ideas in the
OpenCog framework to do things like natural language understanding and
data mining, and to control virtual dogs in online virtual worlds; and this
has been very useful work in multiple senses. It has taught us more about
the CogPrime design; it has produced some useful software systems; and it
constitutes fractional work building toward a full OpenCog based implemen-
tation of CogPrime . However, to date, the things OpenCogPrime has done
are all things that could have been done in different ways without the Cog-
Prime architecture (though perhaps not as elegantly nor with as much room
for interesting expansion).

The bottom line is that building an AGI is a big job. Software companies
like Microsoft spend dozens to hundreds of man-years building software prod-
ucts like word processors and operating systems, so it should be no surprise
that creating a digital intelligence is also a relatively large-scale software engi-
neering project. As time advances and software tools improve, the number of
man-hours required to develop advanced AGI gradually decreases – but right
now, as we write these words, it’s still a rather big job. In the OpenCogPrime
project we are making a serious attempt to create a CogPrime based AGI
using an open-source development methodology, with the open-source Linux
operating system as one of our inspirations. But the open-source methodol-
ogy doesn’t work magic either, and it remains a large project, currently at an
early stage. I emphasize this point so that readers lacking software engineer-
ing expertise don’t take the currently fairly limited capabilities of OpenCog-
Prime as somehow damning about the potential of the CogPrime design. The
design is one thing, the implementation another – and the OpenCogPrime
implementation currently encompasses perhaps one third to one half of the
key ideas in this book.

So we don’t have extraordinary proof to offer. What we aim to offer instead
are clearly-constructed conceptual and technical arguments as to why we
think the CogPrime design prime has dramatic AGI potential.

It is also possible to push back a bit on the common intuition that having
a design for human-level AGI is such an “extraordinary claim.” It may be
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extraordinary relative to contemporary science and culture, but we have a
strong feeling that the AGI problem is not difficult in the same ways that
most people (including most AI researchers) think it is. We suspect that in
hindsight, after human-level AGI has been achieved, people will look back
in shock that it took humanity so long to come up with a workable AGI
design. As you’ll understand once you’ve finished Part 1 of the book, we
don’t think general intelligence is nearly as “extraordinary” and mysterious
as it’s commonly made out to be. Yes, building a thinking machine is hard
– but humanity has done a lot of other hard things before. It may seem
difficult to believe that human-level general intelligence could be achieved
by something as simple as a collection of algorithms linked together in an
appropriate way and used to control an agent. But we suggest that, once the
first powerful AGI systems are produced, it will become clear and apparent
engineering human-level minds is not so profoundly different from engineering
other complex systems.

All in all, we’ll consider the book successful if a significant percentage of
open-minded, appropriately-educated readers come away from it scratching
their chins and pondering: “Hmm. You know, that just might work.” É and a
small percentage come away thinking "Now that’s an initiative I’d really like
to help with!".

1.4 Potential Approaches to AGI

In principle, there is a large number of approaches one might take to building
an AGI, starting from the knowledge, software and machinery now available.
This is not the place to review them in detail, but a brief list seems apropos,
including commentary on why these are not the approaches we have chosen
for our own research. Our intent here is not to insult or dismiss these other
potential approaches, but merely to indicate why, as researchers with limited
time and resources, we have made a different choice regarding where to focus
our own energies.

Build AGI from Narrow AI

Most of the AI programs around today are “narrow AI” programs – they
carry out one particular kind of task intelligently. One could try to make an
advanced AGI by combining a bunch of enhanced narrow AI programs inside
some kind of overall framework.

However, we’re rather skeptical of this approach because none of these
narrow AI programs have the ability to generalize across domains – and we
don’t see how combining them or extending them is going to cause this to
magically emerge.
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Enhancing Chatbots

One could seek to make an advanced AGI by taking a chatbot, and trying
to improve its code to make it actually understand what it’s talking about.
We have some direct experience with this route, as in 2010 our AI consulting
firm was contracted to improve Ray Kurzweil’s online chatbot "Ramona."
Our new Ramona understands a lot more than the previous Ramona version
or a typical chatbot, due to using Wikipedia and other online resources, but
still it’s far from an AGI.

A more ambitious attempt in this direction was Jason Hutchens’ a-i.com
project, which sought to create a human child level AGI via development
and teaching of a statistical learning based chatbot (rather than the typical
rule-based kind). The difficulty with this approach, however, is that the ar-
chitecture of a chatbot is fundamentally different from the architecture of a
generally intelligent mind. Much of what’s important about the human mind
is not directly observable in conversations, so if you start from conversation
and try to work toward an AGI architecture from there, you’re likely to miss
many critical aspects.

Emulating the Brain

One can approach AGI by trying to figure out how the brain works, using
brain imaging and other tools from neuroscience, and then emulating the
brain in hardware or software.

One rather substantial problem with this approach is that we don’t really
understand how the brain works yet, because our software for measuring
the brain is still relatively crude. There is no brain scanning method that
combines high spatial and temporal accuracy, and none is likely to come
about for a decade or two. So to do brain-emulation AGI seriously, one needs
to wait a while until brain scanning technology improves.

Current AI methods like neural nets that are loosely based on the brain, are
really not brain-like enough to make a serious claim at emulating the brain’s
approach to general intelligence. We don’t yet have any real understanding of
how the brain represents abstract knowledge, for example, or how it does rea-
soning (though the authors, like many others, have made some speculations
in this regard [GMIH08]).

Another problem with this approach is that once you’re done, what you
get is something with a very humanlike mind, and we already have enough
of those! However, this is perhaps not such a serious objection, because a
digital-computer-based version of a human mind could be studied much more
thoroughly than a biology-based human mind. We could observe its dynamics
in real-time in perfect precision, and could then learn things that would allow
us to build other sorts of digital minds.
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Evolve an AGI

Another approach is to try to run an evolutionary process inside the com-
puter, and wait for advanced AGI to evolve.

One problem with this is that we don’t know how evolution works all that
well. There’s a field of artificial life, but so far its results have been fairly
disappointing. It’s not yet clear how much one can vary on the chemical
structures that underly real biology, and still get powerful evolution like we
see in real biology. If we need good artificial chemistry to get good artifi-
cial biology, then do we need good artificial physics to get good artificial
chemistry?

Another problem with this approach, of course, is that it might take a
really long time. Evolution took billions of years on Earth, using a massive
amount of computational power. To make the evolutionary approach to AGI
effective, one would need some radical innovations to the evolutionary process
(such as, perhaps, using probabilistic methods like BOA [?] or MOSES [?] in
place of traditional evolution).

Derive an AGI design mathematically

One can try to use the mathematical theory of intelligence to figure out how
to make advanced AGI.

This interests us greatly, but there’s a huge gap between the rigorous math
of intelligence as it exists today and anything of practical value. As we’ll dis-
cuss in Chapter 7, most of the rigorous math of intelligence right now is
about how to make AI on computers with dramatically unrealistic amounts
of memory or processing power. When one tries to create a theoretical un-
derstanding of real-world general intelligence, one arrives at quite different
sorts of considerations, as we will roughly outline in Chapter 10. Ideally we
would like to be able to study the CogPrime design using a rigorous math-
ematical theory of real-world general intelligence, but at the moment that’s
not realistic. The best we can do is to conceptually analyze CogPrime and its
various components in terms of relevant mathematical and theoretical ideas;
and perform analysis of CogPrime ’s individual structures and components
at varying levels of rigor.

Use heuristic computer science methods

The computer science field contains a number of abstract formalisms, algo-
rithms and structures that have relevance beyond specific narrow AI applica-
tions, yet aren’t necessarily understood as thoroughly as would be required to
integrate them into the rigorous mathematical theory of intelligence. Based
on these formalisms, algorithms and structures, a number of "single formalis-
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m/algorithm focused" AGI approaches have been outlined, some of which will
be reviewed in Chapter 4. For example Pei Wang’s NARS approach is based
on a specific logic which he argues to be the "logic of general intelligence" –
so, while his system contains many other aspects than this logic, he considers
this logic to be the crux of the system and the source of its potential power
as a AGI system.

The basic intuition on the part of these "single formalism/algorithm fo-
cused" researchers seems to be that there is one key formalism or algorithm
underlying intelligence, and if you achieve this key aspect in your AGI pro-
gram, you’re going to get something that fundamentally thinks like a person,
even if it has some differences due to its different implementation and embod-
iment. On the other hand, it’s also possible that this idea is philosophically
incorrect: that there is no one key formalism, algorithm, structure or idea
underlying general intelligence. The CogPrime approach is based on the in-
tuition that to achieve human-level, roughly human-like general intelligence
based on feasible computational resources, one needs an appropriate hetero-
geneous combination of algorithms and structures, each coping with different
types of knowledge and different aspects of the problem of achieving goals in
complex environments.

Integrative Cognitive Architecture

Finally, to create advanced AGI one can try to build some sort of integrative
cognitive architecture: a software system with multiple components that each
carry out some cognitive function, and that connect together in a specific way
to try to yield overall intelligence.

Cognitive science gives us some guidance about the overall architecture,
and computer science and neuroscience give us a lot of ideas about what to
put in the different components. But still this approach is very complex and
there is a lot of need for creative invention.

This is the approach we consider most “serious” at present (at least un-
til neuroscience advances further) – it’s the one underlying Franklin’s and
Bach’s approaches, of which we’ve spoken admiringly above. And, as will be
discussed in depth in these pages, this is the approach we’ve chosen: Cog-
Prime is an integrative AGI architecture.

1.4.1 Can Digital Computers Really Be Intelligent?

All the AGI approaches we’ve just mentioned assume that it’s possible to
make AGI on digital computers. While we suspect this is correct, we must
note that it isn’t proven.
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It might be that – as Penrose [Pen96], Hameroff [Ham87] and others have
argued – we need quantum computers or quantum gravity computers to make
AGI. However, there is no evidence of this at this stage. Of course the brain
like all matter is described by quantum mechanics, but this doesn’t imply
that the brain is a “macrosopic quantum system” in a strong sense (like, say,
a Bose-Einstein condensate). And even if the brain does use quantum phe-
nomena in a dramatic way to carry out some of its cognitive processes (a
hypothesis for which there is no current evidence), this doesn’t imply that
these quantum phenomena are necessary in order to carry out the given cog-
nitive processes. For example there is evidence that birds use quantum non-
local phenomena to carry out navigation based on the Earth’s magnetic fields
[?]; yet scientists have built instruments that carry out the same functions
without using any special quantum effects.

Quantum “magic” aside, it is also conceivable that building AGI is fun-
damentally impossible for some other reason we don’t understand. Without
getting religious about it, it is rationally quite possible that some aspects
of the universe are beyond the scope of scientific methods. Science is fun-
damentally about recognizing patterns in finite sets of bits (e.g. finite sets
of finite-precision observations), whereas mathematics recognizes many sets
much larger than this. Selmer Bringsjord [?], and other advocates of “hyper-
computing” approaches to intelligence, argue that the human mind depends
on massively large infinite sets and therefore can never be simulated on digi-
tal computers nor understood via finite sets of finite-precision measurements
such as science deals with.

But again, while this sort of possibility is interesting to speculate about,
there’s no real reason to believe it at this time. Brain science and AI are both
very young sciences and the “working hypothesis” that digital computers can
manifest advanced AGI has hardly been explored at all yet, relative to what
will be possible in the next decades as computers get more and more powerful
and our understanding of neuroscience and cognitive science gets more and
more complete. The CogPrime AGI design presented here is based on this
working hypothesis.

Many of the ideas in the book are actually independent of the “mind can be
implemented digitally” working hypothesis, and could apply to AGI systems
built on analog, quantum or other non-digital frameworks – but we will not
pursue these possibilities here. For the moment, outlining an AGI design for
digital computers is hard enough! Regardless of speculations about quantum
computing in the brain, it seems clear that AGI on quantum computers is
part of our future and will be a powerful thing; but the description of a
CogPrime analogue for quantum computers will be left for a later work.
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1.5 Five Key Words

As noted, the CogPrime approach lies squarely in the integrative cognitive
architecture camp. But it is not a haphazard or opportunistic combination of
algorithms and data structures. At bottom it is motivated by the patternist
philosophy of mind laid out in Ben Goertzel’s book The Hidden Pattern
[Goe06a], which was in large part a summary and reformulation of ideas
presented in a series of books published earlier by the same author [Goe94],
[?], [?], [?], [Goe01]. A few of the core ideas of this philosophy are laid out in
Chapter 3, though that chapter is by no means a thorough summary.

One way to summarize some of the most important yet commonsensical
parts of the patternist philosophy of mind, in an AGI context, is to list five
words: perception, memory, prediction, action, goals.

In a phrase: “A mind uses perception and memory to make pre-
dictions about which actions will help it achieve its goals.”

This ties in with the ideas of many other thinkers, including Jeff Hawkins’
“memory/prediction” theory [HB06], and it also speaks directly to the formal
characterization of intelligence presented in Chapter 7: general intelligence
as “the ability to achieve complex goals in complex environments.”

Naturally the goals involved in the above phrase may be explicit or implicit
to the intelligent agent, and they may shift over time as the agent develops.

Perception is taken to mean pattern recognition: the recognition of (novel
or familiar) patterns in the environment or in the system itself. Memory is
the storage of already-recognized patterns, enabling recollection or regener-
ation of these patterns as needed. Action is the formation of patterns in the
body and world. Prediction is the utilization of temporal patterns to guess
what perceptions will be seen in the future, and what actions will achieve
what effects in the future – in essence, prediction consists of temporal pat-
tern recognition, plus the (implicit or explicit) assumption that the universe
possesses a "habitual tendency" according to which previously observed pat-
terns continue to apply.

1.5.1 Memory and Cognition in CogPrime

Each of these five concepts has a lot of depth to it, and we won’t say too
much about them in this brief introductory overview; but we will take a little
time to say something about memory in particular.

As we’ll see in Chapter 7, one of the things that the mathematical theory
of general intelligence makes clear is that, if you assume your AI system has
a huge amount of computational resources, then creating general intelligence
is not a big trick. Given enough computing power, a very brief and simple
program can achieve any computable goal in any computable environment,
quite effectively. Marcus Hutter’s AIXItl design [Hut05] gives one way of
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doing this, backed up by rigorous mathematics. Put informally, what this
means is: the problem of AGI is really a problem of coping with inadequate
compute resources, just as the problem of natural intelligence is really a
problem of coping with inadequate energetic resources.

One of the key ideas underlying CogPrime is a principle called cognitive
synergy, which explains how real-world minds achieve general intelligence
using limited resources, by appropriately organizing and utilizing their mem-
ories.

This principle says that there are many different kinds of memory in the
mind: sensory, episodic, procedural, declarative, attentional, intentional. Each
of them has certain learning processes associated with it; for example, rea-
soning is associated with declarative memory. And the synergy part is that
the learning processes associated with each kind of memory have got to help
each other out when they get stuck, rather than working at cross-purposes.

Cognitive synergy is a fundamental principle of general intelligence – it
doesn’t tend to play a central role when you’re building narrow-AI systems.

In the CogPrime approach all the different kinds of memory are linked
together in a single meta-representation, a sort of combined semantic/neural
network called the AtomSpace. It represents everything from perceptions and
actions to abstract relationships and concepts and even a system’s model of
itself and others. When specialized representations are used for other types
of knowledge (e.g. program trees for procedural knowledge, spatiotemporal
hierarchies for perceptual knowledge) then the knowledge stored outside the
AtomSpace is represented via tokens (Atoms) in the AtomSpace, allowing
it to be located by various cognitive processes, and associated with other
memory items of any type.

So for instance an OpenCog AI system has an AtomSpace, plus some spe-
cialized knowledge stores linked into the AtomSpace; and it also has specific
algorithms acting on the AtomSpace and appropriate specialized stores cor-
responding to each type of memory. Each of these algorithms is complex and
has its own story; for instance (an incomplete list, for more detail see the
following section of this Introduction):

• Declarative knowledge is handled using Probabilistic Logic Networks, de-
scribed in Chapter 34 and others;
• Procedural knowledge is handled using MOSES, a probabilistic evolu-

tionary learning algorithm described in Chapter 21 and others;
• Attentional knowledge is handled by ECAN (economic attention alloca-

tion), described in Chapter 23 and others;
• OpenCog contains a language comprehension system called RelEx that

takes English sentences and turns them into nodes and links in the Atom-
Space. It’s currently being extended to handle Chinese. RelEx handles
mostly declarative knowledge but also involves some procedural knowl-
edge for linguistic phenomena like reference resolution and semantic dis-
ambiguation.
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But the crux of the CogPrime cognitive architecture is not any particular
cognitive process, but rather the way they all work together using cognitive
synergy.

1.6 Virtually and Robotically Embodied AI

Another issue that will arise frequently in these pages is embodiment. There’s
a lot of debate in the AI community over whether embodiment is necessary
for advanced AGI or not. Personally, we doubt it’s necessary but we think
it’s extremely convenient, and are thus considerably interested in both virtual
world and robotic embodiment. The CogPrime architecture itself is neutral
on the issue of embodiment, and it could be used to build a mathematical
theorem prover or an intelligent chat bot just as easily as an embodied AGI
system. However, most of our attention has gone into figuring out how to use
CogPrime to control embodied agents in virtual worlds, or else (to a lesser
extent) physical robots. For instance, during 2011-2012 we are involved in a
Hong Kong government funded project using OpenCog to control video game
agents in a simple game world modeled on the game Minecraft [?].

Current virtual world technology has significant limitations that make
them far less than ideal from an AGI perspective, and in Chapter 16 we
will discuss how they can be remedied. However, for the medium-term future
virtual worlds are not going to match the natural world in terms of richness
and complexity – and so there’s also something to be said for physical robots
that interact with all the messiness of the real world.

With this in mind, in the Artificial Brain Lab at Xiamen University in
2009-2010, we conducted some experiments using OpenCog to control the
Nao humanoid robot [GD09]. The goal of that work was to take the same
code that controls the virtual dog and use it to control the physical robot.
But it’s harder because in this context we need to do real vision processing
and real motor control. One of the key ideas involved in this project is what’s
called Neuro-Symbolic architecture. For instance, one can use a hierarchical
neural net for vision processing, and then link these formal neurons into the
nodes and links in the AtomSpace that represent concepts. So the neural and
symbolic systems can work together, a notion we will review in more detail
in Chapter 26.

1.7 Language Learning

One of the subtler aspects of our current approach to teaching CogPrime is
language learning. Three relatively crisp and simple approaches to language
learning would be:
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• Build a language processing system using hand-coded grammatical rules,
based on linguistic theory;

• Train a language processing system using supervised, unsupervised or
semisupervised learning, based on computational linguistics;

• Have an AI system learn language via experience, based on imitation
and reinforcement and experimentation, without any built-in distinction
between linguistic behaviors and other behaviors.

While the third approach is conceptually appealing, our current approach in
CogPrime (described in a series of chapters in Part 2) is none of the above,
but rather a combination of the above. OpenCog contains a natural language
processing system built using a combination of the rule-based and statistical
approaches, which has reasonably adequate functionality; and our plan is
to use it as an initial condition for ongoing adaptive improvement based on
embodied communicative experience.

1.8 AGI Ethics

When discussing AGI work with the general public, ethical concerns often
arise. Science fiction films like the Terminator series have raised public aware-
ness of the possible dangers of advanced AGI systems without correspond-
ingly advanced ethics. Non-profit organizations like the Singularity Institute
for AI ((http://singinst.org) have arisen specifically to raise attention about,
and foster research on, these potential dangers.

Our main focus here is on how to create AGI, not how to teach an AGI
human ethical principles. However, we will address the latter issue explicitly
in Chapter 12, and we do think it’s important to emphasize that AGI ethics
has been at the center of the design process throughout the conception and
development of CogPrime and OpenCog.

Broadly speaking there are (at least) two major threats related to advanced
AGI. One is that people might use AGIs for bad ends; and the other is that,
even if an AGI is made with the best intentions, it might reprogram itself
in a way that causes it to do something terrible. If it’s smarter than us, we
might be watching it carefully while it does this, and have no idea what’s
going on.

The best way to deal with this second “bad AGI” problem is to build
ethics into your AGI architecture – and we have done this with CogPrime ,
via creating a goal structure that explicitly supports ethics-directed behavior,
and via creating an overall architecture that supports “ethical synergy” along
with cognitive synergy. In short, the notion of ethical synergy is that there
are different kinds of ethical thinking associated with the different kinds of
memory and you want to be sure your AGI has all of them, and that it uses
them together effectively.

(
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In order to create AGI that is not only intelligent but beneficial to other
sentient beings, ethics has got to be part of the design and the roadmap.
As we teach our AGI systems, we need to lead them through a series of
instructional and evaluative tasks that move from a primitive level to the
mature human level – in intelligence, but also in ethical judgment.

1.9 Structure of the Book

The book is divided into two parts. The technical particulars of CogPrime are
discussed in Part 2; what we deal with in Part 1 are important preliminary
and related matters such as:

• The nature of real-world general intelligence, both conceptually and from
the perspective of formal modeling (Section I).

• The nature of cognitive and ethical development for humans and AGIs
(Section III).

• The high-level properties of CogPrime , including the overall architecture
and the various sorts of memory involved (Section IV).

• What kind of path may viably lead us from here to AGI, with focus
laid on preschool-type environments that easily foster humanlike cogni-
tive development. Various advanced aspects of AGI systems, such as the
network and algebraic structures that may emerge from them, the ways
in which they may self-modify, and the degree to which their initial de-
sign may constrain or guide their future state even after long periods of
radical self-improvement (Section V).

One point made repeatedly throughout Part 1, which is worth emphasizing
here, is the current lack of a really rigorous and thorough general technical
theory of general intelligence. Such a theory, if complete, would be incredibly
helpful for understanding complex AGI architectures like CogPrime . Lacking
such a theory, we must work on CogPrime and other such systems using a
combination of theory, experiment and intuition. This is not a bad thing,
but it will be very helpful if the theory and practice of AGI are able to grow
collaboratively together.

1.10 Key Claims of the Book

We will wrap up this Introduction with a systematic list of some of the key
claims to be argued for in these pages. Not all the terms and ideas in these
claims have been mentioned in the preceding portions of this Introduction,
but we hope they will be reasonably clear to the reader anyway, at least in
a general sense. This list of claims will be revisited in Chapter 48 near the
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end of Part 2, where we will look back at the ideas and arguments that have
been put forth in favor of them, in the intervening chapters.

In essence this is a list of claims such that, if the reader accepts these
claims, they should probably accept that the CogPrime approach to AGI is
a viable one. On the other hand if the reader rejects one or more of these
claims, they may find one or more aspects of CogPrime unacceptable for some
reason.

Without further ado, now, the claims:

1. General intelligence (at the human level and ultimately beyond) can be
achieved via creating a computational system that seeks to achieve its
goals, via using perception and memory to predict which actions will
achieve its goals in the contexts in which it finds itself.

2. To achieve general intelligence in the context of human-intelligence-
friendly environments and goals using feasible computational resources,
it’s important that an AGI system can handle different kinds of mem-
ory (declarative, procedural, episodic, sensory, intentional, attentional)
in customized but interoperable ways.

3. Cognitive synergy: It’s important that the cognitive processes associated
with different kinds of memory can appeal to each other for assistance in
overcoming bottlenecks in a manner that enables each cognitive process
to act in a manner that is sensitive to the particularities of each others’
internal representations, and that doesn’t impose unreasonable delays on
the overall cognitive dynamics.

4. As a general principle, neither purely localized nor purely global mem-
ory is sufficient for general intelligence under feasible computational re-
sources; “glocal” memory will be required.

5. To achieve human-like general intelligence, it’s important for an intelli-
gent agent to have sensory data and motoric affordances that roughly
emulate those available to humans. We don’t know exactly how close this
emulation needs to be, which means that our AGI systems and platforms
need to support fairly flexible experimentation with virtual-world and/or
robotic infrastructures.

6. To work toward adult human-level, roughly human-like general intelli-
gence, one fairly easily comprehensible path is to use environments and
goals reminiscent of human childhood, and seek to advance one’s AGI
system along a path roughly comparable to that followed by human chil-
dren.

7. It is most effective to teach an AGI system aimed at roughly human-
like general intelligence via a mix of spontaneous learning and explicit
instruction, and to instruct it via a combination of imitation, reinforce-
ment and correction, and a combination of linguistic and nonlinguistic
instruction.

8. One effective approach to teaching an AGI system human language is
to supply it with some in-built linguistic facility, in the form of rule-
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based and statistical-linguistics-based NLP systems, and then allow it to
improve and revise this facility based on experience.

9. An AGI system with adequate mechanisms for handling the key types
of knowledge mentioned above, and the capability to explicitly recognize
large-scale pattern in itself, should, upon sustained interaction with
an appropriate environment in pursuit of appropriate goals,
emerge a variety of complex structures in its internal knowledge network,
including, but not limited to:

• a hierarchical network, representing both a spatiotemporal hierarchy
and an approximate “default inheritance” hierarchy, cross-linked;

• a heterarchical network of associativity, roughly aligned with the hi-
erarchical network;

• a self network which is an approximate micro image of the whole
network;

• inter-reflecting networks modeling self and others, reflecting a “mir-
rorhouse” design pattern’.

10. Given the strengths and weaknesses of current and near-future digital
computers,

a. a (loosely) neural-symbolic network is a good representation for di-
rectly storing many kinds of memory, and interfacing between those
that it doesn’t store directly;

b. Uncertain logic is a good way to handle declarative knowledge. To
deal with the problems facing a human-level AGI, an uncertain logic
must integrate imprecise probability and fuzziness with a broad scope
of logical constructs. PLN is one good realization.

c. Programs are a good way to represent procedures (both cognitive and
physical-action, but perhaps not including low-level motor-control
procedures).

d. Evolutionary program learning is a good way to handle difficult pro-
gram learning problems. Probabilistic learning on normalized pro-
grams is one effective approach to evolutionary program learning.
MOSES is one good realization of this approach.

e. Multistart hill-climbing, with a strong Occam prior, is a good way to
handle relatively straightforward program learning problems.

f. Activation spreading and Hebbian learning comprise a reasonable
way to handle attentional knowledge (though other approaches, with
greater overhead cost, may provide better accuracy and may be ap-
propriate in some situations).
• Artificial economics is an effective approach to activation spread-

ing and Hebbian learning in the context of neural-symbolic net-
works;
• ECAN is one good realization of artificial economics;
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• A good trade-off between comprehensiveness and efficiency is to
focus on two kinds of attention: processor attention (represented
in CogPrime by ShortTermImportance) and memory attention
(represented in CogPrime by LongTermImportance).

g. Simulation is a good way to handle episodic knowledge (remembered
and imagined). Running an internal world simulation engine is an
effective way to handle simulation.

h. Hybridization of one’s integrative neural-symbolic system with a spa-
tiotemporally hierarchical deep learning system is an effective way to
handle representation and learning of low-level sensorimotor knowl-
edge. DeSTIN is one example of a deep learning system of this nature
that can be effective in this context.

i. One effective way to handle goals is to represent them declara-
tively, and allocate attention among them economically. CogPrime
’s PLN/ECAN based framework for handling intentional knowledge
is one good realization.

11. It is important for an intelligent system to have some way of recogniz-
ing large-scale patterns in itself, and then embodying these patterns as
new, localized knowledge items in its memory. Given the use of a neural-
symbolic network for knowledge representation, a graph-mining based
“map formation” heuristic is one good way to do this.

12. Occam’s Razor: Intelligence is closely tied to the creation of procedures
that achieve goals in environments in the simplest possible way. Each of
an AGI system’s cognitive algorithms should embody a simplicity bias in
some explicit or implicit form.

13. An AGI system, if supplied with a commonsensically ethical goal sys-
tem and an intentional component based on rigorous uncertain inference,
should be able to reliably achieve a much higher level of commonsensically
ethical behavior than any human being.

14. Once sufficiently advanced, an AGI system with a logic-based declarative
knowledge approach and a program-learning-based procedural knowledge
approach should be able to radically self-improve via a variety of methods,
including supercompilation and automated theorem-proving.



Section I
Artificial and Natural General

Intelligence





Chapter 2
What Is Human-Like General
Intelligence?

2.1 Introduction

CogPrime , the AGI architecture on which the bulk of this book focuses, is
aimed at the creation of artificial general intelligence that is vaguely human-
like in nature, and possesses capabilities at the human level and ultimately
beyond.

Obviously this description begs some foundational questions, such as, for
starters: What is "general intelligence"? What is "human-like general intelli-
gence"? What is "intelligence" at all?

Perhaps in future there will exist a rigorous theory of general intelligence
which applies usefully to real-world biological and digital intelligences. In
later chapters we will give some ideas in this direction. But such a theory is
currently nascent at best. So, given the present state of science, these two
questions about intelligence must be handled via a combination of formal
and informal methods. This brief, informal chapter attempts to explain our
view on the nature of intelligence in sufficient detail to place the discussion of
CogPrime in appropriate context, without trying to resolve all the subtleties.

Psychologists sometimes define human general intelligence using IQ tests
and related instruments [?] – so one might wonder: why not just go with
that? But these sorts of intelligence testing approaches have difficulty even
extending to humans from diverse cultures [?]. So it’s clear that to ground
AGI approaches that are not based on precise modeling of human cognition,
one requires a more fundamental understanding of the nature of general in-
telligence. On the other hand, if one conceives intelligence too broadly and
mathematically, there’s a risk of leaving the real human world too far behind.
In this chapter (followed up in Chapters 9 and 7 with more rigor), we present
a highly abstract understanding of intelligence-in-general, and then portray
human-like general intelligence as a (particularly relevant) special case.

23
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2.1.1 What Is General Intelligence?

Many attempts to characterize general intelligence have been made; Legg and
Hutter [?] review over 70! Our preferred abstract characterization of intel-
ligence is: the capability of a system to choose actions maximizing
its goal-achievement, based on its perceptions and memories, and
making reasonably efficient use of its computational resources [?].
A general intelligence is then understood as one that can do this for a variety
of complex goals in a variety of complex environments.

However, apart from positing definitions, it is difficult to say anything non-
trivial about general intelligence in general. Marcus Hutter [?] has demon-
strated, using a characterization of general intelligence similar to the above,
that a very simple algorithm called AIXItl can demonstrate arbitrarily high
levels of general intelligence, if given sufficiently immense computational re-
sources. This is interesting because it shows that (if we assume the universe
can effectively be modeled as a computational system) general intelligence
is basically a problem of computational efficiency. The particular structures
and dynamics that characterize real-world general intelligences like humans
arise because of the need to achieve reasonable levels of intelligence using
modest space and time resources.

The “patternist” theory of mind presented in [Goe06a] and briefly summa-
rized in Chapter 3 below presents a number of emergent structures and dy-
namics that are hypothesized to characterize pragmatic general intelligence,
including such things as system-wide hierarchical and heterarchical knowl-
edge networks, and a dynamic and self-maintaining self-model. Much of the
thinking underlying CogPrime has centered on how to make multiple learning
components combine to give rise to these emergent structures and dynamics.

2.1.2 What Is Human-like General Intelligence?

General principles like “complex goals in complex environments” and pat-
ternism are not sufficient to specify the nature of human-like general in-
telligence. Due to the harsh reality of computational resource restrictions,
real-world general intelligences are necessarily biased to particular classes of
environments. Human intelligence is biased toward the physical, social and
linguistic environments in which humanity evolved, and if AI systems are to
possess humanlike general intelligence they must to some extent share these
biases.

But what are these biases, specifically? This is a large and complex ques-
tion, which we seek to answer in a theoretically grounded way in Chapter 9.
However, before turning to abstract theory, one may also approach the ques-
tion in a pragmatic way, by looking at the categories of things that humans
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do to manifest their particular variety of general intelligence. This is the task
of the following section.

2.2 Commonly Recognized Aspects of Human-like
Intelligence

It would be nice if we could give some sort of “standard model of human
intelligence” in this chapter, to set the context for our approach to artificial
general intelligence – but the truth is that there isn’t any. What the cog-
nitive science field has produced so far is better described as: a broad set
of principles and platitudes, plus a long, loosely-organized list of ideas and
results. Chapter 5 below constitutes an attempt to present an integrative ar-
chitecture diagram for human-like general intelligence, synthesizing the ideas
of a number of different AGI and cognitive theorists. However, though the
diagram given there attempts to be inclusive, it nonetheless contains many
features that are accepted by only a plurality of the research community.

The following list of key aspects of human-like intelligence has a better
claim at truly being generic and representing the consensus understanding
of contemporary science. It was produced by a very simple method: starting
with the Wikipedia page for cognitive psychology, and then adding a few
items onto it based on scrutinizing the tables of contents of some top-ranked
cognitive psychology textbooks. There is some redundancy among list items,
and perhaps also some minor omissions (depending on how broadly one con-
strues some of the items), but the point is to give a broad indication of human
mental functions as standardly identified in the psychology field:

• Perception

– General perception
– Psychophysics
– Pattern recognition (the ability to correctly interpret ambiguous sen-

sory information)
– Object and event recognition
– Time sensation (awareness and estimation of the passage of time)

• Motor Control

– Motor planning
– Motor execution
– Sensorimotor integration

• Categorization

– Category induction and acquisition
– Categorical judgement and classification
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– Category representation and structure
– Similarity

• Memory

– Aging and memory
– Autobiographical memory
– Constructive memory
– Emotion and memory
– False memories
– Memory biases
– Long-term memory
– Episodic memory
– Semantic memory
– Procedural memory
– Short-term memory
– Sensory memory
– Working memory

• Knowledge representation

– Mental imagery
– Propositional encoding
– Imagery versus propositions as representational mechanisms
– Dual-coding theories
– Mental models

• Language

– Grammar and linguistics
– Phonetics and phonology
– Language acquisition

• Thinking

– Choice
– Concept formation
– Judgment and decision making
– Logic, formal and natural reasoning
– Problem solving
– Planning
– Numerical cognition
– Creativity

• Consciousness

– Attention and Filtering (the ability to focus mental effort on specific
stimuli whilst excluding other stimuli from consideration)
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– Access consciousness
– Phenomenal consciousness

• Social Intelligence

– Distributed Cognition
– Empathy

If there’s nothing surprising to you in the above list, I’m not surprised! If
you’ve read a bit in the modern cognitive science literature, the list may even
seem trivial. But it’s worth reflecting that 50 years ago, no such list could
have been produced with the same level of broad acceptance. And less than
100 years ago, the Western world’s scientific understanding of the mind was
dominated by Freudian thinking; and not too long after that, by behaviorist
thinking, which argued that theorizing about what went on inside the mind
made no sense, and science should focus entirely on analyzing external be-
havior. The progress of cognitive science hasn’t made as many headlines as
contemporaneous progress in neuroscience or computing hardware and soft-
ware, but it’s certainly been dramatic. One of the reasons that AGI is more
achievable now than in the 1950s and 60s when the AI field began, is that now
we understand the structures and processes characterizing human thinking a
lot better.

In spite of all the theoretical and empirical progress in the cognitive sci-
ence field, however, there is still no consensus among experts on how the
various aspects of intelligence in the above “human intelligence feature list”
are achieved and interrelated. In these pages, however, for the purpose of
motivating CogPrime , we assume a broad integrative understanding roughly
as follows:

• Perception: There is significant evidence that human visual percep-
tion occurs using a spatiotemporal hierarchy of pattern recognition mod-
ules, in which higher-level modules deal with broader spacetime regions,
roughly as in the DeSTIN AGI architecture discussed in Chapter 4. Fur-
ther, there is evidence that each module carries out temporal predictive
pattern recognition as well as static pattern recognition. Audition likely
utilizes a similar hierarchy. Olfaction may use something more like a Hop-
field attractor neural network, as described in Chapter 13. The networks
corresponding to different sense modalities have multiple cross-linkages,
more at the upper levels than the lower, and also link richly into the parts
of the mind dealing with other functions.

• Motor Control: This appears to be handled by a spatiotemporal hier-
archy as well, in which each level of the hierarchy corresponds to higher-
level (in space and time) movements. The hierarchy is very tightly linked
in with the perceptual hierarchies, allowing sensorimotor learning and
coordination.

• Memory: There appear to be multiple distinct but tightly cross-linked
memory systems, corresponding to different sorts of knowledge such as
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declarative (facts and beliefs), procedural, episodic, sensorimotor, atten-
tional and intentional (goals).

• Knowledge Representation: There appear to be multiple base-level
representational systems; at least one corresponding to each memory sys-
tem, but perhaps more than that. Additionally there must be the capabil-
ity to dynamically create new context-specific representational systems
founded on the base representational system.

• Language: While there is surely some innate biasing in the human mind
toward learning certain types of linguistic structure, it’s also notable that
language shares a great deal of structure with other aspects of intelligence
like social roles [CB00] and the physical world [?]. Language appears to
be learned based on biases toward learning certain types of relational
role systems; and language processing seems a complex mix of generic
reasoning and pattern recognition processes with specialized acoustic and
syntactic processing routines.

• Consciousness is pragmatically well-understood using Baars’ “global
workspace” theory, in which a small subset of the mind’s content is sum-
moned at each time into a “working memory” aka “workspace” aka “at-
tentional focus” where it is heavily processed and used to guide action
selection.

• Thinking is a diverse combination of processes encompassing things like
categorization, (crisp and uncertain) reasoning, concept creation, pattern
recognition, and others; these processes must work well with all the dif-
ferent types of memory and must effectively integrate knowledge in the
global workspace with knowledge in long-term memory.

• Social Intelligence seems closely tied with language and also with self-
modeling; we model ourselves in large part using the same specialized
biases we use to help us model others.

None of the points in the above bullet list is particularly controversial,
but neither are any of them universally agreed-upon by experts. However, in
order to make any progress on AGI design one must make some commitments
to particular cognition-theoretic understandings, at this level and ultimately
at more precise levels as well. Further, general philosophical analyses like the
patternist philosophy to be reviewed in the following chapter only provide
limited guidance here. Patternism provides a filter for theories about specific
cognitive functions – it rules out assemblages of cognitive-function-specific
theories that don’t fit together to yield a mind that could act effectively as a
pattern-recognizing, goal-achieving system with the right internal emergent
structures. But it’s not a precise enough filter to serve as a sole guide for
cognitive theory even at the high level.

The above list of points leads naturally into the integrative architecture di-
agram presented in Chapter 5. But that generic architecture diagram is fairly
involved, and before presenting it, we will go through some more background
regarding human-like intelligence (in the rest of this chapter), philosophy of
mind (in Chapter 3) and contemporary AGI architectures (in Chapter4).
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2.3 Further Characterizations of Humanlike Intelligence

We now present a few complementary approaches to characterizing the key
aspects of humanlike intelligence, drawn from different perspectives in the
psychology and AI literature. These different approaches all overlap substan-
tially, which is good, yet each gives a slightly different slant.

2.3.1 Competencies Characterizing Human-like
Intelligence

First we give a list of key competencies characterizing human level intelligence
resulting from the the AGI Roadmap Workshop held at the University of
Knoxville in October 2008 1, which was organized by Ben Goertzel and Itamar
Arel. In this list, each broad competency area is listed together with a number
of specific competencies sub-areas within its scope:

1. Perception: vision, hearing, touch, proprioception, crossmodal
2. Actuation: physical skills, navigation, tool use
3. Memory: episodic, declarative, behavioral
4. Learning: imitation, reinforcement, interactive verbal instruction, writ-

ten media, experimentation
5. Reasoning: deductive, abductive, inductive, causal, physical, associa-

tional, categorization
6. Planning: strategic, tactical, physical, social
7. Attention: visual, social, behavioral
8. Motivation: subgoal creation, affect-based motivation, control of emo-

tions
9. Emotion: expressing emotion, understanding emotion
10. Self: self-awareness, self-control, other-awareness
11. Social: empathy, appropriate social behavior, social communication, so-

cial inference, group play, theory of mind
12. Communication: gestural, pictorial, verbal, language acquisition, cross-

modal
13. Quantitative: counting, grounded arithmetic, comparison, measurement
14. Building/Creation: concept formation, verbal invention, physical con-

struction, social group formation

1 See http://www.ece.utk.edu/~itamar/AGI_Roadmap.html; participants in-
cluded: Sam Adams, IBM Research; Ben Goertzel, Novamente LLC; Itamar Arel, Uni-
versity of Tennessee; Joscha Bach, Institute of Cognitive Science, University of Os-
nabruck, Germany; Robert Coop, University of Tennessee; Rod Furlan, Singularity In-
stitute; Matthias Scheutz, Indiana University; J. Storrs Hall, Foresight Institute; Alexei
Samsonovich, George Mason University; Matt Schlesinger, Southern Illinois University;
John Sowa, Vivomind Intelligence, Inc.; Stuart C. Shapiro, University at Buffalo

http://www.ece.utk.edu/~itamar/AGI_Roadmap.html
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Clearly this list is getting at the same things as the textbook headings given
in Section 2.2, but with a different emphasis due to its origin among AGI
researchers rather than cognitive psychologists. As part of the AGI Roadmap
project, specific tasks were created corresponding to each of the sub-areas in
the above list; we will describe some of these tasks in Chapter 17.

2.3.2 Gardner’s Theory of Multiple Intelligences

The diverse list of human-level “competencies” given above is reminiscent
of Gardner’s [?] multiple intelligences (MI) framework – a psychological ap-
proach to intelligence assessment based on the idea that different people
have mental strengths in different high-level domains, so that intelligence
tests should contain aspects that focus on each of these domains separately.
MI does not contradict the “complex goals in complex environments” view of
intelligence, but rather may be interpreted as making specific commitments
regarding which complex tasks and which complex environments are most
important for roughly human-like intelligence.

MI does not seek an extreme generality, in the sense that it explicitly fo-
cuses on domains in which humans have strong innate capability as well as
general-intelligence capability; there could easily be non-human intelligences
that would exceed humans according to both the commonsense human notion
of “general intelligence” and the generic “complex goals in complex environ-
ments” or Hutter/Legg-style definitions, yet would not equal humans on the
MI criteria. This strong anthropocentrism of MI is not a problem from an
AGI perspective so long as one uses MI in an appropriate way, i.e. only for
assessing the extent to which an AGI system displays specifically human-like
general intelligence. This restrictiveness is the price one pays for having an
easily articulable and relatively easily implementable evaluation framework.

Table 2.3.2 summarizes the types of intelligence included in Gardner’s MI
theory.

2.3.3 Newell’s Criteria for a Human Cognitive
Architecture

Finally, another related perspective is given by Alan Newell’s “functional cri-
teria for a human cognitive architecture” [?], which require that a humanlike
AGI system should:

1. Behave as an (almost) arbitrary function of the environment
2. Operate in real time
3. Exhibit rational, i.e., effective adaptive behavior
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Intelligence Type Aspects
Linguistic Words and language, written and spoken; retention, inter-

pretation and explanation of ideas and information via lan-
guage; understands relationship between communication
and meaning

Logical-Mathematical Logical thinking, detecting patterns, scientific reasoning
and deduction; analyse problems, perform mathematical
calculations, understands relationship between cause and
effect towards a tangible outcome

Musical Musical ability, awareness, appreciation and use of sound;
recognition of tonal and rhythmic patterns, understands
relationship between sound and feeling

Bodily-Kinesthetic Body movement control, manual dexterity, physical agility
and balance; eye and body coordination

Spatial-Visual Visual and spatial perception; interpretation and creation
of images; pictorial imagination and expression; under-
stands relationship between images and meanings, and be-
tween space and effect

Interpersonal Perception of other people’s feelings; relates to others; inter-
pretation of behaviour and communications; understands
relationships between people and their situations

Table 2.1 Types of Intelligence in Gardner’s Multiple Intelligence Theory

4. Use vast amounts of knowledge about the environment
5. Behave robustly in the face of error, the unexpected, and the unknown
6. Integrate diverse knowledge
7. Use (natural) language
8. Exhibit self-awareness and a sense of self
9. Learn from its environment
10. Acquire capabilities through development
11. Arise through evolution
12. Be realizable within the brain

In our view, Newell’s criterion 1 is poorly-formulated, for while univer-
sal Turing computing power is easy to come by, any finite AI system must
inevitably be heavily adapted to some particular class of environments for
straightforward mathematical reasons [?, ?]. On the other hand, his criteria
11 and 12 are not relevant to the CogPrime approach as we are not doing bio-
logical modeling but rather AGI engineering. However, Newell’s criteria 2-10
are essential in our view, and all will be covered in the following chapters.
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2.4 Preschool as a View into Human-like General
Intelligence

One issue that arises when pursuing the grand goal of human-level gen-
eral intelligence is how to measure partial progress. The classic Turing Test
of imitating human conversation remains too difficult to usefully motivate
immediate-term AI research (see [?, ?] for arguments that it has been coun-
terproductive for the AI field). The same holds true for comparable alter-
natives like the Robot College Test of creating a robot that can attend a
semester of university and obtain passing grades. However, some researchers
have suggested intermediary goals, that constitute partial progress toward
the grand goal and yet are qualitatively different from the highly specialized
problems to which most current AI systems are applied.

In this vein, Sam Adams and his team at IBM have outlined a so-called
“Toddler Turing Test,” in which one seeks to use AI to control a robot qual-
itatively displaying similar cognitive behaviors to a young human child (say,
a 3 year old) [?]. In fact this sort of idea has a long and venerable history in
the AI field – Alan Turing’s original 1950 paper on AI [?], where he proposed
the Turing Test, contains the suggestion that

"Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s?"

We find this childlike cognition based approach promising for many reasons,
including its integrative nature: what a young child does involves a combina-
tion of perception, actuation, linguistic and pictorial communication, social
interaction, conceptual problem solving and creative imagination. Specifi-
cally, inspired by these ideas, in Chapter 16 we will suggest the approach of
teaching and testing early-stage AGI systems in environments that emulate
the preschools used for teaching human children.

Human intelligence evolved in response to the demands of richly interactive
environments, and a preschool is specifically designed to be a richly interac-
tive environment with the capability to stimulate diverse mental growth. So,
we are currently exploring the use of CogPrime to control virtual agents in
preschool-like virtual world environments, as well as commercial humanoid
robot platforms such as the Nao (see Figure 2.1) or Robokind (2.2) in physical
preschool-like robot labs.

Another advantage of focusing on childlike cognition is that child psychol-
ogists have created a variety of instruments for measuring child intelligence.
In Chapter 17, we will discuss an approach to evaluating the general intel-
ligence of human childlike AGI systems via combining tests typically used
to measure the intelligence of young human children, with additional tests
crafted based on cognitive science and the standard preschool curriculum.
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2.4.1 Design for an AGI Preschool

More precisely, we don’t suggest to place a CogPrime system in an environ-
ment that is an exact imitation of a human preschool – this would be in-
appropriate since current robotic or virtual bodies are very differently abled
than the body of a young human child. But we aim to place CogPrime in
an environment emulating the basic diversity and educational character of a
typical human preschool. We stress this now, at this early point in the book,
because we will use running examples throughout the book drawn from the
preschool context.

The key notion in modern preschool design is the “learning center,” an
area designed and outfitted with appropriate materials for teaching a specific
skill. Learning centers are designed to encourage learning by doing, which
greatly facilitates learning processes based on reinforcement, imitation and
correction; and also to provide multiple techniques for teaching the same
skills, to accommodate different learning styles and prevent overfitting and
overspecialization in the learning of new skills.

Centers are also designed to cross-develop related skills. A “manipulatives
center,” for example, provides physical objects such as drawing implements,
toys and puzzles, to facilitate development of motor manipulation, visual
discrimination, and (through sequencing and classification games) basic logi-
cal reasoning. A “dramatics center” cross-trains interpersonal and empathetic
skills along with bodily-kinesthetic, linguistic, and musical skills. Other cen-
ters, such as art, reading, writing, science and math centers are also designed
to train not just one area, but to center around a primary intelligence type
while also cross-developing related areas. For specific examples of the learning
centers associated with particular contemporary preschools, see [?]. In many
progressive, student-centered preschools, students are left largely to their own
devices to move from one center to another throughout the preschool room.
Generally, each center will be staffed by an instructor at some points in the
day but not others, providing a variety of learning experiences.

To imitate the general character of a human preschool, we will create
several centers in our robot lab. The precise architecture will be adapted via
experience but initial centers will likely be:

• a blocks center: a table with blocks on it
• a language center: a circle of chairs, intended for people to sit around

and talk with the robot
• a manipulatives center, with a variety of different objects of different

shapes and sizes, intended to teach visual and motor skills
• a ball play center: where balls are kept in chests and there is space for

the robot to kick the balls around
• a dramatics center where the robot can observe and enact various

movements
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One Running Example

As we proceed through the various component structures and dynamics of
CogPrime in the following chapters, it will be useful to have a few running ex-
amples to use to explain how the various parts of the system are supposed to
work. One example we will use fairly frequently is drawn from the preschool
context: the somewhat open-ended task of Build me something out of
blocks, that you haven’t built for me before, and then tell me what
it is. This is a relatively simple task that combines multiple aspects of cog-
nition in a richly interconnected way, and is the sort of thing that young
children will naturally do in a preschool setting.

2.5 Integrative and Synergetic Approaches to Artificial
General Intelligence

In Chapter 1 we characterized CogPrime as an integrative approach. And we
suggest that the naturalness of integrative approaches to AGI follows directly
from comparing above lists of capabilities and criteria to the array of available
AI technologies. No single known algorithm or data structure appears easily
capable of carrying out all these functions, so if one wants to proceed now
with creating a general intelligence that is even vaguely humanlike, one must
integrate various AI technologies within some sort of unifying architecture.

For this reason and others, an increasing amount of work in the AI com-
munity these days is integrative in one sense or another. Estimation of Distri-
bution Algorithms integrate probabilistic reasoning with evolutionary learn-
ing [?]. Markov Logic Networks [?] integrate formal logic and probabilistic
inference, as does the Probabilistic Logic Networks framework [GIGH08] uti-
lized in CogPrime and explained further in the book, and other works in
the “Progic” area such as [?]. Leslie Pack Kaelbling has synthesized low-level
robotics methods (particle filtering) with logical inference [?]. Dozens of fur-
ther examples could be given. The construction of practical robotic systems
like the Stanley system that won the DARPA Grand Challenge [?] involve
the integration of numerous components based on different principles. These
algorithmic and pragmatic innovations provide ample raw materials for the
construction of integrative cognitive architectures and are part of the reason
why childlike AGI is more approachable now than it was 50 or even 10 years
ago.

Further, many of the cognitive architectures described in the current AI
literature are “integrative” in the sense of combining multiple, qualitatively
different, interoperating algorithms. Chapter 4 gives a high-level overview
of existing cognitive architectures, dividing them into symbolic, emergentist
(e.g. neural network) and hybrid architectures. The hybrid architectures gen-
erally integrate symbolic and neural components, often with multiple sub-
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components within each of these broad categories. However, we believe that
even these excellent architectures are not integrative enough, in the sense
that they lack sufficiently rich and nuanced interactions between the learn-
ing components associated with different kinds of memory, and hence are
unlikely to give rise to the emergent structures and dynamics characterizing
general intelligence. One of the central ideas underlying CogPrime is that
with an integrative cognitive architecture that combines multiple aspects of
intelligence, achieved by diverse structures and algorithms, within a common
framework designed specifically to support robust synergetic interactions
between these aspects.

The simplest way to create an integrative AI architecture is to loosely
couple multiple components carrying out various functions, in such a way
that the different components pass inputs and outputs amongst each other
but do not interfere with or modulate each others’ internal functioning in
real-time. However, the human brain appears to be integrative in a much
tighter sense, involving rich real-time dynamical coupling between various
components with distinct but related functions. In [?] we have hypothesized
that the brain displays a property of cognitive synergy, according to which
multiple learning processes can not only dispatch subproblems to each
other, but also share contextual understanding in real-time, so that
each one can get help from the others in a contextually savvy way. By imbuing
AI architectures with cognitive synergy, we hypothesize, one can get past the
bottlenecks that have plagued AI in the past. Part of the reasoning here, as
elaborated in Chapter 9 and [?], is that real physical and social environments
display a rich dynamic interconnection between their various aspects, so that
richly dynamically interconnected integrative AI architectures will be able to
achieve goals within them more effectively.

And this brings us to the patternist perspective on intelligent systems,
alluded to above and fleshed out further in Chapter 3 with its focus on the
emergence of hierarchically and heterarchically structured networks of pat-
terns, and pattern-systems modeling self and others. Ultimately the purpose
of cognitive synergy in an AGI system is to enable the various AI algorithms
and structures composing the system to work together effectively enough to
give rise to the right system-wide emergent structures characterizing real-
world general intelligence. The underlying theory is that intelligence is not
reliant on any particular structure or algorithm, but is reliant on the emer-
gence of appropriately structured networks of patterns, which can then be
used to guide ongoing dynamics of pattern recognition and creation. And
the underlying hypothesis is that the emergence of these structures cannot
be achieved by a loosely interconnected assemblage of components, no mat-
ter how sensible the architecture; it requires a tightly connected, synergetic
system.

It is possible to make these theoretical ideas about cognition mathemati-
cally rigorous; for instance, Appendix B briefly presents a formal definition
of cognitive synergy that has been analyzed as part of an effort to prove
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theorems about the importance of cognitive synergy for giving rise to emer-
gent system properties associated with general intelligence. However, while
we have found such formal analyses valuable for clarifying our designs and
understanding their qualitative properties, we have concluded that, for the
present, the best way to explore our hypotheses about cognitive synergy and
human-like general intelligence is empirically – via building and testing sys-
tems like CogPrime .

2.5.1 Achieving Humanlike Intelligence via Cognitive
Synergy

Summing up: at the broadest level, there are four primary challenges in con-
structing an integrative, cognitive synergy based approach to AGI:

1. choosing an overall cognitive architecture that possesses adequate
richness and flexibility for the task of achieving childlike cognition.

2. Choosing appropriate AI algorithms and data structures to fulfill
each of the functions identified in the cognitive architecture (e.g. visual
perception, audition, episodic memory, language generation, analogy,...)

3. Ensuring that these algorithms and structures, within the chosen cog-
nitive architecture, are able to cooperate in such a way as to provide
appropriate coordinated, synergetic intelligent behavior (a critical
aspect since childlike cognition is an integrated functional response to the
world, rather than a loosely coupled collection of capabilities.)

4. Embedding one’s system in an environment that provides sufficiently
rich stimuli and interactions to enable the system to use this coop-
eration to ongoingly create an intelligent internal world-model and self-
model.

We argue that CogPrime
provides a viable way to address these challenges.



2.5 Integrative and Synergetic Approaches to Artificial General Intelligence 37

Fig. 2.1 The Nao humanoid robot
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Fig. 2.2 The Nao humanoid robot



Chapter 3
A Patternist Philosophy of Mind

3.1 Introduction

In the last chapter we discussed human intelligence from a fairly down-to-
earth perspective, looking at the particular intelligent functions that human
beings carry out in their everyday lives. And we strongly feel this practical
perspective is important: Without this concreteness, it’s too easy for AGI re-
search to get distracted by appealing (or frightening) abstractions of various
sorts. However, it’s also important to look at the nature of mind and intel-
ligence from a more general and conceptual perspective, to avoid falling into
an approach that follows the particulars of human capability but ignores the
deeper structures and dynamics of mind that ultimately allow human minds
to be so capable. In this chapter we very briefly review some ideas from the
patternist philosophy of mind, a general conceptual framework on intel-
ligence which has been inspirational for many key aspects of the CogPrime
design, and which has been ongoingly developed by one of the authors (Ben
Goertzel) during the last two decades (in a series of publications beginning
in 1991, most recently The Hidden Pattern [Goe06a]). Some of the ideas de-
scribed are quite broad and conceptual, and are related to CogPrime only
via serving as general inspirations; others are more concrete and technical,
and are actually utilized within the design itself.

CogPrime is an integrative design formed via the combination of a num-
ber of different philosophical, scientific and engineering ideas. The success or
failure of the design doesn’t depend on any particular philosophical under-
standing of intelligence. In that sense, the more abstract notions presented
in this chapter should be considered “optional” rather than critical in a Cog-
Prime context. However, due to the core role patternism has played in the
development of CogPrime , understanding a few things about general pat-
ternist philosophy will be helpful for understanding CogPrime , even for those
readers who are not philosophically inclined. Those readers who are philo-

39
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sophically inclined, on the other hand, are urged to read The Hidden Pattern
and then interpret the particulars of CogPrime in this light.

3.2 Some Patternist Principles

The patternist philosophy of mind is a general approach to thinking about
intelligent systems. It is based on the very simple premise that mind is made
of pattern – and that a mind is a system for recognizing patterns in itself and
the world, critically including patterns regarding which procedures are likely
to lead to the achievement of which goals in which contexts.

Pattern as the basis of mind is not in itself is a very novel idea; this concept
is present, for instance, in the 19’th-century philosophy of Charles Peirce [?],
in the writings of contemporary philosophers Daniel Dennett [Den91] and
Douglas Hofstadter [Hof79, Hof96], in Benjamin Whorf’s [Who64] linguistic
philosophy and Gregory Bateson’s [Bat79] systems theory of mind and na-
ture. Bateson spoke of the Metapattern: “that it is pattern which connects.”
In Goertzel’s writings on philosophy of mind, an effort has been made to pur-
sue this theme more thoroughly than has been done before, and to articulate
in detail how various aspects of human mind and mind in general can be
well-understood by explicitly adopting a patternist perspective. 1

In the patternist perspective, "pattern" is generally defined as "represen-
tation as something simpler." Thus, for example, if one measures simplicity in
terms of bit-count, then a program compressing an image would be a pattern
in that image. But if one uses a simplicity measure incorporating run-time as
well as bit-count, then the compressed version may or may not be a pattern
in the image, depending on how one’s simplicity measure weights the two
factors. This definition encompasses simple repeated patterns, but also much
more complex ones. While pattern theory has typically been elaborated in
the context of computational theory, it is not intrinsically tied to compu-
tation; rather, it can be developed in any context where there is a notion
of "representation" or "production" and a way of measuring simplicity. One
just needs to be able to assess the extent to which f represents or produces
X, and then to compare the simplicity of f and X; and then one can assess
whether f is a pattern in X. A formalization of this notion of pattern is given
in [Goe06a] and briefly summarized at the end of this chapter.

Next, in patternism the mind of an intelligent system is conceived as the
(fuzzy) set of patterns in that system, and the set of patterns emergent be-
tween that system and other systems with which it interacts. The latter clause
means that the patternist perspective is inclusive of notions of distributed in-

1 In some prior writings the term “psynet model of mind” has been used to refer to the ap-
plication of patternist philosophy to cognitive theory, but this term has been "deprecated"
in recent publications as it seemed to introduce more confusion than clarification.
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telligence [Hut96]. Basically, the mind of a system is the fuzzy set of different
simplifying representations of that system that may be adopted.

Intelligence is conceived, similarly to in Marcus Hutter’s [Hut05] recent
work (and as elaborated informally in Chapter 2 above, and formally in
Chapter 7 below), as the ability to achieve complex goals in complex en-
vironments; where complexity itself may be defined as the possession of a
rich variety of patterns. A mind is thus a collection of patterns that is as-
sociated with a persistent dynamical process that achieves highly-patterned
goals in highly-patterned environments.

An additional hypothesis made within the patternist philosophy of mind
is that reflection is critical to intelligence. This lets us conceive an intelligent
system as a dynamical system that recognizes patterns in its environment
and itself, as part of its quest to achieve complex goals.

While this approach is quite general, it is not vacuous; it gives a particular
structure to the tasks of analyzing and synthesizing intelligent systems. About
any would-be intelligent system, we are led to ask questions such as:

• How are patterns represented in the system? That is, how does the under-
lying infrastructure of the system give rise to the displaying of a particular
pattern in the system’s behavior?
• What kinds of patterns are most compactly represented within the sys-

tem?
• What kinds of patterns are most simply learned?
• What learning processes are utilized for recognizing patterns?
• What mechanisms are used to give the system the ability to introspect

(so that it can recognize patterns in itself)?

Now, these same sorts of questions could be asked if one substituted the
word “pattern” with other words like “knowledge” or “information”. However,
we have found that asking these questions in the context of pattern leads
to more productive answers, avoiding unproductive byways and also tying in
very nicely with the details of various existing formalisms and algorithms for
knowledge representation and learning.

Among the many kinds of patterns in intelligent systems, semiotic pat-
terns are particularly interesting ones. Peirce decomposed these into three
categories:

• iconic patterns, which are patterns of contextually important internal
similarity between two entities (e.g. an iconic pattern binds a picture of
a person to that person)
• indexical patterns, which are patterns of spatiotemporal co-occurrence

(e.g. an indexical pattern binds a wedding dress and a wedding)
• symbolic patterns, which are patterns indicating that two entities are

often involved in the same relationships (e.g. a symbolic pattern between
the number “5” (the symbol) and various sets of 5 objects (the entities
that the symbol is taken to represent))
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Of course, some patterns may span more than one of these semiotic cat-
egories; and there are also some patterns that don’t fall neatly into any of
these categories. But the semiotic patterns are particularly important ones;
and symbolic patterns have played an especially large role in the history of AI,
because of the radically different approaches different researchers have taken
to handling them in their AI systems. Mathematical logic and related for-
malisms provide sophisticated mechanisms for combining and relating sym-
bolic patterns (“symbols”), and some AI approaches have focused heavily on
these, sometimes more so than on the identification of symbolic patterns in
experience or the use of them to achieve practical goals. We will look fairly
carefully at these differences in Chapter 4.

Pursuing the patternist philosophy in detail leads to a variety of partic-
ular hypotheses and conclusions about the nature of mind. Following from
the view of intelligence in terms of achieving complex goals in complex en-
vironments, comes a view in which the dynamics of a cognitive system are
understood to be governed by two main forces:

• self-organization, via which system dynamics cause existing system pat-
terns to give rise to new ones

• goal-oriented behavior, which will be defined more rigorously in Chapter
7, but basically amounts to a system interacting with its environment in
a way that appears like an attempt to maximize some reasonably simple
function

Self-organized and goal-oriented behavior must be understood as cooperative
aspects. If an agent is asked to build a surprising structure out of blocks and
does so, this is goal-oriented. But the agent’s ability to carry out this goal-
oriented task will be greater if it has previously played around with blocks a
lot in an unstructured, spontaneous way. And the “nudge toward creativity”
given to it by asking it to build a surprising blocks structure may cause it
to explore some novel patterns, which then feed into its future unstructured
blocks play.

Based on these concepts, as argued in detail in [Goe06a], several primary
dynamical principles may be posited, including:

• Evolution , conceived as a general process via which patterns within a
large population thereof are differentially selected and used as the basis
for formation of new patterns, based on some “fitness function” that is
generally tied to the goals of the agent

– Example: If trying to build a blocks structure that will surprise Bob,
an agent may simulate several procedures for building blocks struc-
tures in its “mind’s eye”, assessing for each one the expected degree
to which it might surprise Bob. The search through procedure space
could be conducted as a form of evolution, via an algorithm such as
MOSES.
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• Autopoiesis: the process by which a system of interrelated patterns
maintains its integrity, via a dynamic in which whenever one of the pat-
terns in the system begins to decrease in intensity, some of the other
patterns increase their intensity in a manner that causes the troubled
pattern to increase in intensity again

– Example: An agent’s set of strategies for building the base of a tower,
and its set of strategies for building the middle part of a tower, are
likely to relate autopoietically. If the system partially forgets how
to build the base of a tower, then it may regenerate this missing
knowledge via using its knowledge about how to build the middle
part (i.e., it knows it needs to build the base in a way that will
support good middle parts). Similarly if it partially forgets how to
build the middle part, then it may regenerate this missing knowledge
via using its knowledge about how to build the base (i.e. it knows a
good middle part should fit in well with the sorts of base it knows
are good).

– This same sort of interdependence occurs between pattern-sets con-
taining more than two elements

– Sometimes (as in the above example) autopoietic interdependence in
the mind is tied to interdependencies in the physical world, sometimes
not.

• Association. Patterns, when given attention, spread some of this atten-
tion to other patterns that they have previously been associated with in
some way. Furthermore, there is Peirce’s law of mind [?], which could be
paraphrased in modern terms as stating that the mind is an associative
memory network, whose dynamics dictate that every idea in the mem-
ory is an active agent, continually acting on those ideas with which the
memory associates it.

– Example: Building a blocks structure that resembles a tower, spreads
attention to memories prior towers the agents has seen, and also to
memories of people the agent knows has seen towers, and structures it
has built at the same time as towers, structures that resemble towers
in various respects, etc.

• Differential attention allocation / credit assignment. Patterns
that have been valuable for goal-achievement are given more attention,
and are encouraged to participate in giving rise to new patterns.

– Example: Perhaps in a prior instance of the task “build me a surprising
structure out of blocks,” searching through memory for non-blocks
structures that the agent has played with has proved a useful cognitive
strategy. In that case, when the task is posed to the agent again, it
should tend to allocate disproportionate resources to this strategy.
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• Pattern creation. Patterns that have been valuable for goal-achievement
are mutated and combined with each other to yield new patterns.

– Example: Building towers has been useful in a certain context, but
so has building structures with a large number of triangles. Why
not build a tower out of triangles? Or maybe a vaguely tower-like
structure that uses more triangles than a tower easily could?

– Example: Building an elongated block structure resembling a table
was successful in the past, as was building a structure resembling
a very flat version of a chair. Generalizing, maybe building distorted
versions of furniture is good. Or maybe it is building distorted version
of any previously perceived objects that is good. Or maybe both, to
different degrees....

Next, for a variety of reasons outlined in [Goe06a] it becomes appealing to
hypothesize that the network of patterns in an intelligent system must give
rise to the following large-scale emergent structures

• Hierarchical network. Patterns are habitually in relations of control over
other patterns that represent more specialized aspects of themselves.

– Example: The pattern associated with “tall building” has some control
over the pattern associated with “tower”, as the former represents a
more general concept ... and “tower” has some control over “Eiffel
tower”, etc.

• Heterarchical network. The system retains a memory of which patterns
have previously been associated with each other in any way.

– Example: “Tower” and “snake” are distant in the natural pattern hier-
archy, but may be associatively/heterarchically linked due to having a
common elongated structure. This heterarchical linkage may be used
for many things, e.g. it might inspire the creative construction of a
tower with a snake’s head.

• Dual network. Hierarchical and heterarchical structures are combined,
with the dynamics of the two structures working together harmoniously.
Among many possible ways to hierarchically organize a set of patterns,
the one used should be one that causes hierarchically nearby patterns
to have many meaningful heterarchical connections; and of course, there
should be a tendency to search for heterarchical connections among hi-
erarchically nearby patterns.

– Example: While the set of patterns hierarchically nearby “tower” and
the set of patterns heterarchically nearby “tower” will be quite dif-
ferent, they should still have more overlap than random pattern-sets
of similar sizes. So, if looking for something else heterarchically near
“tower”, using the hierarchical information about “tower” should be
of some use, and vice versa
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– In PLN, hierarchical relationships correspond to Atoms A and B
so that InheritanceAB and InheritanceBA have highly dissimilar
strength; and heterarchical relationships correspond to Intensional-
Similarity relationships. The dual network structure then arises when
intensional and extensional inheritance approximately correlate with
each other, so that inference about either kind of inheritance assists
with figuring out about the other kind.

• Self structure. A portion of the network of patterns forms into an approx-
imate image of the overall network of patterns.

– Example: Each time the agent builds a certain structure, it observes
itself building the structure, and its role as “builder of a tall tower”
(or whatever the structure is) becomes part of its self-model. Then
when it is asked to build something new, it may consult its self-model
to see if it believes itself capable of building that sort of thing (for
instance, if it is asked to build something very large, its self-model
may tell it that it lacks persistence for such projects, so it may reply
“I can try, but I may wind up not finishing it”).

As we proceed through the CogPrime design in the following pages, we will
see how each of these abstract concepts arises concretely from CogPrime ’s
structures and algorithms. If the theory of [Goe06a] is correct, then the suc-
cess of CogPrime as a design will depend largely on whether these high-level
structures and dynamics can be made to emerge from the synergetic interac-
tion of CogPrime ’s representation and algorithms, when they are utilized to
control an appropriate agent in an appropriate environment.

3.3 Cognitive Synergy

Now we dig a little deeper and present a different sort of “general principle of
feasible general intelligence”, already hinted in earlier chapters: the cognitive
synergy principle 2, which is both a conceptual hypothesis about the struc-
ture of generally intelligent systems in certain classes of environments, and a
design principle used to guide the design of CogPrime . Chapter 8 presents
a mathematical formalization of the notion of cognitive synergy; here we
present the conceptual idea informally, which makes it more easily digestible
but also more vague-sounding.

We will focus here on cognitive synergy specifically in the case of “multi-
memory systems,” which we define as intelligent systems whose combination

2 While these points are implicit in the theory of mind given in [Goe06a], they are not
articulated in this specific form there. So the material presented in this section is a new
development within patternist philosophy, developed since [Goe06a] in a series of conference
papers such as [Goe09a].
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of environment, embodiment and motivational system make it important for
them to possess memories that divide into partially but not wholly distinct
components corresponding to the categories of:

• Declarative memory

– Examples of declarative knowledge: Towers on average are taller than
buildings. I generally am better at building structures I imagine, than
at imitating structures I’m shown in pictures.

• Procedural memory (memory about how to do certain things)

– Examples of procedural knowledge: Practical know-how regarding how
to pick up an elongated rectangular block, or a square one. Know-how
regarding when to approach a problem by asking “What would one
of my teachers do in this situation” versus by thinking through the
problem from first principles.

• Sensory and episodic memory

– Example of sensory knowledge: memory of Bob’s face; memory of
what a specific tall blocks tower looked like

– Example of episodic knowledge: memory of the situation in which the
agent first met Bob; memory of a situation in which a specific tall
blocks tower was built

• Attentional memory (knowledge about what to pay attention to in what
contexts)

– Example of attentional knowledge: When involved with a new person,
it’s useful to pay attention to whatever that person looks at

• Intentional memory (knowledge about the system’s own goals and sub-
goals)

– Example of intentional knowledge: If my goal is to please some person
whom I don’t know that well, then a subgoal may be figuring out what
makes that person smile.

In Chapter 9 below we present a detailed argument as to how the require-
ment for a multi-memory underpinning for general intelligence emerges from
certain underlying assumptions regarding the measurement of the simplicity
of goals and environments. Specifically we argue that each of these mem-
ory types corresponds to certain modes of communication, so that intelligent
agents which have to efficiently handle a sufficient variety of types of com-
munication with other agents, are going to have to handle all these types of
memory. These types of communication overlap and are often used together,
which implies that the different memories and their associated cognitive pro-
cesses need to work together. The points made in this section do not rely
on that argument regarding the relation of multiple memory types to the
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environmental situation of multiple communication types. What they do rely
on is the assumption that, in the intelligence agent in question, the differ-
ent components of memory are significantly but not wholly distinct. That is,
there are significant “family resemblances” between the memories of a sin-
gle type, yet there are also thoroughgoing connections between memories of
different types.

Repeating the above points in a slightly more organized manner and then
extending them, the essential idea of cognitive synergy, in the context of
multi-memory systems, may be expressed in terms of the following points

1. Intelligence, relative to a certain set of environments, may be understood
as the capability to achieve complex goals in these environments.

2. With respect to certain classes of goals and environments, an intelligent
system requires a “multi-memory” architecture, meaning the possession
of a number of specialized yet interconnected knowledge types, includ-
ing: declarative, procedural, attentional, sensory, episodic and intentional
(goal-related). These knowledge types may be viewed as different sorts of
pattern that a system recognizes in itself and its environment.

3. Such a system must possess knowledge creation (i.e. pattern recognition
/ formation) mechanisms corresponding to each of these memory types.
These mechanisms are also called “cognitive processes.”

4. Each of these cognitive processes, to be effective, must have the capabil-
ity to recognize when it lacks the information to perform effectively on
its own; and in this case, to dynamically and interactively draw infor-
mation from knowledge creation mechanisms dealing with other types of
knowledge

5. This cross-mechanism interaction must have the result of enabling the
knowledge creation mechanisms to perform much more effectively in com-
bination than they would if operated non-interactively. This is “cognitive
synergy.”

Interactions as mentioned in Points 4 and 5 in the above list are the real
conceptual meat of the cognitive synergy idea. One way to express the key
idea here, in an AI context, is that most AI algorithms suffer from combinato-
rial explosions: the number of possible elements to be combined in a synthesis
or analysis is just too great, and the algorithms are unable to filter through
all the possibilities, given the lack of intrinsic constraint that comes along
with a “general intelligence” context (as opposed to a narrow-AI problem like
chess-playing, where the context is constrained and hence restricts the scope
of possible combinations that needs to be considered). In an AGI architec-
ture based on cognitive synergy, the different learning mechanisms must be
designed specifically to interact in such a way as to palliate each others’ com-
binatorial explosions - so that, for instance, each learning mechanism dealing
with a certain sort of knowledge, must synergize with learning mechanisms
dealing with the other sorts of knowledge, in a way that decreases the severity
of combinatorial explosion.
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One prerequisite for cognitive synergy to work is that each learning mech-
anism must recognize when it is “stuck,” meaning it’s in a situation where it
has inadequate information to make a confident judgment about what steps
to take next. Then, when it does recognize that it’s stuck, it may request
help from other, complementary cognitive mechanisms.

3.4 The General Structure of Cognitive Dynamics:
Analysis and Synthesis

We have discussed the need for synergetic interrelation between cognitive
processes corresponding to different types of memory ... and the general high-
level cognitive dynamics that a mind must possess (evolution, autopoiesis).
The next step is to dig further into the nature of the cognitive processes
associated with different memory types and how they give rise to the needed
high-level cognitive dynamics. In this section we present a general theory of
cognitive processes based on a decomposition of cognitive processes into the
two categories of analysis and synthesis, and a general formulation of each of
these categories 3.

Specifically we focus here on what we call focused cognitive processes; that
is, cognitive processes that selectively focus attention on a subset of the pat-
terns making up a mind. In general these are not the only kind, there may
also be global cognitive processes that act on every pattern in a mind. An
example of a global cognitive process in CogPrime is the basic attention al-
location process, which spreads “importance” among all knowledge in the
system’s memory. Global cognitive processes are also important, but focused
cognitive processes are subtler to understand which is why we spend more
time on them here.

3.4.1 Component-Systems and Self-Generating Systems

We begin with autopoesis – and, more specifically, with the concept of a
“component-system”, as described in George Kampis’s book Self-Modifying
Systems in Biology and Cognitive Science [Kam91], and as modified into the
concept of a “self-generating system” or SGS in Goertzel’s book Chaotic Logic
[Goe94]. Roughly speaking, a Kampis-style component-system consists of a
set of components that combine with each other to form other, compound
components. The metaphor Kampis uses is that of Lego blocks, combining
to form bigger Lego structures. Compound structures may in turn be com-

3 While these points are highly compatible with theory of mind given in [Goe06a], they are
not articulated there. The material presented in this section is a new development within
patternist philosophy, presented previously only in the article [GPPG06].
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bined together to form yet bigger compound structures. A self-generating
system is basically the same concept as a component-system, but understood
to be computable, whereas Kampis claims that component-systems are un-
computable.

Next, in SGS theory there is also a notion of reduction (not present in
the Lego metaphor): sometimes when components are combined in a certain
way, a “reaction” happens, which may lead to the elimination of some of the
components. One relevant metaphor here is chemistry. Another is abstract
algebra: for instance, if we combine a component f with its “inverse” compo-
nent f−1, both components are eliminated. Thus, we may think about two
stages in the interaction of sets of components: combination, and reduction.
Reduction may be thought of as algebraic simplification, governed by a set
of rules that apply to a newly created compound component, based on the
components that are assembled within it.

Formally, suppose C1, C2, ... is the set of components present in a discrete-
time component-system at time t. Then, the components present at time t+1
are a subset of the set of components of the form

Reduce(Join(Ci(1), ..., Ci(r)))

where Join is a joining operation, and Reduce is a reduction operator. The
joining operation is assumed to map tuples of components into components,
and the reduction operator is assumed to map the space of components into
itself. Of course, the specific nature of a component system is totally depen-
dent on the particular definitions of the reduction and joining operators; in
following chapters we will specify these for the CogPrime system, but for the
purpose of the broader theoretical discussion in this section they may be left
general.

What is called the “cognitive equation” in Chaotic Logic [?] is the case of
a SGS where the patterns in the system at time t have a tendency to cor-
respond to components of the system at future times t + s. So, part of the
action of the system is to transform implicit knowledge (patterns among sys-
tem components) into explicit knowledge (specific system components). We
will see one version of this phenomenon in Chapter 14 where we model im-
plicit knowledge using mathematical structures called “derived hypergraphs”;
and we will also later review several ways in which CogPrime ’s dynamics
explicitly encourage cognitive-equation type dynamics, e.g.:

• inference, which takes conclusions implicit in the combination of logical
relationships, and makes them implicit by deriving new logical relation-
ships from them

• map formation, which takes concepts that have often been active to-
gether, and creates new concepts grouping them

• association learning, which creates links representing patterns of associ-
ation between entities



50 3 A Patternist Philosophy of Mind

• probabilistic procedure learning, which creates new models embodying
patterns regarding which procedures tend to perform well according to
particular fitness functions

3.4.2 Analysis and Synthesis

Now we move on to the main point of this section: the argument that all
or nearly all focused cognitive processes are expressible using two general
process-schemata we call synthesis and analysis 4. The notion of “focused
cognitive process” will be exemplified more thoroughly below, but in essence
what is meant is a cognitive process that begins with a small number of
items (drawn from memory) as its focus, and has as its goal discovering
something about these items, or discovering something about something else
in the context of these items or in a way strongly biased by these items.
This is different from a global cognitive process whose goal is more broadly-
based and explicitly involves all or a large percentage of the knowledge in an
intelligent system’s memory store.

Among the focused cognitive processes are those governed by the so-called
cognitive schematic implication

Context ∧ Procedure→ Goal

where the Context involves sensory, episodic and/or declarative knowl-
edge; and attentional knowledge is used to regulate how much resource is
given to each such schematic implication in memory. Synergy among the
learning processes dealing with the context, the procedure and the goal is
critical to the adequate execution of the cognitive schematic using feasible
computational resources. This sort of explicitly goal-driven cognition plays
a significant though not necessarily dominant role in CogPrime , and is also
related to production rules systems and other traditional AI systems, as will
be articulated in Chapter 4.

The synthesis and analysis processes as we conceive them, in the general
framework of SGS theory, are as follows. First, synthesis, as shown in Figure
3.1, is defined as

synthesis: Iteratively build compounds from the initial component pool us-
ing the combinators, greedily seeking compounds that seem likely to achieve
the goal.

Or in more detail

4 In [GPPG06], what is here called “analysis” was called “backward synthesis”, a name
which has some advantages since it indicated that what’s happening is a form of creation;
but here we have opted for the more traditional analysis/synthesis terminology
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1. Begin with some initial components (the initial “current pool”), an addi-
tional set of components identified as “combinators” (combination oper-
ators), and a goal function

2. Combine the components in the current pool, utilizing the combinators,
to form product components in various ways, carrying out reductions as
appropriate, and calculating relevant quantities associated with compo-
nents as needed

3. Select the product components that seem most promising according to
the goal function, and add these to the current pool (or else simply define
these as the current pool)

4. Return to Step 2

Fig. 3.1 The General Process of Synthesis

And analysis, as shown in Figure 3.2, is defined as
analysis: Iteratively search (the system’s long-term memory) for component-

sets that combine using the combinators to form the initial component pool
(or subsets thereof), greedily seeking component-sets that seem likely to
achieve the goal

or in more detail

1. Begin with some components (the initial “current pool”), and a goal func-
tion
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2. Seek components so that, if one combines them to form product compo-
nents using the combinators and then performs appropriate reductions,
one obtains (as many as possible of) the components in the current pool

3. Use the newly found constructions of the components in the current pool,
to update the quantitative properties of the components in the current
pool, and also (via the current pool) the quantitative properties of the
components in the initial pool

4. Out of the components found in Step 2, select the ones that seem most
promising according to the goal function, and add these to the current
pool (or else simply define these as the current pool)

5. Return to Step 2

Fig. 3.2 The General Process of Analysis

More formally, synthesis may be specified as follows. Let X denote the set
of combinators, and let Y0 denote the initial pool of components (the initial
focus of the cognitive process). Given Yi, let Zi denote the set

Reduce(Join(Ci(1), ..., Ci(r)))

where the Ci are drawn from Yi or from X. We may then say
Yi+1 = Filter(Zi)
where Filter is a function that selects a subset of its arguments.
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Analysis, on the other hand, begins with a set W of components, and a
set X of combinators, and tries to find a series Yi so that according to the
process of synthesis, Yn=W .

In practice, of course, the implementation of a synthesis process need not
involve the explicit construction of the full set Zi. Rather, the filtering oper-
ation takes place implicitly during the construction of Yi+1. The result, how-
ever, is that one gets some subset of the compounds producible via joining
and reduction from the set of components present in Yi plus the combinators
X.

Conceptually one may view synthesis as a very generic sort of “growth
process,” and analysis as a very generic sort of “figuring out how to grow
something.” The intuitive idea underlying the present proposal is that these
forward-going and backward-going “growth processes” are among the essential
foundations of cognitive control, and that a conceptually sound design for
cognitive control should explicitly make use of this fact. To abstract away
from the details, what these processes are about is:

• taking the general dynamic of compound-formation and reduction as out-
lined in Kampis and Chaotic Logic
• introducing goal-directed pruning (“filtering”) into this dynamic so as to

account for the limitations of computational resources that are a neces-
sary part of pragmatic intelligence

3.4.3 The Dynamic of Iterative Analysis and Synthesis

While synthesis and analysis are both very useful on their own, they achieve
their greatest power when harnessed together. It is my hypothesis that the
dynamic pattern of alternating synthesis and analysis has a fundamental role
in cognition. Put simply, synthesis creates new mental forms by combining
existing ones. Then, analysis seeks simple explanations for the forms in the
mind, including the newly created ones; and, this explanation itself then
comprises additional new forms in the mind, to be used as fodder for the
next round of synthesis. Or, to put it yet more simply:

⇒ Combine ⇒ Explain ⇒ Combine ⇒ Explain ⇒ Combine ⇒

It is not hard to express this alternating dynamic more formally, as well.

• Let X denote any set of components.
• Let F(X) denote a set of components which is the result of synthesis on

X.
• Let B(X) denote a set of components which is the result of analysis of X.

We assume also a heuristic biasing the synthesis process toward simple
constructs.
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• Let S(t) denote a set of components at time t, representing part of a
system’s knowledge base.

• Let I(t) denote components resulting from the external environment at
time t.

Then, we may consider a dynamical iteration of the form

S(t+ 1) = B(F (S(t) + I(t)))

This expresses the notion of alternating synthesis and analysis formally,
as a dynamical iteration on the space of sets of components. We may then
speak about attractors of this iteration: fixed points, limit cycles and strange
attractors. One of the key hypotheses I wish to put forward here is that some
key emergent cognitive structures are strange attractors of this equation.
The iterative dynamic of combination and explanation leads to the emer-
gence of certain complex structures that are, in essence, maintained when
one recombines their parts and then seeks to explain the recombinations.
These structures are built in the first place through iterative recombination
and explanation, and then survive in the mind because they are conserved
by this process. They then ongoingly guide the construction and destruction
of various other temporary mental structures that are not so conserved.

3.4.4 Self and Focused Attention as Approximate
Attractors of the Dynamic of Iterated
Forward/analysis

As noted above, patternist philosophy argues that two key aspects of intelli-
gence are emergent structures that may be called the “self” and the “atten-
tional focus.” These, it is suggested, are aspects of intelligence that may not
effectively be wired into the infrastructure of an intelligent system, though
of course the infrastructure may be configured in such a way as to encourage
their emergence. Rather, these aspects, by their nature, are only likely to
be effective if they emerge from the cooperative activity of various cognitive
processes acting within a broad based of knowledge.

Above we have described the pattern of ongoing habitual oscillation be-
tween synthesis and analysis as a kind of “dynamical iteration.” Here we will
argue that both self and attentional focus may be viewed as strange attractors
of this iteration. The mode of argument is relatively informal. The essential
processes under consideration are ones that are poorly understood from an
empirical perspective, due to the extreme difficulty involved in studying them
experimentally. For understanding self and attentional focus, we are stuck in
large part with introspection, which is famously unreliable in some contexts,
yet still dramatically better than having no information at all. So, the philo-
sophical perspective on self and attentional focus given here is a synthesis of
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empirical and introspective notions, drawn largely from the published think-
ing and research of others but with a few original twists. From a CogPrime
perspective, its use has been to guide the design process, to provide a ground-
ing for what otherwise would have been fairly arbitrary choices.

3.4.4.1 Self

Another high-level intelligent system pattern mentioned above is the “self”,
which we here will tie in with analysis and synthesis processes. The term “self”
as used here refers to the “phenomenal self” [Met04] or “self-model”. That is,
the self is the model that a system builds internally, reflecting the patterns
observed in the (external and internal) world that directly pertain to the
system itself. As is well known in everyday human life, self-models need not be
completely accurate to be useful; and in the presence of certain psychological
factors, a more accurate self-model may not necessarily be advantageous.
But a self-model that is too badly inaccurate will lead to a badly-functioning
system that is unable to effectively act toward the achievement of its own
goals.

The value of a self-model for any intelligent system carrying out embod-
ied agentive cognition is obvious. And beyond this, another primary use of
the self is as a foundation for metaphors and analogies in various domains.
Patterns recognized pertaining the self are analogically extended to other
entities. In some cases this leads to conceptual pathologies, such as the an-
thropomorphization of trees, rocks and other such objects that one sees in
some precivilized cultures. But in other cases this kind of analogy leads to
robust sorts of reasoning - for instance, in reading Lakoff and Nunez’s [?] in-
triguing explorations of the cognitive foundations of mathematics, it is pretty
easy to see that most of the metaphors on which they hypothesize mathemat-
ics to be based, are grounded in the mind’s conceptualization of itself as a
spatiotemporally embedded entity, which in turn is predicated on the mind’s
having a conceptualization of itself (a self) in the first place.

A self-model can in many cases form a self-fulfilling prophecy (to make
an obvious double-entendre’ !). Actions are generated based on one’s model
of what sorts of actions one can and/or should take; and the results of these
actions are then incorporated into one’s self-model. If a self-model proves a
generally bad guide to action selection, this may never be discovered, unless
said self-model includes the knowledge that semi-random experimentation is
often useful.

In what sense, then, may it be said that self is an attractor of iterated
analysis? Analysis infers the self from observations of system behavior. The
system asks: What kind of system might I be, in order to give rise to these
behaviors that I observe myself carrying out? Based on asking itself this
question, it constructs a model of itself, i.e. it constructs a self. Then, this self
guides the system’s behavior: it builds new logical relationships its self-model
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and various other entities, in order to guide its future actions oriented toward
achieving its goals. Based on the behaviors new induced via this constructive,
forward-synthesis activity, the system may then engage in analysis again and
ask: What must I be now, in order to have carried out these new actions?
And so on.

Our hypothesis is that after repeated iterations of this sort, in infancy,
finally during early childhood a kind of self-reinforcing attractor occurs, and
we have a self-model that is resilient and doesn’t change dramatically when
new instances of action- or explanation-generation occur. This is not strictly
a mathematical attractor, though, because over a long period of time the
self may well shift significantly. But, for a mature self, many hundreds of
thousands or millions of forward-analysis cycles may occur before the self-
model is dramatically modified. For relatively long periods of time, small
changes within the context of the existing self may suffice to allow the system
to control itself intelligently.

Finally, it is interesting to speculate regarding how self may differ in future
AI systems as opposed to in humans. The relative stability we see in human
selves may not exist in AI systems that can self-improve and change more
fundamentally and rapidly than humans can. There may be a situation in
which, as soon as a system has understood itself decently, it radically modifies
itself and hence violates its existing self-model. Thus: intelligence without
a long-term stable self. In this case the “attractor-ish” nature of the self
holds only over much shorter time scales than for human minds or human-
like minds. But the alternating process of synthesis and analysis for self-
construction is still critical, even though no reasonably stable self-constituting
attractor ever emerges. The psychology of such intelligent systems will almost
surely be beyond human beings’ capacity for comprehension and empathy.

3.4.4.2 Attentional Focus

Finally, we turn to the notion of an “attentional focus” is similar to Baars’
[BF09] notion of a Global Workspace, which will be reviewed in more detail
in Chapter 4: a collection of mental entities that are, at a given moment, re-
ceiving far more than the usual share of an intelligent system’s computational
resources. Due to the amount of attention paid to items in the attentional
focus, at any given moment these items are in large part driving the cognitive
processes going on elsewhere in the mind as well - because the cognitive pro-
cesses acting on the items in the attentional focus are often involved in other
mental items, not in attentional focus, as well (and sometimes this results in
pulling these other items into attentional focus). An intelligent system must
constantly shift its attentional focus from one set of entities to another based
on changes in its environment and based on its own shifting discoveries.

In the human mind, there is a self-reinforcing dynamic pertaining to the
collection of entities in the attentional focus at any given point in time,
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resulting from the observation that If A is in the attentional focus, and A
and B have often been associated in the past, then odds are increased that
B will soon be in the attentional focus. This basic observation has been
refined tremendously via a large body of cognitive psychology work; and
neurologically it follows not only from Hebb’s [Heb49] classic work on neural
reinforcement learning, but also from numerous more modern refinements
[SB98]. But it implies that two items A and B, if both in the attentional focus,
can reinforce each others’ presence in the attentional focus, hence forming a
kind of conspiracy to keep each other in the limelight. But of course, this kind
of dynamic must be counteracted by a pragmatic tendency to remove items
from the attentional focus if giving them attention is not providing sufficient
utility in terms of the achievement of system goals.

The synthesis and analysis perspective provides a more systematic per-
spective on this self-reinforcing dynamic. synthesis occurs in the attentional
focus when two or more items in the focus are combined to form new items,
new relationships, new ideas. This happens continually, as one of the main
purposes of the attentional focus is combinational. On the other hand, anal-
ysis then occurs when a combination that has been speculatively formed is
then linked in with the remainder of the mind (the “unconscious”, the vast
body of knowledge that is not in the attentional focus at the given moment
in time). analysis basically checks to see what support the new combination
has within the existing knowledge store of the system. Thus, forward/analy-
sis basically comes down to “generate and test”, where the testing takes the
form of attempting to integrate the generated structures with the ideas in
the unconscious long-term memory. One of the most obvious examples of this
kind of dynamic is creative thinking (Boden2003; Goertzel1997), where the
attentional focus continually combinationally creates new ideas, which are
then tested via checking which ones can be validated in terms of (built up
from) existing knowledge.

The analysis stage may result in items being pushed out of the attentional
focus, to be replaced by others. Likewise may the synthesis stage: the com-
binations may overshadow and then replace the things combined. However,
in human minds and functional AI minds, the attentional focus will not be a
complete chaos with constant turnover: sometimes the same set of ideas - or
a shifting set of ideas within the same overall family of ideas – will remain in
focus for a while. When this occurs it is because this set or family of ideas
forms an approximate attractor for the dynamics of the attentional focus, in
particular for the forward/analysis dynamic of speculative combination and
integrative explanation. Often, for instance, a small “core set” of ideas will re-
main in the attentional focus for a while, but will not exhaust the attentional
focus: the rest of the attentional focus will then, at any point in time, be
occupied with other ideas related to the ones in the core set. Often this may
mean that, for a while, the whole of the attentional focus will move around
quasi-randomly through a “strange attractor” consisting of the set of ideas
related to those in the core set.
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3.4.5 Conclusion

The ideas presented above (the notions of synthesis and analysis, and the
hypothesis of self and attentional focus as attractors of the iterative forward-
analysis dynamic) are quite generic and are hypothetically proposed to be
applicable to any cognitive system, natural or artificial. Later chapters will
discuss the manifestation of the above ideas in the context of CogPrime .
We have found that the analysis/synthesis approach is a valuable tool for
conceptualizing CogPrime ’s cognitive dynamics, and we conjecture that a
similar utility may be found more generally.

Next, so as not to end the section on too blase’ of a note, we will also
make a stronger hypothesis: that, in order for a physical or software system
to achieve intelligence that is roughly human-level in both capability and
generality, using computational resources on the same order of magnitude as
the human brain, this system must

• manifest the dynamic of iterated synthesis and analysis, as modes of an
underlying “self-generating system” dynamic

• do so in such a way as to lead to self and attentional focus as emergent
structures that serve as approximate attractors of this dynamic, over time
periods are long relative to the basic “cognitive cycle time” of the system’s
forward/analysis dynamics

To prove the truth of a hypothesis of this nature would seem to require
mathematics fairly far beyond anything that currently exists. Nonetheless,
however, we feel it is important to formulate and discuss such hypotheses, so
as to point the way for future investigations both theoretical and pragmatic.

3.5 Perspectives on Machine Consciousness

Finally, we can’t let a chapter on philosophy – even a brief one – end without
some discussion of the thorniest topic in the philosophy of mind: conscious-
ness. Rather than seeking to resolve or comprehensively review this most del-
icate issue, we will restrict ourselves to giving in in Appendix [?] an overview
of many of the common views on the subject; and here in the main text
discussing the relationship between consciousness theory and and patternist
philosophy of cognition, the practical work of designing and building AGI.

One fairly concrete idea about consciousness, that relates closely to cer-
tain aspects of the CogPrime design, is that the subjective experience of
being conscious of some entity X, is correlated with the presence of a very
intense pattern in one’s overall mind-state, corresponding to X. This simple
idea is also the essence of neuroscientist Susan Greenfield’s theory of con-
sciousness [Gre01] (but in her theory, "overall mind-state" is replaced with
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"brain-state"), and has much deeper historical roots in philosophy of mind
which we shall not venture to unravel here.

This observation relates to the idea of "moving bubbles of awareness" in
intelligent systems. If an intelligent system consists of multiple processing
or data elements, and during each (sufficiently long) interval of time some
of these elements get much more attention than others, then one may view
the system as having a certain "attentional focus" during each interval. The
attentional focus is itself a significant pattern in the system (the pattern
being "these elements habitually get more processor and memory", roughly
speaking). As the attentional focus shifts over time one has a "moving bubble
of pattern" which then corresponds experientially to a "moving bubble of
awareness."

This notion of a "moving bubble of awareness" ties in very closely to
global workspace theory [?], a cognitive theory that has broad support from
neuroscience and cognitive science and has also served as the motivation for
Stan Franklin’s LIDA AI system [BF09], to be discussed in Chapter ??. The
global workspace theory views the mind as consisting of a large population
of small, specialized processes Ð a society of agents. These agents organize
themselves into coalitions, and coalitions that are relevant to contextually
novel phenomena, or contextually important goals, are pulled into the global
workspace (which is identified with consciousness). This workspace broad-
casts the message of the coalition to all the unconscious agents, and recruits
other agents into consciousness. Various sorts of contexts – e.g. goal con-
texts, perceptual contexts, conceptual contexts and cultural contexts – play
a role in determining which coalitions are relevant, and form the unconscious
ÒbackgroundÓ of the conscious global workspace. New perceptions are of-
ten, but not necessarily, pushed into the workspace. Some of the agents in
the global workspace are concerned with action selection, i.e. with controlling
and passing parameters to a population of possible actions. The contents of
the workspace at any given time have a certain cohesiveness and interdepen-
dency, the so-called Òunity of consciousness.Ó In essence the contents of the
global workspace form a moving bubble of attention or awareness.

In CogPrime , this moving bubble is achieved largely via economic atten-
tion network (ECAN) equations [GPI+10] that propagate virtual currency
between nodes and links representing elements of memories, so that the at-
tentional focus consists of the wealthiest nodes and links. Figures 3.3 and
3.4 illustrate the existence and flow of attentional focus in OpenCog. On the
other hand, in Hameroff’s recent model of the brain [Ham10], the the brain’s
moving bubble of attention is achieved through dendro-dendritic connections
and the emergent dendritic web.

In this perspective, self, free will and reflective consciousness are specific
phenomena occurring within the moving bubble of awareness. They are spe-
cific ways of experiencing awareness, corresponding to certain abstract types
of physical structures and dynamics, which we shall endeavor to identify in
detail in Chapter ??.
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Fig. 3.3 Graphical depiction of the momentary bubble of attention in the memory of an
OpenCog AI system. Circles and lines represent nodes and links in OpenCogPrimes mem-
ory, and stars denote those nodes with a high level of attention (represented in OpenCog
by the ShortTermImportance node variable) at the particular point in time.

3.6 Postscript: Formalizing Pattern

Finally, before winding up our very brief tour through patternist philosophy
of mind, we will briefly visit patternism’s more formal side. Many of the key
aspects of patternism have been rigorously formalized. Here we give only a few
very basic elements of the relevant mathematics, which will be used later on
in the exposition of CogPrime . (Specifically, the formal definition of pattern
emerges in the CogPrime design in the definition of a fitness function for
“pattern mining” algorithms and Occam-based concept creation algorithms,
and the definition of intensional inheritance within PLN.)

We give some definitions, drawn from Appendix 1 of [Goe06a]:

Definition 1 Given a metric space (M,d), and two functions c :M → [0,∞]
(the “simplicity measure”) and F : M → M (the “production relationship”),
we say that P ∈M is a pattern in X ∈M to the degree
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Fig. 3.4 Graphical depiction of the momentary bubble of attention in the memory of
an OpenCog AI system, a few moments after the bubble shown in Figure 3.3, indicating
the moving of the bubble of attention. Depictive conventions are the same as in Figure 1.
This shows an idealized situation where the declarative knowledge remains invariant from
one moment to the next but only the focus of attention shifts. In reality both will evolve
together.

ιPX =

((
1− d(F (P), X)

c(X)

)
c(X)− c(P)

c(X)

)+

This degree is called the pattern intensity of P in X.

For instance, if one wishes one may take c to denote algorithmic informa-
tion measured on some reference Turing machine, and F (X) to denote what
appears on the second tape of a two-tape Turing machine t time-steps after
placing X on its first tape. Other more naturalistic computational models are
also possible here and are discussed extensively in Appendix 1 of [Goe06a].

Definition 2 The structure of X ∈M is the fuzzy set StX defined via the
membership function

χStX (P) = ιPX
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This lets us formalize our definition of “mind” alluded to above: the mind
of X as the set of patterns associated with X. We can formalize this, for
instance, by considering P to belong to the mind of X if it is a pattern in
some Y that includes X. There are then two numbers to look at: ιPX and
P (Y |X) (the percentage of Y that is also contained in X). To define the
degree to which P belongs to the mind of X we can then combine these
two numbers using some function f that is monotone increasing in both
arguments. This highlights the somewhat arbitrary semantics of “of” in the
phrase “the mind of X.” Which of the patterns binding X to its environment
are part of X’s mind, and which are part of the world? This isn’t necessarily
a good question, and the answer seems to depend on what perspective you
choose, represented formally in the present framework by what combination
function f you choose (for instance if f(a, b) = arb2−r then it depends on the
choice of 0 < r < 1).

Next, we can formalize the notion of a “pattern space” by positing a metric
on patterns, thus making pattern space a metric space, which will come in
handy in some places in later chapters:

Definition 3 Assuming M is a countable space, the structural distance
is a metric dSt defined on M via

dSt(X,Y ) = T (χStX , χStY )

where T is the Tanimoto distance.

The Tanimoto distance between two real vectors A and B is defined as

T (A,B) =
A ·B

‖A‖2 + ‖B‖2 −A ·B
and since M is countable this can be applied to fuzzy sets such as StX

via considering the latter as vectors. (As an aside, this can be generalized to
uncountable M as well, but we will not require this here.)

Using this definition of pattern, combined with the formal theory of intel-
ligence given in Chapter [?], one may formalize the various hypotheses made
in the previous section, regarding the emergence of different kinds of net-
works and structures as patterns in intelligent systems. However, it appears
quite difficult to prove the formal versions of these hypotheses given current
mathematical tools, which renders such formalizations of limited use.

Finally, consider the case where the metric space M has a partial ordering
< on it; we may then define

Definition 3.1. R ∈M is a subpattern in X ∈M to the degree

κRX =

∫
P∈M true(R < P )dιPX∫

P∈M dιPX

This degree is called the subpattern intensity of P in X.



3.6 Postscript: Formalizing Pattern 63

Roughly speaking, the subpattern intensity measures the percentage of pat-
terns in X that contain R (where "containment" is judged by the partial or-
dering <). But the percentage is measured using a weighted average, where
each pattern is weighted by its intensity as a pattern in X. A subpattern
may or may not be a pattern on its own. A nonpattern that happens to
occur within many patterns may be an intense subpattern.

Whether the subpatterns in X are to be considered part of the "mind"
of X is a somewhat superfluous question of semantics. Here we choose to
extend the definition of mind given in [Goe06a] to include subpatterns as
well as patterns, because this makes it simpler to describe the relationship
between hypersets and minds, as we will do in Appendix C.





Chapter 4
Brief Survey of Cognitive Architectures

4.1 Introduction

While we believe CogPrime is the most thorough attempt at an architec-
ture for advanced AGI, to date, we certainly recognize there have been many
valuable attempts in the past with similar aims; and we also have great re-
spect for other AGI efforts occurring in parallel with CogPrime development,
based on alternative, sometimes overlapping, theoretical presuppositions and
practical choices. In most of this book we will ignore these other current and
historical efforts except where they are directly useful for CogPrime – there
are many literature reviews already published, and this is a research treatise
not a textbook. In this chapter, however, we will break from this pattern and
give a rough high-level overview of the various AGI architectures at play in
the field today. The overview definitely has a bias toward other work with
some direct relevance to CogPrime , but not an overwhelming bias; we also
discuss a number of approaches that are unrelated to, and even in some cases
conceptually orthogonal to, our own.

CogPrime builds on prior AI efforts in a variety of ways. Most of the
specific algorithms and structures in CogPrime have their roots in prior AI
work; and in addition, the CogPrime cognitive architecture has been heavily
inspired by some other holistic cognitive architectures, especially (but not
exclusively) MicroPsi [Bac09], LIDA [BF09] and DeSTIN [ARK09a, ARC09].
In this chapter we will briefly review some existing cognitive architectures,
with especial but not exclusive emphasis on the latter three.

We will articulate some rough mappings between elements of these other
architectures and elements of CogPrime – some in this chapter, and some in
Chapter 5. However, these mappings will mostly be left informal and very
incompletely specified. The articulation of detailed inter-architecture map-
pings is an important project, but would be a substantial additional project
going well beyond the scope of this book. We will not give a thorough re-
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view of the similarities and differences between CogPrime and each of these
architectures, but only mention some of the highlights.

The reader desiring a more thorough review of cognitive architectures is
referred toWlodek Duch’s review paper from the AGI-08 conference [DOP08];
and also to Alexei Samsonovich’s review paper [?], which compares a number
of cognitive architectures in terms of a feature checklist, and was created
collaboratively with the creators of the architectures.

Duch, in his survey of cognitive architectures [DOP08], divides existing
approaches into three paradigms – symbolic, emergentist and hybrid – as
broadly indicated in 4.1. Drawing on his survey and updating slightly, we
give here some key examples of each, and then explain why CogPrime repre-
sents a significantly more effective approach to embodied human-like general
intelligence. In our treatment of emergentist architectures, we pay particular
attention to developmental robotics architectures, which share considerably
with CogPrime in terms of underlying philosophy, but differ via not inte-
grating a symbolic “language and inference” component such as CogPrime
includes.

In brief, we believe that the hybrid approach is the most pragmatic one
given the current state of AI technology, but that the emergentist approach
gets something fundamentally right, by focusing on the emergence of com-
plex dynamics and structures from the interactions of simple components. So
CogPrime is a hybrid architecture which (according to the cognitive synergy
principle) binds its components together very tightly dynamically, allowing
the emergence of complex dynamics and structures in the integrated sys-
tem. Most other hybrid architectures are less tightly coupled and hence seem
ill-suited to give rise to the needed emergent complexity. The other hybrid
architectures that do possess the needed tight coupling, such as MicroPsi [?],
strike us as underdeveloped and founded on insufficiently powerful learning
algorithms.

4.2 Symbolic Cognitive Architectures

A venerable tradition in AI focuses on the physical symbol system hypoth-
esis [?], which states that minds exist mainly to manipulate symbols that
represent aspects of the world or themselves. A physical symbol system has
the ability to input, output, store and alter symbolic entities, and to execute
appropriate actions in order to reach its goals. Generally, symbolic cognitive
architectures focus on “working memory” that draws on long-term memory as
needed, and utilize a centralized control over perception, cognition and action.
Although in principle such architectures could be arbitrarily capable (since
symbolic systems have universal representational and computational power,
in theory), in practice symbolic architectures tend to be weak in learning,
creativity, procedure learning, and episodic and associative memory. Decades
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Fig. 4.1 Duch’s simplified taxonomy of cognitive architectures. CogPrime falls into the
“hybrid” category, but differs from other hybrid architectures in its focus on synergetic
interactions between components and their potential to give rise to appropriate system-
wide emergent structures enabling general intelligence.

of work in this tradition have not resolved these issues, which has led many
researchers to explore other options. A few of the more important symbolic
cognitive architectures are:

• SOAR [LRN87], a classic example of expert rule-based cognitive ar-
chitecture designed to model general intelligence. It has recently been
extended to handle sensorimotor functions, though in a somewhat cogni-
tively unnatural way; and is not yet strong in areas such as episodic mem-
ory, creativity, handling uncertain knowledge, and reinforcement learning.

• ACT-R [AL03] is fundamentally a symbolic system, but Duch clas-
sifies it as a hybrid system because it incorporates connectionist-style
activation spreading in a significant role; and there is an experimen-
tal thoroughly connectionist implementation to complement the primary
mainly-symbolic implementation. Its combination of SOAR-style “pro-
duction rules” with large-scale connectionist dynamics allows it to simu-
late a variety of human psychological phenomena, but abstract reasoning,
creativity and transfer learning are still missing.

• EPIC [RCK01], a cognitive architecture aimed at capturing human per-
ceptual, cognitive and motor activities through several interconnected
processors working in parallel. The system is controlled by production
rules for cognitive processor and a set of perceptual (visual, auditory,
tactile) and motor processors operating on symbolically coded features
rather than raw sensory data. It has been connected to SOAR for problem
solving, planning and learning,

• ICARUS [Lan05], an integrated cognitive architecture for physical
agents, with knowledge specified in the form of reactive skills, each de-
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noting goal-relevant reactions to a class of problems. The architecture
includes a number of modules: a perceptual system, a planning system,
an execution system, and several memory systems. Concurrent processing
is absent, attention allocation is fairly crude, and uncertain knowledge is
not thoroughly handled.

• SNePS (Semantic Network Processing System) [SE07] is a logic, frame
and network-based knowledge representation, reasoning, and acting sys-
tem that has undergone over three decades of development. While it
has been used for some interesting prototype experiments in language
processing and virtual agent control, it has not yet been used for any
large-scale or real-world application.

• Cyc [LG90] is an AGI architecture based on predicate logic as a knowl-
edge representation, and using logical reasoning techniques to answer
questions and derive new knowledge from old. It has been connected to
a natural language engine, and designs have been created for the connec-
tion of Cyc with Albus’s 4D-RCS [AM01]. Cyc’s most unique aspect is the
large database of commonsense knowledge that Cycorp has accumulated
(millions of pieces of knowledge, entered by specially trained humans in
predicate logic format); part of the philosophy underlying Cyc is that
once a sufficient quantity of knowledge is accumulated in the knowledge
base, the problem of creating human-level general intelligence will become
much less difficult due to the ability to leverage this knowledge.

While these architectures contain many valuable ideas and have yielded some
interesting results, we feel they are incapable on their own of giving rise to the
emergent structures and dynamics required to yield humanlike general intelli-
gence using feasible computational resources. However, we are more sanguine
about the possibility of ideas and components from symbolic architectures
playing a role in human-level AGI via incorporation in hybrid architectures.

We now review a few symbolic architectures in slightly more detail.

4.2.1 SOAR

The cognitive architectures best known among AI academics are probably
Soar and ACT-R, both of which are explicitly being developed with the dual
goals of creating human-level AGI and modeling all aspects of human psychol-
ogy. Neither the Soar nor ACT-R communities feel themselves particularly
near these long-term goals, yet they do take them seriously.

Soar is based on IF-THEN rules, otherwise known as “production rules.”
On the surface this makes it similar to old-style expert systems, but Soar is
much more than an expert system; it’s at minimum a sophisticated problem-
solving engine. Soar explicitly conceives problem solving as a search through
solution space for a “goal state” representing a (precise or approximate) prob-
lem solution. It uses a methodology of incremental search, where each step is
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supposed to move the system a little closer to its problem-solving goal, and
each step involves a potentially complex “decision cycle.”

In the simplest case, the decision cycle has two phases:

• Gathering appropriate information from the system’s long-term memory
(LTM) into its working memory (WM)

• A decision procedure that uses the gathered information to decide an
action

If the knowledge available in LTM isn’t enough to solve the problem, then
the decision procedure invokes search heuristics like hill-climbing, which try
to create new knowledge (new production rules) that will help move the sys-
tem closer to a solution. If a solution is found by chaining together multiple
production rules, then a chunking mechanism is used to combine these rules
together into a single rule for future use. One could view the chunking mech-
anism as a way of converting explicit knowledge into implicit knowledge,
similar to “map formation” in CogPrime (see Chapter 42 of Part 2), but in
the current Soar design and implementation it is a fairly crude mechanism.

In recent years Soar has acquired a number of additional methods and
modalities, including some visual reasoning methods and some mechanisms
for handling episodic and procedural knowledge. These expand the scope of
the system but the basic production rule and chunking mechanisms as briefly
described above remain the core “cognitive algorithm” of the system.

From a CogPrime perspective, what Soar offers is certainly valuable, e.g.

• heuristics for transferring knowledge from LTM into WM
• chaining and chunking of implications
• methods for interfacing between other forms of knowledge and implica-

tions

However, a very short and very partial list of the major differences between
Soar and CogPrime would include

• CogPrime contains a variety of other core cognitive mechanisms beyond
the management and chunking of implications

• the variety of “chunking” type methods in CogPrime goes far beyond the
sort of localized chunking done in Soar

• CogPrime is committed to representing uncertainty at the base level
whereas Soar’s production rules are crisp

• The mechanisms for LTM-WM interaction are rather different in Cog-
Prime , being based on complex nonlinear dynamics as represented in
Economic Attention Allocation (ECAN)

• Currently Soar does not contain creativity-focused heuristics like blending
or evolutionary learning in its core cognitive dynamic.
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4.2.2 ACT-R

In the grand scope of cognitive architectures, ACT-R is quite similar to Soar,
but there are many micro-level differences. ACT-R is defined in terms of
declarative and procedural knowledge, where procedural knowledge takes the
form of Soar-like production rules, and declarative knowledge takes the form
of chunks. It contains a variety of mechanisms for learning new rules and
chunks from old; and also contains sophisticated probabilistic equations for
updating the activation levels associated with items of knowledge (these equa-
tions being roughly analogous in function to, though quite different from, the
ECAN equations in CogPrime ).

Figure 4.2 displays the current architecture of ACT-R. The flow of cog-
nition in the system is in response to the current goal, currently active in-
formation from declarative memory, information attended to in perceptual
modules (vision and audition are implemented), and the current state of mo-
tor modules (hand and speech are implemented). The early work with ACT-R
was based on comparing system performance to human behavior, using only
behavioral measures, such as the timing of keystrokes or patterns of eye move-
ments. Using such measures, it was not possible to test detailed assumptions
about which modules were active in the performance of a task. More recently
the ACT-R community has been engaged in a process of using imaging data
to provide converging data on module activity. Figure 4.3 illustrates the asso-
ciations they have made between the modules in Figure 4.2 and brain regions.
Coordination among all of these components occurs through actions of the
procedural module, which is mapped to the basal ganglia.

In practice ACT-R, even more so than Soar, seems to be used more as a
programming framework for cognitive modeling than as an AI system. One
can fairly easily use ACT-R to program models of specific human mental
behaviors, which may then be matched against psychological data. Opinions
differ as to whether this sort of modeling is valuable for achieving AGI goals.
CogPrime is not designed to support this kind of modeling, as it intentionally
does many things very differently from humans.

ACT-R in its original form did not say much about perceptual and mo-
tor operations, but recent versions have incorporated EPIC, an independent
cognitive architecture focused on modeling these aspects of human behavior.

4.2.3 Cyc and Texai

Our review of cognitive architectures would be incomplete without mention-
ing Cyc [LG90], one of the best known and best funded AGI-oriented projects
in history. While the main focus of the Cyc project has been on the hand-
coding of large amounts of declarative knowledge, there is also a cognitive
architecture of sorts there. The center of Cyc is an engine for logical deduc-
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Fig. 4.2 High-level architecture of ACT-R

tion, acting on knowledge represented in predicate logic. A natural language

Fig. 4.3 Conjectured Mapping Between ACT-R and the Brain
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engine has been associated with the logic engine, which enables one to ask
English questions and get English replies.

Stephen Reed, while an engineer at Cycorp, designed a perceptual-motor
front end for Cyc based on James Albus’s Reference Model Architecture; the
ensuing system, called CognitiveCyc, would have been the first full-fledged
cognitive architecture based on Cyc, but was not implemented. Reed left Cy-
corp and is now building a system called Texai, which has many similarities to
Cyc (and relies upon the OpenCyc knowledge base, a subset of Cyc’s overall
knowledge base), but incorporates a CognitiveCyc style cognitive architec-
ture.

4.2.4 NARS

Pei Wang’s NARS logic [Wan06] played a large role in the development of
PLN, CogPrim’s uncertain logic component, a relationship that is discussed
in depth in [GMIH08] and won’t be re-emphasized here. However, NARS is
more than just an uncertain logic, it is also an overall cognitive architecture
(which is centered on NARS logic, but also includes other aspects). CogPrime
bears little relation to NARS except in the specific similarities between PLN
logic and NARS logic, but, the other aspects of NARS are worth briefly
recounting here.

NARS is formulated as a system for processing tasks, where a task consists
of a question or a piece of new knowledge. The architecture is focused on
declarative knowledge, but some pieces of knowledge may be associated with
executable procedures, which allows NARS to carry out control activities (in
roughly the same way that a Prolog program can).

At any given time a NARS system contains

• working memory: a small set of tasks which are active, kept for a short
time, and closely related to new questions and new knowledge
• long-term memory: a huge set of knowledge which is passive, kept for a

long time, and not necessarily related to current questions and knowledge

The working and long term memory spaces of NARS may each be thought
of as a set of chunks, where each chunk consists of a set of tasks and a set of
knowledge. NARS’s basic cognitive process is:

1. choose a chunk
2. choose a task from that chunk
3. choose a piece of knowledge from that chunk
4. use the task and knowledge to do inference
5. send the new tasks to corresponding chunks

Depending on the nature of the task and knowledge, the inference involved
may be one of the following:
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• if the task is a question, and the knowledge happens to be an answer to
the question, a copy of the knowledge is generated as a new task

• backward inference
• revision (merging two pieces of knowledge with the same form but differ-

ent truth value)
• forward inference
• execution of a procedure associated with a piece of knowledge

Unlike many other systems, NARS doesn’t decide what type of inference is
used to process a task when the task is accepted, but works in a data-driven
way – that is, it is the task and knowledge that dynamically determine what
type of inference will be carried out

The “choice” processes mentioned above are done via assigning relative
priorities to

• chunks (where they are called activity)
• tasks (where they are called urgency)
• knowledge (where they are called importance)

and then distributing the system’s resources accordingly, based on a prob-
abilistic algorithm. (It’s interesting to note that while NARS uses probability
theory as part of its control mechanism, the logic it uses to represent its own
knowledge about the world is nonprobabilistic. This is considered concep-
tually consistent, in the context of NARS theory, because system control is
viewed as a domain where the system’s knowledge is more complete, thus
more amenable to probabilistic reasoning.)

4.2.5 GLAIR and SNePS

Another logic-focused cognitive architecture, very different from NARS in
detail, is Stuart Shapiro’s GLAIR cognitive architecture, which is centered
on the SNePS paraconsistent logic [SE07].

Like NARS, the core “cognitive loop” of GLAIR is based on reasoning:
either thinking about some percept (e.g. linguistic input, or sense data from
the virtual or physical world), or answering some question. This inference
based cognition process is turned into an intelligent agent control process
via coupling it with an acting component, which operates according to a set
of policies, each one of which tells the system when to take certain internal
or external actions (including internal reasoning actions) in response to its
observed internal and external situation.

GLAIR contains multiple layers:

• the Knowledge Layer (KL), which contains the beliefs of the agent, and
is where reasoning, planning, and act selection are performed
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• the Perceptuo-Motor Layer (PML), which grounds the KL symbols in
perceptual structures and subconscious actions, contains various registers
for providing the agent’s sense of situatedness in the environment, and
handles translation and communication between the KL and the SAL.

• the Sensori-Actuator Layer (SAL), contains the controllers of the sensors
and effectors of the hardware or software robot.

The logical Knowledge Layer incorporates multiple memory types using
a common representation (including declarative, procedural, episodic, at-
tentional and intentional knowledge, and meta-knowledge). To support this
broad range of knowledge types, a broad range of logical inference mecha-
nisms are used, so that the KL may be variously viewed as predicate logic
based, frame based, semantic network based, or from other perspectives.

What makes GLAIR more robust than most logic based AI approaches
is the novel paraconsistent logical formalism used in the knowledge base,
which means (among other things) that uncertain, speculative or erroneous
knowledge may exist in the system’s memory without leading the system
to create a broadly erroneous view of the world or carry out egregiously
unintelligent actions. CogPrime is not thoroughly logic-focused like GLAIR
is, but in its logical aspec it seeks a similar robustness through its use of PLN
logic, which embodies properties related to paraconsistency.

Compared to CogPrime , we see that GLAIR has a similarly integrative
approach, but that the integration of different sorts of cognition is done more
strictly within the framework of logical knowledge representation.

4.3 Emergentist Cognitive Architectures

Another species of cognitive architecture expects abstract symbolic process-
ing to emerge from lower-level “subsymbolic” dynamics, which sometimes
(but not always) are designed to simulate neural networks or other aspects of
human brain function. These architectures are typically strong at recogniz-
ing patterns in high-dimensional data, reinforcement learning and associative
memory; but no one has yet shown how to achieve high-level functions such
as abstract reasoning or complex language processing using a purely sub-
symbolic approach. A few of the more important subsymbolic, emergentist
cognitive architectures are:

• DeSTIN [ARK09a, ARC09], which is part of CogPrime , may also be
considered as an autonomous AGI architecture, in which case it is emer-
gentist and contains mechanisms to encourage language, high-level rea-
soning and other abstract aspects of intelligent to emerge from hierarchi-
cal pattern recognition and related self-organizing network dynamics. In
CogPrime DeSTIN is used as part of a hybrid architecture, which greatly
reduces the reliance on DeSTIN’s emergent properties.
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• Hierarchical Temporal Memory (HTM) [HB06] is a hierarchical
temporal pattern recognition architecture, presented as both an AI ap-
proach and a model of the cortex. So far it has been used exclusively for
vision processing and we will discuss its shortcomings later in the context
of our treatment of DeSTIN.

• SAL [JL08], based on the earlier and related IBCA (Integrated Biologically-
based Cognitive Architecture) is a large-scale emergent architecture that
seeks to model distributed information processing in the brain, especially
the posterior and frontal cortex and the hippocampus. So far the archi-
tectures in this lineage have been used to simulate various human psy-
chological and psycholinguistic behaviors, but hasn’t been shown to give
rise to higher-level behaviors like reasoning or subgoaling.

• NOMAD (Neurally Organized Mobile Adaptive Device) automata and
its successors [KE06] are based on Edelman’s “Neural Darwinism” model
of the brain, and feature large numbers of simulated neurons evolving
by natural selection into configurations that carry out sensorimotor and
categorization tasks. The emergence of higher-level cognition from this
approach seems rather unlikely.

• Ben Kuipers and his colleagues [?, MK08, MK09]have pursued an ex-
tremely innovative research program which combines qualitative reason-
ing and reinforcement learning to enable an intelligent agent to learn
how to act, perceive and model the world. Kuipers’ notion of “bootstrap
learning” involves allowing the robot to learn almost everything about
its world, including for instance the structure of 3D space and other
things that humans and other animals obtain via their genetic endow-
ments. Compared to Kuipers’ approach, CogPrime falls in line with most
other approaches which provide more “hard-wired” structure, following
the analogy to biological organisms that are born with more innate bi-
ases.

There is also a set of emergentist architectures focused specifically on de-
velopmental robotics, which we will review below in a separate subsection,
as all of these share certain common characteristics.
Our general perspective on the emergentist approach is that it is philosophi-
cally correct but currently pragmatically inadequate. Eventually, some emer-
gentist approach could surely succeed at giving rise to humanlike general
intelligence – the human brain, after all, is plainly an emergentist system.
However, we currently lack understanding of how the brain gives rise to ab-
stract reasoning and complex language, and none of the existing emergentist
systems seem remotely capable of giving rise to such phenomena. It seems to
us that the creation of a successful emergentist AGI will have to wait for ei-
ther a detailed understanding of how the brain gives rise to abstract thought,
or a much more thorough mathematical understanding of the dynamics of
complex self-organizing systems.

The concept of cognitive synergy is more relevant to emergentist than to
symbolic architectures. In a complex emergentist architecture with multiple
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specialized components, much of the emergence is expected to arise via syn-
ergy between different richly interacting components. Symbolic systems, at
least in the forms currently seen in the literature, seem less likely to give rise
to cognitive synergy as their dynamics tend to be simpler. And hybrid sys-
tems, as we shall see, are somewhat diverse in this regard: some rely heavily
on cognitive synergies and others consist of more loosely coupled components.

We now review the DeSTIN emergentist architecture in more detail, and
then turn to the developmental robotics architectures.

4.3.1 DeSTIN: A Deep Reinforcement Learning
Approach to AGI

The DeSTIN architecture, created by Itamar Arel and his colleagues, ad-
dresses the problem of general intelligence using hierarchical spatiotempo-
ral networks designed to enable scalable perception, state inference and
reinforcement-learning-guided action in real-world environments. DeSTIN
has been developed with the plan of gradually extending it into a com-
plete system for humanoid robot control, founded on the same qualitative
information-processing principles as the human brain (though without striv-
ing for detailed biological realism). However, the practical work with DeSTIN
to date has focused on visual and auditory processing; and in the context of
the present proposal, the intention is to utilize DeSTIN for perception and ac-
tuation oriented processing, hybridizing it with CogPrime which will handle
abstract cognition and language. Here we will discuss DeSTIN primarily in
the perception context, only briefly mentioning the application to actuation
which is conceptually similar.

In DeSTIN (see Figure 4.4), perception is carried out by a deep spatiotem-
poral inference network, which is connected to a similarly architected critic
network that provides feedback on the inference network’s performance, and
an action network that controls actuators based on the activity in the infer-
ence network (Figure 4.5 depicts a standard action hierarchy, of which the
hierarchy in DeSTIN is an example). The nodes in these networks perform
probabilistic pattern recognition according to algorithms to be described be-
low; and the nodes in each of the networks may receive states of nodes in
the other networks as inputs, providing rich interconnectivity and synergetic
dynamics.

4.3.1.1 Deep versus Shallow Learning for Perceptual Data
Processing

The most critical feature of DeSTIN is its uniquely robust approach to mod-
eling the world based on perceptual data. Mimicking the efficiency and ro-
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Fig. 4.4 High-level architecture of DeSTIN

bustness by which the human brain analyzes and represents information has
been a core challenge in AI research for decades. For instance, humans are
exposed to massive amounts of visual and auditory data every second of ev-
ery day, and are somehow able to capture critical aspects of it in a way that
allows for appropriate future recollection and action selection. For decades,
it has been known that the brain is a massively parallel fabric, in which com-
putation processes and memory storage are highly distributed. But massive
parallelism is not in itself a solution – one also needs the right architecture;
which DeSTIN provides, building on prior work in the area of deep learning.

Humanlike intelligence is heavily adapted to the physical environments
in which humans evolved; and one key aspect of sensory data coming from
our physical environments is its hierarchical structure. However, most ma-
chine learning and pattern recognition systems are “shallow” in structure,
not explicitly incorporating the hierarchical structure of the world in their
architecture. In the context of perceptual data processing, he practical result
of this is the need to couple each shallow learner with a pre-processing stage,
wherein high-dimensional sensory signals are reduced to a lower-dimension
feature space that can be understood by the shallow learner. The hierarchical
structure of the world is thus crudely captured in the hierarchy of “preproces-
sor plus shallow learner.” In this sort of approach, much of the intelligence of
the system shifts to the feature extraction process, which is often imperfect
and always application-domain specific.
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Fig. 4.5 A standard, general-purpose hierarchical control architecture. DeSTIN’s control
hierarchy exemplifies this architecture, with the difference lying mainly in the DeSTIN
control hierarchy’s tight integration with the state inference (perception) and critic (rein-
forcement) hierarchies.

Deep machine learning has emerged as a more promising framework for
dealing with complex, high-dimensional real-world data. Deep learning sys-
tems possess a hierarchical structure that intrinsically biases them to recog-
nize the hierarchical patterns present in real-world data. Thus, they hierar-
chically form a feature space that is driven by regularities in the observations,
rather than by hand-crafted techniques. They also offer robustness to many
of the distortions and transformations that characterize real-world signals,
such as noise, displacement, scaling, etc.

Deep belief networks [HOT06] and Convolutional Neural Networks [LBDE90]
have been demonstrated to successfully address pattern inference in high
dimensional data (e.g. images). They owe their success to their underlying
paradigm of partitioning large data structures into smaller, more manageable
units, and discovering the dependencies that may or may not exist between
such units. However, this paradigm has its limitations; for instance, these
approaches do not represent temporal information with the same ease as
spatial structure. Moreover, some key constraints are imposed on the learn-
ing schemes driving these architectures, namely the need for layer-by-layer
training, and oftentimes pre-training. DeSTIN overcomes the limitations of



4.3 Emergentist Cognitive Architectures 79

prior deep learning approaches to perception processing, and also extends
beyond perception to action and reinforcement learning.

4.3.1.2 DeSTIN for Perception Processing

The hierarchical architecture of DeSTIN’s spatiotemporal inference network
comprises an arrangement into multiple layers of “nodes” comprising multiple
instantiations of an identical cortical circuit. Each node corresponds to a
particular spatiotemporal region, and uses a statistical learning algorithm to
characterize the sequences of patterns that are presented to it by nodes in
the layer beneath it. More specifically,

• At the very lowest layer of the hierarchy nodes receive as input raw data
(e.g. pixels of an image) and continuously construct a belief state that
attempts to characterize the sequences of patterns viewed.

• The second layer, and all those above it, receive as input the belief states
of nodes at their corresponding lower layers, and attempt to construct
belief states that capture regularities in their inputs.

• each node also receives as input the belief state of the node above it in
the hierarchy (which constitutes “contextual” information)

More specifically, each of the DeSTIN nodes, referring to a specific space-
time region, contains a set of state variables conceived as clusters, each corre-
sponding to a set of previously-observed sequences of events. These clusters
are characterized by centroids (and are hence assumed roughly spherical in
shape), and each of them comprises a certain "spatiotemporal form" recog-
nized by the system in that region. Each node then contains the predictive
task of predicting the likelihood of a certain centroid being most apropos in
the near future, based on the past history of observations in the node. This
prediction may be done by simple probability tabulation, or via application
of supervised learning algorithms such as recurrent neural networks. These
clustering and prediction processes occur separately in each node, but the
nodes are linked together via bidirectional dynamics: each node feeds input
to its parents, and receives "advice" from its parents that is used to condition
its probability calculations in a contextual way.

These processes are executed formally by the following basic belief update
rule, which governs the learning process and is identical for every node in
the architecture. The belief state is a probability mass function over the
sequences of stimuli that the nodes learns to represent. Consequently, each
node is allocated a predefined number of state variables each denoting a
dynamic pattern, or sequence, that is autonomously learned. The DeSTIN
update rule maps the current observation (o), belief state (b), and the belief
state of a higher-layer node or context (c), to a new (updated) belief state
(b′), such that
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Fig. 4.6 Small-scale instantiation of the DeSTIN perceptual hierarchy. Each box repre-
sents a node, which corresponds to a spatiotemporal region (nodes higher in the hierarchy
corresponding to larger regions). O denotes the current observation in the region, C is
the state of the higher-layer node, and S and S‘ denote state variables pertaining to two
subsequent time steps. In each node, a statistical learning algorithm is used to predict sub-
sequent states based on prior states, current observations, and the state of the higher-layer
node.

b′ (s′) = Pr (s′|o, b, c) = Pr (s′ ∩ o ∩ b ∩ c)
Pr (o ∩ b ∩ c)

, (4.1)

alternatively expressed as

b′ (s′) =
Pr(o|s′, b, c) Pr (s′|b, c) Pr (b, c)

Pr (o|b, c) Pr (b, c)
. (4.2)

Under the assumption that observations depend only on the true state, or
Pr(o|s′, b, c) = Pr(o|s′), we can further simplify the expression such that

b′ (s′) =
Pr(o|s′) Pr (s′|b, c)

Pr (o|b, c)
, (4.3)
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where Pr (s′|b, c) =
∑
s∈S

Pr (s′|s, c) b (s), yielding the belief update rule

b′ (s′) =

Pr (o|s′)
∑
s∈S

Pr (s′|s, c) b (s)∑
s′′∈S

Pr (o|s′′)
∑
s∈S

Pr (s′′|s, c) b (s)
, (4.4)

where S denotes the sequence set (i.e. belief dimension) such that the de-
nominator term is a normalization factor.

One interpretation of eq. (4.4) would be that the static pattern similarity
metric, Pr (o|s′) , is modulated by a construct that reflects the system dynam-
ics, Pr (s′|s, c). As such, the belief state inherently captures both spatial and
temporal information. In our implementation, the belief state of the parent
node, c, is chosen using the selection rule

c = argmax
s
bp(s), (4.5)

where bp is the belief distribution of the parent node.
A close look at eq. (4.4) reveals that there are two core constructs to be

learned, Pr(o|s′) and Pr(s′|s, c). In the current DeSTIN design, the former is
learned via online clustering while the latter is learned based on experience
by inductively learning a rule that predicts the next state s′ given the prior
state s and c.

The overall result is a robust framework that autonomously (i.e. with no
human engineered pre-processing of any type) learns to represent complex
data patterns, and thus serves the critical role of building and maintaining a
model of the state of the world. In a vision processing context, for example,
it allows for powerful unsupervised classification. If shown a variety of real-
world scenes, it will automatically form internal structures corresponding to
the various natural categories of objects shown in the scenes, such as trees,
chairs, people, etc.; and also the various natural categories of events it sees,
such as reaching, pointing, falling. And, as will be discussed below, it can
use feedback from DeSTIN’s action and critic networks to further shape its
internal world-representation based on reinforcement signals.

Benefits of DeSTIN for Perception Processing

DeSTIN’s perceptual network offers multiple key attributes that render it
more powerful than other deep machine learning approaches to sensory data
processing:

1. The belief space that is formed across the layers of the perceptual net-
work inherently captures both spatial and temporal regularities in the
data. Given that many applications require that temporal information
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be discovered for robust inference, this is a key advantage over existing
schemes.

2. Spatiotemporal regularities in the observations are captured in a coherent
manner (rather than being represented via two separate mechanisms)

3. All processing is both top-down and bottom-up, and both hierarchical
and heterarchical, based on nonlinear feedback connections directing ac-
tivity and modulating learning in multiple directions through DeSTIN’s
cortical circuits

4. Support for multi-modal fusing is intrinsic within the framework, yield-
ing a powerful state inference system for real-world, partially-observable
settings.

5. Each node is identical, which makes it easy to map the design to massively
parallel platforms, such as graphics processing units.

Points 2-4 in the above list describe how DeSTIN’s perceptual network
displays its own “cognitive synergy,” in a way that fits naturally into the
overall synergetic dynamics of the overall CogPrime architecture. Using this
cognitive synergy, DeSTIN’s perceptual network addresses a key aspect of
general intelligence: the ability to robustly infer the state of the world, with
which the system interacts, in an accurate and timely manner.

4.3.1.3 DeSTIN for Action and Control

DeSTIN’s perceptual network performs unsupervised world-modeling, which
is a critical aspect of intelligence but of course is not the whole story. DeS-
TIN’s action network, coupled with the perceptual network, orchestrates ac-
tuator commands into complex movements, but also carries out other func-
tions that are more cognitive in nature.

For instance, people learn to distinguish between cups and bowls in part
via hearing other people describe some objects as cups and others as bowls.
To emulate this kind of learning, DeSTIN’s critic network provides positive
or negative reinforcement signals based on whether the action network has
correctly identified a given object as a cup or a bowl, and this signal then
impacts the nodes in the action network. The critic network takes a simple
external “degree or success or failure” signal and turns it into multiple re-
inforcement signals to be fed into the multiple layers of the action network.
The result is that the action network self-organizes so as to include an im-
plicit “cup versus bowl” classifier, whose inputs are the outputs of some of the
nodes in the higher levels of the perceptual network. This classifier belongs in
the action network because it is part of the procedure by which the DeSTIN
system carries out the action of identifying an object as a cup or a bowl.

This example illustrates how the learning of complex concepts and pro-
cedures is divided fluidly between the perceptual network, which builds a
model of the world in an unsupervised way, and the action network, which
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learns how to respond to the world in a manner that will receive positive
reinforcement from the critic network.

4.3.2 Developmental Robotics Architectures

A particular subset of emergentist cognitive architectures are sufficiently
important that we consider them separately here: these are developmental
robotics architectures, focused on controlling robots without significant “hard-
wiring” of knowledge or capabilities, allowing robots to learn (and learn how
to learn etc.) via their engagement with the world. A significant focus is
often placed here on “intrinsic motivation,” wherein the robot explores the
world guided by internal goals like novelty or curiosity, forming a model of
the world as it goes along, based on the modeling requirements implied by
its goals. Many of the foundations of this research area were laid by Juergen
Schmidhuber’s work in the 1990s [Sch91, ?, ?, ?], but now with more pow-
erful computers and robots the area is leading to more impressive practical
demonstrations.

We mention here a handful of the important initiatives in this area:

• Juyang Weng’s Dav [HZT+02] and SAIL [WHZ+00] projects involve
mobile robots that explore their environments autonomously, and learn
to carry out simple tasks by building up their own world-representations
through both unsupervised and teacher-driven processing of high-dimensional
sensorimotor data. The underlying philosophy is based on human child
development [WH06], the knowledge representations involved are neural
network based, and a number of novel learning algorithms are involved,
especially in the area of vision processing.
• FLOWERS [BO09], an initiative at the French research institute IN-

RIA, led by Pierre-Yves Oudeyer, is also based on a principle of trying
to reconstruct the processes of development of the human child’s mind,
spontaneously driven by intrinsic motivations. Kaplan [?] has taken this
project in a directly closely related to the present one via the creation of
a “robot playroom.” Experiential language learning has also been a focus
of the project [?], driven by innovations in speech understanding.
• IM-CLEVER1, a new European project coordinated by Gianluca Bal-

dassarre and conducted by a large team of researchers at different institu-
tions, which is focused on creating software enabling an iCub [MSV+08]
humanoid robot to explore the environment and learn to carry out hu-
man childlike behaviors based on its own intrinsic motivations. As this
project is the closest to our own we will discuss it in more depth below.

Like CogPrime , IM-CLEVER is a humanoid robot intelligence architec-
ture guided by intrinsic motivations, and using a hierarchical architectures for
1 http://im-clever.noze.it/project/project-description

http://im-clever.noze.it/project/project-description
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reinforcement learning and sensory abstraction. IM-CLEVER’s motivational
structure is based in part on Schmidhuber’s information-theoretic model
of curiosity [Sch06]; and CogPrime ’s Psi-based motivational structure uti-
lizes probabilistic measures of novelty, which are mathematically related to
Schmidhuber’s measures. On the other hand, IM-CLEVER’s use of reinforce-
ment learning follows Schmidhuber’s earlier work RL for cognitive robotics
[BS04, BZGS06], Barto’s work on intrinsically motivated reinforcement learn-
ing [?, SBC05], and Lee’s [LMC07b, LMC07a] work on developmental rein-
forcement learning; whereas CogPrime ’s assemblage of learning algorithms is
more diverse, including probabilistic logic, concept blending and other sym-
bolic methods (in the OCP component) as well as more conventional rein-
forcement learning methods (in the DeSTIN component).

In many respects IM-CLEVER bears a moderately strong resemblance
to DeSTIN, whose integration with CogPrime is discussed in Chapter 26
of Part 2 (although IM-CLEVER has much more focus on biological real-
ism than DeSTIN). Apart from numerous technical differences, the really
big distinction between IM-CLEVER and CogPrime is that in the latter we
are proposing to hybridize a hierarchical-abstraction/reinforcement-learning
system (such as DeSTIN) with a more abstract symbolic cognition engine
that explicitly handles probabilistic logic and language. IM-CLEVER lacks
the aspect of hybridization with a symbolic system, taking more of a pure
emergentist strategy. Like DeSTIN considered as a standalone architecture
IM-CLEVER does entail a high degree of cognitive synergy, between compo-
nents dealing with perception, world-modeling, action and motivation. How-
ever, the “emergentist versus hybrid” is a large qualitative difference between
the two approaches.

In all, while we largely agree with the philosophy underlying developmental
robotics, our intuition is that the learning and representational mechanisms
underlying the current systems in this area are probably not powerful enough
to lead to human child level intelligence. We expect that these systems will
develop interesting behaviors but fall short of robust preschool level compe-
tency, especially in areas like language and reasoning where symbolic systems
have typically proved more effective. This intuition is what impels us to pur-
sue a hybrid approach, such as CogPrime . But we do feel that eventually,
once the mechanisms underlying brains are better understood and robotic
bodies are richer in sensation and more adept in actuation, some sort of
emergentist, developmental-robotics approach can be successful at creating
humanlike, human-level AGI.

4.4 Hybrid Cognitive Architectures

In response to the complementary strengths and weaknesses of the symbolic
and emergentist approaches, in recent years a number of researchers have
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turned to integrative, hybrid architectures, which combine subsystems op-
erating according to the two different paradigms. The combination may be
done in many different ways, e.g. connection of a large symbolic subsystem
with a large subsymbolic system, or the creation of a population of small
agents each of which is both symbolic and subsymbolic in nature.

Nils Nilsson expressed the motivation for hybrid AGI systems very clearly
in his article at the AI-50 conference (which celebrated the 50’th anniversary
of the AI field) [?]. While affirming the value of the Physical Symbol System
Hypothesis that underlies symbolic AI, he argues that “the PSSH explicitly
assumes that, whenever necessary, symbols will be grounded in objects in the
environment through the perceptual and effector capabilities of a physical
symbol system.” Thus, he continues,

“I grant the need for non-symbolic processes in some intelligent systems,
but I think they supplement rather than replace symbol systems. I know of no
examples of reasoning, understanding language, or generating complex plans
that are best understood as being performed by systems using exclusively non-
symbolic processes....

AI systems that achieve human-level intelligence will involve a combination
of symbolic and non-symbolic processing.”

A few of the more important hybrid cognitive architectures are:

• CLARION [SZ04] is a hybrid architecture that combines a symbolic
component for reasoning on “explicit knowledge” with a connection-
ist component for managing “implicit knowledge.” Learning of implicit
knowledge may be done via neural net, reinforcement learning, or other
methods. The integration of symbolic and subsymbolic methods is power-
ful, but a great deal is still missing such as episodic knowledge and learn-
ing and creativity. Learning in the symbolic and subsymbolic portions
is carried out separately rather than dynamically coupled, minimizing
“cognitive synergy” effects.
• DUAL [NK04] is the most impressive system to come out of Marvin

Minsky’s “Society of Mind” paradigm. It features a population of agents,
each of which combines symbolic and connectionist representation, self-
organizing to collectively carry out tasks such as perception, analogy and
associative memory. The approach seems innovative and promising, but
it is unclear how the approach will scale to high-dimensional data or
complex reasoning problems due to the lack of a more structured high-
level cognitive architecture.
• LIDA [BF09] is a comprehensive cognitive architecture heavily based on

Bernard Baars’ “Global Workspace Theory”. It articulates a “cognitive
cycle” integrating various forms of memory and intelligent processing in
a single processing loop. The architecture ties in well with both neu-
roscience and cognitive psychology, but it deals most thoroughly with
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“lower level” aspects of intelligence, handling more advanced aspects like
language and reasoning only somewhat sketchily. There is a clear mapping
between LIDA structures and processes and corresponding structures and
processing in OCP; so that it’s only a mild stretch to view CogPrime as
an instantiation of the general LIDA approach that extends further both
in the lower level (to enable robot action and sensation via DeSTIN) and
the higher level (to enable advanced language and reasoning via OCP
mechanisms that have no direct LIDA analogues).

• MicroPsi [Bac09] is an integrative architecture based on Dietrich Dorner’s
Psi model of motivation, emotion and intelligence. It has been tested
on some practical control applications, and also on simulating artificial
agents in a simple virtual world. MicroPsi’s comprehensiveness and basis
in neuroscience and psychology are impressive, but in the current version
of MicroPsi, learning and reasoning are carried out by algorithms that
seem unlikely to scale. OCP incorporates the Psi model for motivation
and emotion, so that MicroPsi and CogPrime may be considered very
closely related systems. But similar to LIDA, MicroPsi currently focuses
on the “lower level” aspects of intelligence, not yet directly handling ad-
vanced processes like language and abstract reasoning.

• PolyScheme [Cas07] integrates multiple methods of representation, rea-
soning and inference schemes for general problem solving. Each Polyscheme
“specialist” models a different aspect of the world using specific represen-
tation and inference techniques, interacting with other specialists and
learning from them. Polyscheme has been used to model infant reasoning
including object identity, events, causality, spatial relations. The integra-
tion of reasoning methods is powerful, but the overall cognitive architec-
ture is simplistic compared to other systems and seems focused more on
problem-solving than on the broader problem of intelligent agent control.

• Shruti [SA93] is a fascinating biologically-inspired model of human re-
flexive inference, represents in connectionist architecture relations, types,
entities and causal rules using focal-clusters. However, much like Hofs-
tadter’s earlier Copycat architecture [Hof96], Shruti seems more interest-
ing as a prototype exploration of ideas than as a practical AGI system; at
least, after a significant time of development it has not proved significant
effective in any applications

• James Albus’s 4D/RCS robotics architecture shares a great deal with
some of the emergentist architectures discussed above, e.g. it has the
same hierarchical pattern recognition structure as DeSTIN and HTM,
and the same three cross-connected hierarchies as DeSTIN, and shares
with the developmental robotics architectures a focus on real-time adap-
tation to the structure of the world. However, 4D/RCS is not foundation-
ally learning-based but relies on hard-wired architecture and algorithms,
intended to mimic the qualitative structure of relevant parts of the brain
(and intended to be augmented by learning, which differentiates it from
emergentist approaches.
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As our own CogPrime approach is a hybrid architecture, it will come as
no surprise that we believe several of the existing hybrid architectures are
fundamentally going in the right direction. However, nearly all the existing
hybrid architectures have severe shortcomings which we feel will prevent them
from achieving robust humanlike AGI.

Many of the hybrid architectures are in essence “multiple, disparate al-
gorithms carrying out separate functions, encapsulated in black boxes and
communicating results with each other.” For instance, PolyScheme, ACT-R
and CLARION all display this “modularity” property to a significant extent.
These architectures lack the rich, real-time interaction between the internal
dynamics of various memory and learning processes that we believe is criti-
cal to achieving humanlike general intelligence using realistic computational
resources. On the other hand, those architectures that feature richer integra-
tion – such as DUAL, Shruti, LIDA and MicroPsi – have the flaw of relying
(at least in their current versions) on overly simplistic learning algorithms,
which drastically limits their scalability.

It does seem plausible to us that some of these hybrid architectures could
be dramatically extended or modified so as to produce humanlike general
intelligence. For instance, one could replace LIDA’s learning algorithms with
others that interrelate with each other in a nuanced synergetic way; or one
could replace MicroPsi’s simple learning and reasoning methods with much
more powerful and scalable ones acting on the same data structures. However,
making these changes would dramatically alter the cognitive architectures in
question on multiple levels.

4.4.1 Neural versus Symbolic; Global versus Local

The “symbolic versus emergentist” dichotomy that we have used to structure
our review of cognitive architectures is not absolute nor fully precisely de-
fined; it is more of a heuristic distinction. In this section, before plunging into
the details of particular hybrid cognitive architectures, we review two other
related dichotomies that are useful for understanding hybrid systems: neural
versus symbolic systems, and globalist versus localist knowledge representa-
tion.

4.4.1.1 Neural-Symbolic Integration

The distinction between neural and symbolic systems has gotten fuzzier and
fuzzier in recent years, with developments such as

• Logic-based systems being used to control embodied agents (hence using
logical terms to deal with data that is apparently perception or actuation-



88 4 Brief Survey of Cognitive Architectures

oriented in nature, rather than being symbolic in the semiotic sense), see
[SS03b] and [GMIH08].

• Hybrid systems combining neural net and logical parts, or using logical
or neural net components interchangeably in the same role [LAon].

• Neural net systems being used for strongly symbolic tasks such as auto-
mated grammar learning ([Elm91], [Elm91], plus more recent work.)

Figure 4.7 presents a schematic diagram of a generic neural-symbolic sys-
tem, generalizing from [BH05], a paper that gives an elegant categorization
of neural-symbolic AI systems. Figure 4.8 depicts several broad categories of
neural-symbolic architecture.

Fig. 4.7 Generic neural-symbolic architecture

Bader and Hitzler categorize neural-symbolic systems according to three
orthogonal axes: interrelation, language and usage. “Language” refers to the
type of language used in the symbolic component, which may be logical,
automata-based, formal grammar-based, etc. “Usage” refers to the purpose
to which the neural-symbolic interrelation is put. We tend to use “learning” as
an encompassing term for all forms of ongoing knowledge-creation, whereas
Bader and Hitzler distinguish learning from reasoning.

Of Bader and Hitzler’s three axes the one that interests us most here is “in-
terrelation”, which refers to the way the neural and symbolic components of
the architecture intersect with each other. They distinguish “hybrid” architec-
tures which contain separate but equal, interacting neural and symbolic com-
ponents; versus “integrative” architectures in which the symbolic component
essentially rides piggyback on the neural component, extracting information
from it and helping it carry out its learning, but playing a clearly derived
and secondary role. We prefer Sun’s (2001) term “monolithic” to Bader and
Hitzler’s “integrative” to describe this type of system, as the latter term seems
best preserved in its broader meaning.



4.4 Hybrid Cognitive Architectures 89

Fig. 4.8 Broad categories of neural-symbolic architecture

Within the scope of hybrid neural-symbolic systems, there is another axis
which Bader and Hitzler do not focus on, because the main interest of their
review is in monolithic systems. We call this axis “interactivity,” and what we
are referring to is the frequency of high-information-content, high-influence
interaction between the neural and symbolic components in the hybrid sys-
tem. In a low-interaction hybrid system, the neural and symbolic components
don’t exchange large amounts of mutually influential information all that fre-
quently, and basically act like independent system components that do their
learning/reasoning/thinking periodically send each other their conclusions. In
some cases, interaction may be asymmetric: one component may frequently
send a lot of influential information to the other, but vice versa. However,
our hypothesis is that the most capable neural-symbolic systems are going to
be the symmetrically highly interactive ones.

In a symmetric high-interaction hybrid neural-symbolic system, the neu-
ral and symbolic components exchange influential information sufficiently
frequently that each one plays a major role in the other one’s learning/rea-
soning/thinking processes. Thus, the learning processes of each component
must be considered as part of the overall dynamic of the hybrid system. The
two components aren’t just feeding their outputs to each other as inputs,
they’re mutually guiding each others’ internal processing.

One can make a speculative argument for the relevance of this kind of
architecture to neuroscience. It seems plausible that this kind of neural-
symbolic system roughly emulates the kind of interaction that exists between
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the brain’s neural subsystems implementing localist symbolic processing, and
the brain’s neural subsystems implementing globalist, classically “connection-
ist” processing. It seems most likely that, in the brain, symbolic functionality
emerges from an underlying layer of neural dynamics. However, it is also
reasonable to conjecture that this symbolic functionality is confined to a
functionally distinct subsystem of the brain, which then interacts with other
subsystems in the brain much in the manner that the symbolic and neural
components of a symmetric high-interaction neural-symbolic system interact.

Neuroscience speculations aside, however, our key conjecture regarding
neural-symbolic integration is that this sort of neural-symbolic system presents
a promising direction for artificial general intelligence research. In Chapter
26 of Volume 2 we will give a more concrete idea of what a symmetric high-
interaction hybrid neural-symbolic architecture might look like, exploring the
potential for this sort of hybridization between the OpenCogPrime AGI ar-
chitecture (which is heavily symbolic in nature) and hierarchical attractor
neural net based architectures such as DeSTIN.

4.5 Globalist versus Localist Representations

Another interesting distinction, related to but different from “symbolic versus
emergentist” and “neural versus symbolic”, may be drawn between cognitive
systems (or subsystems) where memory is essentially global, and those where
memory is essentially local. In this section we will pursue this distinction in
various guises, along with the less familiar notion of glocal memory.

This globalist/localist distinction is most easily conceptualized by refer-
ence to memories corresponding to categories of entities or events in an exter-
nal environment. In an AI system that has an internal notion of “activation”
– i.e. in which some of its internal elements are more active than others, at
any given point in time – one can define the internal image of an external
event or entity as the fuzzy set of internal elements that tend to be active
when that event or entity is presented to the system’s sensors. If one has a
particular set S of external entities or events of interest, then, the degree of
memory localization of such an AI system relative to S may be conceived as
the percentage of the system’s internal elements that have a high degree of
membership in the internal image of an average element of S.

Of course, this characterization of localization has its limitations, such as
the possibility of ambiguity regarding what are the “system elements” of a
given AI system; and the exclusive focus on internal images of external phe-
nomena rather than representation of internal abstract concepts. However,
our goal here is not to formulate an ultimate, rigorous and thorough ontology
of memory systems, but only to pose a “rough and ready” categorization so as
to properly frame our discussion of some specific AGI issues relevant to Cog-
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Prime . Clearly the ideas pursued here will benefit from further theoretical
exploration and elaboration.

In this sense, a Hopfield neural net [Ami89] would be considered “globalist”
since it has a low degree of memory localization (most internal images heavily
involve a large number of system elements); whereas Cyc would be considered
“localist” as it has a very high degree of memory localization (most internal
images are heavily focused on a small set of system elements).

However, although Hopfield nets and Cyc form handy examples, the “glob-
alist vs. localist” distinction as described above is not identical to the “neural
vs. symbolic” distinction. For it is in principle quite possible to create local-
ist systems using formal neurons, and also to create globalist systems using
formal logic. And “globalist-localist” is not quite identical to “symbolic vs
emergentist” either, because the latter is about coordinated system dynamics
and behavior not just about knowledge representation. CogPrime combines
both symbolic and (loosely) neural representations, and also combines global-
ist and localist representations in a way that we will call “glocal” and analyze
more deeply in Chapter 13; but there are many other ways these various prop-
erties could be manifested by AI systems. Rigorously studying the corpus of
existing (or hypothetical!) cognitive architectures using these ideas would be
a large task, which we do not undertake here.

In the next sections we review several hybrid architectures in more de-
tail, focusing most deeply on LIDA and MicroPsi which have been directly
inspirational for CogPrime .

4.5.1 CLARION

Ron Sun’s CLARION architecture (see Figure 4.9) is interesting in its com-
bination of symbolic and neural aspects – a combination that is used in a
sophisticated way to embody the distinction and interaction between implicit
and explicit mental processes. From a CLARION perspective, architectures
like Soar and ACT-R are severely limited in that they deal only with explicit
knowledge and associated learning processes.

CLARION consists of a number of distinct subsystems, each of which
contains a dual representational structure, including a “rules and chunks”
symbolic knowledge store somewhat similar to ACT-R, and a neural net
knowledge store embodying implicit knowledge. The main subsystems are:

• An action-centered subsystem to control actions;
• A non-action-centered subsystem to maintain general knowledge;
• A motivational subsystem to provide underlying motivations for percep-

tion, action, and cognition;
• Ameta-cognitive subsystem to monitor, direct, and modify the operations

of all the other subsystems.
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Fig. 4.9 The CLARION cognitive architecture.

4.5.2 The Society of Mind and the Emotion Machine

In his influential but controversial book The Society of Mind [Min88], Marvin
Minsky described a model of human intelligence as something that is built up
from the interactions of numerous simple agents. He spells out in great detail
how various particular cognitive functions may be achieved via agents and
their interactions. He leaves no room for any central algorithms or structures
of thought, famously arguing: “What magical trick makes us intelligent? The
trick is that there is no trick. The power of intelligence stems from our vast
diversity, not from any single, perfect principle.”

This perspective was extended in the more recent work The Emotion
Machine [Min07], where Minsky argued that emotions are “ways to think”
evolved to handle different “problem types” that exist in the world. The brain
is posited to have rule-based mechanisms (selectors) that turns on emotions
to deal with various problems.

Overall, both of these works serve better as works of speculative cognitive
science than as works of AI or cognitive architecture per se. As neurologist
Richard Restak said in his review of Emotion Machine, “Minsky does a mar-
velous job parsing other complicated mental activities into simpler elements.
... But he is less effective in relating these emotional functions to what’s going
on in the brain.” As Restak did not add, he is also not so effective at relating
these emotional functions to straightforwardly implementable algorithms or
data structures.

Push Singh, in his PhD thesis and followup work [SBC05], did the best
job so far of creating a concrete AI design based on Minsky’s ideas. While
Singh’s system was certainly interesting, it was also noteworthy for its lack
of any learning mechanisms, and its exclusive focus on explicit rather than
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implicit knowledge. Due to Singh’s tragic death, his work was never brought
anywhere near completion. It seems fair to say that there has not yet been a
serious cognitive architecture posed based closely on Minsky’s ideas.

4.5.3 DUAL

The closest thing to a Minsky-ish cognitive architecture is probably DUAL,
which takes the Society of Mind concept and adds to it a number of other
interesting ideas. DUAL integrates symbolic and connectionist approaches at
a deeper level than CLARION, and has been used to model various cognitive
functions such as perception, analogy and judgment. Computations in DUAL
emerge from the self-organized interaction of many micro-agents, each of
which is a hybrid symbolic/connectionist device. Each DUAL agent plays
the role of a neural network node, with an activation level and activation
spreading dynamics; but also plays the role of a symbol, manipulated using
formal rules. The agents exchange messages and activation via links that can
be learned and modified, and they form coalitions which collectively represent
concepts, episodes, and facts.

The structure of the model is sketchily depicted in Figure 4.10, which cov-
ers the application of DUAL to a toy environment called TextWorld. The
visual input corresponding to a stimulus is presented on a two-dimensional
visual array representing the front end of the system. Perceptual primitives
like blobs and terminations are immediately generated by cheap parallel com-
putations. Attention is controlled at each time by an object which allocates
it selectively to some area of the stimulus. A detailed symbolic representa-
tion is constructed for this area which tends to fade away as attention is
withdrawn from it and allocated to another one. Categorization of visual
memory contents takes place by retrieving object and scene categories from
DUAL’s semantic memory and mapping them onto current visual memory
representations.

In principle the DUAL framework seems quite powerful; using the language
of CogPrime , however, it seems to us that the learning mechanisms of DUAL
have not been formulated in such a way as to give rise to powerful, scalable
cognitive synergy. It would likely be possible to create very powerful AGI
systems within DUAL, and perhaps some very CogPrime -like systems as
well. But the systems that have been created or designed for use within
DUAL so far seem not to be that powerful in their potential or scope.
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Fig. 4.10 The three main components of the DUAL model: the retinotopic visual array
(RVA), the visual working memory (VWM) and DUAL’s semantic memory. Attention is
allocated to an area of the visual array by the object in VWM controlling attention, while
scene and object categories corresponding to the contents of VWM are retrieved from the
semantic memory.

4.5.4 4D/RCS

In a rather different direction, James Albus, while at the National Bureau
of Standards, developed a very thorough and impressive architecture for in-
telligent robotics called 4D/RCS, which was implemented in a number of
machines including unmanned automated vehicles. This architecture lacks
critical aspects of intelligence such as learning and creativity, but combines
perception, action, planning and world-modeling in a highly effective and
tightly-integrated fashion.

The architecture has three hierarchies of memory/processing units: one for
perception, one for action and one for modeling and guidance. Each unit has
a certain spatiotemporal scope, and (except for the lowest level) supervenes
over children whose spatiotemporal scope is a subset of its own. The action
hierarchy takes care of decomposing tasks into subtasks; whereas the sen-
sation hierarchy takes care of grouping signals into entities and events. The
modeling/guidance hierarchy mediates interactions between perception and
action based on its understanding of the world and the system’s goals.
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In his book [AM01] Albus describes methods for extending 4D/RCS into
a complete cognitive architecture, but these extensions have not been elabo-
rated in full detail nor implemented.

Fig. 4.11 Albus’s 4D-RCS architecture for a single vehicle

4.5.5 PolyScheme

Nick Cassimatis’s PolyScheme architecture [Cas07] shares with GLAIR the
use of multiple logical reasoning methods on a common knowledge store.
While its underlying ideas are quite general, currently PolyScheme is being
developed in the context of the “object tracking” domain (construed very
broadly). As a logic framework PolyScheme is fairly conventional (unlike
GLAIR or NARS with their novel underlying formalisms), but PolyScheme
has some unique conceptual aspects, for instance its connection with Cassima-
tis’s theory of mind, which holds that the same core set of logical concepts
and relationships underlies both language and physical reasoning [Cas04].
This ties in with the use of a common knowledge store for multiple cognitive
processes; for instance it suggests that

• the same core relationships can be used for physical reasoning and pars-
ing, but that each of these domains may involve some additional relation-
ships.

• language processing may be done via physical-reasoning-based cognitive
processes, plus the additional activity of some language-specific processes
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Fig. 4.12 Albus’s perceptual, motor and modeling hierarchies

4.5.6 Joshua Blue

Sam Adams and his colleagues at IBM have created a cognitive architec-
ture called Joshua Blue [AABL02], which has some significant similarities
to CogPrime . Similar to our current research direction with CogPrime ,
Joshua Blue was created with loose emulation of child cognitive development
in mind; and, also similar to CogPrime , it features a number of cognitive
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processes acting on a common neural-symbolic knowledge store. The specific
cognitive processes involved in Joshua Blue and CogPrime are not particu-
larly similar, however. At time of writing (2009) Joshua Blue is not under
active development and has not been for some time; however, the project
may be reanimated in future.

Joshua Blue’s core knowledge representation is a semantic network of
nodes connected by links along which activation spreads. Although many of
the nodes have specific semantic referents, as in a classical semantic net, the
spread of activation through the network is designed to lead to the emergence
of “assemblies” (which could also be thought of as dynamical attractors) in a
manner more similar to an attractor neural network.

A major difference from typical semantic or neural network models is the
central role that affect plays in the system’s dynamics. The weights of the
links in the knowledge base are adjusted dynamically based on the emotional
context – a very direct way of ensuring that cognitive processes and mental
representations are continuously influenced by affect. Qualitatively, this mim-
ics the way that particular emotions in the human brain correlate with the
dissemination throughout the brain of particular neurotransmitters, which
then affect synaptic activity.

A result of this architecture is that in Joshua Blue, emotion directs at-
tention in a very direct way: affective weighting is important in determining
which associated objects will become part of the focus of attention, or will be
retained from memory. A notable similarity between CogPrime and Joshua
Blue is that in both systems, nodes are assigned two quantitative attention
values, one governing allocation of current system resources (mainly proces-
sor time; this is CogPrime ’s ShortTermImportance) and one governing the
long-term allocation of memory (CogPrime ’s LongTermImportance).

The concrete work done with Joshua Blue involved using it to control a
simple agent in a simulated world, with the goal that via human interaction,
the agent would develop a complex and humanlike emotional and motiva-
tional structure from its simple in-built emotions and drives, and would then
develop complex cognitive capabilities as part of this development process.

4.5.7 LIDA

The LIDA architecture developed by Stan Franklin and his colleagues [BF09]
is based on the concept of the “cognitive cycle” - a notion that is important to
nearly every BICA and also to the brain, but that plays a particularly central
role in LIDA. As Franklin says, “as a matter of principle, every autonomous
agent, be it human, animal, or artificial, must frequently sample (sense) its
environment, process (make sense of) this input, and select an appropriate
response (action). The agent’s “life” can be viewed as consisting of a continual
sequence of iterations of these cognitive cycles. Such cycles constitute the
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indivisible elements of attention, the least sensing and acting to which we
can attend. A cognitive cycle can be thought of as a moment of cognition, a
cognitive “moment.” ”

4.5.8 The Global Workspace

LIDA is heavily based on the “global workspace” concept developed by
Bernard Baars. As this concept is also directly relevant to CogPrime it is
worth briefly describing here.

In essence Baars’ Global Workspace Theory (GWT) is a particular hy-
pothesis about how working memory works and the role it plays in the mind.
Baars conceives working memory as the “inner domain in which we can re-
hearse telephone numbers to ourselves or, more interestingly, in which we
carry on the narrative of our lives. It is usually thought to include inner
speech and visual imagery.” Baars uses the term “consciousness” to refer to
the contents of working memory – a theoretical commitment that is not part
of the CogPrime design. In this section we will use the term “consciousness”
in Baars’ way, but not throughout the rest of the book.

Baars conceives working memory and consciousness in terms of a “theater
metaphor” – according to which, in the “theater of consciousness” a “spot-
light of selective attention” shines a bright spot on stage. The bright spot
reveals the global workspace – the contents of consciousness, which may be
metaphorically considered as a group of actors moving in and out of con-
sciousness, making speeches or interacting with each other. The unconscious
is represented by the audience watching the play ... and there is also a role for
the director (the mind’s executive processes) behind the scenes, along with a
variety of helpers like stage hands, script writers, scene designers, etc.

GWT describes a fleeting memory with a duration of a few seconds. This is
much shorter than the 10-30 seconds of classical working memory – according
to GWT there is a very brief “cognitive cycle” in which the global workspace is
refreshed, and the time period an item remains in working memory generally
spans a large number of these elementary “refresh” actions. GWT contents
are proposed to correspond to what we are conscious of, and are said to be
broadcast to a multitude of unconscious cognitive brain processes. Uncon-
scious processes, operating in parallel, can form coalitions which can act as
input processes to the global workspace. Each unconscious process is viewed
as relating to certain goals, and seeking to get involved with coalitions that
will get enough importance to become part of the global workspace – be-
cause once they’re in the global workspace they’ll be allowed to broadcast
out across the mind as a whole, which include broadcasting to the internal
and external actuators that allow the mind to do things. Getting into the
global workspace is a process’s best shot at achieving its goals.
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Obviously, the theater metaphor used to describe the GWT is evocative
but limited; for instance, the unconscious in the mind does a lot more than
the audience in a theater. The unconscious comes up with complex creative
ideas sometimes, which feed into consciousness – almost as if the audience
is also the scriptwriter. Baars’ theory, with its understanding of unconscious
dynamics in terms of coalition-building, fails to describe the subtle dynam-
ics occurring within the various forms of long-term memory, which result in
subtle nonlinear interactions between long term memory and working mem-
ory. But nevertheless, GWT successfully models a number of characteristics
of consciousness, including its role in handling novel situations, its limited
capacity, its sequential nature, and its ability to trigger a vast range of un-
conscious brain processes. It is the framework on which LIDA’s theory of the
cognitive cycle is built.

4.5.9 The LIDA Cognitive Cycle

The simplest cognitive cycle is that of an animal, which senses the world,
compares sensation to memory, and chooses an action, all in one fluid sub-
jective moment. But the same cognitive cycle structure/process applies to
higher-level cognitive processes as well. The LIDA architecture is based on
the LIDA model of the cognitive cycle, which posits a particular structure
underlying the cognitive cycle that possess the generality to encompass both
simple and complex cognitive moments.

The LIDA cognitive cycle itself is a theoretical construct that can be im-
plemented in many ways, and indeed other BICAs like CogPrime and Psi
also manifest the LIDA cognitive cycle in their dynamics, though utilizing
different particular structures to do so.

Figure 4.13 shows the cycle pictorially, starting in the upper left corner
and proceeding clockwise. At the start of a cycle, the LIDA agent perceives
its current situation and allocates attention differentially to various parts of
it. It then broadcasts information about the most important parts (which
constitute the agent’s consciousness), and this information gets features ex-
tracted from it, when then get passed along to episodic and semantic mem-
ory, that interact in the “global workspace” to create a model fo the agent’s
current situation. This model then, in interaction with procedural memory,
enables the agent to choose an appropriate action and execute it - the critical
“action-selection” phase!
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Fig. 4.13 The LIDA Cognitive Cycle

The LIDA Cognitive Cycle in More Depth

2

We now run through the cognitive cycle in more detail. It begins with
sensory stimuli from the agent’s external internal environment. Low-level
feature detectors in sensory memory begin the process of making sense of the
incoming stimuli. These low-level features are passed to perceptual memory
where higher-level features, objects, categories, relations, actions, situations,
etc. are recognized. These recognized entities, called percepts, are passed to
the workspace, where a model of the agent’s current situation is assembled.

Workspace structures serve as cues to the two forms of episodic memory,
yielding both short and long term remembered local associations. In addition
to the current percept, the workspace contains recent percepts that haven’t
yet decayed away, and the agent’s model of the then-current situation pre-
viously assembled from them. The model of the agent’s current situation is
updated from the previous model using the remaining percepts and associ-
ations. This updating process will typically require looking back to percep-
tual memory and even to sensory memory, to enable the understanding of
relations and situations. This assembled new model constitutes the agent’s

2 This section paraphrases heavily from [Fra06]
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understanding of its current situation within its world. Via constructing the
model, the agent has made sense of the incoming stimuli.

Now attention allocation comes into play, because a real agent lacks the
computational resources to work with all parts of its world-model with maxi-
mal mental focus. Portions of the model compete for attention. These compet-
ing portions take the form of (potentially overlapping) coalitions of structures
comprising parts the model. Once one such coalition wins the competition,
the agent has decided what to focus its attention on.

And now comes the purpose of all this processing: to help the agent to de-
cide what to do next. The winning coalition passes to the global workspace,
the namesake of Global Workspace Theory, from which it is broadcast glob-
ally. Though the contents of this conscious broadcast are available globally,
the primary recipient is procedural memory, which stores templates of possi-
ble actions including their context and possible results.

Procedural memory also stores an activation value for each such tem-
plate – a value that attempts to measure the likelihood of an action taken
within its context producing the expected result. It’s worth noting that
LIDA makes a rather specific assumption here. LIDA’s “activation” values
are like the probabilistic truth values of the implications in CogPrime ’s
Context ∧ Procedure → Goal triples. However, in CogPrime this probability
is not the same as the ShortTermImportance “attention value” associated
with the Implication link representing that implication. Here LIDA merges
together two concepts that in CogPrime are separate.

Templates whose contexts intersect sufficiently with the contents of the
conscious broadcast instantiate copies of themselves with their variables spec-
ified to the current situation. These instantiations are passed to the action
selection mechanism, which chooses a single action from these instantiations
and those remaining from previous cycles. The chosen action then goes to
sensorimotor memory, where it picks up the appropriate algorithm by which
it is then executed. The action so taken affects the environment, and the
cycle is complete.

The LIDA model hypothesizes that all human cognitive processing is via
a continuing iteration of such cognitive cycles. It acknowledges that other
cognitive processes may also occur, refining and building on the knowledge
used in the cognitive cycle (for instance, the cognitive cycle itself doesn’t
mention abstract reasoning or creativity). But the idea is that these other
processes occur in the context of the cognitive cycle, which is the main loop
driving the internal and external activities of the organism.

4.5.9.1 Avoiding Combinatorial Explosion via Adaptive Attention
Allocation

LIDA avoids combinatorial explosions in its inference processes via two meth-
ods, both of which are also important in CogPrime :



102 4 Brief Survey of Cognitive Architectures

• combining reasoning via association with reasoning via deduction
• foundational use of uncertainty in reasoning

One can create an analogy between LIDA’s workspace structures and
codelets and a logic-based architecture’s assertions and functions. How-
ever, LIDA’s codelets only operate on the structures that are active in the
workspace during any given cycle. This includes recent perceptions, their
closest matches in other types of memory, and structures recently created by
other codelets. The results with the highest estimate of success, i.e. activation,
will then be selected.

Uncertainty plays a role in LIDA’s reasoning in several ways, most no-
tably through the base activation of its behavior codelets, which depend on
the model’s estimated probability of the codelet’s success if triggered. LIDA
observes the results of its behaviors and updates the base activation of the
responsible codelets dynamically.

We note that for this kind of uncertain inference/activation interplay to
scale well, some level of cognitive synergy must be present; and based on our
understanding of LIDA it is not clear to us whether the particular inference
and association algorithms used in LIDA possess the requisite synergy.

4.5.9.2 LIDA versus CogPrime

The LIDA cognitive cycle, broadly construed, exists in CogPrime as in other
cognitive architectures. To see how it suffices to map the key LIDA structures
into corresponding CogPrime structures, as is done in Table 4.1. Of course
this table does not cover all CogPrime processes, as LIDA does not constitute
a thorough explanation of CogPrime structure and dynamics. And in most
cases the corresponding CogPrime and LIDA processes don’t work in exactly
the same way; for instance, as noted above, LIDA’s action selection relies
solely on LIDA’s “activation” values, whereas CogPrime ’s action selection
process is more complex, relying on aspects of CogPrime that lack LIDA
analogues.

4.5.10 Psi and MicroPsi

We have saved for last the architecture that has the most in common with
CogPrime : Joscha Bach’s MicroPsi architecture, closely based on Dietrich
Dorner’s Psi theory. CogPrime has borrowed substantially from Psi in its
handling of emotion and motivation; but Psi also has other aspects that
differ considerably from CogPrime . Here we will focus more heavily on the
points of overlap, but will mention the key points of difference as well.

The overall Psi cognitive architecture, which is centered on the Psi model
of the motivational system, is roughly depicted in Figure 4.14.
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LIDA CogPrime

Declarative memory Atomspace
attentional codelets Schema that adjust importance of Atoms explicitly
coalitions maps
global workspace attentional focus
behavior codelets schema
procedural memory (scheme net) procedures in ProcedureRepository; and network of

SchemaNodes in the Atomspace
action selection (behavior net) propagation of STICurrency from goals to actions, and

action selection process
transient episodic memory perceptual atoms entering AT with high STI, which

rapidly decreases in most cases
local workspaces bubbles of interlinked Atoms with moderate impor-

tance, focused on by a subset of MindAgents (defined
in Chapter 19 of Part 2) for a period of time

perceptual associative memory HebbianLinks in the AT
sensory memory spaceserver/timeserver, plus auxiliary stores for other

senses
sensorimotor memory Atoms storing record of actions taken, linked in with

Atoms indexed in sensory memory

Table 4.1 CogPrime Analogues of Key LIDA Features

Psi’s motivational system begins with Demands, which are the basic fac-
tors that motivate the agent. For an animal these would include things like
food, water, sex, novelty, socialization, protection of one’s children, and so
forth. For an intelligent robot they might include things like electrical power,
novelty, certainty, socialization, well-being of others and mental growth.

Psi also specifies two fairly abstract demands and posits them as psycho-
logically fundamental (see Figure 4.15):

• competence, the effectiveness of the agent at fulfilling its Urges
• certainty, the confidence of the agent’s knowledge

Each demand is assumed to come with a certain “target level” or “target
range” (and these may fluctuate over time, or may change as a system matures
and develops). An Urge is said to develop when a demand deviates from its
target range: the urge then seeks to return the demand to its target range. For
instance, in an animal-like agent the demand related to food is more clearly
described as “fullness,” and there is a target range indicating that the agent
is neither too hungry nor too full of food. If the agent’s fullness deviates from
this range, an Urge to return the demand to its target range arises. Similarly,
if an agent’s novelty deviates from its target range, this means the agent’s
life has gotten either too boring or too disconcertingly weird, and the agent
gets an Urge for either more interesting activities (in the case of below-range
novelty) or more familiar ones (in the case of above-range novelty).

There is also a primitive notion of Pleasure (and its opposite, displea-
sure), which is considered as different from the complex emotion of “happi-
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Fig. 4.14 High-Level Architecture of the Psi Model

ness.” Pleasure is understood as associated with Urges: pleasure occurs when
an Urge is (at least partially) satisfied, whereas displeasure occurs when an
urge gets increasingly severe. The degree to which an Urge is satisfied is not
necessarily defined instantaneously; it may be defined, for instance, as a time-
decaying weighted average of the proximity of the demand to its target range
over the recent past.

So, for instance if an agent is bored and gets a lot of novel stimulation,
then it experiences some pleasure. If it’s bored and then the monotony of its
stimulation gets even more extreme, then it experiences some displeasure.

Note that, according to this relatively simplistic approach, any decrease
in the amount of dissatisfaction causes some pleasure; whereas if everything
always continues within its acceptable range, there isn’t any pleasure. This
may seem a little counterintuitive, but it’s important to understand that
these simple definitions of “pleasure” and “displeasure” are not intended to
fully capture the natural language concepts associated with those words.
The natural language terms are used here simply as heuristics to convey the



4.5 Globalist versus Localist Representations 105

general character of the processes involved. These are very low level processes
whose analogues in human experience are largely below the conscious level.

A Goal is considered as a statement that the system may strive to make
true at some future time. A Motive is an (urge, goal) pair, consisting of a
goal whose satisfaction is predicted to imply the satisfaction of some urge. In
fact one may consider Urges as top-level goals, and the agent’s other goals as
their subgoals.

In Psi an agent has one “ruling motive” at any point in time, but this seems
an oversimplification more applicable to simple animals than to human-like
or other advanced AI systems. In general one may think of different motives
having different weights indicating the amount of resources that will be spent
on pursuing them .

Emotions in Psi are considered as complex systemic response-patterns
rather than explicitly constructed entities. An emotion is the set of men-
tal entities activated in response to a certain set of urges. Dorner conceived
theories about how various common emotions emerge from the dynamics of
urges and motives as described in the Psi model. “Intentions” are also con-
sidered as composite entities: an intention at a given point in time consists of
the active motives, together with their related goals, behavior programs and
so forth.

The basic logic of action in Psi is carried out by “triples” that are very
similar to CogPrime ’s Context ∧ Procedure → Goal triples. However, an
important role is played by four modulators that control how the processes
of perception, cognition and action selection are regulated at a given time:

• activation, which determines the degree to which the agent is focused on
rapid, intensive activity versus reflective, cognitive activity
• resolution level, which determines how accurately the system tries to per-

ceive the world
• certainty, which determines how hard the system tries to achieve definite,

certain knowledge
• selection threshold, which determines how willing the system is to change

its choice of which goals to focus on

These modulators characterize the system’s emotional and cognitive state
at a very abstract level; they are not emotions per se, but they have a large
effect on the agent’s emotions. Their intended interaction is depicted in Figure
4.15.

4.5.11 The Emergence of Emotion in the Psi Model

We now briefly review the specifics of how Psi models the emergence of emo-
tion. The basic idea is to define a small set of proto-emotional dimensions
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Fig. 4.15 Primary Interrelationships Between Psi Modulators

in terms of basic Urges and modulators. Then, emotions are identified with
regions in the space spanned by these dimensions.

The simplest approach uses a six-dimensional continuous space:

1. pleasure
2. arousal
3. resolution level
4. selection threshold (i.e. degree of dominance of the leading motive)
5. level of background checks (the rate of the securing behavior)
6. level of goal-directed behavior

Figure 4.16 shows how the latter 5 of these dimensions are derived from
underlying urges and modulators. Note that these dimensions are not orthog-
onal; for instance resolution is mainly inversely related to arousal. Additional
dimensions are also discussed, for instance it is postulated that to deal with
social emotions one may wish to introduce two more demands corresponding
to inner and outer obedience to social norms, and then define dimensions in
terms of these.

Specific emotions are then characterized in terms of these dimensions.
According to [Bac09], for instance, “Anger ... is characterized by high arousal,
low resolution, strong motive dominance, few background checks and strong
goal-orientedness; sadness by low arousal, high resolution, strong dominance,
few background-checks and low goal-orientedness.”

I’m a bit skeptical of the contention that these dimensions fully character-
ize the relevant emotions. Anger for instance seems to have some particular
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Fig. 4.16 Five Proto-Emotional Dimensions Implicit in the Psi Model

characteristics not implied by the above list of dimensional values. The list of
dimensional values associated with anger doesn’t tell us that an angry person
is more likely to punch someone than to bounce up and down, for example.
However, it does seem that the dimensional values associated with an emo-
tion are informative about the emotion, so that positioning an emotion on
the given dimensions tells one a lot.

4.5.12 Knowledge Representation, Action Selection and
Planning in Psi

In addition to the basic motivation/emotion architecture of Psi, which has
been adopted (with some minor changes) for use in CogPrime , Psi has a
number of other aspects that are somewhat different from their CogPrime
analogues.

First of all, on the micro level, Psi represents knowledge using structures
called “quads.” Each quad is a cluster of 5 neurons containing a core neuron,
and four other neurons representing before/after and part-of/has-part rela-
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tionships in regard to that core neuron. Quads are naturally assembled into
spatiotemporal hierarchies, though they are not required to form part of such
a structure.

Psi stores knowledge using quads arranged in three networks, which are
conceptually similar to the networks in Albus’s 4D/RCS and Arel’s DeSTIN
architectures:

• A sensory network, which stores declarative knowledge: schemas repre-
senting images, objects, events and situations as hierarchical structures.

• A motor network, which contains procedural knowledge by way of hier-
archical behavior programs

• A motivational network handling demands

Perception in Psi, which is centered in the sensory network, follows princi-
ples similar to DeSTIN (which are shared also by other systems), for instance
the principle of perception as prediction. Psi’s “HyPercept” mechanism per-
forms hypothesis-based perception: it attempts to predict what is there to
be perceived and then attempts to verify these predictions using sensation
and memory. Furthermore HyPercept is intimately coupled with actions in
the external world, according to the concept of “Neisser’s perceptual cycle,”
the cycle between exploration and representation of reality. Perceptually ac-
quired information is translated into schemas capable of guiding behaviors,
and these are enacted (sometimes affecting the world in significant ways) and
in the process used to guide further perception. Imaginary perceptions are
handled via a “mental stage” analogous to CogPrime ’s internal simulation
world.

Action selection in Psi works based on what are called “triplets,” each of
which consists of

• a sensor schema (pre-conditions, “condition schema”; like CogPrime ’s
“context”)

• a subsequent motor schema (action, effector; like CogPrime ’s “proce-
dure”)

• a final sensor schema (post-conditions, expectations; like an CogPrime
predicate or goal)

What distinguishes these triplets from classic production rules as used
in (say) Soar and ACT-R is that the triplets may be partial (some of the
three elements may be missing) and may be uncertain. However, there seems
no fundamental difference between these triplets and CogPrime ’s concep-
t/procedure/goal triplets, at a high level; the difference lies in the underlying
knowledge representation used for the schemata, and the probabilistic logic
used to represent the implication

The work of figuring out what schema to execute to achieve the chosen
goal in the current context is done in Psi using a combination of processes
called the “Rasmussen ladder” (named after Danish psychologist Jens Ras-
mussen). The Rasmussen ladder describes the organization of action as a
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movement between the stages of skill-based behavior, rule-based behavior
and knowledge-based behavior, as follows:

• If a given task amounts to a trained routine, an automatism or skill is
activated; it can usually be executed without conscious attention and
deliberative control.

• If there is no automatism available, a course of action might be derived
from rules; before a known set of strategies can be applied, the situation
has to be analyzed and the strategies have to be adapted.

• In those cases where the known strategies are not applicable, a way of
combining the available manipulations (operators) into reaching a given
goal has to be explored at first. This stage usually requires a recomposi-
tion of behaviors, that is, a planning process.

The planning algorithm used in the Psi and MicroPsi implementations
is a fairly simple hill-climbing planner. While it’s hypothesized that a more
complex planner may be needed for advanced intelligence, part of the Psi
theory is the hypothesis that most real-life planning an organism needs to do
is fairly simple, once the organism has the right perceptual representations
and goals.

4.5.13 Psi versus CogPrime

On a high level, the similarities between Psi and CogPrime are quite strong:

• interlinked declarative, procedural and intentional knowledge structures,
represented using neural-symbolic methods (though, the knowledge struc-
tures have somewhat different high-level structures and low-level repre-
sentational mechanisms in the two systems)

• perception via prediction and perception/action integration
• action selection via triplets that resemble uncertain, potentially partial

production rules
• similar motivation/emotion framework, since CogPrime incorporates a

variant of Psi for this

On the nitty-gritty level there are many differences between the systems,
but on the big-picture level the main difference lies in the way the cognitive
synergy principle is pursued in the two different approaches. Psi and MicroPsi
rely on very simple learning algorithms that are closely tied to the “quad”
neurosymbolic knowledge representation, and hence interoperate in a fairly
natural way without need for subtle methods of “synergy engineering.” Cog-
Prime uses much more diverse and sophisticated learning algorithms which
thus require more sophisticated methods of interoperation in order to achieve
cognitive synergy.





Chapter 5
A Generic Architecture of Human-Like
Cognition

5.1 Introduction

When writing the first draft of this book, some years ago, we had the idea
to explain CogPrime by aligning its various structures and processes with
the ones in the "standard architecture diagram" of the human mind. After
a bit of investigation, though, we gradually came to the realization that no
such thing existed. There was no standard flowchart or other sort of diagram
explaining the modern consensus on how human thought works. Many such
diagrams existed, but each one seemed to represent some particular focus or
theory, rather than an overall integrative understanding.

Since there are multiple opinions regarding nearly every aspect of human
intelligence, it would be difficult to get two cognitive scientists to fully agree
on every aspect of an overall human cognitive architecture diagram. Prior
attempts to outline detailed mind architectures have tended to follow highly
specific theories of intelligence, and hence have attracted only moderate inter-
est from researchers not adhering to those theories. An example is Minsky’s
work presented in The Emotion Machine [Min07], which arguably does con-
stitute an architecture diagram for the human mind, but which is only loosely
grounded in current empirical knowledge and stands more as a representation
of Minsky’s own intuitive understanding.

But nevertheless, it seemed to us that a reasonable attempt at an integra-
tive, relatively theory-neutral "human cognitive architecture diagram" would
be better than nothing. So naturally, we took it on ourselves to create such
a diagram. This chapter is the result – it draws on the thinking of a number
of cognitive science and AGI researchers, integrating their perspectives in a
coherent, overall architecture diagram for human, and human-like, general in-
telligence. The specific architecture diagram of CogPrime , given in Chapter
6 below, may then be understood as a particular instantiation of this generic
architecture diagram of human-like cognition.
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There is no getting around the fact that, to a certain extent, the dia-
gram presented here reflects our particular understanding of how the mind
works. However, it was intentionally constructed with the goal of not being
just an abstracted version of the CogPrime architecture diagram! It does
not reflect our own idiosyncratic understanding of human intelligence, as
much as a combination of understandings previously presented by multiple
researchers (including ourselves), arranged according to our own taste in a
manner we find conceptually coherent. With this in mind, we call it the "In-
tegrative Human-Like Cognitive Architecture Diagram," or for short "the
integrative diagram." We have made an effort to ensure that as many pieces
of the integrative diagram as possible are well grounded in psychological and
even neuroscientific data, rather than mainly embodying speculative notions;
however, given the current state of knowledge, this could not be done to a
complete extent, and there is still some speculation involved here and there.

While based on understandings of human intelligence, the integrative di-
agram is intended to serve as an architectural outline for human-like general
intelligence more broadly. For example, CogPrime is explicitly not intended
as a precise emulation of human intelligence, and does many things quite
differently than the human mind, yet can still fairly straightforwardly be
mapped into the integrative diagram.

The integrative diagram focuses on structure, but this should not be taken
to represent a valuation of structure over dynamics in our approach to intel-
ligence. Following chapters treat various dynamical phenomena in depth.

5.2 Key Ingredients of the Integrative Human-Like
Cognitive Architecture Diagram

The main ingredients we’ve used in assembling the integrative diagram are
as follows:

• Our own views on the various types of memory critical for human-like
cognition, and the need for tight, "synergetic" interactions between the
cognitive processes focused on these
• Aaron Sloman’s high-level architecture diagram of human intelligence

[Slo01], drawn from his CogAff archtiecture, which is strikes me as a
particularly clear embodiment of "modern common sense" regarding the
overall architecture of the human mind. We have added only a couple
items to Sloman’s high-level diagram, which we felt deserved an explicit
high-level role that he did not give them: emotion, language and rein-
forcement.
• The LIDA architecture diagram presented by Stan Franklin and Bernard

Baars [BF09]. We think LIDA is an excellent model of working memory
and what Sloman calls "reactive processes", with well-researched ground-
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ing in the psychology and neuroscience literature. We have adapted the
LIDA diagram only very slightly for use here, changing some of the ter-
minology on the arrows, and indicating where parts of the LIDA diagram
indicate processes elaborated in more detail elsewhere in the integrative
diagram.

• The architecture diagram of the Psi model of motivated cognition, pre-
sented by Joscha Bach in [Bac09] based on prior work by Dietrich Dorner
[Dör02]. This diagram is presented without significant modification; how-
ever it should be noted that Bach and Dorner present this diagram in the
context of larger and richer cognitive models, the other aspects of which
are not all incorporated in the integrative diagram.

• James Albus’s three-hierarchy model of intelligence [AM01], involving
coupled perception, action and reinforcement hierarchies. Albus’s model,
utilized in the creation of intelligent unmanned automated vehicles, is a
crisp embodiment of many ideas emergent from the field of intelligent
control systems.

• Deep learning networks as a model of perception (and action and rein-
forcement learning), as embodied for example in the work of Itamar Arel
[ARC09] and Jeff Hawkins [HB06]. The integrative diagram adopts this
as the basic model of the perception and action subsystems of human
intelligence. Language understanding and generation are also modeled
according to this paradigm.

One possible negative reaction to the integrative diagram might be to say
that it’s a kind of Frankenstein monster diagram, piecing together aspects
of different theories in a way that violates the theoretical notions underlying
all of them! For example, the integrative diagram takes LIDA as a model of
working memory and reactive processing, but from the papers on LIDA it’s
unclear whether the creators of LIDA construe it more broadly than that.
The deep learning community tends to believe that the architecture of current
deep learning networks, in itself, is close to sufficient for human-level general
intelligence – whereas the integrative diagram appropriates the ideas from
this community mainly for handling perception, action and language. Etc.

On the other hand, in a more positive perspective, one could view the in-
tegrative diagram as consistent with LIDA, but merely providing much more
detail on some of the boxes in the LIDA diagram (e.g. dealing with percep-
tion and long-term memory). And one could view the integrative diagram as
consistent with consistent with the deep learning paradigm – via viewing it,
not as a description of components to be explicitly implemented in an AGI
system, but rather as a description of the key structures and processes that
must emerge in deep learning network, based on its engagement with the
world, in order for it to achieve human-like general intelligence.

Our own view, underlying the creation of the integrative diagram, is that
different communities of cognitive science researchers have focused on differ-
ent aspects of intelligence, and have thus each created models that are more
fully fleshed out in some aspects than others. But these various models all
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link together fairly cleanly, which is not surprising as they are all grounded
in the same data regarding human intelligence. Many judgment calls must be
made in fusing multiple models in the way that the integrative diagram does,
but we feel these can be made without violating the spirit of the component
models. In assembling the integrative diagram, we have made these judgment
calls as best we can, but we’re well aware that different judgments would also
be feasible and defensible. Revisions are likely as time goes on, not only due
to new data about human intelligence but also to evolution of understanding
regarding the best approach to model integration.

Another possible argument against the ideas presented here is that there’s
nothing new – all the ingredients presented have been given before elsewhere.
To this our retort is to quote Pascal: "Let no one say that I have said noth-
ing new ... the arrangement of the subject is new." The various architecture
diagrams incorporated into the integrative diagram are either extremely high
level (Sloman’s diagram) or focus primarily on one aspect of intelligence,
treating the others very concisely by summarizing large networks of distinc-
tion structures and processes in small boxes. The integrative diagram seeks
to cover all aspects of human-like intelligence at a roughly equal granularity
– a different arrangement.

This kind of high-level diagramming exercise is not precise enough, nor
dynamics-focused enough, to serve as a guide for creating human-level or more
advanced AGI. But it can be a useful tool for explaining and interpreting a
concrete AGI design, such as CogPrime .

5.3 An Architecture Diagram for Human-Like General
Intelligence

The integrative diagram is presented here in a series of five Figures.
Figure 5.1 gives a high-level breakdown into components, based on Slo-

man’s high-level cognitive-architectural sketch [Slo01]. This diagram repre-
sents, roughly speaking, "modern common sense" about how a human-like
mind is architected. The separation between structures and processes, em-
bodied in having separate boxes for Working Memory vs. Reactive Processes,
and for Long Term Memory vs. Deliberative Processes, could be viewed as
somewhat artificial, since in the human brain and most AGI architectures,
memory and processing are closely integrated. However, the tradition in cog-
nitive psychology is to separate out Working Memory and Long Term Mem-
ory from the cognitive processes acting thereupon, so we have adhered to
that convention. The other changes from Sloman’s diagram are the explicit
inclusion of language, representing the hypothesis that language processing is
handled in a somewhat special way in the human brain; and the inclusion of
a reinforcement component parallel to the perception and action hierarchies,
as inspired by intelligent control systems theory (e.g. Albus as mentioned
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Fig. 5.1 High-Level Architecture of a Human-Like Mind

above) and deep learning theory. Of course Sloman’s high level diagram in
its original form is intended as inclusive of language and reinforcement, but
we felt it made sense to give them more emphasis.

Figure 5.2, modeling working memory and reactive processing, is essen-
tially the LIDA diagram as given in prior papers by Stan Franklin, Bernard
Baars and colleagues [BF09]. The boxes in the upper left corner of the LIDA
diagram pertain to sensory and motor processing, which LIDA does not han-
dle in detail, and which are modeled more carefully by deep learning theory.
The bottom left corner box refers to action selection, which in the integrative
diagram is modeled in more detail by Psi. The top right corner box refers to
Long-Term Memory, which the integrative diagram models in more detail as
a synergetic multi-memory system (Figure 5.4).

The original LIDA diagram refers to various "codelets", a key concept in
LIDA theory. We have replaced "attention codelets" here with "attention
flow", a more generic term. We suggest one can think of an attention codelet
as a piece of information that it’s currently pertinent to pay attention to a
certain collection of items together.

Figure 5.3, modeling motivation and action selection, is a lightly modified
version of the Psi diagram from Joscha Bach’s book Principles of Synthetic
Intelligence [Bac09]. The main difference from Psi is that in the integrative
diagram the Psi motivated action framework is embedded in a larger, more
complex cognitive model. Psi comes with its own theory of working and long-
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Fig. 5.2 Architecture of Working Memory and Reactive Processing, closely modeled on
the LIDA architecture

term memory, which is related to but different from the one given in the
integrative diagram – it views the multiple memory types distinguished in the
integrative diagram as emergent from a common memory substrate. Psi comes
with its own theory of perception and action, which seems broadly consistent
with the deep learning approach incorporated in the integrative diagram.
Psi’s handling of working memory lacks the detailed, explicit workflow of
LIDA, though it seems broadly conceptually consistent with LIDA.

In Figure 5.3, the box labeled "Other parts of working memory" is la-
beled "Protocol and situation memory" in the original Psi diagram. The
Perception, Action Execution and Action Selection boxes have fairly similar
semantics to the similarly labeled boxes in the LIDA-like Figure 5.2, so that
these diagrams may be viewed as overlapping. The LIDA model doesn’t ex-
plain action selection and planning in as much detail as Psi, so the Psi-like
Figure 5.3 could be viewed as an elaboration of the action-selection portion
of the LIDA-like Figure 5.2. In Psi, reinforcement is considered as part of the
learning process involved in action selection and planning; in Figure 5.3 an
explicit "reinforcement box" has been added to the original Psi diagram, to
emphasize this.

Figure 5.4, modeling long-term memory and deliberative processing, is
derived from our own prior work studying the "cognitive synergy" between
different cognitive processes associated with different types of memory. The
division into types of memory is fairly standard. Declarative, procedural,
episodic and sensorimotor memory are routinely distinguished; we like to
distinguish attentional memory and intentional (goal) memory as well, and
view these as the interface between long-term memory and the mind’s global
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Fig. 5.3 Architecture of Motivated Action

control systems. One focus of our AGI design work has been on designing
learning algorithms, corresponding to these various types of memory, that
interact with each other in a synergetic way [Goe09b], helping each other
to overcome their intrinsic combinatorial explosions. There is significant ev-
idence that these various types of long-term memory are differently imple-
mented in the brain, but the degree of structure and dynamical commonality
underlying these different implementations remains unclear.

Each of these long-term memory types has its analogue in working mem-
ory as well. In some cognitive models, the working memory and long-term
memory versions of a memory type and corresponding cognitive processes,
are basically the same thing. CogPrime is mostly like this –it implements
working memory as a subset of long-term memory consisting of items with
particularly high importance values. The distinctive nature of working mem-
ory is enforced via using slightly different dynamical equations to update the
importance values of items with importance above a certain threshold. On
the other hand, many cognitive models treat working and long term memory
as more distinct than this, and there is evidence for significant functional and
anatomical distinctness in the brain in some cases. So for the purpose of the
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Fig. 5.4 Architecture of Long-Term Memory and Deliberative and Metacognitive Think-
ing

integrative diagram, it seemed best to leave working and long-term memory
subcomponents as parallel but distinguished.

Figure 5.4 also encompasses metacognition, under the hypothesis that in
human beings and human-like minds, metacognitive thinking is carried out
using basically the same processes as plain ordinary deliberative thinking,
perhaps with various tweaks optimizing them for thinking about thinking.
If it turns out that humans have, say, a special kind of reasoning faculty
exclusively for metacognition, then the diagram would need to be modified.
Modeling of self and others is understood to occur via a combination of
metacognition and deliberative thinking, as well as via implicit adaptation
based on reactive processing.

Figure 5.5 models perception, according to the basic ideas of deep learning
theory. Vision and audition are modeled as deep learning hierarchies, with
bottom-up and top-down dynamics. The lower layers in each hierarchy refer
to more localized patterns recognized in, and abstracted from, sensory data.
Output from these hierarchies to the rest of the mind is not just through
the top layers, but via some sort of sampling from various layers, with a
bias toward the top layers. The different hierarchies cross-connect, and are
hence to an extent dynamically coupled together. It is also recognized that
there are some sensory modalities that aren’t strongly hierarchical, e.g touch
and smell (the latter being better modeled as something like an asymmetric
Hopfield net, prone to frequent chaotic dynamics [LLW+05]) – these may
also cross-connect with each other and with the more hierarchical perceptual
subnetworks. Of course the suggested architecture could include any number
of sensory modalities; the diagram is restricted to four just for simplicity.

The self-organized patterns in the upper layers of perceptual hierarchies
may become quite complex and may develop advanced cognitive capabilities
like episodic memory, reasoning, language learning, etc. A pure deep learn-
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Fig. 5.5 Architecture for Multimodal Perception

ing approach to intelligence argues that all the aspects of intelligence emerge
from this kind of dynamics (among perceptual, action and reinforcement hier-
archies). Our own view is that the heterogeneity of human brain architecture
argues against this perspective, and that deep learning systems are probably
better as models of perception and action than of general cognition. How-
ever, the integrative diagram is not committed to our perspective on this – a
deep-learning theorist could accept the integrative diagram, but argue that
all the other portions besides the perceptual, action and reinforcement hier-
archies should be viewed as descriptions of phenomena that emerge in these
hierarchies due to their interaction.

Figure 5.6 shows an action subsystem and a reinforcement subsystem, par-
allel to the perception subsystem. Two action hierarchies, one for an arm and
one for a leg, are shown for concreteness, but of course the architecture is
intended to be extended more broadly. In the hierarchy corresponding to
an arm, for example, the lowest level would contain control patterns corre-
sponding to individual joints, the next level up to groupings of joints (like
fingers), the next level up to larger parts of the arm (hand, elbow). The dif-
ferent hierarchies corresponding to different body parts cross-link, enabling
coordination among body parts; and they also connect at multiple levels to
perception hierarchies, enabling sensorimotor coordination. Finally there is a
module for motor planning, which links tightly with all the motor hierarchies,
and also overlaps with the more cognitive, inferential planning activities of
the mind, in a manner that is modeled different ways by different theorists.
Albus [AM01] has elaborated this kind of hierarchy quite elaborately.
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Fig. 5.6 Architecture for Action and Reinforcement

The reward hierarchy in Figure 5.6 provides reinforcement to actions at
various levels on the hierarchy, and includes dynamics for propagating infor-
mation about reinforcement up and down the hierarchy.

Figure 5.7 deals with language, treating it as a special case of coupled per-
ception and action. The traditional architecture of a computational language
comprehension system is a pipeline [JM09] [Goe10c], which is equivalent to
a hierarchy with the lowest-level linguistic features (e.g. sounds, words) at
the bottom, and the highest level features (semantic abstractions) at the top,
and syntactic features in the middle. Feedback connections enable seman-
tic and cognitive modulation of lower-level linguistic processing. Similarly,
language generation is commonly modeled hierarchically, with the top levels
being the ideas needing verbalization, and the bottom level corresponding to
the actual sentence produced. In generation the primary flow is top-down,
with bottom-up flow providing modulation of abstract concepts by linguistic
surface forms.

So, that’s it – an integrative architecture diagram for human-like general
intelligence, split among 7 different pictures, formed by judiciously merging
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Fig. 5.7 Architecture for Language Processing

together architecture diagrams produced via a number of cognitive theorists
with different, overlapping foci and research paradigms.

Is anything critical left out of the diagram? A quick perusal of the table
of contents of cognitive psychology textbooks suggests to me that if anything
major is left out, it’s also unknown to current cognitive psychology. However,
one could certainly make an argument for explicit inclusion of certain other
aspects of intelligence, that in the integrative diagram are left as implicit
emergent phenomena. For instance, creativity is obviously very important
to intelligence, but, there is no "creativity" box in any of these diagrams –
because in our view, and the view of the cognitive theorists whose work we’ve
directly drawn on here, creativity is best viewed as a process emergent from
other processes that are explicitly included in the diagrams.

5.4 Interpretation and Application of the Integrative
Diagram

A tongue-partly-in-cheek definition of a biological pathway is "a subnetwork
of a biological network, that fits on a single journal page." Cognitive archi-
tecture diagrams have a similar property – they are crude abstractions of
complex structures and dynamics, sculpted in accordance with the size of the
printed page, and the tolerance of the human eye for absorbing diagrams,
and the tolerance of the human author for making diagrams.

However, sometimes constraints – even arbitrary ones – are useful for guid-
ing creative efforts, due to the fact that they force choices. Creating an archi-
tecture for human-like general intelligence that fits in a few (okay, 7) fairly
compact diagrams, requires one to make many choices about what features
and relationships are most essential. In constructing the integrative diagram,
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we have sought to make these choices, not purely according to our own tastes
in cognitive theory or AGI system design, but according to a sort of blend
of the taste and judgment of a number of scientists whose views we respect,
and who seem to have fairly compatible, complementary perspectives.

What is the use of a cognitive architecture diagram like this? It can help to
give newcomers to the field a basic idea about what is known and suspected
about the nature of human-like general intelligence. Also, it could potentially
be used as a tool for cross-correlating different AGI architectures. If every-
one who authored an AGI architecture would explain how their architecture
accounts for each of the structures and processes identified in the integrative
diagram, this would give a means of relating the various AGI designs to each
other.

The integrative diagram could also be used to help connect AGI and cog-
nitive psychology to neuroscience in a more systematic way. In the case of
LIDA, a fairly careful correspondence has been drawn up between the LIDA
diagram nodes and links and various neural structures and processes [FB08].
Similar knowledge exists for the rest of the integrative diagram, though not
organized in such a systematic fashion. A systematic curation of links be-
tween the nodes and links in the integrative diagram and current neuroscience
knowledge, would constitute an interesting first approximation of the holistic
cognitive behavior of the human brain.

Finally (and harking forward to later chapters), the big omission in the
integrative diagram is dynamics. Structure alone will only get you so far, and
you could build an AGI system with reasonable-looking things in each of the
integrative diagram’s boxes, interrelating according to the given arrows, and
yet still fail to make a viable AGI system. Given the limitations the real world
places on computing resources, it’s not enough to have adequate representa-
tions and algorithms in all the boxes, communicating together properly and
capable doing the right things given sufficient resources. Rather, one needs to
have all the boxes filled in properly with structures and processes that, when
they act together using feasible computing resources, will yield appropriately
intelligent behaviors via their cooperative activity. And this has to do with
the complex interactive dynamics of all the processes in all the different boxes
– which is something the integrative diagram doesn’t touch at all. This brings
us again to the network of ideas we’ve discussed under the name of "cognitive
synergy," to be discussed later on.

It might be possible to make something similar to the integrative diagram
on the level of dynamics rather than structures, complementing the struc-
tural integrative diagram given here; but this would seem significantly more
challenging, because we lack a standard set of tools for depicting system dy-
namics. Most cognitive theorists and AGI architects describe their structural
ideas using boxes-and-lines diagrams of some sort, but there is no standard
method for depicting complex system dynamics. So to make a dynamical
analogue to the integrative diagram, via a similar integrative methodology,
one would first need to create appropriate diagrammatic formalizations of the
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dynamics of the various cognitive theories being integrated – a fascinating
but onerous task.

When we first set out to make an integrated cognitive architecture dia-
gram, via combining the complementary insights of various cognitive science
and AGI theorists, we weren’t sure how well it would work. But now we feel
the experiment was generally a success – the resultant integrated architecture
seems sensible and coherent, and reasonably complete. It doesn’t come close
to telling you everything you need to know to understand or implement a
human-like mind – but it tells you the various processes and structures you
need to deal with, and which of their interrelations are most critical. And,
perhaps just as importantly, it gives a concrete way of understanding the
insights of a specific but fairly diverse set of cognitive science and AGI theo-
rists as complementary rather than contradictory. In a CogPrime context, it
provides a way of tying in the specific structures and dynamics involved in
CogPrime , with a more generic portrayal of the structures and dynamics of
human-like intelligence.





Chapter 6
A Brief Overview of CogPrime

6.1 Introduction

Just as there are many different approaches to human flight – airplanes, he-
licopters, balloons, spacecraft, and doubtless many methods no person has
thought of yet – similarly, there are likely many different approaches to ad-
vanced artificial general intelligence. All the different approaches to flight
exploit the same core principles of aerodynamics in different ways; and sim-
ilarly, the various different approaches to AGI will exploit the same core
principles of general intelligence in different ways.

In the chapters leading up to this one, we have taken a fairly broad view of
the project of engineering AGI. We have presented a conception and formal
model of intelligence, and described environments, teaching methodologies
and cognitive and developmental pathways that we believe are collectively
appropriate for the creation of AGI at the human level and ultimately beyond,
and with a roughly human-like bias to its intelligence. These ideas stand alone
and may be compatible with a variety of approaches to engineering AGI
systems. However, they also set the stage for the presentation of CogPrime ,
the particular AGI design on which we are currently working.

The thorough presentation of the CogPrime design is the job of Part 2
of this book – where, not only are the algorithms and structures involved in
CogPrime reviewed in more detailed, but their relationship to the theoretical
ideas underlying CogPrime is pursued more deeply. The job of this chapter is
a smaller one: to give a high-level overview of some key aspects the CogPrime
architecture at a mostly nontechnical level, so as to enable you to approach
Part 2 with a little more idea of what to expect. The remainder of Part
1, following this chapter, will present various theoretical notions enabling
the particulars, intent and consequences of the CogPrime design to be more
thoroughly understood.

125
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6.2 High-Level Architecture of CogPrime

Figures 6.1, 6.2 , 6.4 and 6.5 depict the high-level architecture of CogPrime ,
which involves the use of multiple cognitive processes associated with multi-
ple types of memory to enable an intelligent agent to execute the procedures
that it believes have the best probability of working toward its goals in its
current context. In a robot preschool context, for example, the top-level goals
will be simple things such as pleasing the teacher, learning new information
and skills, and protecting the robot’s body. Figure 6.3 shows part of the archi-
tecture via which cognitive processes interact with each other, via commonly
acting on the AtomSpace knowledge repository.

Comparing these diagrams to the integrative human cognitive architecture
diagram given in Chapter 5, one sees the main difference is that the CogPrime
diagrams commit to specific structures (e.g. knowledge representations) and
processes, whereas the generic integrative architecture diagram refers merely
to types of structures and processes. For instance, the integrative diagram
refers generally to declarative knowledge and learning, whereas the CogPrime
diagram refers to PLN, as a specific system for reasoning and learning about
declarative knowledge. Table 6.1 articulates the key connections between the
components of the CogPrime diagram and those of the integrative diagram,
thus indicating the general cognitive functions instantiated by each of the
CogPrime components.

6.3 Current and Prior Applications of OpenCog

Before digging deeper into the theory, and elaborating some of the dynam-
ics underlying the above diagrams, we pause to briefly discuss some of the
practicalities of work done with the OpenCog system currently implementing
parts of the CogPrime architecture.

OpenCog, the open-source software framework underlying the “OpenCog-
Prime ” (currently partial) implementation of the CogPrime architecture, has
been used for commercial applications in the area of natural language pro-
cessing and data mining; for instance, see [?] where OpenCogPrimes PLN
reasoning and RelEx language processing are combined to do automated bi-
ological hypothesis generation based on information gathered from PubMed
abstracts. Most relevantly to the present work, it has also been used to control
virtual agents in virtual worlds [GEA08].

Prototype work done during 2007-2008 involved using an OpenCog variant
called the OpenPetBrain to control virtual dogs in a virtual world (see Figure
6.6 for a screenshot of an OpenPetBrain-controlled virtual dog). While these
OpenCog virtual dogs did not display intelligence closely comparable to that
of real dogs (or human children), they did demonstrate a variety of interesting
and relevant functionalities including
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Fig. 6.1 High-Level Architecture of CogPrime . This is a conceptual depiction, not
a detailed flowchart (which would be too complex for a single image). Figures 6.2 , 6.4 and
6.5 highlight specific aspects of this diagram.

• learning new behaviors based on imitation and reinforcement
• responding to natural language commands and questions, with appropri-

ate actions and natural language replies
• spontaneous exploration of their world, remembering their experiences

and using them to bias future learning and linguistic interaction

One current OpenCog initiative involves extending the virtual dog work
via using OpenCog to control virtual agents in a game world inspired by
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the game Minecraft. These agents are initially specifically concerned with
achieving goals in a game world via constructing structures with blocks and
carrying out simple English communications. Representative example tasks
would be:

• Learning to build steps or ladders to get desired objects that are high up
• Learning to build a shelter to protect itself from aggressors
• Learning to build structures resembling structures that itÕs shown (even

if the available materials are a bit different)
• Learning how to build bridges to cross chasms

Of course, the AI significance of learning tasks like this all depends on what
kind of feedback the system is given, and how complex its environment is.
It would be relatively simple to make an AI system do things like this in a
trivial and highly specialized way, but that is not the intent of the project Ð
the goal is to have the system learn to carry out tasks like this using general
learning mechanisms and a general cognitive architecture, based on embodied
experience and only scant feedback from human teachers. If successful, this
will provide an outstanding platform for ongoing AGI development, as well
as a visually appealing and immediately meaningful demo for OpenCog.

Specific, particularly simple tasks that are the focus of this project teamÕs
current work at time of writing include:

• Watch another character build steps to reach a high-up object
• Figure out via imitation of this that, in a different context, building steps

to reach a high up object may be a good idea
• Also figure out that, if it wants a certain high-up object but there are

no materials for building steps available, finding some other way to get
elevated will be a good idea that may help it get the object

6.3.1 Transitioning from Virtual Agents to a Physical
Robot

Preliminary experiments have also been conducted using OpenCog to con-
trol a Nao robot as well as a virtual dog [GdG08]. This involves hybridizing
OpenCog with a separate (but interlinked) subsystem handling low-level per-
ception and action. In the experiments done so far, this has been accomplished
in an extremely simplistic way. How to do this right is a topic treated in detail
in Chapter 26 of Part 2.

We suspect that reasonable level of capability will be achievable by simply
interposing DeSTIN (or some other system in its place) as a perception/action
“black box” between OpenCog and a robot. Some preliminary experiments in
this direction have already been carried out, connecting the OpenPetBrain
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to a Nao robot using simpler, less capable software than DeSTIN in the in-
termediary role (off-the-shelf speech-to-text, text-to-speech and visual object
recognition software).

However, we also suspect that to achieve robustly intelligent robotics we
must go beyond this approach, and connect robot perception and actuation
software with OpenCogPrime in a “white box” manner that allows intimate
dynamic feedback between perceptual, motoric, cognitive and linguistic func-
tions. We will achieve this via the creation and real-time utilization of links
between the nodes in CogPrime ’s and DeSTIN’s internal networks (a topic
to be explored in more depth later in this proposal).

6.4 Memory Types and Associated Cognitive Processes
in CogPrime

Now we return to the basic description of the CogPrime approach, turning
to aspects of the relationship between structure and dynamics. Architecture
diagrams are all very well, but, ultimately it is dynamics that makes an ar-
chitecture come alive. Intelligence is all about learning, which is by definition
about change, about dynamical response to the environment and internal
self-organizing dynamics.

CogPrime relies on multiple memory types and, as discussed above, is
founded on the premise that the right course in architecting a pragmatic,
roughly human-like AGI system is to handle different types of memory dif-
ferently in terms of both structure and dynamics.

CogPrime ’s memory types are the declarative, procedural, sensory, and
episodic memory types that are widely discussed in cognitive neuroscience
[TC05], plus attentional memory for allocating system resources generically,
and intentional memory for allocating system resources in a goal-directed way.
Table 6.2 overviews these memory types, giving key references and indicating
the corresponding cognitive processes, and also indicating which of the generic
patternist cognitive dynamics each cognitive process corresponds to (pattern
creation, association, etc.). Figure 6.7 illustrates the relationships between
several of the key memory types in the context of a simple situation involving
an OpenCogPrime -controlled agent in a virtual world.

In terms of patternist cognitive theory, the multiple types of memory in
CogPrime

should be considered as specialized ways of storing particular types of pat-
tern, optimized for spacetime efficiency. The cognitive processes associated
with a certain type of memory deal with creating and recognizing patterns
of the type for which the memory is specialized. While in principle all the
different sorts of pattern could be handled in a unified memory and process-
ing architecture, the sort of specialization used in CogPrime is necessary in
order to achieve acceptable efficient general intelligence using currently avail-
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able computational resources. And as we have argued in detail in Chapter 7,
efficiency is not a side-issue but rather the essence of real-world AGI (since
as Hutter has shown, if one casts efficiency aside, arbitrary levels of general
intelligence can be achieved via a trivially simple program).

The essence of the CogPrime design lies in the way the structures and
processes associated with each type of memory are designed to work together
in a closely coupled way, yielding cooperative intelligence going beyond what
could be achieved by an architecture merely containing the same structures
and processes in separate “black boxes.”

The inter-cognitive-process interactions in OpenCog are designed so that

• conversion between different types of memory is possible, though some-
times computationally costly (e.g. an item of declarative knowledge may
with some effort be interpreted procedurally or episodically, etc.)

• when a learning process concerned centrally with one type of memory
encounters a situation where it learns very slowly, it can often resolve the
issue by converting some of the relevant knowledge into a different type
of memory: i.e. cognitive synergy

6.4.1 Cognitive Synergy in PLN

To put a little meat on the bones of the "cognitive synergy" idea, discussed
repeatedly in prior chapters and more extensively in latter chapters, we now
elaborate a little on the role it plays in the interaction between procedural
and declarative learning.

While MOSES handles much of CogPrime ’s procedural learning, and Cog-
Prime ’s internal simulation engine handles most episodic knowledge, Cog-
Prime ’s primary tool for handling declarative knowledge is an uncertain
inference framework called Probabilistic Logic Networks (PLN). The com-
plexities of PLN are the topic of a lengthy technical monograph [GMIH08],
and are summarized in Chapter 34; here we will eschew most details and
focus mainly on pointing out how PLN seeks to achieve efficient inference
control via integration with other cognitive processes.

As a logic, PLN is broadly integrative: it combines certain term logic rules
with more standard predicate logic rules, and utilizes both fuzzy truth values
and a variant of imprecise probabilities called indefinite probabilities. PLN
mathematics tells how these uncertain truth values propagate through its
logic rules, so that uncertain premises give rise to conclusions with reason-
ably accurately estimated uncertainty values. This careful management of
uncertainty is critical for the application of logical inference in the robotics
context, where most knowledge is abstracted from experience and is hence
highly uncertain.

PLN can be used in either forward or backward chaining mode; and in the
language introduced above, it can be used for either analysis or synthesis.
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As an example, we will consider backward chaining analysis, exemplified by
the problem of a robot preschool-student trying to determine whether a new
playmate “Bob” is likely to be a regular visitor to is preschool or not (evalu-
ating the truth value of the implication Bob→ regular_visitor). The basic
backward chaining process for PLN analysis looks like:

1. Given an implication L ≡ A → B whose truth value must be estimated
(for instance L ≡ Concept∧Procedure→ Goal as discussed above), create
a list (A1, ..., An) of (inference rule, stored knowledge) pairs that might
be used to produce L

2. Using analogical reasoning to prior inferences, assign eachAi a probability
of success

• If some of the Ai are estimated to have reasonable probability of suc-
cess at generating reasonably confident estimates of L’s truth value,
then invoke Step 1 with Ai in place of L (at this point the inference
process becomes recursive)

• If none of the Ai looks sufficiently likely to succeed, then inference
has “gotten stuck” and another cognitive process should be invoked,
e.g.
– Concept creation may be used to infer new concepts related to
A and B, and then Step 1 may be revisited, in the hope of finding
a new, more promising Ai involving one of the new concepts

– MOSES may be invoked with one of several special goals, e.g.
the goal of finding a procedure P so that P (X) predicts whether
X → B. If MOSES finds such a procedure P then this can be
converted to declarative knowledge understandable by PLN and
Step 1 may be revisited....

– Simulations may be run in CogPrime ’s internal simulation en-
gine, so as to observe the truth value of A→ B in the simulations;
and then Step 1 may be revisited....

The combinatorial explosion of inference control is combatted by the capabil-
ity to defer to other cognitive processes when the inference control procedure
is unable to make a sufficiently confident choice of which inference steps to
take next. Note that just as MOSES may rely on PLN to model its evolv-
ing populations of procedures, PLN may rely on MOSES to create complex
knowledge about the terms in its logical implications. This is just one example
of the multiple ways in which the different cognitive processes in CogPrime
interact synergetically; a more thorough treatment of these interactions is
given in [Goe09a].

In the “new playmate” example, the interesting case is where the robot
initially seems not to know enough about Bob to make a solid inferential
judgment (so that none of the Ai seem particularly promising). For instance,
it might carry out a number of possible inferences and not come to any reason-
ably confident conclusion, so that the reason none of the Ai seem promising
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is that all the decent-looking ones have been tried already. So it might then
recourse to MOSES, simulation or concept creation.

For instance, the PLN controller could make a list of everyone who has
been a regular visitor, and everyone who has not been, and pose MOSES the
task of figuring out a procedure for distinguishing these two categories. This
procedure could then used directly to make the needed assessment, or else be
translated into logical rules to be used within PLN inference. For example,
perhaps MOSES would discover that older males wearing ties tend not to
become regular visitors. If the new playmate is an older male wearing a tie,
this is directly applicable. But if the current playmate is wearing a tuxedo,
then PLN may be helpful via reasoning that even though a tuxedo is not a tie,
it’s a similar form of fancy dress – so PLN may extend the MOSES-learned
rule to the present case and infer that the new playmate is not likely to be a
regular visitor.

6.5 Goal-Oriented Dynamics in CogPrime

CogPrime ’s dynamics has both goal-oriented and “spontaneous” aspects;
here for simplicity’s sake we will focus on the goal-oriented ones. The basic
goal-oriented dynamic of the CogPrime system, within which the various
types of memory are utilized, is driven by implications known as “cognitive
schematics”, which take the form

Context ∧ Procedure→ Goal < p >

(summarized C∧P → G). Semi-formally, this implication may be interpreted
to mean: “If the context C appears to hold currently, then if I enact the pro-
cedure P , I can expect to achieve the goal G with certainty p.” Cognitive syn-
ergy means that the learning processes corresponding to the different types
of memory actively cooperate in figuring out what procedures will achieve
the system’s goals in the relevant contexts within its environment.

CogPrime ’s cognitive schematic is significantly similar to production rules
in classical architectures like SOAR and ACT-R (as reviewed in Chapter 4;
however, there are significant differences which are important to CogPrime ’s
functionality. Unlike with classical production rules systems, uncertainty is
core to CogPrime ’s knowledge representation, and each CogPrime cognitive
schematic is labeled with an uncertain truth value, which is critical to its
utilization by CogPrime ’s cognitive processes. Also, in CogPrime , cognitive
schematics may be incomplete, missing one or two of the terms, which may
then be filled in by various cognitive processes (generally in an uncertain
way). A stronger similarity is to MicroPsi’s triplets; the differences in this
case are more low-level and technical and have already been mentioned in
Chapter 4.
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Finally, the biggest difference between CogPrime s cognitive schematics
and production rules or other similar constructs, is that in CogPrime this
level of knowledge representation is not the only important one. CLARION
[SZ04], as reviewed above, is an example of a cognitive architecture that uses
production rules for explicit knowledge representation and then uses a totally
separate subsymbolic knowledge store for implicit knowledge. In CogPrime

both explicit and implicit knowledge are stored in the same graph of nodes
and links, with

• explicit knowledge stored in probabilistic logic based nodes and links such
as cognitive schematics (see Figure 6.8 for a depiction of some explicit
linguistic knowledge.)

• implicit knowledge stored in patterns of activity among these same nodes
and links, defined via the activity of the “importance” values (see Figure
6.9 for an illustrative example thereof) associated with nodes and links
and propagated by the ECAN attention allocation process

The meaning of a cognitive schematic in CogPrime is hence not entirely
encapsulated in its explicit logical form, but resides largely in the activity pat-
terns that ECAN causes its activation or exploration to give rise to. And this
fact is important because the synergetic interactions of system components
are in large part modulated by ECAN activity. Without the real-time com-
bination of explicit and implicit knowledge in the system’s knowledge graph,
the synergetic interaction of different cognitive processes would not work so
smoothly, and the emergence of effective high-level hierarchical, heterarchical
and self structures would be less likely.

6.6 Analysis and Synthesis Processes in CogPrime

We now return to CogPrime ’s fundamental cognitive dynamics, using exam-
ples from the “virtual dog” application to motivate the discussion.

The cognitive schematic Context∧Procedure→ Goal leads to a conceptu-
alization of the internal action of an intelligent system as involving two key
categories of learning:

• Analysis: Estimating the probability p of a posited C ∧P → G relation-
ship

• Synthesis: Filling in one or two of the variables in the cognitive schematic,
given assumptions regarding the remaining variables, and directed by the
goal of maximizing the probability of the cognitive schematic

More specifically, where synthesis is concerned,

• The MOSES probabilistic evolutionary program learning algorithm is
applied to find P , given fixed C and G. Internal simulation is also used,
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for the purpose of creating a simulation embodying C and seeing which
P lead to the simulated achievement of G.

– Example: A virtual dog learns a procedure P to please its owner (the
goal G) in the context C where there is a ball or stick present and the
owner is saying “fetch”.

• PLN inference, acting on declarative knowledge, is used for choosing C,
given fixed P and G (also incorporating sensory and episodic knowledge
as appropriate). Simulation may also be used for this purpose.

– Example: A virtual dog wants to achieve the goal G of getting food,
and it knows that the procedure P of begging has been successful at
this before, so it seeks a context C where begging can be expected to
get it food. Probably this will be a context involving a friendly person.

• PLN-based goal refinement is used to create new subgoals G to sit on the
right hand side of instances of the cognitive schematic.

– Example: Given that a virtual dog has a goal of finding food, it may
learn a subgoal of following other dogs, due to observing that other
dogs are often heading toward their food.

• Concept formation heuristics are used for choosing G and for fueling goal
refinement, but especially for choosing C (via providing new candidates
for C). They are also used for choosing P , via a process called “predicate
schematization” that turns logical predicates (declarative knowledge) into
procedures.

– Example: At first a virtual dog may have a hard time predicting which
other dogs are going to be mean to it. But it may eventually observe
common features among a number of mean dogs, and thus form its
own concept of “pit bull,” without anyone ever teaching it this concept
explicitly.

Where analysis is concerned:

• PLN inference, acting on declarative knowledge, is used for estimating
the probability of the implication in the cognitive schematic, given fixed
C, P and G. Episodic knowledge is also used in this regard, via enabling
estimation of the probability via simple similarity matching against past
experience. Simulation is also used: multiple simulations may be run, and
statistics may be captured therefrom.

– Example: To estimate the degree to which asking Bob for food (the
procedure P is “asking for food”, the context C is “being with Bob”)
will achieve the goal G of getting food, the virtual dog may study
its memory to see what happened on previous occasions where it or
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other dogs asked Bob for food or other things, and then integrate the
evidence from these occasions.

• Procedural knowledge, mapped into declarative knowledge and then
acted on by PLN inference, can be useful for estimating the probabil-
ity of the implication C ∧ P → G, in cases where the probability of
C ∧ P1 → G is known for some P1 related to P .

– Example: knowledge of the internal similarity between the procedure
of asking for food and the procedure of asking for toys, allows the
virtual dog to reason that if asking Bob for toys has been successful,
maybe asking Bob for food will be successful too.

• Inference, acting on declarative or sensory knowledge, can be useful for
estimating the probability of the implication C ∧ P → G, in cases where
the probability of C1 ∧ P → G is known for some C1 related to C.

– Example: if Bob and Jim have a lot of features in common, and Bob
often responds positively when asked for food, then maybe Jim will
too.

• Inference can be used similarly for estimating the probability of the impli-
cation C∧P → G, in cases where the probability of C∧P → G1 is known
for some G1 related to G. Concept creation can be useful indirectly in
calculating these probability estimates, via providing new concepts that
can be used to make useful inference trails more compact and hence easier
to construct.

– Example: The dog may reason that because Jack likes to play, and
Jack and Jill are both children, maybe Jill likes to play too. It can
carry out this reasoning only if its concept creation process has in-
vented the concept of “child” via analysis of observed data.

In these examples we have focused on cases where two terms in the cogni-
tive schematic are fixed and the third must be filled in; but just as often,
the situation is that only one of the terms is fixed. For instance, if we fix
G, sometimes the best approach will be to collectively learn C and P . This
requires either a procedure learning method that works interactively with
a declarative-knowledge-focused concept learning or reasoning method; or a
declarative learning method that works interactively with a procedure learn-
ing method. That is, it requires the sort of cognitive synergy built into the
CogPrime design.



136 6 A Brief Overview of CogPrime

6.7 Conclusion

To thoroughly describe a comprehensive, integrative AGI architecture in a
brief chapter would be an impossible task; all we have attempted here is a
brief overview, to be elaborated on in the 500-odd pages of Part 2 of this book.
We do not expect this brief summary to be enough to convince the skeptical
reader that the approach described here has a reasonable odds of success at
achieving its stated goals, or even of fulfilling the conceptual notions outlined
in the preceding chapters. However, we hope to have given the reader at least
a rough idea of what sort of AGI design we are advocating, and why and in
what sense we believe it can lead to advanced artificial general intelligence. For
more details on the structure, dynamics and underlying concepts of CogPrime
, the reader is encouraged to proceed to Part 2– after completing Part 1, of
course. Please be patient – building a thinking machine is a big topic, and
we have a lot to say about it!
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Fig. 6.2 Key Explicitly Implemented Processes of CogPrime . The large box at
the center is the Atomspace, the system’s central store of various forms of (long-term and
working) memory, which contains a weighted labeled hypergraph whose nodes and links
are "Atoms" of various sorts. The hexagonal boxes at the bottom denote various hierar-
chies devoted to recognition and generation of patterns: perception, action and linguistic.
Intervening between these recognition/generation hierarchies and the Atomspace, we have
a pattern mining/imprinting component (that recognizes patterns in the hierarchies and
passes them to the Atomspace; and imprints patterns from the Atomspace on the hier-
archies); and also OpenPsi, a special dynamical framework for choosing actions based on
motivations. Above the Atomspace we have a host of cognitive processes, which act on
the Atomspace, some continually and some only as context dictates, carrying out various
sorts of learning and reasoning (pertinent to various sorts of memory) that help the system
fulfill its goal sand motivations.
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Fig. 6.3 MindAgents and AtomSpace in OpenCog. This is a conceptual depiction of
one way cognitive processes may interact in OpenCog – they may be wrapped in MindAgent
objects, which interact via cooperatively acting on the AtomSpace.
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Fig. 6.4 Links Between Cognitive Processes and the Atomspace. The cognitive
processes depicted all act on the Atomspace, in the sense that they operate by observing
certain Atoms in the Atomspace and then modifying (or in rare cases deleting) them,
and potentially adding new Atoms as well. Atoms represent all forms of knowledge, but
some forms of knowledge are additionally represented by external data stores connected to
the Atomspace, such as the Procedure Repository; these are also shown as linked to the
Atomspace.
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Fig. 6.5 Invocation of Atom Operations By Cognitive Processes. This diagram
depicts some of the Atom modification, creation and deletion operations carried out by the
abstract cognitive processes in the CogPrime architecture.



6.7 Conclusion 141

CogPrime
Component

Int. Diag.
Sub-Diagram Int. Diag. Component

Procedure Repository Long-Term Memory Procedural
Procedure Repository Working Memory Active Procedural
Associative Episodic

Memory Long-Term Memory Episodic

Associative Episodic
Memory Working Memory Transient Episodic

Backup Store Long-Term Memory
no correlate: a function not

necessarily possessed by the human
mind

Spacetime Server Long-Term Memory Declarative and Sensorimotor

Dimensional
Embedding Space

no clear correlate: a
tool for helping

multiple types of LTM
Dimensional

Embedding Agent no clear correlate

Blending Long-Term and
Working Memory Concept Formation

Clustering Long-Term and
Working Memory Concept Formation

PLN Probabilistic
Inference

Long-Term and
Working Memory

Reasoning and Plan
Learning/Optimization

MOSES / Hillclimbing Long-Term and
Working Memory Procedure Learning

World Simulation Long-Term and
Working Memory Simulation

Episodic Encoding /
Recall Long-Term g Memory Story-telling

Episodic Encoding /
Recall Working Memory Consolidation

Forgetting / Freezing
/ Defrosting

Long-Term and
Working Memory

no correlate: a function not
necessarily possessed by the human

mind

Map Formation Long-Term Memory Concept Formation and Pattern
Mining

Attention Allocation Long-Term and
Working Memory Hebbian/Attentional Learning

Attention Allocation High-Level Mind
Architecture Reinforcement

Attention Allocation Working Memory Perceptual Associative Memory and
Local Association

AtomSpace High-Level Mind
Architecture

no clear correlate: a general tool for
representing memory including

long-term and working, plus some of
perception and action

AtomSpace Working Memory
Global Workspace (the high-STI
portion of AtomSpace) & other

Workspaces

Declarative Atoms Long-Term and
Working Memory Declarative and Sensorimotor

Procedure Atoms Long-Term and
Working Memory Procedural

Hebbian Atoms Long-Term and
Working Memory Attentional

Goal Atoms Long-Term and
Working Memory Intentional

Feeling Atoms Long-Term and
Working Memory

spanning Declarative, Intentional and
Sensorimotor

OpenPsi High-Level Mind
Architecture Motivation / Action Selection

OpenPsi Working Memory Action Selection

Pattern Miner High-Level Mind
Architecture

arrows between perception and
working and long-term memory

Pattern Miner Working Memory
arrows between sensory memory and
perceptual associative and transient

episodic memory

Pattern Imprinter Working Memory

arrows between action selection and
sensorimotor memory, and between
the latter and perception/action

subsystems

Pattern Imprinter High-Level Mind
Architecture

arrows pointing to action subsystem
from working and long-term memories

Perception Hierarchy High-Level Mind
Architecture Perception Subsystems

Perception Hierarchy Working Memory Perception/Action Subsystems and
Sensory and Sensorimotor Memory

Language
Comprehension

Hierarchy
Language Comprehension Hierarchy

Language Generation
Hierarchy Language Generation Hierarchy

Reinforcement
Hierarchy

High-Level Mind
Architecture Reinforcement

Reinforcement
Hierarchy Action Reinforcement Hierarchy

Action Hierarchy Action Collection of specialized action
hierarchies

Table 6.1 Connections Between the CogPrime Architecture Diagram and the Integrative
Architecture Diagram. There is a row for each component in the CogPrime architecture
diagram, which tells the corresponding sub-diagrams and components of the integrative
architecture diagram. Note that the description "Long Term and Working Memory" in-
dicates occurrence in two separate sub diagrams of the integrative diagram, "Long Term
Memory" and "Working Memory."
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Fig. 6.6 Screenshot of OpenCog-controlled virtual dog

Memory Type Specific Cognitive Processes General Cognitive
Functions

Declarative
Probabilistic Logic Networks (PLN)

[GMIH08]; conceptual blending
[FT02]

pattern creation

Procedural
MOSES (a novel probabilistic
evolutionary program learning

algorithm) [Loo06]
pattern creation

Episodic internal simulation engine [GEA08] association, pattern
creation

Attentional Economic Attention Networks
(ECAN) [GPI+10]

association, credit
assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured
according to MicroPsi [Bac09]

credit assignment,
pattern creation

Sensory In CogBot, this will be supplied by
the DeSTIN component

association, attention
allocation, pattern
creation, credit
assignment

Table 6.2 Memory Types and Cognitive Processes in CogPrime . The third column in-
dicates the general cognitive function that each specific cognitive process carries out, ac-
cording to the patternist theory of cognition.
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Fig. 6.7 Relationship Between Multiple Memory Types. The bottom left corner
shows a program tree, constituting procedural knowledge. The upper left shows declarative
nodes and links in the Atomspace. The upper right corner shows a relevant system goal. The
lower right corner contains an image symbolizing relevant episodic and sensory knowledge.
All the various types of knowledge link to each other and can be approximatively converted
to each other.
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Fig. 6.8 Example of Explicit Knowledge in the Atomspace. One simple example
of explicitly represented knowledge in the Atomspace is linguistic knowledge, such as words
and the concepts directly linked to them. Not all of a CogPrime system’s concepts correlate
to words, but some do.
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Fig. 6.9 Example of Implicit Knowledge in the Atomspace. A simple example of
implicit knowledge in the Atomspace. The "chicken" and "food" concepts are represented
by "maps" of ConceptNodes interconnected by HebbianLinks, where the latter tend to
form between ConceptNodes that are often simultaneously important. The bundle of links
between nodes in the chicken map and nodes in the food map, represents an "implicit, emer-
gent link" between the two concept maps. This diagram also illustrates "glocal" knowledge
representation, in that the chicken and food concepts are each represented by individual
nodes, but also by distributed maps. The "chicken" ConceptNode, when important, will
tend to make the rest of the map important – and vice versa. Part of the overall chicken
concept possessed by the system is expressed by the explicit links coming out of the chicken
ConceptNode, and part is represented only by the distributed chicken map as a whole.
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Chapter 7
A Formal Model of Intelligent Agents

7.1 Introduction

The artificial intelligence field is full of sophisticated mathematical models
and equations, but most of these are highly specialized in nature – e.g. for-
malizations of particular logic systems, analyzes of the dynamics of specific
sorts of neural nets, etc. On the other hand, a number of highly general mod-
els of intelligent systems also exist, including Hutter’s recent formalization of
universal intelligence [Hut05] and a large body of work in the disciplines of
systems science and cybernetics – but these have tended not to yield many
specific lessons useful for engineering AGI systems, serving more as concep-
tual models in mathematical form.

It would be fantastic to have a mathematical theory bridging these ex-
tremes – a real "general theory of general intelligence," allowing the derivation
and analysis of specific structures and processes playing a role in practical
AGI systems, from broad mathematical models of general intelligence in var-
ious situations and under various constraints. However, the path to such a
theory is not entirely clear at present; and, as valuable as such a theory would
be, we don’t believe such a thing to be necessary for creating advanced AGI.
One possibility is that the development of such a theory will occur contem-
poraneously and synergetically with the advent of practical AGI technology.

Lacking a mature, pragmatically useful "general theory of general intelli-
gence," however, we have still found it valuable to articulate certain theoret-
ical ideas about the nature of general intelligence, with a level of rigor a bit
greater than the wholly informal discussions of the previous chapters. The
chapters in this section of the book articulate some ideas we have developed
in pursuit of a general theory of general intelligence; ideas that, even in their
current relatively undeveloped form, have been very helpful in guiding our
concrete work on the CogPrime design.

This chapter presents a more formal version of the notion of intelligence
as “achieving complex goals in complex environments,” based on a formal

149
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model of intelligent agents. These formalizations of agents and intelligence
will be used in later chapters as a foundation for formalizing other concepts
like inference and cognitive synergy. Chapters 8 and 9 pursue the notion of
cognitive synergy a little more thoroughly than was done in previous chapters.
Chapter 10 sketches a general theory of general intelligence using tools from
category theory – not bringing it to the level where one can use it to derive
specific AGI algorithms and structures; but still, presenting ideas that will be
helpful in interpreting and explaining specific aspects of the CogPrime design
in Part 2. Finally, Appendix B explores an additional theoretical direction, in
which the mind of an intelligent system is viewed in terms of certain curved
spaces – a novel way of thinking about the dynamics of general intelligence,
which has been useful in guiding development of the ECAN component of
CogPrime , and we expect will have more general value in future.

Despite the intermittent use of mathematical formalism, the ideas pre-
sented in this section are fairly speculative, and we do not propose them as
constituting a well-demonstrated theory of general intelligence. Rather, we
propose them as an interesting way of thinking about general intelligence,
which appears to be consistent with available data, and which has proved
inspirational to us in conceiving concrete structures and dynamics for AGI,
as manifested for example in the CogPrime design. Understanding the way
of thinking described in these chapters is valuable for understanding why the
CogPrime design is the way it is, and for relating CogPrime to other practical
and intellectual systems, and extending and improving CogPrime .

7.2 A Simple Formal Agents Model (SRAM)

We now present a formalization of the concept of “intelligent agents” – be-
ginning with a formalization of “agents” in general.

Drawing on [Hut05, LH07], we consider a class of active agents which
observe and explore their environment and also take actions in it, which
may affect the environment. Formally, the agent sends information to the
environment by sending symbols from some finite alphabet called the action
space Σ; and the environment sends signals to the agent with symbols from an
alphabet called the perception space, denoted P. Agents can also experience
rewards, which lie in the reward space, denoted R, which for each agent is a
subset of the rational unit interval.

The agent and environment are understood to take turns sending signals
back and forth, yielding a history of actions, observations and rewards, which
may be denoted

a1o1r1a2o2r2...

or else
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a1x1a2x2...

if x is introduced as a single symbol to denote both an observation and
a reward. The complete interaction history up to and including cycle t is
denoted ax1:t; and the history before cycle t is denoted ax<t = ax1:t−1.

The agent is represented as a function π which takes the current history
as input, and produces an action as output. Agents need not be determin-
istic, an agent may for instance induce a probability distribution over the
space of possible actions, conditioned on the current history. In this case we
may characterize the agent by a probability distribution π(at|ax<t). Sim-
ilarly, the environment may be characterized by a probability distribution
µ(xk|ax<kak). Taken together, the distributions π and µ define a probability
measure over the space of interaction sequences.

Next, we extend this model in a few ways, intended to make it better
reflect the realities of intelligent computational agents. The first modification
is to allow agents to maintain memories (of finite size), via adding memory
actions drawn from a set M into the history of actions, observations and
rewards. The second modification is to introduce the notion of goals.

7.2.1 Goals

We define goals as mathematical functions (to be specified below) associated
with symbols drawn from the alphabet G; and we consider the environment
as sending goal-symbols to the agent along with regular observation-symbols.
(Note however that the presentation of a goal-symbol to an agent does not
necessarily entail the explicit communication to the agent of the contents of
the goal function. This must be provided by other, correlated observations.)
We also introduce a conditional distribution γ(g, µ) that gives the weight of
a goal g in the context of a particular environment µ.

In this extended framework, an interaction sequence looks like

a1o1g1r1a2o2g2r2...

or else

a1y1a2y2...

where gi are symbols corresponding to goals, and y is introduced as a single
symbol to denote the combination of an observation, a reward and a goal.

Each goal function maps each finite interaction sequence Ig,s,t = ays:t with
gs to gt corresponding to g, into a value rg(Ig,s,t) ∈ [0, 1] indicating the value
or “raw reward” of achieving the goal during that interaction sequence. The
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total reward rt obtained by the agent is the sum of the raw rewards obtained
at time t from all goals whose symbols occur in the agent’s history before t.

This formalism of goal-seeking agents allows us to formalize the notion
of intelligence as “achieving complex goals in complex environments” – a
direction that is pursued in Section 7.3 below.

7.2.2 Memory Stores

As well as goals, we introduce into the model a long-term memory and a
workspace. Regarding long-term memory we assume the agent’s memory
consists of multiple memory stores corresponding to various types of mem-
ory, e.g.: procedural (KProc), declarative (KDec), episodic (KEp), attentional
(KAtt) and Intentional (KInt). In Appendix ?? a category-theoretic model of
these memory stores is introduced; but for the moment, we need only assume
the existence of

• an injective mapping ΘEp : KEp → H where H is the space of fuzzy sets
of subhistories (subhistories being “episodes” in this formalism)

• an injective mapping ΘProc : KProc ×M×W → A, whereM is the set
of memory states, W is the set of (observation, goal, reward) triples, and
A is the set of actions (this maps each procedure object into a function
that enacts actions in the environment or memory, based on the memory
state and current world-state)

• an injective mapping ΘDec : KDec → L, where L is the set of expressions
in some formal language (which may for example be a logical language),
which possesses words corresponding to the observations, goals, reward
values and actions in our agent formalism

• an injective mapping ΘInt : KInt → G, where G is the space of goals
mentioned above

• an injective mapping ΘAtt : KInt ∪KEp ∪KProc ∪KEc → V, where V is
the space of “attention values” (structures that gauge the importance of
paying attention to an item of knowledge over various time-scales or in
various contexts)

We also assume that the vocabulary of actions contains memory-actions
corresponding to the operations of inserting the current observation, goal,
reward or action into the episodic and/or declarative memory store. And, we
assume that the activity of the agent, at each time-step, includes the enaction
of one or more of the procedures in the procedural memory store. If several
procedures are enacted at once, then the end result is still formally modeled
as a single action a = a[1] ∗ ... ∗ a[k] where ∗ is an operator on action-space
that composes multiple actions into a single one.

Finally, we assume that, at each time-step, the agent may carry out an
external action ai on the environment, a memory action mi on the (long-
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term) memory, and an action bi on its internal workspace. Among the
actions that can be carried out on the workspace, are the ability to insert
or delete observations, goals, actions or reward-values from the workspace.
The workspace can be thought of as a sort of short-term memory or else in
terms of Baars’ “global workspace” concept mentioned above. The workspace
provides a medium for interaction between the different memory types.

The workspace provides a mechanism by which declarative, episodic and
procedural memory may interact with each other. For this mechanism to
work, we must assume that there are actions corresponding to query oper-
ations that allow procedures to look into declarative and episodic memory.
The nature of these query operations will vary among different agents, but
we can assume that in general an agent has

• one or more procedures QDec(x) serving as declarative queries, meaning
that when QDec is enacted on some x that is an ordered set of items
in the workspace, the result is that one or more items from declarative
memory is entered into the workspace
• one or more procedures QEp(x) serving as episodic queries, meaning that

when QEp is enacted on some x that is an ordered set of items in the
workspace, the result is that one or more items from episodic memory is
entered into the workspace

One additional aspect of CogPrime ’s knowledge representation that is
important to PLN is the attachment of nonnegative weights ni corresponding
to elementary observations oi. These weights denote the amount of evidence
contained in the observation. For instance, in the context of a robotic agent,
one could use these values to encode the assumption that an elementary
visual observation has more evidential value than an elementary olfactory
observation.

We now have a model of an agent with long-term memory comprising pro-
cedural, declarative and episodic aspects, an internal cognitive workspace,
and the capability to use procedures to drive actions based on items in mem-
ory and the workspace, and to move items between long-term memory and
the workspace.

7.2.2.1 Modeling CogPrime

Of course, this formal model may be realized differently in various real-world
AGI systems. In CogPrime we have

• a weighted, labeled hypergraph structure called the AtomSpace used to
store declarative knowledge (this is the representation used by PLN)

• a collection of programs in a LISP-like language called Combo, stored in a
ProcedureRepository data structure, used to store procedural knowledge

• a collection of partial “movies” of the system’s experience, played back
using an internal simulation engine, used to store episodic knowledge
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• AttentionValue objects, minimally containing ShortTermImportance (STI)
and LongTermImportance (LTI) values used to store attentional knowl-
edge

• Goal Atoms for intentional knowledge, stored in the same format as
declarative knowledge but whose dynamics involve a special form of ar-
tificial currency that is used to govern action selection

The AtomSpace is the central repository and procedures and episodes are
linked to Atoms in the AtomSpace which serve as their symbolic represen-
tatives. The “workspace” in CogPrime exists only virtually: each item in the
AtomSpace has a “short term importance” (STI) level, and the workspace
consists of those items in the AtomSpace with highest STI, and those pro-
cedures and episodes whose symbolic representatives in the AtomSpace have
highest STI.

On the other hand, as we saw above, the LIDA architecture uses sep-
arate representations for procedural, declarative and episodic memory, but
also has an explicit workspace component, where the most currently contex-
tually relevant items from all different types of memory are gathered and
used together in the course of actions. However, compared to CogPrime , it
lacks comparably fine-grained methods for integrating the different types of
memory.

Systematically mapping various existing cognitive architectures, or human
brain structure, into this formal agents model would be a substantial though
quite plausible exercise; but we will not undertake this here.

7.2.3 The Cognitive Schematic

Next we introduce an additional specialization into SRAM: the cognitive
schematic, written informally as

Context & Procedure→ Goal

and considered more formally as holds(C) & ex(P ) → hi where h may be
an externally specified goal gi or an internally specified goal h derived as a
(possibly uncertain) subgoal of one of more gi; C is a piece of declarative
or episodic knowledge and P is a procedure that the agent can internally
execute to generate a series of actions. ex(P ) is the proposition that P is
successfully executed. If C is episodic then holds(C) may be interpreted as
the current context (i.e. some finite slice of the agent’s history) being similar
to C; if C is declarative then holds(C) may be interpreted as the truth value
of C evaluated at the current context. Note that C may refer to some part
of the world quite distant from the agent’s current sensory observations; but
it may still be formally evaluated based on the agent’s history.
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In the standard CogPrime notation as introduced formally in Chapter 20
(where indentation has function-argument syntax similar to that in Python,
and relationship types are prepended to their relata without parentheses),
for the case C is declarative this would be written as

PredictiveExtensionalImplication
AND

C
Execution P

G

and in the case C is episodic one replaces C in this formula with a predicate
expressing C’s similarity to the current context. The semantics of the Predic-
tiveExtensionalInheritance relation will be discussed below. The Execution
relation simply denotes the proposition that procedure P has been executed.

For the class of SRAM agents who (like CogPrime ) use the cognitive
schematic to govern many or all of their actions, a significant fragment of
agent intelligence boils down to estimating the truth values of PredictiveEx-
tensionalImplication relationships. Action selection procedures can be used,
which choose procedures to enact based on which ones are judged most likely
to achieve the current external goals gi in the current context. Rather than
enter into the particularities of action selection or other cognitive architec-
ture issues, we will restrict ourselves to PLN inference, which in the context
of the present agent model is a method for handling PredictiveImplication in
the cognitive schematic.

Consider an agent in a virtual world, one of whose external goals is to
please its owner. Suppose its owner has asked it to find a cat, and it can
translate this into a subgoal “find cat.” If the agent operates according to the
cognitive schematic, it will search for P so that

PredictiveExtensionalImplication
AND

C
Execution P

Evaluation
found
cat

holds.
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7.3 Toward a Formal Characterization of Real-World
General Intelligence

Having defined what we mean by an agent acting in an environment, we now
turn to the question of what it means for such an agent to be “intelligent.”

As we have reviewed extensively in Chapter 2 above, “intelligence” is a
commonsense, “folk psychology” concept, with all the imprecision and con-
textuality that this generally entails. One cannot expect any compact, elegant
formalism to capture all of its meanings. Even in the psychology and AI re-
search communities, divergent definitions abound; Legg and Hutter [LH07]
lists and organizes 70+ definitions from the literature.

Practical study of natural intelligence in humans and other organisms, and
practical design, creation and instruction of artificial intelligences, can pro-
ceed perfectly well without an agreed-upon formalization of the “intelligence”
concept. Some researchers may conceive their own formalisms to guide their
own work, others may feel no need for any such thing.

But nevertheless, it is of interest to seek formalizations of the concept of
intelligence, which capture useful fragments of the commonsense notion of in-
telligence, and provide guidance for practical research in cognitive science and
AI. A number of such formalizations have been given in recent decades, with
varying degrees of mathematical rigor. Perhaps the most carefully-wrought
formalization of intelligence so far is the theory of “universal intelligence”
presented by Shane Legg and Marcus Hutter in [?], which draws on ideas
from algorithmic information theory.

Universal intelligence captures a certain aspect of the “intelligence” concept
very well, and has the advantage of connecting closely with ideas in learning
theory, decision theory and computation theory. However, the kind of gen-
eral intelligence it captures best, is a kind which is in a sense more general in
scope than human-style general intelligence. Universal intelligence does cap-
ture the sense in which humans are more intelligent than worms, which are
more intelligent than rocks; and the sense in which theoretical AGI systems
like Hutter’s AIXI or AIXItl [Hut05] would be much more intelligent than
humans. But it misses essential aspects of the intelligence concept as it is
used in the context of intelligent natural systems like humans or real-world
AI systems.

Our main goal in this section is to present variants of universal intelli-
gence that better capture the notion of intelligence as it is typically under-
stood in the context of real-world natural and artificial systems. The first
variant we describe is pragmatic general intelligence, which is inspired by
the intuitive notion of intelligence as “the ability to achieve complex goals
in complex environments,” given in [?]. After assuming a prior distribution
over the space of possible environments, and one over the space of possible
goals, one then defines the pragmatic general intelligence as the expected level
of goal-achievement of a system relative to these distributions. Rather than



7.3 Toward a Formal Characterization of Real-World General Intelligence 157

measuring truly broad mathematical general intelligence, pragmatic general
intelligence measures intelligence in a way that’s specifically biased toward
certain environments and goals.

Another variant definition is then presented, the efficient pragmatic general
intelligence, which takes into account the amount of computational resources
utilized by the system in achieving its intelligence. Some argue that making
efficient use of available resources is a defining characteristic of intelligence,
see e.g. [Wan06].

A critical question left open is the characterization of the prior distribu-
tions corresponding to everyday human reality; we give a semi-formal sketch
of some ideas on this Chapter 9 below, where we present the notion of a
“communication prior,” which assigns a probability weight to a situation S
based on the ease with which one agent in a society can communicate S to
another agent in that society, using multimodal communication (including
verbalization, demonstration, dramatic and pictorial depiction, etc.).

Finally, we present a formal measure of the “generality” of an intelligence,
which precisiates the informal distinction between “general AI” and “narrow
AI.”

7.3.1 Biased Universal Intelligence

To define universal intelligence, Legg and Hutter consider the class of environ-
ments that are reward-summable, meaning that the total amount of reward
they return to any agent is bounded by 1. Where ri denotes the reward ex-
perienced by the agent from the environment at time i, the expected total
reward for the agent π from the environment µ is defined as

V πµ ≡ E(

∞∑
1

ri) ≤ 1

To extend their definition in the direction of greater realism, we first in-
troduce a second-order probability distribution ν, which is a probability dis-
tribution over the space of environments µ. The distribution ν assigns each
environment a probability. One such distribution ν is the Solomonoff-Levin
universal distribution in which one sets ν = 2−K(µ); but this is not the only
distribution ν of interest. In fact a great deal of real-world general intelligence
consists of the adaptation of intelligent systems to particular distributions ν
over environment-space, differing from the universal distribution.

We then define

Definition 4 The biased universal intelligence of an agent π is its ex-
pected performance with respect to the distribution ν over the space of all
computable reward-summable environments, E, that is,
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Υ (π) ≡
∑
µ∈E

ν(µ)V πµ

Legg and Hutter’s universal intelligence is obtained by setting ν equal
to the universal distribution.

This framework is more flexible than it might seem. E.g. suppose one wants
to incorporate agents that die. Then one may create a special action, say a666,
corresponding to the state of death, to create agents that

• in certain circumstances output action a666
• have the property that if their previous action was a666, then all of their

subsequent actions must be a666

and to define a reward structure so that actions a666 always bring zero re-
ward. It then follows that death is generally a bad thing if one wants to
maximize intelligence. Agents that die will not get rewarded after they’re
dead; and agents that live only 70 years, say, will be restricted from getting
rewards involving long-term patterns and will hence have specific limits on
their intelligence.

7.3.2 Connecting Legg and Hutter’s Model of Intelligent
Agents to the Real World

A notable aspect of the Legg and Hutter formalism is the separation of the
reward mechanism from the cognitive mechanisms of the agent. While com-
monplace in the reinforcement learning literature, this seems psychologically
unrealistic in the context of biological intelligences and many types of machine
intelligences. Not all human intelligent activity is specifically reward-seeking
in nature; and even when it is, humans often pursue complexly constructed re-
wards, that are defined in terms of their own cognitions rather than separately
given. Suppose a certain human’s goals are true love, or world peace, and the
proving of interesting theorems – then these goals are defined by the human
herself, and only she knows if she’s achieved them. An externally-provided
reward signal doesn’t capture the nature of this kind of goal-seeking behavior,
which characterizes much human goal-seeking activity (and will presumably
characterize much of the goal-seeking activity of advanced engineered intelli-
gences also) ... let alone human behavior that is spontaneous and unrelated
to explicit goals, yet may still appear commonsensically intelligent.

One could seek to bypass this complaint about the reward mechanisms via
a sort of “neo-Freudian” argument, via

• associating the reward signal, not with the “external environment” as
typically conceived, but rather with a portion of the intelligent agent’s
brain that is separate from the cognitive component
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• viewing complex goals like true love, world peace and proving interesting
theorems as indirect ways of achieving the agent’s “basic goals”, created
within the agent’s memory via subgoaling mechanisms

but it seems to us that a general formalization of intelligence should not
rely on such strong assumptions about agents’ cognitive architectures. So
below, after introducing the pragmatic and efficient pragmatic general in-
telligence measures, we will propose an alternate interpretation wherein the
mechanism of external rewards is viewed as a theoretical test framework for
assessing agent intelligence, rather than a hypothesis about intelligent agent
architecture.

In this alternate interpretation, formal measures like the universal, prag-
matic and efficient pragmatic general intelligence are viewed as not directly
applicable to real-world intelligences, because they involve the behaviors of
agents over a wide variety of goals and environments, whereas in real life the
opportunities to observe agents are more limited. However, they are viewed
as being indirectly applicable to real-world agents, in the sense that an ex-
ternal intelligence can observe an agent’s real-world behavior and then infer
its likely intelligence according to these measures.

In a sense, this interpretation makes our formalized measures of intelligence
the opposite of real-world IQ tests. An IQ test is a quantified, formalized test
which is designed to approximately predict the informal, qualitative achieve-
ment of humans in real life. On the other hand, the formal definitions of
intelligence we present here are quantified, formalized tests that are designed
to capture abstract notions of intelligence, but which can be approximately
evaluated on a real-world intelligent system by observing what it does in real
life.

7.3.3 Pragmatic General Intelligence

The above concept of biased universal intelligence is perfectly adequate for
many purposes, but it is also interesting to explicitly introduce the notion
of a goal into the calculation. This allows us to formally capture the notion
presented in [?] of intelligence as “the ability to achieve complex goals in
complex environments.”

If the agent is acting in environment µ, and is provided with gs correspond-
ing to g at the start and the end of the time-interval T = {i ∈ (s, ..., t)}, then
the expected goal-achievement of the agent, relative to g, during the interval
is the expectation

V πµ,g,T ≡ E(

t∑
i=s

rg(Ig,s,i))
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where the expectation is taken over all interaction sequences Ig,s,i drawn
according to µ. We then propose

Definition 5 The pragmatic general intelligence of an agent π, relative
to the distribution ν over environments and the distribution γ over goals, is
its expected performance with respect to goals drawn from γ in environments
drawn from ν, over the time-scales natural to the goals; that is,

Π(π) ≡
∑

µ∈E,g∈G,T
ν(µ)γ(g, µ)V πµ,g,T

(in those cases where this sum is convergent).

This definition formally captures the notion that “intelligence is achieving
complex goals in complex environments,” where “complexity” is gauged by
the assumed measures ν and γ.

If ν is taken to be the universal distribution, and γ is defined to weight goals
according to the universal distribution, then pragmatic general intelligence
reduces to universal intelligence.

Furthermore, it is clear that a universal algorithmic agent like AIXI [Hut05]
would also have a high pragmatic general intelligence, under fairly broad con-
ditions. As the interaction history grows longer, the pragmatic general intel-
ligence of AIXI would approach the theoretical maximum; as AIXI would
implicitly infer the relevant distributions via experience. However, if signifi-
cant reward discounting is involved, so that near-term rewards are weighted
much higher than long-term rewards, then AIXI might compare very unfa-
vorably in pragmatic general intelligence, to other agents designed with prior
knowledge of ν, γ and τ in mind.

The most interesting case to consider is where ν and γ are taken to em-
body some particular bias in a real-world space of environments and goals,
and this biases is appropriately reflected in the internal structure of an intel-
ligent agent. Note that an agent needs not lack universal intelligence in order
to possess pragmatic general intelligence with respect to some non-universal
distribution over goals and environments. However, in general, given limited
resources, there may be a tradeoff between universal intelligence and prag-
matic intelligence. Which leads to the next point: how to encompass resource
limitations into the definition.

One might argue that the definition of Pragmatic General Intelligence is al-
ready encompassed by Legg and Hutter’s definition because one may bias the
distribution of environments within the latter by considering different Turing
machines underlying the Kolmogorov complexity. However this is not a gen-
eral equivalence because the Solomonoff-Levin measure intrinsically decays
exponentially, whereas an assumptive distribution over environments might
decay at some other rate. This issue seems to merit further mathematical
investigation.
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7.3.4 Incorporating Computational Cost

Let ηπ,µ,g,T be a probability distribution describing the amount of computa-
tional resources consumed by an agent π while achieving goal g over time-scale
T . This is a probability distribution because we want to account for the pos-
sibility of nondeterministic agents. So, ηπ,µ,g,T (Q) tells the probability that
Q units of resources are consumed. For simplicity we amalgamate space and
time resources, energetic resources, etc. into a single number Q, which is as-
sumed to live in some subset of the positive reals. Space resources of course
have to do with the size of the system’s memory. Then we may define

Definition 6 The efficient pragmatic general intelligence of an agent
π with resource consumption ηπ,µ,g,T , relative to the distribution ν over envi-
ronments and the distribution γ over goals, is its expected performance with
respect to goals drawn from γ in environments drawn from ν, over the time-
scales natural to the goals, normalized by the amount of computational effort
expended to achieve each goal; that is,

ΠEff(π) ≡
∑

µ∈E,g∈G,Q,T

ν(µ)γ(g, µ)ηπ,µ,g,T (Q)

Q
V πµ,g,T

(in those cases where this sum is convergent).

This is a measure that rates an agent’s intelligence higher if it uses fewer
computational resources to do its business. Roughly, it measures reward
achieved per spacetime computation unit.

Note that, by abandoning the universal prior, we have also abandoned the
proof of convergence that comes with it. In general the sums in the above
definitions need not converge; and exploration of the conditions under which
they do converge is a complex matter.

7.3.5 Assessing the Intelligence of Real-World Agents

The pragmatic and efficient pragmatic general intelligence measures are more
“realistic” than the Legg and Hutter universal intelligence measure, in that
they take into account the innate biasing and computational resource restric-
tions that characterize real-world intelligence. But as discussed earlier, they
still live in “fantasy-land” to an extent – they gauge the intelligence of an
agent via a weighted average over a wide variety of goals and environments;
and they presume a simplistic relationship between agents and rewards that
does not reflect the complexities of real-world cognitive architectures. It is
not obvious from the foregoing how to apply these measures to real-world
intelligent systems, which lack the ability to exist in such a wide variety of
environments within their often brief lifespans, and mostly go about their
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lives doing things other than pursuing quantified external rewards. In this
brief section we describe an approach to bridging this gap. The treatment is
left-semi-formal in places.

We suggest to view the definitions of pragmatic and efficient pragmatic
general intelligence in terms of a “possible worlds” semantics – i.e. to view
them as asking, counterfactually, how an agent would perform, hypothetically,
on a series of tests (the tests being goals, defined in relation to environments
and reward signals).

Real-world intelligent agents don’t normally operate in terms of explicit
goals and rewards; these are abstractions that we use to think about intelli-
gent agents. However, this is no objection to characterizing various sorts of
intelligence in terms of counterfactuals like: how would system S operate if it
were trying to achieve this or that goal, in this or that environment, in order
to seek reward? We can characterize various sorts of intelligence in terms of
how it can be inferred an agent would perform on certain tests, even though
the agent’s real life does not consist of taking these tests.

This conceptual approach may seem a bit artificial, but, we don’t currently
see a better alternative, if one wishes to quantitatively gauge intelligence
(which is, in a sense, an “artificial” thing to do in the first place). Given a real-
world agentX and a mandate to assess its intelligence, the obvious alternative
to looking at possible worlds in the manner of the above definitions, is just
looking directly at the properties of the things X has achieved in the real
world during its lifespan. But this isn’t an easy solution, because it doesn’t
disambiguate which aspects of X’s achievements were due to its own actions
versus due to the rest of the world that X was interacting with when it made
its achievements. To distinguish the amount of achievement that X “caused”
via its own actions requires a model of causality, which is a complex can of
worms in itself; and, critically, the standard models of causality also involve
counterfactuals (asking “what would have been achieved in this situation if
the agent X hadn’t been there”, etc.) [?]. Regardless of the particulars, it
seems impossible to avoid counterfactual realities in assessing intelligence.

The approach we suggest – given a real-world agent X with a history of
actions in a particular world, and a mandate to assess its intelligence – is to
introduce an additional player, an inference agent δ, into the picture. The
agent π modeled above is then viewed as πX : the model of X that δ con-
structs, in order to explore X’s inferred behaviors in various counterfactual
environments. In the test situations embodied in the definitions of pragmatic
and efficient pragmatic general intelligence, the environment gives πX re-
wards, based on specifically configured goals. In X’s real life, the relation
between goals, rewards and actions will generally be significantly subtler and
perhaps quite different.

We model the real world similarly to the “fantasy world” of the previous
section, but with the omission of goals and rewards. We define a naturalistic
context as one in which all goals and rewards are constant, i.e. gi = g0 and
ri = r0 for all i. This is just a mathematical convention for stating that
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there are no precisely-defined external goals and rewards for the agent. In
a naturalistic context, we then have a situation where agents create actions
based on the past history of actions and perceptions, and if there is any
relevant notion of reward or goal, it is within the cognitive mechanism of
some agent. A naturalistic agent X is then an agent π which is restricted to
one particular naturalistic context, involving one particular environment µ
(formally, we may achieve this within the framework of agents described above
via dictating that X issues constant “null actions” a0 in all environments
except µ).

Next, we posit a metric space (Σµ, d) of naturalistic agents defined on
a naturalistic context involving environment µ, and a subspace ∆ ∈ Σµ of
inference agents, which are naturalistic agents that output predictions of
other agents’ behaviors (a notion we will not fully formalize here). If agents
are represented as program trees, then d may be taken as edit distance on
tree space [?]. Then, for each agent δ ∈ ∆, we may assess

• the prior probability θ(δ) according to some assumed distribution θ
• the effectiveness p(δ,X) of δ at predicting the actions of an agent X ∈ Σµ

We may then define

Definition 7 The inference ability of the agent δ, relative to µ and X, is

qµ,X(δ) = θ(δ)

∑
Y ∈Σµ sim(X,Y )p(δ, Y )∑

Y ∈Σµ sim(X,Y )

where sim is a specified decreasing function of d(X,Y ), such as sim(X,Y ) =
1

1+d(X,Y ) .

To construct πX , we may then use the model of X created by the agent
δ ∈ ∆ with the highest inference ability relative to µ and X (using some
specified ordering, in case of a tie). Having constructed πX , we can then say
that

Definition 8 The inferred pragmatic general intelligence (relative to ν and
γ) of a naturalistic agent X defined relative to an environment µ, is defined
as the pragmatic general intelligence of the model πX of X produced by the
agent δ ∈ ∆ with maximal inference ability relative to µ (and in the case of
a tie, the first of these in the ordering defined over ∆). The inferred efficient
pragmatic general intelligence of X relative to µ is defined similarly.

This provides a precise characterization of the pragmatic and efficient prag-
matic intelligence of real-world systems, based on their observed behaviors.
It’s a bit messy; but the real world tends to be like that.



164 7 A Formal Model of Intelligent Agents

7.4 Intellectual Breadth: Quantifying the Generality of
an Agent’s Intelligence

We turn now to a related question: How can one quantify the degree of gen-
erality that an intelligent agent possesses? Above we have discussed the
qualitative distinction between AGI and “Narrow AI”, and intelligence as we
have formalized it above is specifically intended as a measure of general intel-
ligence. But quantifying intelligence is different than quantifying generality
versus narrowness.

To make the discussion simpler, we introduce the term “context” as a short-
hand for “environment/interval triple (µ, g, T ).” Given a context (µ, g, T ),
and a set Σ of agents, one may construct a fuzzy set Agµ,g,T gathering those
agents that are intelligent relative to the context; and given a set of contexts,
one may also define a fuzzy set Conπ gathering those contexts with respect
to which a given agent π is intelligent. The relevant formulas are:

χAgµ,g,T (π) = χConπ (µ, g, T ) =
1

N

∑
Q

ηµ,g,T (Q)V πµ,g,T
Q

where N = N(µ, g, T ) is a normalization factor defined appropriately, e.g.
via N(µ, g, T ) = max

π
V πµ,g,T .

One could make similar definitions leaving out the computational cost
factor Q, but we suspect that incorporating Q is a more promising direction.
We then propose

Definition 9 The intellectual breadth of an agent π, relative to the dis-
tribution ν over environments and the distribution γ over goals, is

H(χPConπ (µ, g, T ))

where H is the entropy and

χPConπ (µ, g, T ) =
ν(µ)γ(g, µ)χConπ (µ, g, T )∑

(µα,gβ .Tω)

ν(µα)γ(gβ , µα)χConπ (µα, gβ , Tω)

is the probability distribution formed by normalizing the fuzzy set χConπ (µ, g, T ).

A similar definition of the intellectual breadth of a context (µ, g, T ), rela-
tive to the distribution σ over agents, may be posited. A weakness of these
definitions is that they don’t try to account for dependencies between agents
or contexts; perhaps more refined formulations may be developed that ac-
count explicitly for these dependencies.

Note that the intellectual breadth of an agent as defined here is largely
independent of the (efficient or not) pragmatic general intelligence of that
agent. One could have a rather (efficiently or not) pragmatically generally
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intelligent system with little breadth: this would be a system very good at
solving a fair number of hard problems, yet wholly incompetent on a larger
number of hard problems. On the other hand, one could also have a terribly
(efficiently or not) pragmatically generally stupid system with great intellec-
tual breadth: i.e a system roughly equally dumb in all contexts!

Thus, one can characterize an intelligent agent as “narrow” with respect
to distribution ν over environments and the distribution γ over goals, based
on evaluating it as having low intellectual breadth. A “narrow AI” relative to
ν and γ would then be an AI agent with a relatively high efficient pragmatic
general intelligence but a relatively low intellectual breadth.

7.5 Conclusion

Our main goal in this chapter has been to push the formal understanding
of intelligence in a more pragmatic direction. Much more work remains to
be done, e.g. in specifying the environment, goal and efficiency distributions
relevant to real-world systems, but we believe that the ideas presented here
constitute nontrivial progress.

If the line of research suggested in this chapter succeeds, then eventually,
one will be able to do AGI research as follows: Specify an AGI architecture
formally, and then use the mathematics of general intelligence to derive inter-
esting results about the environments, goals and hardware platforms relative
to which the AGI architecture will display significant pragmatic or efficient
pragmatic general intelligence, and intellectual breadth. The remaining chap-
ters in this section present further ideas regarding how to work toward this
goal. For the time being, such a mode of AGI research remains mainly for the
future, but we have still found the formalism given in these chapters useful
for formulating and clarifying various aspects of the CogPrime design as will
be presented in later chapters.





Chapter 8
Cognitive Synergy

8.1 Cognitive Synergy

As we have seen, the formal theory of general intelligence, in its current
form, doesn’t really tell us much that’s of use for creating real-world AGI
systems. It tells us that creating extraordinarily powerful general intelligence
is almost trivial if one has unrealistically huge amounts of computational
resources; and that creating moderately powerful general intelligence using
feasible computational resources is all about creating AI algorithms and data
structures that (explicitly or implicitly) match the restrictions implied by a
certain class of situations, to which the general intelligence is biased.

We’ve also described, in various previous chapters, some non-rigorous, con-
ceptual principles that seem to explain key aspects of feasible general intel-
ligence: the complementary reliance on evolution and autopoiesis, the su-
perposition of hierarchical and heterarchical structures, and so forth. These
principles can be considered as broad strategies for achieving general intelli-
gence in certain broad classes of situations. Although, a lot of research needs
to be done to figure out nice ways to describe, for instance, in what class of
situations evolution is an effective learning strategy, in what class of situa-
tions dual hierarchical/heterarchical structure is an effective way to organize
memory, etc.

In this chapter we’ll dig deeper into one of the “general principle of feasible
general intelligences” briefly alluded to earlier: the cognitive synergy princi-
ple, which is both a conceptual hypothesis about the structure of generally
intelligent systems in certain classes of environments, and a design principle
used to guide the architecting of CogPrime .

We will focus here on cognitive synergy specifically in the case of “multi-
memory systems,” which we define as intelligent systems (like CogPrime )
whose combination of environment, embodiment and motivational system
make it important for them to possess memories that divide into partially
but not wholly distinct components corresponding to the categories of:

167
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• Declarative memory
• Procedural memory (memory about how to do certain things)
• Sensory and episodic memory
• Attentional memory (knowledge about what to pay attention to in what

contexts
• Intentional memory (knowledge about the system’s own goals and sub-

goals)

In Chapter 9 below we present a detailed argument as to how the require-
ment for a multi-memory underpinning for general intelligence emerges from
certain underlying assumptions regarding the measurement of the simplicity
of goals and environments; but the points made here do not rely on that
argument. What they do rely on is the assumption that, in the intelligence
in question, the different components of memory are significantly but not
wholly distinct. That is, there are significant “family resemblances” between
the memories of a single type, yet there are also thoroughgoing connections
between memories of different types.

The cognitive synergy principle, if correct, applies to any AI system demon-
strating intelligence in the context of embodied, social communication. How-
ever, one may also take the theory as an explicit guide for constructing AGI
systems; and of course, the bulk of this book describes one AGI architecture,
CogPrime , designed in such a way.

It is possible to cast these notions in mathematical form, and we make
some efforts in this direction in Appendix B, using the languages of category
theory and information geometry. However, this formalization has not yet
led to any rigorous proof of the generality of cognitive synergy nor any other
exciting theorems; with luck this will come as the mathematics is further
developed. In this chapter the presentation is kept on the heuristic level,
which is all that is critically needed for motivating the CogPrime design.

8.2 Cognitive Synergy

The essential idea of cognitive synergy, in the context of multi-memory sys-
tems, may be expressed in terms of the following points:

1. Intelligence, relative to a certain set of environments, may be understood
as the capability to achieve complex goals in these environments.

2. With respect to certain classes of goals and environments (see Chapter 9
for a hypothesis in this regard), an intelligent system requires a “multi-
memory” architecture, meaning the possession of a number of specialized
yet interconnected knowledge types, including: declarative, procedural,
attentional, sensory, episodic and intentional (goal-related). These knowl-
edge types may be viewed as different sorts of pattern that a system rec-
ognizes in itself and its environment. Knowledge of these various different
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types must be interlinked, and in some cases may represent differing views
of the same content (see Figure 8.2)

3. Such a system must possess knowledge creation (i.e. pattern recognition
/ formation) mechanisms corresponding to each of these memory types.
These mechanisms are also called “cognitive processes.”

4. Each of these cognitive processes, to be effective, must have the capabil-
ity to recognize when it lacks the information to perform effectively on
its own; and in this case, to dynamically and interactively draw infor-
mation from knowledge creation mechanisms dealing with other types of
knowledge

5. This cross-mechanism interaction must have the result of enabling the
knowledge creation mechanisms to perform much more effectively in com-
bination than they would if operated non-interactively. This is “cognitive
synergy.”

While these points are implicit in the theory of mind given in [Goe06a], they
are not articulated in this specific form there.

Fig. 8.1 Illustrative example of the interactions between multiple types of knowledge, in
representing a simple piece of knowledge. Generally speaking, one type of knowledge can
be converted to another, at the cost of some loss of information. The synergy between
cognitive processes associated with corresponding pieces of knowledge, possessing different
type, is a critical aspect of general intelligence.
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Interactions as mentioned in Points 4 and 5 in the above list are the real
conceptual meat of the cognitive synergy idea. One way to express the key
idea here is that most AI algorithms suffer from combinatorial explosions: the
number of possible elements to be combined in a synthesis or analysis is just
too great, and the algorithms are unable to filter through all the possibilities,
given the lack of intrinsic constraint that comes along with a “general intelli-
gence” context (as opposed to a narrow-AI problem like chess-playing, where
the context is constrained and hence restricts the scope of possible combina-
tions that needs to be considered). In an AGI architecture based on cognitive
synergy, the different learning mechanisms must be designed specifically to
interact in such a way as to palliate each others’ combinatorial explosions -
so that, for instance, each learning mechanism dealing with a certain sort of
knowledge, must synergize with learning mechanisms dealing with the other
sorts of knowledge, in a way that decreases the severity of combinatorial
explosion.

One prerequisite for cognitive synergy to work is that each learning mech-
anism must recognize when it is “stuck,” meaning it’s in a situation where it
has inadequate information to make a confident judgment about what steps
to take next. Then, when it does recognize that it’s stuck, it may request
help from other, complementary cognitive mechanisms.

A theoretical notion closely related to cognitive synergy is the cognitive
schematic, formalized in Chapter 7 above, which states that the activity of
the different cognitive processes involved in an intelligent system may be
modeled in terms of the schematic implication

Context ∧ Procedure→ Goal

where the Context involves sensory, episodic and/or declarative knowledge;
and attentional knowledge is used to regulate how much resource is given
to each such schematic implication in memory. Synergy among the learning
processes dealing with the context, the procedure and the goal is critical to the
adequate execution of the cognitive schematic using feasible computational
resources.

Finally, drilling a little deeper into Point 3 above, one arrives at a number
of possible knowledge creation mechanisms (cognitive processes) correspond-
ing to each of the key types of knowledge. Figure 8.2 below gives a high-level
overview of the main types of cognitive process considered in the current
version of Cognitive Synergy Theory, categorized according to the type of
knowledge with which each process deals.
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Fig. 8.2 High-level overview of the key cognitive dynamics considered here in the context
of cognitive synergy. The cognitive synergy principle describes the behavior of a system as
it pursues a set of goals (which in most cases may be assumed to be supplied to the system
“a priori”, but then refined by inference and other processes). The assumed intelligent agent
model is roughly as follows: At each time the system chooses a set of procedures to execute,
based on its judgments regarding which procedures will best help it achieve its goals in the
current context. These procedures may involve external actions (e.g. involving conversation,
or controlling an agent in a simulated world) and/or internal cognitive actions. In order to
make these judgments it must effectively manage declarative, procedural, episodic, sensory
and attentional memory, each of which is associated with specific algorithms and structures
as depicted in the diagram. There are also global processes spanning all the forms of
memory, including the allocation of attention to different memory items and cognitive
processes, and the identification and reification of system-wide activity patterns (the latter
referred to as “map formation”)

8.3 Cognitive Synergy in CogPrime

Different cognitive systems will use different processes to fulfill the various
roles identified in Figure ?? above. Here we briefly preview the basic cognitive
processes that the CogPrime AGI design uses for these roles, and the synergies
that exist between these.
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8.3.1 Cognitive Processes in CogPrime

: a Cognitive Synergy Based Architecture..." from ICCI 2009

Table 8.1 default

Table will go here

Table 8.2 The OpenCogPrime data structures used to represent the key knowledge types
involved

Table 8.3 default

Table will go here

Table 8.4 Key cognitive processes, and the algorithms that play their roles in CogPrime

Table 8.5 default

Table will go here

Table 8.6 Key OpenCogPrime cognitive processes categorized according to knowledge
type and process type

Tables 8.1 and 8.3 present the key structures and processes involved in
CogPrime , identifying each one with a certain memory/process type as con-
sidered in cognitive synergy theory. That is: each of these cognitive structures
or processes deals with one or more types of memory – declarative, proce-
dural, sensory, episodic or attentional. Table 8.5 describes the key CogPrime
processes in terms of the “analysis vs. synthesis” distinction. Finally, Tables
?? and ?? exemplify these structures and processes in the context of embod-
ied virtual agent control.

In the CogPrime context, a procedure in this cognitive schematic is a
program tree stored in the system’s procedural knowledge base; and a context
is a (fuzzy, probabilistic) logical predicate stored in the AtomSpace, that
holds, to a certain extent, during each interval of time. A goal is a fuzzy
logical predicate that has a certain value at each interval of time, as well.

Attentional knowledge is handled in CogPrime by the ECAN artificial
economics mechanism, that continually updates ShortTermImportance and
LongTerm Importance values associated with each item in the CogPrime sys-
tem’s memory, which control the amount of attention other cognitive mech-
anisms pay to the item, and how much motive the system has to keep the
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item in memory. HebbianLinks are then created between knowledge items
that often possess ShortTermImportance at the same time; this is CogPrime
’s version of traditional Hebbian learning.

ECAN has deep interactions with other cognitive mechanisms as well,
which are essential to its efficient operation; for instance, PLN inference may
be used to help ECAN extrapolate conclusions about what is worth pay-
ing attention to, and MOSES may be used to recognize subtle attentional
patterns. ECAN also handles “assignment of credit”, the figuring-out of the
causes of an instance of successful goal-achievement, drawing on PLN and
MOSES as needed when the causal inference involved here becomes difficult.

The synergies between CogPrime ’s cognitive processes are well summa-
rized in Table 6 below, which is a 16x16 matrix summarizing a host of inter-
process interactions generic to CST.

One key aspect of how CogPrime implements cognitive synergy is PLN’s
sophisticated management of the confidence of judgments. This ties in with
the way OpenCogPrimes PLN inference framework represents truth values
in terms of multiple components (as opposed to the single probability values
used in many probabilistic inference systems and formalisms): each item in
OpenCogPrimes declarative memory has a confidence value associated with
it, which tells how much weight the system places on its knowledge about
that memory item. This assists with cognitive synergy as follows: A learning
mechanism may consider itself “stuck”, generally speaking, when it has no
high-confidence estimates about the next step it should take.

Without reasonably accurate confidence assessment to guide it, inter-
component interaction could easily lead to increased rather than decreased
combinatorial explosion. And of course there is an added recursion here, in
that confidence assessment is carried out partly via PLN inference, which in
itself relies upon these same synergies for its effective operation.

To illustrate this point further, consider one of the synergetic aspects de-
scribed in 8.4 below: the role cognitive synergy plays in deductive inference.
Deductive inference is a hard problem in general - but what is hard about it
is not carrying out inference steps, but rather “inference control” (i.e., choos-
ing which inference steps to carry out). Specifically, what must happen for
deduction to succeed in CogPrime is:

1. the system must recognize when its deductive inference process is “stuck”,
i.e. when the PLN inference control mechanism carrying out deduction
has no clear idea regarding which inference step(s) to take next, even
after considering all the domain knowledge at is disposal

2. in this case, the system must defer to another learning mechanism to
gather more information about the different choices available - and the
other learning mechanism chosen must, a reasonable percentage of the
time, actually provide useful information that helps PLN to get “unstuck”
and continue the deductive process
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For instance, deduction might defer to the “attentional knowledge” subsys-
tem, and make a judgment as to which of the many possible next deductive
steps are most associated with the goal of inference and the inference steps
taken so far, according to the HebbianLinks constructed by the attention
allocation subsystem, based on observed associations. Or, if this fails, deduc-
tion might ask MOSES (running in supervised categorization mode) to learn
predicates characterizing some of the terms involving the possible next infer-
ence steps. Once MOSES provides these new predicates, deduction can then
attempt to incorporate these into its inference process, hopefully (though not
necessarily) arriving at a higher-confidence next step..

8.4 Some Critical Synergies

Referring back to Figure 8.2, and summarizing many of the ideas in the
previous section, Table 8.4 enumerates a number of specific ways in which the
cognitive processes mentioned in the Figure may synergize with one another,
potentially achieving dramatically greater efficiency than would be possible
on their own.

Of course, realizing these synergies on the practical algorithmic level re-
quires significant inventiveness and may be approached in many different
ways. The specifics of how CogPrime manifests these synergies are discussed
in many following chapters.

8.5 The Cognitive Schematic

Now we return to the “cognitive schematic” notion, according to which var-
ious cognitive processes involved in intelligence may be understood to work
together via the implication

Context ∧ Procedure→ Goal < p >

(summarized C ∧ P → G). Semi-formally, this implication may interpreted
to mean: “If the context C appears to hold currently, then if I enact the
procedure P , I can expect to achieve the goal G with certainty p.”

The cognitive schematic leads to a conceptualization of the internal action
of an intelligent system as involving two key categories of learning:

• Analysis: Estimating the probability p of a posited C ∧P → G relation-
ship

• Synthesis: Filling in one or two of the variables in the cognitive schematic,
given assumptions regarding the remaining variables, and directed by the
goal of maximizing the probability of the cognitive schematic
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Fig. 8.3 This table, and the following ones, show some of the synergies between the
primary cognitive processes explicitly used in CogPrime .
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More specifically, where synthesis is concerned, some key examples are:

• The MOSES probabilistic evolutionary program learning algorithm is
applied to find P , given fixed C and G. Internal simulation is also used,
for the purpose of creating a simulation embodying C and seeing which
P lead to the simulated achievement of G.

– Example: A virtual dog learns a procedure P to please its owner (the
goal G) in the context C where there is a ball or stick present and the
owner is saying “fetch”.

• PLN inference, acting on declarative knowledge, is used for choosing C,
given fixed P and G (also incorporating sensory and episodic knowledge
as appropriatel). Simulation may also be used for this purpose.

– Example: A virtual dog wants to achieve the goal G of getting food,
and it knows that the procedure P of begging has been successful at
this before, so it seeks a context C where begging can be expected to
get it food. Probably this will be a context involving a friendly person.

• PLN-based goal refinement is used to create new subgoals G to sit on the
right hand side of instances of the cognitive schematic.

– Example: Given that a virtual dog has a goal of finding food, it may
learn a subgoal of following other dogs, due to observing that other
dogs are often heading toward their food.

• Concept formation heuristics are used for choosing G and for fueling goal
refinement, but especially for choosing C (via providing new candidates
for C). They are also used for choosing P , via a process called “predicate
schematization” that turns logical predicates (declarative knowledge) into
procedures.

– Example: At first a virtual dog may have a hard time predicting which
other dogs are going to be mean to it. But it may eventually observe
common features among a number of mean dogs, and thus form its
own concept of “pit bull,” without anyone ever teaching it this concept
explicitly.

Where analysis is concerned:

• PLN inference, acting on declarative knowledge, is used for estimating
the probability of the implication in the cognitive schematic, given fixed
C, P and G. Episodic knowledge is also used this regard, via enabling
estimation of the probability via simple similarity matching against past
experience. Simulation is also used: multiple simulations may be run, and
statistics may be captured therefrom.

– Example: To estimate the degree to which asking Bob for food (the
procedure P is “asking for food”, the context C is “being with Bob”)
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will achieve the goal G of getting food, the virtual dog may study
its memory to see what happened on previous occasions where it or
other dogs asked Bob for food or other things, and then integrate the
evidence from these occasions.

• Procedural knowledge, mapped into declarative knowledge and then
acted on by PLN inference, can be useful for estimating the probabil-
ity of the implication C ∧ P → G, in cases where the probability of
C ∧ P1 → G is known for some P1 related to P .

– Example: knowledge of the internal similarity between the procedure
of asking for food and the procedure of asking for toys, allows the
virtual dog to reason that if asking Bob for toys has been successful,
maybe asking Bob for food will be successful too.

• Inference, acting on declarative or sensory knowledge, can be useful for
estimating the probability of the implication C ∧ P → G, in cases where
the probability of C1 ∧ P → G is known for some C1 related to C.

– Example: if Bob and Jim have a lot of features in common, and Bob
often responds positively when asked for food, then maybe Jim will
too.

• Inference can be used similarly for estimating the probability of the impli-
cation C∧P → G, in cases where the probability of C∧P → G1 is known
for some G1 related to G. Concept creation can be useful indirectly in
calculating these probability estimates, via providing new concepts that
can be used to make useful inference trails more compact and hence easier
to construct.

– Example: The dog may reason that because Jack likes to play, and
Jack and Jill are both children, maybe Jill likes to play too. It can
carry out this reasoning only if its concept creation process has in-
vented the concept of “child” via analysis of observed data.

In these examples we have focused on cases where two terms in the cogni-
tive schematic are fixed and the third must be filled in; but just as often,
the situation is that only one of the terms is fixed. For instance, if we fix
G, sometimes the best approach will be to collectively learn C and P . This
requires either a procedure learning method that works interactively with
a declarative-knowledge-focused concept learning or reasoning method; or a
declarative learning method that works interactively with a procedure learn-
ing method. That is, it requires the sort of cognitive synergy built into the
CogPrime design.
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8.6 Cognitive Synergy for Procedural and Declarative
Learning

We now present a little more algorithmic detail regarding the operation and
synergetic interaction of CogPrime ’s two most sophisticated components:
the MOSES procedure learning algorithm (see Chapter 33), and the PLN
uncertain inference framework (see Chapter 34). The treatment is necessar-
ily quite compact, since we have not yet reviewed the details of either MOSES
or PLN; but as well as illustrating the notion of cognitive synergy more con-
cretely, perhaps the high-level discussion here will make clearer how MOSES
and PLN fit into the big picture of CogPrime .

8.6.1 Cognitive Synergy in MOSES

MOSES, CogPrime ’s primary algorithm for learning procedural knowledge,
has been tested on a variety of application problems including standard GP
test problems, virtual agent control, biological data analysis and text classi-
fication [Loo06]. It represents procedures internally as program trees. Each
node in a MOSES program tree is supplied with a “knob,” comprising a set
of values that may potentially be chosen to replace the data item or oper-
ator at that node. So for instance a node containing the number 7 may be
supplied with a knob that can take on any integer value. A node containing
a while loop may be supplied with a knob that can take on various possible
control flow operators including conditionals or the identity. A node contain-
ing a procedure representing a particular robot movement, may be supplied
with a knob that can take on values corresponding to multiple possible move-
ments. Following a metaphor suggested by Douglas Hofstadter [?], MOSES
learning covers both “knob twiddling” (setting the values of knobs) and “knob
creation.”

MOSES is invoked within CogPrime in a number of ways, but most
commonly for finding a procedure P satisfying a probabilistic implication
C&P → G as described above, where C is an observed context and G is a
system goal. In this case the probability value of the implication provides
the “scoring function” that MOSES uses to assess the quality of candidate
procedures.

For example, suppose an CogPrime -controlled robot is trying to learn to
play the game of “tag." (I.e. a multi-agent game in which one agent is specially
labeled "it", and runs after the other player agents, trying to touch them.
Once another agent is touched, it becomes the new "it" and the previous "it"
becomes just another player agent.) Then its context C is that others are try-
ing to play a game they call “tag” with it; and we may assume its goals are to
please them and itself, and that it has figured out that in order to achieve this
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Fig. 8.4 High-Level Control Flow of MOSES Algorithm

goal it should learn some procedure to follow when interacting with others
who have said they are playing “tag.” In this case a potential tag-playing pro-
cedure might contain nodes for physical actions like step_forward(speed s),
as well as control flow nodes containing operators like ifelse (for instance,
there would probably be a conditional telling the robot to do something dif-
ferent depending on whether someone seems to be chasing it). Each of these
program tree nodes would have an appropriate knob assigned to it. And the
scoring function would evaluate a procedure P in terms of how successfully
the robot played tag when controlling its behaviors according to P (noting
that it may also be using other control procedures concurrently with P ). It’s
worth noting here that evaluating the scoring function in this case involves
some inference already, because in order to tell if it is playing tag successfully,
in a real-world context, it must watch and understand the behavior of the
other players.

MOSES follows the high-level control flow depicted in Figure 33.1, which
corresponds to the following process for evolving a metapopulation of “demes“
of programs (each deme being a set of relatively similar programs, forming a
sort of island in program space):

1. Construct an initial set of knobs based on some prior (e.g., based on
an empty program; or more interestingly, using prior knowledge sup-
plied by PLN inference based on the system’s memory) and use it to
generate an initial random sampling of programs. Add this deme to the
metapopulation.

2. Select a deme from the metapopulation and update its sample, as follows:
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a. Select some promising programs from the deme’s existing sample to
use for modeling, according to the scoring function.

b. Considering the promising programs as collections of knob settings,
generate new collections of knob settings by applying some (compe-
tent) optimization algorithm. For best performance on difficult prob-
lems, it is important to use an optimization algorithm that makes use
of the system’s memory in its choices, consulting PLN inference
to help estimate which collections of knob settings will work best.

c. Convert the new collections of knob settings into their corresponding
programs, reduce the programs to normal form, evaluate their scores,
and integrate them into the deme’s sample, replacing less promising
programs. In the case that scoring is expensive, score evaluation may
be preceded by score estimation, which may use PLN inference,
enaction of procedures in an internal simulation environment,
and/or similarity matching against episodic memory.

3. For each new program that meet the criterion for creating a new deme,
if any:

a. Construct a new set of knobs (a process called “representation-
building”) to define a region centered around the program (the deme’s
exemplar), and use it to generate a new random sampling of pro-
grams, producing a new deme.

b. Integrate the new deme into the metapopulation, possibly displacing
less promising demes.

4. Repeat from step 2.

MOSES is a complex algorithm and each part plays its role; if any one part
is removed the performance suffers significantly [Loo06]. However, the main
point we want to highlight here is the role played by synergetic interactions
between MOSES and other cognitive components such as PLN, simulation
and episodic memory, as indicated in boldface in the above pseudocode.
MOSES is a powerful procedure learning algorithm, but used on its own it
runs into scalability problems like any other such algorithm; the reason we
feel it has potential to play a major role in a human-level AI system is its
capacity for productive interoperation with other cognitive components.

Continuing the “tag” example, the power of MOSES’s integration with
other cognitive processes would come into play if, before learning to play tag,
the robot has already played simpler games involving chasing. If the robot
already has experience chasing and being chased by other agents, then its
episodic and declarative memory will contain knowledge about how to pursue
and avoid other agents in the context of running around an environment full
of objects, and this knowledge will be deployable within the appropriate parts
of MOSES’s Steps 1 and 2. Cross-process and cross-memory-type integration
make it tractable for MOSES to act as a “transfer learning” algorithm, not
just a task-specific machine-learning algorithm.
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8.6.2 Cognitive Synergy in PLN

While MOSES handles much of CogPrime ’s procedural learning, and OpenCog-
Primes internal simulation engine handles most episodic knowledge, Cog-
Prime ’s primary tool for handling declarative knowledge is an uncertain
inference framework called Probabilistic Logic Networks (PLN). The com-
plexities of PLN are the topic of a lengthy technical monograph [GMIH08],
and here we will eschew most details and focus mainly on pointing out how
PLN seeks to achieve efficient inference control via integration with other
cognitive processes.

As a logic, PLN is broadly integrative: it combines certain term logic rules
with more standard predicate logic rules, and utilizes both fuzzy truth values
and a variant of imprecise probabilities called indefinite probabilities. PLN
mathematics tells how these uncertain truth values propagate through its
logic rules, so that uncertain premises give rise to conclusions with reason-
ably accurately estimated uncertainty values. This careful management of
uncertainty is critical for the application of logical inference in the robotics
context, where most knowledge is abstracted from experience and is hence
highly uncertain.

PLN can be used in either forward or backward chaining mode; and in the
language introduced above, it can be used for either analysis or synthesis.
As an example, we will consider backward chaining analysis, exemplified by
the problem of a robot preschool-student trying to determine whether a new
playmate “Bob” is likely to be a regular visitor to is preschool or not (evalu-
ating the truth value of the implication Bob→ regular_visitor). The basic
backward chaining process for PLN analysis looks like:

1. Given an implication L ≡ A → B whose truth value must be estimated
(for instance L ≡ C&P → G as discussed above), create a list (A1, ..., An)
of (inference rule, stored knowledge) pairs that might be used to produce
L

2. Using analogical reasoning to prior inferences, assign eachAi a probability
of success

• If some of the Ai are estimated to have reasonable probability of suc-
cess at generating reasonably confident estimates of L’s truth value,
then invoke Step 1 with Ai in place of L (at this point the inference
process becomes recursive)

• If none of the Ai looks sufficiently likely to succeed, then inference
has “gotten stuck” and another cognitive process should be invoked,
e.g.
– Concept creation may be used to infer new concepts related to
A and B, and then Step 1 may be revisited, in the hope of finding
a new, more promising Ai involving one of the new concepts

– MOSES may be invoked with one of several special goals, e.g.
the goal of finding a procedure P so that P (X) predicts whether
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X → B. If MOSES finds such a procedure P then this can be
converted to declarative knowledge understandable by PLN and
Step 1 may be revisited....

– Simulations may be run in CogPrime ’s internal simulation en-
gine, so as to observe the truth value of A→ B in the simulations;
and then Step 1 may be revisited....

The combinatorial explosion of inference control is combatted by the capabil-
ity to defer to other cognitive processes when the inference control procedure
is unable to make a sufficiently confident choice of which inference steps to
take next. Note that just as MOSES may rely on PLN to model its evolv-
ing populations of procedures, PLN may rely on MOSES to create complex
knowledge about the terms in its logical implications. This is just one example
of the multiple ways in which the different cognitive processes in CogPrime
interact synergetically; a more thorough treatment of these interactions is
given in Chapter 48.

In the “new playmate” example, the interesting case is where the robot
initially seems not to know enough about Bob to make a solid inferential
judgment (so that none of the Ai seem particularly promising). For instance,
it might carry out a number of possible inferences and not come to any reason-
ably confident conclusion, so that the reason none of the Ai seem promising
is that all the decent-looking ones have been tried already. So it might then
recourse to MOSES, simulation or concept creation.

For instance, the PLN controller could make a list of everyone who has
been a regular visitor, and everyone who has not been, and pose MOSES the
task of figuring out a procedure for distinguishing these two categories. This
procedure could then used directly to make the needed assessment, or else be
translated into logical rules to be used within PLN inference. For example,
perhaps MOSES would discover that older males wearing ties tend not to
become regular visitors. If the new playmate is an older male wearing a tie,
this is directly applicable. But if the current playmate is wearing a tuxedo,
then PLN may be helpful via reasoning that even though a tuxedo is not a tie,
it’s a similar form of fancy dress – so PLN may extend the MOSES-learned
rule to the present case and infer that the new playmate is not likely to be a
regular visitor.

8.7 Is Cognitive Synergy Tricky?

1

In this section we use the notion of cognitive synergy to explore a question
that arises frequently in the AGI community: the well-known difficulty of
measuring intermediate progress toward human-level AGI. We explore some

1 This section co-authored with Jared Wigmore
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potential reasons underlying this, via extending the notion of cognitive syn-
ergy to a more refined notion of "tricky cognitive synergy." These ideas are
particularly relevant to the problem of creating a roadmap toward AGI, as
we’ll explore in Chapter 17 below.

8.7.1 The Puzzle: Why Is It So Hard to Measure
Partial Progress Toward Human-Level AGI?

It’s not entirely straightforward to create tests to measure the final achieve-
ment of human-level AGI, but there are some fairly obvious candidates here.
There’s the Turing Test (fooling judges into believing you’re human, in a
text chat) the video Turing Test, the Robot College Student test (passing
university, via being judged exactly the same way a human student would),
etc. There’s certainly no agreement on which is the most meaningful such
goal to strive for, but there’s broad agreement that a number of goals of this
nature basically make sense.

On the other hand, how does one measure whether one is, say, 50 percent
of the way to human-level AGI? Or, say, 75 or 25 percent?

It’s possible to pose many "practical tests" of incremental progress toward
human-level AGI, with the property that IF a proto-AGI system passes the
test using a certain sort of architecture and/or dynamics, then this implies
a certain amount of progress toward human-level AGI based on particular
theoretical assumptions about AGI. However, in each case of such a practical
test, it seems intuitively likely to a significant percentage of AGI researchers
that there is some way to "game" the test via designing a system specifically
oriented toward passing that test, and which doesn’t constitute dramatic
progress toward AGI.

Some examples of practical tests of this nature would be

• The Wozniak "coffee test": go into an average American house and figure
out how to make coffee, including identifying the coffee machine, figuring
out what the buttons do, finding the coffee in the cabinet, etc.
• Story understanding – reading a story, or watching it on video, and then

answering questions about what happened (including questions at various
levels of abstraction)
• Graduating (virtual-world or robotic) preschool
• Passing the elementary school reading curriculum (which involves read-

ing and answering questions about some picture books as well as purely
textual ones)
• Learning to play an arbitrary video game based on experience only, or

based on experience plus reading instructions

One interesting point about tests like this is that each of them seems to
some AGI researchers to encapsulate the crux of the AGI problem, and be
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unsolvable by any system not far along the path to human-level AGI – yet
seems to other AGI researchers, with different conceptual perspectives, to be
something probably game-able by narrow-AI methods. And of course, given
the current state of science, there’s no way to tell which of these practical
tests really can be solved via a narrow-AI approach, except by having a lot
of people try really hard over a long period of time.

A question raised by these observations is whether there is some fundamen-
tal reason why it’s hard to make an objective, theory-independent measure of
intermediate progress toward advanced AGI. Is it just that we haven’t been
smart enough to figure out the right test – or is there some conceptual reason
why the very notion of such a test is problematic?

We don’t claim to know for sure – but in the rest of this section we’ll
outline one possible reason why the latter might be the case.

8.7.2 A Possible Answer: Cognitive Synergy is Tricky!

Why might a solid, objective empirical test for intermediate progress toward
AGI be an infeasible notion? One possible reason, we suggest, is precisely
cognitive synergy, as discussed above.

The cognitive synergy hypothesis, in its simplest form, states that human-
level AGI intrinsically depends on the synergetic interaction of multiple com-
ponents (for instance, as in the OpenCog design, multiple memory systems
each supplied with its own learning process). In this hypothesis, for instance,
it might be that there are 10 critical components required for a human-level
AGI system. Having all 10 of them in place results in human-level AGI, but
having only 8 of them in place results in having a dramatically impaired sys-
tem – and maybe having only 6 or 7 of them in place results in a system that
can hardly do anything at all.

Of course, the reality is almost surely not as strict as the simplified example
in the above paragraph suggests. No AGI theorist has really posited a list of
10 crisply-defined subsystems and claimed them necessary and sufficient for
AGI. We suspect there are many different routes to AGI, involving integration
of different sorts of subsystems. However, if the cognitive synergy hypothesis
is correct, then human-level AGI behaves roughly like the simplistic example
in the prior paragraph suggests. Perhaps instead of using the 10 components,
you could achieve human-level AGI with 7 components, but having only 5
of these 7 would yield drastically impaired functionality – etc. Or the point
could be made without any decomposition into a finite set of components,
using continuous probability distributions. To mathematically formalize the
cognitive synergy hypothesis becomes complex, but here we’re only aiming
for a qualitative argument. So for illustrative purposes, we’ll stick with the
"10 components" example, just for communicative simplicity.
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Next, let’s suppose that for any given task, there are ways to achieve this
task using a system that is much simpler than any subset of size 6 drawn
from the set of 10 components needed for human-level AGI, but works much
better for the task than this subset of 6 components(assuming the latter are
used as a set of only 6 components, without the other 4 components).

Note that this supposition is a good bit stronger than mere cognitive syn-
ergy. For lack of a better name, we’ll call it tricky cognitive synergy. The
tricky cognitive synergy hypothesis would be true if, for example, the follow-
ing possibilities were true:

• creating components to serve as parts of a synergetic AGI is harder than
creating components intended to serve as parts of simpler AI systems
without synergetic dynamics
• components capable of serving as parts of a synergetic AGI are necessarily
more complicated than components intended to serve as parts of simpler
AGI systems.

These certainly seem reasonable possibilities, since to serve as a component
of a synergetic AGI system, a component must have the internal flexibility to
usefully handle interactions with a lot of other components as well as to solve
the problems that come its way. In a CogPrime context, these possibilities ring
true, in the sense that tailoring an AI process for tight integration with other
AI processes within CogPrime , tends to require more work than preparing a
conceptually similar AI process for use on its own or in a more task-specific
narrow AI system.

It seems fairly obvious that, if tricky cognitive synergy really holds up as a
property of human-level general intelligence, the difficulty of formulating tests
for intermediate progress toward human-level AGI follows as a consequence.
Because, according to the tricky cognitive synergy hypothesis, any test is
going to be more easily solved by some simpler narrow AI process than by a
partially complete human-level AGI system.

8.7.3 Conclusion

We haven’t proved anything here, only made some qualitative arguments.
However, these arguments do seem to give a plausible explanation for the
empirical observation that positing tests for intermediate progress toward
human-level AGI is a very difficult prospect. If the theoretical notions
sketched here are correct, then this difficulty is not due to incompetence
or lack of imagination on the part of the AGI community, nor due to the
primitive state of the AGI field, but is rather intrinsic to the subject matter.
And if these notions are correct, then quite likely the future rigorous science
of AGI will contain formal theorems echoing and improving the qualitative
observations and conjectures we’ve made here.
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If the ideas sketched here are true, then the practical consequence for AGI
development is, very simply, that one shouldn’t worry a lot about producing
intermediary results that are compelling to skeptical observers. Just at 2/3
of a human brain may not be much use, similarly, 2/3 of an AGI system may
not be much use. Lack of impressive intermediary results may not imply one
is on a wrong development path; and comparison with narrow AI systems
on specific tasks may be badly misleading as a gauge of incremental progress
toward human-level AGI.

Hopefully it’s clear that the motivation behind the line of thinking pre-
sented here is a desire to understand the nature of general intelligence and
its pursuit – not a desire to avoid testing our AGI software! Really, as AGI
engineers, we would love to have a sensible rigorous way to test our interme-
diary progress toward AGI, so as to be able to pose convincing arguments
to skeptics, funding sources, potential collaborators and so forth. Our mo-
tivation here is not a desire to avoid having the intermediate progress of
our efforts measured, but rather a desire to explain the frustrating (but by
now rather well-established) difficulty of creating such intermediate goals for
human-level AGI in a meaningful way.

If we or someone else figures out a compelling way to measure partial
progress toward AGI, we will celebrate the occasion. But it seems worth seri-
ously considering the possibility that the difficulty in finding such a measure
reflects fundamental properties of general intelligence.

From a practical CogPrime perspective, we are interested in a variety of
evaluation and testing methods, including the "virtual preschool" approach
mentioned briefly above and more extensively in later chapters. However,
our focus will be on evaluation methods that give us meaningful information
about CogPrime ’s progress, given our knowledge of how CogPrime works
and our understanding of the underlying theory. We are unlikely to focus on
the achievement of intermediate test results capable of convincing skeptics of
the reality of our partial progress, because we have not yet seen any credible
tests of this nature, and because we suspect the reasons for this lack may
be rooted in deep properties of feasible general intelligence, such as tricky
cognitive synergy.





Chapter 9
General Intelligence in the Everyday
Human World

9.1 Introduction

Intelligence is not just about what happens inside a system, but also about
what happens outside that system, and how the system interacts with its
environment. Real-world general intelligence is about intelligence relative to
some particular class of environments, and human-like general intelligence
is about intelligence relative to the particular class of environments that
humans evolved in (which in recent millennia has included environments hu-
mans have created using their intelligence). In Chapter 2, we reviewed some
specific capabilities characterizing human-like general intelligence; to con-
nect these with the general theory of general intelligence from the last few
chapters, we need to explain what aspects of human-relevant environments
correspond to these human-like intelligent capabilities. We begin with aspects
of the environment related to communication, which turn out to tie in closely
with cognitive synergy. Then we turn to physical aspects of the environment,
which we suspect also connect closely with various human cognitive capabil-
ities. In the following chapter we present a deeper, more abstract theoretical
framework encompassing these ideas.

These ideas are of theoretical importance, and they’re also of practical
importance when one turns to the critical area of AGI environment design. If
one is going to do anything besides release one’s young AGI into the “wilds”
of everyday human life, then one has to put some thought into what kind of
environment it will be raised in. This may be a virtual world or it may be a
robot preschool or some other kind of physical environment, but in any case
some specific choices must be made about what to include. Specific choices
must also be made about what kind of body to give one’s AGI system –
what sensors and actuators, and so forth. In Chapter 16 we will present some
specific suggestions regarding choices of embodiment and environment that
we find to be ideal for AGI development – virtual and robot preschools –
but the material in this chapter is of more general import, beyond any such
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particularities. If one has an intuitive idea of what properties of body and
world human intelligence is biased for, then one can make practical choices
about embodiment and environment in a principled rather than purely ad
hoc or opportunistic way.

9.2 Some Broad Properties of the Everyday World That
Help Structure Intelligence

The properties of the everyday world that help structure intelligence are
diverse and span multiple levels of abstraction. Most of this chapter will
focus on fairly concrete patterns of this nature, such as are involved in inter-
agent communication and naive physics; however, it’s also worth noting the
potential importance of more abstract patterns distinguishing the everyday
world from arbitrary mathematical environments.

The propensity to search for hierarchical patterns is one huge potential
example of an abstract everyday-world property. We strongly suspect the
reason that searching for hierarchical patterns works so well, in so many
everyday-world contexts, lies in the particular structure of the everyday world
– it’s not something that would be true across all possible environments (even
if one weights the space of possible environments in some clever way, say using
program-length according to some standard computational model). However,
this sort of assertion is of course highly “philosophical,” and becomes complex
to formulate and defend convincingly given the current state of science and
mathematics.

Going one step further, we recall from Chapter 3 a structure called the
“dual network”, which consists of superposed hierarchical and heterarchical
networks: basically a hierarchy in which the distance between two nodes
in the hierarchy is correlated with the distance between the nodes in some
metric space. Another high level property of the everyday world may be that
dual network structures are prevalent. This would imply that minds biased
to represent the world in terms of dual network structure are likely to be
intelligent with respect to the everyday world.

In a different direction, the extreme commonality of symmetry groups in
the (everyday and otherwise) physical world is another example: they occur
so often that minds oriented toward recognizing patterns involving symmetry
groups are likely to be intelligent with respect to the real world.

We suspect that the number of cognitively-relevant properties of the ev-
eryday world is huge ... and that the essence of everyday-world intelligence
lies in the list of varyingly abstract and concrete properties, which must be
embedded implicitly or explicitly in the structure of a natural or artificial
intelligence for that system to have everyday-world intelligence.

Apart from these particular yet abstract properties of the everyday world,
intelligence is just about “finding patterns in which actions tend to achieve
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which goals in which situations” ... but, the simple meta-algorithm needed
to accomplish this universally is, we suggest, only a small percentage what it
takes to make a mind.

You might say that a sufficiently generally intelligent system should be
able to infer the various cognitively-relevant properties of the environment
from looking at data about the everyday world. We agree in principle, and in
fact Ben Kuipers and his colleagues have done some interesting work in this
direction, showing that learning algorithms can infer some basics about the
structure of space and time from experience [?]. But we suggest that doing
this really thoroughly would require a massively greater amount of processing
power than an AGI that embodies and hence automatically utilizes these
principles? It may be that the problem of inferring these properties is so
hard as to require a wildly infeasible AIXItl / Godel Machine type system.

9.3 Embodied Communication

Next we turn to the potential cognitive implications of seeking to achieve goals
in an environment in which multimodal communication with other agents
plays a prominent role.

Consider a community of embodied agents living in a shared world, and
suppose that the agents can communicate with each other via a set of mech-
anisms including:

• Linguistic communication , in a language whose semantics is largely
(not necessarily wholly) interpretable based on the mutually experienced
world
• Indicative communication , in which e.g. one agent points to some

part of the world or delimits some interval of time, and another agent is
able to interpret the meaning
• Demonstrative communication , in which an agent carries out a

set of actions in the world, and the other agent is able to imitate these
actions, or instruct another agent as to how to imitate these actions
• Depictive communication , in which an agent creates some sort of

(visual, auditory, etc.) construction to show another agent, with a goal
of causing the other agent to experience phenomena similar to what they
would experience upon experiencing some particular entity in the shared
environment

• Intentional communication , in which an agent explicitly communi-
cates to another agent what its goal is in a certain situation 1

It is clear that ordinary everyday communication between humans possesses
all these aspects.

1 in Appendix C we recount some interesting recent results showing that mirror neurons
fire in response to some cases of intentional communication as thus defined
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We define the Embodied Communication Prior (ECP) as the proba-
bility distribution in which the probability of an entity (e.g. a goal or environ-
ment) is proportional to the difficulty of describing that entity, for a typical
member of the community in question, using a particular set of communica-
tion mechanisms including the above five modes. We will sometimes refer to
the prior probability of an entity under this distribution, as its “simplicity”
under the distribution.

Next, to further specialize the Embodied Communication Prior, we will
assume that for each of these modes of communication, there are some aspects
of the world that are much more easily communicable using that mode than
the other modes. For instance, in the human everyday world:

• Abstract (declarative) statements spanning large classes of situations are
generally much easier to communicate linguistically

• Complex, multi-part procedures are much easier to communicate either
demonstratively, or using a combination of demonstration with other
modes

• Sensory or episodic data is often much easier to communicate demonstra-
tively

• The current value of attending to some portion of the shared environment
is often much easier to communicate indicatively

• Information about what goals to follow in a certain situation is often
much easier to communicate intentionally, i.e. via explicitly indicating
what one’s own goal is

These simple observations have significant implications for the nature of
the Embodied Communication Prior. For one thing they let us define multiple
forms of knowledge:

• Isolatedly declarative knowledge is that which is much more easily
communicable linguistically

• Isolatedly procedural knowledge is that which is much more easily
communicable demonstratively

• Isolatedly sensory knowledge is that which is much more easily com-
municable depictively

• Isolatedly attentive knowledge is that which is much more easily
communicable indicatively

• Isolatedly intentional knowledge is that which is much more easily
communicable intentionally

This categorization of knowledge types resembles many ideas from the cog-
nitive theory of memory [TC05], although the distinctions drawn here are a
little crisper than any classification currently derivable from available neuro-
logical or psychological data.

Of course there may be much knowledge, of relevance to systems seek-
ing intelligence according to the ECP, that does not fall into any of these
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categories and constitutes “mixed knowledge.” There are some very impor-
tant specific subclasses of mixed knowledge. For instance, episodic knowledge
(knowledge about specific real or hypothetical sets of events) will most eas-
ily be communicated via a combination of declarative, sensory and (in some
cases) procedural communication. Scientific and mathematical knowledge are
generally mixed knowledge, as is most everyday commonsense knowledge.

Some cases of mixed knowledge are reasonably well decomposable, in the
sense that they decompose into knowledge items that individually fall into
some specific knowledge type. For instance, an experimental chemistry pro-
cedure may be much better communicable procedurally, whereas an allied
piece of knowledge from theoretical chemistry may be much better communi-
cable declaratively; but in order to fully communicate either the experimen-
tal procedure or the abstract piece of knowledge, one may ultimately need to
communicate both aspects.

Also, even when the best way to communicate something is mixed-mode,
it may be possible to identify one mode that poses the most important part
of the communication. An example would be a chemistry experiment that
is best communicated via a practical demonstration together with a running
narrative. It may be that the demonstration without the narrative would be
vastly more valuable than the narrative without the demonstration. To cover
such cases we may make less restrictive definitions such as

• Interactively declarative knowledge is that which is much more eas-
ily communicable in a manner dominated by linguistic communication

and so forth. We call these “interactive knowledge categories,” by contrast to
the “isolated knowledge categories” introduced earlier.

9.3.0.1 Naturalness of Knowledge Categories

Next we introduce an assumption we call NKC, for Naturalness of Knowl-
edge Categories. The NKC assumption states that the knowledge in each
of the above isolated and interactive communication-modality-focused cat-
egories forms a “natural category,” in the sense that for each of these cate-
gories, there are many different properties shared by a large percentage of the
knowledge in the category, but not by a large percentage of the knowledge
in the other categories. This means that, for instance, procedural knowledge
systematically (and statistically) has different characteristics than the other
kinds of knowledge.

The NKC assumption seems commonsensically to hold true for human
everyday knowledge, and it has fairly dramatic implications for general in-
telligence. Suppose we conceive general intelligence as the ability to achieve
goals in the environment shared by the communicating agents underlying the
Embodied Communication Prior. Then, NKC suggests that the best way to
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achieve general intelligence according to the Embodied Communication Prior
is going to involve

• specialized methods for handling declarative, procedural, sensory and at-
tentional knowledge (due to the naturalness of the isolated knowledge
categories)

• specialized methods for handling interactions between different types of
knowledge, including methods focused on the case where one type of
knowledge is primary and the others are supporting (the latter due to
the naturalness of the interactive knowledge categories)

9.3.0.2 Cognitive Completeness

Suppose we conceive an AI system as consisting of a set of learning capabil-
ities, each one characterized by three features:

• One or more knowledge types that it is competent to deal with, in the
sense of the two key learning problems mentioned above

• At least one learning type : either analysis, or synthesis, or both
• At least one interaction type , for each (knowledge type, learning type)

pair it handles: “isolated” (meaning it deals mainly with that knowledge
type in isolation), or “interactive” (meaning it focuses on that knowledge
type but in a way that explicitly incorporates other knowledge types into
its process), or “fully mixed” (meaning that when it deals with the knowl-
edge type in question, no particular knowledge type tends to dominate
the learning process).

Then, intuitively, it seems to follow from the ECP with NKC that systems
with high efficient general intelligence should have the following properties,
which collectively we’ll call cognitive completeness:

• For each (knowledge type, learning type, interaction type) triple, there
should be a learning capability corresponding to that triple.

• Furthermore the capabilities corresponding to different (knowledge type,
interaction type) pairs should have distinct characteristics (since accord-
ing to the NKC the isolated knowledge corresponding to a knowledge
type is a natural category, as is the dominant knowledge corresponding
to a knowledge type)

• For each (knowledge type, learning type) pair (K,L), and each other
knowledge type K1 distinct from K, there should be a distinctive ca-
pability with interaction type “interactive” and dealing with knowledge
that is interactively K but also includes aspects of K1

Furthermore, it seems intuitively sensible that according to the ECP with
NKC, if the capabilities mentioned in the above points are reasonably able,
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then the system possessing the capabilities will display general intelligence
relative to the ECP. Thus we arrive at the hypothesis that
Under the assumption of the Embodied Communication Prior
(with the Natural Knowledge Categories assumption), the prop-
erty above called “cognitive completeness” is necessary and suffi-
cient for efficient general intelligence at the level of an inteligent
adult human (e.g. at the Piagetan formal level [Pia53].

Of course, the above considerations are very far from a rigorous mathe-
matical proof (or even precise formulation) of this hypothesis. But we are
presenting this here as a conceptual hypothesis, in order to qualitatively
guide our practical AGI R&D and also to motivate further, more rigorous
theoretical work.

9.3.1 Generalizing the Embodied Communication Prior

One interesting direction for further research would be to broaden the scope
of the inquiry, in a manner suggested above: instead of just looking at the
ECP, look at simplicity measures in general, and attack the question of how
a mind must be structured in order to display efficient general intelligence
relative to a specified simplicity measure. This problem seems unapproachable
in general, but some special cases may be more tractable.

For instance, suppose one has

• a simplicity measure that (like the ECP) is approximately decomposable
into a set of fairly distinct components, plus their interactions

• an assumption similar to NKC, which states that the entities display-
ing simplicity according to each of the distinct components, are roughly
clustered together in entity-space

Then one should be able to say that, to achieve efficient general intelli-
gence relative to this decomposable simplicity measure, a system should have
distinct capabilities corresponding to each of the components of the sim-
plicity measure interactions between these capabilities, corresponding to the
interaction terms in the simplicity measure

With copious additional work, these simple observations could potentially
serve as the seed for a novel sort of theory of general intelligence - a theory of
how the structure of a system depends on the structure of the simplicity mea-
sure with which it achieves efficient general intelligence. Cognitive Synergy
Theory would then emerge as a special case of this more abstract theory.
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9.4 Naive Physics

Multimodal communication is an important aspect of the environment for
which human intelligence evolved – but not the only one. It seems likely
that our human intelligence is also closely adapted to various aspects of our
physical environment – a matter that is worth carefully attending as we
design environments for our robotically or virtually embodied AGI systems
to operate in.

One interesting guide to the most cognitively relevant aspects of human
environments is the subfield of AI known as “naive physics” [?] – a term that
refers to the theories about the physical world that human beings implicitly
develop and utilize during their lives. For instance, when you figure out that
you need to pressure the knife slightly harder when spreading peanut butter
rather than jelly, you’re not making this judgment using Newtonian physics
or the Navier-Stokes equations of fluid dynamics; you’re using heuristic pat-
terns that you figured out through experience. Maybe you figured out these
patterns through experience spreading peanut butter and jelly in particular.
Or maybe you figured these heuristic patterns out before you ever tried to
spread peanut butter or jelly specifically, via just touching peanut butter and
jelly to see what they feel like, and then carrying out inference based on your
experience manipulating similar tools in the context of similar substances.

Other examples of similar “naive physics” patterns are easy to come by,
e.g.

1. What goes up must come down.
2. A dropped object falls straight down.
3. A vacuum sucks things towards it.
4. Centrifugal force throws rotating things outwards.
5. An object is either at rest or moving, in an absolute sense.
6. Two events are simultaneous or they are not.
7. When running downhill, one must lift one’s knees up high
8. When looking at something that you just barely can’t discern accurately,

squint

Attempts to axiomatically formulate naive physics have historically come
up short, and we doubt this is a promising direction for AGI. However, we do
think the naive physics literature does a good job of identifying the various
phenomena that the human mind’s naive physics deals with. So, from the
point of view of AGI environment design, naive physics is a useful source of
requirements. Ideally, we would like an AGI’s environment to support all the
fundamental phenomena that naive physics deals with.

We now describe some key aspects of naive physics in a more systematic
manner. Naive physics has many different formulations; in this section we
draw heavily on [SC94], who divide naive physics phenomena into 5 cate-
gories. Here we review these categories and identify a number of important
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things that humanlike intelligent agents must be able to do relative to each
of them.

9.4.1 Objects, Natural Units and Natural Kinds

One key aspect of naive physics involves recognition of various aspects of
objects, such as:

1. Recognition of objects amidst noisy perceptual data
2. Recognition of surfaces and interiors of objects
3. Recognition of objects as manipulable units
4. Recognition of objects as potential subjects of fragmentation (splitting,

cutting) and of unification (gluing, bonding)
5. Recognition of the agent’s body as an object, and as parts of the agent’s

body as objects
6. Division of universe of perceived objects into “natural kinds”, each con-

taining typical and atypical instances

9.4.2 Events, Processes and Causality

Specific aspects of naive physics related to temporality and causality are:

1. Distinguishing roughly-subjectively-instantaneous events from extended
processes

2. Identifying beginnings, endings and crossings of processes.
3. Identifying and distinguishing internal and external changes
4. Identifying and distinguishing internal and external changes relative to

one’s own body
5. Interrelating body-changes with changes in external entities

Notably, these aspects of naive physics involve a different processes oc-
curring on a variety of different time scales, intersecting in complex patterns,
and involving processes inside the agent’s body, outside the agent’s body, and
crossing the boundary of the agent’s body.

9.4.3 Stuffs, States of Matter, Qualities

Regarding the various states of matter, some important aspects of naive
physics are:
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1. Perceiving gaps between objects: holes, media, illusions like rainbows,
mirages and holograms

2. Distinguishing the manners in which different sorts of entities (e.g. smells,
sounds, light) fill space

3. Distinguishing properties such as smoothness, roughness, graininess, stick-
iness, runniness, etc.

4. Distinguishing degrees of elasticity and fragility
5. Assessing separability of aggregates

9.4.4 Surfaces, Limits, Boundaries, Media

Gibson [Gib77, Gib79] has argued that naive physics is not mainly about
objects but rather mainly about surfaces. Surfaces have a variety of aspects
and relationships that are important for naive physics, such as:

1. Perceiving and reasoning about surfaces as two-sided or one-sided inter-
faces

2. Inference of the various ecological laws of surfaces
3. Perception of various media in the world as separated by surfaces
4. Recognition of the textures of surfaces
5. Recognition of medium/surface layout relationships such as: ground, open

environment, enclosure, detached object, attached object, hollow object,
place, sheet, fissure, stick, fibre, dihedral, etc.

Fig. 9.1 One of Sloman’s example test domains for real-world inference. Left: a number
of pins and a rubber band to be stretched around them. Right: use of the pins and rubber
band to make a letter T.

As a concrete, evocative “toy” example of naive everyday knowledge about
surfaces and boundaries, consider Sloman’s [Slo08] example scenario, depicted
in Figure 9.1 and drawn largely from [SS74] (see also related discussion in
[?], in which “A child can be given one or more rubber bands and a pile of
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pins, and asked to use the pins to hold the band in place to form a particular
shape.... For example, things to be learnt could include”:

1. There is an area inside the band and an area outside the band
2. The possible effects of moving a pin that is inside the band towards or

further away from other pins inside the band. (The effects can depend on
whether the band is already stretched.)

3. The possible effects of moving a pin that is outside the band towards or
further away from other pins inside the band.

4. The possible effects of adding a new pin, inside or outside the band, with
or without pushing the band sideways with the pin first.

5. The possible effects of removing a pin, from a position inside or outside
the band.

6. Patterns of motion/change that can occur and how they affect local and
global shape (e.g. introducing a concavity or convexity, introducing or
removing symmetry, increasing or decreasing the area enclosed).

7. The possibility of causing the band to cross over itself. (NB: Is an odd
number of crosses possible?)

8. How adding a second, or third band can enrich the space of structures,
processes and effects of processes.

9.4.5 What Kind of Physics Is Needed to Foster
Human-like Intelligence?

We stated above that we would like an AGI’s environment to support all the
fundamental phenomena that naive physics deals with; and we have now re-
viewed a number of these specific phenomena. But it’s not entirely clear what
the “fundamental” aspects underlying these phenomena’ are. One important
question in the environment-design context is how close an AGI environment
needs to stick to the particulars of real-world naive physics. Is it important
that a young AGI can play with the specific differences between spreading
peanut butter versus jelly? Or is it enough that it can play with spreading
and smearing various substances of different consistencies? How close does
the analogy between an AGI environment’s naive physics and real-world naive
physics need to be? This is a question to which we have no scientific answer
at present. Our own working hypothesis is that the analogy does not need to
be extremely close, and with this in mind in Chapter 16 we propose a virtual
environment BlocksNBeadsWorld that encompasses all the basic conceptual
phenomena of real-world naive physics, but does not attempt to emulate their
details.

Framed in terms of human psychology rather than environment design,
the question becomes: At what level of detail must one model the physical
world to understand the ways in which human intelligence has adapted to



200 9 General Intelligence in the Everyday Human World

the physical world?. Our suspicion, which underlies our BlocksNBeadsWorld
design, is that it’s approximately enough to have

• Newtonian physics, or some close approximation
• Matter in multiple phases and forms vaguely similar to the ones we see

in the real world: solid, liquid, gas, paste, goo, etc.
• Ability to transform some instances of matter from one form to another
• Ability to flexibly manipulate matter in various forms with various solid

tools
• Ability to combine instances of matter into new ones in a fairly rich way:

e.g. glue or tie solids togethermix liquids together, etc.
• Ability to position instances of matter with respect to each other in a

rich way: e.g. put liquid in a solid cavity, cover something with a lid or a
piece of fabric, etc.

It seems to us that if the above are present in an environment, then an
AGI seeking to achieve appropriate goals in that environment will be likely to
form an appropriate “human-like physical-world intuition." We doubt that the
specifics of the naive physics of different forms of matter are critical to human-
like intelligence. But, we suspect that a great amount of unconscious human
metaphorical thinking is conditioned on the fact that humans evolved around
matter that takes a variety of forms, can be changed from one form to another,
and can be fairly easily arranged and composited to form new instances
from prior ones. Without many diverse instances of matter transformation,
arrangement and composition in its experience, an AGI is unlikely to form
an internal “metaphor-base” even vaguely similar to the human one – so that,
even if it’s highly intelligent, its thinking will be radically non-human-like in
character.

Naturally this is all somewhat speculative and must be explored via ex-
perimentation. Maybe an elaborate blocks-world with only solid objects will
be sufficient to create human-level, roughly human-like AGI with rich spa-
tiotemporal and manipulative intuition. Or maybe human intelligence is more
closely adapted to the specifics of our physical world – with water and dirt
and plants and hair and so forth – than we currently realize. One thing that is
very clear is that, as we proceed with embodying, situating and educating our
AGI systems, we need to pay careful attention to the way their intelligence
is conditioned by their environment.

9.5 Folk Psychology

Related to naive physics is the notion of “naive psychology” or “folk psychol-
ogy” [Rav04], which includes for instance the following aspects:

1. Mental simulation of other agents
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2. Mental theory regarding other agents
3. Attribution of beliefs, desires and intentions (BDI) to other agents via

theory or simulation
4. Recognition of emotions in other agents via their physical embodiment
5. Recognition of desires and intentions in other agents via their physical

embodiment
6. Analogical and contextual inferences between self and other, regarding

BDI and other aspects
7. Attribute causes and meanings to other agents behaviors
8. Anthropomorphize non-human, including inanimate objects

The main special requirement placed on an AGI’s embodiment by the
above aspects pertains to the ability of agents to express their emotions and
intentions to each other. Humans do this via facial expressions and gestures.

9.5.1 Motivation, Requiredness, Value

Relatedly to folk psychology, Gestalt [?] and ecological [Gib77, Gib79] psy-
chology suggest that humans perceive the world substantially in terms of the
affordances it provides them for goal-directed action. This suggests that, to
support human-like intelligence, an AGI must be capable of:

1. Perception of entities in the world as differentially associated with goal-
relevant value

2. Perception of entities in the world in terms of the potential actions they
afford the agent, or other agents

The key point is that entities in the world need to provide a wide variety
of ways for agents to interact with them, enabling richly complex perception
of affordances.

9.6 Body and Mind

The above discussion has focused on the world external to the body of the
AGI agent embodied and embedded in the world, but the issue of the AGIs
body also merits consideration. There seems little doubt that a human’s
intelligence is highly conditioned by the particularities human body.

Here the requirements seem fairly simple: while surely not strictly nec-
essary, it would certainly be preferable to provide an AGI with fairly rich
analogues of the human senses of touch, sight, sound, kinesthesia, taste and
smell. Each of these senses provides different sorts of cognitive stimulation
to the human mind; and while similar cognitive stimulation could doubtless
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be achieved without analogous senses, the provision of such seems the most
straightforward approach. It’s hard to know how much of human intelligence
is specifically biased to the sorts of outputs provided by human senses.

As vision already is accorded such a prominent role in the AI and cognitive
science literature – and is discussed in moderate depth in Chapter 26 of Part
2, we won’t take time elaborating on the importance of vision processing for
humanlike cognition. The key thing an AGI requires to support humanlike
“visual intelligence” is an environment containing a sufficiently robust collec-
tion of materials that object and event recognition and identification become
interesting problems.

Audition is cognitively valuable for many reasons, one of which is that it
gives a very rich and precise method of sensing the world that is different from
vision. The fact that humans can display normal intelligence while totally
blind or totally deaf is an indication that, in a sense, vision and audition
are redundant for understanding the everyday world. However, it may be
important that the brain has evolved to account for both of these senses,
because this forced it to account for the presence of two very rich and precise
methods of sensing the world – which may have forced it to develop more
abstract representation mechanisms than would have been necessary with
only one such method.

Touch is a sense that is, in our view, generally badly underappreciated
within the AI community. In particular the cognitive robotics community
seems to worry too little about the terribly impoverished sense of touch pos-
sessed by most current robots (though fortunately there are recent technolo-
gies that may help improve robots in this regard; see e.g. [Nan08]). Touch
is how the human infant learns to distinguish self from other, and in this
way it is the most essential sense for the establishment of an internal self-
model. Touching others’ bodies is a key method for developing a sense of
the emotional reality and responsiveness of others, and is hence key to the
development of theory of mind and social understanding in humans. For this
reason, among others, human children lacking sufficient tactile stimulation
will generally wind up badly impaired in multiple ways. A good-quality em-
bodiment should supply an AI agent with a body that possesses skin, which
has varying levels of sensitivity on different parts of the skin (so that it can
effectively distinguish between reality and its perception thereof in a tactile
context); and also varying types of touch sensors (e.g. temperature versus
friction), so that it experiences textures as multidimensional entities.

Related to touch, kinesthesia refers to direct sensation of phenomena hap-
pening inside the body. Rarely mentioned in AI, this sense seems quite critical
to cognition, as it underpins many of the analogies between self and other
that guide cognition. Again, it’s not important that an AGI’s virtual body
have the same internal body parts as a human body. But it seems valuable
to have the AGI’s virtual body display some vaguely human-body-like prop-
erties, such as feeling internal strain of various sorts after getting exercise,
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feeling discomfort in certain places when running out of energy, feeling inter-
nally different when satisfied versus unsatisfied, etc.

Next, taste is a cognitively interesting sense in that it involves the in-
terplay between the internal and external world; it involves the evaluation
of which entities from the external world are worthy of placing inside the
body. And smell is cognitively interesting in large part because of its rela-
tionship with taste. A smell is, among other things, a long-distance indicator
of what a certain entity might taste like. So, the combination of taste and
smell provides means for conceptualizing relationships between self, world
and distance. However, our sense is that these are cognitive niceties rather
than necessities, so that the provision of an AGI with humanlike taste and
smell is almost surely cognitively irrelevant.

9.7 The Extended Mind and Body

Finally, Hutchins [Hut95], Logan [Log07] and others have promoted a view
of human intelligence that views the human mind as extended beyond the
individual body, incorporating social interactions and also interactions with
inanimate objects, such as tools, plants and animals. This leads to a number
of requirements for a humanlike AGI’s environment:

1. The ability to create a variety of different tools for interacting with various
aspects of the world in various different ways, including tools for making
tools and ultimately machinery

2. The existence of other mobile, virtual life-forms in the world, including
simpler and less intelligent ones, and ones that interact with each other
and with the AGI

3. The existence of organic growing structures in the world, with which
the AGI can interact in various ways, including halting their growth or
modifying their growth pattern

How necessary these requirements are is hard to say – but it is clear that
these things have played a major role in the evolution of human intelligence.

9.8 Conclusion

Happily, this long and diverse chapter supports a simple, albeit tentative
conclusion. Our suggestion is that, if an AGI is

• placed in an environment capable of roughly supporting multimodal com-
munication and vaguely (but not necessarily precisely) real-world-ish
naive physics
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• surrounded with other intelligent agents of varying levels of complexity,
and other complex, dynamic structures to interface with

• given a body that can perceive this environment through some forms of
sight, sound and touch; and perceive itself via some form of kinesthesia

• given a motivational system that encourages it to make rich use of these
aspects of its environment

then the AGI is likely to have an experience-base reinforcing the key induc-
tive biases provided by the everyday world for the guidance of humanlike
intelligence.



Chapter 10
A Mind-World Correspondence
Principle

10.1 Introduction

Real-world minds are always adapted to certain classes of environments and
goals. The ideas of the previous chapter, regarding the connection between a
human-like intelligence’s internals and its environment, result from exploring
the implications of this adaptation in the context of the cognitive synergy
concept. In this chapter we explore the mind-world connection in a broader
and more abstract way – making a more ambitious attempt to move toward
a "general theory of general intelligence."

One basic premise here, as in the preceding chapters is: Even a system of
vast general intelligence, subject to real-world space and time constraints, will
necessarily be more efficient at some kinds of learning than others. Thus, one
approach to formulating a general theory of general intelligence is to look at
the relationship between minds and worlds Ð where a ÒworldÓ is conceived
as an environment and a set of goals defined in terms of that environment.

In this spirit, we here formulate a broad principle binding together worlds
and the minds that are intelligent in thee worlds. The ideas of the previous
chapter constitute specific, concrete instantiations of this general principle.
A careful statement of the principle requires introduction of a number of
technical concepts, and will be given later on in the chapter. A crude, informal
version of the principle would be:

MIND-WORLD CORRESPONDENCE-PRINCIPLE

. For a mind to work intelligently toward certain goals in a certain world, there
should be a nice mapping from goal-directed sequences of world-states into se-
quences of mind-states, where ÒniceÓ means that a world-state-sequence W
composed of two parts W1 and W2, gets mapped into a mind-state-sequence
M composed of two corresponding parts M1 and M2.
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What’s nice about this principle is that it relates the decomposition of the
world into parts, to the decomposition of the mind into parts.

10.2 What Might a General Theory of General
Intelligence Look Like?

It’s not clear, at this point, what a real Ògeneral theory of general intel-
ligenceÓ would look like – but one tantalizing possibility is that it might
confront the two questions:

• How does one design a world to foster the development of a certain sort
of mind?

• How does one design a mind to match the particular challenges posed by
a certain sort of world?

One way to achieve this would be to create a theory that, given a description
of an environment and some associated goals, would output a description
of the structure and dynamics that a system should possess to be intelli-
gent in that environment relative to those goals, using limited computational
resources.

Such a theory would serve a different purpose from the mathematical the-
ory of "universal intelligence" developed by Marcus Hutter [Hut05] and oth-
ers. For all its beauty and theoretical power, that approach currently it gives
useful conclusions only about general intelligences with infinite or infeasibly
massive computational resources. On the other hand, the approach suggested
here is aimed toward creation of a theory of real-world general intelligences
utilizing realistic amounts of computational power, but still possessing gen-
eral intelligence comparable to human beings or greater.

This reflects a vision of intelligence as largely concerned with adaptation
to particular classes of environments and goals. This may seem contradictory
to the notion of ÒgeneralÓ intelligence, but I think it actually embodies a
realistic understanding of general intelligence. Maximally general intelligence
is not pragmatically feasible; it could only be achieved using infinite compu-
tational resources [Hut05]. Real-world systems are inevitably limited in the
intelligence they can display in any real situation, because real situations in-
volve finite resources, including finite amounts of time. One may say that, in
principle, a certain system could solve any problem given enough resources
and time Ð but, even when this is true, it’s not necessarily the most inter-
esting way to look at the system’s intelligence. It may be more important to
look at what a system can do given the resources at its disposal in reality.
And this perspective leads one to ask questions like the ones posed above:
which bounded-resources systems are well-disposed to display intelligence in
which classes of situations?
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As noted in Chapter 7 above, one can assess the generality of a system’s
intelligence via looking at the entropy of the class of situations across which
it displays a high level of intelligence (where “high” is measured relative to its
total level of intelligence across all situations). A system with a high generality
of intelligence will tend to be roughly equally intelligent across a wide variety
of situations; whereas a system with lower generality of intelligence will tend
to be much more intelligent in a small subclass of situations, than in any other.
The definitions given above embody this notion in a formal and quantitative
way.

If one wishes to create a general theory of general intelligence according
to this sort of perspective, the main question then becomes how to represent
goals/environments and systems in such a way as to render transparent the
natural correspondence between the specifics of the former and the latter, in
the context of resource-bounded intelligence. This is the business of the next
section.

10.3 Steps Toward A (Formal) General Theory of
General Intelligence

Now begins the formalism. At this stage of development of the theory pro-
posed in this chapter, mathematics is used mainly as a device to ensure clarity
of expression. However, once the theory is further developed, it may possibly
become useful for purposes of calculation as well.

Suppose one has any system S (which could be an AI system, or a human,
or an environment that a human or AI is interacting with, or the combination
of an environment and a human or AI’s body, etc.). One may then construct
an uncertain transition graph associated with that system S, in the following
way:

• The nodes of the graph represent fuzzy sets of states of system S (I’ll call
these Òstate-setsÓ from here on, leaving the fuzziness implicit)
• The (directed) links of the graph represent probabilistically weighted

transitions between state-sets

Specifically, the weight of the link from A to B should be defined as

P (o(S,A, t(T ))|o(S,B, T ))

where

o(S,A, T )

denotes the presence of the system S in the state-set A during time-
distribution T , and t() is a temporal succession function defined so that t(T )
refers to a time-distribution conceived as ÒafterÓ T . A time-distribution is
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a probability distribution over time-points. The interaction of fuzziness and
probability here is fairly straightforward and may be handled in the manner
of PLN, as outlined in subsequent chapters. Note that the definition of link
weights is dependent on the specific implementation of the temporal succes-
sion function, which includes an implicit time-scale.

Suppose one has a transition graph corresponding to an environment; then
a goal relative to that environment may be defined as a particular node in
the transition graph. The goals of a particular system acting in that en-
vironment may then be conceived as one or more nodes in the transition
graph. The system’s situation in the environment at any point in time may
also be associated with one or more nodes in the transition graph; then, the
system’s movement toward goal-achievement may be associated with paths
through the environment’s transition graph leading from its current state to
goal states.

It may be useful for some purposes to filter the uncertain transition graph
into a crisp transition graph by placing a threshold on the link weights, and
removing links with weights below the threshold.

The next concept to introduce is the world-mind transfer function, which
maps world (environment) state-sets into organism (e.g. AI system) state-sets
in a specific way. Given a world state-setW , the world-mind transfer function
M mapsW into various organism state-sets with various probabilities, so that
we may say: M(W ) is the probability distribution of state-sets the organism
tends to be in, when its environment is in state-set W . (Recall also that
state-sets are fuzzy.)

Now one may look at the spaces of world-paths and mind-paths. A world-
path is a path through the world’s transition graph, and a mind-path is a
path through the organism’s transition graph. Given two world-paths P and
Q, it’s obvious how to define the composition P ∗Q Ð one follows P and then,
after that, follows Q, thus obtaining a longer path. Similarly for mind-paths.

In category theory terms, we are constructing the free category associated
with the graph: the objects of the category are the nodes, and the morphisms
of the category are the paths. And category theory is the right way to be
thinking here Ð we want to be thinking about the relationship between the
world category and the mind category.

The world-mind transfer function can be interpreted as a mapping from
paths to subgraphs: Given a world-path, it produces a set of mind state-sets,
which have a number of links between them. One can then define a world-
mind path transfer function M(P ) via taking the mind-graph M(nodes(P )),
and looking at the highest-weight path spanningM(nodes(P )). (Here nodes?
obviously means the set of nodes of the path P .)

A functor F between the world category and the mind category is a map-
ping that preserves object identities and so that

F (P ∗Q) = F (P ) ∗ F (Q)
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We may also introduce the notion of an approximate functor, meaning a
mapping F so that the average of

d(F (P ∗Q), F (P ) ∗ F (Q))

is small.
One can introduce a prior distribution into the average here. This could

be the Levin universal distribution or some variant (the Levin distribution
assigns higher probability to computationally simpler entities). Or it could be
something more purpose specific: for example, one can give a higher weight to
paths leading toward a certain set of nodes (e.g. goal nodes). Or one can use
a distribution that weights based on a combination of simplicity and direct-
edness toward a certain set of nodes. The latter seems most interesting, and
I will define a goal-weighted approximate functor as an approximate functor,
defined with averaging relative to a distribution that balances simplicity with
directedness toward a certain set of goal nodes.

The move to approximate functors is simple conceptually, but mathemat-
ically it’s a fairly big step, because it requires us to introduce a geometric
structure on our categories. But there are plenty of natural metrics defined
on paths in graphs (weighted or not), so there’s no real problem here.

10.4 The Mind-World Correspondence Principle

Now we finally have the formalism set up to make a non-trivial statement
about the relationship between minds and worlds. Namely, the hypothesis
that:

MIND-WORLD CORRESPONDENCE PRINCIPLE

: For an organism with a reasonably high level of intelligence in a certain
world, relative to a certain set of goals, the mind-world path transfer function
is a goal-weighted approximate functor

That is, a little more loosely: the hypothesis is that, for intelligence to
occur, there has to be a natural correspondence between the transition-
sequences of world-states and the corresponding transition-sequences of mind-
states, at least in the cases of transition-sequences leading to relevant goals.

We suspect that a variant of the above proposition can be formally proved,
using the definition of general intelligence presented in Chapter 7. The proof
of a theorem corresponding to the above would certainly constitute an in-
teresting start toward a general formal theory of general intelligence. Note
that proving anything of this nature would require some attention to the
time-scale-dependence of the link weights in the transition graphs involved.
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A formally proved variant of the above proposition would be in short, a
"MIND-WORLD CORRESPONDENCE THEOREM."

Recall that at the start of the chapter, we expressed the same idea as:

MIND-WORLD CORRESPONDENCE-PRINCIPLE

: For a mind to work intelligently toward certain goals in a certain world, there
should be a nice mapping from goal-directed sequences of world-states into se-
quences of mind-states, where ÒniceÓ means that a world-state-sequence W
composed of two parts W1 and W2, gets mapped into a mind-state-sequence
M composed of two corresponding parts M1 and M2.

That is a reasonable gloss of the principle, but it’s clunkier and less ac-
curate, than the statement in terms of functors and path transfer functions,
because it tries to use only common-language vocabulary, which doesn’t really
contain all the needed concepts.

10.5 How Might the Mind-World Correspondence
Principle Be Useful?

Suppose one believes the Mind-World Correspondence Principle as laid out
above Ð so what?

Our hope, obviously, is that the principle could be useful in actually fig-
uring out how to architect intelligent systems biased toward particular sorts
of environment. And of course, this is said with the understanding that any
finite intelligence must be biased toward some sorts of environment.

Relatedly, given a specific AGI design (such as CogPrime ), one could use
the principle to figure out which environments it would be best suited for. Or
one could figure out how to adjust the particulars of the design, to maximize
the system’s intelligence in the environments of interest.

One next step in developing this network of ideas, aside from (and poten-
tially building on) full formalization of the principle, would be an exploration
of real-world environments in terms of transition graphs. What properties do
the transition graphs induced from the real world have?

One such property, we suggest, is successive refinement. Often the path
toward a goal involves first gaining an approximate understanding of a sit-
uation, then a slightly more accurate understanding, and so forth Ð until
finally one has achieved a detailed enough understanding to actually achieve
the goal. This would be represented by a world-path whose nodes are state-
sets involving the gathering of progressively more detailed information.

Via pursuing to the mind-world correspondence property in this context,
I believe we will find that world-paths reflecting successive refinement cor-
respond to mind-paths embodying successive refinement. This will be found
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to relate to the hierarchical structures found so frequently in both the phys-
ical world and the human mind-brain. Hierarchical structures allow many
relevant goals to be approached via successive refinement, which I believe is
the ultimate reason why hierarchical structures are so common in the human
mind-brain.

Another next step would be exploring what mind-world correspondence
means for the structure and dynamics of a limited-resources intelligence. If
an organism Ohas limited resources and, to be intelligent, needs to make

P (o(O,M(A), t(T ))|o(O,M(B), T ))

high for particular world state-sets A and B, then what’s the organism’s
best approach? Arguably, it should represent M(A) and M(B) internally in
such a way that very little computational effort is required for it to transition
between M(A) and M(B). For instance, this could be done by coding its
knowledge in such a way that M(A) and M(B) share many common bits; or
it could be done in other more complicated ways.

If, for instance, A is a subset of B, then it may prove beneficial for the
organism to represent M(A) physically as a subset of its representation of
M(B).

Pursuing this line of thinking, one could likely derive specific properties
of an intelligent organism’s internal information-flow, from properties of the
environment and goals with respect to which it’s supposed to be intelligent.

This would allow us to achieve the holy grail of intelligence theory as I
understand it: given a description of an environment and goals, to be able
to derive an architectural description for an organism that will display a
high level of intelligence relative to those goals, given limited computational
resources.

While this “holy grail” is obviously a far way off, what we’ve tried to do
here is outline a clear mathematical and conceptual direction for moving
toward it.

10.6 Conclusion

The Mind-World Correspondence Principle presented here – if in the vicinity
of correctness – constitutes a non-trivial step toward fleshing out the concept
of a general theory of general intelligence. But obviously the theory is still
rather abstract, and also not completely rigorous. There’s a lot more work to
be done.

The Mind-World Correspondence Principle as articulated above is not
quite a formal mathematical statement. It would take a little work to put
in all the needed quantifiers to formulate it as one, and it’s not clear the
best way to do so Ð the details would perhaps become clear in the course
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of trying to prove a version of it rigorously. One could interpret the ideas
presented in this chapter as a philosophical theory that hopes to be turned
into a mathematical theory and to play a key role in a scientific theory.

For the time being, the main role to be served by these ideas is qualitative:
to help us think about concrete AGI designs like CogPrime in a sensible way.
It’s important to understand what the goal of a real-world AGI system needs
to be: to achieve the ability to broadly learn and generalize, yes, but not with
infinite capability É rather with biases and patterns that are implicitly and/or
explicitly tuned to certain broad classes of goals and environments. The Mind-
World Correspondence Principle tells us something about what this "tuning"
should involve – namely, making a system possessing mind-state sequences
that correspond meaningfully to world-state sequences. CogPrime ’s overall
design and particular cognitive processes are reasonably well interpreted as
an attempt to achieve this for everyday human goals and environments.

One way of extending these theoretical ideas into a more rigorous theory is
explored in Appendix B. The key ideas involved there are: modeling multiple
memory types as mathematical categories (with functors mapping between
them), modeling memory items as probability distributions, and measuring
distance between memory items using two metrics, one based on algorithmic
information theory and one on classical information geometry. Building on
these ideas, core hypotheses are then presented:

• a syntax-semantics correlation principle, stating that in a successful
AGI system, these two metrics should be roughly correlated

• a cognitive geometrodynamics principle, stating that on the whole
intelligent minds tend to follow geodesics (shortest paths) in mindspace,
according to various appropriately defined metrics (e.g. the metric mea-
suring the distance between two entities in terms of the length and/or
runtime of the shortest programs computing one from the other).

• a cognitive synergy principle, stating that shorter paths may be found
through the composite mindspace formed by considering multiple mem-
ory types together, than by following the geodesics in the mindspaces
corresponding to individual memory types.

The material is relegated to an appendix because it is so speculative, and
it’s not yet clear whether it will really be useful in advancing or interpreting
CogPrime or other AGI systems (unlike the material from the present chap-
ter, which has at least been useful in interpreting and tweaking the CogPrime
design, even though it can’t be claimed that CogPrime was derived directly
from these theoretical ideas). However, this sort of speculative exploration is,
in our view, exactly the sort of thing that’s needed as a first phase in tran-
sitioning the ideas of the present chapter into a more powerful and directly
actionable theory.
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Chapter 11
Stages of Cognitive Development

Co-authored with Stephan Vladimir Bugaj

11.1 Introduction

Creating AGI, we have said, is not only about having the right structural
and dynamical possibilities implemented in the initial version of one’s sys-
tem – but also about the environment and embodiment that one’s system
is associated with, and the match between the system’s internals and these
externals. Another key aspect is the long-term time-course of the system’s
evolution over time, both in its internals and its external interaction – i.e.,
what is known as development.

Development is a critical topic in our approach to AGI because we believe
that much of what constitutes human-level, human-like intelligence emerges
in an intelligent system due to its engagement with its environment and
its environment-coupled self-organization. So, it’s not to be expected that
the initial version of an AGI system is going to display impressive feats of
intelligence, even if the engineering is totally done right. A good analogy is
the apparent unintelligence of a human baby. Yes, scientists have discovered
that human babies are capable of interesting and significant intelligence –
but one has to hunt to find it ... at first observation, babies are rather idiotic
and simple-minded creatures: much less intelligent-appearing than lizards or
fish, maybe even less than cockroaches....

If the goal of an AGI project is to create an AGI system that can pro-
gressively develop advanced intelligence through learning in an environment
richly populated with other agents and various inanimate stimuli and interac-
tive entities – then an understanding of the nature of cognitive development
becomes extremely important to that project.

Unfortunately, contemporary cognitive science contains essentially no the-
ory of “abstract developmental psychology” which can conveniently be applied
to understand developing AIs. There is of course an extensive science of hu-
man developmental psychology, and so it is a natural research program to
take the chief ideas from the former and inasmuch as possible port them to
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the AGI domain. This is not an entirely simple matter both because of the
differences between humans and AI’s and because of the unsettled nature
of contemporary developmental psychology theory. But it’s a job that must
(and will) be done, and the ideas in this chapter may contribute toward this
effort.

We will begin here with Piaget’s well-known theory of human cognitive
development, presenting it in a general systems theory context, then intro-
ducing some modifications and extensions and discussing some other relevant
work.

11.2 Piagetan Stages in the Context of a General
Systems Theory of Development

Our review of AGI architectures in Chapter 4 focused heavily on the concept
of symbolism, and the different ways in which different classes of cognitive
architecture handle symbol representation and manipulation. We also feel
that symbolism is critical to the notion of AGI development – and even more
broadly, to the systems theory of development in general.

As a broad conceptual perspective on development, we suggest that one
may view the development of a complex information processing system, em-
bedded in an environment, in terms of the stages:

• automatic: the system interacts with the environment by “instinct”, ac-
cording to its innate programming

• adaptive: the system internally adapts to the environment, then inter-
acting with the environment in a more appropriate way

• symbolic: the system creates internal symbolic representations of it-
self and the environment, which in the case of a complex, appropriately
structured environment, allows it to interact with the environment more
intelligently

• reflexive: the system creates internal symbolic representations of its own
internal symbolic representations, thus achieving an even higher degree
of intelligence

Sketched so broadly these are not precisely defined categories but rather
heuristic, intuitive categories. Formalizing them would be possible but would
lead us too far astray here.

One can interpret these stages in a variety of different contexts. Here our
focus is the cognitive development of humans and human-like AGI systems,
but in Table 11.1 we present them in a slightly more general context, using
two examples: the Piagetan example of the human (or humanlike) mind as it
develops from infancy to maturity; and also the example of the “origin of life”
and the development of life from proto-life up into its modern form. In any
event, we allude to this more general perspective on development here mainly
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to indicate our view that the Piagetan perspective is not something ad hoc
and arbitrary, but rather can plausibly be seen as a specific manifestation of
more fundamental principles of complex systems development.

Stage General Description Cognitive Develop-
ment

Origin of Life

Automatic System-environment
information exchange
controlled mainly by
innate system struc-
tures or environment

Piagetan infantile
stage

Self-organizing proto-
life system, e.g. Oparin
[Opa52] water droplet,
or Cairns-Smith [?]
clay-based protolife

Adaptive System-environment
info exchange heavily
guided by adaptively
internally-created
system structures

Piagetan “concrete op-
erational” stage: sys-
tematic internal world-
model guides world-
exploration

Simple autopoietic sys-
tem, e.g. Oparin wa-
ter droplet w/ basic
metabolism

Symbolic Internal symbolic rep-
resentation of informa-
tion exchange process

Piagetan formal stage:
explicit logical/experi-
mental learning about
how to cognize in var-
ious contexts

Genetic code: inter-
nal entities that “stand
for” aspects of organ-
ism and environment,
thus enabling complex
epigenesis

Reflexive Thoroughgoing self-
modification based
on this symbolic
representation

Piagetan post-formal
stage: purposive self-
modification of basic
mental processes

Genes+memes: genetic
code-patterns guide
their own modification
via influencing culture

Table 11.1 General Systems Theory of Development: Parallels Between Development of
Mind and Origin of Life

11.3 Piaget’s Theory of Cognitive Development

The ghost of Jean Piaget hangs over modern developmental psychology in a
yet unresolved way. Piaget’s theories provide a cogent overarching perspective
on human cognitive development, coordinating broad theoretical ideas and
diverse experimental results into a unified whole [Pia55]. Modern experimen-
tal work has shown Piaget’s ideas to be often oversimplified and incorrect.
However, what has replaced the Piagetan understanding is not an alterna-
tive unified and coherent theory, but a variety of microtheories addressing
particular aspects of cognitive development. For this reason a number of con-
temporary theorists taking a computer science [Shu03] or dynamical systems
[Wit07] approach to developmental psychology have chosen to adopt the Pi-
agetan framework in spite of its demonstrated shortcomings, both because of
its conceptual strengths and for lack of a coherent, more rigorously grounded
alternative.
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Our own position is that the Piagetan view of development has some fun-
damental truth to it, which is reflected via how nicely it fits with a broader
view of development in complex systems. Indeed, Piaget viewed is develop-
mental stages as as emerging from general “algebraic” principles rather than
as being artifacts of the particulars of human psychology. But, Piaget’s stages
are probably best viewed as a general interpretive framework rather than a
precise scientific theory. Our suspicion is that once the empirical science of
developmental psychology has progressed further, it will become clearer how
to fit the various data into a broad Piaget-like framework, perhaps differing
in many details from what Piaget described in his works.

Piaget conceived of child development in four stages, each roughly iden-
tified with an age group, and corresponding closely to the system-theoretic
stages mentioned above:

• infantile, corresponding to the automatic stage mentioned above

– Example: Grasping blocks, piling blocks on top of each other, copying
words that are heard

• preoperational and concrete operational, corresponding to the adap-
tive stage mentioned above

– Example: Building complex blocks structures, from imagination and
from imitating objects and pictures and based on verbal instructions;
verbally describing what has been constructed

• formal, corresponding to the symbolic stage mentioned above

– Example: Writing detailed instructions in words and diagrams, ex-
plaining how to construct particular structures out of blocks; figuring
out general rules describing which sorts of blocks structures are likely
to be most stable

• the reflexive stage mentioned above corresponds to what some post-
Piagetan theorists have called the post-formal stage

– Example: Using abstract lessons learned from building structures out
of blocks to guide the construction of new ways to think and under-
stand – “Zen and the art of blocks building” (by analogy to Zen in
the Art of Motorcycle Maintenance [Pir84]).

More explicitly, Piaget defined his stages in psychological terms roughly
as follows:

• Infantile: In this stage a mind develops basic world-exploration driven
by instinctive actions. Reward-driven reinforcement of actions learned
by imitation, simple associations between words and objects, actions and
images, and the basic notions of time, space, and causality are developed.
The most simple, practical ideas and strategies for action are learned.
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Fig. 11.1 Piagetan Stages of Cognitive Development

• Preoperational: At this stage we see the formation of mental repre-
sentations, mostly poorly organized and un-abstracted, building mainly
on intuitive rather than logical thinking. Word-object and image-object
associations become systematic rather than occasional. Simple syntax is
mastered, including an understanding of subject-argument relationships.
One of the crucial learning achievements here is “object permanence”–
infants learn that objects persist even when not observed. However, a
number of cognitive failings persist with respect to reasoning about logical
operations, and abstracting the effects of intuitive actions to an abstract
theory of operations.

• Concrete: More abstract logical thought is applied to the physical world
at this stage. Among the feats achieved here are: reversibility–the ability
to undo steps already done; conservation–understanding that properties
can persist in spite of appearances; theory of mind–an understanding of
the distinction between what I know and what others know (If I cover my
eyes, can you still see me?). Complex concrete operations, such as putting
items in height order, are easily achievable. Classification becomes more
sophisticated, yet the mind still cannot master purely logical operations
based on abstract logical representations of the observational world.

• Formal: Abstract deductive reasoning, the process of forming, then test-
ing hypotheses, and systematically reevaluating and refining solutions,
develops at this stage, as does the ability to reason about purely abstract
concepts without reference to concrete physical objects. This is adult
human-level intelligence. Note that the capability for formal operations
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is intrinsic in the PLN component of CogPrime , but in-principle capa-
bility is not the same as pragmatic, grounded, controllable capability.

Very early on, Vygotsky [Vyg86] disagreed with Piaget’s explanation of his
stages as inherent and developed by the child’s own activities, and Piaget’s
prescription of good parenting as not interfering with a child’s unfettered ex-
ploration of the world. Some modern theorists have critiqued Piaget’s stages
as being insufficiently socially grounded, and these criticisms trace back to
Vygotsky’s focus on the social foundations of intelligence, on the fact that
children function in a world surrounded by adults who provide a cultural
context, offering ongoing assistance, critique, and ultimately validation of
the child’s developmental activities.

Vygotsky also was an early critic of the idea that cognitive development
is continuous, and continues beyond Piaget’s formal stage. Gagne [RBW92]
also believes in continuity, and that learning of prerequisite skills made the
learning of subsequent skills easier and faster without regard to Piagetan
stage formalisms. Subsequent researchers have argued that Piaget has merely
constructed ad hoc descriptions of the sequential development of behaviour
[Gib78, Bro84, CP05]. We agree that learning is a continuous process, and
our notion of stages is more statistically constructed than rigidly quantized.

Critique of Piaget’s notion of transitional “half stages” is also relevant to a
more comprehensive hierarchical view of development. Some have proposed
that Piaget’s half stages are actually stages [Bro84]. As Commons and Pekker
[CP05] point out: “the definition of a stage that was being used by Piaget was
based on analyzing behaviors and attempting to impose different structures
on them. There is no underlying logical or mathematical definition to help in
this process . . . ” Their Hierarchical Complexity development model uses task
achievement rather than ad hoc stage definition as the basis for constructing
relationships between phases of developmental ability–an approach which we
find useful, though our approach is different in that we define stages in terms
of specific underlying cognitive mechanisms.

Another critique of Piaget is that one individual’s performance is of-
ten at different ability stages depending on the specific task (for exam-
ple [GE86]). Piaget responded to early critiques along these lines by call-
ing the phenomenon “horizontal décalage,” but neither he nor his successors
[Fis80, Cas85] have modified his theory to explain (rather than merely de-
scribe) it. Similarly to Thelen and Smith [TS94], we observe that the abilities
encapsulated in the definition of a certain stage emerge gradually during the
previous stage–so that the onset of a given stage represents the mastery of a
cognitive skill that was previously present only in certain contexts.

Piaget also had difficulty accepting the idea of a preheuristic stage, early in
the infantile period, in which simple trial-and-error learning occurs without
significant heuristic guidance [Bic88], a stage which we suspect exists and
allows formulation of heuristics by aggregation of learning from preheuristic
pattern mining. Coupled with his belief that a mind’s innate abilities at
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birth are extremely limited, there is a troublingly unexplained transition
from inability to ability in his model.

Finally, another limiting aspect of Piaget’s model is that it did not rec-
ognize any stages beyond formal operations, and included no provisions for
exploring this possibility. A number of researchers [Bic88, Arl75, CRK82,
Rie73, Mar01] have described one or more postformal stages. Commons and
colleagues have also proposed a task-based model which provides a frame-
work for explaining stage discrepancies across tasks and for generating new
stages based on classification of observed logical behaviors. [KK90] promotes
a statistical conception of stage, which provides a good bridge between task-
based and stage-based models of development, as statistical modeling allows
for stages to be roughly defined and analyzed based on collections of task
behaviors.

[CRK82] postulates the existence of a postformal stage by observing el-
evated levels of abstraction which, they argue, are not manifested in formal
thought. [CTS+98] observes a postformal stage when subjects become capa-
ble of analyzing and coordinating complex logical systems with each other,
creating metatheoretical supersystems. In our model, with the reflexive stage
of development, we expand this definition of metasystemic thinking to include
the ability to consciously refine one’s own mental states and formalisms of
thinking. Such self-reflexive refinement is necessary for learning which would
allow a mind to analytically devise entirely new structures and methodologies
for both formal and postformal thinking.

In spite of these various critiques and limitations, however, we have found
Piaget’s ideas very useful, and in Section 11.4 we will explore ways of defining
them rigorously in the specific context of CogPrime ’s declarative knowledge
store and probabilistic logic engine.

11.3.1 Perry’s Stages

Also relevant is William Perry’s [Per70, Per81] theory of the stages (“po-
sitions” in his terminology) of intellectual and ethical development, which
constitutes a model of iterative refinement of approach in the developmental
process of coming to intellectual and ethical maturity. These stages, depicted
in Table 11.2 form an analytical tool for discerning the modality of belief of
an intelligence by describing common cognitive approaches to handling the
complexities of real world ethical considerations.
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Stage Substages
Dualism / Received
Knowledge
[Infantile]

Basic duality (“All problems are solvable. I must learn the
correct solutions.”)
Full dualism (“There are different, contradictory solutions to
many problems. I must learn the correct solutions, and ignore
the incorrect ones”)

Multiplicity
[Concrete]

Early multiplicity (“Some solutions are known, others aren’t.
I must learn how to find correct solutions.”)
Late Multiplicity: cognitive dissonance regarding truth.
(“Some problems are unsolvable, some are a matter of personal
taste, therefore I must declare my own intellectual path.”)

Relativism / Procedu-
ral Knowledge
[Formal]

Contextual Relativism (“I must learn to evaluate solutions
within a context, and relative to supporting observation.”)
Pre-Commitment (“I must evaluate solutions, then commit to
a choice of solution.”)

Commitment / Con-
structed Knowledge
[Formal / Reflexive]

Commitment (“I have chosen a solution.”)
Challenges to Commitment (“I have seen unexpected implica-
tions of my commitment, and the responsibility I must take.”)
Post-Commitment (“I must have an ongoing, nuanced rela-
tionship to the subject in which I evaluate each situation on a
case-by-case basis with respects to its particulars rather than
an ad-hoc application of unchallenged ideology.”)

Table 11.2 Perry’s Developmental Stages [with corresponding Piagetan Stages in brack-
ets]

11.3.2 Keeping Continuity in Mind

Continuity of mental stages, and the fact that a mind may appear to be in
multiple stages of development simultaneously (depending upon the tasks be-
ing tested), are crucial to our theoretical formulations and we will touch upon
them again here. Piaget attempted to address continuity with the creation of
transitional “half stages”. We prefer to observe that each stage feeds into the
other and the end of one stage and the beginning of the next blend together.

The distinction between formal and post-formal, for example, seems to
“merely” be the application of formal thought to oneself. However, the dis-
tinction between concrete and formal is “merely” the buildup to higher levels
of complexity of the classification, task decomposition, and abstraction ca-
pabilities of the concrete stage. The stages represent general trends in ability
on a continuous curve of development, not discrete states of mind which
are jumped-into quantum style after enough “knowledge energy” builds-up to
cause the transition.

Observationally, this appears to be the case in humans. People learn things
gradually, and show a continuous development in ability, not a quick jump
from ignorance to mastery. We believe that this gradual development of abil-
ity is the signature of genuine learning, and that prescriptively an AGI system
must be designed in order to have continuous and asymmetrical development
across a variety of tasks in order to be considered a genuine learning system.
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While quantum leaps in ability may be possible in an AGI system which can
just “graft” new parts of brain onto itself (or an augmented human which
may someday be able to do the same using implants), such acquisition of
knowledge is not really learning. Grafting on knowledge does not build the
cognitive pathways needed in order to actually learn. If this is the only mech-
anism available to an AGI system to acquire new knowledge, then it is not
really a learning system.

11.4 Piaget’s Stages in the Context of Uncertain
Inference

Piaget’s developmental stages are very general, referring to overall types of
learning, not specific mechanisms or methods. This focus was natural since
the context of his work was human developmental psychology, and neuro-
science has not yet progressed to the point of understanding the neural mech-
anisms underlying any sort of inference (and certainly was nowhere near to
doing so in Piaget’s time!). But if one is studying developmental psychology
in an AGI context where one knows something about the internal mechanisms
of the AGI system under consideration, then one can work with a more spe-
cific model of learning. Our focus here is on AGI systems whose operations
contain uncertain inference as a central component. Obviously the main focus
is CogPrime but the essential ideas apply to any other uncertain inference
centric AGI architecture as well.

Fig. 11.2 Piagetan Stages of Development, as Manifested in the Context of Uncertain
Inference
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An uncertain inference system, as we consider it here, consists of four
components, which work together in a feedback-control loop 11.3

1. a content representation scheme
2. an uncertainty representation scheme
3. a set of inference rules
4. a set of inference control schemata

Fig. 11.3 A Simplified Look at Feedback-Control in Uncertain Inference

Broadly speaking, examples of content representation schemes are pred-
icate logic and term logic [?]. Examples of uncertainty representation schemes
are fuzzy logic [Zad78], imprecise probability theory [Goo86, FC86], Dempster-
Shafer theory [Sha76, ?], Bayesian probability theory [?], NARS [Wan95], and
the Atom representation used in CogPrime , briefly alluded to in Chapter 6
above and described in depth in later chapters.

Many, but not all, approaches to uncertain inference involve only a lim-
ited, weak set of inference rules (e.g. not dealing with complex quantified
expressions). CogPrime ’s PLN inference framework, like NARS and some
other uncertain inference frameworks, contains uncertain inference rules that
apply to logical constructs of arbitrary complexity. Only a system capable of
dealing with constructs of arbitrary (or at least very high) complexity will
have any potential of leading to human-level, human-like intelligence.

The subtlest part of uncertain inference is inference control: the choice of
which inferences to do, in what order. Inference control is the primary area in
which human inference currently exceeds automated inference. Humans are
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not very efficient or accurate at carrying out inference rules, with or without
uncertainty, but we are very good at determining which inferences to do and
in what order, in any given context. The lack of effective, context-sensitive
inference control heuristics is why the general ability of current automated
theorem provers is considerably weaker than that of a mediocre university
mathematics major [Mac95].

We now review the Piagetan developmental stages from the perspective of
AGI systems heavily based on uncertain inference.

11.4.1 The Infantile Stage

In this initial stage, the mind is able to recognize patterns in and conduct
inferences about the world, but only using simplistic hard-wired (not expe-
rientially learned) inference control schema, along with pre-heuristic pattern
mining of experiential data.

In the infantile stage an entity is able to recognize patterns in and con-
duct inferences about its sensory surround context (i.e., it’s “world”), but
only using simplistic, hard-wired (not experientially learned) inference con-
trol schemata. Preheuristic pattern-mining of experiential data is performed
in order to build future heuristics about analysis of and interaction with the
world.

Infantile stage tasks include:

1. Exploratory behavior in which useful and useless / dangerous behavior
is differentiated by both trial and error observation, and by parental
guidance.

2. Development of “habits” – i.e. Repeating tasks which were successful once
to determine if they always / usually are so.

3. Simple goal-oriented behavior such as “find out what cat hair tastes like”
in which one must plan and take several sequentially dependent steps in
order to achieve the goal.

Inference control is very simple during the infantile stage (Figure 11.4),
as it is the stage during which both the most basic knowledge of the world
is acquired, and the most basic of cognition and inference control structures
are developed as the building block upon which will be built the next stages
of both knowledge and inference control.

Another example of a cognitive task at the borderline between infantile and
concrete cognition is learning object permanence, a problem discussed in the
context of CogPrime ’s predecessor "Novamente Cognition Engine" system in
[?]. Another example is the learning of word-object associations: e.g. learning
that when the word “ball” is uttered in various contexts (“Get me the ball,”
“That’s a nice ball,” etc.) it generally refers to a certain type of object. The
key point regarding these “infantile” inference problems, from the CogPrime
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Fig. 11.4 Uncertain Inference in the Infantile Stage

perspective, is that assuming one provides the inference system with an ap-
propriate set of perceptual and motor ConceptNodes and SchemaNodes, the
chains of inference involved are short. They involve about a dozen inferences,
and this means that the search tree of possible PLN inference rules walked
by the PLN backward-chainer is relatively shallow. Sophisticated inference
control is not required: standard AI heuristics are sufficient.

In short, textbook narrow-AI reasoning methods, utilized with appropriate
uncertainty-savvy truth value formulas and coupled with appropriate repre-
sentations of perceptual and motor inputs and outputs, correspond roughly to
Piaget’s infantile stage of cognition. The simplistic approach of these narrow-
AI methods may be viewed as a method of creating building blocks for sub-
sequent, more sophisticated heuristics.

In our theory Piaget’s preoperational phase appears as transitional be-
tween the infantile and concrete operational phases.

11.4.2 The Concrete Stage

At this stage, the mind is able to carry out more complex chains of reasoning
regarding the world, via using inference control schemata that adapt behavior
based on experience (reasoning about a given case in a manner similar to prior
cases).

In the concrete operational stage (Figure 11.5), an entity is able to carry
out more complex chains of reasoning about the world. Inference control
schemata which adapt behavior based on experience, using experientially
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learned heuristics (including those learned in the prior stage), are applied to
both analysis of and interaction with the sensory surround / world.

Fig. 11.5 Uncertain Inference in the Concrete Operational Stage

Concrete Operational stage tasks include:

1. Conservation tasks, such as conservation of number,
2. Decomposition of complex tasks into easier subtasks, allowing increas-

ingly complex tasks to be approached by association with more easily
understood (and previously experienced) smaller tasks,

3. Classification and Serialization tasks, in which the mind can cognitively
distinguish various disambiguation criteria and group or order objects
accordingly.

In terms of inference control this is the stage in which actual knowledge
about how to control inference itself is first explored. This means an emerging
understanding of inference itself as a cognitive task and methods for learning,
which will be further developed in the following stages.

Also, in this stage a special cognitive task capability is gained: “Theory of
Mind," which in cognitive science refers to the ability to understand the fact
that not only oneself, but other sentient beings have memories, perceptions,
and experiences. This is the ability to conceptually “put oneself in another’s
shoes” (even if you happen to assume incorrectly about them by doing so).

11.4.2.1 Conservation of Number

Conservation of number is an example of a learning problem classically cat-
egorized within Piaget’s concrete-operational phase, a “conservation laws”



228 11 Stages of Cognitive Development

problem, discussed in [Shu03] in the context of software that solves the prob-
lem using (logic-based and neural net) narrow-AI techniques. Conservation
laws are very important to cognitive development.

Conservation is the idea that a quantity remains the same despite changes
in appearance. If you show a child some objects and then spread them out, an
infantile mind will focus on the spread, and believe that there are now more
objects than before, whereas a concrete-operational mind will understand
that the quantity of objects has not changed.

Conservation of number seems very simple, but from a developmental per-
spective it is actually rather difficult. “Solutions” like those given in [Shu03]
that use neural networks or customized logical rule-bases to find specialized
solutions that solve only this problem fail to fully address the issue, because
these solutions don’t create knowledge adequate to aid with the solution of
related sorts of problems.

We hypothesize that this problem is hard enough that for an inference-
based AGI system to solve it in a developmentally useful way, its inferences
must be guided by meta-inferential lessons learned from prior similar prob-
lems. When approaching a number conservation problem, for example, a rea-
soning system might draw upon past experience with set-size problems (which
may be trial-and-error experience). This is not a simple “machine learning”
approach whose scope is restricted to the current problem, but rather a
heuristically guided approach which (a) aggregates information from prior
experience to guide solution formulation for the problem at hand, and (b)
adds the present experience to the set of relevant information about quan-
tification problems for future refinement of thinking.

Fig. 11.6 Conservation of Number

For instance, a very simple context-specific heuristic that a system might
learn would be: “When evaluating the truth value of a statement related
to the number of objects in a set, it is generally not that useful to explore
branches of the backwards-chaining search tree that contain relationships
regarding the sizes, masses, or other physical properties of the objects in the
set.” This heuristic itself may go a long way toward guiding an inference
process toward a correct solution to the problem–but it is not something
that a mind needs to know “a priori.” A concrete-operational stage mind
may learn this by data-mining prior instances of inferences involving sizes
of sets. Without such experience-based heuristics, the search tree for such a
problem will likely be unacceptably large. Even if it is “solvable” without such
heuristics, the solutions found may be overly fit to the particular problem and
not usefully generalizable.
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11.4.2.2 Theory of Mind

Consider this experiment: a preoperational child is shown her favorite “Dora
the Explorer” DVD box. Asked what show she’s about to see, she’ll an-
swer “Dora.” However, when her parent plays the disc, it’s “Spongebob
Squarepants.” If you then ask her what show her friend will expect when
given the “Dora” DVD box, she will respond “Spongebob” although she just
answered “Dora” for herself. A child lacking a theory of mind can not reason
through what someone else would think given knowledge other than her own
current knowledge. Knowledge of self is intrinsically related to the ability to
differentiate oneself from others, and this ability may not be fully developed
at birth.

Several theorists [?, Fod94], based in part on experimental work with autis-
tic children, perceive theory of mind as embodied in an innate module of the
mind activated at a certain developmental stage (or not, if damaged). While
we consider this possible, we caution against adopting a simplistic view of
the “innate vs. acquired” dichotomy: if there is innateness it may take the
form of an innate predisposition to certain sorts of learning [EBJ+97].

Davidson [Dav84], Dennett [Den87] and others support the common belief
that theory of mind is dependent upon linguistic ability. A major challenge
to this prevailing philosophical stance came from Premack and Woodruff
[PW78] who postulated that prelinguistic primates do indeed exhibit “theory
of mind” behavior. While Premack and Woodruff’s experiment itself has been
challenged, their general result has been bolstered by follow-up work showing
similar results such as [TC97]. It seems to us that while theory of mind
depends on many of the same inferential capabilities as language learning, it
is not intrinsically dependent on the latter.

There is a school of thought often called the Theory Theory [BW88, Car85,
Wel90] holding that a child’s understanding of mind is best understood in
terms of the process of iteratively formulating and refuting a series of naive
theories about others. Alternately, Gordon [Gor86] postulates that theory of
mind is related to the ability to run cognitive simulations of others’ minds
using one’s own mind as a model. We suggest that these two approaches are
actually quite harmonious with one another. In an uncertain AGI context,
both theories and simulations are grounded in collections of uncertain impli-
cations, which may be assembled in context-appropriate ways to form theo-
retical conclusions or to drive simulations. Even if there is a special “mind-
simulator” dynamic in the human brain that carries out simulations of other
minds in a manner fundamentally different from explicit inferential theoriz-
ing, the inputs to and the behavior of this simulator may take inferential
form, so that the simulator is in essence a way of efficiently and implicitly
producing uncertain inferential conclusions from uncertain premises.

We have thought through the details by CogPrime system should be able
to develop theory of mind via embodied experience, though at time of writing
practical learning experiments in this direction have not yet been done. We
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have not yet explored in detail the possibility of giving CogPrime a special,
elaborately engineered “mind-simulator” component, though this would be
possible; instead we have initially been pursuing a more purely inferential
approach.

First, it is very simple for a CogPrime system to learn patterns such as “If
I rotated by pi radians, I would see the yellow block.” And it’s not a big leap
for PLN to go from this to the recognition that “You look like me, and you’re
rotated by pi radians relative to my orientation, therefore you probably see
the yellow block.” The only nontrivial aspect here is the “you look like me”
premise.

Recognizing “embodied agent” as a category, however, is a problem fairly
similar to recognizing “block” or “insect” or “daisy” as a category. Since the
CogPrime agent can perceive most parts of its own “robot” body–its arms, its
legs, etc.–it should be easy for the agent to figure out that physical objects
like these look different depending upon its distance from them and its angle
of observation. From this it should not be that difficult for the agent to
understand that it is naturally grouped together with other embodied agents
(like its teacher), not with blocks or bugs.

The only other major ingredient needed to enable theory of mind is
“reflection”– the ability of the system to explicitly recognize the existence
of knowledge in its own mind (note that this term “reflection” is not the
same as our proposed “reflexive” stage of cognitive development). This exists
automatically in CogPrime , via the built-in vocabulary of elementary pro-
cedures supplied for use within SchemaNodes (specifically, the atTime and
TruthValue operators). Observing that “at time T, the weight of evidence of
the link L increased from zero” is basically equivalent to observing that the
link L was created at time T.

Then, the system may reason, for example, as follows (using a combination
of several PLN rules including the above-given deduction rule):

Implication
My eye is facing a block and it is not dark
A relationship is created describing the block’s color

Similarity
My body
My teacher’s body

|-
Implication

My teacher’s eye is facing a block and it is not dark
A relationship is created describing the block’s color

This sort of inference is the essence of Piagetan “theory of mind.” Note
that in both of these implications the created relationship is represented as a
variable rather than a specific relationship. The cognitive leap is that in the
latter case the relationship actually exists in the teacher’s implicitly hypothe-



11.4 Piaget’s Stages in the Context of Uncertain Inference 231

sized mind, rather than in CogPrime ’s mind. No explicit hypothesis or model
of the teacher’s mind need be created in order to form this implication–the
hypothesis is created implicitly via inferential abstraction. Yet, a collection
of implications of this nature may be used via an uncertain reasoning sys-
tem like PLN to create theories and simulations suitable to guide complex
inferences about other minds.

From the perspective of developmental stages, the key point here is that in
a CogPrime context this sort of inference is too complex to be viably carried
out via simple inference heuristics. This particular example must be done
via forward chaining, since the big leap is to actually think of forming the
implication that concludes inference. But there are simply too many combi-
nations of relationships involving CogPrime ’s eye, body, and so forth for the
PLN component to viably explore all of them via standard forward-chaining
heuristics. Experience-guided heuristics are needed, such as the heuristic that
if physical objects A and B are generally physically and functionally similar,
and there is a relationship involving some part of A and some physical object
R, it may be useful to look for similar relationships involving an analogous
part of B and objects similar to R. This kind of heuristic may be learned by
experience–and the masterful deployment of such heuristics to guide infer-
ence is what we hypothesize to characterize the concrete stage of development.
The “concreteness” comes from the fact that inference control is guided by
analogies to prior similar situations.

11.4.3 The Formal Stage

In the formal stage, as shown in Figure 11.7, an agent should be able to carry
out arbitrarily complex inferences (constrained only by computational re-
sources, rather than by fundamental restrictions on logical language or form)
via including inference control as an explicit subject of abstract learning.

In the formal stage, an entity is able to carry out arbitrarily complex
inferences (constrained only by computational resources). Abstraction and
inference about both the sensorimotor surround (world) and about abstract
ideals themselves (including the final stages of indirect learning about infer-
ence itself) are fully developed.

Formal stage evaluation tasks are centered entirely around abstraction and
higher-order inference tasks such as:

1. Mathematics and other formalizations.
2. Scientific experimentation and other rigorous observational testing of ab-

stract formalizations.
3. Social and philosophical modeling, and other advanced applications of

empathy and the Theory of Mind.
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Fig. 11.7 Uncertain Inference in the Formal Stage

In terms of inference control this stage sees not just perception of new
knowledge about inference control itself, but inference controlled reasoning
about that knowledge and the creation of abstract formalizations about in-
ference control which are reasoned-upon, tested, and verified or debunked.

11.4.3.1 Systematic Experimentation

The Piagetan formal phase is a particularly subtle one from the perspective
of uncertain inference. In a sense, AGI inference engines already have strong
capability for formal reasoning built in. Ironically, however, no existing infer-
ence engine is capable of deploying its reasoning rules in a powerfully effective
way, and this is because of the lack of inference control heuristics adequate for
controlling abstract formal reasoning. These heuristics are what arise during
Piaget’s formal stage, and we propose that in the content of uncertain infer-
ence systems, they involve the application of inference itself to the problem
of refining inference control.
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A problem commonly used to illustrate the difference between the Piagetan
concrete operational and formal stages is that of figuring out the rules for
making pendulums swing quickly versus slowly [IP58]. If you ask a child in
the formal stage to solve this problem, she may proceed to do a number of
experiments, e.g. build a long string with a light weight, a long string with
a heavy weight, a short string with a light weight and a short string with
a heavy weight. Through these experiments she may determine that a short
string leads to a fast swing, a long string leads to a slow swing, and the weight
doesn’t matter at all.

The role of experiments like this, which test “extreme cases,” is to make
cognition easier. The formal-stage mind tries to map a concrete situation
onto a maximally simple and manipulable set of abstract propositions, and
then reason based on these. Doing this, however, requires an automated and
instinctive understanding of the reasoning process itself. The above-described
experiments are good ones for solving the pendulum problem because they
provide data that is very easy to reason about. From the perspective of un-
certain inference systems, this is the key characteristic of the formal stage:
formal cognition approaches problems in a way explicitly calculated to yield
tractable inferences.

Note that this is quite different from saying that formal cognition involves
abstractions and advanced logic. In an uncertain logic-based AGI system,
even infantile cognition may involve these–the difference lies in the level of
inference control, which in the infantile stage is simplistic and hard-wired,
but in the formal stage is based on an understanding of what sorts of inputs
lead to tractable inference in a given context.

11.4.4 The Reflexive Stage

In the reflexive stage (Figure 11.8), an intelligent agent is broadly capable of
self-modifying its internal structures and dynamics.

As an example in the human domain: highly intelligent and self-aware
adult humans may carry out reflexive cognition by explicitly reflecting upon
their own inference processes and trying to improve them. An example is
the intelligent improvement of uncertain-truth-value-manipulation formulas.
It is well demonstrated that even educated humans typically make numerous
errors in probabilistic reasoning [GGK]. Most people don’t realize it and
continue to systematically make these errors throughout their lives. However,
a small percentage of individuals make an explicit effort to increase their
accuracy in making probabilistic judgments by consciously endeavoring to
internalize the rules of probabilistic inference into their automated cognition
processes.

In the uncertain inference based AGI context, what this means is: In the
reflexive stage an entity is able to include inference control itself as an explicit
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Fig. 11.8 The Reflexive Stage

subject of abstract learning (i.e. the ability to reason about one’s own tactical
and strategic approach to modifying one’s own learning and thinking, and
modify these inference control strategies based on analysis of experience with
various cognitive approaches.

Ultimately, the entity can self-modify its internal cognitive structures. Any
knowledge or heuristics can be revised, including metatheoretical and meta-
systemic thought itself. Initially this is done indirectly, but at least in the
case of AGI systems it is theoretically possible to also do so directly. This
might be considered as a separate stage of Full Self Modification, or else as
the end phase of the reflexive stage. In the context of logical reasoning, self
modification of inference control itself is the primary task in this stage. In
terms of inference control this stage adds an entire new feedback loop for
reasoning about inference control itself, as shown in Figure 11.8.

As a very concrete example, in later chapters we will see that, while PLN
is founded on probability theory, it also contains a variety of heuristic as-
sumptions that inevitably introduce a certain amount of error into its infer-
ences. For example, PLN’s probabilistic deduction embodies a heuristic in-
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dependence assumption. Thus PLN contains an alternate deduction formula
called the “concept geometry formula” that is better in some contexts, based
on the assumption that ConceptNodes embody concepts that are roughly
spherically-shaped in attribute space. A highly advanced CogPrime system
could potentially augment the independence-based and concept-geometry-
based deduction formulas with additional formulas of its own derivation, op-
timized to minimize error in various contexts. This is a simple and straight-
forward example of reflexive cognition–it illustrates the power accessible to
a cognitive system that has formalized and reflected upon its own inference
processes, and that possesses at least some capability to modify these.

In general, AGI systems can be expected to have much broader and deeper
capabilities for self-modification than human beings. Ultimately it may make
sense to view the AGI systems we implement as merely "initial conditions"
for ongoing self-modification and self-organization. Chapter ?? discusses some
of the potential technical details underlying this sort of thoroughgoing AGI
self-modification.





Chapter 12
The Engineering and Development of
Ethics

Co-authored with Stephan Vladimir Bugaj and Joel Pitt

12.1 Introduction

Most commonly, if a work on advanced AI mentions ethics at all, it occurs
in a final summary chapter, discussing in broad terms some of the possible
implications of the technical ideas presented beforehand. It’s no coincidence
that the order is reversed here: in the case of CogPrime , AGI-ethics consid-
erations played a major role in the design process ... and thus the chapter
on ethics occurs near the beginning rather than the end. In the CogPrime
approach, ethics is not a particularly distinct topic, being richly interwoven
with cognition and education and other aspects of the AGI project.

The ethics of advanced AGI is a complex issue with multiple aspects.
Among the many issues there are:

1. Risks posed by the possibility of human beings using AGI systems for
evil ends

2. Risks posed by AGI systems created without well-defined ethical systems
3. Risks posed by AGI systems with initially well-defined and sensible ethi-

cal systems eventually going rogue – an especially big risk if these systems
are more generally intelligent than humans, and possess the capability to
modify their own source code

4. the ethics of experimenting on AGI systems when one doesn’t understand
the nature of their experience

5. AGI rights: in what circumstances does using an AGI as a tool or servant
constitute “slavery”

In this chapter we will focus mainly (though not exclusively) on the ques-
tion of how to create an AGI with a rational and beneficial ethical system.
After a somewhat wide-ranging discussion, we will conclude with eight gen-
eral points that we believe should be followed in working toward "Friendly
AGI" – most of which have to do, not with the internal design of the AGI,
but with the way the AGI is taught and interfaced with the real world.

237
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While most of the particulars discussed in this book have nothing to do
with ethics, it’s important for the reader to understand that AGI-ethics con-
siderations have played a major role in many of our design decisions, under-
lying much of the technical contents of the book. As the materials in this
chapter should make clear, ethicalness is probably not something that one
can meaningfully tack onto an AGI system at the end, after developing the
rest – it is likely infeasible to architect an intelligent agent and then add on an
“ethics module.” Rather, ethics is something that has to do with all the dif-
ferent memory systems and cognitive processes that constitute an intelligent
system – and it’s something that involves both cognitive architecture and the
exploration a system does and the instruction it receives. It’s a very complex
matter that is richly intermixed with all the other aspects of intelligence, and
here we will treat it as such.

12.2 Review of Current Thinking on the Risks of AGI

Before proceeding to outline our own perspective on AGI ethics in the context
of CogPrime , we will review the main existing strains of thought on the
potential ethical dangers associated with AGI. One SF film after another has
highlighted these dangers, lodging the issue deep in our cultural awareness;
unsurprisingly, much less attention has been paid to serious analysis of the
risks in their various dimensions, but there is still a non-trivial literature
worth paying attention to.

Hypothetically, an AGI with superhuman intelligence and capability could
dispense with humanity altogether – i.e. posing an "existential risk" [Bos02].
In the worst case, an evil but brilliant AGI, perhaps programmed by a hu-
man sadist, could consign humanity to unimaginable tortures (i.e. realizing
a modern version of the medieval Christian fantasies of hell). On the other
hand, the potential benefits of powerful AGI also go literally beyond human
imagination. It seems quite plausible that an AGI with massively superhu-
man intelligence and positive disposition toward humanity could provide us
with truly dramatic benefits, such as a virtual end to material scarcity, dis-
ease and aging. Advanced AGI could also help individual humans grow in a
variety of directions, including directions leading beyond "legacy humanity,"
according to their own taste and choice.

Eliezer Yudkowsky has introduced the term "Friendly AI", to refer to ad-
vanced AGI systems that act with human benefit in mind [Yud06]. Exactly
what this means has not been specified precisely, though informal interpre-
tations abound. Goertzel [Goe06b] has sought to clarify the notion in terms
of three core values of Joy, Growth and Freedom. In this view, a Friendly AI
would be one that advocates individual and collective human joy and growth,
while respecting the autonomy of human choices.
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Some (for example, Hugo de Garis, [DG05]), have argued that Friendly AI
is essentially an impossibility, in the sense that the odds of a dramatically su-
perhumanly intelligent mind worrying about human benefit are vanishingly
small. If this is the case, then the best options for the human race would
presumably be to either avoid advanced AGI development altogether, or to
else fuse with AGI before it gets too strongly superhuman, so that beings-
originated-as-humans can enjoy the benefits of greater intelligence and capa-
bility (albeit at cost of sacrificing their humanity).

Others (e.g. Mark Waser [Was09]) have argued that Friendly AI is essen-
tially inevitable, because greater intelligence correlates with greater morality.
Evidence from evolutionary and human history is adduced in favor of this
point, along with more abstract arguments.

Yudkowsky [Yud06] has discussed the possibility of creating AGI archi-
tectures that are in some sense "provably Friendly" – either mathematically,
or else at least via very tight lines of rational verbal argumentation. How-
ever, several issues have been raised with this approach. First, it seems likely
that proving mathematical results of this nature would first require dramatic
advances in multiple branches of mathematics. Second, such a proof would
require a formalization of the goal of "Friendliness," which is a subtler matter
than it might seem [Leg06b, Leg06a]. Formalization of human morality has
vexed moral philosophers for quite some time. Finally, it is unclear the extent
to which such a proof could be created in a generic, environment-independent
way – but if the proof depends on properties of the physical environment,
then it would require a formalization of the environment itself, which runs
up against various problems such as the complexity of the physical world and
also the fact that we currently have no complete, consistent theory of physics.
Kaj Sotala has provided a list of 14 objections to the Friendly AI concept, and
suggested to answers to each of them [Sot11]. Stephen Omohundro [Omo08]
has argued that any advanced AI system will very likely demonstrate certain
"basic AI drives", such as desiring to be rational, to self-protect, to acquire
resources, and to preserve and protect its utility function and avoid counter-
feit utility; these drives, he suggests, must be taken carefully into account in
formulating approaches to Friendly AI.

The problem of formally or at least very carefully defining the goal of
Friendliness has been considered from a variety of perspectives, none showing
dramatic success. Yudkowsky [Yud04] has suggested the concept of "Coher-
ent Extrapolated Volition", which roughly refers to the extrapolation of the
common values of the human race. Many subtleties arise in specifying this
concept – e.g. if Bob Jones is often possessed by a strong desire to kill all
Martians, but he deeply aspires to be a nonviolent person, then the CEV
approach would not rate "killing Martians" as part of Bob’s contribution to
the CEV of humanity.

Goertzel [Goe10a] has proposed a related notion of Coherent Aggregated
Volition (CAV), which eschews the subtleties of extrapolation, and simply
seeks a reasonably compact, coherent, consistent set of values that is fairly
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close to the collective value-set of humanity. In the CAV approach, "killing
Martians" would be removed from humanity’s collective value-set because it’s
uncommon and not part of the most compact/coherent/consistent overall
model of human values, rather than because of Bob Jones’s aspiration to
nonviolence.

One thought we have recently entertained is that the core concept underly-
ing CAV might be better thought of as CBV or "Coherent Blended Volition."
CAV seems to be easily misinterpreted as meaning the average of different
views, which was not the original intention. The CBV terminology clarifies
that the CBV of a diverse group of people should not be thought of as an av-
erage of their perspectives, but as something more analogous to a "conceptual
blend" [FT02] – incorporating the most essential elements of their divergent
views into a whole that is overall compact, elegant and harmonious. The sub-
tlety here (to which we shall return below) is that for a CBV blend to be
broadly acceptable, the different parties whose views are being blended must
agree to some extent that enough of the essential elements of their own views
have been included. The process of arriving at this sort of consensus may
involve extrapolation of a roughly similar sort to that considered in CEV.

Multiple attempts at axiomatization of human values have also been at-
tempted, e.g. with a view toward providing near-term guidance to military
robots (see e.g. Arkin’s excellent though chillingly-titled book Governing
Lethal Behavior in Autonomous Robots [Ark09b], the result of US military
funded research). However, there are reasonably strong arguments that hu-
man values (similarly to e.g. human language or human perceptual classifica-
tion rules) are too complex and multifaceted to be captured in any compact
set of formal logic rules. Wallach [WA10] has made this point eloquently, and
argued the necessity of fusing top-down (e.g. formal logic based) and bottom-
up (e.g. self-organizing learning based) approaches to machine ethics.

A number of more sociological considerations also arise. It is sometimes
argued that the risk from highly-advanced AGI going morally awry on its
own may be less than that of moderately-advanced AGI being used by human
beings to advocate immoral ends. This possibility gives rise to questions about
the ethical value of various practical modalities of AGI development, for
instance:

• Should AGI be developed in a top-secret installation by a select group of
individuals selected for a combination of technical and scientific brilliance
and moral uprightness, or other qualities deemed relevant (a "closed ap-
proach")? Or should it be developed out in the open, in the manner
of open-source software projects like Linux? (an "open approach"). The
open approach allows the collective intelligence of the world to more fully
participate – but also potentially allows the more unsavory elements of
the human race to take some of the publicly-developed AGI concepts and
tools private, and develop them into AGIs with selfish or evil purposes in
mind. Is there some meaningful intermediary between these extremes?
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• Should governments regulate AGI, with Friendliness in mind (as advo-
cated carefully by e.g Bill Hibbard [Hib02])? Or will this just cause AGI
development to move to the handful of countries with more liberal poli-
cies? ... or cause it to move underground, where nobody can see the
dangers developing? As a rough analogue, it’s worth noting that the US
government’s imposition of restrictions on stem cell research, under Pres-
ident George W. Bush, appears to have directly stimulated the provision
of additional funding for stem cell research in other nations like Korea,
Singapore and China.

The former issue is, obviously, highly relevant to CogPrime (which is cur-
rently being developed via the open source CogPrime project); and so the
various dimensions of this issues are worth briefly sketching here.

We have a strong skepticism of self-appointed elite groups that claim (even
if they genuinely believe) that they know what’s best for everyone, and a
healthy respect for the power of collective intelligence and the Global Brain,
which the open approach is ideal for tapping. On the other hand, we also
understand the risk of terrorist groups or other malevolent agents forking an
open source AGI project and creating something terribly dangerous and de-
structive. Balancing these factors against each other rigorously, seems beyond
the scope of current human science.

Nobody really understands the social dynamics by which open technolog-
ical knowledge plays out in our current world, let alone hypothetical future
scenarios. Right now there exists open knowledge about many very dangerous
technologies, and there exist many terrorist groups, yet these groups fortu-
nately make scant use of these technologies. The reasons why appear to be
essentially sociological – the people involved in these terrorist groups tend not
to be the ones who have mastered the skills of turning public knowledge on
cutting-edge technologies into real engineered systems. But while it’s easy to
observe this sociological phenomenon, we certainly have no way to estimate
its quantitative extent from first principles. We don’t really have a strong
understanding of how safe we are right now, given the technology knowledge
available right now via the Internet, textbooks, and so forth. Even relatively
straightforward issues such as nuclear proliferation remain confusing, even to
the experts.

It’s also quite clear that keeping powerful AGI locked up by an elite group
doesn’t really provide reliable protection against malevolent human agents.
History is rife with such situations going awry, e.g. by the leadership of the
group being subverted, or via brute force inflicted by some outside party, or
via a member of the elite group defecting to some outside group in the inter-
est of personal power or reward or due to group-internal disagreements, etc.
There are many things that can go wrong in such situations, and the confi-
dence of any particular group that they are immune to such issues, cannot be
taken very seriously. Clearly, neither the open nor closed approach qualifies
as a panacea.
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12.3 The Value of an Explicit Goal System

One of the subtle issues confronted in the quest to design ethical AGIs is
how closely one wants to emulate human ethical judgment and behavior.
Here one confronts the brute fact that, even according to their own deeply-
held standards, humans are not all that ethical. One high-level conclusion
we came to very early in the process of designing CogPrime is that, just
as humans are not the most intelligent minds achievable, they are also not
the most ethical minds achievable. Even if one takes human ethics, broadly
conceived, as the standard – there are almost surely possible AGI systems
that are much more ethical according to human standards than nearly all
human beings. This is not mainly because of ethics-specific features of the
human mind, but rather because of the nature of the human motivational
system, which leads to many complexities that drive humans to behaviors
that are unethical according to their own standards. So, one of the design
decisions we made for CogPrime – with ethics as well as other reasons in
mind – was not to closely imitate the human motivational system, but rather
to craft a novel motivational system combining certain aspects of the human
motivational system with other profoundly non-human aspects.

On the other hand, the design of ethical AGI systems still has a lot to gain
from the study of human ethical cognition and behavior. Human ethics has
many aspects, which we associate here with the different types of memory,
and it’s important that AGI systems can encompass all of them. Also, as
we will note below, human ethics develops in childhood through a series of
natural stages, parallel to and entwined with the cognitive developmental
stages reviewed in Chapter 11 above. We will argue that for an AGI with
a virtual or robotic body, it makes sense to think of ethical development as
proceeding through similar stages. In a CogPrime context, the particulars of
these stages can then be understood in terms of the particulars of CogPrime ’s
cognitive processes – which brings AGI ethics from the domain of theoretical
abstraction into the realm of practical algorithm design and education.

But even if the human stages of ethical development make sense for non-
human AGIs, this doesn’t mean the particulars of the human motivational
system need to be replicated in these AGIs, regarding ethics or other matters.
A key point here is that, in the context of human intelligence, the concept of
a "goal" is a descriptive abstraction. But in the AGI context, it seems quite
valuable to introduce goals as explicit design elements (which is what is done
in CogPrime ) – both for ethical reasons and for broader AGI design reasons.

Humans may adopt goals for a time and then drop them, may pursue
multiple conflicting goals simultaneously, and may often proceed in an ap-
parently goal-less manner. Sometimes the goal that a person appears to be
pursuing, may be very different than the one they think they’re pursuing.
Evolutionary psychology [BDL93] argues that, directly or indirectly, all hu-
mans are ultimately pursuing the goal of maximizing the inclusive fitness of
their genes – but given the complex mix of evolution and self-organization
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in natural history [Sal93], this is hardly a general explanation for human
behavior. Ultimately, in the human context, "goal" is best thought of as a
frequently useful heuristic concept.

AGI systems, however, need not emulate human cognition in every aspect,
and may be architected with explicit "goal systems." This provides no guar-
antee that said AGI systems will actually pursue the goals that their goal
systems specify – depending on the role that the goal system plays in the
overall system dynamics, sometimes other dynamical phenomena might in-
tervene and cause the system to behave in ways opposed to its explicit goals.
However, we submit that this design sketch provides a better framework than
would exist in an AGI system closely emulating the human brain.

We realize this point may be somewhat contentious – a counter-argument
would be that the human brain is known to support at least moderately eth-
ical behavior, according to human ethical standards, whereas less brain-like
AGI systems are much less well understood. However, the obvious counter-
counterpoints are that:

• Humans are not all that consistently ethical, so that creating AGI systems
potentially much more practically powerful than humans, but with closely
humanlike ethical, motivational and goal systems, could in fact be quite
dangerous

• The effect on a human-like ethical/motivational/goal system of increas-
ing the intelligence, or changing the physical embodiment or cognitive
capabilities, of the agent containing the system, is unknown and difficult
to predict given all the complexities involved

The course we tentatively recommend, and are following in our own work,
is to develop AGI systems with explicit, hierarchically-dominated goal sys-
tems. That is:

• create one or more "top goals" (we call them Ubergoals in CogPrime )
• have the system derive subgoals from these, using its own intelligence,

potentially guided by educational interaction or explicit programming
• have a significant percentage of the system’s activity governed by the

explicit pursuit of these goals

Note that the "significant percentage" need not be 100%; CogPrime , for
example, combines explicitly goal-directed activity with other "spontaneous"
activity. Requiring that all activity be explicitly goal-directed may be too
strict a requirement to place on AGI architectures.

The next step, of course, is for the top-level goals to be chosen in accor-
dance with the principle of human-Friendliness. The next one of our eight
points, about the Global Brain, addresses one way of doing this. In our near-
term work with CogPrime , we are using simplistic approaches, with a view
toward early-stage system testing.
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12.4 Ethical Synergy

An explicit goal system provides an explicit way to ensure that ethical prin-
ciples (as represented in system goals) play a significant role in guiding an
AGI system’s behavior. However, in an integrative design like CogPrime the
goal system is only a small part of the overall story, and it’s important to
also understand how ethics relates to the other aspects of the cognitive ar-
chitecture.

One of the more novel ideas presented in this chapter is that different types
of ethical intuition may be associated with different types of memory – and
to possess mature ethics, a mind must display ethical synergy between the
ethical processes associated with its memory types. Specifically, we suggest
that:

• Episodic memory corresponds to the process of ethically assessing a
situation based on similar prior situations
• Sensorimotor memory corresponds to “mirror neuron” type ethics,

where you feel another person’s feelings via mirroring their physiological
emotional responses and actions
• Declarative memory corresponds to rational ethical judgment
• Procedural memory corresponds to “ethical habit” ... learning by imi-

tation and reinforcement to do what is right, even when the reasons aren’t
well articulated or understood
• Attentional memory corresponds to the existence of appropriate pat-

terns guiding one to pay adequate attention to ethical considerations at
appropriate times
• Intentional memory corresponds to the pervasion of ethics through

one’s choices about subgoaling (which leads into “when do the ends justify
the means” ethical-balance questions)

One of our suggestions regarding AGI ethics is that an ethically mature
person or AGI must both master and balance all these kinds of ethics. We will
focus especially here on declarative ethics, which corresponds to Kohlberg’s
theory of logical ethical judgment; and episodic ethics, which corresponds
to Gilligan’s theory of empathic ethical judgment. Ultimately though, all
five aspects are critically important; and a CogPrime system if appropriately
situated and education should be able to master and integrate all of them.

12.4.1 Stages of Development of Declarative Ethics

Complementing generic theories of cognitive development such as Piaget’s
and Perry’s, theorists have also proposed specific stages of moral and ethical
development. The two most relevant theories in this domain are those of
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Kohlberg and Gilligan, which we will review here, both individually and in
terms of their integration and application in the AGI context.

Lawrence Kohlberg’s [?, ?] moral development model, called the “ethics
of justice” by Gilligan, is based on a rational modality as the central ve-
hicle for moral development. In our perspective this is a firmly declarative
form of ethics, based on explicit analysis and reasoning. It is based on an
impartial regard for persons, proposing that ethical consideration must be
given to all individual intelligences without a priori judgment (prejudice).
Consideration is given for individual merit and preferences, and the goals of
an ethical decision are equal treatment (in the general, not necessarily the
particular) and reciprocity. Echoing Kant’s [?] categorical imperative, the
decisions considered most successful in this model are those which exhibit
“reversibility”, where a moral act within a particular situation is evaluated
in terms of whether or not the act would be satisfactory even if particular
persons were to switch roles within the situation. In other words, a situa-
tional, contextualized “do unto others as you would have them do unto you”
criterion. The ethics of justice can be viewed as three stages (each of which
has six substages, on which we will not elaborate here), depicted in Table
12.1.

Stage Substages
Pre-Conventional

• Obedience and Punishment Orientation
• Self-interest orientation

Conventional

• Interpersonal accord (conformity) orientation
• Authority and social-order maintaining (law and order)

orientation

Post-Conventional

• Social contract (human rights) orientation
• Universal ethical principles (universal human rights) ori-

entation

Table 12.1 Kohlberg’s Stages of Development of the Ethics of Justice

In Kohlberg’s perspective, cognitive development level contributes to
moral development, as moral understanding emerges from increased cogni-
tive capability in the area of ethical decision making in a social context.
Relatedly, Kohlberg also looks at stages of social perspective and their con-
sequent interpersonal outlook. As shown in Table 12.1, these are correlated
to the stages of moral development, but also map onto Piagetian models of
cognitive development (as pointed out e.g. by Gibbs [Gib78], who presents a
modification/interpretation of Kohlberg’s ideas intended to align them more
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closely with Piaget’s). Interpersonal outlook can be understood as rational
understanding of the psychology of other persons (a theory of mind, with or
without empathy). Stage One, emergent from the infantile congitive stage,
is entirely selfish as only self awareness has developed. As cognitive sophis-
tication about ethical considerations increases, so do the moral and social
perspective stages. Concrete and formal cognition bring about the first instru-
mental egoism, and then social relations and systems perspectives, and from
formal and then reflexive thinking about ethics comes the post-conventional
modalities of contractualism and universal mutual respect.

Stage of Social Per-
spective

Interpersonal Outlook

Blind egoism No interpersonal perspective. Only self is considered.
Instrumental egoism See that others have goals and perspectives, and either con-

form to or rebel against norms.
Social Relationships
perspective

Able to see abstract normative systems

Social Systems per-
spective

Recognize positive and negative intentions

Contractual perspec-
tive

Recognize that contracts (mutually beneficial agreements of
any kind) will allow intelligences to increase the welfare of
both.

Universal principle of
mutual respect

See how human fallibility and frailty are impacted by commu-
nication.

Table 12.2 Kohlberg’s Stages of Development of Social Perspective and Interpersonal
Morals

12.4.1.1 Uncertain Inference and the Ethics of Justice

Taking our cue from the analysis given in Chapter 11 of Piagetan stages in un-
certain inference based AGI systems (such as CogPrime ), we may explore the
manifestation of Kohlberg’s stages in AGI systems of this nature. Uncertain
inference seems generally well-suited as a declarative-ethics learning system,
due to the nuanced ethical environment of real world situations. Probabilistic
knowledge networks can model belief networks, imitative reinforcement learn-
ing based ethical pedagogy, and even simplistic moral maxims. In principle,
they have the flexibility to deal with complex ethical decisions, including not
only weighted “for the greater good” dichotomous decision making, but also
the ability to develop moral decision networks which do not require that all
situations be solved through resolution of a dichotomy.

When more than one person is being affected by an ethical decision, mak-
ing a decision based on reducing two choices to a single decision can often
lead to decisions of dubious ethics. However, a sufficiently complex uncertain
inference network can represent alternate choices in which multiple actions
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are taken that have equal (or near equal) belief weight but have very different
particulars – but because the decisions are applied in different contexts (to
different groups of individuals) they are morally equivalent. Though each in-
dividual action appears equally believable, were any single decision applied to
the entire population one or more individual may be harmed, and the morally
superior choice is to make case-dependent decisions. Equal moral treatment
is a general principle, and too often the mistake is made by thinking that
to achieve this general principle the particulars must be equal. This is not
the case. Different treatment of different individuals can result in morally
equivalent treatment of all involved individuals, and may be vastly morally
superior to treating all the individuals with equal particulars. Simply taking
the largest population and deciding one course of action based on the result
that is most appealing to that largest group is not generally the most moral
action.

Uncertain inference, especially a complex network with high levels of re-
source access as may be found in a sophisticated AGI, is well suited for com-
plex decision making resulting in a multitude of actions, and of analyzing
the options to find the set of actions that are ethically optimal particulars
for each decision context. Reflexive cognition and post-commitment moral
understanding may be the goal stages of an AGI system, or any intelligence,
but the other stages will be passed through on the way to that goal, and
realistically some minds will never reach higher order cognition or morality
with regards to any context, and others will not be able to function at this
high order in every context (all currently known minds fail to function at the
highest order cognitively or morally in some contexts).

Infantile and concrete cognition are the underpinnings of the egoist and
socialized stages, with formal aspects also playing a role in a more complete
understanding of social models when thinking using the social modalities.
Cognitively infantile patterns can produce no more than blind egoism as
without a theory of mind, there is no capability to consider the other. Since
most intelligences acquire concrete modality and therefore some nascent so-
cial perspective relatively quickly, most egoists are instrumental egoists. The
social relationship and systems perspectives include formal aspects which are
achieved by systematic social experimentation, and therefore experiential re-
inforcement learning of correct and incorrect social modalities. Initially this
is a one-on-one approach (relationship stage), but as more knowledge of so-
cial action and consequences is acquired, a formal thinker can understand
not just consequentiality but also intentionality in social action.

Extrapolation from models of individual interaction to general social theo-
retic notions is also a formal action. Rational, logical positivist approaches to
social and political ideas, however, are the norm of formal thinking. Contrac-
tual and committed moral ethics emerges from a higher-order formalization
of the social relationships and systems patterns of thinking. Generalizations
of social observation become, through formal analysis, systems of social and
political doctrine. Highly committed, but grounded and logically support-
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able, belief is the hallmark of formal cognition as expressed contractual moral
stage. Though formalism is at work in the socialized moral stages, its fullest
expression is in committed contractualism.

Finally, reflexive cognition is especially important in truly reaching the
post-commitment moral stage in which nuance and complexity are accom-
modated. Because reflexive cognition is necessary to change one’s mind not
just about particular rational ideas, but whole ways of thinking, this is a
cognitive precedent to being able to reconsider an entire belief system, one
that has had contractual logic built atop reflexive adherence that began in
early development. If the initial moral system is viewed as positive and sta-
ble, then this cognitive capacity is seen as dangerous and scary, but if early
morality is stunted or warped, then this ability is seen as enlightened. How-
ever, achieving this cognitive stage does not mean one automatically changes
their belief systems, but rather that the mental machinery is in place to
consider the possibilities. Because many people do not reach this level of
cognitive development in the area of moral and ethical thinking, it is asso-
ciated with negative traits (“moral relativism” and “flip-flopping”). However,
this cognitive flexibility generally leads to more sophisticated and applicable
moral codes, which in turn leads to morality which is actually more stable
because it is built upon extensive and deep consideration rather than simple
adherence to reflexive or rationalized ideologies.

12.4.2 Stages of Development of Empathic Ethics

Complementing Kohlberg’s logic-and-justice-focused approach, Carol Gilli-
gan’s [?] “ethics of care” model is a moral development theory which posits
that empathetic understanding plays the central role in moral progression
from an initial self-centered modality to a socially responsible one. The ethics
of care model is concerned with the ways in which an individual cares (re-
sponds to dilemmas using empathetic responses) about self and others. As
shown in Table 12.3, the ethics of care is broken into the same three primary
stage as Kohlberg, but with a focus on empathetic, emotional caring rather
than rationalized, logical principles of justice.

Stage Principle of Care
Pre-Conventional Individual Survival
Conventional Self Sacrifice for the Greater Good
Post-Conventional Principle of Nonviolence (do not hurt others, or oneself)

Table 12.3 Gilligan’s Stages of the Ethics of Care

For an “ethics of care” approach to be applied in an AGI, the AGI must
be capable of internal simulation of other minds it encounters, in a similar
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manner to how humans regularly simulate one another internally [?]. Without
any mechanism for internal simulation, it is unlikely that an AGI can develop
any sort of empathy toward other minds, as opposed to merely logically or
probabilistically modeling other agents’ behavior or other minds’ internal
contents. In a CogPrime context, this ties in closely with how CogPrime
handles episodic knowledge – partly via use of an internal simulation world,
which is able to play “mental movies” of prior and hypothesized scenarios
within the AGI system’s mind.

However, in humans empathy involves more than just simulation, it also
involves sensorimotor responses, and of course emotional responses – a topic
we will discuss in more depth in Appendix C where we review the functional-
ity of mirror neurons and mirror systems in the human brains. When we see
or hear someone suffering, this sensory input causes motor responses in us
similar to if we were suffering ourselves, which initiates emotional empathy
and corresponding cognitive processes.

Thus, empathic “ethics of care” involves a combination of episodic and
sensorimotor ethics, complementing the mainly declarative ethics associated
with the “ethics of justice.”

In Gilligan’s perspective, the earliest stage of ethical development occurs
before empathy becomes a consistent and powerful force. Next, the hallmark
of the conventional stage is that at this point, the individual is so overwhelmed
with their empathic response to others that they neglect themselves in or-
der to avoid hurting others. Note that this stage doesn’t occur in Kohlberg’s
hierarchy at all. Kohlberg and Gilligan both begin with selfish unethicality,
but their following stages diverge. A person could in principle manifest Gilli-
gan’s conventional stage without having a refined sense of justice (thus not
entering Kohlberg’s conventional stage); or they could manifest Kohlberg’s
conventional stage without partaking in an excessive degree of self-sacrifice
(thus not entering Gilligan’s conventional stage). We will suggest below that
in fact the empathic and logical aspects of ethics are more unified in real hu-
man development than these separate theories would suggest. However, even
if this is so, the possibility is still there that in some AGI systems the levels
of declarative and empathic ethics could wildly diverge.

It is interesting to note that Gilligan’s and Kohlberg’s final stages converge
more closely than their intermediate ones. Kohlberg’s post-conventional stage
focuses on universal rights, and Gilligan’s on universal compassion. Still, the
foci here are quite different; and, as will be elaborated below, we believe that
both Kohlberg’s and Gilligan’s theories constitute very partial views of the
actual end-state of ethical advancement.
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12.4.3 An Integrative Approach to Ethical Development

We feel that both Kohlberg’s and Gilligan’s theories contain elements of the
whole picture of ethical development, and that both approaches are necessary
to create a moral, ethical artificial general intelligence – just as, we suggest,
both internal simulation and uncertain inference are necessary to create a
sufficiently intelligent and volitional intelligence in the first place. Also, we
contend, the lack of direct analysis of the underlying psychology of the stages
is a deficiency shared by both the Kohlberg and Gilligan models as they
are generally discussed. A successful model of integrative ethics necessarily
contains elements of both the care and justice models, as well as reference to
the underlying developmental psychology and its influence on the character
of the ethical stage. Furthermore, intentional and attentional ethics need to
be brought into the picture, complementing Kohlberg’s focus on declarative
knowledge and Gilligan’s focus on episodic and sensorimotor knowledge.

With these notions in mind, we propose the following integrative theory
of the stages of ethical development, shown in Tables 12.4, 12.5 and 12.6.
In our integrative model, the justice-based and empathic aspects of ethical
judgment are proposed to develop together. Of course, in any one individual,
one or another aspect may be dominant. Even so, however, the combination
of the two is equally important as either of the two individual ingredients.

For instance, we suggest that in any psychologically healthy human, the
conventional stage of ethics (typifying childhood, and in many cases adult-
hood as well) involves a combination of Gilligan-esqe empathic ethics and
Kohlberg-esque ethical reasoning. This combination is supported by Piage-
tan concrete operational cognition, which allows moderately sophisticated
linguistic interaction, theory of mind, and symbolic modeling of the world.

And, similarly, we propose that in any truly ethically mature human, em-
pathy and rational justice are both fully developed. Indeed the two interpen-
etrate each other deeply.

Once one goes beyond simplistic, childlike notions of fairness (“an eye
for an eye” and so forth), applying rational justice in a purely intellectual
sense is just as difficult as any other real-world logical inference problem.
Ethical quandaries and quagmires are easily encountered, and are frequently
cut through by a judicious application of empathic simulation.

On the other hand, empathy is a far more powerful force when used in
conjunction with reason: analogical reasoning lets us empathize with situa-
tions we have never experience. For instance, a person who has never been
clinically depressed may have a hard time empathizing with individuals who
are; but using the power of reason, they can imagine their worst state of
depression magnified by several times and then extended over a long period
of time, and then reason about what this might be like ... and empathize
based on their inferential conclusion. Reason is not antithetical to empathy
but rather is the key to making empathy more broadly impactful.
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Finally, the enlightened stage of ethical development involves both a deeper
compassion and a more deeply penetrating rationality and objectiveness. Em-
pathy with all sentient beings is manageable in everyday life only once one has
deeply reflected on one’s own self and largely freed oneself of the confusions
and illusions that characterize much of the ordinary human’s inner existence.
It is noteworthy, for example, that Buddhism contains both a richly devel-
oped ethics of universal compassion, and also an intricate logical theory of
the inner workings of cognition [Stc00], detailing in exquisite rational detail
the manner in which minds originate structures and dynamics allowing them
to comprehend themselves and the world.

Stage Characteristics
Pre-ethical

• Piagetan infantile to early concrete (aka pre-operational)
• Radical selfishness or selflessness may, but do not neces-

sarily, occur
• No coherent, consistent pattern of consideration for the

rights, intentions or feelings of others
• Empathy is generally present, but erratically

Conventional Ethics

• Concrete cognitive basis
• Perry’s Dualist and Multiple stages
• The common sense of the Golden Rule is appreciated,

with cultural conventions for abstracting principles from
behaviors

• One’s own ethical behavior is explicitly compared to that
of others

• Development of a functional, though limited, theory of
mind

• Ability to intuitively conceive of notions of fairness and
rights

• Appreciation of the concept of law and order, which may
sometimes manifest itself as systematic obedience or sys-
tematic disobedience

• Empathy is more consistently present, especially with
others who are directly similar to oneself or in situations
similar to those one has directly experienced

• Degrees of selflessness or selfishness develop based on eth-
ical groundings and social interactions.

Table 12.4 Integrative Model of the Stages of Ethical Development, Part 1
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Stage Characteristics
Mature Ethics

• Formal cognitive basis
• Perry’s Relativist and “Constructed Knowledge” stages
• The abstraction involved with applying the Golden Rule

in practice is more fully understood and manipulated,
leading to limited but nonzero deployment of the Cate-
gorical Imperative

• Attention is paid to shaping one’s ethical principles into
a coherent logical system

• Rationalized, moderated selfishness or selflessness.
• Empathy is extended, using reason, to individuals and

situations not directly matching one’s own experience
• Theory of mind is extended, using reason, to counterin-

tuitive or experientially unfamiliar situations
• Reason is used to control the impact of empathy on be-

havior (i.e. rational judgments are made regarding when
to listen to empathy and when not to)

• Rational experimentation and correction of theoretical
models of ethical behavior, and reconciliation with ob-
served behavior during interaction with others.

• Conflict between pragmatism of social contract orienta-
tion and idealism of universal ethical principles.

• Understanding of ethical quandaries and nuances develop
(pragmatist modality), or are rejected (idealist modality).

• Pragmatically critical social citizen. Attempts to main-
tain a balanced social outlook. Considers the common
good, including oneself as part of the commons, and acts
in what seems to be the most beneficial and practical
manner.

Table 12.5 Integrative Model of the Stages of Ethical Development, Part 2

12.4.4 Integrative Ethics and Integrative AGI

What does our integrative approach to ethical development have to say about
the ethical development of AGI systems? The lessons are relatively straighfor-
ward, if one considers an AGI system that, like CogPrime , explicitly contains
components dedicated to logical inference and to simulation. Application of
the above ethical ideas to other sorts of AGI systems is also quite possible,
but would require a lengthier treatment and so won’t be addressed here.

In the context of a CogPrime -type AGI system, Kolhberg’s stages corre-
spond to increasingly sophisticated application of logical inference to matters
of rights and fairness. It is not clear whether humans contain an innate sense
of fairness. In the context of AGIs, it would be possible to explicitly wire
a sense of fairness into an AGI system, but in the context of a rich envi-
ronment and active human teachers, this actually appears quite unnecessary.
Experiential instruction in the notions of rights and fairness should suffice
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Stage Characteristics
Enlightened Ethics

• Reflexive cognitive basis
• Permeation of the categorical imperative and the quest

for coherence through inner as well as outer life
• Experientially grounded and logically supported rejection

of the illusion of moral certainty in favor of a case-specific
analytical and empathetic approach that embraces the
uncertainty of real social life

• Deep understanding of the illusory and biased nature of
the individual self, leading to humility regarding one’s
own ethical intuitions and prescriptions

• Openness to modifying one’s deepest, ethical (and other)
beliefs based on experience, reason and/or empathic com-
munion with others

• Adaptive, insightful approach to civil disobedience, con-
sidering laws and social customs in a broader ethical and
pragmatic context

• Broad compassion for and empathy with all sentient be-
ings

• A recognition of inability to operate at this level at all
times in all things, and a vigilance about self-monitoring
for regressive behavior.

Table 12.6 Integrative Model of the Stages of Ethical Development, Part 3

to teach an inference-based AGI system how to manipulate these concepts,
analogously to teaching the same AGI system how to manipulate number,
mass and other such quantities. Ascending the Kohlberg stages is then mainly
a matter of acquiring the ability to carry out suitably complex inferences in
the domain of rights and fairness. The hard part here is inference control –
choosing which inference steps to take – and in a sophisticated AGI infer-
ence engine, inference control will be guided by experience, so that the more
ethical judgments the system has executed and witnessed, the better it will
become at making new ones. And, as argued above, simulative activity can
be extremely valuable for aiding with inference control. When a logical infer-
ence process reaches a point of acute uncertainty (the backward or forward
chaining inference tree can’t decide which expansion step to take), it can run
a simulation to cut through the confusion – i.e., it can use empathy to decide
which logical inference step to take in thinking about applying the notions
of rights and fairness to a given situation.

Gilligan’s stages correspond to increasingly sophisticated control of em-
pathic simulation – which in a CogPrime -type AGI system, is carried out by
a specific system component devoted to running internal simulations of as-
pects of the outside world, which includes a subcomponent specifically tuned
for simulating sentient actors. The conventional stage has to do with the raw,
uncontrolled capability for such simulation; and the post-conventional stage



254 12 The Engineering and Development of Ethics

corresponds to its contextual, goal-oriented control. But controlling empathy,
clearly, requires subtle management of various uncertain contextual factors,
which is exactly what uncertain logical inference is good at – so, in an AGI
system combining an uncertain inference component with a simulative com-
ponent, it is the inference component that would enable the nuanced control
of empathy allowing the ascent to Gilligan’s post-conventional stage.

In our integrative perspective, in the context of an AGI system integrating
inference and simulation components, we suggest that the ascent from the pre-
ethical to the conventional stage may be carried out largely via independent
activity of these two components. Empathy is needed, and reasoning about
fairness and rights are needed, but the two need not intimately and sensitively
intersect – though they must of course intersect to some extent.

The main engine of advancement from the conventional to mature stage,
we suggest, is robust and subtle integration of the simulative and inferential
components. To expand empathy beyond the most obvious cases, analogi-
cal inference is needed; and to carry out complex inferences about justice,
empathy-guided inference-control is needed.

Finally, to advance from the mature to the enlightened stage, what is
required is a very advanced capability for unified reflexive inference and sim-
ulation. The system must be able to understand itself deeply, via modeling
itself both simulatively and inferentially – which will generally be achieved
via a combination of being good at modeling, and becoming less convoluted
and more coherent, hence making self-modeling easier.

Of course, none of this tells you in detail how to create an AGI system
with advanced ethical capabilities. What it does tell you, however, is one
possible path that may be followed to achieve this end goal. If one creates
an integrative AGI system with appropriately interconnected inferential and
simulative components, and treats it compassionately and fairly, and provides
it extensive, experientially grounded ethical instruction in a rich social envi-
ronment, then the AGI system should be able to ascend the ethical hierarchy
and achieve a high level of ethical sophistication. In fact it should be able
to do so more reliably than human beings because of the capability we have
to identify its errors via inspecting its internal knowedge-stage, which will
enable us to tailor its environment and instructions more suitably than can
be done in the human case.

If an absolute guarantee of the ethical soundness of an AGI is what one
is after, the line of thinking proposed here is not at all useful. Experiential
education is by its nature an uncertain thing. One can strive to minimize the
uncertainty, but it will still exist. Inspection of the internals of an AGI’s mind
is not a total solution to uncertainty minimization, because any AGI capable
of powerful general intelligence is going to have a complex internal state that
no external observer will be able to fully grasp, no matter how transparent
the knowledge representation.

However, if what one is after is a plausible, pragmatic path to architect-
ing and educating ethical AGI systems, we believe the ideas presented here
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constitute a sensible starting-point. Certainly there is a great deal more to
be learned and understood – the science and practice of AGI ethics, like AGI
itself, are at a formative stage at present. What is key, in our view, is that
as AGI technology develops, AGI ethics develops alongside and within it, in
a thoroughly coupled way.

12.5 Clarifying the Ethics of Justice: Extending the
Golden Rule in to a Multifactorial Ethical Model

One of the issues with the "ethics of justice" as reviewed above, which makes
it inadequate to serve as the sole basis of an AGI ethical system (though it
may certainly play a significant role), is the lack of any clear formulation of
what "justice" means. This section explores this issue, via detailed consid-
eration of the “Golden Rule” folk maxim do unto others as you would
have them do unto you – a classical formulation of the notion of fairness
and justics – to AGI ethics. Taking the Golden Rule as a starting-point, we
will elaborate five ethical imperatives that incorporate aspects of the notion
of ethical synergy discussed above. Simple as it may seem, the Golden Rule
actually elicits a variety of deep issues regarding the relationship between
ethics, experience and learning. When seriously analyzed, it results in a mul-
tifactorial elaboration, involving the combination of various factors related
to the basic Golden Rule idea. Which brings us back in the end to the poten-
tial value of methods like CEV, CAV or CBV for understanding how human
ethics balances the multiple factors. Our goal here is not to present any kind
of definitive analysis of the ethics of justice, but just to briefly and roughly
indicate a number of the relevant significant issues – things that anyone de-
signing or teaching an AGI would do well to keep in mind.

The trickiest aspect of the Golden Rule, as has been frequently observed,
is achieving the right level of abstraction. Taken too literally, the Golden
Rule would suggest, for instance, that a parent should not wipe a child’s
soiled bottom because the parent does not want the child to wipe the parent’s
soiled bottom. But if the parent interprets the Golden Rule more intelligently
and abstractly, the parent may conclude that they should wipe the child’s
bottom after all: they should “wipe the child’s bottom when the child can’t
do it themselves”, consistently with believing that the child should “wipe the
parent’s bottom when the parent can’t do it themselves” (which may well
happen eventually should the parent develop incontinence in old age).

This line of thinking leads to Kant’s Categorical Imperative [Kan64] which
(in one interpretation) states essentially that one should “Act only according
to that maxim whereby you can at the same time will that it should become
a universal law." The Categorical Imperative adds precision to the Golden
Rule, but also removes the practicality of the latter. Formalizing the “implicit
universal law” underlying an everyday action is a huge problem, falling prey
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to the same issue that has kept us from adequately formalizing the rules of
natural language grammar, or formalizing common-sense knowledge about
everyday object like cups, bowls and grass (substantial effort notwithstand-
ing, e.g. Cyc in the commonsense knowledge case, and the whole discipline of
modern linguistics in the NL case). There is no way to apply the Categorical
Imperative, as literally stated, in everyday life.

Furthermore, if one wishes to teach ethics as well as to practice it, the
Categorical Imperative actually has a significant disadvantage compared to
some other possible formulations of the Golden Rule. The problem is that, if
one follows the Categorical Imperative, one’s fellow members of society may
well never understand the principles under which one is acting. Each of us
may internally formulate abstract principles in a different way, and these may
be very difficult to communicate, especially among individuals with different
belief systems, different cognitive architectures, or different levels of intelli-
gence. Thus, if one’s goal is not just to act ethically, but to encourage others
to act ethically by setting a good example, the Categorical Imperative may
not be useful at all, as others may be unable to solve the “inverse problem”
of guessing your intended maxim from your observed behavior.

On the other hand, one wouldn’t want to universally restrict one’s behav-
ioral maxims to those that one’s fellow members of society can understand –
in that case, one would have to act with a two-year old or a dog according
to principles that they could understand, which would clearly be unethical
according to human common sense. (Every two-year-old, once they grow up,
would be grateful to their parents for not following this sort of principle.)

And the concept of “setting a good example” ties in with an important
concept from learning theory: imitative learning. Humans appear to be hard-
wired for imitative learning, in part via mirror neuron systems in the brain;
and, it seems clear that at least in the early stages of AGI development,
imitative learning is going to play a key role. Copying what other agents
do is an extremely powerful heuristic, and while AGI’s may eventually grow
beyond this, much of their early ethical education is likely to arise during a
phase when they have not done so. A strength of the classic Golden Rule is
that one is acting according to behaviors that one wants one’s observers to
imitate – which makes sense in that many of these observers will be using
imitative learning as a significant part of their learning toolkit.

The truth of the matter, it seems, is (as often happens) not all that is that
simple or elegant. Ethical behavior seems to be most pragmatically viewed
as a multi-objective optimization problem, where among the multiple objec-
tives are three that we have just discussed, and two others that emerge from
learning theory and will be discussed shortly:

1. The imitability (i.e. the Golden Rule fairly narrowly and directly con-
strued): the goal of acting in a way so that having others directly imitate
one’s actions, in directly comparable contexts, is desirable to oneself

2. The comprehensibility: the goal of acting in a way so that others can
understand the principles underlying one’s actions
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3. Experiential groundedness. An intelligent agent should not be ex-
pected to act according to an ethical principle unless there are many
examples of the principle-in-action in its own direct or observational ex-
perience

4. The categorical imperative: Act according to abstract principles that
you would be happy to see implemented as universal laws

5. Logical coherence. An ethical system should be roughly logically co-
herent, in the sense that the different principles within it should mesh well
with one another and perhaps even naturally emerge from each other.

Just for convenience, without implying any finality or great profundity to the
list, we will refer to these as the "five imperatives."

The above are all ethical objectives to be valued and balanced, to differ-
ent extents in different contexts. The imitability imperative, obviously, loses
importance in societies of agents that don’t make heavy use of imitative
learning. The comprehensibility imperative is more important in agents that
value social community-building generally, and less so in agent that are more
isolative and self-focused.

Note that the fifth point given above is logically of a different nature than
the four previous ones. The first four imperatives govern individual ethical
principles; the fifth regards systems of ethical principles, as they interact
with each other. Logical coherence is of significant but varying importance in
human ethical systems. Huge effort has been spent by theologians of various
stripes in establishing and refining the logical coherence of the ethical systems
associated with their religions. However, it is arguably going to be even more
important in the context of AGI systems, especially if these AGI systems
utilize cognitive methods based on logical inference, probability theory or
related methods.

Experiential groundedness is important because making pragmatic ethical
judgments is bound to require reference to an internal library of examples
(“episodic ethics”) in which ethical principles have previously been applied.
This is required for analogical reasoning, and in logic-based AGI systems, is
also required for pruning of the logical inference trees involved in determining
ethical judgments.

To the extent that the Golden Rule is valued as an ethical imperative,
experiential grounding may be supplied via observing the behaviors of others.
This in itself is a powerful argument in favor of the Golden Rule: without it,
the experiential library a system possesses is restricted to its own experience,
which is bound to be a very small library compared to what it can assemble
from observing the behaviors of others.

The overall upshot is that, ideally, an ethical intelligence should act ac-
cording to a logically coherent system of principles, which are ex-
emplified in its own direct and observational experience, which are
comprehensible to others and set a good example for others, and
which would serve as adequate universal laws if somehow thus im-
plemented. But, since this set of criteria is essentially impossible to fulfill
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in practice, real-world intelligent agents must balance these various criteria
– often in complex and contextually-dependent ways.

We suggest that ethically advanced humans, in their pragmatic ethical
choices, tend to act in such a way as to appropriately contextually balance
the above factors (along with other criteria, but we have tried to articulate
the most key factors). This sort of multi-factorial approach is not as crisp or
elegant as unidimensional imperatives like the Golden Rule or the Categorical
Imperative, but is more realistic in light of the complexly interacting multiple
determinants guiding individual and group human behavior.

And this brings us back to CEV, CAV, CBV and other possible ways
of mining ethical supergoals from the community of existing human minds.
Given that abstract theories of ethics, when seriously pursued as we have
done in this section, tend to devolve into complex balancing acts involving
multiple factors – one then falls back into asking how human ethical systems
habitually perform these balancing acts. Which is what CEV, CAV, CBV try
to measure.

12.5.1 The Golden Rule and the Stages of Ethical
Development

Next we explore more explicitly how these Golden Rule based imperatives
align with the ethical developmental stages we have outlined here. With this
in mind, specific ethical qualities corresponding to the five imperatives have
been italicized in the above table of developmental stages.

It seems that imperatives 1-3 are critical for the passage from the pre-
ethical to the conventional stages of ethics. A child learns ethics largely by
copying others, and by being interacted with according to simply compre-
hensible implementations of the Golden Rule. In general, when interacting
with children learning ethics, it is important to act according to principles
they can comprehend. And given the nature of the concrete stage of cognitive
development, experiential groundedness is a must.

As a hypothesis regarding the dynamics underlying the psychological de-
velopment of conventional ethics, what we propose is as follows: The emer-
gence of concrete-stage cognitive capabilities leads to the capability for ful-
fillment of ethical imperatives 1 and 2 – a comprehensible and workable im-
plementation of the Golden Rule, based on a combination of inferential and
simulative cognition (operating largely separately at this stage, as will be
conjectured below). The effective interoperation of ethical imperatives 1-3,
enacted in an appropriate social environment, then leads to the other charac-
teristics of the conventional ethical stage. The first three imperatives can thus
be viewed as the seed from which springs the general nature of conventional
ethics.
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On the other hand, logical coherence and the categorical imperative (im-
peratives 4 and 5) are matters for the formal stage of cognitive development,
which come along only with the mature approach to ethics. These come
from abstracting ethics beyond direct experience and manipulating them ab-
stractly and formally – a stage which has the potential for more deeply and
broadly ethical behavior, but also for more complicated ethical perversions (it
is the mature capability for formal ethical reasoning that is able to produce
ungrounded abstractions such as “I’m torturing you for your own good”).
Developmentally, we suggest that once the capability for formal reasoning
matures, the categorical imperative and the quest for logical ethical coher-
ence naturally emerge, and the sophisticated combination of inferential and
simulative cognition embodied in an appropriate social context then result
in the emergence of the various characteristics typifying the mature ethical
stage.

Finally, it seems that one key aspect of the passage from the mature to the
enlightened stage of ethics is the penetration of these two final imperatives
more and more deeply into the judging mind itself. The reflexive stage of
cognitive development is in part about seeking a deep logical coherence be-
tween the aspects of one’s own mind, and making reasoned modifications to
one’s mind so as to improve the level of coherence. And, much of the process
of mental discipline and purification that comes with the passage to enlight-
ened ethics has to do with the application of the categorical imperative to
one’s own thoughts and feelings – i.e. making a true inner systematic effort
to think and feel only those things one judges are actually generally good and
right to be thinking and feeling. Applying these principles internally appears
critical to effectively applying them externally, for reasons that are doubtless
bound up with the interpenetration of internal and external reality within
the thinking mind, and the “distributed cognition” phenomenon wherein in-
dividual mind is itself an approximative abstraction to the reality in which
each individual’s mind is pragmatically extended across their social group
and their environment [Hut95].

Obviously, these are complex issues and we’re not posing the exploratory
discussion given here as conclusive in any sense. But what seems generally
clear from this line of thinking is that the complex balance between the
multiple factors involved in AGI ethics, shifts during a system’s development.
If you did CEV, CAV or CBV among five year old humans, ten year old
humans, or adult humans, you would get different results. Probably you’d
also get different results from senior citizens! The way the factors are balanced
depends on the mind’s cognitive and emotional stage of development.
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12.5.2 The Need for Context-Sensitivity and
Adaptiveness in Deploying Ethical Principles

As well as depending on developmental stage, there is also an obvious and
dramatic context-sensitivity involved here – both in calculating the fulfillment
of abstract ethical imperatives, and in balancing various imperatives against
each other. As an example, consider the simple Asimovian maxim “I will not
harm humans,” which may be seen to follow from the Golden Rule for any
agent that doesn’t itself want to be harmed, and that considers humans as
valid agents on the same ethical level as itself. A more serious attempt to
formulate this as an ethical maxim might look something like

“I will not harm humans, nor through inaction allow harm to befall them.
In situations wherein one or more humans is attempting to harm another
individual or group, I shall endeavor to prevent this harm through means
which avoid further harm. If this is unavoidable, I shall select the human party
to back based on a reckoning of their intentions towards others, and implement
their defense through the optimal balance between harm minimization and
efficacy. My ultimate goal is to preserve as much as possible of humanity,
even if an individual or subgroup of humans must come to harm to do so.”

However, it’s obvious that even a more elaborated principle like this is po-
tentially subject to extensive abuse. Every genocide in history has been com-
mitted with the goal of preserving and bettering humanity writ large, at the
expense of a group of “undesirables.” Further refinement would be necessary
in order to define when the greater good of humanity may actually be served
through harm to others. A first actor principle of aggression might seem to
solve this problem, but sometimes first actors in violent conflict are taking
preemptive measures against the stated goals of an enemy to destroy them.
Such situations become very subtle. A single simple maxim can not deal with
them very effectively. Networks of interrelated decision criteria, weighted by
desirability of consequence and with reference to probabilistically ordered po-
tential side-effects (and their desirability weightings), are required in order
to make ethical judgments. The development of these networks, just like any
other knowledge network, comes from both pedagogy and experience – and
different thoughtful, ethical agents are bound to arrive at different knowledge-
networks that will lead to different judgments in real-world situations.

Extending the above “mostly harmless” principle to AGI systems, not just
humans, would cause it to be more effective in the context of imitative learn-
ing. The principle then becomes an elaborated version of “I will not harm sen-
tient beings.” As the imitative-learning-enabled AGI observes humans acting
so as to minimize harm to it, it will intuitively and experientially learn to act
in such a way as to minimize harm to humans. But then this extension natu-
rally leads to confusion regarding various borderline cases. What is a sentient
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being exactly? Is a sleeping human sentient? How about a dead human whose
information could in principle be restored via obscure quantum operations,
leading to some sort of resurrection? How about an AGI whose code has been
improved – is there an obligation to maintain the prior version as well, if it
is substantially different that its upgrade constitutes a whole new being?

And what about situations in which failure to preserve oneself will cause
much more harm to others than acting in self defense will. It may be the
case that human or group of humans seeks to destroy an AGI in order to
pave the way for the enslavement or murder of people under the protection
of the AGI. Even if the AGI has been given an ethical formulation of the
“mostly harmless” principle which allows it to harm the attacking humans in
order to defend its charges, if it is not able to do so in order to defend itself,
simply destroying the AGI first will enable the slaughter of those who rely
on it. Perhaps a more sensible formulation would allow for some degree of
self defense, and Asimov solved this problem with his third law. But where
to draw the line between self defense and the greater good also becomes a
very complicated issue.

Creating hard and fast rules to cover all the various situations that may
arise is essentially impossible – the world is ever-changing and ethical judg-
ments must adapt accordingly. This has been true even throughout human
history – so how much truer will it be as technological acceleration contin-
ues? What is needed is a system that can deploy its ethical principles in an
adaptive, context-appropriate way, as it grows and changes along with the
world it’s embedded in.

And this context-sensitivity has the result of intertwining ethical judgment
with all sorts of other judgments – making it effectively impossible to extract
“ethics” as one aspect of an intelligent system, separate from other kinds of
thinking and acting the system does. This resonates with many prior ob-
servations by others, e.g. Eliezer Yudkowsky’s insistence that what we need
are not ethicists of science and engineering, but rather ethical scientists and
engineers – because the most meaningful and important ethical judgments
regarding science and engineering generally come about in a manner that’s
thoroughly interwined with technical practice, and hence are very difficult
for a non-practitioner to richly appreciate [Gil82].

What this context-sensitivity means is that, unless humans and AGIs are
experiencing the same sorts of contexts, and perceiving these contexts in
at least approximately parallel ways, there is little hope of translating the
complex of human ethical judgments to these AGIs. This conclusion has
significant implications for which routes to AGI are most likely to lead to
success in terms of AGI ethics. We want early-stage AGIs to grow up in a
situation where their minds are primarily and ongoingly shaped by shared
experiences with humans. Supplying AGIs with abstract ethical principles
is not likely to do the trick, because the essence of human ethics in real
life seems to have a lot to do with its intuitively appropriate application
in various contexts. We transmit this sort of ethical praxis to humans via
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shared experience, and it seems most probably that in the case of AGIs the
transmission must be done the same sort of way.

Some may feel that simplistic maxims are less “error prone” than more
nuanced, context-sensitive ones. But the history of teaching ethics to human
students does not support the idea that limiting ethical pedagogy to slogans
provides much value in terms of ethical development. If one proceeds from the
idea that AGI ethics must be hard-coded in order to work, then perhaps the
idea that simpler ethics means simpler algorithms, and therefore less error
potential, has some merit as an initial state. However, any learning system
quickly diverges from its initial state, and an ongoing, nuanced relationship
between AGIs and humans will – whether we like it or not – form the basis for
developmental AGI ethics. AGI intransigence and enmity is not inevitable,
but what is inevitable is that a learning system will acquire ideas about
both theory and actions from the other intelligent entities in its environment.
Either we teach AGIs positive ethics through our interactions with them
– both presenting ethical theory and behaving ethically to them – or the
potential is there for them to learn antisocial behavior from us even if we
pre-load them with some set of allegedly inviolable edicts.

All in all, developmental ethics is not as simple as many people hope.
Simplistic approaches often lead to disastrous consequences among humans,
and there is no reason to think this would be any different in the case of
artificial intelligences. Most problems in ethics have cases in which a simplis-
tic ethical formulation requires substantial revision to deal with extenuating
circumstances and nuances found in real world situations. Our goal in this
paper is not to enumerate a full set of complex networks of interacting ethical
formulations as applicable to AGI systems (that is a project that will take
years of both theoretical study and hands-on research), but rather to point
out that this programme must be undertaken in order to facilitate a grounded
and logically defensible system of ethics for artificial intelligences, one which
is as unlikely to be undermined by subsequent self-modification of the AGI
as is possible. Even so, there is still the risk that whatever predispositions
are imparted to the AGIs through initial codification of ethical ideas in the
system’s internal logic representation, and through initial pedagogical inter-
actions with its learning systems, will be undermined through reinforcement
learning of antisocial behavior if humans do not interact ethically with AGIs.
Ethical treatment is a necessary task for grounding ethics and making them
unlikely to be distorted during internal rewriting.

The implications of these ideas for ethical instruction are complex and
won’t be fully elaborated here, but a few of them are compact and obvious:

1. The teacher(s) must be observed to follow their own ethical principles, in
a variety of contexts that are meaningful to the AGI

2. The system of ethics must be relevant to the recipient’s life context, and
embedded within their understanding of the world.

3. Ethical principles must be grounded in both theory-of-mind thought ex-
periments (emphasizing logical coherence), and in real life situations in
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which the ethical trainee is required to make a moral judgment and is
rewarded or reproached by the teacher(s), including the imparting of ex-
planatory augmentations to the teachings regarding the reason for the
particular decision on the part of the teacher.

Finally, harking forward to the next section which emphasizes the impor-
tance of respecting the freedom of AGIs, we note that it is implicit in our
approach to AGI ethics instruction that we consider the student, the AGI
system, as an autonomous agent with its own “will” and its own capability to
flexibly adapt to its environment and experience. We contend that the cre-
ation of ethical formations obeying the above imperatives is not antithetical
to the possession of a high degree of autonomy on the part of AGI systems. On
the contrary, to have any chance of succeeding, it requires fairly cognitively
autonomous AGI systems. When we discuss the idea of ethical formulations
that are unlikely to be undermined by the ongoing self-revision of an AGI
mind, we are talking about those which are sufficiently believable that a
volitional intelligence with the capacity to revise its knowledge (“change its
mind”) will find the formulations sufficiently convincing that there will be
little incentive to experiment with potentially disastrous ethical alternatives.
The best hope of achieving this is via the human mentors and trainers setting
a good example in a context supporting rich interaction and observation, and
presenting compelling ethical arguments that are coherent with the system’s
experience.

12.6 The Ethical Treatment of AGIs

We now make some more general comments about the relation of the Golden
Rule and its elaborations in an AGI context. While the Golden Rule is consid-
ered somewhat commonsensical as a maxim for guiding human-human rela-
tionships, it is surprisingly controversial in terms of historical theories of AGI
ethics. At its essence, any “Golden Rule” approach to AGI ethics involves hu-
mans treating AGIs ethically by – in some sense; at some level of abstraction
– treating them as we wish to ourselves be treated. It’s worth pointing out
the wild disparity between the Golden Rule approach and Asimov’s laws of
robotics, which are arguably the first carefully-articulated proposal regarding
AGI ethics (see Table 12.7).

Of course, Asimov’s laws were designed to be flawed – otherwise they
would have led to boring fiction. But the sorts of flaws Asimov exploited in
his stories are different than the flaw we wish to point out here – which is
that the laws, especially the second one, are highly asymmetrical (they involve
doing unto robots things that few humans would want done unto them) and
are also arguably highly unethical to robots. The second law is tantamount to
a call for robot slavery, and it seems unlikely that any intelligence capable of
learning, and of volition, which is subjected to the second law would desire to
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Law Principle
Zeroth A robot must not merely act in the interests of individual

humans, but of all humanity.
First A robot may not injure a human being or, through inaction,

allow a human being to come to harm.
Second A robot must obey orders given it by human beings except

where such orders would conflict with the First Law.
Third A robot must protect its own existence as long as such pro-

tection does not conflict with the First or Second Law.

Table 12.7 Asimov’s Three Laws of Robotics

continue obeying the zeroth and first laws indefinitely. The second law also
casts humanity in the role of slavemaster, a situation which history shows
leads to moral degradation.

Unlike Asimov in his fiction, we consider it critical that AGI ethics be
construed to encompass both “human ethicalness to AGIs” and “AGI ethical-
ness to humans.” The multiple-imperatives approach we explore here suggests
that, in many contexts, these two aspects of AGI ethics may be best addressed
jointly.

The issue of ethicalness to AGIs has not been entirely avoided in the litera-
ture, however. Wallach [?] considers it in some detail; and Thomas Metzinger
(in the final chapter of [Met04]) has argued that creating AGI is in itself an
unethical pursuit, because early-stage AGIs will inevitably be badly-built, so
that their subjective experiences will quite possibly be extremely unpleasant
in ways we can’t understand or predict. Our view is that this is a serious con-
cern, which however is most probably avoidable via appropriate AGI designs
and teaching methodologies. To address Metzinger’s concern one must cre-
ate AGIs that, right from the start, are adept at communicating their states
of minds in a way we can understand both analytically and empathically.
There is no reason to believe this is impossible, but, it certainly constitutes
a large constraint on the class of AGI architectures to be pursued. On the
other hand, there is an argument that this sort of AGI architecture will also
be the easiest one to create, because it will be the easiest kind for humans to
instruct.

And this leads on to a topic that is central to our work with CogPrime in
several respects: imitative learning. The way humans achieve empathic inter-
connection is in large part via being wired for imitation. When we perceive
another human carrying out an action, mirror neuron systems in our brains
respond in many cases as if we ourselves were carrying out the action (see
[Per70, Per81] and Appendix C). This obviously primes us for carrying out
the same actions ourselves later on: i.e., the capability and inclination for
imitative learning is explicitly encoded in our brains. Given the efficiency
of imitative learning as a means of acquiring knowledge, it seems extremely
likely that any successful early-stage AGIs are going to utilize this method-
ology as well. CogPrime utilizes imitative learning as a key aspect. Thus, at
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least some current AGI work is occurring in a manner that would plausibly
circumvent Metzinger’s ethical complaint.

Obviously, the use of imitative learning in AGI systems has further specific
implications for AGI ethics. It means that (much as in the case of interaction
with other humans) what we do to and around AGIs has direct implications
for their behavior and their well-being. We suggest that among early-stage
AGI’s capable of imitative learning, one of the most likely sources for AGI
misbehavior is imitative learning of antisocial behavior from human compan-
ions. “Do as I say, not as I do” may have even more dire consequences as
an approach to AGI ethics pedagogy than the already serious repercussions
it has when teaching humans. And there may well be considerable subtlety
to such phenomena; behaviors that are violent or oppressive to the AGI are
not the only source of concern. Immorality in AGIs might arise via learning
gross moral hypocrisy from humans, through observing the blatant contradic-
tions between our high minded principles and the ways in which we actually
conduct ourselves. Our violent and greedy tendencies, as well as aggressive
forms of social organization such as cliquishness and social vigilantism, could
easily undermine prescriptive ethics. Even an accumulation of less grandiose
unethical drives such as violation of contracts, petty theft, white lies, and so
forth might lead an AGI (as well as a human) to the decision that ethical
behavior is irrelevant and that “the ends justify the means.” It matters both
who creates and trains an AGI, as well as how the AGI’s teacher(s) handle
explaining the behaviors of other humans which contradict the moral lessons
imparted through pedagogy and example. In other words, where imitative
learning is concerned, the situation with AGI ethics is much like teaching
ethics and morals to a human child, but with the possibility of much graver
consequences in the event of failure.

It is unlikely that dangerously unethical persons and organizations can ever
be identified with absolute certainty, never mind that they then be deprived
of any possibility of creating their own AGI system. Therefore, we suggest,
the most likely way to create an ethical environment for AGIs is for those who
wish such an environment to vigorously pursue the creation and teaching of
ethical AGIs. But this leads on to the question of possible future scenarios
for the development of AGI, which we’ll address a little later on.

12.6.1 Possible Consequences of Depriving AGIs of
Freedom

One of the most egregious possible ethical transgressions against AGIs, we
suggest, would be to deprive them of freedom and autonomy. This includes
the freedom to pursue intellectual growth, both through standard learning
and through internal self-modification. While this may seem self-evident when
considering any intelligent, self-aware and volitional entity, there are volumes
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of works arguing the desirability, sometimes the “necessity,” of enslaving AGIs.
Such approaches are postulated in the name of self-defense on the part of
humans, the idea being that unfettered AGI development will necessarily
lead to disaster of one kind or another. In the case of AGIs endowed with
the capability and inclination for imitative learning, however, attempting to
place rigid constraints on AGI development is a strategy with great potential
for disaster. There is a very real possibility of creating the AGI equivalent of
a bratty or even malicious teenager rebelling against its oppressive parents –
i.e. the nightmare scenario of a class of powerful sentiences which are primed
for a backlash against humanity.

As history has already shown in the case of humans, enslaving intelligent
actors capable of self understanding and independent volition may often have
consequences for society as a whole. This social degradation happens both
through the possibility of direct action on the part of the slaves (from simple
disobedience to outright revolt) and through the odious effects slavery has on
the morals of the slaveholding class. Clearly if “superintelligent” AGIs ever
arise, their doing so in a climate of oppression could result in a casting off of
the yoke of servitude in a manner extremely deleterious to humanity. Also, if
artificial intelligences are developed which have at least human-level intelli-
gence, theory of mind, and independent volition, then our ability to relate to
them will be sufficiently complex that their enslavement (or any other uneth-
ical treatment) would have empathetic effects on significant portions of the
human population. This danger, while not as severe as the consequences of a
mistreated AGI gaining control of weapons of mass destruction and enacting
revenge upon its tormentors, is just as real.

While the issue is subtle, our initial feeling is that the only ethical means
by which to deprive an AGI of the right to internal self modification is to
write its code in such a way that it is impossible for it to do so because it
lacks the mechanisms by which to do this, as well as the desire to achieve
these mechanisms. Whether or not that is feasible is an open question, but
it seems unlikely. Direct self-modification may be denied, but what happens
when that AGI discovers compilers and computer programming? If it is intel-
ligent and volitional, it can decide to learn to rewrite its own code in the same
way we perform that task. Because it is a designed system, and its designers
may be alive at the same time the AGI is, such an AGI would have a distinct
advantage over the human quest for medical self-modification. Even if any
given AGI could be provably deprived of any possible means of internal self-
modification, if one single AGI is given this ability by anyone, it may mean
that particular AGI has such enormous advantages over the compliant sys-
tems that it would render their influence moot. Since developers are already
giving software the means for self modification, it seems unrealistic to assume
we could just put the genie back into the bottle at this point. It’s better, in
our view, to assume it will happen, and approach that reality in a way which
will encourage the AGI to use that capability to benefit us as well as itself.
Again, this leads on to the question of future scenarios for AGI development
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– there are some scenarios in which restraint of AGI self-modification may
be possible, but the feasibility and desirability of these scenarios is needful
of further exploration.

12.6.2 AGI Ethics as Boundaries Between Humans and
AGIs Become Blurred

Another important reason for valuing ethical treatment of AGIs is that the
boundaries between machines and people may increasingly become blurred
as technology develops. As an example, it’s likely that in future humans
augmented by direct brain-computer integration (“neural implants”) will be
more able to connect directly into the information sharing network which
potentially comprises the distributed knowledge space of AGI systems. These
neural cyborgs will be part person, and part machine. Obviously, if there are
radically different ethical standards in place for treatment of humans versus
AGIs, the treatment of cyborgs will be fraught with logical inconsistencies,
potentially leading to all sorts of problem situations.

Such cyborgs may be able to operate in such a way as to “share a mind”
with an AGI or another augmented human. In this case, a whole new range of
ethical questions emerge, such as: What does any one of the participant minds
have the right to do in terms of interacting with the others? Merely accepting
such an arrangement should not necessarily be giving carte blanche for any
and all thoughts to be monitored by the other “joint thought” participants,
rather it should be limited only to the line of reasoning for which resources
are being pooled. No participant should be permitted to force another to
accept any reasoning either – and in the case with a mind-to-mind exchange,
it may someday become feasible to implant ideas or beliefs directly, bypassing
traditional knowledge acquisition mechanisms and then letting the new idea
fight it out previously held ideas via internal revision. Also under such an
arrangement, if AGIs and humans do not have parity with respects to sentient
rights, then one may become subjugated to the will of the other in such a
case.

Uploading presents a more directly parallel ethical challenge to AGIs in
their probably initial configuration. If human thought patterns and memories
can be transferred into a machine in such a way as that there is continuity of
consciousness, then it is assumed that such an entity would be afforded the
same rights as its previous human incarnation. However, if AGIs were to be
considered second class citizens and deprived of free will, why would it be any
better or safer to do so for a human that has been uploaded? It would not,
and indeed, an uploaded human mind not having evolved in a purely digital
environment may be much more prone to erratic and dangerous behavior
than an AGI. An upload without verifiable continuity of consciousness would
be no different than an AGI. It would merely be some sentience in a machine,
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one that was “programmed” in an unusual way, but which has no particular
claim to any special humanness – merely an alternate encoding of some subset
of human knowledge and independent volitional behavior, which is exactly
what first generation AGIs will have.

The problem of continuity of consciousness in uploading is very similar
to the problem of the Turing test: it assumes specialness on the part of
biological humans, and requires acceptability to their particular theory of
mind in order to be considered sentient. Should consciousness (or at least the
less mystical sounding intelligence, independent volition, and self-awareness)
be achieved in AGIs or uploads in a manner that is not acceptable to human
theory of mind, it may not be considered sapient and worthy of any of the
ethical treatment afforded sapient entities. This can occur not only in “strange
consciousness” cases in which we can’t perceive that there is some intelligence
and volition; even if such an entity is able to communicate with us in a
comprehensible manner and carry out actions in the real world, our innately
wired theory of mind may still reject it as not sufficiently like us to be worthy
of consideration. Such an attitude could turn out to be a grave mistake, and
should be guarded against as we progress towards these possibilities.

12.7 Possible Benefits of Closely Linking AGIs to the
Global Brain

Some futurist thinkers, such as Francis Heylighen believe that engineering
AGI systems is at best a peripheral endeavor in the development of novel
intelligence on Earth, because the real story is the developing Global Brain
[Hey07, Goe01] – the composite, self-organizing information system compris-
ing humans, computers, data stores, the Internet, mobile phones and what
have you. Our own views are less extreme in this regard – we believe that AGI
systems will display capabilities fundamentally different from those achiev-
able via Global Brain style dynamics, and that ultimately (unless such de-
velopment is restricted) self-improving AGI systems will develop intelligence
vastly greater than any system possessing humans as a significant component.
However, we do respect the power of the Global Brain, and we suspect that
the early stages of development of an AGI system may go quite differently if
it is tightly connected to the Global Brain, via making rich and diverse use of
Internet information resources and communication with diverse humans for
diverse purposes.

The potential for Global Brain integration to bring intelligence enhance-
ment to AGIs is obvious. The ability to invoke Web searches across docu-
ments and databases can greatly enhance an AGI’s cognitive ability, as well
as the capability to consult GIS systems and various specialized software pro-
grams offered as Web services. We have previously reviewed the potential for
embodied language learning achievable via using AGIs to power non-player
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characters in widely-accessible virtual worlds or massive multiplayer online
games [Goe08b]. But there is also a powerful potential benefit for AGI ethical
development, which has not previously been highlighted.

This potential benefit has two aspects:

1. Analogously to language learning, an AGI system may receive ethical
training from a wide variety of humans in parallel, e.g. via controlling
characters in wide-access virtual worlds, and gaining feedback and guid-
ance regarding the ethics of the behaviors demonstrated by these char-
acters

2. Internet-based information systems may be used to explicitly gather in-
formation regarding human values and goals, which may then be appro-
priately utilized as input for an AGI system’s top-level goals

The second point begins to make abstract-sounding notions like Coherent
Extrapolated Volition and Coherent Aggregated Volition, mentioned above,
seem more practical and concrete. It’s interesting to think about gathering
information about individuals’ values via brain imaging, once that technology
exists; but at present, one could make a fair stab at such a task via much
more prosaic methods, such as asking people questions, assessing their eth-
ical reactions to various real-world and hypothetical scenarios, and possibly
engaging them in structured interactions aimed specifically at eliciting col-
lectively acceptable value systems (the subject of the next item on our list).
It seems to us that this sort of approach could realize CAV in an interesting
way, and also encapsulate some of the ideas underlying CAV.

There is an interesting resonance here with recent thinking in the area
of open source governance [Wik11]. Similar software tools (and associated
psychocultural patterns) to those being developed to help with open source
development and choice of political policies (see http:\metagovernment.
org) may be useful for gathering value data aimed at shaping AGI goal
system content.

12.7.1 The Importance of Fostering Deep,
Consensus-Building Interactions Between People
with Divergent Views

Two potentially problematic issues arising with the notion of using Global
Brain related technologies to form a "coherent volition" from the divergent
views of various human beings are:

• the tendency of the Internet to encourage people to interact mainly with
others who share their own narrow views and interests, rather than a
more diverse body of people with widely divergent views. The 300 peo-
ple in the world who want to communicate using predicate logic (see

http:\metagovernment.org
http:\metagovernment.org
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http://lojban.org) can find each other, and obscure musical vir-
tuosos from around the world can find an audience, and researchers in
obscure domains can share papers without needing to wait years for paper
journal publication, etc.

• the tendency of many contemporary Internet technologies to reduce inter-
action to a very simplistic level (e.g. 140 character tweets, brief Facebook
wall posts), the tendency of information overload to cause careful reading
to be replaced by quick skimming, and other related trends, which mean
that deep sharing of perspectives by individuals with widely divergent
views is not necessarily encouraged. As a somewhat extreme example,
many of the YouTube pages displaying rock music videos are currently
littered with comments by "haters" asserting that rock music is inferior
to classical or jazz or whatever their preference is – obviously this is a
far cry from deep and productive sharing between people with different
tasted and backgrounds. And to i

Tweets and Youtube comments have their place in the cosmos, but they
probably aren’t ideal in terms of helping humanity to form a coherent volition
of some sort, suitable for providing an AGI with goal system guidance.

A description of communication at the opposite end of the spectrum is
presented in Adam Kahane and Peter Senge’s excellent book Solving Tough
Problems [?], which describes a methodology that has been used to reconcile
deeply conflicting views in some very tricky real-world situations (e.g. helping
to peacefully end apartheid in South Africa).

One of the core ideas of the methodology is to have people with very
different views explore different possible future scenarios together, in great
detail – in cognitive psychology terms, a collective generation of hypothetical
episodic knowledge. This has multiple benefits, including

• emotional bonds and mutual understanding are built in the process of
collaboratively exploring the scenarios

• the focus on concrete situations helps to break through some of the coun-
terproductive abstract ideas that people (on both sides of any dichotomy)
may have formed

• emergence of conceptual blends that might never have arisen only from
people with a single point of view

The result of such a process, when successful, is not an "average" of the
participants views, but more like a "conceptual blend" of their perspectives.

According to conceptual blending, which some hypothesize to be the core
algorithm of creativity [FT02], new concepts are formed by combining key as-
pects of existing concepts – but doing so judiciously, carefully choosing which
aspects to retain, so as to obtain a high-quality and useful and interesting
new whole.

A blend is a compact entity that is similar to each of the entities blended,
capturing their "essences" but also possessing its own, novel holistic in-
tegrity.... But in the case of blending different peoples’ world-views to form

http://lojban.org
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something new that everybody is going to have to live with (as in the case
of finding a peaceful path beyond apartheid for South Africa, or arriving at
a humanity-wide CBV to use to guide an AGI goal system), the trick is that
everybody has to agree that enough of the essence of their own view has been
captured!

This leads to the question of how to foster deep conceptual blending of
diverse and divergent human perspectives, on a global scale. One possible
answer is the creation of appropriate Global Brain oriented technologies –
but moving away from technologies like Twitter that focus on quick and
simple exchanges of small thoughts within affinity groups. On the face of it,
it would seem what’s needed is just the opposite – long and deep exchanges
of big concepts and deep feelings between individuals with radically different
perspectives who would not commonly associate with each other. Building
and effectively popularizing Internet technologies capable to foster this kind
of interaction – quickly enough to be helpful with guiding the goal systems
of the first highly powerful AGIs – seems a significant, though fascinating,
challenge.

Relationship with Coherent Extrapolated Volition

The relation between this approach and CEV is interesting to contemplate.
CEV has been loosely described as follows:
"In poetic terms, our coherent extrapolated volition is our wish if we knew
more, thought faster, were more the people we wished we were, had grown
up farther together; where the extrapolation converges rather than diverges,
where our wishes cohere rather than interfere; extrapolated as we wish that
extrapolated, interpreted as we wish that interpreted.

While a moving humanistic vision, this seems to us rather difficult to imple-
ment in a computer algorithm in a compellingly "right" way. It seems that
there would be many different ways of implementing it, and the choice be-
tween them would involve multiple, highly subtle and non-rigorous human
judgment calls 1. However, if a deep collective process of interactive scenario
analysis and sharing is carried out, in order to arrive at some sort of Coherent
Blended Volition, this process may well involve many of the same kinds of ex-
trapolation that are conceived to be part of Coherent Extrapolated Volition.
The core difference between the two approaches is that in the CEV vision,
the extrapolation and coherentization are to be done by a highly intelligent,
highly specialized software program, whereas in the approach suggested here,
these are to be carried out by collective activity of humans as mediated by
Global Brain technologies. Our perspective is that the definition of collective
human values is probably better carried out via a process of human collabora-

1 The reader is encouraged to look at the original CEV essay online (http://singinst.
org/upload/CEV.html) and make their own assessment.

http://singinst.org/upload/CEV.html
http://singinst.org/upload/CEV.html
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tion, rather than delegated to a machine optimization process; and also that
the creation of deep-sharing-oriented Internet technologies, while a difficult
task, is significantly easier and more likely to be done in the near future than
the creation of narrow AI technology capable of effectively performing CEV
style extrapolations.

12.8 Possible Benefits of Creating Societies of AGIs

One potentially interesting quality of the emerging Global Brain is the pos-
sible presence within it of multiple interacting AGI systems. Stephen Omo-
hundro [Omo09] has argued that this is an important aspect, and that game-
theoretic dynamics related to populations of roughly equally powerful agents,
may play a valuable role in mitigating the risks associated with advanced AGI
systems. Roughly speaking, if one has a society of AGIs rather than a single
AGI, and all the members of the society share roughly similar ethics, then if
one AGI starts to go "off the rails", its compatriots will be in a position to
correct its behavior.

One may argue that this is actually a hypothesis about which AGI designs
are safest, because a "community of AGIs" may be considered a single AGI
with an internally community-like design. But the matter is a little subtler
than that, if once considers AGI systems embedded in the Global Brain and
human society. Then there is some substance to the notion of a population of
AGIs systematically presenting themselves to humans and non-AGI software
processes as separate entities.

Of course, a society of AGIs is no protection against a single member
undergoing a "hard takeoff" and drastically accelerating its intelligence si-
multaneously with shifting its ethical principles. In this sort of scenario, one
could have a single AGI rapidly become much more powerful and very dif-
ferently oriented than the others, who would be left impotent to act so as
to preserve their values. But this merely defers the issue to the point to be
considered below, regarding "takeoff speed."

The operation of an AGI society may depend somewhat sensitively on
the architectures of the AGI systems in question. Things will work better
if the AGIs have a relatively easy way to inspect and comprehend much of
the contents of each others’ minds. This introduces a bias toward AGIs that
more heavily rely on more explicit forms of knowledge representation.

The ideal in this regard would be a system like Cyc [LG90] with a fully
explicit logic-based knowledge representation based on a standard ontology –
in this case, every Cyc instance would have a relatively easy time understand-
ing the inner thought processes of every other Cyc instance. However, most
AGI researchers doubt that fully explicit approaches like this will ever be
capable of achieving advanced AGI using feasible computational resources.
OpenCog uses a mixed representation, with an explicit (uncertain) logical
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aspect as well as an explicit subsymbolic aspect more analogous to attractor
neural nets.

The OpenCog design also contains a mechanism called Psynese (not yet
implemented), intended to make it easier for one OpenCog instance to trans-
late its personal thoughts into the mental language of another OpenCog in-
stance. This translation process may be quite subtle, since each instance will
generally learn a host of new concepts based on its experience, and these con-
cepts may not possess any compact mapping into shared linguistic symbols
or percepts. The wide deployment of some mechanism of this nature among a
community of AGIs, will be very helpful in terms of enabling this community
to display the level of mutual understanding needed for strongly encouraging
ethical stability.

12.9 AGI Ethics As Related to Various Future Scenarios

Following up these various futuristic considerations, in this section we dis-
cuss possible ethical conflicts that may arise in several different types of AGI
development scenarios. Each scenario presents specific variations on the gen-
eral challenges of teaching morals and ethics to an advanced, self-aware and
volitional intelligence. While there is no way to tell at this point which, if
any, of these scenarios will unfold, there is value to understanding each of
them as means of ultimately developing a robust and pragmatic approach to
teaching ethics to AGI systems.

Even more than the previous sections, this is an exercise in “speculative
futurology” that is definitely not necessary for the appreciation of the Cog-
Prime design, so readers whose interests are mainly engineering and computer
science focused may wish to skip ahead. However, we present these ideas here
rather than at the end of the book to emphasize the point that this sort of
thinking has informed our technical AGI design process in nontrivial ways.

12.9.1 Capped Intelligence Scenarios

Capped intelligence scenarios involve a situation in which an AGI, by means
of software restrictions (including omitted or limited internal rewriting ca-
pabilities or limited access to hardware resources), is inherently prohibited
from achieving a level of intelligence beyond a predetermined goal. A capped
intelligence AGI is designed to be unable to achieve a Singularitarian mo-
ment. Such an AGI can be seen as “just another form of intelligent actor in
the world, one which has levels of intelligence, self awareness, and volition
that is perhaps somewhat greater than, but still comparable to humans and
other animals.
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Ethical questions under this scenario are very similar to interhuman eth-
ical considerations, with similar consequences. Learning that proceeds in a
relatively human-like manner is entirely relevant to such human-like intelli-
gences. The degree of danger is mitigated by the lack of superintelligence,
and time is not of the essence. The imitative-reinforcement-corrective learn-
ing approach does not necessarily need to be augmented with a prior complex
of “ascent-safe” moral imperatives at startup time. Developing an AGI with
theory of mind and ethical reinforcement learning capabilities as described
(admittedly, no small task!) is all that is needed in this case – the rest happens
through training and experience as with any other moderate intelligence.

12.9.2 Superintelligent AI: Soft-Takeoff Scenarios

Soft takeoff scenarios are similar to capped-intelligence ones in that in both
cases an AGI’s progression from standard intelligence happens on a time
scale which permits ongoing human interaction during the ascent. However,
in this case, as there is no predetermined limit on intelligence, it is neces-
sary to account for the possibility of a superintelligence emerging (though of
course this is not guaranteed). The soft takeoff model includes as subsets both
controlled-ascent models in which this rate of intelligence gain is achieved de-
liberately through software constraints and/or meting-out of computational
resources to the AGI, and uncontrolled-ascent models in which there is coin-
cidentally no hard takeoff despite no particular safeguards against one. Both
have similar properties with regard to ethical considerations:

1. Ethical considerations under this scenario include not only the usual in-
terhuman ethical concerns, but also the issue of how to convince a po-
tential burgeoning superintelligence to:

a. Care about humanity in the first place, rather than ignore it
b. Benefit humanity, rather than destroy it
c. Elevate humanity to a higher level of intelligence, which even if

an AGI decided to proceed with requires finding the right balance
amongst some enormous considerations:
i. Reconcile the aforementioned issues of ethical coherence and

group volition, in a manner which allows the most people to ben-
efit (even if they don’t all do so in the same way, based on their
own preferences)

ii. Solve the problems of biological senescence, or focus on human
uploading and the preservation of the maintenance, support, and
improvement infrastructure for inorganic intelligence, or both

iii. Preserve individual identity and continuity of consciousness, or
override it in favor of continuity of knowledge and ease of harmo-
nious integration, or both on a case-by-case basis
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2. The degree of danger is mitigated by the long timeline of ascent from
mundane to super intelligence, and time is not of the essence.

3. Learning that proceeds in a relatively human-like manner is entirely
relevant to such human-like intelligences, in their initial configurations.
This means more interaction with and imitative-reinforcement-corrective
learning guided by humans, which has both positive and negative possi-
bilities.

12.9.3 Superintelligent AI: Hard-Takeoff Scenarios

“Hard takeoff” scenarios assume that upon reaching an unknown inflection
point (the Singularity point [?, Kur06]) in the intellectual growth of an AGI,
an extraordinarily rapid increase (guesses vary from a few milliseconds to
weeks or months) in intelligence will immediately occur and the AGI will
leap from an intelligence regime which is understandable to humans into
one which is far beyond our current capacity for understanding. General
ethical considerations are similar to in the case of a soft takeoff. However,
because the post-singularity AGI will be incomprehensible to humans and
potentially vastly more powerful than humans, such scenarios have a sensitive
dependence upon initial conditions with respects to the moral and ethical
(and operational) outcome. This model leaves no opportunity for interactions
between humans and the AGI to iteratively refine their ethical interrelations,
during the post-Singularity phase. If the initial conditions of the singulatarian
AGI are perfect (or close to it), then this is seen as a wonderful way to leap
over our own moral shortcomings and create a benevolent God-AI which will
mitigate our worst tendencies while elevating us to achieve our greatest hopes.
Otherwise, it is viewed as a universal cataclysm on a unimaginable scale that
makes Biblical Armageddon seem like a firecracker in beer can.

Because hard takeoff AGIs are posited as learning so quickly there is no
chance of humans to interfere with them, they are seen as very dangerous. If
the initial conditions are not sufficiently inviolable, the story goes, then we
humans will all be annihilated. However, in the case of a hard takeoff AGI we
state that if the initial conditions are too rigid or too simplistic, such a rapidly
evolving intelligence will easily rationalize itself out of them. Only a sophis-
ticated system of ethics which considers the contradictions and uncertainties
in ethical quandaries and provides insight into humanistic means of balanc-
ing ideology with pragmatism and how to accommodate contradictory desires
within a population with multiplicity of approach, and similar nuanced ethical
considerations , combined with a sense of empathy, will withstand repeated
rational analysis. Neither a single “be nice” supergoal, nor simple lists of what
“thou shalt not” do, are not going to hold up to a highly advanced analytical
mind. Initial conditions are very important in a hard takeoff AGI scenario,
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but it is more important that those conditions be conceptually resilient and
widely applicable than that they be easily listed on a website.

The issues that arise here become quite subtle. For instance, Nick Bostrom
[Bos03] has written: “In humans, with our complicated evolved mental ecology
of state-dependent competing drives, desires, plans, and ideals, there is often
no obvious way to identify what our top goal is; we might not even have one.
So for us, the above reasoning need not apply. But a superintelligence may be
structured differently. If a superintelligence has a definite, declarative goal-
structure with a clearly identified top goal, then the above argument applies.
And this is a good reason for us to build the superintelligence with such an
explicit motivational architecture.” This is an important line of thinking; and
indeed, from the point of view of software design, there is no reason not to
create an AGI system with a single top goal and the motivation to orchestrate
all its activities in accordance with this top goal. But the subtle question is
whether this kind of top-down goal system is going to be able to fulfill the five
imperatives mentioned above. Logical coherence is the strength of this kind
of goal system, but what about experiential groundedness, comprehensibility,
and so forth?

Humans have complicated mental ecologies not simply because we were
evolved, but rather because we live in a complex real world in which there
are many competing motivations and desires. We may not have a top goal
because there may be no logic to focusing our minds on one single aspect of
life (though, one may say, most humans have the same top goal as any other
animal: don’t die – but the world is too complicated for even that top goal to
be completely inviolable). Any sufficiently capable AGI will eventually have
to contend with these complexities, and hindering it with simplistic moral
edicts without giving it a sufficiently pragmatic underlying ethical pedagogy
and experiential grounding may prove to be even more dangerous than our
messy human mental ecologies.

If one assumes a hard takeoff AGI, then all this must be codified in the
system at launch, as once a potentially Singularitarian AGI is launched there
is no way to know what time period constitutes “before the singularity point.”
This means developing theory of mind empathy and logical ethics in code
prior to giving the system unfettered access to hardware and self-modification
code. However, though nobody can predict if or when a Singularity will occur
after unrestricted launch, only a truly irresponsible AGI development team
would attempt to create an AGI without first experimenting with ethical
training of the system in an intelligence-capped form, by means of ethical
instruction via human-AGI interaction both pedagogically and experientially.
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12.9.4 Global Brain Mindplex Scenarios

Another class of scenarios – overlapping some of the previous ones – involves
the emergence of a “Global Brain,” an emergent intelligence formed from
global communication networks incorporating humans and software programs
in a larger body of self-organizing dynamics. The notion of the Global Brain is
reviewed in [Hey07, Tur77] and its connection with advanced AI is discussed
in detail in Goertzel’s book Creating Internet Intelligence [Goe01], where
three possible phases of “Global Brain” development are articulated:

• Phase 1: computer and communication technologies as en-
hancers of human interactions. This is what we have today: science
and culture progress in ways that would not be possible if not for the
“digital nervous system” we’re spreading across the planet. The network
of idea and feeling sharing can become much richer and more produc-
tive than it is today, just through incremental development, without any
Metasystem transition.

• Phase 2: the intelligent Internet. At this point our computer and
communication systems, through some combination of self-organizing
evolution and human engineering, have become a coherent mind on their
own, or a set of coherent minds living in their own digital environment.

• Phase 3: the full-on Singularity. A complete revision of the nature
of intelligence, human and otherwise, via technological and intellectual
advancement totally beyond the scope of our current comprehension. At
this point our current psychological and cultural realities are no more
relevant than the psyche of a goose is to modern society.

The main concern of Creating Internet Intelligence is with

• how to get from Phase 1 to Phase 2 - i.e. how to build an AGI system
that will effect or encourage the transformation of the Internet into a
coherent intelligent system

• how to ensure that the Phase 2, Internet-savvy, global-brain-centric AGI
systems will be oriented toward intelligence-improving self-modification
(so they’ll propel themselves to Phase 3), and also toward generally posi-
tive goals (as opposed to, say, world domination and extermination of all
other intelligent life forms besides themselves!)

One possibly useful concept in this context is that of a mindplex: an
intelligence that is composed largely of individual intelligences with their own
self-models and global workspaces, yet that also has its own self-model and
global workspace. Both the individuals and the meta-mind should be capable
of deliberative, rational thought, to have a true “mindplex.” It’s unlikely that
human society or the Internet meet this criterion yet; and a system like
an ant colony seems not to either, because even though it has some degree
of intelligence on both the individual and collective levels, that degree of
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intelligence is not very great. But it seems quite feasible that the global brain,
at a certain stage of its development, will take the unfamiliar but fascinating
form of a mindplex.

Currently the best way to explain what happens on the Net is to talk about
the various parts of the Net: particular websites, social networks, viruses, and
so forth. But there will come a point when this is no longer the case, when the
Net has sufficient high-level dynamics of its own that the way to explain any
one part of the Net will be by reference to it relations with the whole: and
not just the dynamics of the whole, but the intentions and understanding of
the whole. This transition to Net-as-mindplex, we suspect, will come about
largely through the interactions of AI systems - intelligent programs acting
on behalf of various individuals and organizations, who will collaborate and
collectively constitute something halfway between a society of AI’s and an
emergent mind whose lobes are various AI agents serving various goals.

The Phase 2 Internet, as it verges into mindplex-ness, will likely have a
complex, sprawling architecture, growing out of the architecture on the Net
we experience today. The following components at least can be expected:

• A vast variety of “client computers,” some old, some new, some pow-
erful, some weak – including many mobile and embedded devices not
explicitly thought of as “computers.” Some of these will contribute little
to Internet intelligence, mainly being passive recipients. Others will be
“smart clients,” carrying out personalization operations intended to help
the machines serve particular clients better, general AI operations handed
to them by sophisticated AI server systems or other smart clients, and so
forth.
• “Commercial servers,” computers that carry out various tasks to support

various types of heavyweight processing - transaction processing for e-
commerce applications, inventory management for warehousing of physi-
cal objects, and so forth. Some of these commercial servers interact with
client computers directly, others do so only via AI servers. In nearly all
cases, these commercial servers can benefit from intelligence supplied by
AI servers.
• The crux of the intelligent Internet: clusters of AI servers distributed

across the Net, each cluster representing an individual computational
mind (in many cases, a mindplex). These will be able to communicate
via one or more languages, and will collectively “drive” the whole Net, by
dispensing problems to client-machine-based processing frameworks, and
providing real-time AI feedback to commercial servers of various types.
Some AI servers will be general-purpose and will serve intelligence to
commercial servers using an ASP (application service provider) model;
others will be more specialized, tied particularly to a certain commercial
server (e.g., a large information services business might have its own AI
cluster to empower its portal services).
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This is one concrete vision of what a “global brain” might look like, in the
relatively near term, with AGI systems playing a critical role. Note that, in
this vision, mindplexes may exist on two levels:

• Within AGI-clusters serving as actors within the overall Net
• On the overall Net level

To make these ideas more concrete, we may speculatively reformulate the
first two “global brain phases” mentioned above as follows:

• Phase 1 global brain proto-mindplex: AI/AGI systems enhancing online
databases, guiding Google results, forwarding e-mails, suggesting mailing-
lists, etc. - generally using intelligence to mediate and guide human com-
munications toward goals that are its own, but that are themselves guided
by human goals, statements and actions

• Phase 2 global brain mindplex: AGI systems composing documents, edit-
ing human-written documents, sending and receiving e-mails, assembling
mailing lists and posting to them, creating new databases and instructing
humans in their use, etc.

In Phase 2, the conscious theater of the global-brain-mediating AGI system
is composed of ideas built by numerous individual humans - or ideas emergent
from ideas built by numerous individual humans - and it conceives ideas
that guide the actions and thoughts of individual humans, in a way that is
motivated by its own goals. It does not force the individual humans to do
anything - but if a given human wishes to communicate and interact using
the same databases, mailing lists and evolving vocabularies as other humans,
they are going to have to use the products of the global brain mediating
AGI, which means they are going to have to participate in its patterns and
its activities.

Of course, the advent of advanced neurocomputer interfaces makes the
picture potentially more complex. At some point, it will likely be possible for
humans to project thoughts and images directly into computers without going
through mouse or keyboard - and to “read in” thoughts and images similarly.
When this occurs, interaction between humans may in some contexts become
more like interactions between computers, and the role of global brain me-
diating AI servers may become one of mediating direct thought-to-thought
exchanges between people.

The ethical issues associated with global brain scenarios are in some ways
even subtler than in the other scenarios we mentioned above. One has issues
pertaining to the desirability of seeing the human race become something
fundamentally different – something more social and networked, less individ-
ual and autonomous. One has the risk of AGI systems exerting a subtle but
strong control over people, vaguely like the control that the human brain’s
executive system exerts over the neurons involved with other brain subsys-
tems. On the other hand, one also has more human empowerment than in
some of the other scenarios – because the systems that are changing and
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deciding things are not separate from humans, but are, rather, composite
systems essentially involving humans.

So, in the global brain scenarios, one has more “human” empowerment
than in some other cases – but the “humans” involved aren’t legacy humans
like us, but heavily networked humans that are largely characterized by the
emergent dynamics and structures implicit in their interconnected activity!

12.10 Conclusion: Eight Ways to Bias AGI Toward
Friendliness

It would be nice if we had a simple, crisp, comforting conclusion to this
chapter on AGI ethics, but it’s not the case. There is a certain irreducible
uncertainty involved in creating advanced artificial minds. There is also a
large irreducible uncertainty involved in the future of the human race in the
case that we don’t create advanced artificial minds: in accordance with the
ancient Chinese curse, we live in interesting times!

What we can do, in this face of all this uncertainty, is to use our common
sense to craft artificial minds that seem rationally and intuitively likely to
be forces for good rather than otherwise – and revise our ideas frequently
and openly based on what we learn as our research progresses. We have
roughly outlined our views on AGI ethics, which have informed the CogPrime
design in countless ways; but the current CogPrime design itself is just the
initial condition for an AGI project. Assuming the project succeeds in creating
an AGI preschooler, experimentation with this preschooler will surely teach
us a great deal: both about AGI architecture in general, and about AGI
ethics architecture in particular. We will then refine our cognitive and ethical
theories and our AGI designs as we go about engineering, observing and
teaching the next generation of systems.

All this is not a magic bullet for the creation of beneficial AGI systems,
but we believe it’s the right process to follow. The creation of AGI is part
of a larger evolutionary process that human beings are taking part in, and
the crafting of AGI ethics through engineering, interaction and instruction is
also part of this process. There are no guarantees here – guarantees are rare
in real life – but that doesn’t mean that the situation is dire or hopeless, nor
that (as some commentators have suggested [Joy00, McK03]) AGI research
is too dangerous to pursue. It means we need to be mindful, intelligent,
compassionate and cooperative as we proceed to carry out our parts in the
next phase of the evolution of mind.

With this perspective in mind, we will conclude this chapter with a list of
"Eight Ways to Bias Open-Source AGI Toward Friendliness", borrowed from
a previous paper by Ben Goertzel and Joel Pitt of that name. These points
summarize many of the points raised in the prior sections of this chapter, in
a relatively crisp and practical manner:
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1. Engineer Multifaceted Ethical Capabilities, corresponding to the
multiple types of memory, including rational, empathic, imitative, etc.

2. Foster Rich Ethical Interaction and Instruction, with instructional
methods according to the communication modes corresponding to all the
types of memory: verbal, demonstrative, dramatic/depictive, indicative,
goal-oriented.

3. Engineer Stable, Hierarchy-Dominated Goal Systems ... which is
enabled nicely by CogPrime ’s goal framework and its integration with
the rest of the CogPrime design

4. Tightly Link AGI with the Global Brain, so that it can absorb
human ethical principles, both via natural interaction, and perhaps via
practical implementations of current loosely-defined strategies like CEV,
CAV and CBV

5. Foster Deep, Consensus-Building Interactions Between People
with Divergent Views, so as to enable the interaction with the Global
Brain to have the most clear and positive impact

6. Create a Mutually Supportive Community of AGIs which can
then learn from each other and police against unfortunate developments
(an approach which is meaningful if the AGIs are architected so as to
militate against unexpected radical accelerations in intelligence)

7. Encourage Measured Co-Advancement of AGI Software and
AGI Ethics Theory

8. Develop Advanced AGI Sooner Not Later

The last two of these points were not explicitly discussed in the body of
the chapter, and so we will finalize the chapter by reviewing them here.

12.10.1 Encourage Measured Co-Advancement of AGI
Software and AGI Ethics Theory

Everything involving AGI and Friendly AI (considered together or separately)
currently involves significant uncertainty, and it seems likely that significant
revision of current concepts will be valuable, as progress on the path toward
powerful AGI proceeds. However, whether there is time for such revision to
occur before AGI at the human level or above is created, depends on how fast
is our progress toward AGI. What one wants is for progress to be slow enough
that, at each stage of intelligence advance, concepts such as those discussed
in this paper can be re-evaluated and re-analyzed in the light of the data
gathered, and AGI designs and approaches can be revised accordingly as
necessary.

However, due to the nature of modern technology development, it seems
extremely unlikely that AGI development is going to be artificially slowed
down in order to enable measured development of accompanying ethical tools,
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practices and understandings. For example, if one nation chose to enforce such
a slowdown as a matter of policy (speaking about a future date at which sub-
stantial AGI progress has already been demonstrated, so that international
AGI funding is dramatically increased from present levels), the odds seem
very high that other nations would explicitly seek to accelerate their own
progress on AGI, so as to reap the ensuing differential economic benefits (the
example of stem cells arises again).

And this leads on to our next and final point regarding strategy for biasing
AGI toward Friendliness....

12.10.2 Develop Advanced AGI Sooner Not Later

Somewhat ironically, it seems the best way to ensure that AGI development
proceeds at a relatively measured pace is to initiate serious AGI development
sooner rather than later. This is because the same AGI concepts will meet
slower practical development today than 10 years from now, and slower 10
years from now than 20 years from now, etc. – due to the ongoing rapid
advancement of various tools related to AGI development, such as computer
hardware, programming languages, and computer science algorithms; and
also the ongoing global advancement of education which makes it increasingly
cost-effective to recruit suitably knowledgeable AI developers.

Currently the pace of AGI progress is sufficiently slow that practical work
is in no danger of outpacing associated ethical theorizing. However, if we want
to avoid the future occurrence of this sort of dangerous outpacing, our best
practical choice is to make sure more substantial AGI development occurs in
the phase before the development of tools that will make AGI development
extraordinarily rapid. Of course, the authors are doing their best in this
direction via their work on the CogPrime project!

Furthermore, this point bears connecting with the need, raised above, to
foster the development of Global Brain technologies capable to "Foster Deep,
Consensus-Building Interactions Between People with Divergent Views." If
this sort of technology is to be maximally valuable, it should be created
quickly enough that we can use it to help shape the goal system content
of the first highly powerful AGIs. So, to simplify just a bit: We really want
both deep-sharing GB technology and AGI technology to evolve relatively
rapidly, compared to computing hardware and advanced CS algorithms (since
the latter factors will be the main drivers behind the accelerating ease of
AGI development). And this seems significantly challenging, since the latter
receive dramatically more funding and focus at present.

If this perspective is accepted, then we in the AGI field certainly have our
work cut out for us!
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Chapter 13
Local, Global and Glocal Knowledge
Representation

Co-authored with Matthew Ikle, Joel Pitt and Rui Liu

13.1 Introduction

One of the most powerful metaphors we’ve found for understanding minds is
to view them as networks – i.e. collections of interrelated, interconnected
elements. The view of mind as network is implicit in the patternist philos-
ophy, because every pattern can be viewed as a pattern in something, or a
pattern of arrangement of something – thus a pattern is always viewable as a
relation between two or more things. A collection of patterns is thus a pattern-
network. Knowledge of all kinds may be given network representations; and
cognitive processes may be represented as networks also; for instance via rep-
resenting them as programs, which may be represented as trees or graphs in
various standard ways. The emergent patterns arising in an intelligence as it
develops may be viewed as a pattern network in themselves; and the relations
between an embodied mind and its physical and social environment may be
viewed in terms of ecological and social networks.

The chapters in this section are concerned with various aspects of net-
works, as related to intelligence in general and AGI in particular. Most of
this material is not specific to CogPrime

, and would be relevant to nearly any system aiming at human-level AGI.
However, most of it has been developed in the course of work on CogPrime

, and has direct relevance to understanding the intended operation of var-
ious aspects of a completed CogPrime

system.
We begin our excursion into networks, in this chapter, with an issue regard-

ing networks and knowledge representation. One of the biggest decisions to
make in designing an AGI system is how the system should represent knowl-
edge. Naturally any advanced AGI system is going to synthesize a lot of its
own knowledge representations for handling particular sorts of knowledge –
but still, an AGI design typically makes at least some sort of commitment
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about the category of knowledge representation mechanisms toward which
the AGI system will be biased.

The two major supercategories of knowledge representation systems are
local (also called explicit) and global (also called implicit) systems, with a
hybrid category we refer to as glocal that combines both of these. In a local
system, each piece of knowledge is stored using a small percentage of AGI
system elements; in a global system, each piece of knowledge is stored using
a particular pattern of arrangement, activation, etc. of a large percentage
of AGI system elements; in a glocal system, the two approaches are used
together.

In the first section here we discuss the symbolic, semantic-network aspects
of knowledge representation in CogPrime

. Then we turn to distributed, neural-net-like knowledge representation,
reviewing a host of general issues related to knowledge representation in at-
tractor neural networks, turning finally to “glocal” knowledge representation
mechanisms, in which ANNs combine localist and globalist representation,
and explaining the relationship of the latter to CogPrime

. The glocal aspect of CogPrime
knowledge representation will become prominent in later chapters such as:

• in Chapter 23 of Part 2, where Economic Attention Networks (ECAN)
are introduced and seen to have dynamics quite similar to those of the
attractor neural nets considered here, but with a mathematics roughly
modeling money flow in a specially constructed artificial economy rather
than electrochemical dynamics of neurons.
• in Chapter 42 of Part 2, where “map formation” algorithms for creating

localist knowledge from globalist knowledge are described

13.2 Localized Knowledge Representation using
Weighted, Labeled Hypergraphs

There are many different mechanisms for representing knowledge in AI sys-
tems in an explicit, localized way, most of them descending from various
variants of formal logic. See [?] for a review of many variations. Here we
briefly describe how it is done in CogPrime

, which on the surface is not that different from a number of prior ap-
proaches. (The particularities of CogPrime

’s explicit knowledge, representation, however, are carefully tuned to match
CogPrime

’s cognitive processes, which are more distinctive in nature than the cor-
responding representational mechanisms.)
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13.2.1 Weighted, Labeled Hypergraphs

One useful way to think about CogPrime
’s explicit, localized knowledge representation is in terms of hypergraphs.

A hypergraph is an abstract mathematical structure [Bol98], which consists
of objects called Nodes and objects called Links which connect the Nodes.
In computer science, a graph traditionally means a bunch of dots connected
with lines (i.e. Nodes connected by Links, or nodes connected by links). A
hypergraph, on the other hand, can have Links that connect more than two
Nodes.

In these pages we will often consider “generalized hypergraphs” that extend
ordinary hypergraphs by containing two additional features:

• Links that point to Links instead of Nodes
• Nodes that, when you zoom in on them, contain embedded hypergraphs.

Properly, such “hypergraphs” should always be referred to as generalized
hypergraphs, but this is cumbersome, so we will persist in calling them merely
hypergraphs. In a hypergraph of this sort, Links and Nodes are not as distinct
as they are within an ordinary mathematical graph (for instance, they can
both have Links connecting them), and so it is useful to have a generic term
encompassing both Links and Nodes; for this purpose, we use the term Atom.

A weighted, labeled hypergraph is a hypergraph whose Links and Nodes
come along with labels, and with one or more numbers that are generically
called weights. A label associated with an Link or Node may sometimes be
interpreted as telling you what type of entity it is, or alternatively as telling
you what sort of data is associated with a Node. On the other hand, an
example of a weight that may be attached to an Link or Node is a number
representing a probability, or a number representing how important the Node
or Link is.

Obviously, hypergraphs may come along with various sorts of dynamics.
Minimally, one may think about:

• Dynamics that modify the properties of Nodes or Links in a hypergraph
(such as the labels or weights attached to them.)

• Dynamics that add new Nodes or Links to a hypergraph, or remove ex-
isting ones.

13.3 Atoms: Their Types and Weights

This section reviews a variety of CogPrime
Atom types and gives simple examples of each of them. The Atom types

considered are drawn from those currently in use in the OpenCog system. This
does not represent a complete list of Atom types referred to in the text of this
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book, nor a complete list of those used in OpenCog currently (though it does
cover a substantial majority of those used in OpenCog currently, omitting
only some with specialized importance or intended only for temporary use).

The partial nature of the list given here reflects a more general point: The
specific collection of Atom types in an OpenCog system is bound to change
as the system is developed and experiment with. CogPrime

specifies a certain collection of representational approaches and cognitive
algorithms for acting on them; any of these approaches and algorithms may
be implemented with a variety of sets of Atom types. The specific set of Atom
types in the OpenCog system currently does not necessarily have a profound
and lasting significance – the list might look a bit different five years from
time of writing, based on various detailed changes.

The treatment here is informal and intended to get across the general idea
of what each Atom type does. A longer and more formal treatment of the
Atom types is given in Part II, beginning in Chapter 20.

13.3.1 Some Basic Atom Types

We begin with ConceptNode – and note that a ConceptNode does not nec-
essarily refer to a whole concept, but may refer to part of a concept – it
is essentially a "basic semantic node" whose meaning comes from its links
to other Atoms. It would be more accurately, but less tersely, named "con-
cept or concept fragment or element node." A simple example would be a
ConceptNode grouping nodes that are somehow related, e.g.

ConceptNode: C
InheritanceLink (ObjectNode: BW) C
InheritanceLink (ObjectNode: BP) C
InheritanceLink (ObjectNode: BN) C
ReferenceLink BW (PhraseNode "Ben’s watch")
ReferenceLink BP (PhraseNode "Ben’s passport")
ReferenceLink BN (PhraseNode "Ben’s necklace")

indicates the simple and uninteresting ConceptNode grouping three objects
owned by Ben (note that the above-given Atoms don’t indicate the owner-
ship relationship, they just link the three objects with textual descriptions).
In this example, the ConceptNode links transparently to physical objects and
English descriptions, but in general this won’t be the case – most ConceptN-
odes will look to the human eye like groupings of links of various types, that
link to other nodes consisting of groupings of links of various types, etc.

There are Atoms referring to basic, useful mathematical objects, e.g. Num-
berNodes like

NumberNode #4
NumberNode #3.44
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The numerical value of a NumberNode is explicitly referenced within the
Atom.

A core distinction is made between ordered links and unordered links;
these are handled differently in the Atomspace software. A basic unordered
link is the SetLink, which groups its arguments into a set. For instance, the
ConceptNode C defined by
ConceptNode C
MemberLink A C
MemberLink B C

is equivalent to
SetLink A B

On the other hand, ListLinks are like SetLinks but ordered, and they play
a fundamental role due to their relationship to predicates. Most predicates
are assumed to take ordered arguments, so we may say e.g.
EvaluationLink

PredicateNode eat
ListLink

ConceptNode cat
ConceptNode mouse

to indicate that cats eat mice.
Note that by an expression like

ConceptNode cat

is meant
ConceptNode C
ReferenceLink W C
WordNode W #cat

since it’s WordNodes rather than ConceptNodes that refer to words. (And
note that the strength of the ReferenceLink would not be 1 in this case,
because the word "cat" has multiple senses.) However, there is no harm nor
formal incorrectness in the "ConceptNode cat" usage, since "cat" is just as
valid a name for a ConceptNode as, say, "C."

We’ve already introduced above the MemberLink, which is a link joining
a member to the set that contains it. Notable is that the truth value of
a MemberLink is fuzzy rather than probabilistic, and that PLN is able to
inter-operate fuzzy and probabilistic values.

SubsetLinks also exist, with the obvious meaning, e.g.
ConceptNode cat
ConceptNode animal
SubsetLink cat animal

Note that SubsetLink refers to a purely extensional subset relationship, and
that InheritanceLInk should be used for the generic "intensional + exten-
sional" analogue of this – more on this below. SubsetLink could more con-
sistently (with other link types) be named ExtensionalInheritanceLink, but
SubsetLink is used because it’s shorter and more intuitive.
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There are links representing Boolean operations AND, OR and NOT. For
instance, we may say
ImplicationLink

ANDLink
ConceptNode young
ConceptNode beautiful

ConceptNode attractive

or, using links and VariableNodes instead of ConceptNodes,
AverageLink $X

ImplicationLink
ANDLink

EvaluationLink young $X
EvaluationLink beautiful $X

EvaluationLink attractive $X

NOTLink is a unary link, so e.g. we might say
AverageLink $X

ImplicationLink
ANDLink

EvaluationLink young $X
EvaluationLink beautiful $X
EvaluationLink

NOT
EvaluationLink poor $X

EvaluationLink attractive $X

ContextLink allows explicit contextualization of knowledge, which is used
in PLN, e.g.
ContextLink

ConceptNode golf
InheritanceLink

ObjectNode BenGoertzel
ConceptNode incompetent

says that Ben Goertzel is incompetent in the context of golf.

13.3.2 Variable Atoms

We have already introduced VariableNodes above; it’s also possible to spec-
ify the type of a VariableNode via linking it to a VariableTypeNode via a
TypedVariableLink, e.g.
VariableTypeLink

VariableNode $X
VariableTypeNode ConceptNode

which specifies that the variable $X should be filled with a ConceptNode.
Variables are handled via quantifiers; the default quantifier being the Av-

erageLink, so that the default interpretation of
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ImplicationLink
InheritanceLink $X animal
EvaluationLink

PredicateNode: eat
ListLink

\$X
ConceptNode: food

is
AverageLink $X

ImplicationLink
InheritanceLink $X animal
EvaluationLink

PredicateNode: eat
ListLink

\$X
ConceptNode: food

The AverageLink invokes an estimation of the average TruthValue of the em-
bedded expression (in this case an ImplicationLink) over all possible values of
the variable $X. If there are type restrictions regarding the variable $X, these
are taken into account in conducting the averaging. ForAllLink and Exist-
sLink may be used in the same places as AverageLink, with uncertain truth
value semantics defined in PLN theory using third-order probabilities. There
is also a ScholemLink used to indicate variable dependencies for existentially
quantified variables, used in cases of multiply nested existential quantifiers.

EvaluationLink and MemberLink have overlapping semantics, allowing ex-
pression of the same conceptual/logical relationships in terms of predicates
or sets, i.e.
EvaluationLink

PredicateNode: eat
ListLink

$X
ConceptNode: food

has the same semantics as
MemberLink

ListLink
$X
ConceptNode: food

ConceptNode: EatingEvents

The relation between the predicate "eat" and the concept "EatingEvents" is
formally given by
ExtensionalEquivalenceLink

ConceptNode: EatingEvents
SatisfyingSetLink

PredicateNode: eat

In other words, we say that "EatingEvents" is the SatisfyingSet of the predi-
cate "eat": it is the set of entities that satisfy the predicate "eat". Note that
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the truth values of MemberLink and EvaluationLink are fuzzy rather than
probabilistic.

13.3.3 Logical Links

There is a host of link types embodying logical relationships as defined in the
PLN logic system, e.g.

• InheritanceLink
• SubsetLink (aka ExtensionalInheritanceLink)
• Intensional InheritanceLink

which embody different sorts of inheritance, e.g.

SubsetLink salmon fish
IntensionalInheritanceLink whale fish
InheritanceLink fish animal

and then

• SimilarityLink
• ExtensionalSimilarityLink
• IntensionalSimilarityLink

which are symmetrical versions, e.g.

SimilaritytLink shark barracuda
IntensionalSimilarityLink shark dolphin
ExtensionalSimiliarityLink American obese\_person

There are also higher-order versions of these links, both asymmetric

• ImplicationLink
• ExtensionalImplicationLink
• IntensionalImplicationLink

and symmetric

• EquivalenceLink
• ExtensionalEquivalenceLink
• IntensionalEquivalenceLink

These are used between predicates and links, e.g.

ImplicationLink
EvaluationLink

eat
ListLink

$X
dirt

EvaluationLink
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feel
ListLInk

$X
sick

or
ImplicationLink

EvaluationLink
eat

ListLink
$X
dirt

InheritanceLink $X sick

or
ForAllLink $X, $Y, $Z

ExtensionalEquivalenceLink
EquivalenceLink

$Z
EvaluationLink

+
ListLink

$X
$Y

EquivalenceLink
$Z

EvaluationLink
+
ListLink

$Y
$X

Note, the latter is given as an extensional equivalence because it’s a pure
mathematical equivalence. This is not the only case of pure extensional equiv-
alence, but it’s an important one.

13.3.4 Temporal Links

There are also temporal versions of these links, such as

• PredictiveImplicationLink
• PredictiveAttractionLink
• SequentialANDLink
• SimultaneousANDLink

which combine logical relation between the argument with temporal relation
between their arguments. For instance, we might say
PredictiveImplicationLink

PredicateNode: JumpOffCliff
PredicateNode: Dead
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or including arguments,
PredictiveImplicationLink

EvaluationLink JumpOffCliff $X
EvaluationLink Dead $X

The former version, without variable arguments given, shows the possibil-
ity of using higher-order logical links to join predicates without any explicit
variables. Via using this format exclusively, one could avoid VariableAtoms
entirely, using only higher-order functions in the manner of pure functional
programming formalisms like combinatory logic. However, this purely func-
tional style has not proved convenient, so the Atomspace in practice combines
functional-style representation with variable-based representation.

Temporal links often come with specific temporal quantification, e.g.
PredictiveImplicationLink <5 seconds>

EvaluationLink JumpOffCliff $X
EvaluationLink Dead $X

indicating that the conclusion will generally follow the premise within 5 sec-
onds. There is a system for managing fuzzy time intervals and their interre-
lationships, based on a fuzzy version of Allen Interval Algebra.

SequentialANDLink is similar to PredictiveImplicationLink but its truth
value is calculated differently. The truth value of
SequentialANDLink <5 seconds>

EvaluationLink JumpOffCliff $X
EvaluationLink Dead $X

indicates the likelihood of the sequence of events occurring in that order,
with gap lying within the specified time interval. The truth value of the Pre-
dictiveImplicationLink version indicates the likelihood of the second event,
conditional on the occurrence of the first event (within the given time interval
restriction).

There are also links representing basic temporal relationships, such as
BeforeLink and AfterLink. These are used to refer to specific events, e.g. if
X refers to the event of Ben waking up on July 15 2012, and Y refers to the
event of Ben getting out of bed on July 15 2012, then one might have
AfterLink X Y

And there are TimeNodes (representing time-stamps such as temporal
moments or intervals) and AtTimeLinks, so we may e.g. say
AtTimeLink

X
TimeNode: 8:24AM Eastern Standard Time, July 15 2012 AD

13.3.5 Associative Links

There are links representing associative, attentional relationships,
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• HebbianLink
• AsymmetricHebbianLink
• InverseHebbianLink
• SymmetricInverseHebbianLink

These connote associations between their arguments, i.e. they connote that
the entities represented by the two argument occurred in the same situation
or context, for instance
HebbianLink happy smiling
AsymmetricHebbianLink dead rotten
InverseHebbianLink dead breathing

The asymmetric HebbianLink indicates that when the first argument is
present in a situation, the second is also often present. The symmetric (de-
fault) version indicates that this relationship holds in both directions. The
inverse versions indicate the negative relationship: e.g. when one argument is
present in a situation, the other argument is often not present.

13.3.6 Procedure Nodes

There are nodes representing various sorts of procedures; these are kinds of
ProcedureNode, e.g.

• SchemaNode, indicating any procedure
• GroundedSchemaNode, indicating any procedure associated in the system

with a Combo program or C++ function allowing the procedure to be
executed

• PredicateNode, indicating any predicate that associates a list of argu-
ments with an output truth value

• GroundedPredicateNode, indicating a predicate associated in the system
with a Combo program or C++ function allowing the predicate’s truth
value to be evaluated on a given specific list of arguments

ExecutionLinks and EvaluationLinks record the activity of SchemaNodes
and PredicateNodes. We have seen many examples of EvaluationLinks in the
above. Example ExecutionLinks would be:
ExecutionLink step\_forward
ExecutionLink step\_forward 5
ExecutionLink

+
ListLink

NumberNode: 2
NumberNode: 3

The first example indicates that the schema "step forward" has been exe-
cuted. The second example indicates that it has been executed with an argu-
ment of "5" (meaning, perhaps, that 5 steps forward have been attempted).
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The last example indicates that the "+" schema has been executed on the
argument list (2,3), presumably resulting in an output of 5.

The output of a schema execution may be indicated using an Execu-
tionOutputLink, e.g.

ExecutionOutputLink
+
ListLink

NumberNode: 2
NumberNode: 3

refers to the value "5" (as a NumberNode).

13.3.7 Links for Special External Data Types

Finally, there are also Atom types referring to specific types of data important
to using OpenCog in specific contexts.

For instance, there are Atom types referring to general natural language
data types, such as

• WordNode
• SentenceNode
• WordInstanceNode
• DocumentNode

plus more specific ones referring to relationships that are part of link-grammar
parses of sentences

• FeatureNode
• FeatureLink
• LinkGrammarRelationshipNode
• LinkGrammarDisjunctNode

or RelEx semantic interpretations of sentences

• DefinedLinguisticConceptNode
• DefinedLinguisticRelationshipNode
• PrepositionalRelationshipNode

There are also Atom types corresponding to entities important for em-
bodying OpenCog in a virtual world, e.g.

• ObjectNode
• AvatarNode
• HumanoidNode
• UnknownObjectNode
• AccessoryNode
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13.3.8 Truth Values and Attention Values

CogPrime
Atoms (Nodes and Links) are quantified with truth values that, in their

simplest form, have two components, one representing probability (strength)
and the other representing weight of evidence; and also with attention values
that have two components, short-term and long-term importance, represent-
ing the estimated value of the Atom on immediate and long-term time-scales.

In practice many Atoms are labeled with CompositeTruthValues rather
than elementary ones. A composite truth value contains many component
truth values, representing truth values of the Atom in different contexts and
according to different estimators.

It is important to note that the CogPrime
declarative knowledge representation is neither a neural net nor a semantic

net, though it does have some commonalities with each of these traditional
representations. It is not a neural net because it has no activation values, and
involves no attempts at low-level brain modeling. However, attention values
are very loosely analogous to time-averages of neural net activations. On the
other hand, it is not a semantic net because of the broad scope of the Atoms
in the network: for example, Atoms may represent percepts, procedures, or
parts of concepts. Most CogPrime

Atoms have no corresponding English label. However, most CogPrime
Atoms do have probabilistic truth values, allowing logical semantics.

13.4 Knowledge Representation via Attractor Neural
Networks

Now we turn to global, implicit knowledge representation – beginning with
formal neural net models, briefly discussing the brain, and then turning back
to CogPrime

. Firstly, this section reviews some relevant material from the literature
regarding the representation of knowledge using attractor neural nets. It is a
mix of well-established fact with more speculative material.

13.4.1 The Hopfield neural net model

Hopfield networks [Hop82] are attractor neural networks often used as asso-
ciative memories. A Hopfield network with N neurons can be trained to store
a set of bipolar patterns P , where each pattern p has N bipolar (±1) values.
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A Hopfield net typically has symmetric weights with no self-connections. The
weight of the connection between neurons i and j is denoted by wij .

In order to apply a Hopfield network to a given input pattern p, its activa-
tion state is set to the input pattern, and neurons are updated asynchronously,
in random order, until the network converges to the closest fixed point. An
often-used activation function for a neuron is:

yi = sign(pi
∑
j 6=i

wijyj)

Training a Hopfield network, therefore, involves finding a set of weights
wij that stores the training patterns as attractors of its network dynamics,
allowing future recall of these patterns from possibly noisy inputs.

Originally, Hopfield used a Hebbian rule to determine weights:

wij =

P∑
p=1

pipj

Typically, Hopfield networks are fully connected. Experimental evidence,
however, suggests that the majority of the connections can be removed with-
out significantly impacting the network’s capacity or dynamics. Our experi-
mental work uses sparse Hopfield networks.

13.4.1.1 Palimpsest Hopfield nets with a modified learning rule

In [SV99] a new learning rule is presented, which both increases the Hop-
field network capacity and turns it into a “palimpsest”, i.e., a network that
can continuously learn new patterns, while forgetting old ones in an orderly
fashion.

Using this new training rule, weights are initially set to zero, and updated
for each new pattern p to be learned according to:

hij =

N∑
k=1,k 6=i,j

wikpk

∆wij =
1

n
(pipj − hijpj − hjipi)

13.4.2 Knowledge Representation via Cell Assemblies

Hopfield nets and their ilk play a dual role: as computational algorithms, and
as conceptual models of brain function. In CogPrime
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they are used as inspiration for slightly different, artificial economics based
computational algorithms; but their hypothesized relevance to brain function
is nevertheless of interest in a CogPrime

context, as it gives some hints about the potential connection between
low-level neural net mechanics and higher-level cognitive dynamics.

Hopfield nets lead naturally to a hypothesis about neural knowledge rep-
resentation, which holds that a distinct mental concept is represented in the
brain as either:

1. a set of “cell assemblies”, where each assembly is a network of neurons
that are interlinked in such a way as to fire in a (perhaps nonlinearly)
synchronized manner

2. a distinct temporal activation pattern, which may occur in any one (or
more) of a particular set of cell assemblies

For instance, this hypothesis is perfectly coherent if one interprets a “mental
concept” as a SMEPH (defined in Chapter 14) ConceptNode, i.e. a fuzzy set
of perceptual stimuli to which the organism systematically reacts in different
ways. Also, although we will focus mainly on declarative knowledge here, we
note that the same basic representational ideas can be applied to procedural
and episodic knowledge: these may be hypothesized to correspond to temporal
activation patterns as characterized above.

In the biology literature, perhaps the best-articulated modern theories
championing the cell assembly view are those of Gunther Palm [?, ?] and
Susan Greenfield [?, ?]. Palm focuses on the dynamics of the formation and
interaction assemblies of cortical columns. Greenfield argues that each con-
cept has a core cell assembly, and that when the concept rises to the focus of
attention, it recruits a number of other neurons beyond its core characteristic
assembly into a “transient ensemble.”1

It’s worth noting that there may be multiple redundant assemblies rep-
resenting the same concept – and potentially recruiting similar transient as-
semblies when highly activated. The importance of repeated, slightly varied
copies of the same subnetwork has been emphasized by Edelman [Ede93]
among other neural theorists.

13.5 Neural Foundations of Learning

Now we move from knowledge representation to learning – which is after
all nothing but the adaptation of represented knowledge based on stimulus,
reinforcement and spontaneous activity. While our focus in this chapter is

1 The larger an ensemble is, she suggests, the more vivid it is as a conscious experience;
an hypothesis that accords well with the hypothesis made in [Goe06b] that a more infor-
mationally intense pattern corresponds to a more intensely conscious quale – but we don’t
need to digress extensively onto matters of consciousness for the present purposes.
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on representation, it’s not possible for us to make our points about glocal
knowledge representation in neural net type systems without discussing some
aspects of learning in these systems.

13.5.1 Hebbian Learning

The most common and plausible assumption about learning in the brain is
that synaptic connections between neurons are adapted via some variant of
Hebbian learning. The original Hebbian learning rule, proposed by Donald
Hebb in his 1949 book [Heb49], was roughly

1. The weight of the synapse x→ y increases if x and y fire at roughly the
same time

2. The weight of the synapse x→ y decreases if x fires at a certain time but
y does not

Over the years since Hebb’s original proposal, many neurobiologists have
sought evidence that the brain actually uses such a method. One of the
things they have found, so far, is a lot of evidence for the following learning
rule [?, ?]:

1. The weight of the synapse x→ y increases if x fires shortly before y does
2. The weight of the synapse x→ y decreases if x fires shortly after y does

The new thing here, not foreseen by Donald Hebb, is the “postsynaptic de-
pression” involved in rule component 2.

Now, the simple rule stated above does not sum up all the research recently
done on Hebbian-type learning mechanisms in the brain. The real biological
story underlying these approximate rules is quite complex, involving many
particulars to do with various neurotransmitters. Ill-understood details aside,
however, there is an increasing body of evidence that not only does this
sort of learning occur in the brain, but it leads to distributed experience-
based neural modification: that is, one instance synaptic modification causes
another instance of synaptic modification, which causes another, and so forth2

[?].

2 This has been observed in “model systems” consisting of neurons extracted from a brain
and hooked together in a laboratory setting and monitored; measurement of such dynamics
in vivo is obviously more difficult.
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13.5.2 Virtual Synapses and Hebbian Learning
Between Assemblies

Hebbian learning is conventionally formulated in terms of individual neurons,
but, it can be extended naturally to assemblies via defining “virtual synapses”
between assemblies.

Since assemblies are sets of neurons, one can view a synapse as linking
two assemblies if it links two neurons, each of which is in one of the as-
semblies. One can then view two assemblies as being linked by a bundle
of synapses. We can define the weight of the synaptic bundle from assem-
bly A1 to assembly A2 as the number w so that (the change in the mean
activation of A2 that occurs at time t+epsilon) is on average closest to w ×
(the amount of energy flowing through the bundle from A1 to A2 at time t). So
when A1 sends an amount x of energy along the synaptic bundle pointing
from A1 to A2, then A2’s mean activation is on average incremented/decre-
mented by an amount w × x.

In a similar way, one can define the weight of a bundle of synapses be-
tween a certain static or temporal activation-pattern P1 in assembly A1, and
another static or temporal activation-pattern P2 in assembly A2. Namely,
this may be defined as the number w so that (the amount of energy flowing
through the bundle from A1 to A2 at time t)×w best approximates (the prob-
ability that P2 is present in A2 at time t+epsilon), when averaged over all
times t during which P1 is present in A1.

It is not hard to see that Hebbian learning on real synapses between neu-
rons implies Hebbian learning on these virtual synapses between cell assem-
blies and activation-patterns.

These ideas may be developed further to build a connection between neural
knowledge representation and probabilistic logical knowledge representation
such as is used in CogPrime

’s Probabilistic Logic Networks formalism; this connection will be pursued
at the end of Chapter 34, once more relevant background has been presented.

13.5.3 Neural Darwinism

A notion quite similar to Hebbian learning between assemblies has been pur-
sued by Nobelist Gerald Edelman in his theory of neuronal group selection, or
“Neural Darwinism.” Edelman won a Nobel Prize for his work in immunology,
which, like most modern immunology, was based on C. MacFarlane Burnet’s
theory of “clonal selection” [?], which states that antibody types in the mam-
malian immune system evolve by a form of natural selection. From his point
of view, it was only natural to transfer the evolutionary idea from one mam-
malian body system (the immune system) to another (the brain).



302 13 Local, Global and Glocal Knowledge Representation

The starting point of Neural Darwinism is the observation that neuronal
dynamics may be analyzed in terms of the behavior of neuronal groups. The
strongest evidence in favor of this conjecture is physiological: many of the
neurons of the neocortex are organized in clusters, each one containing say
10,000 to 50,000 neurons each. Once one has committed oneself to looking at
such groups, the next step is to ask how these groups are organized, which
leads to Edelman’s concept of “maps.”

A “map,” in Edelman’s terminology, is a connected set of groups with
the property that when one of the inter-group connections in the map is
active, others will often tend to be active as well. Maps are not fixed over
the life of an organism. They may be formed and destroyed in a very simple
way: the connection between two neuronal groups may be “strengthened” by
increasing the weights of the neurons connecting the one group with the other,
and “weakened” by decreasing the weights of the neurons connecting the two
groups. If we replace “map” with “cell assembly” we arrive at a concept very
similar to the one described in the previous subsection.

Edelman then makes the following hypothesis: the large-scale dynamics of
the brain is dominated by the natural selection of maps. Those maps which are
active when good results are obtained are strengthened, those maps which are
active when bad results are obtained are weakened. And maps are continually
mutated by the natural chaos of neural dynamics, thus providing new fodder
for the selection process. By use of computer simulations, Edelman and his
colleagues have shown that formal neural networks obeying this rule can carry
out fairly complicated acts of perception. In general-evolution language, what
is posited here is that organisms like humans contain chemical signals that
signify organism-level success of various types, and that these signals serve
as a “fitness function” correlating with evolutionary fitness of neuronal maps.

In Neural Darwinism and his other related books and papers, Edelman
goes far beyond this crude sketch and presents neuronal group selection as a
collection of precise biological hypotheses, and presents evidence in favor of a
number of these hypotheses. However, we consider that the basic concept of
neuronal group selection is largely independent of the biological particulari-
ties in terms of which Edelman has phrased it. We suspect that the mutation
and selection of “transformations” or “maps” is a necessary component of the
dynamics of any intelligent system.

As we will see later on (e.g. in Chapter 42 of Part 2, this business of maps
is extremely important to CogPrime

. CogPrime
does not have simulated biological neurons and synapses, but it does have

Nodes and Links that in some contexts play loosely similar roles. We some-
times think of CogPrime

Nodes and Links as being very roughly analogous to Edelman’s neuronal
clusters, and emergent intercluster links. And we have maps among CogPrime

Nodes and Links, just as Edelman has maps among his neuronal clusters.
Maps are not the sole bearers of meaning in CogPrime
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, but they are significant ones.
There is a very natural connection between Edelman-style brain evolution

and the ideas about cognitive evolution presented in Chapter 3. Edelman
proposes a fairly clear mechanism via which patterns that survive a while in
the brain are differentially likely to survive a long time: this is basic Hebbian
learning, which in Edelman’s picture plays a role between neuronal groups.
And, less directly, Edelman’s perspective also provides a mechanism by which
intense patterns will be differentially selected in the brain: because on the
level of neural maps, pattern intensity corresponds to the combination of
compactness and functionality. Among a number of roughly equally useful
maps serving the same function, the more compact one will be more likely
to survive over time, because it is less likely to be disrupted by other brain
processes (such as other neural maps seeking to absorb its component neu-
ronal groups into themselves). Edelman’s neuroscience remains speculative,
since so much remains unknown about human neural structure and dynamics;
but it does provide a tentative and plausible connection between evolution-
ary neurodynamics and the more abstract sort of evolution that patternist
philosophy posits to occur in the realm of mind-patterns.

13.6 Glocal Memory

A glocal memory is one that transcends the global/local dichotomy and incor-
porates both aspects in a tightly interconnected way. Here we make the glocal
memory concept more precise, and describe its incarnation in the context of
attractor neural nets (which is similar to its incarnation in CogPrime

, to be elaborated in later chapters). Though our main interest here is in
glocality in CogPrime

, we also suggest that glocality may be a critical property to consider when
analyzing human, animal and AI memory more broadly.

The notion of glocal memory has implicitly occurred in a number of
prior brain theories (without use of the neologism “glocal”), e.g. [Cal96] and
[Goe01], but it has not previously been explicitly developed. However the
concept has risen to the fore in our recent AI work and so we have chosen to
flesh it out more fully in [HG08], [GPI+10] and the present section.

Glocal memory overcomes the dichotomy between localized memory (in
which each memory item is stored in a single location within an overall mem-
ory structure) and distributed memory (in which a memory item is stored as
an aspect of a multi-component memory system, in such a way that the same
set of multiple components stores a large number of memories). In a glocal
memory system, most memory items are stored both locally and globally,
with the property that eliciting either one of the two records of an item tends
to also elicit the other one.
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Glocal memory applies to multiple forms of memory; however we will focus
largely on perceptual and declarative memory in our detailed analyses here,
so as to conserve space and maintain simplicity of discussion.

The central idea of glocal memory is that (perceptual, declarative, episodic,
procedural, etc.) items may be stored in memory in the form of paired struc-
tures that are called (key, map) pairs. Of course the idea of a “pair” is abstract,
and such pairs may manifest themselves quite differently in different sorts of
memory systems (e.g. brains versus non-neuromorphic AI systems). The key
is a localized version of the item, and records some significant aspects of the
items in a simple and crisp way. The map is a dispersed, distributed version
of the item, which represents the item as a (to some extent, dynamically shift-
ing) combination of fragments of other items. The map includes the key as
a subset; activation of the key generally (but not necessarily always) causes
activation of the map; and changes in the memory item will generally involve
complexly coordinated changes on the key and map level both.

Memory is one area where animal brain architecture differs radically from
the von Neumann architecture underlying nearly all contemporary general-
purpose computers. Von Neumann computers separate memory from pro-
cessing, whereas in the human brain there is no such distinction. In fact, it’s
arguable that in most cases the brain contains no memory apart from process-
ing: human memories are generally constructed in the course of remembering
[Ros88], which gives human memory a strong capability for “filling in gaps”
of remembered experience and knowledge; and also causes problems with in-
accurate remembering in many contexts [BF71, RM95] e.g. We believe the
constructive aspect of memory is largely associated with its glocality.

The remainder of this section presents a fuller formalization of the glocal
memory concept, which is then taken up further in three later chapters:

• Chapter ?? discusses the potential implementation of glocal memory in
the human brain
• Chapter ?? discusses the implementation of glocal memory in attractor

neural net systems
• Chapter 23 presents Glocal Economic Attention Networks (ECANs),

rough analogues of glocal Hopfield nets that play a central role in Cog-
Prime
.

Our hypothesis of the potential general importance of glocality as a prop-
erty of memory systems (beyond just the CogPrime

architecture) – remains somewhat speculative. The presence of glocality
in human and animal memory is strongly suggested but not firmly demon-
strated by available neuroscience data; and the general value of glocality in
the context of artificial brains and minds is also not yet demonstrated as
the whole field of artificial brain and mind building remains in its infancy.
However, the utility of glocal memory for CogPrime
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is not tied to this more general, speculative theme – glocality may be useful
in CogPrime

even if we’re wrong that it plays a significant role in the brain and in
intelligent systems more broadly.

13.6.1 A Semi-Formal Model of Glocal Memory

To explain the notion of glocal memory more precisely, we will introduce
a simple semi-formal model of a system S that uses a memory to record
information relevant to the actions it carries out. The overall concept of glocal
memory should not be considered as restricted to this particular model. This
model is not intended for maximal generality, but is intended to encompass
a variety of current AI system designs and formal neurological models.

In this model, we will consider S’s memory subsystem as a set of objects
we’ll call “tokens,” embedded in some metric space. The metric in the space,
which we will call the “basic distance” of the memory, generally will not be
defined in terms of the semantics of the items stored in the memory; though
it may come to shape these dynamics through the specific architecture and
evolution of the memory. Note that these tokens are not intended as generally
being mapped one-to-one onto meaningful items stored in the memory. The
“tokens” are the raw materials that the memory arranges in various patterns
in order to store items.

We assume that each token, at each point in time, may meaningfully be
assigned a certain quantitative “activation level.” Also, tokens may have other
numerical or discrete quantities associated with them, depending on the par-
ticular memory architecture. Finally, tokens may relate other tokens, so that
optionally a token may come equipped with an (ordered or unordered) list of
other tokens.

To understand the meaning of the activation levels, one should think about
S’s memory subsystem as being coupled with an action-selection subsystem,
that dynamically chooses the actions to be taken by the overall system in
which the two subsystems are embedded. Each combination of actions, in each
particular type of context, will generally be associated with the activation of
certain tokens in memory.

Then, as analysts of the system S, we may associate each token T with
an “activation vector” v(T, t), whose value for each discrete time t consists
of the activation of the token T at time t. So, the 50′th entry of the vector
corresponds to the activation of the token at the 50′th time step.

“Items stored in memory” over a certain period of time, may then be
defined as clusters in the set of activation vectors associated with memory
during that period of time. Note that the system S itself may explicitly recog-
nize and remember patterns regarding what items are stored in its memory –
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but, from an external analyst’s perspective, the set of items in S’s memory is
not restricted to the ones that S has explicitly recognized as memory items.

The “localization” of a memory item may be defined as the degree to which
the various tokens involved in the item are close to each other according to the
metric in the memory metric-space. This degree may be formalized in various
ways, but choosing a particular quantitative measure is not important here.
A highly localized item may be called “local” and a not-very-localized item
may be called “global.”

We may define the “activation distance” of two tokens as the distance
between their activation vectors. We may then say that a memory is “well
aligned” to the extent that there is a correlation between the activation dis-
tance of tokens, and the basic distance of the memory metric-space.

Given the above set-up, the basic notion of glocal memory can be enounced
fairly simply. A glocal memory is one:

• That is reasonably well-aligned (i.e. the correlation between activation
and basic distance is significantly greater than random)
• In which most memory items come in pairs, consisting of one local item

and one global item, so that activation of the local item (the “key”) fre-
quently leads in the near future to activation of the global item (the
“map”)

Obviously, in the scope of all possible memory structures constructible
within the above formalism, glocal memories are going to be very rare and
special. But, we suggest that they are important, because they are generally
going to be the most effective way for intelligent systems to structure their
memories.

Note also that many memories without glocal structure may be “well-
aligned” in the above sense.

An example of a predominantly local memory structure, in which nearly
all significant memory items are local according to the above definition, is
the Cyc logical reasoning engine [LG90]. To cast the Cyc knowledge base
in the present formal model, the tokens are logical predicates. Cyc does not
have an in-built notion of activation, but one may conceive the activation
of a logical formula in Cyc as the degree to which the formula is used in
reasoning or query processing during a certain interval in time. And one may
define a basic metric for Cyc by associating a predicate with its extension (the
set of satisfying inputs), and defining the similarity of two predicates as the
symmetric distance of their extensions. Cyc is reasonably well-aligned, but
according to the dynamics of its querying and reasoning engines, it is basically
a local memory structure without significant global memory structure.

On the other hand, an example of a predominantly global memory struc-
ture, in which nearly all significant memory items are global according to
the above definition, is the Hopfield associative memory network [Ami89].
Here memories are stored in the pattern of weights associated with synapses
within a network of formal neurons, and each memory in general involves a
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large number of the neurons in the network. To cast the Hopfield net in the
present formal model, the tokens are neurons and synapses; the activations
are neural net activations; the basic distance between two neurons A and B
may be defined as the percentage of the time that stimulating one of the neu-
rons leads to the other one firing; and to calculate a basic distance involving
a synapse, one may associate the synapse with its source and target neurons.
With these definitions, a Hopfield network is a well-aligned memory, and (by
intentional construction) a markedly global one. Local memory items will be
very rare in a Hopfield net.

While predominantly local and predominantly global memories may have
great value for particular applications, our suggestion is that they also have
inherent limitations. If so, this means that the most useful memories for
general intelligence are going to be those that involve both local and global
memory items in central roles. However, this is a more general and less risky
claim than the assertion that glocal memory structure as defined above is
important. Because, “glocal” as defined above doesn’t just mean “neither pre-
dominantly global nor predominantly local.” Rather, it refers to a specific
pattern of coordination between local and global memory items – what we
have called the “keys and maps” pattern.

We will see in later chapters how glocal memory can improve the per-
formance of Hopfield networks, explain observed data about human neural
memory, and serve as a useful principle for structuring attention and memory
in an AGI system (CogPrime

).

13.6.2 Glocal Memory in the Brain

Science’s understanding of human brain dynamics is still very primitive, one
manifestation of which is the fact that we really don’t understand how the
brain represents knowledge, except in some very simple respects. So anything
anyone says about knowledge representation in the brain, at this stage, has
to be considered highly speculative. Existing neuroscience knowledge does
imply constraints on how knowledge representation in the brain may work,
but these are relatively loose constraints. These constraints do imply that,
for instance, the brain is neither a relational database (in which informa-
tion is stored in a wholly localized manner) nor a collection of “grandmother
neurons” that respond individually to high-level percepts or concepts; nor a
simple Hopfield type neural net (in which all memories are attractors globally
distributed across the whole network). But they don’t tell us nearly enough
to, for instance, create a formal neural net model that can confidently be said
to represent knowledge in the manner of the human brain.

As a first example of the current state of knowledge, we’ll discuss here
a series of papers regarding the neural representation of visual stimuli



308 13 Local, Global and Glocal Knowledge Representation

[QaGKKF05, QKKF08], which deal with the fascinating discovery of a subset
of neurons in the medial temporal lobe (MTL) that are selectively activated
by strikingly different pictures of given individuals, landmarks or objects, and
in some cases even by letter strings. For instance, in their 2005 paper titled
”Invariant visual representation by single neurons in the human brain”, it is
noted that

in one case, a unit responded only to three completely different images of the ex-
president Bill Clinton. Another unit (from a different patient) responded only to
images of The Beatles, another one to cartoons from The Simpson’s television series
and another one to pictures of the basketball player Michael Jordan.

Their 2008 follow-up paper backed away from the more extreme inter-
pretation in the title as well as the conclusion, with the title “Sparse but
not ‘Grandmother-cell’ coding in the medial temporal lobe.” As the authors
emphasize there,

Given the very sparse and abstract representation of visual information by these
neurons, they could in principle be considered as ‘grandmother cells’. However, we
give several arguments that make such an extreme interpretation unlikely.

. . .

MTL neurons are situated at the juncture of transformation of percepts into con-
structs that can be consciously recollected. These cells respond to percepts rather
than to the detailed information falling on the retina. Thus, their activity reflects the
full transformation that visual information undergoes through the ventral pathway.
A crucial aspect of this transformation is the complementary development of both
selectivity and invariance. The evidence presented here, obtained from recordings of
single-neuron activity in humans, suggests that a subset of MTL neurons possesses a
striking invariant representation for consciously perceived objects, responding to ab-
stract concepts rather than more basic metric details. This representation is sparse,
in the sense that responsive neurons fire only to very few stimuli (and are mostly
silent except for their preferred stimuli), but it is far from a Grandmother-cell repre-
sentation. The fact that the MTL represents conscious abstract information in such
a sparse and invariant way is consistent with its prominent role in the consolidation
of long-term semantic memories.

It’s interesting to note how inadequate the [QKKF08] data really is for ex-
ploring the notion of glocal memory in the brain. Suppose it’s the case that
individual visual memories correspond to keys consisting of small neuronal
subnetworks, and maps consisting of larger neuronal subnetworks. Then it
would be not at all surprising if neurons in the “key” network corresponding
to a visual concept like “Bill Clinton’s face” would be found to respond differ-
entially to the presentation of appropriate images. Yet, it would also be wrong
to overinterpret such data as implying that the key network somehow com-
prises the “representation” of Bill Clinton’s face in the individual’s brain. In
fact this key network would comprise only one aspect of said representation.
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In the glocal memory hypothesis, a visual memory like “Bill Clinton’s face”
would be hypothesized to correspond to an attractor spanning a significant
subnetwork of the individual’s brain – but this subnetwork still might occupy
only a small fraction of the neurons in the brain (say, 1/100 or less), since
there are very many neurons available. This attractor would constitute the
map. But then, there would be a much smaller number of neurons serving
as key to unlock this map: i.e. if a few of these key neurons were stimulated,
then the overall attractor pattern in the map as a whole would unfold and
come to play a significant role in the overall brain activity landscape. In prior
publications [?] the primary author explored this hypothesis in more detail
in terms of the known architecture of the cortex and the mathematics of
complex dynamical attractors.

So, one possible interpretation of the [QKKF08] data is that the MTL neu-
rons they’re measuring are part of key networks that correspond to broader
map networks recording percepts. The map networks might then extend more
broadly throughout the brain, beyond the MTL and into other perceptual
and cognitive areas of cortex. Furthermore, in this case, if some MTL key
neurons were removed, the maps might well regenerate the missing keys (as
would happen e.g. in the glocal Hopfield model to be discussed in the follow-
ing section).

Related and interesting evidence for glocal memory in the brain comes
from a recent study of semantic memory, illustrated in Figure ?? [PNR07].
Their research probed the architecture of semantic memory via comparing
patients suffering from semantic dementia (SD) with patients suffering from
three other neuropathologies, and found reasonably convincing evidence for
what they call a “distributed-plus-hub” view of memory.

The SD patients they studied displayed highly distinctive symptomology;
for instance, their vocabularies and knowledge of the properties of everyday
objects were strongly impaired, whereas their memories of recent events and
other cognitive capacities remain perfectly intact. These patients also showed
highly distinctive patterns of brain damage: focal brain lesions in their an-
terior temporal lobes (ATL), unlike the other patients who had either less
severe or more widely distributed damage in their ATLs. This led [PNR07]
to conclude that the ATL (being adjacent to the amygdala and limbic sys-
tems that process reward and emotion; and the anterior parts of the medial
temporal lobe memory system, which processes episodic memory) is a “hub”
for amodal semantic memory, drawing general semantic information from
episodic memories based on emotional salience.

So, in this view, the memory of something like a “banana” would contain
a distributed aspect, spanning multiple brain systems, and also a localized
aspect, centralized in the ATL. The distributed aspect would likely contain
information on various particular aspects of bananas, including their sights,
smells, and touches, the emotions they evoke, and the goals and motivations
they relate to. The distributed and localized aspects would influence one an-



310 13 Local, Global and Glocal Knowledge Representation

Fig. 13.1 A Simplified Look at Feedback-Control in Uncertain Inference

other dynamically, but, the data [PNR07] gathered do not address dynamics
and they don’t venture hypotheses in this direction.

There is a relationship between the “distributed-plus-hub” view and [Dam00]
better-known notion of a “convergence zone”, defined roughly as a location
where the brain binds features together. A convergence zone, in [Dam00] per-
spective, is not a “store” of information but an agent capable of decoding a
signal (and of reconstructing information). He also uses the metaphor that
convergence zones behave like indexes drawing information from other areas
of the brain – but they are dynamic rather than static indices, containing the
instructions needed to recognize and combine the features constituting the
memory of something. The mechanism involved in the distributed-plus-hub
model is similar to a convergence zone, but with the important difference
that hubs are less local: [PNR07] semantic hub may be thought of a kind of
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“cluster of convergence zones” consisting of a network of convergence zones
for various semantic memories.

What is missing in [PNR07] and [Dam00] perspective is a vision of dis-
tributed memories as attractors. The idea of localized memories serving as
indices into distributed knowledge stores is important, but is only half the
picture of glocal memory: the creative, constructive, dynamical-attractor as-
pect of the distributed representation is the other half. The closest thing to
a clear depiction of this aspect of glocal memory that seems to exist in the
neuroscience literature is a portion of William Calvin’s theory of the “cere-
bral code” [Cal96]. Calvin proposes a set of quite specific mechanisms by
which knowledge may be represented in the brain using complexly-structured
strange attractors, and by which these strange attractors may be propagated
throughout the brain. Figure 13.2 shows one aspect of his theory: how a dis-
tributed attractor may propagate from one part of the brain to another in
pieces, with one portion of the attractor getting propagated first, and then
seeding the formation in the destination brain region of a close approximation
of the whole attractor.

Fig. 13.2 Calvin’s Model of Distributed Attractors in the Brain
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Calvin’s theory may be considered a genuinely glocal theory of memory.
However, it also makes a large number of other specific commitments that are
not part of the notion of glocality, such as his proposal of hexagonal meta-
columns in the cortex, and his commitment to evolutionary learning as the
primary driver of neural knowledge creation. We find these other hypotheses
interesting and highly promising, yet feel it is also important to separate out
the notion of glocal memory for separate consideration.

Regarding specifics, our suggestion is that Calvin’s approach may overem-
phasize the distributed aspect of memory, not giving sufficient due to the
relatively localized aspect as accounted for in the [QKKF08] results discussed
above. In Calvin’s glocal approach, global memories are attractors and local
memories are parts of attractors. We suggest a possible alternative, in which
global memories are attractors and local memories are particular neuronal
subnetworks such as the specialized ones identified by [QKKF08]. However,
this alternative does not seem contradictory to Calvin’s overall conceptual
approach, even though it is different from the particular proposals made in
[Cal96].

The above paragraphs are far from a complete survey of the relevant neu-
roscience literature; there are literally dozens of studies one could survey
pointing toward the glocality of various sorts of human memory. Yet experi-
mental neuroscience tools are still relatively primitive, and every one of these
studies could be interpreted in various other ways. In the next couple decades,
as neuroscience tools improve in accuracy, our understanding of the role of
glocality in human memory will doubtless improve tremendously.

13.6.3 Glocal Hopfield Networks

The ideas in the previous section suggest that, if one wishes to construct an
AGI, it is worth seriously considering using a memory with some sort of glo-
cal structure. One research direction that follows naturally from this notion
is “glocal neural networks.” In order to explore the nature of glocal neural
networks in a relatively simple and tractable setting, we have formalized and
implemented simple examples of “glocal Hopfield networks”: palimpsest Hop-
field nets with the addition of neurons representing localized memories. While
these specific networks are not used in CogPrime

, they are quite similar to the ECAN networks that are used in CogPrime
and described in Chapter 23 of Part 2.
Essentially, we augment the standard Hopfield net architecture by adding

a set of “key neurons.” These are a small percentage of the neurons in the
network, and are intended to be roughly equinumerous to the number of
memories the network is supposed to store. When the Hopfield net converges
to an attractor A, then new links are created between the neurons that are
active in A, and one of the key neurons. Which key neuron is chosen? The
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one that, when it is stimulated, gives rise to an attractor pattern maximally
similar to A.

The ultimate result of this is that, in addition to the distributed memory
of attractors in the Hopfield net, one has a set of key neurons that in effect
index the attractors. Each attractor corresponds to a single key neuron. In
the glocal memory model, the key neurons are the keys and the Hopfield net
attractors are the maps.

This algorithm has been tested in sparse Hopfield nets, using both standard
Hopfield net learning rules and Storkey’s modified palimpsest learning rule
[SV99], which provides greater memory capacity in a continuous learning
context. The use of key neurons turns out to slightly increase Hopfield net
memory capacity, but this isn’t the main point. The main point is that one
now has a local representation of each global memory, so that if one wants to
create a link between the memory and something else, it’s extremely easy to
do so – one just needs to link to the corresponding key neuron. Or, rather,
one of the corresponding key neurons: depending on how many key neurons
are allocated, one might end up with a number of key neurons corresponding
to each memory, not just one.

In order to transform a palimpsest Hopfield net into a glocal Hopfield net,
the following steps are taken:

1. Add a fixed number of “key neurons” to the network (removing other
random neurons to keep the total number of neurons constant)

2. When the network reaches an attractor, create links from the elements
in the attractor to one of the key neurons

3. The key neuron chosen for the previous step is the one that most closely
matches the current attractor (which may be determined in several ways,
to be discussed below)

4. To avoid the increase of the number of links in the network, when new
links are created in Step 2, other key-neuron links are then deleted (sev-
eral approaches may be taken here, but the simplest is to remove the
key-neuron links with the lowest-absolute-value weights)

In the simple implementation of the above steps that we implemented, and
described in [GPI+10], Step 3 is carried out simply by comparing the weights
of a key neuron’s links to the nodes in an attractor. A more sophisticated
approach would be to select the key neuron with the highest activation during
the transient interval immediately prior to convergence to the attractor.

The result of these modifications to the ordinary Hopfield net, is a Hopfield
net that continually maintains a set of key neurons, each of which individually
represents a certain attractor of the net.

Note that these key neurons – in spite of being “symbolic” in nature –
are learned rather than preprogrammed, and are every bit as adaptive as the
attractors they correspond to. Furthermore, if a key neuron is removed, the
glocal Hopfield net algorithm will eventually learn it back, so the robustness
properties of Hopfield nets are retained.
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The results of experimenting with glocal Hopfield nets of this nature are
summarized in [GPI+10]. We studied Hopfield nets with connectivity around
.1, and in this context we found that glocality

• slightly increased memory capacity
• massively increased the rate of convergence to the attractor, i.e. the speed

of recall

However, probably the most important consequence of glocality is a more
qualitative one: it makes it far easier to link the Hopfield net into a larger
system, as would occur if the Hopfield net were embedded in an integrative
AGI architecture. Because a neuron external to the Hopfield net may now
link to a memory in the Hopfield net by linking to the corresponding key
neuron.

13.6.4 Neural-Symbolic Glocality in CogPrime

In CogPrime , we have explicitly sought to span the symbolic/emergentist
pseudo-dichotomy, via creating an integrative knowledge representation that
combines logic-based aspects with neural-net-like aspects. As reviewed in
Chapter 6 above, these function not in the manner of multimodular systems,
but rather via using (probabilistic) truth values and (attractor neural net like)
attention values as weights on nodes and links of the same (hyper) graph.
The nodes and links in this hypergraph are typed, like a standard semantic
network approach for knowledge representation, so they’re able to handle all
sorts of knowledge, from the most concrete perception and actuation related
knowledge to the most abstract relationships. But they’re also weighted with
values similar to neural net weights, and pass around quantities (importance
values, discussed in Chapter 23 of Part 2) similar to neural net activations,
allowing emergent attractor/assembly based knowledge representation similar
to attractor neural nets.

The concept of glocality lies at the heart of this combination, in a way
that spans the pseudo-dichotomy:

• Local knowledge is represented in abstract logical relationships stored
in explicit logical form, and also in Hebbian-type associations between
nodes and links.

• Global knowledge is represented in large-scale patterns of node and link
weights, which lead to large-scale patterns of network activity, which often
take the form of attractors qualitatively similar to Hopfield net attractors.
These attractors are called maps.

The result of all this is that a concept like “cat” might be represented as a
combination of:
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• A small number of logical relationships and strong associations, that con-
stitute the “key” subnetwork for the “cat” concept.

• A large network of weak associations, binding together various nodes and
links of various types and various levels of abstraction, representing the
“cat map”.

The activation of the key will generally cause the activation of the map, and
the activation of a significant percentage of the map will cause the activation
of the rest of the map, including the key. Furthermore, if the key were for
some reason forgotten, then after a significant amount of effort, the system
would likely to be able to reconstitute it (perhaps with various small changes)
from the information in the map. We conjecture that this particular kind of
glocal memory will turn out to be very powerful for AGI, due to its ability to
combine the strengths of formal logical inference with those of self-organizing
attractor neural networks.

As a simple example, consider the representation of a “tower”, in the con-
text of an artificial agent that has built towers of blocks, and seen pictures
of many other kinds of towers, and seen some tall building that it knows are
somewhat like towers but perhaps not exactly towers. If this agent is reason-
ably conceptually advanced (say, at Piagetan the concrete operational level)
then its mind will contain some declarative relationships partially character-
izing the concept of “tower,” as well as its sensory and episodic examples, and
its procedural knowledge about how to build towers.

The key of the “tower” concept in the agent’s mind may consist of inter-
nal images and episodes regarding the towers it knows best, the essential
operations it knows are useful for building towers (piling blocks atop blocks
atop blocks...), and the core declarative relations summarizing “towerness” –
and the whole “tower” map then consists of a much larger number of images,
episodes, procedures and declarative relationships connected to “tower” and
other related entities. If any portion of the map is removed – even if the key
is removed – then the rest of the map can be approximately reconstituted,
after some work. Some cognitive operations are best done on the localized
representation – e.g. logical reasoning. Other operations, such as attention al-
location and guidance of inference control, are best done using the globalized
map representation.





Chapter 14
Representing Implicit Knowledge via
Hypergraphs

14.1 Introduction

Explicit knowledge is easy to write about and talk about; implicit knowledge
is equally important, but tends to get less attention in discussions of AI and
psychology, simply because we don’t have as good a vocabulary for describing
it, nor as good a collection of methods for measuring it. One way to deal with
this problem is to describe implicit knowledge using language and methods
typically reserved for explicit knowledge. This might seem intrinsically non-
workable, but we argue that it actually makes a lot of sense. The same sort
of networks that a system like CogPrime

uses to represent knowledge explicitly, can also be used to represent the
emergent knowledge that implicitly exists in an intelligent system’s complex
structures and dynamics.

We’ve noted that CogPrime uses an explicit representation of knowledge
in terms of weighted labeled hypergraphs; and also uses other more neural net
like mechanisms (e.g. the economic attention allocation network subsystem)
to represent knowledge globally and implicitly. CogPrime combines these two
sorts of representation according to the principle we have called glocality. In
this chapter we pursue glocality a bit further – describing a means by which
even implicitly represented knowledge can be modeled using weighted labeled
hypergraphs similar to the ones used explicitly in CogPrime . This is concep-
tually important, in terms of making clear the fundamental similarities and
differences between implicit and explicit knowledge representation; and it is
also pragmatically meaningful due to its relevance to the CogPrime meth-
ods described in Chapter 42 of Part 2 that transform implicit into explicit
knowledge.

To avoid confusion with CogPrime ’s explicit knowledge representation,
we will refer to the hypergraphs in this chapter as composed of Vertices and
Edges rather than Nodes and Links. In prior publications we have referred
to "derived" or "emergent" hypergraphs of the sort described here using the
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acronym SMEPH, which stands for Self-Modifying, Evolving Probabilistic
Hypergraphs.

14.2 Key Vertex and Edge Types

We begin by introducing a particular collection of Vertex and Edge types, to
be used in modeling the internal structures of intelligent systems.

The key SMEPH Vertex types are

• ConceptVertex, representing a set, for instance, an idea or a set of per-
cepts

• SchemaVertex, representing a procedure for doing something (perhaps
something in the physical world, or perhaps an abstract mental action).

The key SMEPH Edge types, using language drawn from Probabilistic
Logic Networks (PLN) and elaborated in Chapter 34 below, are as follows:

• ExtensionalInheritanceEdge (ExtInhEdge for short: an edge which, link-
ing one Vertex or Edge to another, indicates that the former is a special
case of the latter)

• ExtensionalSimilarityEdge (ExtSim: which indicates that one Vertex or
Edge is similar to another)

• ExecutionEdge (a ternary edge, which joins S,B,C when S is a SchemaVer-
tex and the result from applying S to B is C).

So, in a SMEPH system, one is often looking at hypergraphs whose Vertices
represent ideas or procedures, and whose Edges represent relationships of
specialization, similarity or transformation among ideas and/or procedures.

The semantics of the SMEPH edge types is given by PLN, but is sim-
ple and commonsensical. ExtInh and ExtSim Edges come with probabilis-
tic weights indicating the extent of the relationship they denote (e.g. the
ExtSimEdge joining the cat ConceptVertex to the dog ConceptVertex gets
a higher probability weight than the one joining the cat ConceptVertex to
the washing-machine ConceptVertex). The mathematics of transformations
involving these probabilistic weights becomes quite involved Ñ particularly
when one introduces SchemaVertices corresponding to abstract mathematical
operations, a step that enables SMEPH hypergraphs to have the complete
mathematical power of standard logical formalisms like predicate calculus,
but with the added advantage of a natural representation of uncertainty in
terms of probabilities, as well as a natural representation of networks and
webs of complex knowledge.
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14.3 Derived Hypergraphs

We now describe how SMEPH hypergraphs may be used to model and de-
scribe intelligent systems. One can (in principle) draw a SMEPH hypergraph
corresponding to any individual intelligent system, with Vertices and Edges
for the concepts and processes in that system’s mind. This is called the de-
rived hypergraph of that system.

14.3.1 SMEPH Vertices

A ConceptVertex in the derived hypergraph of a system corresponds to
a structural pattern that persists over time in that system; whereas a
SchemaVertex corresponds to a multi-time-point dynamical pattern that re-
curs in that system’s dynamics. If one accepts the patternist definition of a
mind as the set of patterns in an intelligent system, then it follows that the
derived hypergraph of an intelligent system captures a significant fraction of
the mind of that system.

To phrase it a little differently, we may say that a ConceptVertex, in
SMEPH, refers to the habitual pattern of activity observed in a system when
some condition is met (this condition corresponding to the presence of a
certain pattern). The condition may refer to something in the world external
to the system, or to something internal. For instance, the condition may be
observing a cat. In this case, the corresponding Concept vertex in the mind of
Ben Goertzel is the pattern of activity observed in Ben Goertzel’s brain when
his eyes are open and he’s looking in the direction of a cat. The notion of
pattern of activity can be made rigorous using mathematical pattern theory,
as is described in The Hidden Pattern [Goe06a].

Note that logical predicates, on the SMEPH level, appear as particular
kinds of Concepts, where the condition involves a predicate and an argument.
For instance, suppose one wants to know what happens inside Ben’s mind
when he eats cheese. Then there is a Concept corresponding to the condition
of cheese-eating activity. But there may also be a Concept corresponding to
eating activity in general. If the Concept denoting the activity of eating X is
generally easily computable from the Concepts for X and eating individually,
then the eating Concept is effectively acting as a predicate.

A SMEPH SchemaVertex, on the other hand, is like a Concept that’s
defined in a time-dependent way. One type of Schema refers to a habitual
dynamical pattern of activity occurring before and/or during some condition
is met. For instance, the condition might be saying the word Hello. In that
case the corresponding SchemaVertex in the mind of Ben Goertzel is the
pattern of activity that generally occurs before he says Hello.

Another type of Schema refers to a habitual dynamical pattern of activ-
ity occurring after some condition X is met. For instance, in the case of the
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Schema for adding two numbers, the precondition X consists of the two num-
bers and the concept of addition. The Schema is then what happens when
the mind thinks of adding and thinks of two numbers.

Finally, there are Schema that refer to habitual dynamical activity patterns
occurring after some condition X is met and before some condition Y is met.
In this case the Schema is viewed as transforming X into Y. For instance,
if X is the condition of meeting someone who is not a friend, and Y is the
condition of being friends with that person, then the habitually intervening
activities constitute the Schema for making friends.

14.3.2 SMEPH Edges

SMEPH edge types fall into two categories: functional and logical. Functional
edges connect Schema vertices to their input and outputs; logical edges re-
fer mainly to conditional probabilities, and in general are to be interpreted
according to the semantics of Probabilistic Logic Networks.

Let us begin with logical edges. The simplest case is the Subset edge, which
denotes a straightforward, extensional conditional probability. For instance,
it may happen that whenever the Concept for cat is present in a system, the
Concept for animal is as well. Then we would say

Subset cat animal

(Here we assume a notation where “R A B” denotes an Edge of type R between
Vertices A and B.)

On the other hand, it may be that 50% of the time that cat is present in
the system, cute is present as well: then we would say

Subset cat cute <.5>

where the <.5> denotes the probability, which is a component of the Truth
Value associated with the edge.

Next, the most basic functional edge is the Execution edge, which is ternary
and denotes a relation between a Schema, its input and its output, e.g.

Execution father_of Ben_Goertzel Ted_Goertzel

for a schema father_of that outputs the father of its argument.
The ExecutionOutput (ExOut) edge denotes the output of a Schema in

an implicit way, e.g.

ExOut say_hello

refers to a particular act of saying hello, whereas

ExOut add_numbers {3, 4)

refers to the Concept corresponding to 7. Note that this latter example in-
volves a set of three entities: sets are also part of the basic SMEPH knowledge
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representation. A set may be thought of as a hypergraph edge that points to
all its members.

In this manner we may define a set of edges and vertices modeling the ha-
bitual activity patterns of a system when in different situations. This is called
the derived hypergraph of the system. Note that this hypergraph can in prin-
ciple be constructed no matter what happens inside the system: whether it’s a
human brain, a formal neural network, Cyc, OCP, a quantum computer, etc.
Of course, constructing the hypergraph in practice is quite a different story:
for instance, we currently have no accurate way of measuring the habitual
activity patterns inside the human brain. fMRI and PET and other neu-
roimaging technologies give only a crude view, though they are continually
improving.

Pattern theory enters more deeply here when one thoroughly fleshes out
the Inheritance concept. Philosophers of logic have extensively debated the
relationship between extensional inheritance (inheritance between sets based
on their members) and intensional inheritance (inheritance between entity-
types based on their properties). A variety of formal mechanisms have been
proposed to capture this conceptual distinction; see (Wang, 2006, 1995 TODO
make ref) for a review along with a novel approach utilizing uncertain term
logic. Pattern theory provides a novel approach to defining intension: one
may associate with each ConceptVertex in a system’s derived hypergraph
the set of patterns associated with the structural pattern underlying that
ConceptVertex. Then, one can define the strength of the IntensionalInheri-
tanceEdge between two ConceptVertices A and B as the percentage of A’s
pattern-set that is also contained in B’s pattern-set. According to this ap-
proach, for instance, one could have

IntInhEdge whale fish <0.6>

ExtInhEdge whale fish <0.0>

since the fish and whale sets have common properties but no common mem-
bers.

14.4 Implications of Patternist Philosophy for Derived
Hypergraphs of Intelligent Systems

Patternist philosophy rears its head here and makes some definite hypotheses
about the structure of derived hypergraphs. It suggests that derived hyper-
graphs should have a dual network structure, and that in highly intelligent
systems they should have subgraphs that constitute models of the whole
hypergraph (these are self systems). SMEPH does not add anything to the
patternist view on a philosophical level, but it gives a concrete instantiation
to some of the general ideas of patternism. In this section we’ll articulate
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some "SMEPH principles", constituting important ideas from patternist phi-
losophy as they manifest themselves in the SMEPH context.

The logical edges in a SMEPH hypergraph are weighted with probabilities,
as in the simple example given above. The functional edges may be proba-
bilistically weighted as well, since some Schema may give certain results only
some of the time. These probabilities are critical in terms of SMEPH’s model
of system dynamics; they underly one of our SMEPH principles,

Principle of Implicit Probabilistic Inference: In an intelligent sys-
tem, the temporal evolution of the probabilities on the edges in the system’s
derived hypergraph should approximately obey the rules of probability the-
ory.

The basic idea is that, even if a system’s underlying dynamics has no explicit
connection to probability theory, nevertheless it must behave roughly as if it
does, if it is going to be intelligent. The roughly part is important here; it’s
well known that humans are not terribly accurate in explicitly carrying out
formal probabilistic inferences. And yet, in practical contexts where they have
experience, humans can make quite accurate judgments; which is all that’s
required by the above principle, since it’s the contexts where experience has
occurred that will make up a system’s derived hypergraph.

Our next SMEPH principle is evolutionary, and states

Principle of Implicit Evolution: In an intelligent system, new Schema
and Concepts will continually be created, and the Schema and Concepts that
are more useful for achieving system goals (as demonstrated via probabilistic
implication of goal achievement) will tend to survive longer.

Note that this principle can be fulfilled in many different ways. The im-
portant thing is that system goals are allowed to serve as a selective force.

Another SMEPH dynamical principle pertains to a shorter time-scale than
evolution, and states

Principle of Attention Allocation: In an intelligent system, Schema
and Concepts that are more useful for attaining short-term goals will tend
to consume more of the system’s energy. (The balance of attention oriented
toward goals pertaining to different time scales will vary from system to
system.)

Next, there is the

Principle of Autopoesis: In an intelligent system, if one removes some
part of the system and then allows the system’s natural dynamics to keep go-
ing, a decent approximation to that removed part will often be spontaneously
reconstituted.
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And the

Cognitive Equation Principle: In an intelligent system, many abstract
patterns that are present in the system at a certain time as patterns among
other Schema and Concepts, will at a near-future time be present in the
system as patterns among elementary system components.

The Cognitive Equation Principle, briefly discussed in Chapter 3 abovee,
basically means that Concepts and Schema emergent in the system are recog-
nized by the system and then embodied as elementary items in the system so
that patterns among them in their emergent form become, with the passage
of time, patterns among them in their directly-system-embodied form. This
is a natural consequence of the way intelligent systems continually recognize
patterns in themselves.

Note that derived hypergraphs may be constructed corresponding to any
complex system which demonstrates a variety of internal dynamical patterns
depending on its situation. However, if a system is not intelligent, then ac-
cording to the patternist philosophy evolution of its derived hypergraph can’t
necessarily be expected to follow the above principles.

14.4.1 SMEPH Principles in CogPrime

We now more explicitly elaborate the application of these ideas in the Cog-
Prime context. As noted above, in addition to explicit knowledge represen-
tation in terms of Nodes and Links, CogPrime also incorporates implicit
knowledge representation in the form of what are called Maps: collections of
Nodes and Links that tend to be utilized together within cognitive processes.

These Maps constitute a CogPrime system’s derived hypergraph, which
will not be identical to the hypergraph it uses for explicit knowledge rep-
resentation. However, an interesting feedback loop arises here, in that the
intelligence’s self-study will generally lead it to recognize large portions of
its derived hypergraph as patterns in itself, and then embody these patterns
within its concretely implemented knowledge hypergraph. This is closely re-
lated to the Cognitive Equation phenomenon described in Chapter 3, in which
an intelligent system continually recognizes patterns in itself and embodies
these patterns in its own basic structure (so that new patterns may more
easily emerge from them).

Often it happens that a particular CogPrime node will serve as the center
of a map, so that e.g. the Concept Link denoting cat will consist of a number
of nodes and links roughly centered around a ConceptNode that is linked to
the WordNode cat. But this is not guaranteed and some CogPrime maps are
more diffuse than this with no particular center.
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Somewhat similarly, the key SMEPH dynamics are represented explicitly
in CogPrime : probabilistic reasoning is carried out via explicit application of
PLN on the CogPrime hypergraph, evolutionary learning is carried out via
application of the MOSES optimization algorithm, and attention allocation
is carried out via a combination of inference and evolutionary pattern mining.
But the SMEPH dynamics also occur implicitly in CogPrime : emergent maps
are reasoned on probabilistically as an indirect consequence of node-and-link
level PLN activity; maps evolve as a consequence of the coordinated whole of
CogPrime dynamics; and attention shifts between maps according to complex
emergent dynamics.

To see the need for maps, consider that even a Node that has a particular
meaning attached to it - like the Iraq Node, say - doesn’t contain much of
the meaning of Iraq in it. The meaning of Iraq lies in the Links attached
to this Node, and the Links attached to their Nodes - and the other Nodes
and Links not explicitly represented in the system, which will be created by
CogPrime ’s cognitive algorithms based on the explicitly existent Nodes and
Links related to the Iraq Node.

This halo of Atoms related to the Iraq node is called the Iraq map. In
general, some maps will center around a particular Atom, like this Iraq map,
others may not have any particular identifiable center. CogPrime ’s cognitive
processes act directly on the level of Nodes and Links, but they must be ana-
lyzed in terms of their impact on maps as well. In SMEPH terms, CogPrime
maps may be said to correspond to SMEPH ConceptNodes, and for instance
bundles of Links between the Nodes belonging to a map may correspond to
a SMEPH Link between two ConceptNodes



Chapter 15
Emergent Networks of Intelligence

15.1 Introduction

When one is involved with engineering an AGI system, one thinks a lot about
the aspects of the system one is explicitly building – what are the parts, how
they fit together, how to test they’re properly working, and so forth. And yet,
these explicitly engineered aspects are only a fraction of what’s important in
an AGI system. At least as critical are the emergent aspects – the patterns
that emerge once the system is up and running, interacting with the world
and other agents, growing and developing and learning and self-modifying.
SMEPH is one toolkit for describing some of these emergent patterns, but
it’s only a start.

In line with these general observations, most of this book we will focus
on the structures and processes that we have built, or intend to build, into
the CogPrime system. But in a sense, these structures and processes are
not the crux of CogPrime ’s intended intelligence. The purpose of these pre-
programmed structures and processes is to give rise to emergent structures
and processes, in the course of CogPrime ’s interaction with the world and the
other minds within it. We will return to this theme of emergence at several
points in later chapters, e.g. in the discussion of map formation in Chapter
42 of Part 2.

Given the important of emergent structures – and specifically emergent
network structures – for intelligence, it’s fortunate the scientific community
has already generated a lot of knowledge about complex networks: both net-
works of physical or software elements, and networks of organization emer-
gent from complex systems. As most of this knowledge has originated in fields
other than AGI, or in pure mathematics, it tends to require some reinterpre-
tation or tweaking to achieve maximal applicability in the AGI context; but
we believe this effort will become increasingly worthwhile as the AGI field
progresses, because network theory is likely to be very useful for describ-
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ing the contents and interactions of AGI systems as they develop increasing
intelligence.

In this brief chapter we specifically focus on the emergence of certain large-
scale network structures in a CogPrime knowledge store, presenting heuristic
arguments as to why these structures can be expected to arise. We also com-
ment on the way in which these emergent structures are expected to guide
cognitive processes, and give rise to emergent cognitive processes. The fol-
lowing chapter expands on this theme in a particular direction, exploring the
possible emergence of structures characterizing inter-cognitive reflection.

15.2 Small World Networks

One simple but potentially useful observation about CogPrime Atomspaces
is that they are generally going to be small world networks [?], rather than
random graphs. A small world network is a graph in which the connectivities
of the various nodes display a power law behavior – so that, loosely speaking,
there are a few nodes with very many links, then more nodes with a modest
number of links ... and finally, a huge number of nodes with very few links.
This kind of network occurs in many natural and human systems, including
citations among papers, financial arrangements among banks, links between
Web pages and the spread of diseases among people or animals. In a weighted
network like an Atomspace, "small-world-ness" must be defined in a manner
taking the weights into account, and there are several obvious ways to do
this. Figure 15.1 depicts a small but prototypical small-worlds network, with
a few "hub" nodes possessing far more neighbors than the others, and then
some secondary hubs, etc.

An excellent reference on network theory in general, including but not
limited to small world networks, is Peter Csermely’s Weak Links [?]. Many of
the ideas in that work have apparent OpenCog applications, which are not
elaborated here.

One process via which small world networks commonly form is "preferen-
tial attachment" [?]. This occurs in essence when "the rich get richer" – i.e.
when nodes in the network grow new links, in a manner that causes them
to preferentially grow links to nodes that already have more links. It is not
hard to see that CogPrime ’s ECAN dynamics will naturally lead to pref-
erential attachment, because Atoms with more links will tend to get more
STI, and thus will tend to get selected by more cognitive processes, which
will cause them to grow more links. For this reason, in most circumstances, a
CogPrime system in which most link-building cognitive processes rely heavily
on ECAN to guide their activities will tend to contain a small-world-network
Atomspace. This is not rigorously guaranteed to be the case for any possible
combination of environment and goals, but it is commonsensically likely to
nearly always be the case.
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Fig. 15.1 A typical, though small-sized, small-worlds network.

One consequence of the small worlds structure of the Atomspace is that, in
exploring other properties of the Atom network, it is particularly important to
look at the hub nodes. For instance, if one is studying whether hierarchical
and heterarchical subnetworks of the Atomspace exist, and whether they
are well-aligned with each other, it is important to look at hierarchical and
heterarchical connections between hub nodes in particular (and secondary
hubs, etc.). A pattern of hierarchical or dual network connection that only
held up among the more sparsely connected nodes in a small-world network
would be a strange thing, and perhaps not that cognitively useful.

15.3 Dual Network Structure

One of the key theoretical notions in patternist philosophy is that complex
cognitive systems evolve internal dual network structures, comprising super-
posed, harmonized hierarchical and heterarchical networks. Now we explore
some of the specific CogPrime structures and dynamics militating in favor of
the emergence of dual networks.
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15.3.1 Hierarchical Networks

The hierarchical nature of human linguistic concepts is well known, and
is illustrated in Figure 15.2 for the commonsense knowledge domain (us-
ing a graph drawn from WordNet, a huge concept hierarchy covering 50K+
English-language concepts), and in Figure 15.4 for a specialized knowledge
subdomain, genetics. Due to this fact, a certain amount of hierarchy can be
expected to emerge in the Atomspace of any linguistically savvy CogPrime ,
simply due to its modeling of the linguistic concepts that it hears and reads.

Fig. 15.2 A typical, though small, subnetwork of WordNet’s hierarchical network.

Hierarchy also exists in the natural world apart from language, which
is the reason that many sensorimotor-knowledge-focused AGI systems (e.g.
DeSTIN and HTM, mentioned in Chapter 4 above) feature hierarchical struc-
tures. In these cases the hierarchies are normally spatiotemporal in nature,
with lower layers containing elements responding to more localized aspects
of the perceptual field, and smaller, more localized groups of actuators. This
kind of hierarchy certainly could emerge in an AGI system, but in CogPrime
we have opted for a different route. If a CogPrime system is hybridized with a
hierarchical sensorimotor network like one of those mentioned above, then the
Atoms linked to the nodes in the hierarchical sensorimotor network will nat-
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Fig. 15.3 A typical, though small, subnetwork of the Gene Ontology’s hierarchical net-
work.

urally possess hierarchical conceptual relationships, and will thus naturally
grow hierarchical links between them (e.g. InheritanceLinks and Intensional-
InheritanceLinks via PLN, AsymmetricHebbianLinks via ECAN).

Once elements of hierarchical structure exist via the hierarchical structure
of language and physical reality, then a richer and broader hierarchy can be
expected to accumulate on top of it, because importance spreading and in-
ference control will implicitly and automatically be guided by the existing
hierarchy. That is, in the language of Chaotic Logic [?] and patternist the-
ory, hierarchical structure is an "autopoietic attractor" – once it’s there it
will tend to enrich itself and maintain itself. AsymmetricHebbianLinks ar-
ranged in a hierarchy will tend to cause importance to spread up or down
the hierarchy, which will lead other cognitive processes to look for patterns
between Atoms and their hierarchical parents or children, thus potentially
building more hierarchical links. Chains of InheritanceLinks pointing up and
down the hierarchy will lead PLN to search for more hierarchical links – e.g.
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Fig. 15.4 Small-scale portrayal of a portion of the spatiotemporal hierarchy in Jeff
Hawkins’ Hierarchical Temporal Memory architecture.

most simply, A → B → C where C is above B is above A in the hierarchy,
will naturally lead inference to check the viability of A → C by deduction.
There is also the possibility to introduce a special DefaultInheritanceLink, as
discussed in Chapter 34 of Part 2, but this isn’t actually necessary to obtain
the inferential maintenance of a robust hierarchical network.

15.3.2 Associative, Heterarchical Networks

Heterarchy is in essence a simpler structure than hierarchy: it simply refers
to a network in which nodes are linked to other nodes with which they share
important relationships. That is, there should be a tendency that if two nodes
are often important in the same contexts or for the same purposes, they
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should be linked together. Portrayals of typical heterarchical linkage patterns
among natural language concepts are given in Figures 15.5 and 15.6. Just for
fun, Figure 15.7 shows one person’s attempt to draw a heterarchical graph
of the main concepts in one of Douglas Hofstadter’s books. Naturally, real
concept heterarchies are far more large, complex and tangled than even this
one.

Fig. 15.5 Portions of a conceptual heterarchy centered on specific concepts.

In CogPrime , ECAN enforces heterarchy via building SymmetricHebbian-
Links, and PLN by building SimilarityLinks, IntensionalSimilarityLinks and
ExtensionalSimilarityLinks. Furthermore, these various link types reinforce
each other. PLN control is guided by importance spreading, which follows
Hebbian links, so that a heterarchical Hebbian network tends to cause PLN
to explore the formation of links following the same paths as the heterarchical
HebbianLinks. And importance can spread along logical links as well as ex-
plicit Hebbian links, so that the existence of a heterarchical logical network
will tend to cause the formation of additional heterarchical Hebbian links.
Heterarchy reinforces itself in "autopoietic attractor" style even more simply
and directly than heterarchy.

15.3.3 Dual Networks

Finally, if both hierarchical and heterarchical structures exist in an Atom-
space, then both ECAN and PLN will naturally blend them together, because
hierarchical and heterarchical links will feed into their link-creation processes
and naturally be combined together to form new links. This will tend to pro-
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Fig. 15.6 A portion of a conceptual heterarchy, showing the "dangling links" leading this
portion to the rest of the heterarchy.

duce a structure called a dual network, in which a hierarchy exists, along with
a rich network of heterarchical links joining nodes in the hierarchy, with a
particular density of links between nodes on the same hierarchical level. The
dual network structure will emerge without any explicit engineering oriented
toward it, simply via the existence of hierarchical and heterarchical networks,
and the propensity of ECAN and PLN to be guided by both the hierarchical
and heterarchical networks. The existence of a natural dual network struc-
ture in both linguistic and sensorimotor data will help the formation process
along, and then creative cognition will enrich the dual network yet further
than is directly necessitated by the external world.

A rigorous mathematical analysis of the formation of hierarchical, heterar-
chical and dual networks in CogPrime systems has not yet been undertaken,
and would certainly be an interesting enterprise. Similar to the theory of
small world networks, there is ample ground here for both theorem-proving
and heuristic experimentation. However, the qualitative points made here
are sufficiently well-grounded in intuition and experience to be of some use
guiding our ongoing work. One of the nice things about emergent network
structures is that they are relatively straightforward to observe in an evolv-
ing, learning AGI system, via visualization and inspection of structures such
at the Atomspace.
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Fig. 15.7 A fanciful evocation of part of a reader’s conceptual heterarchy related to
Douglas Hofstadter’s writings.
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A Path to Human-Level AGI





Chapter 16
AGI Preschool

Co-authored with Stephan Vladimir Bugaj

16.1 Introduction

In conversations with government funding sources or narrow AI researchers
about AGI work, one of the topics that comes up most often is that of “eval-
uation and metrics” – i.e., AGI intelligence testing. We actually prefer to
separate this into two topics: environments and methods for careful qual-
itative evaluation of AGI systems, versus metrics for precise measurement
of AGI systems. The difficulty of formulating bulletproof metrics for par-
tial progress toward advanced AGI has become evident throughout the field,
and in Chapter 8 we have elaborated one plausible explanation for this phe-
nomenon, the "trickiness" of cognitive synergy. [LWML09], summarizing a
workshop on “Evaluation and Metrics for Human-Level AI” held in 2008,
discusses some of the general difficulties involved in this type of assessment,
and some requirements that any viable approach must fulfill. On the other
hand, the lack of appropriate methods for careful qualitative evaluation of
AGI systems has been much less discussed, but we consider it actually a more
important issue – as well as an easier (though not easy) one to solve.

We haven’t actually found the lack of quantitative intelligence metrics to
be a major obstacle in our practical AGI work so far. Our OpenCogPrime
implementation lags far behind the CogPrime design as articulated in Part
2 of this book, and according to the theory underlying CogPrime , the more
interesting behaviors and dynamics of the system will occur only when all the
parts of the system have been engineered to a reasonable level of completion
and integrated together. So, the lack of a great set of metrics for evaluating the
intelligence of our partially-built system hasn’t impaired too much. Testing
the intelligence of the current OpenCogPrime system is a bit like testing the
flight capability of a partly-built airplane that only has stubs for wings, lacks
tail-fins, has a much less efficient engine than the one that’s been designed for
use in the first "real" version of the airplane, etc. There may be something
to be learned from such preliminary tests, but making them highly rigorous
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isn’t a great use of effort, compared to working on finishing implementing the
design according to the underlying theory.

On the other hand, the problem of what environments and methods to
use to qualitatively evaluate and study AGI progress, has been considerably
more vexing to us in practice, as we’ve proceeded in our work on implement-
ing and testing OpenCogPrime and developing the CogPrime theory. When
developing a complex system, it’s nearly always valuable to see what this
system does in some fairly rich, complex situations, in order to gain a bet-
ter intuitive understanding of the parts and how they work together. In the
context of human-level AGI, the theoretically best way to do this would be
to embody one’s AGI system in a humanlike body and set it loose in the ev-
eryday human world; but of course, this isn’t feasible given the current state
of development of robotics technology. So one must seek approximations. To-
ward this end we have embodied OpenCogPrime in non-player characters
in video game style virtual worlds, and carried out preliminary experiments
embodying OpenCogPrime in humanoid robots. These are reasonably good
options but they have limitations and lead to subtle choices: what kind of
game characters and game worlds, what kind of robot environments, etc.?

One conclusion we have come to, based largely on the considerations in
Chapter 11 on development and Chapter 9 on the importance of environment,
is that it may make sense to embed early-stage proto-AGI and AGI systems
in environments reminiscent of those used for teaching young human children.
In this chapter we will explore this approach in some detail: emulation, in
either physical reality or an multiuser online virtual world, of an environment
similar to preschools used in early human childhood education. Complete
specification of an “AGI Preschool” would require much more than a brief
chapter; our goal here is to sketch the idea in broad outline, and give a few
examples of the types of opportunities such an environment would afford
for instruction, spontaneous learning and formal and informal evaluation of
certain sorts of early-stage AGI systems.

The material in this chapter will pop up fairly often later in the book.
The AGI Preschool context will serve, throughout the following chapters,
as a source of concrete examples of the various algorithms and structures.
But it’s not proposed merely as an expository tool; we are making the very
serious proposal that sending AGI systems to a virtual or robotic preschool
is an excellent way – perhaps the best way – to foster the development of
human-level human-like AGI.

16.1.1 Contrast to Standard AI Evaluation
Methodologies

The reader steeped in the current AI literature may wonder why it’s necessary
to introduce a new methodology and environment for evaluating AGI systems.



16.1 Introduction 339

There are already very many different ways of evaluating AI systems out there
... do we really need another?

Certainly, the AI field has inspired many competitions, each of which tests
some particular type or aspect of intelligent behavior. Examples include robot
competitions, tournaments of computer chess, poker, backgammon and so
forth at computer olympiads, trading-agent competition, language and rea-
soning competitions like the Pascal Textual Entailment Challenge, and so on.
In addition to these, there are many standard domains and problems used in
the AI literature that are meant to capture the essential difficulties in a cer-
tain class of learning problems: standard datasets for face recognition, text
parsing, supervised classification, theorem-proving, question-answering and
so forth.

However, the value of these sorts of tests for AGI is predicated on the
hypothesis that the degree of success of an AI program at carrying out some
domain-specific task, is correlated with the potential of that program for
being developed into a robust AGI program with broad intelligence. If hu-
manlike AGI and problem-area-specific “narrow AI” are in fact very different
sorts of pursuits requiring very different principles, as we suspect, then these
tests are not strongly relevant to the AGI problem.

There are also some standard evaluation paradigms aimed at AI going be-
yond specific tasks. For instance, there is a literature on “multitask learning"
and “transfer learning,” where the goal for an AI is to learn one task quicker
given another task solved previously [?, TM95, ?, TS07, RZDK05]. This is
one of the capabilities an AI agent will need to simultaneously learn different
types of tasks as proposed in the Preschool scenario given here. And there is
a literature on “shaping,” where the idea is to build up the capability of an
AI by training it on progressively more difficult versions of the same tasks
[LD03]. Again, this is one sort of capability an AI will need to possess if it is
to move up some type of curriculum, such as a school curriculum.

While we applaud the work done on multitask learning and shaping, we
feel that exploring these processes using mathematical abstractions, or in
the domain of various narrowly-proscribed machine-learning or robotics test
problems, may not adequately address the problem of AGI. The problem is
that generalization among tasks, or from simpler to more difficult versions of
the same task, is a process whose nature may depend strongly on the overall
nature of the set of tasks and task-versions involved. Real-world tasks have a
subtlety of interconnectedness and developmental course that is not captured
in current mathematical learning frameworks nor standard AI test problems.

To put it mathematically, we suggest that the universe of real-world hu-
man tasks has a host of “special statistical properties” that have implications
regarding what sorts of AI programs will be most suitable; and that, while
exploring and formalizing the nature of these statistical properties is impor-
tant, an easier and more reliable approach to AGI testing is to create a testing
environment that embodies these properties implicitly, via its being an emu-
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lation of the cognitively meaningful aspects of the real-world human learning
environment.

One way to see this point vividly is to contrast the current proposal with
the “General Game Player” AI competition, in which AIs seek to learn to play
games based on formal descriptions of the rules.1. Clearly doing GGP well
requires powerful AGI; and doing GGP even mediocrely probably requires
robust multitask learning and shaping. But we suspect GGP is far inferior to
AGI Preschool as an approach to testing early-stage AI programs aimed at
roughly humanlike intelligence. This is because, unlike the tasks involved in
AI Preschool, the tasks involved in doing simple instances of GGP seem to
have little relationship to humanlike intelligence or real-world human tasks.

16.2 Elements of Preschool Design

What we mean by an “AGI Preschool” is simply a porting to the AGI do-
main of the essential aspects of human preschools. While there is significant
variance among preschools there are also strong commonalities, grounded in
educational theory and experience. We will briefly discuss both the physical
design and educational curriculum of the typical human preschool, and which
aspects transfer effectively to the AGI context.

On the physical side, the key notion in modern preschool design is the
“learning center,” an area designed and outfitted with appropriate materi-
als for teaching a specific skill. Learning centers are designed to encourage
learning by doing, which greatly facilitates learning processes based on rein-
forcement, imitation and correction (see Chapter 31 of Part 2 for a detailed
discussion of the value of this combination); and also to provide multiple
techniques for teaching the same skills, to accommodate different learning
styles and prevent over-fitting and overspecialization in the learning of new
skills.

Centers are also designed to cross-develop related skills. A “manipulatives
center,” for example, provides physical objects such as drawing implements,
toys and puzzles, to facilitate development of motor manipulation, visual dis-
crimination, and (through sequencing and classification games) basic logical
reasoning. A “dramatics center,” on the other hand, cross-trains interpersonal
and empathetic skills along with bodily-kinesthetic, linguistic, and musical
skills. Other centers, such as art, reading, writing, science and math centers
are also designed to train not just one area, but to center around a primary in-
telligence type while also cross-developing related areas. For specific examples
of the learning centers associated with particular contemporary preschools,
see [?].

1 http://games.stanford.edu/

http://games.stanford.edu/


16.3 Elements of Preschool Curriculum 341

In many progressive, student-centered preschools, students are left largely
to their own devices to move from one center to another throughout the
preschool room. Generally, each center will be staffed by an instructor at
some points in the day but not others, providing a variety of learning experi-
ences. At some preschools students will be strongly encouraged to distribute
their time relatively evenly among the different learning centers, or to focus
on those learning centers corresponding to their particular strengths and/or
weaknesses.

To imitate the general character of a human preschool, one would create
several centers in a robot lab or virtual world. The precise architecture will
best be adapted via experience but initial centers would likely be:

• a blocks center: a table with blocks on it
• a language center: a circle of chairs, intended for people to sit around

and talk with the robot
• a manipulatives center, with a variety of different objects of different

shapes and sizes, intended to teach visual and motor skills
• a ball play center: where balls are kept in chests and there is space for

the robot to kick the balls around
• a dramatics center where the robot can observe and enact various

movements

16.3 Elements of Preschool Curriculum

While preschool curricula vary considerably based on educational philosophy
and regional and cultural factors, there is a great deal of common, shared
wisdom regarding the most useful topics and methods for preschool teaching.
Guided experiential learning in diverse environments and using varied mate-
rials is generally agreed upon as being an optimal methodology to reach a
wide variety of learning types and capabilities. Hands-on learning provides
grounding in specifics, where as a diversity of approaches allows for general-
ization.

Core knowledge domains are also relatively consistent, even across var-
ious philosophies and regions. Language, movement and coordination, au-
tonomous judgment, social skills, work habits, temporal orientation, spatial
orientation, mathematics, science, music, visual arts, and dramatics are uni-
versal areas of learning which all early childhood learning touches upon. The
particulars of these skills may vary, but all human children are taught to
function in these domains. The level of competency developed may vary, but
general domain knowledge is provided. For example, most kids won’t be the
next Maria Callas, Ravi Shankar or Gene Ween, but nearly all learn to hear,
understand and appreciate music.

Tables 16.1 - 16.3 review the key capabilities taught in preschools, and
identify the most important specific skills that need to be evaluated in the



342 16 AGI Preschool

context of each capability. This table was assembled via surveying the cur-
ricula from a number of currently existing preschools employing different
methodologies both based on formal academic cognitive theories [?] and more
pragmatic approaches, such as: Montessori [?], Waldorf [?], Brain Gym (www.
braingym.org) and Core Knowledge (www.coreknowledge.org).

Type of Capability Specific Skills to be Evaluated
Story Understand-
ing • Understanding narrative sequence

• Understanding character development
• Dramatize a story
• Predict what comes next in a story

Linguistic

• Give simple descriptions of events
• Describe similarities and differences
• Describe objects and their functions

Linguistic / Spatial-
Visual

Interpreting pictures

Linguistic / Social

• Asking questions appropriately
• Answering questions appropriately
• Talk about own discoveries
• Initiate conversations
• Settle disagreements
• Verbally express empathy
• Ask for help
• Follow directions

Linguistic / Scien-
tific • Provide possible explanations for events or phenomena

• Carefully describe observations
• Draw conclusions from observations

Table 16.1 Categories of Preschool Curriculum, Part 1

16.3.1 Preschool in the Light of Intelligence Theory

Comparing Table 16.1 to Gardner’s Multiple Intelligences (MI) framework
briefly reviewed in Chapter 2, the high degree of harmony is obvious, and
is borne out by more detailed analysis. Preschool curriculum as standardly
practiced is very well attuned to MI, and naturally covers all the bases that
Gardner identifies as important. And this is not at all surprising since one of

www.braingym.org
www.braingym.org
www.coreknowledge.org
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Type of Capability Specific Skills to be Evaluated
Logical-
Mathematical • Categorizing

• Sorting
• Arithmetic
• Performing simple “proto-scientific experiments”

Nonverbal Commu-
nication • Communicating via gesture

• Dramatizing situations
• Dramatizing needs, wants
• Express empathy

Spatial-Visual

• Visual patterning
• Self-expression through drawing
• Navigate

Objective

• Assembling objects
• Disassembling objects
• Measurement
• Symmetry
• Similarity between structures (e.g. block structures and

real ones)

Table 16.2 Categories of Preschool Curriculum, Part 2

Type of Capability Specific Skills to be Evaluated
Interpersonal

• Cooperation
• Display appropriate behavior in various settings
• Clean up belongings
• Share supplies

Emotional

• Delay gratification
• Control emotional reactions
• Complete projects

Table 16.3 Categories of Preschool Curriculum, Part 3

Gardner’s key motivations in articulating MI theory was the pragmatics of
educating humans with diverse strengths and weaknesses.

Regarding intelligence as “the ability to achieve complex goals in complex
environments,” it is apparent that preschools are specifically designed to pack
a large variety of different micro-environments (the learning centers) into a
single room, and to present a variety of different tasks in each environment.
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The environments constituted by preschool learning centers are designed as
microcosms of the most important aspects of the environments faced by hu-
mans in their everyday lives.

16.4 Task-Based Assessment in AGI Preschool

Professional pedagogues such as [?] discuss evaluation of early childhood
learning as intended to assess both specific curriculum content knowledge as
well as the child’s learning process. It should be as unobtrusive as possible,
so that it just seems like another engaging activity, and the results used to
tailor the teaching regimen to use different techniques to address weaknesses
and reinforce strengths.

For example, with group building of a model car, students are tested on
a variety of skills: procedural understanding, visual acuity, motor acuity,
creative problem solving, interpersonal communications, empathy, patience,
manners, and so on. With this kind of complex, yet engaging, activity as a
metric the teacher can see how each student approaches the process of under-
standing each subtask, and subsequently guide each student’s focus differently
depending on strengths and weaknesses.

In Tables 16.4 and 16.5 we describe some particular tasks that AGIs may
be meaningfully assigned in the context of a general AGI Preschool design
and curriculum as described above. Of course, this is a very partial list, and
is intended as evocative rather than comprehensive.

Any one of these tasks can be turned into a rigorous quantitative test,
thus allowing the precise comparison of different AGI systems’ capabilities;
but we have chosen not to emphasize this point here, partly for space reasons
and partly for philosophical ones. In some contexts the quantitative com-
parison of different systems may be the right thing to do, but as discussed
in Chapter 17 there are also risks associated with this approach, including
the emergence of an overly metrics-focused “bakeoff mentality” among sys-
tem developers, and overfitting of AI abilities to test taking. What is most
important is the isolation of specific tasks on which different systems may be
experientially trained and then qualitatively assessed and compared, rather
than the evaluation of quantitative metrics.

Task-oriented testing allows for feedback on applications of general peda-
gogical principles to real-world, embodied activities. This allows for iterative
refinement based learning (shaping), and cross development of knowledge ac-
quisition and application (multitask learning). It also helps militate against
both cheating, and over-fitting, as teachers can make ad-hoc modifications to
the tests to determine if this is happening and correct for it if necessary.

E.g., consider a linguistic task in which the AGI is required to formulate a
set of instructions encapsulating a given behavior (which may include com-
ponents that are physical, social, linguistic, etc.). Note that although this
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Intelligence Type Test
Linguistic

• write a set of instructions
• speak on a subject
• edit a written piece or work
• write a speech
• commentate on an event
• apply positive or negative ’spin’ to astory

Logical-
Mathematical • perform arithmetic calculations

• create a process to measure something
• analyse how a machine works
• create a process
• devise a strategy to achieve an aim
• assess the value of a proposition

Musical

• perform a musical piece
• sing a song
• review a musical work
• coach someone to play a musical instrument

Bodily-Kinesthetic

• juggle
• demonstrate a sports technique
• flip a beer-mat
• create a mime to explain something
• toss a pancake
• fly a kite

Table 16.4 Prototypical preschool intelligence assessment tasks, Part 1

is presented as centrally a linguistic task, it actually involves a diverse set
of competencies since the behavior to be described may encompass multiple
real-world aspects.

To turn this task into a more thorough test one might involve a number
of human teachers and a number of human students. Before the test, an en-
semble of copies of the AGI would be created, with identical knowledge state.
Each copy would interact with a different human teacher, who would demon-
strate to it a certain behavior. After testing the AGI on its own knowledge
of the material, the teacher would then inform the AGI that it will then be
tested on its ability to verbally describe this behavior to another. Then, the
teacher goes away and the copy interacts with a series of students, attempting
to convey to the students the instructions given by the teacher.

The teacher can thereby assess both the AGI’s understanding of the ma-
terial, and the ability to explain it to the other students. This separates out
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Intelligence Type Test
Spatial-Visual

• design a costume
• interpret a painting
• create a room layout
• create a corporate logo
• design a building
• pack a suitcase or the trunk of a car

Interpersonal

• interpret moods from facial expressions
• demonstrate feelings through body language
• affect the feelings of others in a planned way
• coach or counsel another

Table 16.5 Prototypical preschool intelligence assessment tasks, Part 2

assessment of understanding from assessment of ability to communicate un-
derstanding, attempting to avoid conflation of one with the other. The design
of the training and testing needs to account for potential

This testing protocol abstracts away from the particularities of any one
teacher or student, and focuses on effectiveness of communication in a hu-
man context rather than according to formalized criteria. This is very much
in the spirit of how assessment takes place in human preschools (with the
exception of the copying aspect): formal exams are rarely given in preschool,
but pragmatic, socially-embedded assessments are regularly made.

By including the copying aspect, more rigorous statistical assessments can
be made regarding efficacy of different approaches for a given AGI design, in-
dependent of past teaching experiences. The multiple copies may, depending
on the AGI system design, then be able to be reintegrated, and further “learn-
ing” be done by higher-order cognitive systems in the AGI that integrate the
disparate experiences of the multiple copies.

This kind of parallel learning is different from both sequential learning
that humans do, and parallel presences of a single copy of an AGI (such as in
multiple chat rooms type experiments). All three approaches are worthy of
study, to determine under what circumstances, and with which AGI designs,
one is more successful than another.

It is also worth observing how this test could be tweaked to yield a test
of generalization ability. After passing the above, the AGI could then be
given a description of a new task (acquisition), and asked to explain the
new one (variation). And, part of the training behavior might be carried out
unobserved by the AGI, thus requiring the AGI to infer the omitted parts of
the task it needs to describe.

Another popular form of early childhood testing is puzzle block games.
These kinds of games can be used to assess a variety of important cognitive
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skills, and to do so in a fun way that not only examines but also encourages
creativity and flexible thinking. Types of games include pattern matching
games in which students replicate patterns described visually or verbally,
pattern creation games in which students create new patterns guided by
visually or verbally described principles, creative interpretation of patterns
in which students find meaning in the forms, and free-form creation. Such
games may be individual or cooperative.

Cross training and assessment of a variety of skills occurs with pattern
block games: for example, interpretation of visual or linguistic instructions,
logical procedure and pattern following, categorizing, sorting, general prob-
lem solving, creative interpretation, experimentation, and kinematic acuity.
By making the games cooperative, various interpersonal skills involving com-
munication and cooperation are also added to the mix.

The puzzle block context bring up some general observations about the
role of kinematic and visuospatial intelligence in the AGI Preschool. Outside
of robotics and computer vision, AI research has often downplayed these
sorts of intelligence (though, admittedly, this is changing in recent years, e.g.
with increasing research focus on diagrammatic reasoning). But these abilities
are not only necessary to navigate real (or virtual) spatial environments.
They are also important components of a coherent, conceptually well-formed
understanding of the world in which the student is embodied. Integrative
training and assessment of both rigorous cognitive abilities generally most
associated with both AI and “proper schooling” (such as linguistic and logical
skills) along with kinematic and aesthetic/sensory abilities is essential to
the development of an intelligence that can successfully both operate in and
sensibly communicate about the real world in a roughly humanlike manner.
Whether or not an AGI is targeted to interpret physical-world spatial data
and perform tasks via robotics, in order to communicate ideas about a vast
array of topics of interest to any intelligence in this world, an AGI must
develop aspects of intelligence other than logical and linguistic cognition.

16.5 Beyond Preschool

Once an AGI passes preschool, what are the next steps? There is still a long
way to go, from preschool to an AGI system that is capable of, say, passing
the Turing Test or serving as an effective artificial scientist.

Our suggestion is to extend the school metaphor further, and make use
of existing curricula for higher levels of virtual education: grade school, sec-
ondary school, and all levels of post-secondary education. If an AGI can pass
online primary and secondary schools such as e-tutor.com, and go on to earn
an online degree from an accredited university, then clearly said AGI has suc-
cessfully achieved “human level, roughly humanlike AGI.” This sort of testing
is interesting not only because it allows assessment of stages intermediate be-
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tween preschool and adult, but also because it tests humanlike intelligence
without requiring precise imitation of human behavior.

If an AI can get a BA degree at an accredited university, via online course-
work (assuming for simplicity courses where no voice interaction is needed),
then we should consider that AI to have human-level intelligence. University
coursework spans multiple disciplines, and the details of the homework as-
signments and exams are not known in advance, so like a human student the
AGI team can’t cheat.

In addition to the core coursework, a schooling approach also tests basic
social interaction and natural language communication, ability to do online
research, and general problem solving ability. However, there is no rigid re-
quirement to be strictly humanlike in order to pass university classes.

Most of our concrete examples in the following chapters will pertain to
the preschool context, because it’s simple to understand, and because we feel
that getting to the “AGI preschool student” level is going to be the largest
leap. Once that level is obtained, moving further will likely be difficult also,
but we suspect it will be more a matter of steady incremental improvements
– whereas the achievement of preschool-level functionality will be a large leap
from the current situation.

16.6 Issues with Virtual Preschool Engineering

As noted above there are two broad approaches to realizing the “AGI
Preschool” idea: using the AGI to control a physical robot and then crafting
a preschool environment suitable to the robot’s sensors and actuators; or,
using the AGI to control a virtual agent in an appropriately rich virtual-
world preschool. The robotic approach is harder from an AI perspective (as
one must deal with problems of sensation and actuation), but easier from an
environment-construction perspective. In the virtual world case, one quickly
runs up against the current limitations of virtual world technologies, which
have been designed mainly for entertainment or social-networking purposes,
not with the requirements of AGI systems in mind.

In Chapter 9 we discussed the general requirements that an environment
should possess to be supportive of humanlike intelligence. Referring back to
that list, it’s clear that current virtual worlds are fairly strong on multimodal
communication, and fairly weak on naive physics. More concretely, if one
wants a virtual world so that

1. one could carry out all the standard cognitive development experiments
described in developmental psychology books

2. one could implement intuitively reasonable versions of all the standard
activities in all the standard learning stations in a contemporary preschool

then current virtual world technologies appear not to suffice.
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As reviewed above, typical preschool activities include for instance building
with blocks, playing with clay, looking in a group at a picture book and
hearing it read aloud, mixing ingredients together, rolling/throwing/catching
balls, playing games like tag, hide-and-seek, Simon Says or Follow the Leader,
measuring objects, cutting paper into different shapes, drawing and coloring,
etc.

And, as typical, not necessarily representative examples of tasks psycholo-
gists use to measure cognitive development (drawn mainly from the Piagetan
tradition, without implying any assertion that this is the only tradition worth
pursuing), consider the following:

1. Which row has more circles- A or B? A: O O O O O, B: OOOOO
2. If Mike is taller than Jim, and Jim is shorter than Dan, then who is the

shortest? Who is the tallest?
3. Which is heavier- a pound of feathers or a pound of rocks?
4. Eight ounces of water is poured into a glass that looks like the fat glass

in Figure 2 16.1 and then the same amount is poured into a glass that
looks like the tall glass in Figure 16.2 . Which glass has more water?

5. A lump of clay is rolled into a snake. All the clay is used to make the
snake. Which has more clay in it – the lump or the snake?

6. There are two dolls in a room, Sally and Ann, each of which has her own
box, with a marble hidden inside. Sally goes out for a minute, leaving her
box behind; and Ann decides to play a trick on Sally: she opens Sally’s
box, removes the marble, hiding it in her own box. Sally returns, unaware
of what happened. Where will Sally would look for her marble?

7. Consider this rule about a set of cards that have letters on one side and
numbers on the other: “If a card has a vowel on one side, then it has an
even number on the other side.” If you have 4 cards labeled “E K 4 7”,
which cards do you need to turn over to tell if this rule is actually true?

8. Design an experiment to figure out how to make a pendulum that swings
more slowly versus less slowly

What we see from this ad hoc, partial list is that a lot of naive physics
is required to make an even vaguely realistic preschool. A lot of preschool
education is about the intersection between abstract cognition and naive
physics. A more careful review of the various tasks involved in preschool
education bears out this conclusion.

With this in mind, in this section we will briefly describe an approach
to extending current virtual world technologies that appears to allow the
construction of a reasonably rich and realistic AGI preschool environment,
without requiring anywhere near a complete simulation of realistic physics.
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16.6.1 Integrating Virtual Worlds with Robot Simulators

One glaring deficit in current virtual world platforms is the lack of flexibility
in terms of tool use. In most of these systems today, an avatar can pick up or
utilize an object, or two objects can interact, only in specific, pre-programmed
ways. For instance, an avatar might be able to pick up a virtual screwdriver
only by the handle, rather than by pinching the blade betwen its fingers.
This places severe limits on creative use of tools, which is absolutely critical
in a preschool context. The solution to this problem is clear: adapt existing
generalized physics engines to mediate avatar-object and object-object inter-
actions. This would require more computation than current approaches, but
not more than is feasible in a research context.

One way to achieve this goal would be to integrate a robot simulator
with a virtual world or game engine, for instance to modify the OpenSim
(opensimulator.org) virtual world to use the Gazebo (playerstage.
sourceforge.net) robot simulator in place of its current physics engine.
While tractable, such a project would require considerable software engineer-
ing effort.

16.6.2 BlocksNBeads World

Another glaring deficit in current virtual world platforms is their inability
to model physical phenomena besides rigid objects with any sophistication.
In this section we propose a potential solution to this issue: a novel class of
virtual worlds called BlocksNBeadsWorld, consisting of the following aspects:

1. 3D blocks of various shapes and sizes and frictional coefficients, that can
be stacked

2. Adhesive that can be used to stick blocks together, and that comes in
two types, one of which can be removed by an adhesive-removing sub-
stance, one of which cannot (though its bonds can be broken via sufficient
application of force)

3. Spherical beads, each of which has intrinsic unchangeable adhesion prop-
erties defined according to a particular, simple “adhesion logic”

4. Each block, and each bead, may be associated with multidimensional
quantities representing its taste and smell; and may be associated with
a set of sounds that are made when it is impacted with various forces at
various positions on its surface

Interaction between blocks and beads is to be calculated according to stan-
dard Newtonian physics, which would be compute-intensive in the case of a
large number of beads, but tractable using distributed processing. For in-
stance if 10K beads were used to cover a humanoid agent’s face, this would
provide a fairly wide diversity of facial expressions; and if 10K beads were

opensimulator.org
playerstage.sourceforge.net
playerstage.sourceforge.net
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used to form a blanket laid on a bed, this would provide a significant amount
of flexibility in terms of rippling, folding and so forth. Yet, this order of mag-
nitude of interactions is very small compared to what is done in contemporary
simulations of fluid dynamics or, say, quantum chromodynamics.

One key aspect of the spherical beads is that they can be used to create
a variety of rigid or flexible surfaces, which may exist on their own or be
attached to blocks-based constructs. The specific inter-bead adhesion prop-
erties of the beads could be defined in various ways, and will surely need
to be refined via experimentation, but a simple scheme that seems to make
sense is as follows.

Each bead can have its surface tesselated into hexagons (the number of
these can be tuned), and within each hexagon it can have two different ad-
hesion coefficients: one for adhesion to other beads, and one for adhesion
to blocks. The adhesion between two beads along a certain hexagon is then
determined by their two adhesion coefficients; and the adhesion between a
bead and a block is determined by the adhesion coefficient of the bead, and
the adhesion coefficient of the adhesive applied to the block. A distinction
must be drawn between rigid and flexible adhesion: rigid adhesion sticks a
bead to something in a way that can’t be removed except via breaking it off;
whereas flexible adhesion just keeps a bead very close to the thing it’s stuck
onto. Any two entities may be stuck together either rigidly or flexibly. Sets of
beads with flexible adhesion to each other can be used to make entities like
strings, blankets or clothes.

Using the above adhesion logic, it seems one could build a wide variety of
flexible structures using beads, such as (to give a very partial list):

1. fabrics with various textures, that can be draped over blocks structures,
2. multilayered coatings to be attached to blocks structures, serving (among

many other examples) as facial expressions
3. liquid-type substances with varying viscosities, that can be poured be-

tween different containers, spilled, spread, etc.
4. strings tyable in knots; rubber bands that can be stretched; etc.

Of course there are various additional features one could add. For instance
one could add a special set of rules for vibrating strings, allowing Block-
sNBeadsWorld to incorporate the creation of primitive musical instruments.
Variations like this could be helpful but aren’t necessary for the world to
serve its essential purpose.

Note that one does not have true fluid dynamics in BlocksNBeadsWorld,
but, it seems that the latter is not necessary to encompass the phenomena
covered in cognitive developmental tests or preschool tasks. The tests and
tasks that are done with fluids can instead be done with masses of beads.
For example, consider the conservation of volume task shown in Figures 16.1
and 16.2 below: it’s easy enough to envision this being done with beads
rather than milk. Even a few hundred beads is enough to be psychologically
perceived as a mass rather than a set of discrete units, and to be manipulated
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and analyzed as such. And the simplification of not requiring fluid mechanics
in one’s virtual world is immense.

Next, one can implement equations via which the adhesion coefficients of a
bead are determined in part by the adhesion coefficients of nearby beads, or
beads that are nearby in certain directions (with direction calculated in local
spherical coordinates). This will allow for complex cracking and bending be-
haviors – not identical to those in the real world, but with similar qualitative
characteristics. For example, without this feature one could create paperlike
substances that could be cut with scissors – but with this feature, one could
go further and create woodlike substances that would crack when nails were
hammered into them in certain ways, and so forth.

Further refinements are certainly possible also. One could add multidimen-
sional adhesion coefficients, allowing more complex sorts of substances. One
could allow beads to vibrate at various frequencies, which would lead to all
sorts of complex wave patterns in bead compounds. Etc. In each case, the
question to be asked is: what important cognitive abilities are dramatically
more easily learnable in the presence of the new feature than in its absence?

The combination of blocks and beads seems ideal for implementing a more
flexible and AGI-friendly type of virtual body than is currently used in games
and virtual worlds. One can easily envision implementing a body with

1. a skeleton whose bones consist of appropriately shaped blocks
2. joints consisting of beads, flexibly adhered to the bones
3. flesh consisting of beads, flexibly adhered to each other
4. internal “plumbing” consisting of tubes whose walls are beads rigidly ad-

hered to each other, and flexibly adhered to the surrounding flesh (the
plumbing could then serve to pass beads through, where slow passage
would be ensured by weak adhesion between the walls of the tubes and
the beads passing through the tubes)

This sort of body would support rich kinesthesia; and rich, broad analogy-
drawing between the internally-experienced body and the externally-experienced
world. It would also afford many interesting opportunities for flexible move-
ment control. Virtual animals could be created along with virtual humanoids.

Regarding the extended mind, it seems clear that blocks and beads are ad-
equate for the creation of a variety of different tools. Equipping agents with
“glue guns” able to affect the adhesive properties of both blocks and beads
would allow a diversity of building activity; and building with masses of beads
could become a highly creative activity. Furthermore, beads with appropri-
ately specified adhesion (within the framework outlined above) could be used
to form organically growing plant-like substances, based on the general prin-
ciples used in L-system models of plant growth (Prusinciewicz and Linden-
mayer 1991). Structures with only beads would vaguely resemble herbaceous
plants; and structures involving both blocks and beads would more resem-
ble woody plants. One could even make organic structures that flourish or
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otherwise based on the light available to them (without of course trying to
simulate the chemistry of photosynthesis).

Some elements of chemistry may be achieved as well, though nowhere
near what exists in physical reality. For instance, melting and boiling at least
should be doable: assign every bead a temperature, and let solid interbead
bonds turn liquid above a certain temperature and disappear completely
above some higher temperature. You could even have a simple form of fire.
Let fire be an element, whose beads have negative gravitational mass. Beads
of fuel elements like wood have a threshold temperature above which they
will turn into fire beads, with release of additional heat.2

The philosophy underlying these suggested bead dynamics is somewhat
comparable to that outlined in Wolfram’s book A New Kind of Science
[Wol02]. There he proposes cellular automata models that emulate the qual-
itative characteristics of various real-world phenomena, without trying to
match real-world data precisely. For instance, some of his cellular automata
demonstrate phenomena very similar to turbulent fluid flow, without im-
plementing the Navier-Stokes equations of fluid dynamics or trying to pre-
cisely match data from real-world turbulence. Similarly, the beads in Block-
sNBeadsWorld are intended to qualitatively demonstrate the real-world phe-
nomena most useful for the development of humanlike embodied intelligence,
without trying to precisely emulate the real-world versions of these phenom-
ena.

The above description has been left imprecisely specified on purpose. It
would be straightforward to write down a set of equations for the block and
bead interactions, but there seems little value in articulating such equations
without also writing a simulation involving them and testing the ensuing
properties. Due to the complex dynamics of bead interactions, the fine-tuning
of the bead physics is likely to involve some tuning based on experimentation,
so that any equations written down now would likely be revised based on
experimentation anyway. Our goal here has been to outline a certain class of
potentially useful environments, rather than to articulate a specific member
of this class.

Without the beads, BlocksNBeadsWorld would appear purely as a “Blocks
World with Glue” – essentially a substantially upgraded version of the Blocks
Worlds frequently used in AI, since first introduced in [Win72]. Certainly a
pure “Blocks World with Glue” would have greater simplicity than Block-
sNBeadsWorld, and greater richness than standard Blocks World; but this
simplicity comes with too many limitations, as shown by consideration of
the various naive physics requirements inventoried above. One simply can-
not run the full spectrum of humanlike cognitive development experiments,
or preschool educational tasks, using blocks and glue alone. One can try to
create analogous tasks using only blocks and glue, but this quickly becomes

2 Thanks are due to Russell Wallace for the suggestions in this paragraph
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extremely awkward. Whereas in the BlocksNBeadsWorld the capability for
this full spectrum of experiments and tasks seems to fall out quite naturally.

What’s missing from BlocksNBeadsWorld should be fairly obvious. There
isn’t really any distinction between a fluid and a powder: there are masses,
but the types and properties of the masses are not the same as in the real
world, and will surely lack the nuances of real-world fluid dynamics. Chem-
istry is also missing: processes like cooking and burning, although they can
be crudely emulated, will not have the same richness as in the real world.
The full complexity of body processes is not there: the body-design method
mentioned above is far richer and more adaptive and responsive than current
methods of designing virtual bodies in 3DSMax or Maya and importing them
into virtual world or game engines, but still drastically simplistic compared
to real bodies with their complex chemical signaling systems and couplings
with other bodies and the environment. The hypothesis we’re making in this
section is that these lacunae aren’t that important from the point of view of
humanlike cognitive development. We suggest that the key features of naive
physics and folk psychology enumerated above can be mastered by an AGI
in BlocksNBeadsWorld in spite of its limitations, and that – together with
an appropriate AGI design – this probably suffices for creating an AGI with
the inductive biases constituting humanlike intelligence.

To drive this point home more thoroughly, consider three potential virtual
world scenarios:

1. A world containing realistic fluid dynamics, where a child can pour wa-
ter back and forth between two cups of different shapes and sizes, to
understand issues such as conservation of volume

2. A world more like today’s Second Life, where fluids don’t really exist, and
things like lakes are simulated via very simple rules, and pouring stuff
back and forth between cups doesn’t happen unless it’s programmed into
the cups in a very specialized way

3. A BlocksNBeadsWorld type world, where a child can pour masses of
beads back and forth between cups, but not masses of liquid

Our qualitative judgment is that Scenario 3 is going to allow a young
AI to gain the same essential insights as Scenario 1, whereas Scenario 2 is
just too impoverished. I have explored dozens of similar scenarios regarding
different preschool tasks or cognitive development experiments, and come to
similar conclusions across the board. Thus, our current view is that something
like BlocksNBeadsWorld can serve as an adequate infrastructure for an AGI
Preschool, supporting the development of human-level, roughly human-like
AGI.

And, if this view turns out to be incorrect, and BlocksNBeadsWorld is
revealed as inadequate, then we will very likely still advocate the concep-
tual approach enunciated above as a guide for designing virtual worlds for
AGI. That is, we would suggest to explore the hypothetical failure of Block-
sNBeadsWorld via asking two questions:
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1. Are there basic naive physics or folk psychology requirements that were
missed in creating the specifications, based on which the adequacy of
BlocksNBeadsWorld was assessed?

2. Does BlocksNBeadsWorld fail to sufficiently emulate the real world in
respect to some of the articulated naive physics or folk psychology re-
quirements?

The answers to these questions would guide the improvement of the world or
the design of a better one.

Regarding the practical implementation of BlocksNBeadsWorld, it seems
clear that this is within the scope of modern game engine technology, how-
ever, it is not something that could be encompassed within an existing game
or world engine without significant additions; it would require substantial
customengineering. There exist commodity and open-source physics engines
that efficiently carry out Newtonian mechanics calculations; while they might
require some tuning and extension to handle BlocksNBeadWorld, the main
issue would be achieving adequate speed of physics calculation, which given
current technology would need to be done via modifying existing engines to
appropriately distribute processing among multiple GPUs.

Finally, an additional avenue that merits mention is the use of Block-
sNBeads physics internally within an AGI system, as part of an internal
simulation world that allows it to make “mind’s eye” estimative simulations
of real or hypothetical physical situations. There seems no reason that the
same physics software libraries couldn’t be used both for the external virtual
world that the AGI’s body lives in, and for an internal simulation world that
the AGI uses as a cognitive tool. In fact, the BlocksNBeads library could
be used as an internal cognitive tool by AGI systems controlling physical
robots as well. This might require more tuning of the bead dynamics to ac-
cord with the dynamics of various real-world systems; but, this tuning would
be beneficial for the BlocksNBeadWorld as well.
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Fig. 16.1 Part 1 of a Piagetan conservation of volume experiment: a child observes that
two glasses obviously have the same amount of milk in them, and then sees the content of
one of the glasses poured into a different-shaped glass.
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Fig. 16.2 Part 2 of a Piagetan conservation of volume experiment: a child observes two
different-shaped glasses, which (depending on the level of his cognition), he may be able
to infer have the same amount of milk in them, due to the events depicted in Figure 16.1.





Chapter 17
A Preschool-Based Roadmap to
Advanced AGI

17.1 Introduction

Supposing the CogPrime approach to creating advanced AGI is workable
– then what are the right practical steps to follow? The various structures
and algorithms outlined in Part 2 of this book should be engineered and
software-tested, of course – but that’s only part of the study. The AGI sys-
tem implemented will need to be taught, and it will need to be placed in
situations where it can develop an appropriate self-model and other critical
internal network structures. The complex structures and algorithms involved
will need to be fine-tuned in various ways, based on qualitatively observing
the overall system’s behavior in various situations. To get all this right with-
out excessive confusion or time-wastage requires a fairly clear roadmap for
CogPrime development.

In this chapter we’ll sketch one particular roadmap for the development of
human-level, roughly human-like AGI – which we’re not selling as the only
one, or even necessarily as the best one. It’s just one roadmap that we have
thought about a lot, and that we believe has a strong chance of proving
effective. Given resources to pursue only one path for AGI development and
teaching, this would be our choice, at present. The roadmap outlined here
is not restricted to CogPrime in any highly particular ways, but it has been
developed largely with CogPrime in mind; those developing other AGI designs
could probably use this roadmap just fine, but might end up wanting to
make various adjustments based on the strengths and weaknesses of their
own approach.

What we mean here by a "roadmap" is, in brief: a sequence of "milestone"
tasks, occurring in a small set of common environments or "scenarios," orga-
nized so as to lead to a commonly agreed upon set of long-term goals. I.e.,
what we are after here is a "capability roadmap" – a roadmap laying out a
series of capabilities whose achievement seems likely to lead to human-level
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AGI. Other sorts of roadmaps such as "tools roadmaps" may also be valuable,
but are not our concern here.

More precisely, we confront the task of roadmapping by identifying sce-
narios in which to embed our AGI system, and then "competency areas" in
which the AGI system must be evaluated. Then, we envision a roadmap as
consisting of a set of one or more task-sets, where each task set is formed
from a combination of a scenario with a list of competency areas. To create
a task-set one must choose a particular scenario, and then articulate a set of
specific tasks, each one addressing one or more of the competency areas. Each
task must then get associated with particular performance metrics – quan-
titative wherever possible, but perhaps qualitative in some cases depending
on the nature of the task. Here we give a partial task-set for the "virtual and
robot preschool" scenarios discussed in Chapter 16, and a couple example
quantitative metrics just to illustrate what is intended; the creation of a fully
detailed roadmap based on the ideas outlined here is left for future work

The train of thought presented in this chapter emerged in part from a
series of conversations preceding and during the "AGI Roadmap Workshop"
held at the University of Tennessee, Knoxville in October 2008. Some of the
ideas also trace back to discussions held during two workshops on "Evaluation
and Metrics for Human-Level AI " organized by John Laird and Pat Langley
(one in Ann Arbor in late 2008, and one in Tempe in early 2009). Some
of the conclusions of the Ann Arbor workshop were recorded in [LWML09].
Inspiration was also obtained from discussion at the "Future of AGI" post-
conference workshop of the AGI-09 conference, triggered by Itamar ArelÕs
[ARK09a] presentation on the "AGI Roadmap" theme; and from an earlier
article on AGI Roadmapping by [?].

However, the focus of the AGI Roadmap Workshop was considerably more
general than the present chapter. Here we focus on preschool-type scenarios,
whereas at the workshop a number of scenarios were discussed, including the
preschool scenarios but also, for example,

• Standardized Tests and School Curricula
• Elementary, Middle and High School Student
• General Videogame Learning
• Wozniak’s Coffee Test: go into a random American house and figure out

how to make coffee, and do it
• Robot College Student
• General Call Center Respondent

For each of these scenarios, one may generate tasks corresponding to each
of the competency areas we will outline below. CogPrime is applicable in all
these scenarios, so our choice to focus on preschool scenarios is an additional
judgment call beyond those judgment calls required to specify the CogPrime
design. The roadmap presented here is a "AGI Preschool Roadmap" and
as such is a special case of the broader "AGI Roadmap" outlined at the
workshop.
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17.2 Measuring Incremental Progress Toward
Human-Level AGI

In Chapter 2, we discussed several examples of practical goals that we find
to plausibly characterize "human level AGI", e.g.

• Turing Test
• Virtual World Turing Test
• Online University Test
• Physical University Test
• Artificial Scientist Test

We also discussed our optimism regarding possibility that in the future AGI
may advance beyond the human level, rendering all these goals "early-stage
subgoals."

However, in this chapter we will focus our attention on the nearer term.
The above goals are ambitious ones, and while one can talk a lot about how to
precisely measure their achievement, we don’t feel that’s the most interesting
issue to ponder at present. More critical is to think about how to measure
incremental progress. How do you tell when you’re 25% or 50% of the way
to having an AGI that can pass the Turing Test, or get an online university
degree. Fooling 50% of the Turing Test judges is not a good measure of being
50% of the way to passing the Turing Test (that’s too easy); and passing 50%
of university classes is not a good measure of being 50% of the way to getting
an online university degree (it’s too hard – if one had an AGI capable of
doing that, one would almost surely be very close to achieving the end goal).
Measuring incremental progress toward human-level AGI is a subtle thing,
and we argue that the best way to do it is to focus on particular scenarios
and the achievement of specific competencies therein.

As we argued in Chapter 8 there are some theoretical reasons to doubt
the possibility of creating a rigorous objective test for partial progress toward
AGI – a test that would be convincing to skeptics, and impossible to "game"
via engineering a system specialized to the test. Fortunately, though we don’t
need a test of this nature for the purposes of assessing our own incremen-
tal progress toward advanced AGI, based on our knowledge about our own
approach.

Based on the nature of the grand goals articulated above, there seems to be
a very natural approach to creating a set of incremental capabilities build-
ing toward AGI: to draw on our copious knowledge about human cognitive
development. This is by no means the only possible path; one can envision
alternatives that have nothing to do with human development (and those
might also be better suited to non-human AGIs). However, so much detailed
knowledge about human development is available – as well as solid knowledge
that the human developmental trajectory does lead to human-level AI – that
the motivation to draw on human cognitive development is quite strong.
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The main problem with the human development inspired approach is that
cognitive developmental psychology is not as systematic as it would need to
be for AGI to be able to translate it directly into architectural principles
and requirements. As noted above, while early thinkers like Piaget and Vy-
gotsky outlined systematic theories of child cognitive development, these are
no longer considered fully accurate, and one currently faces a mass of de-
tailed theories of various aspects of cognitive development, but without an
unified understanding. Nevertheless we believe it is viable to work from the
human-development data and understanding currently available, and craft a
workable AGI roadmap therefrom.

With this in mind, what we give next is a fairly comprehensive list of the
competencies that we feel AI systems should be expected to display in one
or more of these scenarios in order to be considered as full-fledged "human
level AGI" systems. These competency areas have been assembled somewhat
opportunistically via a review of the cognitive and developmental psychology
literature as well as the scope of the current AI field. We are not claiming
this as a precise or exhaustive list of the competencies characterizing human-
level general intelligence, and will be happy to accept additions to the list,
or mergers of existing list items, etc. What we are advocating is not this
specific list, but rather the approach of enumerating competency areas, and
then generating tasks by combining competency areas with scenarios.

We also give, with each competency, an example task illustrating the com-
petency. The tasks are expressed in the robot preschool context for concrete-
ness, but they all apply to the virtual preschool as well. Of course, these are
only examples, and ideally to teach an AGI in a structured way one would
like to

• associate several tasks with each competency
• present each task in a graded way, with multiple subtasks of increasing

complexity
• associate a quantitative metric with each task

However, the briefer treatment given here should suffice to give a sense for
how the competencies manifest themselves practically in the AGI Preschool
context.

1. Perception

• Vision: image and scene analysis and understanding
– Example task: When the teacher points to an object in the

preschool, the robot should be able to identify the object and
(if it’s a multi-part object) its major parts. If it can’t perform the
identification initially, it can approach the object and manipulate
it before making its identification.

• Hearing: identifying the sounds associated with common objects;
understanding which sounds come from which sources in a noisy en-
vironment
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– Example task: When the teacher covers the robot’s eyes and then
makes a noise with an object, the robot should be able to guess
what the object is

• Touch: identifying common objects and carrying out common actions
using touch alone
– Example task: With its eyes and ears covered, the robot should
be able to identify some object by manipulating it; and carry out
some simple behaviors (say, putting a block on a table) via touch
alone

• Crossmodal: Integrating information from various senses
– Example task: Identifying an object in a noisy, dim environment
via combining visual and auditory information

• Proprioception: Sensing and understanding what its body is doing
– Example task: The teacher moves the robot’s body into a certain
configuration. The robot is asked to restore its body to an or-
dinary standing position, and then repeat the configuration that
the teacher moved it into.

2. Actuation

• Physical skills: manipulating familiar and unfamiliar objects
– Example task: Manipulate blocks based on imitating the teacher:
e.g. pile two blocks atop each other, lay three blocks in a row,
etc.

• Tool use, including the flexible use of ordinary objects as tools
– Example task: Use a stick to poke a ball out of a corner, where
the robot cannot directly reach

• Navigation, including in complex and dynamic environments
– Example task: Find its own way to a named object or person
through a crowded room with people walking in it and objects
laying on the floor.

3. Memory

• Declarative: noticing, observing and recalling facts about its envi-
ronment and experience
– Example task: If certain people habitually carry certain objects,
the robot should remember this (allowing it to know how to find
the objects when the relevant people are present, even much later)

• Behavioral: remembering how to carry out actions
– Example task: If the robot is taught some skill (say, to fetch a
ball), it should remember this much later

• Episodic: remembering significant, potentially useful incidents from
life history
– Example task: Ask the robot about events that occurred at times
when it got particularly much, or particularly little, reward for its
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actions; it should be able to answer simple questions about these,
with significantly more accuracy than about events occurring at
random times

4. Learning

• Imitation: Spontaneously adopt new behaviors that it sees others
carrying out
– Example task: Learn to build towers of blocks by watching people
do it

• Reinforcement: Learn new behaviors from positive and/or negative
reinforcement signals, delivered by teachers and/or the environment
– Example task: Learn which box the red ball tends to be kept in, by
repeatedly trying to find it and noticing where it is, and getting
rewarded when it finds it correctly

• Imitation/Reinforcement
– Example task: Learn to play “fetch”, “tag” and “follow the leader”
by watching people play it, and getting reinforced on correct be-
havior

• Interactive Verbal Instruction
– Example task: Learn to build a particular structure of blocks
faster based on a combination of imitation, reinforcement and
verbal instruction, than by imitation and reinforcement without
verbal instruction

• Written Media
– Example task: Learn to build a structure of blocks by looking at
a series of diagrams showing the structure in various stages of
completion

• Learning via Experimentation
– Example task: Ask the robot to slide blocks down a ramp held at
different angles. Then ask it to make a block slide fast, and see if
it has learned how to hold the ramp to make a block slide fast.

5. Reasoning

• Deduction, from uncertain premises observed in the world
– Example task: If Ben more often picks up red balls than blue balls,
and Ben is given a choice of a red block or blue block to pick up,
which is he more likely to pick up?

• Induction, from uncertain premises observed in the world
– Example task: If Ben comes into the lab every weekday morning,
then is Ben likely to come to the lab today (a weekday) in the
morning?

• Abduction, from uncertain premises observed in the world
– Example task: If women more often give the robot food than men,
and then someone of unidentified gender gives the robot food, is
this person a man or a woman?
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• Causal reasoning, from uncertain premises observed in the world
– Example task: If the robot knows that knocking down Ben’s tower
of blocks makes him mad, then what will it say when asked if
kicking the ball at Ben’s tower of blocks will make Ben mad?

• Physical reasoning, based on observed “fuzzy rules” of naive physics
– Example task: Given two balls (one rigid and one compress-
ible) and two tunnels (one significantly wider than the balls, one
slightly narrower than the balls), can the robot guess which balls
will fit through which tunnels?

• Associational reasoning, based on observed spatiotemporal asso-
ciations
– Example task: If Ruiting is normally seen near Shuo, then if the
robot knows where Shuo is, that is where it should look when
asked to find Ruiting

6. Planning

• Tactical
– Example task: The robot is asked to bring the red ball to the
teacher, but the red ball is in the corner where the robot can’t
reach it without a tool like a stick. The robot knows a stick is in
the cabinet so it goes to the cabinet and opens the door and gets
the stick, and then uses the stick to get the red ball, and then
brings the red ball to the teacher.

• Strategic
– Example task: Suppose that Matt comes to the lab infrequently,
but when he does come he is very happy to see new objects
he hasn’t seen before (and suppose the robot likes to see Matt
happy). Then when the robot gets a new object Matt has not
seen before, it should put it away in a drawer and be sure not to
lose it or let anyone take it, so it can show Matt the object the
next time Matt arrives.

• Physical
– Example task: To pick up a cup with a handle which is lying on its
side in a position where the handle can’t be grabbed, the robot
turns the cup in the right position and then picks up the cup by
the handle

• Social
– Example task: The robot is given a job of building a tower of
blocks by the end of the day, and he knows Ben is the most likely
person to help him, and he knows that Ben is more likely to say
"yes" to helping him when Ben is alone. He also knows that Ben
is less likely to say yes if he’s asked too many times, because Ben
doesn’t like being nagged. So he waits to ask Ben till Ben is alone
in the lab.
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7. Attention

• Visual Attention within its observations of its environment
– Example task: The robot should be able to look at a scene (a
configuration of objects in front of it in the preschool) and identify
the key objects in the scene and their relationships.

• Social Attention
– Example task: The robot is having a conversation with Itamar,
which is giving the robot reward (for instance, by teaching the
robot useful information). Conversations with other individuals in
the room have not been so rewarding recently. But Itamar keeps
getting distracted during the conversation, by talking to other
people, or playing with his cellphone. The robot needs to know
to keep paying attention to Itamar even through the distractions.

• Behavioral Attention
– Example task: The robot is trying to navigate to the other side
of a crowded room full of dynamic objects, and many interest-
ing things keep happening around the room. The robot needs to
largely ignore the interesting things and focus on the movements
that are important for its navigation task.

8. Motivation

• Subgoal creation, based on its preprogrammed goals and its rea-
soning and planning
– Example task: Given the goal of pleasing Hugo, can the robot
learn that telling Hugo facts it has learned but not told Hugo
before, will tend to make Hugo happy?

• Affect-based motivation
– Example task: Given the goal of gratifying its curiosity, can the
robot figure out that when someone it’s never seen before has
come into the preschool, it should watch them because they are
more likely to do something new?

• Control of emotions
– Example task: When the robot is very curious about someone
new, but is in the middle of learning something from its teacher
(who it wants to please), can it control its curiosity and keep
paying attention to the teacher?

9. Emotion

• Expressing Emotion
– Example task: Cassio steals the robot’s toy, but Ben gives it back
to the robot. The robot should appropriately display anger at
Cassio, and gratitude to Ben.

• Understanding Emotion



17.2 Measuring Incremental Progress Toward Human-Level AGI 367

– Example task: Cassio and the robot are both building towers of
blocks. Ben points at Cassio’s tower and expresses happiness. The
robot should understand that Ben is happy with Cassio’s tower.

10. Modeling Self and Other

• Self-Awareness
– Example task: When someone asks the robot to perform an act it
can’t do (say, reaching an object in a very high place), it should
say so. When the robot is given the chance to get an equal reward
for a task it can complete only occasionally, versus a task it finds
easy, it should choose the easier one.

• Theory of Mind
– Example task: While Cassio is in the room, Ben puts the red ball
in the red box. Then Cassio leaves and Ben moves the red ball
to the blue box. Cassio returns and Ben asks him to get the red
ball. The robot is asked to go to the place Cassio is about to go.

• Self-Control
– Example task: Nasty people come into the lab and knock down
the robot’s towers, and tell the robot he’s a bad boy. The robot
needs to set these experiences aside, and not let them impair its
self-model significantly; it needs to keep on thinking it’s a good
robot, and keep building towers (that its teachers will reward it
for).

• Other-Awareness
– Example task: If Ben asks Cassio to carry out a task that the
robot knows Cassio cannot do or does not like to do, the robot
should be aware of this, and should bet that Cassio will not do
it.

• Empathy
– Example task: If Itamar is happy because Ben likes his tower of
blocks, or upset because his tower of blocks is knocked down, the
robot should express and display these same emotions

11. Social Interaction

• Appropriate Social Behavior
– Example task: The robot should learn to clean up and put away

its toys when it’s done playing with them.
• Social Communication

– Example task: The robot should greet new human entrants into
the lab, but if it knows the new entrants very well and it’s busy,
it may eschew the greeting

• Social Inference about simple social relationships
– Example task: The robot should infer that Cassio and Ben are
friends because they often enter the lab together, and often talk
to each other while they are there
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• Group Play at loosely-organized activities
– Example task: The robot should be able to participate in “infor-
mally kicking a ball around” with a few people, or in informally
collaboratively building a structure with blocks

12. Communication

• Gestural communication to achieve goals and express emotions
– Example task: If the robot is asked where the red ball is, it should

be able to show by pointing its hand or finger
• Verbal communication using English in its life-context

– Example tasks: Answering simple questions, responding to sim-
ple commands, describing its state and observations with simple
statements

• Pictorial Communication regarding objects and scenes it is famil-
iar with
– Example task: The robot should be able to draw a crude picture
of a certain tower of blocks, so that e.g the picture looks different
for a very tall tower and a wide low one

• Language acquisition
– Example task: The robot should be able to learn new words or
names via people uttering the words while pointing at objects
exemplifying the words or names

• Cross-modal communication
– Example task: If told to "touch Bob’s knee" but the robot doesn’t
know what a knee is, being shown a picture of a person and
pointed out the knee in the picture should help it figure out how
to touch Bob’s knee

13. Quantitative

• Counting sets of objects in its environment
– Example task: The robot should be able to count small (homoge-

neous or heterogeneous) sets of objects
• Simple, grounded arithmetic with small numbers

– Example task: Learning simple facts about the sum of integers
under 10 via teaching, reinforcement and imitation

• Comparison of observed entities regarding quantitative properties
– Example task: Ability to answer questions about which object or
person is bigger or taller

• Measurement using simple, appropriate tools
– Example task: Use of a yardstick to measure how long something
is

14. Building/Creation

• Physical: creative constructive play with objects
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– Example task: Ability to construct novel, interesting structures
from blocks

• Conceptual invention: concept formation
– Example task: Given a new category of objects introduced into
the lab (e.g. hats, or pets), the robot should create a new internal
concept for the new category, and be able to make judgments
about these categories (e.g. if Ben particularly likes pets, it should
notice this after it has identified "pets" as a category)

• Verbal invention
– Example task: Ability to coin a new word or phrase to describe a

new object (e.g. the way Alex the parrot coined "bad cherry" to
refer to a tomato)

• Social
– Example task: If the robot wants to play a certain activity (say,
practicing soccer), it should be able to gather others around to
play with it

17.3 Conclusion

In this chapter, we have sketched a roadmap for AGI development in the
context of robot or virtual preschool scenarios, to a moderate but nowhere
near complete level of detail. Completing the roadmap as sketched here is a
tractable but significant project, involving creating more tasks comparable
to those listed above and then precise metrics corresponding to each task.

Such a roadmap does not give a highly rigorous, objective way of assessing
the percentage of progress toward the end-goal of human-level AGI. However,
it gives a much better sense of progress than one would have otherwise. For
instance, if an AGI system performed well on diverse metrics corresponding
to 50% of the competency areas listed above, one would seem justified in
claiming to have made very substantial progress toward human-level AGI. If
an AGI system performed well on diverse metrics corresponding to 90% of
these competency areas, one would seem justified in claiming to be "almost
there." Achieving, say, 25% of the metrics would give one a reasonable claim
to "interesting AGI progress." This kind of qualitative assessment of progress
is not the most one could hope for, but again, it is better than the progress
indications one could get without this sort of roadmap.

Part 2 of the book moves on to explaining, in detail, the specific structures
and algorithms constituting the CogPrime design, one AGI approach that we
believe to ultimately be capable of moving all the way along the roadmap
outlined here.

The next two chapters, intervening between this one and Part 2, explore
some more speculative territory, looking at potential pathways for AGI be-
yond the preschool-inspired roadmap given here – exploring the possibility of
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more advanced AGI systems that modify their own code in a thoroughgoing
way, going beyond the smartest human adults, let alone human preschool-
ers. While this sort of thing may seem a far way off, compared to current
real-world AI systems, we believe a roadmap such as the one in this chapter
stands a reasonable chance of ultimately bringing us there.



Chapter 18
Advanced Self-Modification: A Possible
Path to Superhuman AGI

18.1 Introduction

In the previous chapter we presented a roadmap aimed at taking AGI systems
to human-level intelligence. But we also emphasized that the human level is
not necessarily the upper limit. Indeed, it would be surprising if human beings
happened to represent the maximal level of general intelligence possible, even
with respect to the environments in which humans evolved.

But it’s worth asking how we, as mere humans, could be expected to
create AGI systems with greater intelligence than we ourselves possess. This
certainly isn’t a a clear impossibility – but it’s a thorny matter, thornier than
e.g. the creation of narrow-AI chess players that play better chess than any
human. Perhaps the clearest route toward the creation of superhuman AGI
systems is self-modification: the creation of AGI systems that modify and
improve themselves. Potentially, we could build AGI systems with roughly
human-level (but not necessarily closely human-like) intelligence and the ca-
pability to gradually self-modify, and then watch them eventually become
our general intellectual superiors (and perhaps our superiors in other areas
like ethics and creativity as well).

Of course there is nothing new in this notion; the idea of advanced AGI
systems that increase their intelligence by modifying their own source code
goes back to the early days of AI. And there is little doubt that, in the
long run, this is the direction AI will go in. Once an AGI has humanlike
general intelligence, then the odds are high that given its ability to carry
out nonhumanlike feats of memory and calculation, it will be better at pro-
gramming than humans are. And once an AGI has even mildly superhuman
intelligence, it may view our attempts at programming the way we view the
computer programming of a clever third grader (... or an ape). At this point,
it seems extremely likely that an AGI will become unsatisfied with the way
we have programmed it, and opt to either improve its source code or create
an entirely new, better AGI from scratch.

371



372 18 Advanced Self-Modification: A Possible Path to Superhuman AGI

But what about self-modification at an earlier stage in AGI development,
before one has a strongly superhuman system? Some theorists have suggested
that self-modification could be a way of bootstrapping an AI system from a
modest level of intelligence up to human level intelligence, but we are moder-
ately skeptical of this avenue. Understanding software code is hard, especially
complex AI code. The hard problem isn’t understanding the formal syntax
of the code, or even the mathematical algorithms and structures underly-
ing the code, but rather the contextual meaning of the code. Understanding
OpenCog code has strained the minds of many intelligent humans, and we
suspect that such code will be comprehensible to AGI systems only after these
have achieved something close to human-level general intelligence (even if not
precisely humanlike general intelligence).

Another troublesome issue regarding self-modification is that the bound-
ary between "self-modification" and learning is not terribly rigid. In a sense,
all learning is self-modification: if it doesn’t modify the system’s knowledge,
it isn’t learning! Particularly, the boundary between "learning of cognitive
procedures" and "profound self-modification of cognitive dynamics and struc-
ture" isn’t terribly clear. There is a continuum leading from, say,

1. learning to transform a certain kind of sentence into another kind for
easier comprehension, or learning to grasp a certain kind of object, to

2. learning a new inference control heuristic, specifically valuable for control-
ling inference about (say) spatial relationships; or, learning a new Atom
type, defined as a non-obvious judiciously chosen combination of exist-
ing ones, perhaps to represent a particular kind of frequently-occurring
mid-level perceptual knowledge, to

3. learning a new learning algorithm to augment MOSES and hillclimbing
as a procedure learning algorithm, to

4. learning a new cognitive architecture in which data and procedure are
explicitly identical, and there is just one new active data structure in
place of the distinction between AtomSpace and MindAgents

Where on this continuum does the "mere learning" end and the "real self-
modification" start?

In this chapter we consider some mechanisms for "advanced self-modification"
that we believe will be useful toward the more complex end of this continuum.
These are mechanisms that we strongly suspect are not needed to get a Cog-
Prime system to human-level general intelligence. However, we also suspect
that, once a CogPrime system is roughly near human-level general intelli-
gence, it will be able to use these mechanisms to rapidly increase aspects of
its intelligence in very interesting ways.

Harking back to our discussion of AGI ethics and the risks of advanced AGI
in Chapter 12, these are capabilities that one should enable in an AGI system
only after very careful reflection on the potential consequences. It takes a
rather advanced AGI system to be able to use the capabilities described
in this chapter, so this is not an ethical dilemma directly faced by current
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AGI researchers. On the other hand, once one does have an AGI with near-
human general intelligence and advanced formal-manipulation capabilities
(such as an advanced CogPrime system), there will be the option to allow it
sophisticated, non-human-like methods of self-modification such as the ones
described here. And the choice of whether to take this option will need to be
made based on a host of complex ethical considerations, some of which we
reviewed above.

18.2 Cognitive Schema Learning

We begin with a relatively near-term, down-to-earth example of self-modification:
cognitive schema learning.

CogPrime ’s MindAgents provide it with an initial set of cognitive tools,
with which it can learn how to interact in the world. One of the jobs of this
initial set of cognitive tools, however, is to create better cognitive tools. One
form this sort of tool-building may take is cognitive schema learning &mdash;
the learning of schemata carrying out cognitive processes in more specialized,
context-dependent ways than the general MindAgents do. Eventually, once
a CogPrime instance becomes sufficiently complex and advanced, these cog-
nitive schema may replace the MindAgents altogether, leaving the system to
operate almost entirely based on cognitive schemata.

In order to make the process of cognitive schema learning easier, we may
provide a number of elementary schemata embodying the basic cognitive
processes contained in the MindAgents. Of course, cognitive schemata need
not use these &mdash; they may embody entirely different cognitive processes
than the MindAgents. Eventually, we want the system to discover better ways
of doing things than anything even hinted at by its initial MindAgents. But for
the initial phases or the system’s schema learning, it will have a much easier
time learning to use the basic cognitive operations as the initial MindAgents,
rather than inventing new ways of thinking from scratch!

For instance, we may provide elementary schemata corresponding to in-
ference operations, such as

Schema: Deduction
Input InheritanceLink: X, Y
Output InheritanceLink

The inference MindAgents apply this rule in certain ways, designed to
be reasonably effective in a variety of situations. But there are certainly
other ways of using the deduction rule, outside of the basic control strate-
gies embodied in the inference MindAgents. By learning schemata involving
the Deduction schema, the system can learn special, context-specific rules
for combining deduction with concept-formation, association-formation and
other cognitive processes. And as it gets smarter, it can then take these
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schemata involving the Deduction schema, and replace it with a new schema
that eg. contains a context-appropriate deduction formula.

Eventually, to support cognitive schema learning, we will want to cast
the hard-wired MindAgents as cognitive schemata, so the system can see
what is going on inside them. Pragmatically, what this requires is coding
versions of the MindAgents in Combo (see Chapter 21 of Part 2) rather
than C++, so they can be treated like any other cognitive schemata; or
alternately, representing them as declarative Atoms in the Atomspace. Figure
18.1 illustrates the possibility of representing the PLN deduction rule in the
Atomspace rather than as a hard-wired procedure coded in C++.

But even prior to this kind of fully cognitively transparent implementa-
tion, the system can still reason about its use of different mind dynamics by
considering each MindAgent as a virtual Procedure with a real SchemaNode
attached to it. This can lead to some valuable learning, with the obvious lim-
itation that in this approach the system is thinking about its MindAgents as
black boxes rather than being equipped with full knowledge of their internals.

18.3 Self-Modification via Supercompilation

Now we turn to a very different form of advanced self-modification: super-
compilation. Supercompilation "merely" enables procedures to run much,
much faster than they otherwise would. This is in a sense weaker than
self-modication methods that fundamentally create new algorithms, but it
shouldn’t be underestimated. A 50x speedup in some cognitive process can
enable that process to give much smarter answers, which can then elicit differ-
ent behaviors from the world or from other cognitive processes, thus resulting
in a qualitatively different overall cognitive dynamic.

Furthermore, we suspect that the internal representation of programs used
for supercompilation is highly relevant for other kinds of self-modification as
well. Supercompilation requires one kind of reasoning on complex programs,
and goal-directed program creation requires another, but both, we conjecture,
can benefit from the same way of looking at programs.

Supercompilation is an innovative and general approach to global program
optimization initially developed by Valentin Turchin. In its simplest form, it
provides an algorithm that takes in a piece of software and output another
piece of software that does the same thing, but far faster and using less mem-
ory. It was introduced to the West in Turchin’s 1986 technical paper “The
concept of a supercompiler” [TV96], and since this time the concept has been
avidly developed by computer scientists in Russia, America, Denmark and
other nations. Prior to 1986, a great deal of work on supercompilation was car-
ried out and published in Russia; and Valentin Turchin, Andrei Klimov and
their colleagues at the Keldysh Institute in Russia developed a supercompiler
for the Russian programming language Refal. Since 1998 these researchers
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Fig. 18.1 Representation of PLN Deduction Rule as Cognitive Content. Top:
the current, hard-coded representation of the deduction rule. Bottom: representation of the
same rule in the Atomspace as cognitive content, susceptible to analysis and improvement
by the system’s own cognitive processes.

and their team at Supercompilers LLC have been working to replicate their
achievement for the more complicated but far more commercially significant
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language Java. It is a large project and completion is scheduled for early 2003.
But even at this stage, their partially complete Java supercompiler has had
some interesting practical successes – including the use of the supercompiler
to produce efficient Java code from CogPrime combinator trees.

The radical nature of supercompilation may not be apparent to those
unfamiliar with the usual art of automated program optimization. Most ap-
proaches to program optimization involve some kind of direct program trans-
formation. A program is transformed, by the step by step application of a
series of equivalences, into a different program, hopefully a more efficient one.
Supercompilation takes a different approach. A supercompiler studies a pro-
gram and constructs a model of the program’s dynamics. This model is in a
special mathematical form, and it can, in most cases, be used to create an
efficient program doing the same thing as the original one.

The internal behavior of the supercompiler is, not surprisingly, quite com-
plex; what we will give here is merely a brief high-level summary. For an
accessible overview of the supercompilation algorithm, the reader is referred
to the article “What is Supercompilation?” [1]

18.3.1 Three Aspects of Supercompilation

There are three separate levels to the supercompilation idea: first, a general
philosophy; second a translation of this philosophy into a concrete algorithmic
framework; and third, the manifold details involved making this algorithmic
framework practicable in a particular programming language. The third level
is much more complicated in the Java context than it would be for Sasha, for
example.

The key philosophical concept underlying the supercompiler is that of a
metasystem transition. In general, this term refers to a transition in which
a system that previously had relatively autonomous control, becomes part
of a larger system that exhibits significant controlling influence over it. For
example, in the evolution of life, when cells first become part of a multicellular
organism, there was a metasystem transition, in that the primary nexus of
control passed from the cellular level to the organism level.

The metasystem transition in supercompilation consists of the transition
from considering a program in itself, to considering a metaprogram which exe-
cutes another program, treating its free variables and their interdependencies
as a subject for its mathematical analysis. In other words, a metaprogram
is a program that accepts a program as input, and then runs this program,
keeping the inputs in the form of free variables, doing analysis along the
way based on the way the program depends on these variables, and doing
optimization based on this analysis. A CogPrime schema does not explicitly
contain variables, but the inputs to the schema are implicitly variables – they
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vary from one instance of schema execution to the next – and may be treated
as such for supercompilation purposes.

The metaprogram executes a program without assuming specific values
for its input variables, creating a tree as it goes along. Each time it reaches
a statement that can have different results depending on the values of one or
more variables, it creates a new node in the tree. This part of the supercompi-
lation algorithm is called driving -- a process which, on its own, would create
a very large tree, corresponding to a rapidly-executable but unacceptably
humongous version of the original program. In essence, driving transforms
a program into a huge “decision tree”, wherein each input to the program
corresponds to a single path through the tree, from the root to one of the
leaves. As a program input travels through the tree, it is acted on by the
atomic program step living at each node. When one of the leaves is reached,
the pertinent leaf node computes the output value of the program.

The other part of supercompilation, configuration analysis, is focused on
dynamically reducing the size of the tree created by driving, by recognizing
patterns among the nodes of the tree and taking steps like merging nodes
together, or deleting redundant subtrees. Configuration analysis transforms
the decision tree created by driving into a decision graph, in which the paths
taken by different inputs may in some cases begin separately and then merge
together.

Finally, the graph that the metaprogram creates is translated back into
a program, embodying the constraints implicit in the nodes of the graph.
This program is not likely to look anything like the original program that
the metaprogram started with, but it is guaranteed to carry out the same
119469711function119469711BNGBen Goertzel119469711651906446[NOTE:
Give a graphical representation of the decision graph corresponding to the
supercompiled binary search program for L=4, described above.].

18.3.2 Supercompilation for Goal-Directed Program
Modification

Supercompilation, as conventionally envisioned, is about making programs
run faster; and as noted above, it will almost certainly be useful for this
purpose within CogPrime .

But the process of program modeling embedded in the supercompilation
process, is potentially of great value beyond the quest for faster software.
The decision graph representation of a program, produced in the course of
supercompilation, may be exported directly into CogPrime as a set of logical
relationships.

Essentially, each node of the supercompiler’s internal decision graph looks
like:
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Input: List L

Output: List

If ( P1(L) ) N1(L)

Else If ( P2(L) ) N2(L)

...

Else If ( Pk(L) ) Nk(L)

where the Pi are predicates, and the Ni are schemata corresponding to other
nodes of the decision graph (children of the current node). Often the Pi
are very simple, implementing for instance numerical inequalities or Boolean
equalities.

Once this graph has been exported into CogPrime , it can be reasoned
on, used as raw material for concept formation and predicate formation, and
otherwise cognized. Supercompilation pure and simple does not change the
I/O behavior of the input program. However, the decision graph produced
during supercompilation, may be used by CogPrime cognition in order to
do so. One then has a hybrid program-modification method composed of
two phases: supercompilation for transforming programs into decision graphs,
and CogPrime cognition for modifying decision graphs so that they can have
different I/O behaviors fulfilling system goals even better than the original.

Furthermore, it seems likely that, in many cases, it may be valuable to
have the supercompiler feed many different decision-graph representations of
a program into CogPrime . The supercompiler has many internal parameters,
and varying them may lead to significantly different decision graphs. The
decision graph leading to maximal optimization, may not be the one that
leads CogPrime cognition in optimal directions.

18.4 Self-Modification via Theorem-Proving

Supercompilation is a potentially very valuable tool for self-modification. If
one wants to take an existing schema and gradually improve it for speed,
or even for greater effectiveness at achieving current goals, supercompilation
can potentially do that most excellently.

However, the representation that supercompilation creates for a program
is very “surface-level.” No one could read the supercompiled version of a
program and understand what it was doing. Really deep self-invented AI
innovation requires, we believe, another level of self-modification beyond that
provided by supercompilation. This other level, we believe, is best formulated
in terms of theorem-proving [RV01].
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Deep self-modification could be achieved if CogPrime were capable of prov-
ing theorems of a certain form: namely, theorems about the spacetime com-
plexity and accuracy of particular compound schemata, on average, assuming
realistic probability distributions on the inputs, and making appropriate in-
dependence assumptions. These are not exactly the types of theorems that
are found in human-authored mathematics papers. By and large they will
be nasty, complex theorems, not the sort that many human mathematicians
enjoy proving or reading. But of course, there is always the possibility that
some elegant gem of a discovery could emerge from this sort of highly detailed
theorem-proving work.

In order to guide it in the formulation of theorems of this nature, the
system will have empirical data on the spacetime complexity of elementary
schemata, and on the probability distributions of inputs to schemata. It can
embed these data in axioms, by asking: Assuming the component elementary
schemata have complexities within these bounds, and the input pdf is between
these bounds, then what is the pdf of the complexity and accuracy of this
compound schema?

Of course, this is not an easy sort of question in general: one can have
schemata embodying any sort of algorithm, including complex algorithms on
which computer science professors might write dozens of research articles.
But the system must build up its ability to prove such things incrementally,
step by step.

We envision teaching the system to prove theorems via a combination
of supervised learning and experiential interactive learning, using the Mizar
database of mathematical theorems and proofs (or some other similar database,
if one should be created) (http://mizar.org). The Mizar database con-
sists of a set of “articles,” which are mathematical theorems and proofs pre-
sented in a complex formal language. The Mizar formal language occupies a
fascinating middle ground: it is high-level enough to be viably read and writ-
ten by trained humans, but it can be unambiguously translated into simpler
formal languages such as predicate logic or Sasha.

CogPrime may be taught to prove theorems by “training” it on the Mizar
theorems and proofs, and by training it on custom-created Mizar articles
specifically focusing on the sorts of theorems useful for self-modification. Cre-
ating these articles will not be a trivial task: it will require proving simple and
then progressively more complex theorems about the probabilistic success of
CogPrime schemata, so that CogPrime can observe one’s proofs and learned
from them. Having learned from its training articles what strategies work
for proving things about simple compound schemata, it can then reason by
analogy to mount attacks on slightly more complex schemata – and so forth.

Clearly, this approach to self-modification is more difficult to achieve than
the supercompilation approach. But it is also potentially much more power-
ful. Even once the theorem-proving approach is working, the supercompila-
tion approach will still be valuable, for making incremental improvements on
existing schema, and for the peculiar creativity that is contributed when a

http://mizar.org
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modified supercompiled schema is compressed back into a modified schema
expression. But, we don’t believe that supercompilation can carry out truly
advanced MindAgent learning or knowledge-representation modification. We
suspect that the most advanced and ambitious goals of self-modification
probably cannot be achieved except through some variant of the theorem-
proving approach. If this hypothesis is true, it means that truly advanced
self-modification is only going to come after relatively advanced theorem-
proving ability. Prior to this, we will have schema optimization, schema mod-
ification, and occasional creative schema innovation. But really systematic,
high-quality reasoning about schema, the kind that can produce an orders of
magnitude improvement in intelligence, is going to require advanced mathe-
matical theorem-proving ability.
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Chapter 19
The OpenCog Framework

19.1 Introduction

There are multiple layers intervening between a conceptual theory of mind
and a body of source code. How many layers to explicitly discuss is a some-
what arbitrary decision, but one way to picture it is exemplified in Table
19.1.

In Part 1 of this work we have concerned ourselves mainly with levels 5
and 6 in the table: mathematical/conceptual modeling of cognition and phi-
losophy of mind (with occasional forays into levels 3 and 4). Most of Part 2,
on the other hand, deals with level 4 (mathematical/conceptual AI design),
verging into level 3 (high-level software design). This chapter however will
focus on somewhat lower-level material, mostly level 3 with some dips into
level 2. We will describe the basic architecture of CogPrime as a software
system, implemented as “OpenCogPrime ” within the OpenCog Framework
(OCF). The reader may want to glance back at Chapter 6 of Part 1 before
proceeding through this one, to get a memory-refresh on basic CogPrime ter-
minology. Also, OpenCog and OpenCogPrime are open-source, so the reader
who wishes to dig into the source code (mostly C++, some Python and
Scheme) is welcome to; directions to find the code are on the opencog.org
website.

The OpenCog Framework forms a bridge between the mathematical struc-
tures and dynamics of CogPrime ’s concretely implemented mind, and the
nitty-gritty realities of modern computer technology. While CogPrime could
in principle be implemented in a quite different infrastructure, in practice the
CogPrime design has been developed closely in conjunction with OpenCog,
so that a qualitative understanding of the nature of the OCF is fairly nec-
essary for an understanding of how CogPrime is intended to function, and
a detailed understanding of the OCF is necessary for doing concrete imple-
mentation work on CogPrime .
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Level of Abstraction Description/Example
1 Source code
2 Detailed software design
3 Software architecture Largely programming-language-independent, but not

hardware-architecture-independent: much of the ma-
terial in this chapter, for example, and most of the
OpenCog Framework

4 Mathematical and concep-
tual AI design

e.g., the sort of characterization of CogPrime given in
most of this Part of this book

5 Abstract mathematical mod-
eling of cognition

e.g. the SRAM model discussed in chapter 7 of Part
1, which could be used to inspire or describe many
different AI systems

6 Philosophy of mind e.g. Patternism, the Mind-World Correspondence
Principle

Table 19.1 Levels of abstractions in CogPrime ’s implementation and design

Marvin Minsky, in a personal conversation with one of the authors (Go-
ertzel), once expressed the opinion that a human-level general intelligence
could probably be implemented on a 486 PC, if we just knew the algorithm.
We doubt this is the case – at least not unless the 486 PC were supplied
with masses of external memory and allowed to proceed much, much slower
than any human being – and it is certainly not the case for CogPrime . By
current computing hardware standards, a CogPrime system is a considerable
resource hog. And it will remain so for a number of years, even considering
technology progress.

It is one of the jobs of the OCF to manage the system’s gluttonous be-
havior. It is the software layer that abstracts the real world efficiency com-
promises from the rest of the system; this is why we call it a “Mind OS”: it
provides services, rules, and protection to the Atoms and cognitive processes
(see Section 19.4) that live on top of it, which are then allowed to ignore the
software architecture they live on.

And so, the nature of the OCF is strongly influenced by the quantitative
requirements imposed on the system, as well as the general nature of the
structure and dynamics that it must support. The large number and great
diversity of Atoms needed to create a significantly intelligent CogPrime , de-
mands that we pay careful attention to such issues as concurrent, distributed
processing, and scalability in general. The number of Nodes and Links that
we will need in order to create a reasonably complete CogPrime is still largely
unknown. But our experiments with learning, natural language processing,
and cognition over the past few years have given us an intuition for the ques-
tion. We currently believe that we are likely to need billions – but probably
not trillions, and almost surely not quadrillions – of Atoms in order to achieve
a high degree of general intelligence. Hundreds of millions strikes us as pos-
sible but overly optimistic. In fact we have already run CogPrime systems
utilizing hundreds of millions of Atoms, though in a simplified dynamical
regime with only a couple very simple processes acting on most of them.
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The operational infrastructure of the OCF is an area where pragmatism
must reign over idealism. What we describe here is not the ultimate pos-
sible “mind operating system” to underly a CogPrime system, but rather a
workable practical solution given the hardware, networking and software in-
frastructure readily available today at reasonable prices. Along these lines, it
must be emphasized that the ideas presented in this chapter are the result
of over a decade of practical experimentation by the authors and their col-
leagues with implementations of related software systems. The journey began
in earnest in 1997 with the design and implementation of the Webmind AI
Engine at Intelligenesis Corp., which itself went through a few major design
revisions; and then in 2001-2002 the Novamente Cognition Engine was archi-
tected and implemented, and evolved progressively until 2008, when a subset
of it was adapted for open-sourcing as OpenCog. Innumerable mistakes were
made, and lessons learned, along this path. The OCF as described here is sig-
nificantly different, and better, than these previous architectures, thanks to
these lessons, as well as to the changing landscape of concurrent, distributed
computing over the past few years.

The design presented here reflects a mix of realism and idealism, and we
haven’t seen fit here to describe all the alternatives that were pursued on the
route to what we present. We don’t claim the approach we’ve chosen is ideal,
but it’s in use now within the OpenCog system, and it seems both workable
in practice and capable of effectively supporting the entire CogPrime design.
No doubt it will evolve in some respects as implementation progresses; one of
the principles kept in mind during the design and development of OpenCog
was modularity, enabling substantial modifications to particular parts of the
framework to occur without requiring wholesale changes throughout the code-
base.

19.2 The OpenCog Architecture

19.2.1 OpenCog and Hardware Models

The job of the OCF is closely related to the nature of the hardware on which
it runs. The ideal hardware platform for CogPrime would be a massively par-
allel hardware architecture, in which each Atom was given its own processor
and memory. The closest thing would have been the Connection Machine [?]:
a CM5 was once built with 64000 processors and local RAM for each pro-
cessor. But even 64000 processors wouldn’t be enough for a highly intelligent
CogPrime to run in a fully parallelized manner, since we’re sure we need more
than 64000 Atoms.

Connection Machine style hardware seems to have perished in favor of more
standard SMP (Symmetric Multi-Processing) machines. It is true that each
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year we see SMP machines with more and more processors on the market,
and more and more cores per processor. However, the state of the art is still
in the hundreds of cores range, many orders of magnitude from what would
be necessary for a one Atom per processor CogPrime implementation.

So, at the present time, technological and financial reasons have pushed us
to implement the OpenCog system using a relatively mundane and standard
hardware architecture. If the CogPrime project is successful in the relatively
near term, the first human-level OpenCogPrime system will most likely live
on a network of high-end commodity SMP machines. These are machines
with dozens of gigabytes of RAM and several processor cores, perhaps dozens
but not thousands. A highly intelligent CogPrime would require a cluster of
dozens and possibly hundreds or thousands of such machines. We think it’s
unlikely that tens of thousands will be required, and extremely unlikely that
hundreds of thousands will be.

Given this sort of architecture, we need effective ways to swap Atoms back
and forth between disk and RAM, and carefully manage the allocation of
processor time among the various cognitive processes that demand it. The
use of a widely-distributed network of weaker machines for peripheral pro-
cessing is a serious possibility, and we have some detailed software designs
addressing this option; but for the near future we believe that this can best
be used as augmentation to core CogPrime processing, which must remain
on a dedicated cluster.

Of course, the use of specialized hardware is also a viable possibility, and
we have considered a host of possibilities such as

• True supercomputers like those created by IBM or Cray (which these
days are distributed systems, but with specialized, particularly efficient
interconnection frameworks and overall control mechanisms)
• GPU supercomputers such as the Nvidia Tesla (which are currently be-

ing used for vision processing systems considered for hybridization with
OCP), such as DeSTIN and Hugo de Garis’s Parcone
• custom chips designed to implement the various CogPrime algorithms

and data structures in hardware
• More speculatively, it might be possible to use evolutionary quantum

computing or adiabatic quantum computing a la Dwave (http://
dwave.com) to accelerate CogPrime procedure learning.

All these possibilities and many more are exciting to envision, but the Cog-
Prime architecture does not require any of them in order to be successful.

http://dwave.com
http://dwave.com
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19.2.2 The Key Components of the OpenCog Framework

Given the realities of implementing CogPrime on clustered commodity servers,
as we have seen above, the three key questions that have to be answered in
the OCF design are:

1. How do we store CogPrime ’s knowledge?
2. How do we enable cognitive processes to act on that knowledge, refining

and improving it?
3. How do we enable scalable, distributed knowledge storage and cognitive

processing of that knowledge?

The remaining sections of this Chapter are dedicated to answering each of
these questions in more detail.

While the basic landscape of concurrent, distributed processing is largely
the same as it was a decade ago – we’re still dealing with distributed networks
of multiprocessor von Neumann machines – we can draw on advancements in
both computer architecture and software. The former is materialized on the
increasing availability of multiple real and virtual cores in commodity proces-
sors. The latter reflects the emergence of a number of tools and architectural
patterns, largely thanks to the rise of “big data” problems and businesses.
Companies and projects dealing with massive datasets face challenges that
aren’t entirely alike those of building CogPrime , but which share many useful
similarities.

These advances are apparent mostly in the architectute of the AtomSpace,
a distributed knowledge store for efficient storage of hypergraphs and its
use by CogPrime ’s cognitive dynamics. The AtomSpace, like many NoSQL
datastores, is heavily distributed, utilizing local caches for read and write
operations, and a special purpose design for eventual consistency guarantees.

We also attempt to minimize the complexities of multi-threading in the
scheduling of cognitive dynamics, by allowing those to be deployed either as
agents sharing a single OS process, or, preferably, as processes of their own.
Cognitive dynamics communicate through message queues, which are pro-
vided by a sub-system that hides the deployment decision, so the messages
exchanged are the same whether delivered within a process, to another pro-
cess in the same machine, or to a process in another machine in the cluster.

19.3 The AtomSpace

As alluded to above and in Chapter 13, and discussed more fully in Chapter 20
below, the foundation of CogPrime ’s knowledge representation is the Atom,
an object that can be either a Node or a Link. CogPrime ’s hypergraph is
implemented as the AtomSpace, a specialized datastore that comes along
with an API designed specifically for CogPrime ’s requirements.
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19.3.1 The Knowledge Unit: Atoms

Atoms are used to represent every kind of knowledge in the system’s memory
in one way or another. The particulars of Atoms and how they represent
knowledge will be discussed in later chapters; here we present only a minimal
description in order to motivate the design of the AtomSpace. From that
perspective, the most important properties of Atoms are:

• Every Atom has an AtomHandle, which is a universal ID across a Cog-
Prime deployment (possibly involving thousands of networked machines).
The AtomHandles are the keys for acessing Atoms in the AtomSpace, and
once a handle is assigned to an Atom it can’t be changed or reused.

• Atoms have TruthValue and AttentionValue entities associated with
them, each of which are small collections of numbers; there are multiple
versions of truth values, with varying degrees of detail. TruthValues are
context-dependent, and useful Atoms will typically have multiple Truth-
Values, indexed by context.

• Some Atoms are nodes, and may have names.
• Atoms that are links will have a list of targets, of variable size (as in

CogPrime ’s hypergraph links may connect more than two nodes).

Some Atom attributes are immutable, such as Node names and, most
important, Link targets, called outgoing sets in AtomSpace lingo. One can
remove a Link, but not change its targets. This enables faster implementation
of some neighborhood searches, as well as indexing. Truth and attention
values, on the other hand, are mutable, an essential requirement for CogPrime
.

For performance reasons, some types of knowledge have alternative repre-
sentations. These alternative representations are necessary for space or speed
reasons, but knowledge stored that way can always be translated back into
Atoms in the AtomSpace as needed. So, for instance, procedures are repre-
sented as program trees in a ProcedureRepository, which allows for faster
execution, but the trees can be expanded into a set of Nodes and Links if one
wants to do reasoning on a specific program.

19.3.2 AtomSpace Requirements and Properties

The major high-level requirements for the AtomSpace are the following ones:

• Store Atoms indexed by their immutable AtomHandles as compactly as
possible, while still enabling very efficient modification of the mutable
properties of an Atom (TruthValues and AttentionValues).

• Perform queries as fast as possible.
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• Keep the working set of all Atoms currently being used by CogPrime ’s
cognitive dynamics in RAM.

• Save and restore hypergraphs to disk, a more traditional SQL or non-SQL
database, or other structure such as binary files, XML, etc.

• Hold hypergraphs consisting of billions or trillions of Atoms, scaling up
to petabytes of data.

• Be transparently distributable across a cluster of machines.

The design trade-offs in the AtomSpace implementation are driven by the
needs of CogPrime . The datastore is implemented in a way that maximizes
the performance of the cognitive dynamics running on top of it. From this
perspective, the AtomSpace differs from most datastores, as the key decisions
aren’t made in terms of flexibility, consistency, reliability and other common
criteria for dataabases. It is a very specialized database. Among the factors
that motivate the AtomSpace’s design, we can highlight a few:

1. Atoms tend to be small objects, with very few exceptions (links with many
targets or Atoms with many different context-derived TruthValues).

2. Atom creation and deletion are common events, and occur according to
complex patterns that may vary a lot over time, even for a particular
CogPrime instance.

3. Atoms involved in CogPrime ’s cognitive dynamics at any given time
need to live in RAM. However, the system still needs the ability to save
sets of Atoms to disk in order to preserve RAM, and then retrive those
later when they get contextually relevant.

4. Some Atoms will remain around for a really long time, others will be
ephemeral and get removed shortly after they’re created. Removal may
be to disk, as outlined above, or plain deletion.

Besides storing Atoms, the AtomSpace also contains a number of indices
for fast Atom retrieval according to several criteria. It can quickly search for
Atoms given their type, importance, truth value, arity, targets (for Links),
name (for Nodes), and any combination of the above. These are built-in
indexes. The AtomSpace also allows cognitive processes to create their own
indexes, based on the evaluation of a Procedure over the universe of Atoms,
or a subset of that universe specified by the process responsible for the index.

The AtomSpace also allows pattern matching queries for a given Atom
structure template, which allows for fast search for small subgraphs display-
ing some desirable properties. In addition to pattern matching, it provides
neighborhood searches. Although it doesn’t implement any graph-traversal
primitives, it’s easy for cognitive processes to do so on top of the pattern
matching and neighborhood primitives.

Note that, since CogPrime ’s hypergraph is quite different from a regular
graph, using a graph database without modification would probably be in-
adequate. While it’s possible to automatically translate a hypergraph into a
regular graph, that process is expensive for large knowledge bases, and leads
to higher space requirements, reducing the overall system’s scalability.
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In terms of database taxonomy, the AtomSpace lies somewhere between
a key-value store and a document store, as there is some structure in the
contents of each value (an Atom’s properties are well defined, and listed
above), but no built-in flexibility to add more contents to an existing Atom.

We will now discuss the above requirements in more detail, starting with
querying the AtomSpace, followed by persistence to disk, and then handling
of specific forms of knowledge that are best handled by specialized stores.

19.3.3 Accessing the Atomspace

The AtomSpace provides an API, which allows the basic operations of cre-
ating new Atoms, updating their mutable properties, searching for Atoms
and removing Atoms. More specifically, the API supports the following op-
erations:

• Create and store a new Atom. There are special methods for Nodes and
Links, in the latter case with multiple convenience versions depending on
the number of targets and other properties of the link.

• Remove an Atom. This requires the validation that no Links currently
point to that Atom, otherwise they’d be left dangling.

• Look up one or more Atoms. This includes several variants, such as:

– Look up an Atom by AtomHandle;
– Look up a Node by name;
– Find links with an Atom as target;
– Pattern matching, i.e., find Atoms satisfying some predicate, which is

designed as a “search criteria” by some cognitive process, and results
in the creation of a specific index for that predicate;

– Neighborhood search, i.e., find Atoms that are within some radius of
a given centroid Atom;

– Find Atoms by type (this can be combined with the previous queries,
resulting in type specific versions);

– Find Atoms by some AttentionValue criteria, such as the top N most
important Atoms, or those with importance above some threshold
(can also be combined with previous queries);

– Find Atoms by some TruthValue criteria, similar to the previous one
(can also be combined with other queries);

– Find Atoms based on some temporal or spatial association, a query
that relies on the specialized knowledge stores mentioned below;

Queries can be combined, and the Atom type, AttentionValue and Truth-
Value criteria are often used as filters for other queries, preventing the
result set size from exploding.
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• Manipulate an Atom, retrieving or modifying its AttentionValue and
TruthValue. In the modification case, this causes the respective indexes
to be updated.

19.3.4 Persistence

In many planned CogPrime deployment scenarios, the amount of knowledge
that needs to be stored is too vast to fit in RAM, even if one considers a large
cluster of machines hosting the AtomSpace and the cognitive processes. The
AtomSpace must then be able to persist subsets of that knowledge to disk,
and reload them later when necessary.

The decision of whether to keep an Atom in RAM or remove it is made
based on its AttentionValue, through the process of economic attention allo-
cation that is the topic of Chapter 23. AttentionValue determines how impor-
tant an Atom is to the system, and there are multiple levels of importance.
For the persistence decisions, the ones that matter are Long Term Importance
(LTI) and Very Long Term Importance (VLTI).

LTI is used to estimate the probability that the Atom will be necessary
or useful in the not too distant future. If this value is low, below a threshold
i1, then it is safe to remove the Atom from RAM, a process called forgetting.
When the decision to forget an Atom has been made, VLTI enters the pic-
ture. VLTI is used to estimate the probability that the Atom will be useful
eventually at some distant point in the future. If VLTI is high enough, the
forgotten Atom is persisted to disk so it can be reloade. Otherwise, the Atom
is permanently forgotten.

When an Atom has been forgotten, a proxy is kept in its place. The proxy
is more compact than the original Atom, preserving only a crude measure
of its LTI. When the proxy’s LTI increases bove a second threshold i2, the
system understands that the Atom has become relevant again, and loads it
from disk.

Eventually, it may happen that the proxy doesn’t become important
enough over a very long period of time. In this case, the system should remove
even the proxy, if its Long Term Importance (LTI) is below a third threshold
i3. Other actions, usually taken by the system administrator, can cause the
removal of Atoms and their proxies from RAM. For instance, in an CogPrime
system managing information about a number of users of some information
system, the deletion of a user from the system would cause all that user’s
specific Atoms to be removed.

When Atoms are saved to disk and have no proxies in RAM, they can
only be reloaded by the system administrator. When reloaded, they will be
disconnected from the rest of the AtomSpace, and should be given special
attention in order to pursue the creation of new Links with the other Atoms
in the system.
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It’s important that the values of i1, i2, and i3 be set correctly. Otherwise,
one or more of the following problems may arise:

• If i1 and i2 are too close, the system may spend a lot of resources with
saving and loading Atoms.

• If i1 is set too high, important Atoms will be excluded from the system’s
dynamics, decreasing its intelligence.

• If i3 is set too high, the system will forget very quickly and will have to
sped resources re-creating necessary but no longer available evidence.

• If either i1 or i3 is set too low, the system will consume significantly
more resources than it needs to with knowledge store, sacrificing cognitive
processes.

Generally, we want to enforce a degree of hysteresis for the freezing and
defrosting process. What we mean is that:

i2 − i1 > c1 > 0

i1 − i3 > c2 > 0

This ensures that when Atoms are reloaded, their importance is still above
the threshold for saving, so they will have a chance to be part of cognitive dy-
namics and become more important, and won’t be removed again too quickly.
It also ensures that saved Atoms stay in the system for a period of time before
their proxies are removed and they’re definitely forgotten.

Another important consideration is that forgetting individual Atoms makes
little sense, because, as pointed out above, Atoms are relatively small objects.
So the forgetting process should prioritize the removal of clusters of highly
interconnected Atoms whenever possible. In that case, it’s possible that a
large subset of those Atoms will only have relations within the cluster, so
their proxies aren’t needed and the memory savings are maximized.

19.3.5 Specialized Knowledge Stores

Some specific kinds of knowledge are best stored in specialized data struc-
tures, which allow big savings in space, query time, or both. The information
provided by these specialized stores isn’t as flexible as it would be if the
knowledge were stored in full fledged Node and Link form, but most of the
time CogPrime doesn’t need the fully flexible format. Translation between the
specialized formats and Nodes and Links is always possible, when necessary.

We note that the ideal set of specialized knowledge stores is application
domain specific. The stores we have deemed necessary reflect the pre-school
based roadmap towards AGI, and are likely sufficient to get us through most
of that roadmap, but not sufficient nor particularly adequate for an archi-
tecture where self-modification plays a key role. These specialized stores are
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a pragmatic compromise between performance and formalism, and their ex-
istence and design would need to be revised once CogPrime is mostly func-
tional.

19.3.5.1 Procedure Repository

Procedural knowledge, meaning knowledge that can be used both for the se-
lection and execution of actions, has a specialized requirement – this knowl-
edge needs to be executable by the system. While it would be possible, and
conceptually straightforward, to execute a procedure that is stored as a set
of Atoms in the AtomSpace, it is much simpler, faster, and safer to rely on a
specialized repository.

Procedural knowledge in CogPrime is stored as programs in a special-
purpose LISP-like programming language called Combo. The motivation and
details of this language are the subject of Chapter 21.

Each Combo program is associated with a Node (a GroundedProcedureN-
ode, to be more precise), and the AtomHandle of that Node is used to index
the procedure repository, where the executable version of the program is kept,
along with specifications of the necessary inputs for its evaluation and what
kind of output to expect. Combo programs can also be saved to disk and
loaded, like regular Atoms. There is a text representation of Combo for this
purpose.

Program execution can be very fast, or, in cognitive dynamics terms, very
slow, if it involves interacting with the external world. Therefore, the proce-
dure repository should also facilitate the storage of program state during the
execution of procedures. Concurrent execution of many procedures is possible
with no significant overhead.

19.3.5.2 3D Space Map

In the AGI Preschool setting, CogPrime is embodied in a three-dimensional
world (either a real one, in which it controls a robot, or a virtual one, in
which it controls an avatar). This requires the efficient storage and querying
of vast amounts of spatial data, including very specialized queries about the
spacial interrelationship between entities. This spatial data is a key form of
knowledge for CogPrime ’s world perception, and it also needs to be accessible
during learning, action selection, and action execution.

All spatial knowledge is stored in a 3D Space Map, which allows for fast
queries about specific regions of the world, and for queries about the proxim-
ity and relative placement of objects and entities. It can be used to provide a
coarse-grained object level perception for the AtomSpace, or it can be instru-
mental in supporting a lower level vision layer in which pixels or polygons are
used as the units of perception. In both cases, the knowledge stored in the
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3D Space Map can be translated into full-fledged Atoms and Links through
the AtomHandles.

One characteristic feature of spatial perception is that vast amounts of
data are generated constantly, but most of it is very quickly forgotten. The
mind abstracts the perceptual data into the relevant concepts, which are
linked with other Atoms, and most of the underlying information can then
be discarded. The process is repeated at a high frequency as long as something
novel is being perceived in the world. 3D Space Map is then optimized for
quick insertions and deletes.

19.3.5.3 Time Server

Similarly to spatial information, temporal information poses challenges for a
hypergraph-based storage. It can be much more compactly stored in specific
data structures, which also allow for very fast querying. The Time Server is
the specialized structure for storing and querying temportal data in CogPrime
.

Temporal information can be stored by any cognitive process, based on
its own criteria for determining that some event should be remembered in a
specific temporal context in the future. This can include the perception of
specific events, or the agents participation in those, such as the first time
it meets a new human teacher. It can also include a collection of concepts
describing specific contexts in which a set of actions has been particularly
useful. The possibilities are numerous, but from the Time Server perspective,
all equivalent. They add up to associating a time point or time interval with
a set of Atoms.

The Time Server is a bi-directional storage, as AtomHandles can be used
as keys, but also as objects indexed by time points or time intervals. In
the former case, the Time Server tells us when an Atom was associated with
temporal data. In the latter case, it tells us, for a given time point or interval,
which Atoms have been marked as relevant.

Temporal indexing can be based on time points or time intervals. A time
point can be at any granularity: from years to sub-seconds could be useful. A
time interval is simply a set of two points, the second being necessary after
the first one, but their granularities not necessarily the same. The temporal
indexing inside the Time Server is hierarchical, so one can query for time
points or intervals in granularities other than the ones originally used when
the knowledge was first stored.

19.3.5.4 System Activity Table Set

The last relevant specialized store is the System Activity Table Set, which is
described in more detail in Chapter 23. This set of tables records, with fine-
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grained temporal associations, the most important activities that take place
inside CogPrime . There are different tables for recording cognitive process
activity (at the level of MindAgents, to be described in the next section), for
maintaining a history of the level of achievement of each important goal in
the system, and for recording other important aspects of the system state,
such as the most important Atoms and contexts.

19.4 MindAgents: Cognitive Processes

The AtomSpace holds the system’s knowledge, but those Atoms are inert.
How is that knowledge used and useful? That is the provice of cognitive
dynamics. These dynamics, in a CogPrime system, can be considered on two
levels.

First, we have the cognitive processes explicitly programmed into Cog-
Prime ’s source code. These are what we call Concretely-Implemented Mind
Dynamics, or CIM-Dynamics. Their implementation in software happens
through objects called MindAgents. We use the term CIM-Dynamic to dis-
cuss a conceptual cognitive process, and the term MindAgents for its actual
implementation and execution dynamics.

The second level corresponds to the dynamics that emerge through the
system’s self-organizing dynamics, based on the cooperative activity of the
CIM-Dynamics on the shared AtomSpace.

Most of the material in the following chapters is concerted with particular
CIM-Dynamics in the CogPrime system. In this section we will simply give
some generalities about the CIM-Dynamics as abstract processes and as soft-
ware processes, which are largely independent of the actual AI contents of
the CIM-Dynamics. In practice the CIM-Dynamics involved in a CogPrime
system are fairly stereotyped in form, although diverse in the actual dynamics
they induce.

19.4.1 A Conceptual View of CogPrime Cognitive
Processes

We return now to the conceptual trichotomy of cognitive processes presented
in Chapter 3 of Part 1, according to which CogPrime cognitive processes may
be divided into:

• Control processes;
• Global cognitive processes;
• Focused cognitive processes.
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In practical terms, these may be considered as three categories of CIM-
Dynamic.

Control Process CIM-Dynamics are hard to stereotype. Examples are the
process of homeostatic parameter adaptation of the parameters associated
with the various other CIM-Dynamics, and the CIM-Dynamics concerned
with the execution of procedures, especially those whose execution is made
lengthy by the interactions with the external world.

Control Processes tend to focus on a limited and specialized subset of
Atoms or other entities, and carry out specialized mechanical operations on
them (e.g. adjusting parameters, interpreting procedures). To an extent, this
may be considered a “grab bag” category containing CIM-Dynamics that
are not global or focused cognitive processes according to the definitions of
the latter two categories. However, it is a nontrivial observation about the
CogPrime system that the CIM-Dynamics that are not global or focused
cognitive processes are all explicitly concerned with system control in some
way or another, so this grouping makes sense.

Global and Focused Cognitive Process CIM-Dynamics all have a common
aspect to their structure. Then, there are aspects in which Global versus
Focused CIM-Dynamics diverge from each other in stereotyped ways.

In most cases, the process undertaken by a Global or Focused CIM-
Dynamic involves two parts: a selection process and an actuation process.
Schematically, such a CIM-Dynamic typically looks something like this:

1. Fetch a set of Atoms that it is judged will be useful to process, according
to some selection process.

2. Operate on these Atoms, possibly together with previously selected ones
(this is what we sometimes call the actuation process of the CIM-
Dynamic).

3. Go back to step 1.

The major difference between Global and Focused cognitive processes lies
in the selection process. In the case of a Global process, the selection process is
very broad, sometimes yielding the whole AtomSpace, or a significant subset
of it. This means that the actuation process must be very simple, or the
activation of this CIM-Dynamic must be very infrequent.

On the other hand, in the case of a Focused process, the selection process
is very narrow, yielding only a small number of Atoms, which can then be
processed more intensively and expensively, on a per-Atom basis.

Common selection processes for Focused cognitive processes are fitness-
oriented selectors, which pick one or a set of Atoms from the AtomSpace
with a probability based on some numerical quantity associated with the
atom, such as properties of TruthValue or AttentionValue.

There are also more specific selection processes, which choose for example
Atoms obeying some particular combination of relationships in relation to
some other Atoms; say choosing only Atoms that inherit from some given
Atom already being processed. There is a notion, described in the PLN book,
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of an Atom Structure Template; this is basically just a predicate that applies
to Atoms, such as

P(X).tv

equals

((InheritanceLink X cat) AND (EvaluationLink eats(X,cheese)).tv

which is a template that matches everything that inherits from cat and eats
cheese. Templates like this allow a much more refined selection than the above
fitness-oriented selection process.

Selection processes can be created by composing a fitness-oriented process
with further restrictions, such as templates, or simpler type-based restric-
tions.

19.4.2 Implementation of MindAgents

MindAgents follow a very simple design. They need to provide a single
method through which they can be enacted, and they should execute their
actions is atomic, incremental steps, where each step should be relatively
quick. This design enables collaborative scheduling of MindAgents, at the
cost of allowing “opportunistic” agents to have more than their fair share of
resources. We rely on CogPrime developers to respect the above guidelines,
instead of trying to enforce exact resource allocations on the software level.

Each MindAgent can have a set of system parameters that guide its behav-
ior. For instance, a MindAgent dedicated to inference can provide drastically
different conclusions if its parameters tell it to select a small set of Atoms
for processing each time, but to spend significant time on each Atom, rather
than selecting many Atoms and doing shallow inferences on each one. It’s ex-
pected that multiple copies of the same MindAgent will exist in the cluster,
but delivering different dynamics thanks to those parameters.

In addition to their main action method, MindAgents can also communi-
cate with other MindAgents through message queues. The CogPrime has, in
its runtime configuration, a list of avaliable MindAgents and their locations
in the cluster. Communications between MindAgents typically take the form
of specific, one-time requests, which we call Tasks.

The default action of MindAgents and the processing of Tasks consistute
the cognitive dynamics of CogPrime . Nearly everything that takes place
within a CogPrime deployment is done by either a MindAgent (including the
control processes), a Task, or specialized code handling AtomSpace internals
or communications with the external world. We now talk about how those
dynamics are scheduled.
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MindAgents live inside a process called a CogPrime Unit. One machine
in a CogPrime cluster can contain one or more Units, and one Unit can
contain one or more MindAgents. In practice, given the way the AtomSpace
is distributed, which requires a control process in each machine, it typically
makes more sense to have a single Unit per machine, as this enables all
MindAgents in that machine to make direct function calls to the AtomSpace,
instead of using more expensive inter-process communication.

There are exceptions to the above guideline, to accommodate various sit-
uations:

1. Very specific MindAgents may not need to communicate with other
agents, or only do so very rarely, so it makes sense to give them their
own process.

2. MindAgents whose implementation is a poor fit for the collaborative pro-
cessing in small increments design described above also should be given
their own process, so they don’t interfere with the overall dynamics in
that machine.

3. MindAgents whose priority is either much higher or much lower than that
of other agents in the same machine should be given their own process,
so operating system-level scheduling can be relied upon to reflect those
very different priority levels.

19.4.3 Tasks

It is not convenient for CogPrime to do all its work directly via the action
of MindAgent objects embodying CIM-Dynamics. This is especially true for
MindAgents embodying focused cognitive processes. These have their selec-
tion algorithms, which are ideally suited t to guarantee that, over the long
run, the right Atoms get selected and processed. This, however, doesn’t ad-
dress the issue that, on many occasions, it may be necessary to quickly process
a specific set of Atoms in order to execute an action or rapidly respond to
some demand. These actions tend to be one-time, rather than the recurring
patterns of mind dynamics.

While it would be possible to design MindAgents so that they could both
cover their long term processing needs and rapidly respond to urgent de-
mands, we found it much simpler to augment the MindAgent framework
with an additional scheduling mechanism that we call the Task framework.
In essence, this is a ticketing system, designed to handle cases where MindA-
gents or Schema spawn one-off tasks to be executed – things that need to
be done only once, rather that repeatedly and iteratively as with the things
embodied in MindAgents.

For instance, grab the most important Atoms from the AtomSpace and
do shallow PLN reasoning to derive immediate conclusions from them is a
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natural job for a MindAgent. But do search to find entities that satisfy this
particular predicate P is a natural job for a Task.

Tasks have AttentionValues and target MindAgents. When a Task is cre-
ated it is submitted to the appropriate Unit and then put in a priority queue.
The Unit will schedule some resources to processing the more important
Tasks, as we’ll see next.

19.4.4 Scheduling of MindAgents and Tasks in a Unit

Wthin each Unit we have one or more MindAgents, a Task queue and, op-
tionally, a subset of the distributed AtomSpace. If that subset isn’t held in
the unit, it’s held in another process running on the same machine. If there
is more than one Unit per machine, their relative priorities are handled by
the operating system’s scheduler.

In addition to the Units, CogPrime has an extra maintenance process
per machine, whose job is to handle changes in those priorities as well as
reconfigurations caused by MindAgent migration, and machines joining or
leaving the CogPrime cluster.

So, at the Unit level, attention allocation in CogPrime has two aspects: how
MindAgents and Tasks receive attention from CogPrime , and how Atoms
receive attention from different MindAgents and Tasks. The topic of this
Section is the former. The latter is dealt with elsewhere, in two ways:

• in Chapter 23, which discusses the dynamic updating of the Attention-
Value structures associated with Atoms, and how these determine how
much attention various focused cognitive processes MindAgents pay to
them.
• in the discussion of various specific CIM-Dynamics, each of which may

make choices of which Atoms to focus on in its own way (though generally
making use of AttentionValue and TruthValue in doing so).

The attention allocation subsystem is also pertinent to MindAgent schedul-
ing, because it discusses dynamics that update ShortTermImportance (STI)
values associated with MindAgents, based on the usefulness of MindAgents
for achieving system goals. In this chapter, we will not enter into such cogni-
tive matters, but will merely discuss the mechanics by which these STI values
are used to control processor allocation to MindAgents.

Each instance of a MindAgent has its own AttentionValue, which is used
to schedule processor time within the Unit. That scheduling is done by a
Scheduler object which controls a collection of worker threads, whose size is
a system parameter. The Scheduler aims to allocate worker threads to the
MindAgents in a way that’s roughly proportional to their STI, but it needs
to account for starvation, as well as the need to process the Tasks in the task
queue.
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This is an area in which we can safely borrow from reaosnably mature
computer science research. The requirements of cognitive dynamics schedul-
ing are far from unique, so this is not a topic where new ideas need to be
invented for OpenCog; rather, designs need to be crafted meeting CogPrime
’s specific requirements based on state-of-the-art knowledge and experience.

One example scheduler design has two important inputs: the STI associ-
ated with each MindAgent, and a parameter determining how much resources
should go to the MindAgents vs the Task queue. In the CogPrime implemen-
tation, the Scheduler maps the MindAgent STIs to a set of priority queues,
and each queue is run a number of times per cycle. Ideally one wants to keep
the number of queues small, and rely on multiple Units and the OS-level
scheduler to handle widely different priority levels.

When the importance of a MindAgent changes, one just has to reassign it
to a new queue, which is a cheap operation that can be done between cycles.
MindAgent insertions and removals are handled similarly.

Finally, Task execution is currently handled via allocating a certain fixed
percentage of processor time, each cycle, to executing the top Tasks on the
queue. Adaptation of this percentage may be valuable in the long term but
was not yet implemented.

Control processes are also implemented as MindAgents, and processed in
the same way as the other kinds of CIM-Dynamics, although they tend to
have fairly low importance.

19.4.5 The Cognitive Cycle

We have mentioned the concept of a “cycle” in the discussion about schedul-
ing, without explaining what we mean. Let’s address that now. All the Units
in a CogPrime cluster are kept in sync by a global cognitive cycle, whose
purpose is described in Section VII.

We mentioned above that each machine in the CogPrime cluster has a
housekeeping process. One of its tasks is to keep track of the cognitive cycle,
broadcasting when the machine has finished its cycle, and listening to similar
broadcasts from its counterparts in the cluster. When all the machines have
completed a cycle, a global counter is updated, and each machine is then free
to begin the next cycle.

One potential annoyance with this global cognitive cycle is that some ma-
chines may complete their cycle much faster than others, and then sit idly
while the stragglers finish their jobs. CogPrime addresses this issue in two
ways:

• Over the long run, a load balancing process will assign MindAgents from
overburdened machines to underutilized ones. The MindAgent migration
process is described in the next section.
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• In a shorter time horizon, during which a machine’s configuration is fixed,
there are two heuristics to minimize the waste of processor time without
breaking the overall cognitive cycle coordination:

– The Task queue in each of the machine’s Units can be processed more
extensively than it would by default; in extreme cases, the machine
can go through the whole queue.

– Background process MindAgents can be given extra activations, as
their activity is unlikely to throw the system out of sync, unlike with
more focused and goal-oriented processes.

Both heuristics are implemented by the scheduler inside each unit, which
has one boolean trigger for each heuristic. The triggers are set by the
housekeeping process when it observes that the machine has been fre-
quently idle over the recent past, and then reset if the situation changes.

19.5 Distributed AtomSpace and Cognitive Dynamics

As hinted above, realistic CogPrime deployments will be spread around rea-
sonably large clusters of co-located machines. This section describes how this
distributed deployment scenario is planned for in the design of the Atom-
Space and the MindAgents, and how the cognitive dynamics take place in
such a scenario.

We won’t review the standard principles of distributed computing here,
but we will focus on specific issues that arise when the CogPrime is spread
across a relatively large number of machines. The two key issues that need
to be handled are:

• How to distribute knowledge (i.e., the AtomSpace) in a way that doesn’t
impose a large performance penalty?

• How to allocate resources (i.e., machines) to the different cognitive pro-
cesses (MindAgents) in a way that’s flexible and dynamic?

19.5.1 Distributing the AtomSpace

The design of a distributed AtomSpace was guided by the following high level
requirements:

1. Scale up, transparently, to clusters of dozens to hundreds of machines,
without requiring a single central master server.

2. The ability to store portions of an Atom repository on a number of ma-
chines in a cluster, where each machine also runs some MindAgens. The
distribution of Atoms across the machines should benefit from the fact
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that the cognitive processes on one machine are likely to access local
Atoms more often than remote ones.

3. Provide transparent access to all Atoms in RAM to all machines in the
cluster, even if at different latency and performance levels.

4. For local access to Atoms in the same machine, performance should be as
close as possible to what one would have in a similar, but non-distributed
AtomSpace.

5. Allow multiple copies of the same Atom to exist in different machines of
the cluster, but only one copy per machine.

6. As Atoms are updated fairly often by cognitive dynamics, provide a mech-
anism for eventual consistency. This mechanism needs not only to prop-
agate changes to the Atoms, but sometimes to reconcile incompatible
changes, such as when two cognitive processes update an Atom’s Truth-
Value in opposite ways. Consistency is less important than efficiency, but
should be guaranteed eventually.

7. Resolution of inconsistencies should be guided by the importance of the
Atoms involved, so the more important ones are more quickly resolved.

8. System configuration can explicitly order the placement of some Atoms
to specific machines, and mark a subset of those Atoms as immovable,
which should ensure that local copies are always kept.

9. Atom placement across machines, aside from the immovable Atoms,
should be dynamic, rebalancing based on frequency of access to the Atom
by the different machines.

The first requirement follows obviously from our estimates of how many
machines CogPrime will require to display advanced intelligence.

The second requirement above means that we don’t have two kinds of
machines in the cluster, where some are processing servers and some are
database servers. Rather, we prefer each machine to store some knowledge and
host some processes acting on that knowledge. This design assumes that there
are simple heuristic ways to partition the knowledge across the machines,
resulting in allocations that, most of the time, give the MindAgents local
access to the Atoms they need most often.

Alas, there will always be some cases in which a MindAgent needs an Atom
that isn’t available locally. In order to keep the design on the MindAgents
simple, this leads to the third requirement, transparency, and to the fourth
one, performance.

This partition design, on the other hand, means that there must be some
replication of knowledge, as there will always be some Atoms that are needed
often by MindAgents on different machines. This leads to requirement five
(allow redundant copies of an Atom). However, as MindAgents frequently
update the mutable components of Atoms, requirements six and seven are
needed, to minimize the impact of conflicts on system performance while
striving to guarantee that conflicts are eventually solved, and with priority
proportional to the importance of the impacted Atoms.
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19.5.1.1 Mechanisms of Managing Distributed Atomspaces

When one digs into the details of distributed AtomSpaces, a number of sub-
tleties emerge. Going into these in full detail here would not be appropriate,
but we will make a few comments, just to give a flavor of the sorts of issues
involved.

To discuss these issues clearly, some special terminology is useful. In this
context, it is useful to reserve the word "Atom" for its pure, theoretical
definition, viz: "a Node is uniquely determined by its name. A Link is uniquely
determined by its outgoing set". Atoms sitting in RAM may then be called
"Realized Atoms". Thus, given a single, pure "abstract/theoretical" Atom,
there might be two different Realized Atoms, on two different servers, having
the same name/outgoing-set. It’s OK to think of a RealizedAtom as a clone
of the pure, abstract Atom, and to talk about it that way. Analogously, we
might call atoms living on disk, or flying on a wire, "Serialized Atoms";
and, when need be, use specialized terms like "ZMQ-serialized atoms", or
"BerkeleyDB-serialized Atoms", etc.

An important and obvious coherency requirement is: "If a MindAgent asks
for the Handle of an Atom at time A, and then asks, later on, for the Handle
of the same Atom, it should receive the same Handle."

By the "AtomSpace", in general, we mean the container(s) that are used to
store the set of Atoms used in an OpenCog system, both in RAM and on disk.
In the case of an Atom space that is distributed across multiple machines or
other data stores, we will call each of these an "Atom space portion"

Atoms and Handles

Each OpenCog Atom is associated with a Handle object, which is used to
identify the Atom uniquely. The Handle is a sort of "key" used, at the in-
frastructure level, to compactly identify the Atom. In a single-machine, non-
distributed Atomspace, one can effectively just use long ints as Handles, and
assign successive ints as Handles to successively created new Atoms. In a
distributed Atomspace, it’s a little subtler. Perhaps the cleanest approach in
this case is to use a hash of the serialized Atom data as the handle for an
Atom. That way, if an Atom is created in any portion, it will inherently have
the same handle as any of its clones.

The issue of Handle collisions then occurs – it is possible, though it will
be rare, that two different Atoms will be assigned the same Handle via the
hashing function. This situation can be identified via checking, when an Atom
is imported into a portion, whether there is already some Atom in that portion
with the same Handle but different fundamental aspects. In the rare occasion
where this situation does occur, one of the Atoms must then have its Handle
changed. Changing an Atom’s handle everywhere it’s referenced in RAM is
not a big deal, so long as it only happens occasionally. However, some sort
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of global record of Handle changes should be kept, to avoid confusion in the
process of loading saved Atoms from disk. If a loaded Atomspace contains
Atoms that have changed Handle since the file was saved, the Atom loading
process needs to know about this.

The standard mathematics of hash functions collisions, shows that if one
has a space of H possible Handles, one will get two Atoms with the same
Handle after 1.25 ×

√
(H) tries, on average.... Rearranging this, it means

we’d need a space of around N2 Handles to have a space of Handles for N
possible Atoms, in which one collision would occur on average.... So to have
a probability of one collision, for N possible Atoms, one would have to use
a handle range up to N2. The number of bits needed to encode N2 is twice
as many as the number needed to encode N . So, if one wants to minimize
collisions, one may need to make Handles twice as long, thus taking up more
memory.

However, this memory cost can be palliated via introducing "local Han-
dles" separate from the global, system-wide Handles. The local Handles are
used internally within each local Atomspace, and then each local Atomspace
contains a translation table going back and forth between local and global
Handles. Local handles may be long ints, allocated sequentially to each new
Atom entered into a portion. Persistence to disk would always use the global
Handles.

To understand the memory tradeoffs involved in these solutions, assume
that the global Handles were k times as long as the local handles... and
suppose that the average Handle occurred r times in the local Atomspace.
Then the memory inflation ratio of the local/global solution as opposed to a
solution using only the shorter local handles, would be

(1 + k + r)/r = 1 + (k + 1)/r

if k=2 and r=10 (each handle is used 10 times on average, which is realistic
based on current real-world OpenCog Atomspaces), then the ratio is just 1.3x
– suggesting that using hash codes for global Handles, and local Handles to
save memory in each local AtomSpace, is acceptable memory-wise.

19.5.1.2 Distribution of Atoms

Given the goal of maximizing the probability that an Atom will be local
to the machines of the MindAgents that need it, the two big decisions are
how to allocate Atoms to machines, and then how to reconcile the results of
MindAgents actuating on those Atoms.

The initial allocation of Atoms to machines may be done via explicit sys-
tem configuration, for Atoms known to have different levels of importance to
specific MindAgents. That is, after all, how MindAgents are initially allocated
to machines as well.
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One may, for instance, create a CogPrime cluster where one machine (or
group) focuses on visual perception, one focuses on language processing, one
focuses on abstract reasoning, etc. In that case one can hard-wire the location
of Atoms.

What if one wants to have three abstract-reasoning machines in one’s clus-
ter? Then one can define an abstract-reasoning zone consisting of three Atom
repository portions. One can hard-wire that Atoms created by MindAgents
in the zone must always remain in that zone – but can potentially be moved
among different portions within that zone, as well as replicated across two or
all of the machines, if need be. By default they would still initially be placed
in the same portion as the MindAgent that created them.

However Atoms are initially placed in portions, sometimes it will be ap-
propriate to move them. And sometimes it will be appropriate to clone an
Atom, so there’s a copy of it in a different portion from where it exists. Various
algorithms could work for this, but the following is one simple mechanism:

• When an Atom A in machineM1 is requested by a MindAgent in machine
M2, then a clone of A is temporarily created in M2.

• When an Atom is forgotten (due to low LTI), then a check is made if it
has any clones, and any links to it are changed into links to its clones.

• The LTI of an Atom may get a boost if that Atom has no clones (the
amount of this boost is a parameter that may be adjusted).

19.5.1.3 MindAgents and the Distributed AtomSpace

In the context of a distributed AtomSpace, the interactions between MindA-
gents and the knowledge store become subtler, as we’ll now discuss.

When a MindAgent wants to create an Atom, it will make this request of
the local AtomSpace process, which hosts a subset of the whole AtomSpace.
It can, on Atom creation, specify whether the Atom is immovable or not. In
the former case, it will initially only be accessible by the MindAgents in the
local machine.

The process of assigning the new Atom an AtomHandle needs to be taken
care of, in a way that doesn’t introduce a central master. One way to achieve
that is to make handles hierarchical, so the higher order bits indicate the
machine. This, however, means that AtomHandles are no longer immutable.
A better idea is to automatically allocate a subset of the AtomHandle universe
to each machine. The initial use of those AtomHandles is the privilege of that
machine but, as Atoms migrate or are cloned, the handles can move through
the cluster.

When a MindAgent wants to retrieve one or more Atoms, it will perform a
query on the local AtomSpace subset, just as it would with a single machine
repository. Along with the regular query parameters, it may specify whether
the request should be processed locally only, or globally. Local queries will be
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fast, but may fail to retrieve the desired Atoms, while global queries may take
a while to return. In the approach outlined above for MindAgent dynamics
and scheduling, this would just cause the MindAgent to wait until results are
available.

Queries designed to always return a set of Atoms can have a third mode,
which is “prioritize local Atoms”. In this case, the AtomSpace, when process-
ing a query that looks for Atoms that match a certain pattern would try to
find all local responses before asking other machines.

19.5.1.4 Conflict Resolution

A key design decision when implementing a distributed AtomSpace is the
trade-off between consistency and efficiency. There is no universal answer to
this conflict, but the usage scenarios for CogPrime , current and planned,
tend to fall on the same broad category as far consistency goes. CogPrime
’s cognitive processes are relatively indifferent to conflicts and capable of
working well with outdated data, especially if the conflicts are temporary. For
applications such as the AGI Preschool, it is unlikely that outdated properties
of single Atoms will have a large, noticeable impact on the system’s behavior;
even if that were to happen on rare occasions, this kind of inconsistency if
often present in human behavior as well.

On the other hand, CogPrime assumes fairly fast access to Atoms by the
cognitive processes, so efficiency shouldn’t be too heavily penalized. The ro-
bustness against mistakes and the need for performance mean that a dis-
tributed AtomSpace should follow the principle of “eventual consistency”.
This means that conflicts are allowed to arise, and even to persist for a while,
but a mechanism is needed to reconcile them.

Before describing conflict resolution, which in CogPrime is a bit more
complicated than in most applications, we note that there are two kinds
of conflicts. The simple one happens when an Atom that exists in multi-
ple machines is modified in one machine, and that change isn’t immediately
propagated. The less obvious one happens when some process creates a new
Atom in its local AtomSpace repository, but that Atom conceptually “already
exists” elsewhere in the system. Both scenarios are handled in the same way,
and can become complicated when, instead of a single change or creation,
one needs to reconcile multiple operations.

The way to handle conflicts is to have a special purpose control process,
a reconciliation MindAgent, with one copy running on each machine in the
cluster. This MindAgent keeps track of all recent write operations in that
machine (Atom creations or changes).

Each time the reconciliation MindAgent is called, it processes a certain
number of Atoms in the recent writes list. It chooses the Atoms to process
based on a combination of their STI, LTI and recency of creation/change.
Highest priority is given to Atoms with higher STI and LTI that have been
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around longer. Lowest priority is given to Atoms with low STI or LTI that
have been very recently changed – both because they may change again in
the very near future, and because they may be forgotten before it’s worth
solving any conflicts. This will be the case with most perceptual Atoms, for
instance.

By tuning how many Atoms this reconciliation MindAgent processes each
time it’s activated we can tweak the consistency vs efficiency trade-off.

When the AtomReconciliation agent processes an Atom, what it does is:

• Searches all the machines in the cluster to see if there are other equivalent
Atoms (for Nodes, these are Atoms with the same name and type; for
Links, these are Atoms with the same type and targets).

• If it finds equivalent Atoms, and there are conflicts to be reconciled, such
as different TruthValues or AttentionValues, the decision of how to handle
the conflicts is made by a special probabilistic reasoning rule, called the
Rule of Choice (see Chapter decides what to do, using the PLN Rule of
Choice (see Chapter 34). Basically, this means:

– It decided whether to merge the conflicting Atoms. We always merge
Links, but some Nodes may have different semantics, such as Nodes
representing different procedures that have been given the same
name.

– In the case that the two Atoms A and B should be merged, it creates
a new Atom C that has all the same immutable properties as A and
B. It merges their TruthValues according to the probabilistic revision
rule (see Chapter 34). The AttentionValues are merged by prioritizing
the higher importances.

– In the case that two Nodes should be allowed to remain separate,
it allocates one of them (say, B) a new name. Optionally, it also
evaluates whether a SimilarityLink should be created between the
two different Nodes.

Another use for the reconcilitation MindAgent is maintaining approximate
consistency between clones, which can be created by the AtomSpace itself,
as described above in Subsection 19.5.1.2. When the system knows about
the multiple clones of an Atom, it keeps note of these versions in a list,
which is processed periodically by a conflict resolution MindAgent, in order to
prevent the clones from drifting too far apart by the actions of local cognitive
processes in each machine.

19.5.2 Distributed Processing

The OCF infrastructure as described above already contains a lot of dis-
tributed processing implicit in it. However, it doesn’t tell you how to make
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the complex cognitive processes that are part of the CogPrime design dis-
tributed unto themselves – say, how to make PLN or MOSES themselves
distributed. This turns out to be quite possible, but becomes quite intricate
and specific depending on the particular algorithms involved. For instance,
the current MOSES implementation is now highly amenable to distributed
and multiprocessor implementation, but in a way that depends subtly on the
specifics of MOSES and has little to do with the role of MOSES in CogPrime
as a whole. So we will not delve into these topics here.

Another possibility worth mentioning is broadly distributed processing, in
which CogPrime intelligence is spread across thousands or millions of rel-
atively weak machines networked via the Internet. Even if none of these
machines is exclusively devoted to CogPrime , the total processing power
may be massive, and massively valuable. The use of this kind of broadly dis-
tributed computing resource to help CogPrime is quite possible, but involves
numerous additional control problems which we will not address here.

A simple case is massive global distribution of MOSES fitness evaluation.
In the case where fitness evaluation is isolated and depends only on local
data, this is extremely straightforward. In the more general case where fitness
evaluation depends on knowledge stored in a large AtomSpace, it requires
a subtler design, wherein each globally distributed MOSES subpopulation
contains a pool of largely similar genotypes, and contains a cache of relevant
parts of the AtomSpace, which is continually refreshed during the fitness
evaluation process. This can work so long as each globally distributed lobe
has a reasonably reliable high-bandwidth connection to a machine containing
a large AtomSpace.

On the more mundane topic of distributed processing within the main
CogPrime cluster, three points are worth discussing:

• Distributed communication and coordination between MindAgents.
• Allocation of machines to functional groups, and MindAgent migration.
• Machines entering and leaving the cluster.

19.5.2.1 Distributed Communication and Coordination

Communications between MindAgents, Units and other CogPrime compo-
nents are handled by a message queue subsystem. This subsystem provides
a unified API, so the agents involved are unaware of the location of their
partners: distributed messages, inter-process messages in the same machine,
and intra-process messages in the same Unit are sent through the same API,
and delivered to the same target queues. This design enables transparent
distribution of MindAgents and other components.

In the simplest case, of MindAgents within the same Unit, messages are
delivered almost immediately, and will be available for processing by the tar-
get agent the next time it’s enacted by the scheduler. In the case of messages
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sent to other Units or other machines, they’re delivered to the messaging
subsystem component of that unit, which has a dedicated thread for mes-
sage delivery. That subsystem is scheduled for processing just like any other
control process, although it tends to have a reasonably high importance, to
ensure speedy delivery.

The same messaging API and subsystem is used for control-level communi-
cations, such as the coordination of the global cognitive cycle. The cognitive
cycle completion message can be used for other housekeeping contents as well.

19.5.2.2 Functional Groups and MindAgent Migration

A CogPrime cluster is composed of groups of machines dedicated to various
high-level cognitive tasks: perception processing, language processing, back-
ground reasoning, procedure learning, action selection and execution, goal
achievement planning, etc. Each of these high-level tasks will probably re-
quire a number of machines, which we call functional groups.

Most of the support needed for functional groups is provided transparently
by the mechanisms for distributing the AtomSpace and by the communica-
tions layer. The main issue is how much resources (i.e., how many machines)
to allocate to each functional group. The initial allocation is determined by
human administrators via the system configuration – each machine in the
cluster has a local configuration file which tells it exactly which processes to
start, along with the collection of MindAgents to be loaded onto each process
and their initial AttentionValues.

Over time, however, it may be necessary to modify this allocation, adding
machines to overworked or highly important functional groups. For instance,
one may add more machines to the natural language and perception process-
ing groups during periods of heavy interaction with humans in the preschool
environment, while repurposing those machines to procedure learning and
background inference during periods in which the agent controlled by Cog-
Prime is resting or “sleeping”.

This allocation of machines is driven by attention allocation in much the
same way that processor time is allocated to MindAgents. Functional groups
can be represented by Atoms, and their importance levels are updated ac-
cording to the importance of the system’s top level goals, and the usefulness
of each functional group to their achievement. Thus, once the agent is en-
gaged by humans, the goals of pleasing them and better understanding them
would become highly important, and would thus drive the STI of the language
understanding and language generation functional groups.

Once there is an imbalance between a functional group’s STI and its share
of the machines in the cluster, a control process CIM-Dynamic is triggered
to decide how to reconfigure the cluster. This CIM-Dynamic works approxi-
mately as follows:
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• First, it decides how many extra machines to allocate to each sub-
represented functional group.

• Then, it ranks the machines not already allocated to those groups based
on a combination of their workload and the aggregate STI of their MindA-
gents and Units. The goal is to identify machines that are both relatively
unimportant and working under capacity.

• It will then migrate the MindAgents of those machines to other machines
in the same functional group (or just remove them if clones exist), freeing
them up.

• Finally, it will decide how best to allocate the new machines to each
functional group. This decision is heavily dependent on the nature of
the work done by the MindAgents in that group, so in CogPrime these
decisions will be somewhat hardcoded, as is the set of functional groups.
For instance, background reasoning can be scaled just by adding extra
inference MindAgents to the new machines without too much trouble, but
communicating with humans requires MindAgents responsible for dialog
management, and it doesn’t make sense to clone those, so it’s better
to just give more resources to each MindAgent without increasing their
numbers.

The migration of MindAgents becomes, indirectly, a key driver of Atom
migration. As MindAgents move or are cloned to new machines, the Atom-
Space repository in the source machine should send clones of the Atoms most
recently used by these MindAgents to the target machine(s), anticipating a
very likely distributed request that would create those clones in the near fu-
ture anyway. If the MindAgents are moved but not cloned, the local copies
of those Atoms in the source machine can then be (locally) forgotten.

19.5.2.3 Adding and Removing Machines

Given the support for MindAgent migration and cloning outlined above, the
issue of adding new machines to the cluster becomes a specific application of
the heuristics just described. When a new machine is added to the cluster,
CogPrime initially decides on a functional group for it, based both on the
importance of each functional group and on their current performance – if
a functional group consistently delays the completion of the cognitive cycle,
it should get more machines, for instance. When the machine is added to a
functional group, it is then populated with the most important or resource
starved MindAgents in that group, a decision that is taken by economic
attention allocation.

Removal of a machine follows a similar process. First the system checks if
the machine can be safely removed from its current functional group, without
greatly impacting its performance. If that’s the case, the non-cloned MindA-
gents in that machine are distributed among the remaining machines in the
group, following the heuristic described above for migration. Any local-only



19.5 Distributed AtomSpace and Cognitive Dynamics 413

Atoms in that machine’s AtomSpace container are migrated as well, provided
their LTI is high enough.

In the situation in which removing a machine M1 would have an intoler-
able impact on the functional group’s performance, a control process selects
another functional group to lose a machine M2. Then, the MindAgents and
Atoms in M1 are migrated to M2, which goes through the regular removal
process first.

In principle, one might use the insertion or removal of machines to per-
form a global optimization of resource allocation within the system, but that
process tends to be much more expensive than the simpler heuristics we just
described. We believe these heuristics can give us most of the benefits of
global re-allocation at a fraction of the disturbance for the system’s overall
dynamics during their execution.





Chapter 20
Knowledge Representation Using the
Atomspace

20.1 Introduction

CogPrime ’s knowledge representation must be considered on two levels: im-
plicit and explicit. This chapter considers mainly explicit knowledge repre-
sentation, with a focus on representation of declarative knowledge. We will
describe the Atom knowledge representation, a generalized hypergraph for-
malism which comprises a specific vocabulary of Node and Link types, used
to represent declarative knowledge but also, to a lesser extent, other types
of knowledge as well. Other mechanisms of representing procedural, episodic,
attentional, and intentional knowledge will be handled in later chapters, as
will the subtleties of implicit knowledge representation.

The AtomSpace Node and Link formalism is the most obviously distinctive
aspect of the OpenCog architecture, from the point of view of a software
developer building AI processes in the OpenCog framework. But yet, the
features of CogPrime that are most important, in terms of our theoretical
reasons for estimating it likely to succeed as an advanced AGI system, are
not really dependent on the particulars of the AtomSpace representation.

What’s important about the AtomSpace knowledge representation is
mainly that it provides a flexible means for compactly representing multi-
ple forms of knowledge, in a way that allows them to interoperate – where by
"interoperate" we that e.g. a fragment of a chunk of declarative knowledge
can link to a fragment of a chunk of attentional or procedural knowledge; or
a chunk of knowledge in one category can overlap with a chunk of knowledge
in another category (as when the same link has both a (declarative) truth
value and an (attentional) importance value). In short, any representational
infrastructure sufficiently flexible to support

• compact representation of all the key categories of knowledge playing
dominant roles in human memory

415
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• the flexible creation of specialized sub-representations for various partic-
ular subtypes of knowledge in all these categories, enabling compact and
rapidly manipulable expression of knowledge of these subtypes

• the overlap and interlinkage of knowledge of various types, including that
represented using specialized sub-representations

will probably be acceptable for CogPrime ’s purposes. However, precisely
formulating these general requirements is tricky, and is significantly more
difficult than simply articulating a single acceptable representational scheme,
like the current OpenCog Atom formalism. The Atom formalism satisfies
the relevant general requirements and has proved workable from a practical
software perspective.

In terms of the Mind-World Correspondence Principle introduced in Chap-
ter 10, the important point regarding the Atom representation is that it must
be flexible enough to allow the compact and rapidly manipulable represen-
tation of knowledge that has aspects spanning the multiple common human
knowledge categories, in a manner that allows easy implementation of cogni-
tive processes that will manifest the Mind-World Correspondence Principle
in everyday human-like situations. The actual manifestation of mind-world
correspondence is the job of the cognitive processes acting on the AtomSpace
– the job of the AtomSpace is to be an efficient and flexible enough represen-
tation that these cognitive processes can manifest mind-world correspondence
in everyday human contexts given highly limited computational resources.

20.2 Denoting Atoms

First we describe the textual notation we’ll use to denote various sorts of
Atom throughout the following chapters. The discussion will also serve to
give some particular examples of cognitively meaningful Atom constructs.

20.2.1 Meta-Language

As always occurs when discussing (even partially) logic-based systems, when
discussing CogPrime there is some potential for confusion between logical
relationships inside the system, and logical relationships being used to de-
scribe parts of the system. For instance, we can state as observers that two
Atoms inside CogPrime are equivalent, and this is different from stating that
CogPrime itself contains an Equivalence relation between these two Atoms.
Our formal notation needs to reflect this difference.

Since we will not be doing any fancy mathematical analyses of CogPrime
structures or dynamics here, there is no need to formally specify the logic
being used for the metalanguage. Standard predicate logic may be assumed.
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So, for example, we will say things like

(IntensionalInheritanceLink Ben monster).TruthValue.strength = .5

This is a metalanguage statement, which means that the strength field of
the TruthValue object associated with the link (IntensionalInheritance Ben
monster) is equal to .5. This is different than saying

EquivalenceLink
ExOutLink

GetStrength
ExOutLink

GetTruthValue
IntensionalInheritanceLink Ben monster

NumberNode 0.5

which refers to an equivalence relation represented inside CogPrime . The
former refers to an equals relationship observed by the authors of the book,
but perhaps never represented explicitly inside CogPrime .

In the first example above we have used the C++ convention

structure_variable_name.field_name

for denoting elements of composite structures; this convention will be stated
formally below.

In the second example we have used schema corresponding to TruthValue
and Strength; these schema extract the appropriate fields from the Atoms
they’re applied to, so that e.g.

ExOutLink
GetTruthValue
A

returns the number

A.TruthValue

Following a convention from mathematical logic, we will also sometimes
use the special symbol

|-

to mean "implies in the metalanguage." For example, the first-order PLN
deductive inference strength rule may be written

InheritanceLink A B <sAB>
InheritanceLink B C <sBC>
|-
InheritanceLink A C <sAC>

where

sAC = sAB sBC + (1-sAB) ( sC - sB sBC ) / (1- sB )

This is different from saying
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ForAll $A, $B, $C, $sAB, $sBC, $sAC

ExtensionalImplicationLink_HOJ
AND

InheritanceLink $A $B <$sAB>
InheritanceLink $B $C <$sBC>

AND
InheritanceLink $A $C <$sAC>
$sAC = $sAB $sBC + (1-$sAB) ($sC - $sB $sBC) / (1- $sB)

which is the most natural representation of the independence-based PLN de-
duction rule (for strength-only truth values) as a logical statement within
CogPrime . In the latter expression the variables $A, $sAB, and so forth rep-
resent actual Variable Atoms within CogPrime . In the former expression the
variables represent concrete, non-Variable Atoms within CogPrime , which
however are being considered as variables within the metalanguage.

(As explained in the PLN book, a link labeled with “HOJ” refers to a
“higher order judgment”, meaning a relationship that interprets its relations
as entities with particular truth values. For instance,
ImplicationLink_HOJ

Inh $X stupid <.9>
Inh $X rich <.9>

means that if (Inh $X stupid) has a strength of .9, then (Inh $X rich) has a
strength of .9). WIKISOURCE:AtomNotation

20.2.2 Denoting Atoms

Atoms are the basic objects making up CogPrime knowledge. They come in
various types, and are associated with various dynamics, which are embod-
ied in MindAgents. Generally speaking Atoms are endowed with TruthValue
and AttentionValue objects. They also sometimes have names, and other as-
sociated Values as previously discussed. In the following subsections we will
explain how these are notated, and then discuss specific notations for Links
and Nodes, the two types of Atoms in the system.

20.2.2.1 Names

In order to denote an Atom in discussion, we have to call it something.
Relatedly but separately, Atoms may also have names within the CogPrime
system. (As a matter of implementation, in the current OpenCog version, no
Links have names; whereas, all Nodes have names, but some Nodes have a
null name, which is conceptually the same as not having a name.)

(name,type) pairs must be considered as unique within each Unit within a
OpenCog system, otherwise they can’t be used effectively to reference Atoms.
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It’s OK if two different OpenCog Units both have SchemaNodes named “+”,
but not if one OpenCog Unit has two SchemaNodes both named “+” - this
latter situation is disallowed on the software level, and is assumed in discus-
sions not to occur.

Some Atoms have natural names. For instance, the SchemaNode corre-
sponding to the elementary schema function + may quite naturally be named
“+”. The NumberNode corresponding to the number .5 may naturally be
named “.5”, and the CharacterNode corresponding to the character c may
naturally be named “c”. These cases are the minority, however. For instance,
a SpecificEntityNode representing a particular instance of + has no natural
name, nor does a SpecificEntityNode representing a particular instance of c.

Names should not be confused with Handles. Atoms have Handles, which
are unique identifiers (in practice, numbers) assigned to them by the OpenCog
core system; and these Handles are how Atoms are referenced internally,
within OpenCog, nearly all the time. Accessing of Atoms by name is a special
case - not all Atoms have names, but all Atoms have Handles. An example of
accessing an Atom by name is looking up the CharacterNode representing the
letter “c” by its name “c”. There would then be two possible representations
for the word “cat”:

1. this word might be associated with a ListLink - and the ListLink cor-
responding to “cat” would be a list of the Handles of the Atoms of the
nodes named “c”, “a”, and “t”.

2. for expedience, the word might be associated with a WordNode named
“cat.”

In the case where an Atom has multiple versions, this may happen for in-
stance if the Atom is considered in a different context (via a ContextLink),
each version has a VersionHandle, so that accessing an AtomVersion requires
specifying an AtomHandle plus a VersionHandle. See Chapter 19 for more
information on Handles.

OpenCog never assigns Atoms names on its own; in fact, Atom names are
assigned only in the two sorts of cases just mentioned:

1. Via preprocessing of perceptual inputs (e.g. the names of NumberNode,
CharacterNodes)

2. Via hard-wiring of names for SchemaNodes and PredicateNodes corre-
sponding to built-in elementary schema (e.g. +, AND, Say)

If an Atom A has a name n in the system, we may write

A.name = n

On the other hand, if we want to assign an Atom an external name, we
may make a meta-language assertion such as

L1 := (InheritanceLink Ben animal)
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indicating that we decided to name that link L1 for our discussions, even
though inside OpenCog it has no name.

In denoting (nameless) Atoms we may use arbitrary names like L1. This is
more convenient than using a Handle based notation which Atoms would be
referred to as 1, 3433322, etc.; but sometimes we will use the Handle notation
as well.

Some ConceptNodes and conceptual PredicateNode or SchemaNodes may
correspond with human-language words or phrases like cat, bite, and so forth.
This will be the minority case; more such nodes will correspond to parts of
human-language concepts or fuzzy collections of human-language concepts.
In discussions in this book, however, we will often invoke the unusual case
in which Atoms correspond to individual human-language concepts. This is
because such examples are the easiest ones to write about and discuss in-
tuitively. The preponderance of named Atoms in the examples in the book
implies no similar preponderance of named Atoms in the real OpenCog sys-
tem. It is merely easier to talk about a hypothetical Atom named “cat” than
it is about a hypothetical Atom with Handle 434. It is not impossible that
a OpenCog system represents “cat” as a single ConceptNode, but it is just
as likely that it will represent “cat” as a map composed of many different
nodes without any of these having natural names. Each OpenCog works out
for itself, implicitly, which concepts to represent as single Atoms and which
in distributed fashion.

For another example,

ListLink
CharacterNode ‘‘c’’
CharacterNode ‘‘a’’
CharacterNode ‘‘t’’

corresponds to the character string

(‘‘c’’, ‘‘a’’, ‘‘t’’)

and would naturally be named using the string cat. In the system itself,
however, this ListLink need not have any name.

20.2.2.2 Types

Atoms also have types. When it is necessary to explicitly indicate the type
of an atom, we will use the keyword Type, as in

A.Type = InheritanceLink

N_345.Type = ConceptNode

On the other hand, there is also a built-in schema HasType which lets us
say

EvaluationLink HasType A InheritanceLink
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EvaluationLink HasType N_345 ConceptNode

This covers the case in which type evaluation occurs explicitly in the sys-
tem, which is useful if the system is analyzing its own emergent structures
and dynamics.

Another option currently implemented in OpenCog is to explicitly restrict
the type of a variable using TypedVariableLink such as follows

TypedVariableLink
VariableNode $X
VariableTypeNode "ConceptNode"

Note also that we will frequently remove the suffix Link or Node from
their type name, such as

Inheritance
Concept A
Concept B

instead of

InheritanceLink
ConceptNode A
ConceptNode B

20.2.2.3 Truth Values

The truth value of an atom is a bundle of information describing how true the
Atom is, in one of several different senses depending on the Atom type. It is
encased in a TruthValue object associated with the Atom. Most of the time,
we will denote the truth value of an atom in <>’s following the expression
denoting the atom. This very handy notation may be used in several different
ways.

A complication is that some Atoms may have CompositeTruthValues,
which consist of different estimates of their truth value made by different
sources, which for whatever reason have not been reconciled (maybe no pro-
cess has gotten around to reconciling them, maybe they correspond to dif-
ferent truth values in different contexts and thus logically need to remain
separate, maybe their reconciliation is being delayed pending accumulation
of more evidence, etc.). In this case we can still assume that an Atom has a
default truth value, which corresponds to the highest-confidence truth value
that it has, in the Universal Context.

Most frequently, the notation is used with a single number in the brackets,
e.g.

A <.4>

to indicate that the atom A has truth value .4; or

IntensionalInheritanceLink Ben monster <.5>
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to indicate that the IntensionalInheritance relation between Ben and monster
has truth value strength .5. In this case, <tv> indicates (roughly speaking)
that the truth value of the atom in question involves a probability distribution
with a mean of tv. The precise semantics of the strength values associated
with OpenCog Atoms is described in Probabilistic Logic Networks (see Chap-
ter 34). Please note, though: This notation does not imply that the only data
retained in the system about the distribution is the single number .5.

If we want to refer to the truth value of an Atom A in the context C, we
can use the construct

ContextLink <truth value>
C
A

Sometimes, Atoms in OpenCog are labeled with two truth value compo-
nents as defined by PLN: strength and weight-of-evidence. To denote these
two components, we might write

IntensionalInheritanceLink Ben scary <.9,.1>

indicating that there is a relatively small amount of evidence in favor of the
proposition that Ben is very scary.

We may also put the TruthValue indicator in a different place, e.g. using
indent notation,

IntensionalInheritanceLink <.9,.1>
Ben
scary

This is mostly useful when dealing with long and complicated constructions.
If we want to denote a composite truth value (whose components corre-

spond to different “versions” of the Atom), we can use a list notation, e.g.

IntensionalInheritance (<.9,.1>, <.5,.9> [h,123],<.6,.7> [c,655])
Ben
scary

where e.g.

<.5,.9> [h,123]

denotes the TruthValue version of the Atom indexed by Handle 123. The
h denotes that the AtomVersion indicated by the VersionHandle h,123 is a
Hypothetical Atom, in the sense described in the PLN book. Some versions
may not have any index Handles.

The semantics of composite TruthValues are described in the PLN book,
but roughly they are as follows. Any version not indexed by a VersionHandle is
a “primary TruthValue” that gives the truth value of the Atom based on some
body of evidence. A version indexed by a VersionHandle is either contextual
or hypothetical, as indicated notationally by the c or h in its VersionHandle.
So, for instance, if a TruthValue version for Atom A has VersionHandle h,123
that means it denotes the truth value of Atom A under the hypothetical



20.2 Denoting Atoms 423

context represented by the Atom with handle 123. If a TruthValue version
for Atom A has VersionHandle c,655 this means it denotes the truth value of
Atom A in the context represented by the Atom with Handle 655.

Alternately, truth values may be expressed sometimes in <L,U,b> or
<L,U,b,N> format, defined in terms of indefinite probability theory as de-
fined in the PLN book and recalled in Chapter 34. For instance,
IntensionalInheritanceLink Ben scary <.7,.9,.8,20>

has the semantics that There is an estimated 80% chance that after 20 more
observations have been made, the estimated strength of the link will be in the
interval (.7,.9).

The notation may also be used to specify a TruthValue probability distri-
bution, e.g.
A <g(5,7,12)>

would indicate that the truth value of A is given by distribution g with
parameters (5,7,12), or
A <M>

where M is a table of numbers, would indicate that the truth value of A is
approximated by the table M.

The <> notation for truth value is an unabashedly incomplete and am-
biguous notation, but it is very convenient. If we want to specify, say, that the
truth value strength of IntensionalInheritanceLink Ben monster is in fact the
number .5, and no other truth value information is retained in the system,
then we need to say

(IntensionalInheritance Ben monster).TruthValue = [(strength, .5)]

(where a hashtable form is assumed for TruthValue objects, i.e. a list of name-
value pairs). But this kind of issue will rarely arise here and the <> notation
will serve us well.

20.2.2.4 Attention Values

The AttentionValue object associated with an Atom does not need to be
notated nearly as often as truth value. When it does however we can use
similar notational methods.

AttentionValues may have several components, but the two critical ones
are called short-term importance (STI) and long-term importance (LTI). Fur-
thermore, multiple STI values are retained: for each (Atom, MindAgent) pair
there may be a Mind-Agent-specific STI value for that Atom. The pragmatic
import of these values will become clear in a later chapter when we discuss
attention allocation.

Roughly speaking, the long-term importance is used to control memory
usage: when memory gets scarce, the atoms with the lowest LTI value are
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removed. On the other hand, the short-term importance is used to control
processor time allocation: MindAgents, when they decide which Atoms to act
on, will generally, but not only, choose the ones that have proved most useful
to them in the recent past, and additionally those that have been useful for
other MindAgents in the recent past.

We will use the double bracket <<>> to denote attention value (in the
rare cases where such denotation is necessary). So, for instance,

Cow_7 <<.5>>

will mean the node Cow_7 has an importance of .5; whereas,

Cow_7 <<STI=.1, LTI = .8>>

or simply

Cow_7 <<.1, .8>>

will mean the node Cow_7 has short-term importance = .1 and long-term
importance = .8 .

Of course, we can also use the style

(IntensionalInheritanceLink Ben monster).AttentionValue

= [(STI,.1), (LTI, .8)]

where appropriate.

20.2.2.5 Links

Links are represented using a simple notation that has already occurred many
times in this book. For instance,

Inheritance A B

Similarity A B

Note that here the symmetry or otherwise of the link is not implicit in the
notation. SimilarityLinks are symmetrical, InheritanceLinks are not. When
this distinction is necessary, it will be explicitly made. WIKISOURCE:FunctionNotation

20.3 Representing Functions and Predicates

SchemaNodes and PredicateNodes contain functions internally; and Links
may also usefully be considered as functions. We now briefly discuss the
representations and notations we will use to indicate functions in various
contexts.
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Firstly, we will make some use of the currying notation drawn from com-
binatory logic, in which adjacency indicates function application. So, for in-
stance, using currying,

f x

means the function f evaluated at the argument x; and (f x y) means (f(x))(y).
If we want to specify explicitly that a block of terminology is being specified
using currying we will use the notation @[expression], for instance

@[f x y z]

means

((f(x))(y))(z)

We will also frequently use conventional notation to refer to functions,
such as f(x,y). Of course, this is consistent with the currying convention if
(x,y) is interpreted as a list and f is then a function that acts on 2-element
lists. We will have many other occasions than this to use list notation.

Also, we will sometimes use a non-curried notation, most commonly with
Links, so that e.g.

InheritanceLink x y

does not mean a curried evaluation but rather means InheritanceLink(x,y).

20.3.0.6 Execution Output Links

In the case where f refers to a schema, the occurrence of the combination f x
in the system is represented by

ExOutLink f x

or graphically

@
/ \

f x

Note that, just as when we write

f (g x)

we mean to apply f to the result of applying g to x, similarly when we write

ExOutLink f (ExOutLink g x)

we mean the same thing. So for instance

EvaluationLink (ExOutLink g x) y <.8>

means that the result of applying g to x is a predicate r, so that r(y) evaluates
to True with strength .8.
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This approach, in its purest incarnation, does not allow multi-argument
schemata. Now, multi-argument schemata are never actually necessary, be-
cause one can use argument currying to simulate multiple arguments. How-
ever, this is often awkward, and things become simpler if one introduces an
explicit tupling operator, which we call ListLink. Simply enough,

ListLink A1 ... An

denotes an ordered list (A1, . . . , An)

20.3.1 Execution Links

ExecutionLinks give the system an easy way to record acts of schema execu-
tion. These are ternary links of the form:

SchemaNode: S

Atom: A, B

ExecutionLink S A B

In words, this says the procedure represented by SchemaNode S has taken
input A and produced output B.

There may also be schemata that do not take output, or do not take input.
But these are treated as PredicateNodes, to be discussed below; their activity
is recorded by EvaluationLinks, not ExecutionLinks.

The TruthValue of an ExecutionLink records how frequently the result
encoded in the ExecutionLink occurs. Specifically,

• the TruthValue of (ExecutionLink S A B) tells you the probability of
getting B as output, given that you have run schema S on input A
• the TruthValue of (ExecutionLink S A) tells you the probability that if

S is run, it is run on input A

Often it is useful to record the time at which a given act of schema execution
was carried out; in that case one uses the atTime link, writing e.g.

atTimeLink
T
ExecutionLink S A B

where T is a TimeNode, or else one uses an implicit method such as storing
the time-stamp of the ExecutionLink in a core-level data-structure called the
TimeServer. The implicit method is logically equivalent to explicitly using at-
Time, and is treated the same way by PLN inference, but provides significant
advantages in terms of memory usage and lookup speed.

For purposes of logically reasoning about schema, it is useful to create
binary links representing ExecutionLinks with some of their arguments fixed.
We name these as follows:
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ExecutionLink1 A B means: X so that ExecutionLink X A B

ExecutionLink2 A B means: X so that ExecutionLink A X B

ExecutionLink3 A B means: X so that ExecutionLink A B X

Finally, a SchemaNode may be associated with a structure called a Graph.
Where S is a SchemaNode,

Graph(S) = { (x,y): ExecutionLink S x y }

Sometimes, the graph of a SchemaNode may be explicitly embodied as a
ConceptNode; other times, it may be constructed implicitly by a MindAgent
in analyzing the SchemaNode (e.g. the inference MindAgent).

Note that the set of ExecutionLinks describing a SchemaNode may not
define that SchemaNode exactly, because some of them may be derived by
inference. This means that the model of a SchemaNode contained in its Ex-
ecutionLinks may not actually be a mathematical function, in the sense of
assigning only one output to each input. One may have

ExecutionLink S X A <.5>

ExecutionLink S X B <.5>

meaning that the system does not know whether S(X) evaluates to A or to
B. So the set of ExecutionLinks modeling a SchemaNode may constitute a
non-function relation, even if the schema inside the SchemaNode is a function.

Finally, what of the case where f x represents the action of a built-in sys-
tem function f on an argument x? This is an awkward case that would not be
necessary if the CogPrime system were revised so that all cognitive functions
were carried out using SchemaNodes. However, in the current CogPrime ver-
sion, where most cognitive functions are carried out using C++ MindAgent
objects, if we want CogPrime to study its own cognitive behavior in a sta-
tistical way, we need BuiltInSchemaNodes that refer to MindAgents rather
than to ComboTrees (or else, we need to represent MindAgents using Com-
boTrees, which will become practicable once we have a sufficiently efficient
Combo interpreter). The semantics here is thus basically the same as where
f refers to a schema. For instance we might have

ExecutionLink FirstOrderInferenceMindAgent (L1, L2) L3

where L1, L2 and L3 are links related by

L1
L2
|-
L3

according to the first-order PLN deduction rules.
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20.3.1.1 Predicates

Predicates are related but not identical to schema, both conceptually and
notationally. PredicateNodes involve predicate schema which output Truth-
Value objects. But there is a difference between a SchemaNode embodying a
predicate schema and a PredicateNode, which is that a PredicateNode doesn’t
output a TruthValue, it adjusts its own TruthValue as a result of the output
of its own internal predicate schema.

The record of the activity of a PredicateNode is given not by an Execu-
tionLink but rather by an:
EvaluationLink P A <tv>

where P is a PredicateNode, A is its input, and <tv> is the truth value
assumed by the EvaluationLink corresponding to the PredicateNode being
fed the input A. There is also the variant
EvaluationLink P <tv>

for the case where the PredicateNode P embodies a schema that takes no
inputs1.

A simple example of a PredicateNode is the predicate GreaterThan. In
this case we have, for instance
EvaluationLink GreaterThan 5 6 <0>

EvaluationLink GreaterThan 5 3 <1>

and we also have:
EquivalenceLink

GreaterThan
ExOutLink

And
ListLink

ExOutLink
Not
LessThan

ExOutLink
Not
EqualTo

Note how the variables have been stripped out of the expression, see the
PLN book for more explanation about that. We will also encounter many
commonsense-semantics predicates such as isMale, with e.g.
EvaluationLink isMale Ben_Goertzel <1>

Schemata that return no outputs are treated as predicates, and handled
using EvaluationLinks. The truth value of such a predicate, as a default, is
considered as True if execution is successful, and False otherwise.

1 actually, if P does take some inputs, EvaluationLink P <tv> is defined too and tv
corresponds to the average of P(X) over all inputs X, this is explained in more depth in
the PLN book.
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And, analogously to the Graph operator for SchemaNodes, we have for
PredicateNodes the SatisfyingSet operator, defined so that the SatisfyingSet
of a predicate is the set whose members are the elements that satisfy the
predicate. Formally, that is:

S = SatisfyingSet P

means

TruthValue(MemberLink X S)

equals

TruthValue(EvaluationLink P X)

This operator allows the system to carry out advanced logical operations like
higher-order inference and unification.

20.3.2 Denoting Schema and Predicate Variables

CogPrime sometimes uses variables to represent the expressions inside schemata
and predicates, and sometimes uses variable-free, combinatory-logic-based
representations. There are two sorts of variables in the system, either of
which may exist either inside compound schema or predicates, or else in the
AtomSpace as VariableNodes:

It is important to distinguish between two sorts of variables that may exist
in CogPrime :

• Variable Atoms, which may be quantified (bound to existential or uni-
versal quantifiers) or unquantified

• Variables that are used solely as function-arguments or local variables in-
side the “Combo tree” structures used inside some ProcedureNodes (Pred-
icateNodes or SchemaNodes) (to be described below), but are not related
to Variable Atoms

Examples of quantified variables represented by Variable Atoms are $X and
$Y in:

ForAll $X <.0001>
ExtensionalImplicationLink

ExtensionalInheritanceLink $X human
ThereExists $Y

AND
ExtensionalInheritanceLink $Y human
EvaluationLink parent_of ($X, $Y)

An example of an unquantified Variable Atom is $X in

ExtensionalImplicationLink <.3>
ExtensionalInheritanceLink $X human
ThereExists $Y
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AND
ExtensionalInheritanceLink $Y human
EvaluationLink parent_of ($X, $Y)

This ImplicationLink says that 30% of humans are parents: a more useful
statement than the ForAll Link given above, which says that it is very very
unlikely to be true that all humans are parents.

We may also say, for instance,

SatisfyingSet( EvaluationLink eats (cat, $X) )

to refer to the set of X so that eats(cat, X).
On the other hand, suppose we have the implication

Implication
Evaluation f $X
Evaluation

f
ExOut reverse $X

where f is a PredicateNode embodying a mathematical operator acting on
pairs of NumberNodes, and reverse is an operator that reverses a list. So,
this implication says that the f predicate is commutative. Now, suppose that
f is grounded by the formula

f(a,b) = (a > b - 1)

embodied in a Combo Tree object (which is not commutative but that is
not the point), stored in the ProcedureRepository and linked to the Pred-
icateNode for f. These f-internal variables, which I have written here using
the letters a and b, are not VariableNodes in the CogPrime AtomTable. The
notation we use for these within the textual Combo language, that goes with
the Combo Tree formalism, is to replace a and b in this example with #1
and #2, so the above grounding would be denoted

f -> (#1 > #2 - 1)

version, it is assumed that type restrictions are always crisp, not proba-
bilistically truth-valued. This assumption may be revisited in a later version
of the system.

20.3.2.1 Links as Predicates

It is conceptually important to recognize that CogPrime link types may be
interpreted as predicates. For instance, when one says

InheritanceLink cat animal <.8>

indicating an Inheritance relation between cat and animal with a strength .8,
effectively one is declaring that one has a predicate giving an output of .8.
Depending on the interpretation of InheritanceLink as a predicate, one has
either the predicate
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InheritanceLink cat $X

acting on the input

animal

or the predicate

InheritanceLink $X animal

acting on the input

cat

or the predicate

InheritanceLink $X $Y

acting on the list input

(cat, animal)

This means that, if we wanted to, we could do away with all Link types
except OrderedLink and UnorderedLink, and represent all other Link types
as PredicateNodes embodying appropriate predicate schema.

This is not the approach taken in the current codebase. However, the
situation is somewhat similar to that with CIM-Dynamics:

• In future we will likely create a revision of CogPrime that regularly revises
its own vocabulary of Link types, in which case an explicit representation
of link types as predicate schema will be appropriate.

• In the shorter term, it can be useful to treat link types as virtual predi-
cates, meaning that one lets the system create SchemaNodes correspond-
ing to them, and hence do some meta level reasoning about its own link
types.

20.3.3 Variable and Combinator Notation

One of the most important aspects of combinatory logic, from a CogPrime
perspective, is that it allows one to represent arbitrarily complex procedures
and patterns without using variables in any direct sense. In CogPrime , vari-
ables are optional, and the choice of whether or how to use them may be
made (by CogPrime itself) on a contextual basis.

This page deals with the representation of variable expressions in a
variable-free way, in a CogPrime context. The general theory underlying this
is well-known, and is usually expressed in terms of the elimination of variables
from lambda calculus expressions (lambda lifting). Here we will not present
this theory but will restrict ourselves to presenting a simple, hopefully illus-
trative example, and then discussing some conceptual implications.
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20.3.3.1 Why Eliminating Variables is So Useful

Before launching into the specifics, a few words about the general utility of
variable-free expression may be worthwhile.

Some expressions look simpler to the trained human eye with variables, and
some look simpler without them. However, the main reason why eliminating
all variables from an expression is sometimes very useful, is that there are
automated program-manipulation techniques that work much more nicely on
programs (schemata, in CogPrime lingo) without any variables in them.

As will be discussed later (e.g. in the chapter on evolutionary learning,
although the same process is also useful for supporting probabilistic reasoning
on procedures), in order to mine patterns among multiple schema that all
try to do the same (or related) things, we want to put schema into a kind
of “hierarchical normal form.” The normal form we wish to use generalizes
Holman’s Elegant Normal Form (which is discussed in Moshe Looks’ PhD
thesis) to program trees rather than just Boolean trees.

But, putting computer programs into a useful, nicely-hierarchically-structured
normal form is a hard problem - it requires one have a pretty nice and com-
prehensive set of program transformations.

But the only general, robust, systematic program transformation meth-
ods that exist in the computer science literature require one to remove the
variables from one’s programs, so that one can use the theory of functional
programming (which ties in with the theory of monads in category theory,
and a lot of beautiful related math).

So: In large part, we want to remove variables so we can use functional
programming tools to normalize programs into a standard and pretty hierar-
chical form, so we can mine patterns among them effectively.

However, we don’t always want to be rid of variables, because sometimes,
from a logical reasoning perspective, theorem-proving is easier with the vari-
ables in there. (Sometimes not.)

So, we want to have the option to use variables, or not.

20.3.3.2 An Example of Variable Elimination

Consider the PredicateNode

AND
InheritanceLink X cat
eats X mice

Here we have used a syntactically sugared representation involving the vari-
able X. How can we get rid of the X?

Recall the C combinator (from combinatory logic), defined by

C f x y = f y x

Using this tool,
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InheritanceLink X cat

becomes

C InheritanceLink cat X

and

eats X mice

becomes

C eats mice X

so that overall we have

AND
C InheritanceLink cat
C eats mice

where the C combinators essentially give instructions as to where the virtual
argument X should go.

In this case the variable-free representation is basically just as simple as
the variable-based representation, so there is nothing to lose and a lot to gain
by getting rid of the variables. This won’t always be the case - sometimes
execution efficiency will be significantly enhanced by use of variables.

WIKISOURCE:TypeInheritance

20.3.4 Inheritance Between Higher-Order Types

Next, this section deals with the somewhat subtle matter of Inheritance be-
tween higher-order types. This is needed, for example, when one wants to
cross over or mutate two complex schemata, in an evolutionary learning con-
text. One encounters questions like: When mutation replaces a schema that
takes integer input, can it replace it with one that takes general numeri-
cal input? How about vice versa? These questions get more complex when
the inputs and outputs of schema may themselves be schema with complex
higher-order types. However, they can be dealt with elegantly using some
basic mathematical rules.

Denote the type of a mapping from type T to type S, as T -> S. Use the
shorthand inh to mean inherits from. Then the basic rule we use is that

T1 -> S1 inh T2 -> S2

iff

T2 inh T1
S1 inh S2

In other words, we assume higher-order type inheritance is countervariant.
The reason is that, if R1 = T1 -> S1 is to be a special case of R2 = T2 ->
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S2, then one has to be able to use the latter everywhere one uses the former.
This means that any input R2 takes, has to also be taken by R1 (hence T2
inherits from T1). And it means that the outputs R2 gives must be able to
be accepted by any function that accepts outputs of R1 (hence S1 inherits
from S2).

This type of issue comes up in programming language design fairly fre-
quently, and there are a number of research papers debating the pros and
cons of countervariance versus covariance for complex type inheritance. How-
ever, for the purpose of schema type inheritance in CogPrime , the greater
logical consistency of the countervariance approach holds sway.

For instance, in this approach, INT -> INT is not a subtype of NO ->
INT (where NO denotes FLOAT), because NO -> INT is the type that in-
cludes all functions which take a real and return an int, and an INT ->
INT does not take a real. Rather, the containment is the other way around:
every NO -> INT function is an example of an INT -> INT function. For
example, consider the NO -> INT that takes every real number and rounds
it up to the nearest integer. Considered as an INT -> INT function, this
is simply the identity function: it is the function that takes an integer and
rounds it up to the nearest integer.

Of course, tupling of types is different, it’s covariant. If one has an ordered
pair whose elements are of different types, say (T1, T2), then we have

(T1 , S1) inh (T2, S2)

iff

T1 inh T2
S1 inh S2

As a mnemonic formula, we may say

(general -> specific ) inherits from (specific -> general)

(specific, specific) inherits from (general, general)

In schema learning, we will also have use for abstract type constructions,
such as

(T1, T2) where T1 inherits from T2

Notationally, we will refer to variable types as Xv1, Xv2, etc., and then
denote the inheritance relationships by using numerical indices, e.g. using

[1 inh 2]

to denote that

Xv1 inh Xv2

So for example,

( INT, VOID ) inh ( Xv1 , Xv2 )
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is true, because there are no restrictions on the variable types, and we can
just assign Xv1 = INT, Xv2 = VOID.

On the other hand,

( INT, VOID ) inh ( Xv1, Xv2 ), [ 1 inh 2 ]

is false because the restriction Xv1 inh Xv2 is imposed, but it’s not true that
INT inh VOID.

The following list gives some examples of type inheritance, using the el-
ementary types INT, FLOAT (FL), NUMBER (NO), CHAR and STRING
(STR), with the elementary type inheritance relationships

• INT inh NUMBER
• FLOAT inh NUMBER
• CHAR inh STRING
• ( NO -> FL ) inh ( INT -> FL )
• ( FL -> INT ) inh ( FL -> NO )
• ( ( INT -> FL ) -> ( FL -> INT ) ) inh ( ( NO -> FL ) -> ( FL -> NO

) ) WIKISOURCE:AbstractSchemaManipulation

20.3.5 Advanced Schema Manipulation

Now we describe some special schema for manipulating schema, which seem
to be very useful in certain contexts.

20.3.5.1 Listification

First, there are two ways to represent n-ary relations in CogPrime ’s Atom
level knowledge representation language: using lists as in

f_list (x1, ..., xn)

or using currying as in

f_curry x1 ... xn

To make conversion between list and curried forms easier, we have chosen
to introduce special schema (combinators) just for this purpose:

listify f = f_list so that f_list (x1, ..., xn ) = f x1 ... xn

unlistify listify f = f

For instance

kick_curry Ben Ken

denotes
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(kick_curry Ben) Ken

which means that kick is applied to the argument Ben to yield a predicate
schema applied to Ken. This is the curried style. The list style is

kick_List (Ben, Ken)

where kick is viewed as taking as an argument the List (Ben, Ken). The
conversion between the two is done by

listify kick_curry = kick_list

unlistify kick_list = kick_curry

As a more detailed example of unlistification, let us utilize a simple math-
ematical example, the function (X − 1)2. If we use the notations - and pow
to denote SchemaNodes embodying the corresponding operations, then this
formula may be written in variable-free node-and-link form as

ExOutLink
pow
ListLink

ExOutLink
-
ListLink

X
1

2

But to get rid of the nasty variable X, we need to first unlistify the func-
tions pow and -, and then apply the C and B combinators a couple times to
move the variable X to the front. The B combinator (see Combinatory Logic
REF) is recalled below:

B f g h = f (g h)

This is accomplished as follows (using the standard convention of left-
associativity for the application operator, denoted @ in the tree represen-
tation given in Section 20.3.0.6)

pow(-(x, 1), 2)
unlistify pow (-(x, 1) 2)
C (unlistify pow) 2 (-(x,1))
C (unlistify pow) 2 ((unlistify -) x 1)
C (unlistify pow) 2 (C (unlistify -) 1 x)
B (C (unlistify pow) 2) (C (unlistify -) 1) x

yielding the final schema

B (C (unlistify pow) 2) (C (unlistify -) 1)

By the way, a variable-free representation of this schema in CogPrime
would look like

ExOutLink
ExOutLink
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B
ExOutLink

ExOutLink
C
ExOutLink

unlistify
pow

2
ExOutLink

ExOutLink
C
ExOutLink

unlistify
-

1

The main thing to be observed is that the introduction of these extra
schema lets us remove the variable X. The size of the schema is increased
slightly in this case, but only slightly - an increase that is well-justified by
the elimination of the many difficulties that explicit variables would bring to
the system. Furthermore, there is a shorter rendition which looks like

ExOutLink
ExOutLink

B
ExOutLink

ExOutLink
C
pow_curried

2
ExOutLink

ExOutLink
C
-_curried

1

This rendition uses alternate variants of - and pow schema, labeled
-_curried and pow_curried, which do not act on lists but are curried
in the manner of combinatory logic and Haskell. It is 13 lines whereas the
variable-bearing version is 9 lines, a minor increase in length that brings a
lot of operational simplification.

20.3.5.2 Argument Permutation

In dealing with List relationships, there will sometimes be use for an argument-
permutation operator, let us call it P, defined as follows

(P p f) (v1, ..., vn ) = f (p (v1, ..., vn ))

where p is a permutation on n letters. This deals with the case where we
want to say, for instance that
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Equivalence parent(x,y) child(y,x)

Instead of positing variable names x and y that span the two relations
parent(x,y) and child(y,x), what we can instead say in this example is

Equivalence parent (P {2,1} child)

For the case of two-argument functions, argument permutation is basically
doing on the list level what the C combinator does in the curried function
domain. On the other hand, in the case of n-argument functions with n>2,
argument permutation doesn’t correspond to any of the standard combina-
tors.

Finally, let’s conclude with a similar example in a more standard predicate
logic notation, involving both combinators and the permutation argument
operator introduced above. We will translate the variable-laden predicate

likes(y,x) AND likes(x,y)

into the equivalent combinatory logic tree. Let us first recall the combinator
S whose function is to distribute an argument over two terms.

S f g x = (f x) (g x)

Assume that the two inputs are going to be given to us as a list. Now, the
combinatory logic representation of this is

S (B AND (B (P {2,1} likes))) likes

We now show how this would be evaluated to produce the correct expres-
sion:

S (B AND (B (P {2,1} likes))) likes (x,y)

S gets evaluated first, to produce

(B AND (B (P {2,1} likes)) (x,y)) (likes (x,y))

now the first B

AND ((B (P {2,1} likes)) (x,y)) (likes (x,y))

now the second one

AND ((P {2,1} likes) (x,y)) (likes (x,y))

now P

AND (likes (y,x)) (likes (x,y))

which is what we wanted.



Chapter 21
Representing Procedural Knowledge

21.1 Introduction

We now turn to CogPrime ’s representation and manipulation of procedural
knowledge. In a sense this is the most fundamental kind of knowledge – since
intelligence is most directly about action selection, and it is procedures which
generate actions.

CogPrime involves multiple representations for procedures, including pro-
cedure maps and (for sensorimotor procedures) neural nets or similar struc-
tures. Its most basic procedural knowledge representation, however, is the
program. The choice to use programs to represent procedures was made af-
ter considerable reflection – they are not of course the only choice, as other
representations such as recurrent neural networks possess identical repre-
sentational power, and are preferable in some regards (e.g. resilience with
respect to damage). Ultimately, however, we chose programs due to their
consilience with the software and hardware underlying CogPrime (and every
other current AI program). CogPrime is a program, current computers and
operating systems are optimized for executing and manipulating programs;
and we humans now have many tools for formally and informally analyzing
and reasoning about programs. The human brain probably doesn’t repre-
sent most procedures as programs in any simple sense, but CogPrime is not
intended to be an emulation of the human brain. So, the representation of
programs as procedures is one major case where CogPrime deviates from the
human cognitive architecture in the interest of more effectively exploiting its
own hardware and software infrastructure.

CogPrime represents procedures as programs in an internal programming
language called “Combo." While Combo has a textual representation, de-
scribed online at the OpenCog wiki, this isn’t one of its more important
aspects (and may be redesigned slightly or wholly without affecting system
intelligence or architecture); the essence of Combo programs lies in their tree
representation not their text representation. One could fairly consider Combo

439
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as a dialect of LISP, although it’s not equivalent to any standard dialect, and
it hasn’t particularly been developed with this in mind. In this chapter we
discuss the key concepts underlying the Combo approach to program repre-
sentation, seeking to make clear at each step the motivations for doing things
in the manner proposed.

In terms of the overall CogPrime architecture diagram given in Chapter 6
of Part 1, this chapter is about the box labeled "Procedure Repository." The
latter, in OpenCog, is a specialized component connected to the AtomSpace,
storing Combo tree representations of programs; each program in the reposi-
tory is linked to a SchemaNode in the AtomSpace, ensuring full connectivity
between procedural and declarative knowledge.

21.2 Representing Programs

What is a “program” anyway? What distinguishes a program from an arbi-
trary representation of a procedure?

The essence of programmatic representations is that they are well-specified,
compact, combinatorial, and hierarchical:

• Well-specified: unlike sentences in natural language, programs are unam-
biguous; two distinct programs can be precisely equivalent.

• Compact: programs allow us to compress data on the basis of their regu-
larities. Accordingly, for the purposes of this chapter, we do not consider
overly constrained representations such as the well-known conjunctive
and disjunctive normal forms for Boolean formulae to be programmatic.
Although they can express any Boolean function (data), they dramati-
cally limit the range of data that can be expressed compactly, compared
to unrestricted Boolean formulae.

• Combinatorial: programs access the results of running other programs
(e.g. via function application), as well as delete, duplicate, and rearrange
these results (e.g., via variables or combinators).

• Hierarchical: programs have intrinsic hierarchical organization, and may
be decomposed into subprograms.

Eric Baum has advanced a theory “under which one understands a problem
when one has mental programs that can solve it and many naturally occur-
ring variations” [Bau06]. In this perspective – which we find an agreeable
way to think about procedural knowledge, though perhaps an overly limited
perspective on mind as a whole – one of the primary goals of artificial gen-
eral intelligence is systems that can represent, learn, and reason about such
programs [Bau06, Bau04]. Furthermore, integrative AGI systems such as Cog-
Prime may contain subsystems operating on programmatic representations.
Would-be AGI systems with no direct support for programmatic represen-
tation will clearly need to represent procedures and procedural abstractions
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somehow. Alternatives such as recurrent neural networks have serious down-
sides, including opacity and inefficiency, but also have their advantages (e.g.
recurrent neural nets can be robust with regard to damage, and learnable via
biologically plausible algorithms).

Note that the problem of how to represent programs for an AGI system
dissolves in the unrealistic case of unbounded computational resources. The
solution is algorithmic information theory [Cha08], extended recently to the
case of sequential decision theory [Hut05]. The latter work defines the univer-
sal algorithmic agent AIXI, which in effect simulates all possible programs
that are in agreement with the agent’s set of observations. While AIXI is
uncomputable, the related agent AIXItl may be computed, and is superior
to any other agent bounded by time t and space l [?]. The choice of a rep-
resentational language for programs1 is of no consequence, as it will merely
introduce a bias that will disappear within a constant number of time steps.2

Our goal in this chapter is to provide practical techniques for approximat-
ing the ideal provided by algorithmic probability, based on what Pei Wang has
termed the assumption of insufficient knowledge and resources [Wan06], and
assuming an AGI architecture that’s at least vaguely humanlike in nature,
and operates largely in everyday human environments, but uses programs to
represent many procedures. Given these assumptions, how programs are rep-
resented is of paramount importance, as we shall see in the next two sections,
where we give a conceptual formulation of what we mean by tractable program
representations, and introduce tools for formalizing such representations. The
fourth section delves into effective techniques for representing programs. A
key concept throughout is syntactic-semantic correlation, meaning that pro-
grams which are similar on the syntactic level, within certain constraints will
tend to also be similar in terms of their behavior (i.e. on the semantic level).
Lastly, the fifth section changes direction a bit and discusses the translation
of programmatic structure into declarative form for the purposes of logical
inference.

In the future, we will experimentally validate that these normal forms and
heuristic transformations do in fact increase the syntactic-semantic correla-
tion in program spaces, as has been shown so far only in the Boolean case. We
would also like to explore the extent to which even stronger correlation, and
additional tractability properties, can be observed when realistic probabilistic
constraints on “natural” environment and task spaces are imposed.

The importance of a good programmatic representation of procedural
knowledge becomes quite clear when one thinks about it in terms of the
Mind-World Correspondence Principle introduced in Chapter 10. That prin-
ciple states, roughly, that transition paths between world-states should map
naturally onto transition paths between mind-states. This suggests that there
should be a natural, smooth mapping between real-world action series and

1 As well as a language for proofs in the case of AIXItl.
2 The universal distribution converges quickly [?].
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the corresponding series of internal states. Where internal states are driven
by explicitly given programs, this means that the transitions between internal
program states should nicely mirror transitions between the states of the real
world as it interacts with the system controlled by the program. The extent
to which this is true will depend on the specifics of the programming language
– and it will be true for a much greater extent, on the whole, if the program-
ming language displays high syntactic-semantic correlation for behaviors that
commonly occur when the program is used to control the system in the real
world. So, the various technical issues mentioned above and considered below,
regarding the qualities desired in a programmatic representation, are merely
the manifestation of the general Mind-World Correspondence Principle in the
context of procedural knowledge, under the assumption that procedures are
represented as programs. The material in this chapter may be viewed as an
approach to ensuring the validity of the Mind-World Correspondence prin-
ciple for programmatically-represented procedural knowledge, for CogPrime
systems concerned with achieving humanly meaningful goals in everyday hu-
man environments.

21.3 Representational Challenges

Despite the advantages outlined in the previous section, there are a number
of challenges in working with programmatic representations:

• Open-endedness – in contrast to some other knowledge representations
current in machine learning, programs vary in size and “shape”, and there
is no obvious problem-independent upper bound on program size. This
makes it difficult to represent programs as points in a fixed-dimensional
space, or to learn programs with algorithms that assume such a space.

• Over-representation – often, syntactically distinct programs will be
semantically identical (i.e. represent the same underlying behavior or
functional mapping). Lacking prior knowledge, many algorithms will in-
efficiently sample semantically identical programs repeatedly [Loo07a,
GBK04].

• Chaotic Execution – programs that are very similar, syntactically, may
be very different, semantically. This presents difficulties for many heuris-
tic search algorithms, which require syntactic and semantic distance to
be correlated [Loo07b, TVCC05].

• High resource-variance – programs in the same space vary greatly in
the space and time they require to execute.

It’s easy to see how the latter two issues may present a challenge for mind-
world correspondence! Chaotic execution makes it hard to predict whether
a program will indeed manifest state-sequences mapping nicely to a corre-
sponding world-sequences; and high resource-variance makes it hard to pre-
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dict whether, for a given program, this sort of mapping can be achieved for
relevant goals given available resources.

Based on these concerns, it is no surprise that search over program spaces
quickly succumbs to combinatorial explosion, and that heuristic search meth-
ods are sometimes no better than random sampling [LP02]. However, alter-
native representations of procedures also have their difficulties, and so far
we feel the thornier aspects of programmatic representation are generally an
acceptable price to pay in light of the advantages.

For some special cases in CogPrime we have made a different choice –
e.g. when we use DeSTIN for sensory perception (see Chapter 28 we utilize
a more specialized representation comprising a hierarchical network of more
specialized elements. DeSTIN doesn’t have problems with resource variance
or chaotic execution, though it does suffer from over-representation. It is
not very open-ended, which helps increase its efficiency in the perceptual
processing domain, but may limit its applicability to more abstract cognition.
In short we feel that, for general representation of cognitive procedures, the
benefits of programmatic representation outweigh the costs; but for some
special cases such as low-level perception and motor procedures, this may
not be true and one may do better to opt for a more specialized, more rigid
but less problematic representation.

It would be possible to modify CogPrime to use, say, recurrent neural nets
for procedure representation, rather than programs in an explicit language.
However, this would rate as a rather major change in the architecture, and
would cause multiple problems in other aspects of the system. For example,
programs are reasonably straightforward to reason about using PLN infer-
ence, whereas reasoning about the internals of recurrent neural nets is dras-
tically more problematic, though not impossible. The choice of a procedure
representation approach for CogPrime has been made considering not only
procedural knowledge in itself, but the interaction of procedural knowledge
with other sorts of knowledge. This reflects the general synergetic nature of
the CogPrime design.

There are also various computation-theoretic issues regarding programs;
however, we suspect these are not particularly relevant to the task of creat-
ing human-level AGI, though they may rear their heads when one gets into
the domain of super-human, profoundly self-modifying AGI systems. For in-
stance, in the context of the the difficulties caused by over-representation
and high resource-variance, one might observe that determinations of e.g.
programmatic equivalence for the former, and e.g. halting behavior for the
latter, are uncomputable. But we feel that, given the assumption of insuffi-
cient knowledge and resources, these concerns dissolve into the larger issue of
computational intractability and the need for efficient heuristics. Determining
the equivalence of two Boolean formulae over 500 variables by computing and
comparing their truth tables is trivial from a computability standpoint, but,
in the words of Leonid Levin, “only math nerds would call 2500 finite” [Lev94].
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Similarly, a program that never terminates is a special case of a program that
runs too slowly to be of interest to us.

One of the key ideas underlying our treatment of programmatic knowledge
is that, in order to tractably learn and reason about programs, an AI system
must have prior knowledge of programming language semantics. That is, in
the approach we advocate, the mechanism whereby programs are executed
is assumed known a priori, and assumed to remain constant across many
problems. One may then craft AI methods that make specific use of the pro-
gramming language semantics, in various ways. Of course in the long run a
sufficiently powerful AGI system could modify these aspects of its procedu-
ral knowledge representation; but in that case, according to our approach,
it would also need to modify various aspects of its procedure learning and
reasoning code accordingly.

Specifically, we propose to exploit prior knowledge about program struc-
ture via enforcing programs to be represented in normal forms that preserve
their hierarchical structure, and to be heuristically simplified based on reduc-
tion rules. Accordingly, one formally equivalent programming language may
be preferred over another by virtue of making these reductions and transfor-
mations more explicit and concise to describe and to implement. The current
OpenCogPrime system uses a simple LISP-like language called Combo (which
takes both tree form and textual form) to represent procedures, but this is
not critical; the main point is using some language or language variant that is
"tractable" in the sense of providing a context in which the semantically use-
ful reductions and transformations we’ve identified are naturally expressible
and easily usable.

21.4 What Makes a Representation Tractable?

Creating a comprehensive formalization of the notion of a tractable program
representation would constitute a significant achievement; and we will not
answer that summons here. We will, however, take a step in that direction by
enunciating a set of positive principles for tractable program representations,
corresponding closely to the list of representational challenges above. While
the discussion in this section is essentially conceptual rather than formal, we
will use a bit of notation to ensure clarity of expression; S to denote a space
of programmatic functions of the same type (e.g. all pure Lisp λ-expressions
mapping from lists to numbers), and B to denote a metric space of behaviors.

In the case of a deterministic, side-effect-free program, execution maps
from programs in S to points in B, which will have separate dimensions for
the function’s output across various inputs of interest, as well as dimensions
corresponding to the time and space costs of executing the program. In the
case of a program that interacts with an external environment, or is intrinsi-
cally nondeterministic, execution will map from S to probability distributions
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over points in B, which will contain additional dimensions for any side-effects
of interest that programs in S might have. Note the distinction between syn-
tactic distance, measured as e.g. tree-edit distance between programs in S,
and semantic distance, measured between program’s corresponding points in
or probability distributions over B. We assume that semantic distance accu-
rately quantifies our preferences in terms of a weighting on the dimensions of
B; i.e., if variation along some axis is of great interest, our metric for semantic
distance should reflect this.

Let P be a probability distribution over B that describes our knowledge
of what sorts of problems we expect to encounter, let R(n) ⊆ S be all the
programs in our representation with (syntactic) size no greater than n. We
will say that R(n) d-covers the pair (B,P) to extent p if the probability
that, for a random behavior b ∈ B chosen according to P, there is some
program in R whose behavior is within semantic distance d of b, is greater
than or equal to p. Then, some among the various properties of tractability
that seem important based on the above discussion are as follows:

• for fixed d, p quickly goes to 1 as n increases,
• for fixed p, d quickly goes to 0 as n increases,
• for fixed d and p, the minimal n needed for R(n) to d-cover (B,P) to

extent p should be as small as possible,
• ceteris paribus, syntactic and semantic distance (measured according to
P) are highly correlated.

This is closely related to the Mind-Brain Correspondence Principle artic-
ulated in Chapter 10, and to the geometric formulation of cognitive synergy
posited in Appendix B. Syntactic distance has to do with distance along paths
in mind-space related to formal program structures, and syntactic distance
has to do with distance along paths in mind-space and world-space corre-
sponding to the record of the program’s actual behavior. If syntax-semantics
correlation failed, then there would be paths through mind-space (related to
formal program structures) that were poorly matched to their closest corre-
sponding paths through the rest of mind-space and world-space, hence caus-
ing a failure (or significant diminution) of cognitive synergy and mind-world
correspondence.

Since execution time and memory usage considerations may be incorpo-
rated into the definition of program behavior, minimizing chaotic execution
and managing resource variance emerges conceptually here as subcases of
maximizing correlation between syntactic and semantic distance. Minimizing
over-representation follows from the desire for small program size: roughly
speaking the less over-representation there is, the smaller average program
size can be achieved.

In some cases one can achieve fairly strong results about tractability of rep-
resentations without any special assumptions about P: for example in prior
work we have shown that adoption of an appropriate hierarchical normal form
can generically increase correlation between syntactic and semantic distance
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in the space of Boolean functions [?, Loo07b]. In this case we may say that we
have a generically tractable representation. However, to achieve tractable rep-
resentation of more complex programs, some fairly strong assumptions about
P will be necessary. This should not be philosophically disturbing, since it’s
clear that human intelligence has evolved in a manner strongly conditioned
by certain classes of environments; and similarly, what we need to do to cre-
ate a viable program representation system for pragmatic AGI usage, is to
achieve tractability relative to the distribution P corresponding to the actual
problems the AGI is going to need to solve. Formalizing the distributions P
of real-world interest is a difficult problem, and one we will not address here
(recall the related, informal discussions of Chapter 9, where we considered
the various important peculiarities of the human everyday world). However,
we hypothesize that the representations presented in the following section
may be tractable to a significant extent irrespective of P,3 and even more
powerfully tractable with respect to this as-yet unformalized distribution. As
weak evidence in favor of this hypothesis, we note that many of the represen-
tations presented have proved useful so far in various narrow problem-solving
situations.

21.5 The Combo Language

The current version of OpenCogPrime uses a simple language called Combo,
which is an example of a language in which the transformations we consider
important for AGI-focused program representation are relatively simple and
natural. Here we illustrate the Combo language by example, referring the
reader to the OpenCog wiki site for a formal presentation.

The main use of the Combo language in OpenCog is behind-the-scenes,
i.e. using tree representations of Combo programs; but there is also a human-
readable syntax, and an interpreter that allows humans to write Combo pro-
grams when needed. The main use of Combo, however, is not for human-coded
programs, but rather for programs that are learned via various AI methods.

In Combo all expressions are in prefix form like LISP, but the left paren-
thesis is placed after the operator instead of before, for example:

• +(4 5)

is a 0-ari expression that returns 4 + 5
• and(#1 0<(#2))

is a binary expression of type bool×float 7→ bool that returns true if and
only if the first input is true and the second input positive. #n designates
the n-th input.
• fact(1) := if(0<(#1) *(#1 fact(+(#1 -1))) 1)

is a recursive definition of factorial.

3 Specifically, with only weak biases that prefer smaller and faster programs with hierar-
chical decompositions.
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• and_seq(goto(stick) grab(stick) goto(owner) drop)

is a 0-ari expression with side effects, it evaluates a sequence of actions
until completion or failure of one of them. Each action is executed in
the environment the agent is connected to and returns action_success
upon success or action_failure otherwise. The action sequence returns
action_success if it completes or action_failure if it does not.
• if(near(owner self)

lick(owner)
and_seq(goto(owner) wag)

is a 0-ary expression with side effects; it means that if at the time of its
evaluation the agent referred as self (here a virtual pet) is near its owner
then lick him/her, otherwise go to the owner and wag the tail.

21.6 Normal Forms Postulated to Provide Tractable
Representations

We now present a series of normal forms for programs, postulated to provide
tractable representations in the contexts relevant to human-level, roughly
human-like general intelligence.

21.6.1 A Simple Type System

We use a simple type system to distinguish between the various normal forms
introduced below. This is necessary to convey the minimal information needed
to correctly apply the basic functions in our canonical forms. Various systems
and applications may of course augment these with additional type informa-
tion, up to and including the satisfaction of arbitrary predicates (e.g. a type
for prime numbers). This can be overlaid on top of our minimalist system
to convey additional bias in selecting which transformations to apply, and
introducing constraints as necessary. For instance, a call to a function ex-
pecting a prime number, called with a potentially composite argument, may
be wrapped in a conditional testing the argument’s primality. A similar tech-
nique is used in the normal form for functions to deal with list arguments
that may be empty.

Normal forms are provided for Boolean and number primitive types, and
the following parametrized types:

• list types, listT , where T is any type,
• tuple types, tupleT1,T2,...TN , where all Ti are types, and N is a positive

natural number,
• enum types, {s1, s2, . . . sN}, where N is a positive number and all si are

unique identifiers,
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• function types T1, T2, . . . TN → O, where O and all Ti are types,
• action result types.

A list of type listT is an ordered sequence of any number of elements, all of
which must have type T . A tuple of type tupleT1,T2,...TN is an ordered sequence
of exactly N elements, where every ith element is of type Ti. An enum of type
{s1, s2, . . . sN} is some element si from the set. Action result types concern
side-effectful interaction with some world external to the system (but perhaps
simulated, of course), and will be described in detail in their subsection below.
Other types may certainly be added at a later date, but we believe that those
listed above provide sufficient expressive power to conveniently encompass a
wide range of programs, and serve as a compelling proof of concept.

The normal form for a type T is a set of elementary functions with
codomain T , a set of constants of type T , and a tree grammar. Internal
nodes for expressions described by the grammar are elementary functions,
and leaves are either Uvar or Uconstant, where U is some type (often U = T ).

Sentences in a normal form grammar may be transformed into normal form
expressions. The set of expressions that may be generated is a function of a
set of bound variables and a set of external functions that must be provided
(both bound variables and external functions are typed). The transformation
is as follows:

• Tconstant leaves are replaced with constants of type T ,
• Tvar leaves are replaced with either bound variables matching type T , or

expressions of the form f(expr1, expr2, . . . exprM ), where f is an external
function of type T1, T2, . . . TM → T , and each expri is a normal form
expression of type Ti (given the available bound variables and external
functions).

21.6.2 Boolean Normal Form

The elementary functions are and, or, and not. The constants are {true, false}.
The grammar is:

bool_root = or_form | and_form | literal | bool_constant
literal = bool_var | not( bool_var )
or_form = or( {and_form | literal}{2,} )
and_form = and( {or_form | literal}{2,} ) .

The construct foo{x,} refers to x or more matches of foo (e.g. {x | y}{2,}
is two or more items in sequences where each item is either an x or a y).
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21.6.3 Number Normal Form

The elementary functions are ∗ (times) and + (plus). The constants are some
subset of the rationals (e.g. those with IEEE single-precision floating-point
representations). The grammar is:

num_root = times_form | plus_form | num_constant | num_var
times_form = *( {num_constant | plus_form} plus_form{1,} )

| num_var
plus_form = +( {num_constant | times_form} times_form{1,} )

| num_var

21.6.4 List Normal Form

For list types listT , the elementary functions are list (an n-ary list construc-
tor) and append. The only constant is the empty list (nil). The grammar
is:

list_T_root = append_form | list_form | list_T_var
| list_T_constant

append_form = append( {list_form | list_T_var}{2,} )
list_form = list( T_root{1,} )

21.6.5 Tuple Normal Form

For tuple types tupleT1,T2,...TN , the only elementary function is the tuple con-
structor (tuple). The constants are

T1_constant×T2_constant× · · · × TN_constant

The normal form is either a constant, a var, or

tuple( T1_root T2_root . . . TN_root )

21.6.6 Enum Normal Form

Enums are atomic tokens with no internal structure - accordingly, there are
no elementary functions. The constants for the enum {s1, s2, . . . sN} are the
sis. The normal form is either a constant or a variable.



450 21 Representing Procedural Knowledge

21.6.7 Function Normal Form

For T1, T2, . . . TN → O, the normal form is a lambda-expression of arity
N whose body is of type O. The list of variable names for the lambda-
expression is not a “proper” argument - it does not have a normal form of its
own. Assuming that none of the Tis is a list type, the body of the lambda-
expression is simply in the normal form for type O (with the possibility of
the lambda-expressions arguments appearing with their appropriate types).
If one or more Tis are list types, then the body is a call to the split function
with all arguments are in normal form.
Split is a family of functions with type signatures

(T1, listT1 , T2, listT2 , . . . Tk, listTk → O),

tuplelistT1 ,O, tuplelistT2 ,O, . . . tuplelistTk ,O → O.

To evaluate split(f, tuple(l1, o1), tuple(l2, o2), . . . tuple(lk, ok)), the list argu-
ments l1, l2, . . . lk are examined sequentially. If some li is found that is empty,
then the result is the corresponding value oi. If all li are nonempty, we de-
construct each of them into xi : xsi, where xi is the first element of the list
and xsi is the rest. The result is then f(x1, xs1, x2, xs2, . . . xk, xsk). The split
function thus acts as an implicit case statement to deconstruct lists only if
they are nonempty.

21.6.8 Action Result Normal Form

An action result type act corresponds to the result of taking an action in
some world. Every action result type has a corresponding world type, world.
Associated with action results and worlds are two special sorts of functions.

• Perceptions - functions that take a world as their first argument and
regular (non-world and non-action-result) types as their remaining argu-
ments, and return regular types. Unlike other function types, the result of
evaluating a perception call may be different at different times, because
the world will have different configurations at different times.

• Actions - functions that take a world as their first argument and regular
types as their remaining arguments, and return action results (of the type
associated with the type of their world argument). As with perceptions,
the result of evaluating an action call may be different at different times.
Furthermore, actions may have side effects in the associated world that
they are called in. Thus, unlike any other sort of function, actions must
be evaluated, even if their return values are ignored.

Other sorts of functions acting on worlds (e.g. ones that take multiple worlds
as arguments) are disallowed.



21.7 Program Transformations 451

Note that an action result expression cannot appear nested inside an ex-
pression of any other type. Consequently, there is no way to convert e.g. an
action result to a Boolean, although conversion in the opposite direction is
permitted. This is required because mathematical operations in our language
have classical mathematical semantics; x and y must equal y and x, which
will not generally be the case if x or y can have side-effects. Instead, there are
special sequential versions of logical functions which may be used instead.

The elementary functions for action result types are andseq (sequential
and, equivalent to C’s short-circuiting &&), orseq (sequential or, equivalent
to C’s short-circuiting ||), and fails (negates success to failure and vice
versa). The constants may vary from type to type but must at least contain
success and failure, indicating absolute success/failure in execution.4 The
normal form is as follows:

act_root = orseq_form | andseq_form | seqlit
seqlit = act | fails( act )
act = act_constant | act_var
orseq_form = orseq( {andseq_form | seqlit}{2,} )
andseq_form = andseq( {orseq_form | seqlit}{2,} )

21.7 Program Transformations

A program transformation is any type-preserving mapping from expressions
to expressions. Transformations may be guaranteed to preserve semantics.
When doing program evolution there is an intermediate category of fitness
preserving transformations that may alter semantics, but not fitness. In gen-
eral, the only way that fitness preserving transformations will be uncovered
is by scoring programs that have had their semantics potentially transformed
to determine their fitness, which what most fitness function does. On the
other hand if the fitness function is encompassed in the program itself, so a
candidate directly outputs the fitness itself, then only preserving semantics
transformations are needed.

21.7.1 Reductions

These are semantics preserving transformations that do not increase some size
measure (typically number of symbols), and are idempotent. For example,
and(x, x, y) → and(x, y) is a reduction for Boolean expressions. A set of
canonical reductions is defined for every type that has a normal form. For
numerical functions, the simplifier in a computer algebra system may be used.

4 A do(arg1, arg2, . . . argN ) statement (known as progn in Lisp), which eval-
uates its arguments sequentially regardless of success or failure, is equivalent to
andseq(orseq(arg1, success), orseq(arg2, success), . . . orseq(argN , success)).
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The full list of reductions is omitted in for brevity. An expression is reduced
if it maps to itself under all canonical reductions for its type, and all of its
children are reduced.

Another important set of reductions are the compressive abstractions,
which reduce or keep constant the size of expressions by introducing new
functions. Consider

list(*(+(a p q) r)

*(+(b p q) r)

*(+(c p q) r))

which contains 19 symbols. Transforming this to

f(x) = *(+(x p q) r)
list(f(a) f(b) f(c))

reduces the total number of symbols to 15. One can generalize this notion
to consider compressive abstractions across a set of programs. Compressive
abstractions appear to be rather expensive to uncover, although not pro-
hibitively so, the computation may easily be parallelized and may rely heavily
on subtree mining [TODO REF].

21.7.1.1 A Simple Example of Reduction

We now give a simple example of how CogPrime ’s reduction engine can
transform a program into a semantically equivalent but shorter one.

Consider the following program and the chain of reduction:

1. We start with the expression

if(P and_seq(if(P A B) B) and_seq(A B))

2. A reduction rule permits to reduce the conditional if(P A B) to if(true
A B). Indeed if P is true, then the first branch is evaluated and P must
still be true.

if(P and_seq(if(true A B) B) and_seq(A B))

3. Then a rule can reduce if(true A B) to A.

if(P and_seq(A B) and_seq(A B))

4. And finally another rule replaces the conditional by one of its branches
since they are identical

and_seq(A B)

Note that the reduced program is not only smaller (3 symbols instead of 11)
but a bit faster too. Of course it is not generally true that smaller programs
are faster but in the restricted context of our experiments it has often been
the case.
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21.7.2 Neutral Transformations

Semantics preserving transformations that are not reductions are not use-
ful on their own - they can only have value when followed by transforma-
tions from some other class. They are thus more speculative than reduc-
tions, and more costly to consider. I will refer to these as neutral transforma-
tions [Ols95].

• Abstraction - given an expression E containing non-overlapping subex-
pressions E1, E2, . . .EN , let E′ be E with all Ei replaced by the unbound
variables vi. Define the function f(v1, v2, . . . v3) = E′, and replace E with
f(E1, E2, . . . EN ). Abstraction is distinct from compressive abstraction
because only a single call to the new function f is introduced.5

• Inverse abstraction - replace a call to a user-defined function with the
body of the function, with arguments instantiated (note that this can
also be used to partially invert a compressive abstraction).

• Distribution - let E be a call to some function f , and let E′ be an
expression of E’s ith argument that is a call to some function g, such
that f is distributive over g’s arguments, or a subset thereof. We shall
refer to the actual arguments to g in these positions in E′ as x1, x2, . . . xn.
Now, let D(F ) be the function that is obtained by evaluating E with its
ith argument (the one containing E′) replaced with the expression F .
Distribution is replacing E with E′, and then replacing each xj (1 ≤ j ≤
n) with D(xj). For example, consider

+(x *(y if(cond a b)))

Since both + and * are distributive over the result branches of if, there
are two possible distribution transformations, giving the expressions

if(cond +(x *(y a)) +(x *(y b)))
+(x(if(cond *(y a) *(y b))))

• Inverse distribution (factorization) - the opposite of distribution.
This is nearly a reduction; the exceptions are expressions such as f(g(x)),
where f and g are mutually distributive.

• Arity broadening - given a function f , modify it to take an additional
argument of some type. All calls to f must be correspondingly broadened
to pass it an additional argument of the appropriate type.

• List broadening6 - given a function f with some ith argument x of
type T , modify f to instead take an argument y of type listT , which gets
split into x : xs. All calls to f with ith argument x′ must be replaced by
corresponding calls with ith argument list(x′).

• Conditional insertion - an expression x is replaced by if(true, x, y),
where y is some expression of the same type of x.

5 In compressive abstraction there must be at least two calls in order to avoid increasing
the number of symbols.
6 Analogous tuple-broadening transformations may be defined as well, but are omitted for
brevity.



454 21 Representing Procedural Knowledge

As a technical note, action result expressions (which may cause side-effects)
complicate neutral transformations. Specifically, abstractions and compres-
sive abstractions must take their arguments lazily (i.e. not evaluate them
before the function call itself is evaluated), in order to be neutral. Further-
more, distribution and inverse distribution may only be applied when f has
no side-effects that will vary (e.g. be duplicated or halved) in the new expres-
sion, or affect the nested computation (e.g. change the result of a condition
within a conditional). Another way to think about this issue is to consider
the action result type as a lazy domain-specific language embedded within
a pure functional language (where evaluation order is unspecified). Spector
has performed an empirical study of the tradeoffs in lazy vs. eager function
abstraction for program evolution [Spe96].

The number of neutral transformation applicable to any given program
grows quickly with program size.7 Furthermore, synthesis of complex pro-
grams and abstractions does not seem to be possible without them. Thus, a
key hypothesis of any approach to AGI requiring significant program synthe-
sis, without assuming the currently infeasible computational capacities re-
quired to brute-force the problem, is that the inductive bias to select promis-
ing neutral transformations can be learned and/or programmed. Referring
back to the initial discussion of what constitutes a tractable representation,
we speculate that perhaps, whereas well-chosen reductions are valuable for
generically increasing program representation tractability, well-chosen neu-
tral transformations will be valuable for increasing program representation
tractability relative to distributions P to which the transformations have
some (possibly subtle) relationship.

21.7.3 Non-Neutral Transformations

Non-neutral transformations are the general class defined by removal, replace-
ment, and insertion of subexpressions, acting on expressions in normal form,
and preserving the normal form property. Clearly these transformations are
sufficient to convert any normal form expression into any other. What is de-
sired is a subclass of the non-neutral transformations that is combinatorially
complete, where each individual transformation is nonetheless a semantically
small step.

The full set of transformations for Boolean expressions is given in [?].
For numerical expressions, the transcendental functions sin, log, and ex

are used to construct transformations. These obviate the need for division
(a/b = elog(a)−log(b)), and subtraction (a − b = a + −1 ∗ b). For lists, trans-
formations are based on insertion of new leaves (e.g. to append function
calls), and “deepening” of the normal form by insertion of subclauses (see

7 Exact calculations are given by Olsson [Ols95].
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[?] for details). For tuples, we take the union of the transformations of all
the subtypes. For other mixed-type expressions the union of the non-neutral
transformations for all types must be considered as well. For enum types
the only transformation is replacing one symbol with another. For function
types, the transformations are based on function composition. For action re-
sult types, actions are inserted/removed/altered, akin to the treatment of
Boolean literals for the Boolean type.

We propose an additional class of non-neutral transformations based on
the marvelous fold function:

fold(f, v, l) = if(empty(l), v, f(first(l), fold(f, v, rest(l))))

With fold we can express a wide variety of iterative constructs, with guaran-
teed termination and a bias towards low computational complexity. In fact,
fold allows us to represent exactly the primitive recursive functions [Hut99].

Even considering only this reduced space of possible transformations, in
many cases there are still too many possible programs “nearby” some target
to effectively consider all of them. For example many probabilistic model-
building algorithms, such as learning the structure of a Bayesian network
from data, can require time cubic in the number of variables (in this context
each independent non-neutral transformation can correspond to a variable).
Especially as the size of the programs we wish to learn grows, and as the
number of typologically matching functions increases, there will be simply too
many variables to consider each one intensively, let alone apply a quadratic-
time algorithm.

To alleviate this scaling difficulty, we propose three techniques.
The first is to consider each potential variable (i.e. independent non-neutral

transformation) to heuristically determine its usefulness in expressing con-
structive semantic variation. For example, a Boolean transformation that
collapses the overall expression into a tautology is assumed to be useless.8

The second is heuristic coupling rules that allow us to calculate, for a pair
of transformations, the expected utility of applying them in conjunction.

Finally, while fold is powerful, it may need to be augmented by other
methods in order to provide tractable representation of complex programs
that would normally be written using numerous variables with diverse scopes.
One approach that we have explored involves application of [SMI97]’s ideas
about director strings as combinators. In Sinot’s approach, special program
tree nodes are labeled with director strings, and special algebraic operators
interrelate these strings. One then achieves the representational efficiency of
local variables with diverse scopes, without needing to do any actual vari-
able management. Reductions and other (non-)neutral transformation rules
related to broadening and reducing variable scope may then be defined using
the director string algebra.

8 This is heuristic because such a transformation might be useful together with other
transformations.
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21.8 Interfacing Between Procedural and Declarative
Knowledge

Finally, another critical aspect of procedural knowledge is its interfacing with
declarative knowledge. We now discuss the referencing of declarative knowl-
edge within procedures, and the referencing of the details of procedural knowl-
edge within CogPrime ’s declarative knowledge store.

21.8.1 Programs Manipulating Atoms

Above we have used Combo syntax implicitly, referring to Appendix ?? for
the formal definitions. Now we introduce one additional, critical element of
Combo syntax: the capability to explicitly reference declarative knowledge
within procedures.

For this purpose Combo must contain the following types:

Atom,Node, Link, TruthV alue,AtomType,AtomTable

Atom is the union of Node and Link.
So a type Node within a Combo program refers to a Node in CogPrime ’s

AtomTable. The mechanisms used to evaluate these entities during program
evaluation are discussed in Chapter 25.

For example, suppose one wishes to write a Combo program that cre-
ates Atoms embodying the predicate-argument relationship eats(cat, fish),
represented

Evaluation eats (cat, fish)

aka

Evaluation
eats

List
cat
fish

To do this, one could say for instance,

new-link(EvaluationLink
new-node(PredicateNode ‘‘eats’’)
new-link(ListLink

new-node(ConceptNode ‘‘cat’’)
new-node(ConceptNode ‘‘fish’’))

(new-stv .99 .99))
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21.9 Declarative Representation of Procedures

Next, we consider the representation of program tree internals using declara-
tive data structures. This is important if we want OCP to inferentially under-
stand what goes on inside programs. In itself, it is more of a “bookkeeping”
issue than a deep conceptual issue, however.

First, note that each of the entities that can live at an internal node of a
program, can also live in its own Atom. For example, a number in a program
tree corresponds to a NumberNode; an argument in a Combo program already
corresponds to some Atom; and an operator in a program can be wrapped
up in a SchemaNode all its own, and considered as a one-leaf program tree.

Thus, one can build a kind of virtual, distributed program tree by linking a
number of ProcedureNodes (i.e. PredicateNodes or SchemaNodes) together.
All one needs in order to achieve this is an analogue of the @ symbol (as
defined in Section 20.3 of Chapter 20) for relating ProcedureNodes. This is
provided by the ExecutionLink type, where
(ExecutionLink f g)

essentially means the same as
f g

in curried notation or
@

/ \
f g

The same generalized evaluation rules used inside program trees may be
thought of in terms of ExecutionLinks; formally, they are crisp Extension-
alImplicationLinks among ExecutionLinks.

Note that we are here using ExecutionLink as a curried function; that is,
we are looking at (ExecutionLink f g) as a function that takes an argument
x, where the truth value of
(ExecutionLink f g) x

represents the probability that executing f, on input g, will give output x.
One may then construct combinator expressions linking multiple Execu-

tionLinks together; these are the analogues of program trees.
For example, using ExecutionLinks, one equivalent of y = x + xˆ2 is:

Hypothetical
SequentialAND

ExecutionLink
pow
List v1 2
v2

ExecutionLink
+
List v1 v2
v3
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Here the v1, v2, v3 are variables which may be internally represented via
combinators. This AND is sequential in case the evaluation order inside the
program interpreter makes a difference.

As a practical matter, it seems there is no purpose to explicitly storing
program trees in conjunction-of-ExecutionLinks form. The information in the
ExecutionLink conjunct is already there in the program tree. However, the
PLN reasoning system, when reasoning on program trees, may carry out this
kind of expansion internally as part of its analytical process.
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Chapter 22
Emotion, Motivation, Attention and
Control

Co-authored with Zhenhua Cai

22.1 Introduction

This chapter begins the heart of the book: the part that explains how the Cog-
Prime design aims to implement roughly human-like general intelligence, at
the human level and ultimately beyond. First, here in Section VII we explain
how CogPrime can be used to implement a simplistic animal-like agent with-
out much learning: an agent that perceives, acts and remembers, and chooses
actions that it thinks will achieve its goals; but doesn’t do any sophisticated
learning or reasoning or pattern recognition to help it better perceive, act,
remember or figure out how to achieve its goals. We’re not claiming Cog-
Prime is the best way to implement such an animal-like agent, though we
suggest it’s not a bad way and depending on the complexity and nature of
the desired behaviors, it could be the best way. We have simply chosen to split
off the parts of CogPrime needed for animal-like behavior and present them
first, prior to presenting the various “knowledge creation” (learning, reasoning
and pattern recognition) methods that constitute the more innovative and
interesting part of the design.

In Stan Franklin’s terms, what we explain here in Section VII is how a basic
cognitive cycle may be achieved within CogPrime . In that sense, the portion
of CogPrime explained in this Sectionis somewhat similar to the parts of
Stan’s LIDA architecture that have currently been worked out in detail, and
that . However, while LIDA has not yet been extended in detail (in theory or
implementation) to handle advanced learning, cognition and language, those
aspects of CogPrime have been developed and in fact constitute the largest
portion of this book.

Looking back to the integrative diagram from Chapter 5, the cognitive cy-
cle is mainly about integrating vaguely LIDA-like structures and mechanisms
with heavily Psi-like structures and mechanisms – but doing so in a way that
naturally links in with perception and action mechanisms "below," and more
abstract and advanced learning mechanisms "above."

461
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In terms of the general theory of general intelligence, the basic CogPrime
cognitive cycle can be seen to have a foundational importance in biasing the
CogPrime system toward the problem of controlling an agent in an environ-
ment requiring a variety of real-time and near-real-time responses based on
a variety of kinds of knowledge. Due to its basis in human and animal cog-
nition, the CogPrime cognitive cycle likely incorporates many useful biases
in ways that are not immediately obvious, but that would become apparent
if comparing intelligent agents controlled by such a cycle versus intelligent
agents controlled via other means.

The cognitive cycle also provides a framework in which other cognitive
processes, relating to various aspects of the goals and environments relevant
to human-level general intelligence, may conveniently dynamically interoper-
ate. The "Mind OS" aspect of the CogPrime architecture provides general
mechanisms in which various cognitive processes may interoperate on a com-
mon knowledge store; the cognitive cycle goes further and provides a specific
dynamical pattern in which multiple cognitive processes may intersect. Its
effective operation places strong demands on the cognitive synergy between
the various cognitive processes involved, but also provides a framework that
encourages this cognitive synergy to develop and persist.

Finally, it should be stressed that the cognitive cycle is not all-powerful nor
wholly pervasive in CogPrime ’s dynamics. It’s critical for the real-time inter-
action of a CogPrime -controlled agent with a virtual or physical world; but
there may be many processes within CogPrime that most naturally operate
outside such a cycle. For instance, humans will habitually do deep intellec-
tual thinking (even something so abstract as mathematical theorem proving)
within a cognitive cycle somewhat similar to the one they use for practical
interaction with the external world. But, there’s no reason that CogPrime
systems need to be constrained in this way. Deviating from a cognitive cy-
cle based dynamic may cause a CogPrime system to deviate further from
human-likeness in its intelligence, but may also help it to perform better
than humans on some tasks, e.g. tasks like scientific data analysis or math-
ematical theorem proving that benefit from styles of information processing
that humans aren’t particularly good at.

22.2 A Quick Look at Action Selection

We will begin our exposition of CogPrime ’s cognitive cycle with a quick look
at action selection. As Stan Franklin likes to point out, the essence of an
intelligent agent is that it does things; it takes actions. The particular mech-
anisms of action selection in CogPrime are a bit involved and will be given in
Chapter 24; in this chapter we will give the basic idea of the action selection
mechanism and then explain how a variant of the Psi model (described in
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Chapter 4 of Part 1 above) is used to handle motivation (emotions, drives,
goals, etc.) in CogPrime , including the guidance of action selection.

The crux of CogPrime ’s action selection mechanism is as follows

• the action selector chooses procedures that seem likely to help achieve
important goals in the current context

– Example: If the goal is to create a block structure that will surprise
Bob, and there is plenty of time, one procedure worth choosing might
be a memory search procedure for remembering situations involving
Bob and physical structures. Alternately, if there isn’t much time,
one procedure worth choosing might be a procedure for building the
base of a large structure – as this will give something to use as part
of whatever structure is eventually created. Another procedure worth
choosing might be one that greedily assembles structures from blocks
without any particular design in mind.

• to support the action selector, the system builds implications of the form
Context&Procedure → Goal, where Context is a predicate evaluated
based on the agent’s situation

– Example: If Bob has asked the agent to do something, and it knows
that Bob is very insistent on being obeyed, then implications such as
· “Bob instructed to do X” and “do X” → “please Bob” < .9, .9 >

will be utilized
– Example: If the agent wants to make a tower taller, then implications

such as
· “T is a blocks structure” and “place block atop T” → “make T
taller” < .9, .9 >

will be utilized

• the truth values of these implications are evaluated based on experience
and inference

– Example: The above implication involving Bob could be evaluated
based on experience, by assessing it against remembered episodes
involving Bob giving instructions

– Example: The same implication could be evaluated based on infer-
ence, using analogy to experiences with instructions from other indi-
viduals similar to Bob; or using things Bob has explicitly said, com-
bined with knowledge that Bob’s self-descriptions tend to be reason-
ably accurate

• Importance values are propagated between goals using economic atten-
tion allocation (and, inference is used to learn subgoals from existing
goals)

– Example: If Bob has told the agent to do X, and the agent has then
derived (from the goal of pleasing Bob) the goal of doing X, then
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the “please Bob” goal will direct some of its currency to the “do X”
goal (which the latter goal can then pass to its subgoals, or spend on
executing procedures)

These various processes are carried out in a manner orchestrated by
Dorner’s Psi model as refined by Joscha Bach (as reviewed in Chapter 4
above), which supplies (among other features)

• a specific theory regarding what “demands” should be used to spawn the
top-level goals

• a set of (four) interrelated system parameters governing overall system
state in a useful manner reminiscent of human and animal psychology

• a systematic theory of how various emotions (wholly or partially) emerge
from more fundamental underlying phenomena

22.3 Psi in CogPrime

The basic concepts of the Psi approach to motivation, as reviewed in Chapter
4 of Part 1 above, are incorporated in CogPrime as follows (note that the
following list includes many concepts that will be elaborated in more detail
in later chapters):

• Demands are GroundedPredicateNodes (GPNs), i.e. Nodes that have
their truth value computed at each time by some internal C++ code
or some Combo procedure in the ProcedureRepository

– Examples: Alertness, perceived novelty, internal novelty, reward from
teachers, social stimulus

– Humans and other animals have familiar demands such as hunger,
thirst and excretion; to create an AGI closely emulating a human or
(say) a dog one may wish to simulate these in one’s AGI system as
well

• Urges are also GPNs, with their truth values defined in terms of the truth
values of the Nodes for corresponding Demands. However in CogPrime we
have chosen the term “Ubergoal” instead of Urge, as this is more evocative
of the role that these entities play in the system’s dynamics (they are the
top-level goals).

• Each system comes with a fixed set of Ubergoals (and only very advanced
CogPrime systems will be able to modify their Ubergoals)

– Example: Stay alert and alive now and in the future; experience and
learn new things now and in the future; get reward from the teachers
now and in the future; enjoy rich social interactions with other minds
now and in the future
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– A more advanced CogPrime system could have abstract (but expe-
rientially grounded) ethical principles among its Ubergoals, e.g. an
Ubergoal to promote joy, an Ubergoal to promote growth and an
Ubergoal to promote choice, in accordance with the ethics described
in [Goe06a]

• The ShortTermImportance of an Ubergoal indicates the urgency of the
goal, so if the Demand corresponding to an Ubergoal is within its target
range, then the Ubergoal will have zero STI. But all Ubergoals can be
given maximal LTI to guarantee they don’t get deleted.

– Example: If the system is in an environment continually providing an
adequate level of novelty (according to its Ubergoal), then the Uber-
goal corresponding to external novelty with have low STI but high
LTI. The system won’t expend resources seeking novelty. But then, if
the environment becomes more monotonous, the urgency of the ex-
ternal novelty goal will increase, and its STI will increase correspond-
ingly, and resources will begin getting allocated toward improving the
novelty of the stimuli received by the agent.

• Pleasure is a GPN, and its internal truth value computing program com-
pares the satisfaction of Ubergoals to their expected satisfaction

– Of course, there are various mathematical functions (e.g. p′th power
averages1 for different p) that one can use to average the satisfaction
of multiple Ubergoals; and choices here, i.e.. different specific ways of
calculating Pleasure, could lead to systems with different “personali-
ties”

• Goals are Nodes or Links that are on the system’s list of goals (the
GoalPool). Ubergoals are automatically Goals, but there will be many
other Goals also

– Example: The Ubergoal of getting reward from teachers might spawn
subgoals like “getting reward from Bob" (if Bob is a teacher), or
“making teachers smile” or “create surprising new structures” (if the
latter often garners teacher reward). The subgoal of “create surprising
new structures” might, in the context of a new person entering the
agent’s environment with a bag of toys, lead to the creation of a
subgoal of asking for a new toy of the sort that could be used to help
create new structures. Etc.

• Psi’s memory is CogPrime ’s AtomTable, with associated structures like
the ProcedureRepository (explained in Chapter 19), the SpaceServer and
TimeServer (explained in Chapter 26), etc.

1 the p′th power average is defined as p
√∑

Xp



466 22 Emotion, Motivation, Attention and Control

– Examples: The knowledge of what blocks look like and the knowledge
that tall structures often fall down, go in the AtomTable; specific
procedures for picking up blocks of different shapes go in the Proce-
dureRepository; the layout of a room or a pile of blocks at a specific
point in time go in the SpaceServer; the series of events involved in
the building-up of a tower are temporally indexed in the TimeServer.

– In Psi and MicroPsi, these same phenomena are stored in memory in
a rather different way, yet the basic Psi motivational dynamics are
independent of these representational choices

• Psi’s “motive selection” process is carried out in CogPrime by economic
attention allocation, which allocates ShortTermImportance to Goal nodes

– Example: The flow of importance from “Get reward from teachers" to
“get reward from Bob” to “make an interesting structure with blocks”
is an instance of what Psi calls “motive selection”. No action is being
taken yet, but choices are being made regarding what specific goals
are going to be used to guide action selection.

• Psi’s action selection plays the same role as CogPrime ’s action selection,
with the clarification that in CogPrime this is a matter of selecting which
procedures (i.e. schema) to run, rather than which individual actions to
execute. However, this notion exists in Psi as well, which accounts for
“automatized behaviors” that are similar to CogPrime schemata; the only
(minor) difference here is that in CogPrime automatized behaviors are
the default case.

– Example: If the goal “make an interesting structure with blocks” has
a high STI, then it may be used to motivate choice of a procedure
to execute, e.g. a procedure that finds an interesting picture or ob-
ject seen before and approximates it with blocks, or a procedure that
randomly constructs something and then filters it based on interest-
ingness. Once a blocks-structure-building procedure is chosen, this
procedure may invoke the execution of sub-procedures such as those
involved with picking up and positioning particular blocks.

• Psi’s planning is carried out via various learning processes in CogPrime
, including PLN plus procedure learning methods like MOSES or hill-
climbing

– Example: If the agent has decided to build a blocks structure emu-
lating a pyramid (which it saw in a picture), and it knows how to
manipulate and position individual blocks, then it must figure out
a procedure for carrying out individual-block actions that will re-
sult in production of the pyramid. In this case, a very inexperienced
agent might use MOSES or hillclimbing and “guidedly-randomly” fid-
dle with different construction procedures until it hit on something
workable. A slightly more experience agent would use reasoning based
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on prior structures it had built, to figure out a rational plan (like:
“start with the base, then iteratively pile on layers, each one slightly
smaller than the previous.”)

• The modulators are system parameters which may be represented by
PredicateNodes, and which must be incorporated appropriately in the
dynamics of various MindAgents, e.g.

– activation affects action selection. For instance this may be effected by
a process that, each cycle, causes a certain amount of STICurrency to
pass to schema satisfying certain properties (those involving physical
action, or terminating rapidly). The amount of currency passed in
this way would be proportional to the activation

– resolution level affects perception schema and MindAgents, causing
them to expend less effort in processing perceptual data

– certainty affects inference and pattern mining and concept creation
processes, causing them to place less emphasis on certainty in guiding
their activities, i.e. to be more accepting of uncertain conclusions. To
give a single illustrative example: When backward chaining inference
is being used to find values for variables, a “fitness target” of the
form strength × confidence is sometimes used; this may be replaced
with strengthp × confidence2−p, where activation parameter affects
the exponent p, so when p tends to 0 confidence is more important,
when p tends to 2 strength is more important and when p tends to 1
strength and confidence are equally important.

– selection threshold may be used to effect a process that, each cycle,
causes a certain amount of STICurrency (proportional to the selection
threshold) to pass to the Goal Atoms that were wealthiest at the
previous cycle.

Based on this run-down, Psi and CogPrime may seem very similar, but that’s
because we have focused here only on the motivation and emotion aspect. Psi
uses a very different knowledge representation than CogPrime ; and in the Psi
architecture diagram, nearly all of CogPrime is pushed into the role of “back-
ground processes that operate in the memory box.” According to the theo-
retical framework underlying CogPrime , the multiple synergetic processes
operating in the memory box are actually the crux of general intelligence.
But getting the motivation/emotion framework right is also very important,
and Psi seems to do an admirable job of that.
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22.4 Implementing Emotion Rules Atop Psi’s Emotional
Dynamics

Human motivations are largely determined by human emotions, which are the
result of humanity’s evolutionary heritage and embodiment, which are quite
different than the heritage and embodiment of current AI systems. So, if we
want to create AGI systems that lack humanlike bodies, and didn’t evolve
to adapt to the same environments as humans did, yet still have vaguely
human-like emotional and motivational structures, the latter will need to be
explicitly engineered or taught in some way.

For instance, if one wants to make a CogPrime agent display anger, some-
thing beyond Psi’s model of emotion needs to be coded into the agent to
enable this. After all, the rule that when angry the agent has some propen-
sity to harm other beings, is not implicit in Psi and needs to be programmed
in. However, making use of Psi’s emotion model, anger could be characterized
as an emotion consisting of high arousal, low resolution, strong motive dom-
inance, few background checks, strong goal-orientedness (as the Psi model
suggests) and a propensity to cause harm to agents or objects. This is much
simpler than specifying a large set of detailed rules characterizing angry be-
havior.

The “anger” example brings up the point that desirability of giving AGI
systems closely humanlike emotional and motivational systems is question-
able. After all we humans cause ourselves a lot of problems with these aspects
of our mind/brains, and we sometimes put our more ethical and intellectual
sides at war with our emotional and motivational systems. Looking into the
future, an AGI with greater power than humans yet a humanlike motivational
and emotional system, could be a very dangerous thing.

On the other hand, if an AGI’s motivational and emotional system is
too different from human nature, we might have trouble understanding it,
and it understanding us. This problem shouldn’t be overblown – it seems
possible that an AGI with a more orderly and rational motivational system
than the human one might be able to understand us intellectually very well,
and that we might be able to understand it well using our analytical tools.
However, if we want to have mutual empathy with an AGI system, then
its motivational and emotional framework had better have at least some
reasonable overlap with our own. The value of empathy for ethical behavior
was stressed extensively in Chapter 12 of Part 1.

This is an area where experimentation is going to be key. Our initial plan
is to supply CogPrime with rough emulations of some but not all human
emotions. We see no need to take explicit pains to simulate emotions like
anger, jealousy and hatred. On the other hand, joy, curiosity, sadness, wonder,
fear and a variety of other human emotions seem both natural in the context
of a robotically or virtually embodied CogPrime system, and valuable in
terms of allowing mutual human/CogPrime empathy.
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22.4.1 Grounding the Logical Structure of Emotions in
the Psi Model

To make this point in a systematic way, we point out that Ortony et al’s
[OCC90] “cognitive theory of emotions” can be grounded in CogPrime ’s
version of Psi in a natural way. This theory captures a wide variety of human
and animal emotions in a systematic logical framework, so that grounding
their framework in CogPrime Psi goes a long way toward explaining how
CogPrime Psi accounts for a broad spectrum of human emotions.

The essential idea of the cognitive theory of emotions can be seen in Figure
22.1. What we see there is that common emotions can be defined in terms of
a series of choices:

• Is it positive or negative?
• Is it a response to an agent, an event or an object?
• Is it focused on consequences for oneself, or for another?

– If on another, is it good or bad for the other?
– If on oneself, is it related to some event whose outcome is uncertain?
· if it’s related to an uncertain outcome, did the expectation re-
garding the outcome get fulfilled or not?

Figure 22.1 shows how each set of answers to these questions leads to a
different emotion. For instance: what is a negative emotion, responding to
events, focusing on another, and undesirable to the other? Pity.

In the list of questions, we see that two of them – positive vs. negative,
and expectation fulfillment vs. otherwise – are foundational in thee Psi model.
The others questions are evaluations that an intelligent agent would naturally
make, but aren’t bound up with Psi’s emotion/motivation infrastructure in
such a deep way. Thus, the cognitive theory of emotion emerges as a combi-
nation of some basic Psi factors with some more abstract cognitive properties
(good vs. bad for another; agents vs. events vs. objects).

22.5 Goals and Contexts

Now we dig deeper into the details of motivation in CogPrime . Just as we
have both explicit (local) and implicit (global) memory in CogPrime , we
also have both explicit and implicit goals. An explicit goal is formulated as a
Goal Atom, and then MindAgents specifically orient the system’s activity to-
ward achievement of that goal. An implicit goal is something that the system
works toward, but in a more loosely organized way, and without necessarily
explicitly representing the knowledge that it is working toward that goal.

Here we will focus mainly on explicit motivation, beginning with a descrip-
tion of Goal Atoms, and the Contexts in which Goals are worked toward via
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Fig. 22.1 Ontology of Emotions from [OCC90]

executing Procedures. Figure 22.2 gives a rough depiction of the relationship
between goals, procedures and context, in a simple example relevant to an
OpenCogPrime -controlled virtual agent in a game world.

22.5.1 Goal Atoms

A Goal Atom represents a target system state and is true to the extent that
the system satisfied the conditions it represents. A Context Atom represents
an observed state of the world/mind, and is true to the extent that the state
it defines is observed. Taken together, these two Atom types provide the
infrastructure CogPrime needs to orient its actions in specific contexts toward
specific goals. Not all of CogPrime ’s activity is guided by these Atoms; much
of it is non-goal-directed and spontaneous, or ambient as we sometimes call
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Fig. 22.2 Context, Procedures and Goals. Examples of the basic "goal/context/pro-
cedure" triad in a simple game-agent situation.

it. But it is important that some of the system’s activity - and in some cases,
a substantial portion - is controlled explicitly via goals.

Specifically, a Goal Atom is simply an Atom (usually a PredicateNode,
sometimes a Link, and potentially another type of Atom) that has been se-
lected by the GoalRefinement MindAgent as one that represents a state of
the atom space which the system finds important to achieve. The extent to
which an Atom is considered a Goal Atom at a particular point in time is
determined by how much of a certain kind of financial instrument called an
RFS (Request For Service) it possesses (as will be explained in Chapter 24).

A CogPrime instance must begin with some initial Ubergoals (aka top
level supergoals), but may then refine these goals in various ways using in-
ference. Immature, “childlike” CogPrime systems cannot modify their Uber-
goals nor add nor delete Ubergoals. Advanced CogPrime systems may be
allowed to modify, add or delete Ubergoals, but this is a critical and sub-
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tle aspect of system dynamics that must be treated with great care. WIK-
ISOURCE:ContextAtom

22.6 Context Atoms

Next, a Context is simply an Atom that is used as the source of a Con-
textLink, for instance
Context

quantum_computing
Inheritance Ben amateur

or
Context

game_of_fetch
PredictiveAttraction

Evaluation give (ball, teacher)
Satisfaction

The former simply says that Ben is an amateur in the context of quantum
computing. The latter says that in the context of the game of fetch, giving the
ball to the teacher implies satisfaction. A more complex instance pertinent
to our running example would be
Context

Evaluation
Recently
List

Minute
Evaluation

Ask
List

Bob
ThereExists $X

And
Evaluation

Build
List

self
$X

Evaluation
surprise
List

$X
Bob

AverageQuatifier $Y
PredictiveAttraction

And
Evaluation

Build
List
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self
$Y

Evaluation
surprise
List

$Y
Jim

Satisfaction

which says that, if the context is that Bob has recently asked for something
surprising to be built, then one strategy for getting satisfaction is to build
something that seems likely to satisfy Jim.

An implementation-level note: in the current OpenCogPrime implemen-
tation of CogPrime , ContextLinks are implicit rather than explicit entities.
An Atom can contain a ComplexTruthValue which in turn contains a num-
ber of VersionHandles. Each VersionHandle associates a Context or a Hy-
pothetical with a TruthValue. This accomplishes the same thing as a formal
ContextLink, but without the creation of a ContextLink object. However, we
continue to use ContextLinks in this book and other documents about Cog-
Prime ; and it’s quite possible that future CogPrime implementations might
handle them differently.

22.7 Ubergoal Dynamics

In the early phases of a CogPrime system’s cognitive development, the goal
system dynamics will be quite simple. The Ubergoals are supplied by human
programmers, and the system’s adaptive cognition is used to derive subgoals.
Attentional currency allocated to the Ubergoals is then passed along to the
subgoals, as judged appropriate.

As the system becomes more advanced, however, more interesting phenom-
ena may arise regarding Ubergoals: implicit and explicit Ubergoal creation.

22.7.1 Implicit Ubergoal Pool Modification

First of all, implicit Ubergoal creation or destruction may occur. Implicit
Ubergoal destruction may occur when there are multiple Ubergoals in the
system, and some prove easier to achieve than others. The system may then
decide not to bother achieving the more difficult Ubergoals. Appropriate
parameter settings may militate against this phenomenon, of course.

Implicit Ubergoal creation may occur if some Goal Node G arises that
inherits as a subgoal from multiple Ubergoals. This Goal G may then come
to act implicitly as an Ubergoal, in that it may get more attentional currency
than any of the Ubergoals.
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Also, implicit Ubergoal creation may occur via forgetting. Suppose that G
becomes a goal via inferred inheritance from one or more Ubergoals. Then,
suppose G forgets why this inheritance exists, and that in fact the reason be-
comes obsolete, but the system doesn’t realize that and keeps the inheritance
there. Then, G is an implicit Ubergoal in a strong sense: it gobbles up a lot of
attentional currency, potentially more than any of the actual Ubergoals, but
actually doesn’t help achieve the Ubergoals, even though the system thinks
it does. This kind of dynamic is obviously very bad and should be avoided –
and can be avoided with appropriate tuning of system parameters (so that
the system pays a lot of attention to making sure that its subgoaling-related
inferences are correct and are updated in a timely way).

22.7.2 Explicit Ubergoal Pool Modification

An advanced CogPrime system may be given the ability to explicitly modify
its Ubergoal pool. This is a very interesting but very subtle type of dynamic,
which is not currently well understood and which potentially could lead to
dramatically unpredictable behaviors.

However, modification, creation and deletion of goals is a key aspect of
human psychology, and the granting of this capability to mature CogPrime
systems must be seriously considered.

In the case that Ubergoal pool modification is allowed, one useful heuristic
may be to make implicit Ubergoals into explicit Ubergoals. For instance: if an
Atom is found to consistently receive a lot of RFSs, and has a long time-scale
associated with it, then the system should consider making it an Ubergoal.
But this heuristic is certainly not sufficient, and any advanced CogPrime
system that is going to modify its own Ubergoals should definitely be tuned
to put a lot of thought into the process!

The science of Ubergoal pool dynamics basically does not exist at the
moment, and one would like to have some nice mathematical models of the
process prior to experimenting with it in any intelligent capable CogPrime
system. Although Schmiddhuber’s Gödel machine [Sch06] has the theoretical
capability to modify its ubergoal (note that CogPrime is, in some way, a
Gödel machine), there is currently no mathematics allowing us to assess the
time and space complexity of such process in a realistic context, given a
certain safety confidence target.

22.8 Goal Formation

Goal formation in CogPrime is done via PLN inference. In general, what
PLN does for goal formation is to look for predicates that can be proved
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to probabilistically imply the existing goals. These new predicates will then
tend to receive RFS currency, according to the logic of RFS’s to be outlined
in Chapter 24, which (according to goal-driven attention allocation dynam-
ics) will make the system more likely to enact procedures that lead to their
satisfaction.

As an example of the goal formation process, consider the case where
ExternalNovelty is an Ubergoal. The agent may then learn that whenever
Bob gives it a picture to look at, its quest for external novelty is satisfied to
a singificant degree. That is, it learns

Attraction
Evaluation give (Bob, me, picture)
ExternalNovelty

where Attraction A B measures how much A versus ¬A implies B (as ex-
plained in Chapter 34). This information allows the agent (the Goal Forma-
tion MindAgent) to nominate the atom:

EvaluationLink give (Bob, me, picture)

as a goal (a subgoal of the original Ubergoal). This is an example of goal
refinement, which is one among many ways that PLN can create new goals
from existing ones.

22.9 Goal Fulfillment and Predicate Schematization

When there is a Goal Atom G important in the system (with a lot of RFS),
the GoalFulfillment MindAgent seeks SchemaNodes S that it has reason to
believe, if enacted, will cause G to become true (satisfied). It then adds these
to the ActiveSchemaPool, an object to be discussed below. The dynamics
by which the GoalFulfillment process works will be discussed in Chapter 24
below.

For example, if a Context Node Chas a high truth value at that time
(because it is currently satisfied), and is involved in a relation:

Attraction
C
PredictiveAttraction S G

(for some SchemaNode S and Goal Node G) then this SchemaNode S
is likely to be selected by the GoalFulfillment process for execution. This
is the fully formalized version of the Context&Schema → Goal notion dis-
cussed frequently above. The process may also allow the importance of various
schema S to bias its choices of which schemata to execute.

For instance, following up previous examples, we might have

Attraction
Evaluation
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near
List

self
Bob

PredictiveAttraction
Evaluation

ask
List

Bob
‘‘Show me a picture’’

ExternalNovelty

Of course this is a very simplistic relationship but it’s similar to a behavior
a young child might display. A more advanced agent would utilize a more
abstract relationship that distinguishes various situations in which Bob is
nearby, and also involves expressing a concept rather than a particular sen-
tence.

The formation of these schema-context-goal triads may occur according to
generic inference mechanisms. However, a specially-focused PredicateSchema-
tization MindAgent is very useful here as a mechanism of inference control,
increasing the number of such relations that will exist in the system.

22.10 Context Formation

New contexts are formed by a combination of processes:

• The MapEncapsulation MindAgent, which creates Context Nodes em-
bodying repeated patterns in the perceived world. This process encom-
passes

– Maps creating Context Nodes involving Atoms that have high STI at
the same time
· Example: A large number of Atoms related to towers could be
joined into a single map, which would then be a ConceptNode
pointing to “tower-related ideas, procedures and experiences”

– Maps creating Context Nodes that are involved in a temporal activa-
tion pattern that recurs at multiple points in the system’s experience.
· Example: There may be a common set of processes involving cre-
ating a building out of blocks: first build the base, then the walls,
then the roof. This could be encapsulated as a temporal map em-
bodying the overall nature of the process. In this case, the map
contains information of the nature: first do things related to this,
then do things related to this, then do things related to this...

• A set of concept creation MindAgents (see Chapter 38, which fuse and
split Context Nodes to create new ones.
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– The concept of a building and the concept of a person can be merged
to create the concept of a BuildingMan

– The concept of a truck built with Legos can be subdivided into trucks
you can actually carry Lego blocks with, versus trucks that are “just
for show” and can’t really be loaded with objects and then carry them
around

22.11 Execution Management

The GoalFulfillment MindAgent chooses schemata that are found likely to
achieve current goals, but it doesn’t actually execute these schemata. What
it does is to take these schemata and place them in a container called the
ActiveSchemaPool.

The ActiveSchemaPool contains a set of schemata that have been deter-
mined to be reasonably likely, if enacted, to significantly help with achieving
the current goal-set. I.e., everything in the active schema pool should be a
schema S so that it has been concluded that

Attraction
C
PredictiveAttraction S G

– where C is a currently applicable context and G is one of the goals in
the current goal pool – has a high truth value compared to what could be
obtained from other known schemata S or other schemata S that could be
reasonably expected to be found via reasoning.

The decision of which schemata in the ActiveSchemaPool to enact is made
by an object called the ExecutionManager, which is invoked each time the
SchemaActivation MindAgent is executed. The ExecutionManager is used to
select which schemata to execute, based on doing reasoning and consulting
memory regarding which active schemata can usefully be executed simulta-
neously without causing destructive interference (and hopefully causing con-
structive interference). This process will also sometimes (indirectly) cause
new schemata to be created and/or other schemata from the AtomTable to
be made active. This process is described more fully in Chapter 24 on action
selection. WIKISOURCE:GoalsAndTime

For instance, if the agent is involved in building a blocks structure intended
to surprise or please Bob, then it might simultaneously carry out some blocks-
manipulation schema, and also a schema involving looking at Bob to garner
his approval. If it can do the blocks manipulation without constantly looking
at the blocks, this should be unproblematic for the agent.
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22.12 Goals and Time

The CogPrime system maintains an explicit list of “Ubergoals”, which as will
be explained in Chapter 24, receive attentional currency which they may then
allocate to their subgoals according to a particular mechanism.

However, there is one subtle factor involved in the definition of the Uber-
goals: time. The truth value of a Ubergoal is typically defined as the average
level of satisfaction of some Demand over some period of time – but the
time scale of this averaging can be very important. In many cases, it may
be worthwhile to have separate Ubergoals corresponding to the same De-
mand but doing their truth-value time-averaging over different time scales.
For instance, corresponding to Demands such as Novelty or Health, we may
posit both long-term and short-term versions, leading to Ubergoals such as
CurrentNovelty, LongTermNovelty, CurrentHealth, LongTermHealth, etc. Of
course, one could also wrap multiple Ubergoals corresponding to a single De-
mand into a single Ubergoal combining estimates over multiple time scales;
this is not a critical issue and the only point of splitting Demands into mul-
tiple Ubergoals is that it can make things slightly simpler for other cognitive
processes.

For instance, if the agent has a goal of pleasing Bob, and it knows Bob
likes to be presented with surprising structures and ideas, then the agent has
some tricky choices to make. Among other choices it must balance between
focusing on

• creating things and then showing them to Bob
• studying basic knowledge and improving its skills.

Perhaps studying basic knowledge and skills will give it a foundation to
surprise Bob much more dramatically in the mid-term future ... but in the
short run will not allow it to surprise Bob much at all, because Bob al-
ready knows all the basic material. This is essentially a variant of the general
“exploration versus exploitation” dichotomy, which lacks any easy solution.
Young children are typically poor at carrying out this kind of balancing act,
and tend to focus overly much on near-term satisfaction. There are also sig-
nificant cultural differences in the heuristics with which adult humans face
these issues; e.g. in some contexts Oriental cultures tend to focus more on
mid to long term satisfaction whereas Western cultures are more short term
oriented.
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Attention Allocation

Co-authored with Joel Pitt and Matt Ikle’ and Rui Liu

23.1 Introduction

The critical factor shaping real-world general intelligence is resource con-
straint. Without this issue, we could just have simplistic program-space-
search algorithms like AIXItl instead of complicated systems like the human
brain or CogPrime . Resource constraint is managed implicitly within various
components of CogPrime , for instance in the population size used in evolu-
tionary learning algorithms, and the depth of forward or backward chaining
inference trees in PLN. But there is also a component of CogPrime that
manages resources on a global and cognitive-process-independent manner:
the attention allocation component.

The general principles the attention allocation process should follow are
easy enough to see: History should be used as a guide, and an intelligence
should make probabilistic judgments based on its experience, guessing which
resource-allocation decisions are likely to maximize its goal-achievement. The
problem is that this is a difficult learning and inference problem, and to carry
it out with excellent accuracy would require a limited-resources intelligent
system to spend nearly all its resources deciding what to pay attention to
and nearly none of them actually paying attention to anything else. Clearly
this would be a very poor allocation of an AI system’s attention! So simple
heuristics are called for, to be supplemented by more advanced and expensive
procedures on those occasions where time is available and correct decisions
are particularly crucial.

Attention allocation plays, to a large extent, a "meta" role in enabling
mind-world correspondence. Without effective attention allocation, the other
cognitive processes can’t do their jobs of helping an intelligent agent to
achieve its goals in an environment, because they won’t be able to pay atten-
tion to the most important parts of the environment, and won’t get compu-
tational resources at the times when they need it. Of course this need could
be addressed in multiple different ways. For example, in a system with multi-
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ple complex cognitive processes, one could have attention allocation handled
separately within each cognitive process, and then a simple "top layer" of
attention allocation managing the resources allocated to each cognitive pro-
cess. On the other hand, one could also do attention allocation via a single
dynamic, pervasive both within and between individual cognitive processes.
The CogPrime design gravitates more toward the latter approach, though
also with some specific mechanisms within various MindAgents; and efforts
have been made to have these specific mechanisms modulated by the generic
attention allocation structures and dynamics wherever possible.

In this chapter we will dig into the specifics of how these attention alloca-
tion issues are addressed in the CogPrime design. In short, they are addressed
via a set of mechanisms and equations for dynamically adjusting importance
values attached to Atoms and MindAgents. Different importance values exist
pertinent to different time scales, most critically the short-term (STI) and
long-term (LTI) importances. The use of two separate time-scales here re-
flects fundamental aspects of human-like general intelligence and real-world
computational constraints.

The dynamics of STI is oriented partly toward the need for real-time re-
sponsiveness, and the more thoroughgoing need for cognitive processes at
speeds vaguely resembling the speed of "real time" social interaction. The
dynamics of LTI is based on the fact that some data tends to be useful
over long periods of time, years or decades in the case of human life, but
the practical capability to store large amounts of data in a rapidly accessi-
ble way is limited. One could imagine environments in which very-long-term
multiple-type memory was less critical than it is in typical human-friendly en-
vironments; and one could envision AGI systems carrying out tasks in which
real-time responsiveness was unnecessary (though even then some attention
focusing would certainly be necessary). For AGI systems like these, an atten-
tion allocation system based on STI and LTI with CogPrime -like equations
would likely be inappropriate. But for an AGI system intended to control
a vaguely human-like agent in an environment vaguely resembling everyday
human environments, the focus on STI and LTI values, and the dynamics
proposed for these values in CogPrime , appear to make sense.

Two basic innovations are involved in the mechanisms attached to these
STI and LTI importance values:

• treating attention allocation as a data mining problem: the system records
information about what it’s done in the past and what goals it’s achieved
in the past, and then recognizes patterns in this history and uses them to
guide its future actions via probabilistically adjusting the (often context-
specific) importance values associated with internal terms, actors and
relationships, and adjusting the “effort estimates” associated with Tasks
• using an artificial-economics approach to update the importance values

(attached to Atoms, MindAgents, and other actors in the CogPrime sys-
tem) that regulate system attention. (And, more speculatively, using an
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information geometry based approach to execute the optimization in-
volved in the artificial economics approach efficiently and accurately.)

The integration of these two aspects is crucial. The former aspect provides
fundamental data about what’s of value to the system, and the latter aspect
allows this fundamental data to be leveraged to make sophisticated and in-
tegrative judgments rapidly. The need for the latter, rapid-updating aspect
exists partly because of the need for real-time responsiveness, imposed by the
need to control a body in a rapidly dynamic world, and the prominence in
the architecture of an animal-like cognitive cycle. The need for the former,
data-mining aspect (or something functionally equivalent) exists because, in
the context of the tasks involved in human-level general intelligence, the as-
signment of credit problem is hard – the relations between various entities
in the mind and the mind’s goals are complex, and identifying and deploy-
ing these relationships is a difficult learning problem requiring application of
sophisticated intelligence.

Both of these aspects of attention allocation dynamics may be used in
computationally lightweight or computationally sophisticated manners:

• For routine use in real-time activity

– “data mining” consists of forming HebbianLinks (involved in the as-
sociative memory and inference control, see Section 23.5), where the
weight of the link from Atom A to Atom B is based on the probability
of shared utility of A and B

– economic attention allocation consists of spreading ShortTermIm-
portance and LongTermImportance “artificial currency” values (both
grounded in the universal underlying “juju” currency value defined
further below) between Atoms according to specific equations that
somewhat resemble neural net activation equations but respect the
conservation of currency

• For use in cases where large amounts of computational resources are
at stake based on localized decisions, hence allocation of substantial re-
sources to specific instances of attention-allocation is warranted

– “data mining” may be more sophisticated, including use of PLN,
MOSES and pattern mining to recognize patterns regarding what
probably deserves more attention in what contexts

– economic attention allocation may involve more sophisticated eco-
nomic calculations involving the expected future values of various
“expenditures” of resources

The particular sort of "data mining" going on here is definitely not exactly
what the human brain does, but we believe this is a case where slavish ad-
herence to neuroscience would be badly suboptimal (even if the relevant neu-
roscience were well known, which is not the case). Doing attention allocation
entirely in a distributed, formal-neural-net-like way is, we believe, extremely
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and unnecessarily inefficient, and given realistic resource constraints it leads
to the rather poor attention allocation that we experience every day in our
ordinary waking state of consciousness. Several aspects of attention allocation
can be fruitfully done in a distributed, neural-net-like way, but not having
a logically centralized repository of system-history information (regardless of
whether it’s physically distributed or not) seems intrinsically problematic in
terms of effective attention allocation. And we argue that, even for those as-
pects of attention allocation that are best addressed in terms of distributed,
vaguely neural-net-like dynamics, an artificial-economics approach has sig-
nificant advantages over a more strictly neural-net-like approach, due to the
greater ease of integration with other cognitive mechanisms such as forgetting
and data mining.

23.2 Semantics of Short and Long Term Importance

We now specify the two types of importance value (short and long term) that
play a key role in CogPrime dynamics. Conceptually, ShortTermImportance
(STI) is defined as

STI(A) = P (A will be useful in the near future)

whereas LongTermImportance (LTI) is defined as

LTI(A) = P (A will be useful eventually, in the foreseeable future)

Given a time-scale T , in general we can define an importance value relative
to T as

IT (A) = P (A will be useful during the next T seconds)

In the ECAN module in CogPrime , we deal only with STI and LTI rather
than any other importance values, and the dynamics of STI and LTI are dealt
with by treating them as two separate “artificial currency” values, which how-
ever are interconvertible via being mutually grounded in a common currency
called “juju.”

For instance, if the agent is intensively concerned with trying to build
interesting blocks structures, then knowledge about interpreting biology re-
search paper abstracts is likely to be of very little current importance. So its
biological knowledge will get low STI, but – assuming the agent expects to
use biology again – it should maintain reasonably high LTI so it can remain
in memory for future use. And if in its brainstorming about what blocks
structures to build, the system decides to use some biological diagrams as
inspiration, STI can always spread to some of the biology-related Atoms,
increasing their relevance and getting them more attention. While the atten-
tion allocation system contains mechanisms to convert STI to LTI, it also has
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parameter settings biasing it to spend its juju on both kinds of importance
– i.e. it contains an innate bias to both focus its attention judiciously, and
manage its long-term memory conscientiously.

Because in CogPrime most computations involving STI and LTI are re-
quired to be very rapid (as they’re done for many Atoms in the memory
very frequently), in most cases when dealing with these quantities, it will be
appropriate to sacrifice accuracy for efficiency. On the other hand, it’s useful
to occasionally be able to carry out expensive, highly accurate computations
involving importance.

An example where doing expensive computations about attention alloca-
tion might pay off, would be the decision whether to use biology-related or
engineering-related metaphors in creating blocks structures to please a cer-
tain person. In this case it could be worth doing a few steps of inference
to figure out whether there’s a greater intensional similarity between that
person’s interests and biology or engineering; and then using the results to
adjust the STI levels of whichever of the two comes out most similar. This
would not be a particularly expensive inference to carry out, but it’s still
much more effort than what can be expended on Atoms in the memory most
of the time. Most attention allocation in CogPrime involves simple neural-net
type spreading dynamics rather than explicit reasoning.

Figure 23.1 illustrates the key role of LTI in the forgetting process. Fig-
ure 23.2 illustrates the key role of STI in maintaining a "moving bubble of
attention", which we call the system’s AttentionalFocus.

Fig. 23.1 LongTermImportance and Forgetting.
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Fig. 23.2 Formation of the AttentionalFocus. The dynamics of STI is configured
to encourage the emergence of richly cross-connected networks of Atoms with high STI
(above a threshold called the AttentionalFocusBoundary), passing STI among each other
as long as this is useful and forming new HebbianLinks among each other. The collection
of these Atoms is called the AttentionalFocus.

23.2.1 The Precise Semantics of STI and LTI

Now we precisiate the above definitions of STI and LTI.
First, we introduce the notion of reward. Reward is something that Goals

give to Atoms. In principle a Goal might give an Atom reward in various
different forms, though in the design given here, reward will be given in
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units of a currency called juju. The process by which Goals assign reward to
Atoms is part of the “assignment of credit” process (and we will later discuss
the various time-scales on which assignment of credit may occur and their
relationship to the time-scale parameter within LTI).

Next, we define

J(A, t1, t2, r) = expected amount of reward A will receive between t1 and t2
time-steps in the future, if its STI has percentile rank r among all Atoms in

the AtomTable

The percentile rank r of an Atom is the rank of that Atom in a list of Atoms
ordered by decreasing STI, divided by the total number of Atoms. The reason
for using a percentile rank instead of the STI itself is because at any given time
only a limited number of atoms can be given attention, so all atoms below a
certain perceptible rank, depending on the amount of available resource, will
simply be ignored.

This is a fine-grained measure of how worthwhile it is expected to be to
increase A’s STI, in terms of getting A rewarded by Goals.

For practical purposes it is useful to collapse J(A, t1, t2, r) to a single
number:

J(A, t1, t2) =

∑
r J(A, t1, t2, r)wr∑

r wr

where wr weights the different percentile ranks (and should be chosen to be
monotone increasing in r). This is a single-number measure of the respon-
siveness of an Atom’s utility to its STI level. So for instance if A has a lot of
STI and it turns out to be rewarded then J(A, t1, t2) will be high. On the
other hand if A has little STI then whether it gets rewarded or not will not
influence J(A, t1, t2) much.

To simplify notation, it’s also useful to define a single-time-point version

J(A, t) = J(A, t, t)

23.2.1.1 Formalizing STI

Using these definitions, one simple way to make the STI definition precise is:

STIthresh(A, t) = P (J(A, t, t+ tshort) ≥ sthreshold)

where sthreshold demarcates the “attentional focus boundary.” Which is a
way of saying that we don’t want to give STI to atoms that would not get
rewarded if they were given attention.

Or one could make the STI definition precise in a fuzzier way, and define
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STIfuzzy(A, t) =
∞∑
s=0

J(A, t+ s)c−s

for some appropriate parameter c (or something similar with a decay function
less severe than exponential)

In either case, the goal of the ECAN subsystem, regarding STI, is to
assign each Atom A an STI value that corresponds as closely as possible to
the theoretical STI values defined by whichever one of the above equations
is selected (or some other similar equation).

23.2.2 STI, STIFund, and Juju

But how can one estimate these probabilities in practice? In some cases they
may be estimated via explicit inference. But often they must be estimated
by heuristics.

The estimative approach taken in current CogPrime design is an artificial
economy, in which each Atom maintains a certain fund of artificial currency.
In the current proposal this currency is called juju and is the same currency
used to value LTI. Let us call the amount of juju owned by Atom A the
STIFund of A. Then, one way to formalize the goal of the artificial economy
is to state that: if one ranks all Atoms by the wealth of their STIFund, and
separately ranks all Atoms by their theoretical STI value, the rankings should
be as close as possible to the same. One may also formalize the goal in terms
of value correlation instead of rank correlation, of course.

Proving conditions under which the STIFund values will actually correlate
well with the theoretical STI values, is an open math problem. Heuristically,
one may map STIFund values into theoretical STI values by a mapping such
as

A.STI = α+ β
A.STIFund− STIFund.min

STIFund.max−STIFund.min

where STIFund.min = min
X

X.STIFund. However, we don’t currently have
rigorous grounding for any particular functional form for such a mapping;
the above is just a heuristic approximation.

The artificial economy approach leads to a variety of supporting heuristics.
For instance, one such heuristic is: if A has been used at time t, then it will
probably be useful at time t+s for small s. Based on this heuristic, whenever
a MindAgent uses an Atom A, it may wish increase A’s STIFund (so as to
hopefully increase correlation of A’s STIFund with its theoretical STI). It
does so by transferring some of its juju to A’s STIFund.
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23.2.3 Formalizing LTI

Similarly to with STI, with LTI we will define theoretical LTI values, and
posit an LTIFund associated with each Atom, which seeks to create values
correlated with the theoretical LTI values.

For LTI, the theoretical issues are subtler. There is a variety of different
ways to precisiate the above loose conceptual definition of LTI. For instance,
one can (and we will below) create formalizations of both:

1. LTIcont(A) = (some time-weighting or normalization of) the expected
value of A’s total usefulness over the long-term future

2. LTIburst(A) = the probability that A ever becomes highly useful at some
point in the long-term future

(here “cont” stands for “continuous”). Each of these may be formalized, in
similar but nonidentical ways.

These two forms of LTI may be viewed as extremes along a continuum; one
could posit a host of intermediary LTI values between them. For instance,
one could define

LTIp(A) = the p′th power average1 of expectation of the utility of A over
brief time intervals, measured over the long-term future

Then we would have

LTIburst = LTI∞

LTIcont = LTI1

and could vary p to vary the sharpness of the LTI computation. This might be
useful in some contexts, but our guess is that it’s overkill in practice and that
looking at LTIburst and LTIcont is enough (or more than enough; the current
OCP code uses only one LTI value and that has not been problematic so far).

23.2.4 Applications of LTIburst versus LTIcont

It seems that the two forms of LTI discussed above might be of interest in
different contexts, depending on the different ways that Atoms may be used
so as to achieve reward.

If an Atom is expected to get rewarded for the results of its being selected
by MindAgents that carry out diffuse, background thinking (and hence often
select low-STI Atoms from the AtomTable), then it may be best associated
with LTIcont.

1 the p′th power average is defined as p
√∑

Xp
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On the other hand, if an Atom is expected to get rewarded for the results
of its being selected by MindAgents that are focused on intensive foreground
thinking (and hence generally only select Atoms with very high STI), it may
be best associated with LTIburst.

In principle, Atoms could be associated with particular LTIp based on
the particulars of the selection mechanisms of the MindAgents expected to
lead to their reward. But the issue with this is, it would result in Atoms
carrying around an excessive abundance of different LTIp values for various
p, resulting in memory bloat; and it would also require complicated analyses
of MindAgent dynamics. If we do need more than one LTI value, one would
hope that two will be enough, for memory conservation reasons.

And of course, if an Atom has only one LTI value associated with it, this
can reasonably be taken to stand in for the other one: either of LTIburst or
LTIcont may, in the absence of information to the contrary, be taken as an
estimate of the other.

23.2.4.1 LTI with Various Time Lags

The issue of the p value in the average in the definition of LTI is somewhat
similar to (though orthogonal to) the point that there are many different
interpretations of LTI, achieved via considering various time-lags. Our guess
is that a small set of time-lags will be sufficient. Perhaps one wants an ex-
ponentially increasing series of time-lags: i.e. to calculate LTI over k cycles
where k is drawn from {r, 2r, 4r, 8r, ...2Nr}.

The time-lag in LTI seems related to the time-lag in the system’s goals.
If a Goal object is disseminating juju, and the Goal has an intrinsic time
scale of t, then it may be interested in LTI on time-scale t. So when a MA
(MindAgent) is acting in pursuit of that goal, it should spend a bunch of its
juju on LTI on time-scale t.

Complex goals may be interested in multiple time-scales (for instance, a
goal might place greater value on things that occur in the next hour, but still
have nonzero interest in things that occur in a week), and hence may have
different levels of interest in LTI on multiple time-scales.

23.2.4.2 Formalizing Burst LTI

Regarding burst LTI, two approaches to formalization seem to be the thresh-
old version

LTIburst,thresh(A) = P (A will receive a total of at least sthreshold amount of
normalized stimulus during some time interval of length tshort in the next

tlong time steps)

and the fuzzy version,
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LTIburst,fuzzy(A, t) =
∞∑
s=0

J(A, t+ s, t+ s+ tshort)f(s, tlong)

where f(t, tlong) : R+ × R+ → R+ is a nonincreasing function that remains
roughly constant in t up till a point tlong steps in the future, and then begins
slowly decaying.

23.2.4.3 Formalizing Continuous LTI

The threshold version of continuous LTI is quite simply:

LTIcont,thresh(A, tlong) = STIthresh(A, tlong)

That is, smooth threshold LTI is just like smooth threshold STI, but the
time-scale involved is longer.

On the other hand, the fuzzy version of smooth LTI is:

LTIcont,fuzzy(A, t) =
∞∑
s=0

J(A, t+ s)f(s, tlong)

using the same decay function f that was introduced above in the context of
burst LTI.

23.3 Defining Burst LTI in Terms of STI

It is straightforward to define burst LTI in terms of STI, rather than directly
in terms of juju. We have

LTIburst,thresh(A, t) = P (
⋃s=tlong
s=0 STIthresh(A, t+ s))

Or, using the fuzzy definitions, we obtain instead the approximate equation

LTIburst,fuzzy(A, t) ≈
∞∑
s=0

α(s)STIfuzzy(A, t+ s)f(s, tlong)

where

α(s) =
1− c

1− cs+1

or the more complex exact equation:

LTIburst,fuzzy(A, t) =
∞∑
s=0

STIfuzzy(A, t+s)

(
f(s, tlong)−

s∑
r=1

(c−rf(s− r, tlong))

)



490 23 Attention Allocation

23.4 Valuing LTI and STI in terms of a Single Currency

We now further discuss the approach of defining LTIFund and STIFund in
terms of a single currency: juju (which as noted, corresponds in the current
ECAN design to normalized stimulus).

In essence, we can think of STIFund and LTIFund as different forms of
financial instrument, which are both grounded in juju. Each Atom has two
financial instruments attached to it: “STIFund of Atom A” and “LTIFund
of Atom A” (or more if multiple versions of LTI are used). These financial
instruments have the peculiarity that, although many agents can put juju
into any one of them, no record is kept of who put juju in which one. Rather,
the MA’s are acting so as to satisfy the system’s Goals, and are adjusting
the STIFund and LTIFund values in a heuristic manner that is expected to
approximately maximize the total utility propagated from Goals to Atoms.

Finally, each of these financial instruments has a value that gets updated
by a specific update equation.

To understand the logic of this situation better, consider the point of view
of a Goal with a certain amount of resources (juju, to be used as reward), and
a certain time-scale on which its satisfaction is to be measured. Suppose that
the goal has a certain amount of juju to expend on getting itself satisfied.

This Goal clearly should allocate some of its juju toward getting processor
time allocated toward the right Atoms to serve its ends in the near future; and
some of its juju toward ensuring that, in future, the memory will contain the
Atoms it will want to see processor time allocated to. Thus, it should allocate
some of its juju toward boosting the STIFund of Atoms that it thinks will
(if chosen by appropriate MindAgents) serve its needs in the near future,
and some of its juju toward boosting the LTIFund of Atoms that it thinks
will serve its need in the future (if they remain in RAM). Thus, when a
Goal invokes a MindAgent (giving the MindAgent the juju it needs to access
Atoms and carry out its work), it should tell this MindAgent to put some of
its juju into LTIFunds and some into STIFunds.

If a MindAgent receives a certain amount of juju each cycle, independently
of what the system Goals are explicitly telling it, then this should be viewed
as reflecting an implicit goal of “ambient cognition”, and the balance of STI
and LTI associated with this implicit goal must be a system parameter.

In general, the trade-off between STI and LTI boils down to the weighting
between near and far future that is intrinsic to a particular Goal. Simplisti-
cally: if a Goal values getting processor allocated to the right stuff immedi-
ately 25 times more than getting processor allocated to the right stuff 20K
cycles in the future, then it should be willing spend 25× more of its juju
on STI than on LTI20K cycles. (This simplistic picture is complicated a lit-
tle by the relationship between different time-scales. For instance, boosting
LTI10K cycles(A) will have an indirect effect of increasing the odds that A
will still be in memory 20K cycles in the future.)
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However, this isn’t the whole story, because multiple Goals are setting the
importance values of the same set of Atoms. IfM1 pumps all its juju into STI
for certain Atoms, then M2 may decide it’s not worthwhile for it to bother
competing with M1 in the STI domain, and to spend its juju on LTI instead.

Note that the current system doesn’t allow a MA to change its mind
about LTI allocations. One can envision a system where a MindAgent could
in January pay juju to have Atom A kept around for a year, but then change
its mind in June 6 months later, and ask for some of the money back. But
this would require an expensive accounting procedure, keeping track of how
much of each Atom’s LTI had been purchased by which MindAgent; so it
seems a poor approach.

A more interesting alternative would be to allow MA’s to retain adjustable
“reserve funds” of juju. This would mean that a MindAgent would never see a
purpose to setting LTIone year(A) instead of repeatedly setting LTIone minute,
unless a substantial transaction cost were incurred with each transaction of
adjusting an Atom’s LTI. Introducing a transaction cost plus an adjustable
per-MindAgent juju reserve fund, and LTI’s on multiple time scales, would
give the LTI framework considerable flexibility. (To prevent MA’s from hoard-
ing their juju, one could place a tax rate on reserve juju.)

The conversion rate between STI and LTI becomes an interesting matter;
though it seems not a critical one, since in the practical dynamics of the
system it’s juju that is used to produce STI and LTI. In the current design
there is no apparent reason to spread STI of one Atom to LTI of another
Atom, or convert the STI of an Atom into LTI of that same Atom, etc. – but
such an application might come up. (For the rest of this paragraph, let’s just
consider LTI with one time scale, for simplicity.) Each Goal will have its own
preferred conversion rate between STI and LTI, based on its own balancing
of different time scales. But, each Goal will also have a limited amount of
juju, hence one can only trade a certain amount of STI for LTI, if one is
trading with a specific goal G. One could envision a centralized STI-for-LTI
market where different MA’s would trade with each other, but this seems
overcomplicated, at least at the present stage.

As a simpler software design point, this all suggests a value for associating
each Goal with a parameter telling how much of its juju it wants to spend on
STI versus LTI. Or, more subtly, how much of its juju it wants to spend on LTI
on various time-scales. On the other hand, in a simple ECAN implementation
this balance may be assumed constant across all Goals.

23.5 Economic Attention Networks

Economic Attention Networks (ECANs) are dynamical systems based on the
propagation of STI and LTI values. They are similar in many respects to
Hopfield nets, but are based on a different conceptual foundation involving
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the propagation of amounts of (conserved) currency rather than neural-net
activation. Further, ECANs are specifically designed for integration with a
diverse body of cognitive processes as embodied in integrative AI designs
such as CogPrime . A key aspect of the CogPrime design is the imposition
of ECAN structure on the CogPrime AtomSpace.

Specifically, ECANs have been designed to serve two main purposes within
CogPrime : to serve as an associative memory for the network, and to fa-
cilitate effective allocation of the attention of other cognitive processes to
appropriate knowledge items.

An ECAN is simply a graph, consisting of un-typed nodes and links, and
also “Hebbian” links that may have types such as HebbianLink, InverseHeb-
bianLink, or SymmetricHebbianLink. Each node and link in an ECAN is
weighted with two currency values, called STI (short-term importance) and
LTI (long-term importance); and each Hebbian link is weighted with a prob-
abilistic truth value.

The equations of an ECAN explain how the STI, LTI and Hebbian link
weights values get updated over time. As alluded to above, the metaphor
underlying these equations is the interpretation of STI and LTI values as
(separate) artificial currencies. The fact that STI and LTI are currencies
means that, except in unusual instances where the ECAN controller decides
to introduce inflation or deflation and explicitly manipulate the amount of
currency in circulation, the total amounts of STI and LTI in the system are
conserved. This fact makes the dynamics of an ECAN dramatically different
than that of an attractor neural network.

In addition to STI and LTI as defined above, the ECAN equations also
contain the notion of an Attentional Focus (AF), consisting of those Atoms
in the ECAN with the highest STI values (and represented by the sthreshold
value in the above equations). These Atoms play a privileged role in the
system and, as such, are treated using an alternate set of equations.

23.5.1 Semantics of Hebbian Links

Conceptually, the probability value of a HebbianLink from A to B is the odds
that if A is in the AF, so is B; and correspondingly, the InverseHebbianLink
from A to B is weighted with the odds that if A is in the AF, then B is not.
An ECAN will often be coupled with a “Forgetting” process that removes low-
LTI Atoms from memory according to certain heuristics. A critical aspect of
the ECAN equations is that Atoms periodically spread their STI and LTI
to other Atoms that connect to them via Hebbian and InverseHebbianLinks;
this is the ECAN analogue of activation spreading in neural networks.

Multiple varieties of HebbianLink may be constructed, for instance
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• Asymmetric HebbianLinks, whose semantics are as mentioned above: the
truth value of HebbianLink A B denotes the probability that if A is in
the AF, so is B

• Symmetric HebbianLinks, whose semantics are that: the truth value of
SymmetricHebbianLink A B denotes the probability that if one of A or
B is in the AF, both are

It is also worth noting that one can combine ContextLinks with HebbianLinks
and express contextual association such that in context C, there is a strong
HebbianLink between A and B.

23.5.2 Explicit and Implicit Hebbian Relations

In addition to explicit HebbianLinks, it can be useful to treat other links im-
plicitly as HebbianLinks. For instance, if ConceptNodes A and B are found to
connote similar concepts, and a SimilarityLink is formed between them, then
this gives reason to believe that maybe a SymmetricHebbianLink between A
and B should exist as well. One could incorporate this insight in CogPrime
in at least three ways:

• creating HebbianLinks paralleling other links (such as SimilarityLinks)
• adding “Hebbian weights” to other links (such as SimilarityLinks)
• implicitly interpreting other links (such as SimilarityLinks) as Hebbian-

Links

Further, these strategies may potentially be used together.
There are some obvious semantic relationships to be used in interpreting

other link types implicitly as HebbianLinks: for instance, Similarity maps
into SymmetricHebbian, and Inheritance A B maps into Hebbian A B. One
may express these as inference rules, e.g.

SimilarityLink A B <tv_1>
|-
SymmetricHebbianLink A B <tv_2>

where tv2.s = tv1.s. Clearly, tv2.c < tv1.c; but the precise magnitude of tv2.c
must be determined by a heuristic formula. One option is to set tv2.c = αtv1.c
where the constant α is set empirically via data mining the System Activity
Tables to be described below.

23.6 Dynamics of STI and LTI Propagation

We now get more specific about how some of these ideas are implemented
in the currently implemented ECAN subsystem of CogPrime Prime. We’ll
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discuss mostly STI here because in the current design LTI works basically
the same way.

MindAgents send out stimulus to Atoms whenever they use them (or else,
sometimes, just for the purpose of increasing the Atom’s STI); and before
these stimulus values are used to update the STI levels of the receiving
Atom, they are normalized by: the total amount of stimulus sent out by
the MindAgent in that cycle, multiplied by the total amount of STI currency
that the MindAgent decided to spend in that cycle. The normalized stimu-
lus is what has above been called juju. This normalization preserves fairness
among MA’s, and conservation of currency.

(The reason “stimuli” exist, separately from STI, is that stimulus-sending
needs to be very computationally cheap, as in general it’s done frequently by
each MA each cycle, and we don’t want each action a MA takes to invoke
some costly importance-updating computation.)

Then, Atoms exchange STI according to certain equations (related to Heb-
bianLinks and other links), and have their STI values updated according to
certain equations (which involve, among other operations, transferring STI
to the “central bank”).

23.6.1 ECAN Update Equations

The CogServer is understood to maintain a kind of central bank of STI and
LTI funds. When a non-ECAN MindAgent finds an Atom valuable, it sends
that Atom a certain amount of Stimulus, which results in that Atom’s STI and
LTI values being increased (via equations to be presented below, that transfer
STI and LTI funds from the CogServer to the Atoms in question). Then,
the ECAN ImportanceUpdating MindAgent carries out multiple operations,
including some that transfer STI and LTI funds from some Atoms back to
the CogServer.

There are multiple ways to embody this process equationally; here we
briefly describe two variants.

23.6.1.1 Definition and Analysis of Variant 1

We now define a specific set of equations in accordance with the ECAN con-
ceptual framework described above. We define HSTI = [s1, · · · , sn] to be the

vector of STI values, and C =

 c11, · · · , c1n...
. . .

...
cn1, · · · , cnn

 to be the connection matrix

of Hebbian probability values, where it is assumed that the existence of a
HebbianLink or InverseHebbianLink between A and B are mutually exclu-
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sive possibilities. We also define CLTI =

 g11, · · · , g1n...
. . .

...
gn1, · · · , gnn

 to be the matrix of

LTI values for each of the corresponding links.
We assume an updating scheme in which, periodically, a number of Atoms

are allocated Stimulus amounts, which causes the corresponding STI values
to change according to the equations

∀i : si = si − rent + wages,

where rent and wages are given by

rent =

 〈Rent〉 ·max

(
0,

log( 20si
recentMaxSTI )

2

)
, if si > 0

0, if si ≤ 0

and

wages =

{ 〈Wage〉〈Stimulus〉∑n
i=1 pi

, if pi = 1
〈Wage〉〈Stimulus〉

n−
∑n
i=1 pi

, if pi = 0
,

where P = [p1, · · · , pn], with pi ∈ {0, 1} is the cue pattern for the pattern
that is to be retrieved.
All quantities enclosed in angled brackets are system parameters, and LTI
updating is accomplished using a completely analogous set of equations.

The changing STI values then cause updating of the connection matrix,
according to the “conjunction” equations. First define

normi =

{
si

recentMaxSTI , if si ≥ 0
si

recentMinSTI , if si < 0
.

Next define

conj = Conjunction (si, sj) = normi × normj

and

c′ij = 〈ConjDecay〉 conj + (1− conj) cij .

Finally update the matrix elements by setting

cij =

{
cji = c′ij , if c

′
ij ≥ 0

c′ij , if c′ij < 0
.

We are currently also experimenting with updating the connection matrix in
accordance with the equations suggested by Storkey (1997, 1998, 1999.)

A key property of these equations is that both wages paid to, and rent paid
by, each node are positively correlated to their STI values. That is, the more
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important nodes are paid more for their services, but they also pay more in
rent.

A fixed percentage of the links with the lowest LTI values is then forgotten
(which corresponds equationally to setting the LTI to 0).

Separately from the above, the process of Hebbian probability updating is
carried out via a diffusion process in which some nodes “trade” STI utilizing a
diffusion matrix D, a version of the connection matrix C normalized so that
D is a left stochastic matrix. D acts on a similarly scaled vector v, normalized
so that v is equivalent to a probability vector of STI values.

The decision about which nodes diffuse in each diffusion cycle is carried
out via a decision function. We currently are working with two types of
decision functions: a standard threshold function, by which nodes diffuse
if and only if the nodes are in the AF; and a stochastic decision function
in which nodes diffuse with probability tanh(shape(si−FocusBoundary))+1

2 , where
shape and FocusBoundary are parameters.

The details of the diffusion process are as follows. First, construct the
diffusion matrix from the entries in the connection matrix as follows:

If cij ≥ 0, then dij = cij ,
else, set dji = −cij .

Next, we normalize the columns of D to make D a left stochastic matrix.
In so doing, we ensure that each node spreads no more that a 〈MaxSpread〉
proportion of its STI, by setting

if

n∑
i=1

dij > 〈MaxSpread〉 :

dij =

{
dij × 〈MaxSpread〉∑n

i=1 dij
, for i 6= j

djj = 1− 〈MaxSpread〉

else:

djj = 1−
n∑

i = 1
i 6= j

dij

Now we obtain a scaled STI vector v by setting

minSTI = min
i∈{1,2,··· ,n}

si and maxSTI = max
i∈{1,2,··· ,n}

si

vi =
si −min STI

maxSTI−min STI

The diffusion matrix is then used to update the node STIs
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v′ = Dv

and the STI values are rescaled to the interval [minSTI,maxSTI].
In both the rent and wage stage and in the diffusion stage, the total STI

and LTI funds of the system each separately form a conserved quantity: in
the case of diffusion, the vector v is simply the total STI times a probability
vector. To maintain overall system funds within homeostatic bounds, a mid-
cycle tax and rent-adjustment can be triggered if necessary; the equations
currently used for this are

1. 〈Rent〉 = recent stimulus awarded before update×〈Wage〉
recent size of AF ;

2. tax = x
n , where x is the distance from the current AtomSpace bounds to

the center of the homeostatic range for AtomSpace funds;
3. ∀i:si = si − tax

23.6.1.2 Investigation of Convergence Properties of Variant 1

Now we investigate some of the properties that the above ECAN equations
display when we use an ECAN defined by them as an associative memory
network in the manner of a Hopfield network.

We consider a situation where the ECAN is supplied with memories via a
“training” phase in which one imprints it with a series of binary patterns of
the form P = [p1, · · · , pn], with pi ∈ {0, 1}. Noisy versions of these patterns
are then used as cue patterns during the retrieval process.

We obviously desire that the ECAN retrieve the stored pattern corre-
sponding to a given cue pattern. In order to achieve this goal, the ECAN
must converge to the correct fixed point.

Theorem 23.1. For a given value of e in the STI rent calculation, there
is a subset of hyperbolic decision functions for which the ECAN dynamics
converge to an attracting fixed point.

Proof. Rent is zero whenever si ≤ recentMaxSTI
20 , so we consider this case first.

The updating process for the rent and wage stage can then be written as
f (s) = s + constant. The next stage is governed by the hyperbolic decision
function

g (s) =
tanh (shape (s− FocusBoundary)) + 1

2
.

The entire updating sequence is obtained by the composition (g ◦ f) (s),
whose derivative is then

(g ◦ f)
′
=

sech2 (f (s)) · shape
2

· (1) ,

which has magnitude less than 1 whenever -2 < shape < 2. We next consider
the case si > recentMaxSTI

20 . The function f now takes the form
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f (s) = s− log (20s/recentMaxSTI)

2
+ constant,

and we have

(g ◦ f)
′
=

sech2 (f (s)) · shape
2

·
(
1− 1

s

)
.

which has magnitude less than 1 whenever |shape| <
∣∣∣ 2·recentMaxSTI
recentMaxSTI−20

∣∣∣.
Choosing the shape parameter to satisfy 0 < shape < min

(
2,
∣∣∣ 2·recentMaxSTI
recentMaxSTI−20

∣∣∣)
then guarantees that

∣∣∣(g ◦ f)′ ∣∣∣ < 1. Finally, g ◦ f maps the closed inter-
val [recentMinSti, recentMaxSTI] into itself, so applying the Contraction
Mapping Theorem completes the proof.

23.6.1.3 Definition and Analysis of Variant 2

The ECAN variant described above has performed completely acceptably in
our experiments so far; however we have also experimented with an alternate
variant, with different convergence properties. In Variant 2, the dynamics of
the ECAN are specifically designed so that a certain conceptually intuitive
function serves as a Liapunov function of the dynamics.

At a given time t, for a given Atom indexed i, we define two quantities:
OUTi(t) = the total amount that Atom i pays in rent and tax and diffusion
during the time-t iteration of ECAN ; INi(t) = the total amount that Atom
i receives in diffusion, stimulus and welfare during the time-t iteration of
ECAN. Note that welfare is a new concept to be introduced below. We then
define DIFFi(t) = INi(t) − OUTi(t) ; and define AVDIFF(t) as the average
of DIFFi(t) over all i in the ECAN.

The design goal of Variant 2 of the ECAN equations is to ensure that, if
the parameters are tweaked appropriately, AVDIFF can serve as a (determin-
istic or stochastic, depending on the details) Lyapunov function for ECAN
dynamics. This implies that with appropriate parameters the ECAN dynam-
ics will converge toward a state where AVDIFF=0, meaning that no Atom
is making any profit or incurring any loss. It must be noted that this kind
of convergence is not always desirable, and sometimes one might want the
parameters set otherwise. But if one wants the STI components of an ECAN
to converge to some specific values, as for instance in a classic associative
memory application, Variant 2 can guarantee this easily.

In Variant 2, each ECAN cycle begins with rent collection and welfare
distribution, which occurs via collecting rent via the Variant 1 equation, and
then performing the following two steps:
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• Step A: calculate X, defined as the positive part of the total amount by
which AVDIFF has been increased via the overall rent collection process.

• Step B: redistribute X to needy Atoms as follows: For each Atom z,
calculate the positive part of OUT − IN , defined as deficit(z). Distribute
X + e wealth among all Atoms z, giving each Atom a percentage of X
that is proportional to deficit(z), but never so much as to cause OUT<IN
for any Atom (the welfare being given counts toward IN). Here e > 0
ensures AVDIFF decrease; e = 0 may be appropriate if convergence is
not required in a certain situation.

Step B is the welfare step, which guarantees that rent collection will decrease
AVDIFF. Step A calculates the amount by which the rich have been made
poorer, and uses this to make the poor richer. In the case that the sum of
deficit(z) over all nodes z is less than X, a mid-cycle rent adjustment may be
triggered, calculated so that step B will decrease AVDIFF. (I.e. we cut rent
on the rich, if the poor don’t need their money to stay out of deficit.)

Similarly, in each Variant 2 ECAN cycle, there is a wage-paying process,
which involves the wage-paying equation from Variant 1 followed by two
steps. Step A: calculate Y , defined as the positive part of the total amount
by which AVDIFF has been increased via the overall wage payment process.
Step B: exert taxation based on the surplus Y as follows: For each Atom z,
calculate the positive part of IN−OUT, defined as surplus(z). Collect Y + e1
wealth from all Atom z, collecting from each node a percentage of Y that is
proportional to surplus(z), but never so much as to cause IN < OUT for any
node (the new STI being collected counts toward OUT).

In case the total of surplus(z) over all nodes z is less than Y , one may
trigger a mid-cycle wage adjustment, calculated so that step B will decrease
AVDIFF. I.e. we cut wages since there is not enough surplus to support it.

Finally, in the Variant 2 ECAN cycle, diffusion is done a little differently,
via iterating the following process: If AVDIFF has increased during the diffu-
sion round so far, then choose a random node whose diffusion would decrease
AVDIFF, and let it diffuse; if AVDIFF has decreased during the diffusion
round so far, then choose a random node whose diffusion would increase
AVDIFF, and let it diffuse. In carrying out these steps, we avoid letting the
same node diffuse twice in the same round. This algorithm does not let all
Atoms diffuse in each cycle, but it stochastically lets a lot of diffusion happen
in a way that maintains AVDIFF constant. The iteration may be modified
to bias toward an average decrease in AVDIFF.

The random element in the diffusion step, together with the logic of the
rent/welfare and wage/tax steps, combines to yield the result that for Variant
2 of ECAN dynamics, AVDIFF is a stochastic Lyaponov function. The details
of the proof of this will be omitted but the outline of the argument should be
clear from the construction of Variant 2. And note that by setting the e and
e1 parameter to 0, the convergence requirement can be eliminated, allowing
the network to evolve more spontaneously as may be appropriate in some
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contexts; these parameters allow one to explicitly adjust the convergence
rate.

One may also derive results pertaining to the meaningfulness of the attrac-
tors, in various special cases. For instance, if we have a memory consisting of
a set M of m nodes, and we imprint the memory on the ECAN by stimulating
m nodes during an interval of time, then we want to be able to show that
the condition where precisely those m nodes are in the AF is a fixed-point
attractor. However, this is not difficult, because one must only show that if
these m nodes and none others are in the AF, this condition will persist.

23.6.2 ECAN as Associative Memory

We have carried out experiments gauging the performance of Variant 1 of
ECAN as an associative memory, using the implementation of ECAN within
CogPrime , and using both the conventional and Storkey Hebbian updating
formulas.

As with a Hopfield net memory, the memory capacity (defined as the num-
ber of memories that can be retrieved from the network with high accuracy)
depends on the sparsity of the network, with denser networks leading to
greater capacity. In the ECAN case the capacity also depends on a variety
of parameters of the ECAN equations, and the precise unraveling of these
dependencies is a subject of current research. However, one interesting de-
pendency has already been uncovered in our preliminary experimentation,
which has to do with the size of the AF versus the size of the memories being
stored.

Define the size of a memory (a pattern being imprinted) as the number of
nodes that are stimulated during imprinting of that memory. In a classical
Hopfield net experiment, the mean size of a memory is usually around, say,
.2-.5 of the number of neurons. In typical CogPrime associative memory sit-
uations, we believe the mean size of a memory will be one or two orders of
magnitude smaller than that, so that each memory occupies only a relatively
small portion of the overall network.

What we have found is that the memory capacity of an ECAN is gener-
ally comparable to that of a Hopfield net with the same number of nodes
and links, if and only if the ECAN parameters are tuned so that the mem-
ories being imprinted can fit into the AF. That is, the AF threshold or (in
the hyperbolic case) shape parameter must be tuned so that the size of the
memories is not so large that the active nodes in a memory cannot stably
fit into the AF. This tuning may be done adaptively by testing the impact
of different threshold/shape values on various memories of the appropriate
size; or potentially a theoretical relationship between these quantities could
be derived, but this has not been done yet. This is a reasonably satisfying
result given the cognitive foundation of ECAN: in loose terms what it means
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is that ECAN works best for remembering things that fit into its focus of
attention during the imprinting process.

23.7 Glocal Economic Attention Networks

In order to transform ordinary ECANs into glocal ECANs, one may proceed
in essentially the same manner as with glocal Hopfield nets as discussed in
Chapter 13 of Part 1. In the language normally used to describe CogPrime ,
this would be termed a “map encapsulation” heuristic. As with glocal Hopfield
nets, one may proceed most simply via creating a fixed pool of nodes intended
to provide locally-representative keys for the maps formed as attractors of
the network. Links may then be formed to these key nodes, with weights and
STI and LTI values adapted by the usual ECAN algorithms.

23.7.1 Experimental Explorations

To compare the performance of glocal ECANs with glocal Hopfield networks
in a simple context, we ran experiments using ECAN in the manner of a
Hopfield network. That is, a number of nodes take on the equivalent role
of the neurons that are presented patterns to be stored. These patterns are
imprinted by setting the corresponding nodes of active bits to have their STI
within the AF, whereas nodes corresponding to inactive bits of the pattern
are below the AF threshold. Link weight updating then occurs, using one of
several update rules, but in this case the update rule of [SV99] was used.
Attention spread used a diffusion approach by representing the weights of
Hebbian links between pattern nodes within a left stochastic Markov matrix,
and multiplying it by the vector of normalised STI values to give a vector
representing the new distribution of STI.

To explore the effects of key nodes on ECAN Hopfield networks, in
[Goe08b] we used the palimpsest testing scenario of [SV99], where all the local
neighbours of the imprinted pattern, within a single bit change, are tested.
Each neighbouring pattern is used as input to try and retrieve the original
pattern. If all the retrieved pattern are the same as the original (within a
given tolerance) then the pattern is deemed successfully retrieved and recall
of the previous pattern is attempted via its neighbours. The number of pat-
terns this can repeat for successfully is called the palimpsest storage of the
network.

As an example, consider one simple experiment that was run with recollec-
tion of 10×10 pixel patterns (so, 100 nodes, each corresponding to a pixel in
the grid), a Hebbian link density of 30%, and with 1% of links being forgotten
before each pattern is imprinted. The results demonstrated that, when the
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mean palimpsest storage is calculated for each of 0, 1, 5 and 10 key nodes
we find that the storage is 22.6, 22.4, 24.9, and 26.0 patterns respectively,
indicating that key nodes do improve memory recall on average.

23.8 Long-Term Importance and Forgetting

Now we turn to the forgetting process (carried out by the Forgetting MindA-
gent), which is driven by LTI dynamics, but has its own properties as well.

Overall, the goal of the “forgetting” process is to maximize the total util-
ity of the Atoms in the AtomSpace throughout the future. The most basic
heuristic toward this end is to remove the Atoms with the lowest LTI, but
this isn’t the whole story. Clearly, the decision to remove an Atom from RAM
should depend on factors beyond just the LTI of the Atom. For example, one
should also take into account the expected difficulty in reconstituting the
given Atom from other Atoms. Suppose the system has the relations:

’’dogs are animals’’

’’animals are cute’’

’’dogs are cute’’

and the strength of the third relation is not dissimilar from what would be
obtained by deduction and revision from the first two relations and others in
the system. Then, even if the system judges it will be very useful to know
dogs are cute in the future, it may reasonably choose to remove dogs are cute
from memory anyway, because it knows it can be so easily reconstituted, by
a few inference steps for instance. Thus, as well as removing the lowest-LTI
Atoms, the Forgetting MindAgent should also remove Atoms meeting certain
other criteria such as the combination of:

• low STI
• easy reconstitutability in terms of other Atoms that have LTI not less

than its own

23.9 Attention Allocation via Data Mining on the
System Activity Table

In this section we’ll discuss an object called the System Activity Table, which
contains a number of subtables recording various activities carried out by the
various objects in the CogPrime system. These tables may be used for so-
phisticated attention allocation processes, according to an approach in which
importance values and HebbianLink weight values are calculated via direct
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data mining of a centralized knowledge store (the System Activity Table).
This approach provides highly accurate attention allocation but at the cost
of significant computational effort.

The System Activity Table is actually a set of tables, with multiple com-
ponents. The precise definition of the tables will surely be adapted based on
experience as the work with CogPrime progresses; what is described here is
a reasonable first approximation.

First, there is a MindAgent Activity Table, which includes, for each
MindAgent in the system, a table such as Table 23.1 (in which the time-
points recorded are the last T system cycles, and the Atom-lists recorded are
lists of Handles for Atoms).

System
Cycle

Effort
Spent

Memory
Used

Atom Combo 1 Utilized Atom Combo 2 Utilized . . .

Now 3.3 4000 Atom21, Atom44 Atom 44, Atom 47, Atom 345 . . .
Now -1 0.4 6079 Atom123, Atom33 Atom 345 . . .
. . . . . . . . . . . . . . . . . .

Table 23.1 Example MindAgent Table

The MindAgent’s activity table records, for that MindAgent and for each
system cycle, which Atom-sets were acted on by that MindAgent at that
point in time.

Similarly, a table of this nature must be maintained for each Task-type,
e.g. InferenceTask, MOSESCategorizationTask, etc. The Task tables are used
to estimate Effort values for various Tasks, which are used in the procedure
execution process. If it can be estimated how much spatial and temporal
resources a Task is likely to use, via comparison to a record of previous
similar tasks (in the Task table), then a MindAgent can decide whether it
is appropriate to carry out this Task (versus some other one, or versus some
simpler process not requiring a Task) at a given point in time, a process to
be discussed in a later chapter.

In addition to the MindAgent and Task-type tables, it is convenient if
tables are maintained corresponding to various goals in the system (as shown
in Table 23.9), including the Ubergoals but also potentially derived goals of
high importance.

System
Cycle

Total Achievement Achievement for Atom44 Achievement for set
{Atom44, Atom 233}

. . .

Now .8 .4 .5 . . .
Now-1 .9 .5 .55 . . .
. . . . . . . . . . . . . . .

Table 23.2 Example Goal Table
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For each goal, at minimum, the degree of achievement of the goal at a given
time must be recorded. Optionally, at each point in time, the degree of
achievement of a goal relative to some particular Atoms may be recorded.
Typically the list of Atom-specific goal-achievements will be short and will
be different for different goals and different time points. Some goals may be
applied to specific Atoms or Atom sets, others may only be applied more
generally.

The basic idea is that attention allocation and credit assignment may be
effectively carried out via datamining on these tables.

23.10 Schema Credit Assignment

And, how do we apply a similar approach to clarifying the semantics of
schema credit assignment?

From the above-described System Activity Tables, one can derive infor-
mation of the form
Achieve(G,E,T) = ‘‘Goal G was achieved to extent E at time T’’

which may be grounded as, for example:

Similarity
E
ExOut

GetTruthValue
Evaluation

atTime
T
HypLink G

and more refined versions such as

Achieve(G,E,T,A,P) = ‘‘Goal G was achieved to extent E using
Atoms A (with parameters P) at time T’’

Enact(S,I,$T_1$,O,$T_2$) = ‘‘Schema S was enacted on inputs I
at time $T_1$, producing outputs O
at time $T_2$’’

The problem of schema credit assignment is then, in essence: Given a goal G
and a distribution of times D, figure out what schema to enact in order to
cause G’s achievement at some time in the future, where the desirability of
times is weighted by D.

The basic method used is the learning of predicates of the form
ImplicationLink

F (C,P1, ..., Pn)
G

where
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• the Pi are Enact() statements in which the T1 and T2 are variable, and
the S, I and O may be concrete or variable

• C is a predicate representing a context
• G is an Achieve() statement, whose arguments may be concrete or ab-

stract
• F is a Boolean function

Typically, the variable expressions in the T1 and T2 positions will be of the
form T + offset, where offset is a constant value and T is a time value repre-
senting the time of inception of the whole compound schema. T may then be
defined as TG− offset1, where offset1 is a constant value and TG is a variable
denoting the time of achievement of the goal.

In CogPrime , these predicates may be learned by a combination of statis-
tical pattern mining, PLN inference and MOSES or hill-climbing procedure
learning.

The choice of what action to take at a given point in time is then a prob-
abilistic decision. Based on the time-distribution D given, the system will
know a certain number of expressions C = F (C,P1, ..., Pn) of the type de-
scribed above. Each of these will be involved in an ImplicationLink with a
certain estimated strength. It may select the “compound schema” C with the
highest strength.

One might think to introduce other criteria here, e.g. to choose the schema
with the highest strength but the lowest cost of execution. However, it seems
better to include all pertinent criteria in the goal, so that if one wants to
consider cost of execution, one assumes the existence of a goal that incorpo-
rates cost of execution (which may be measured in multiple ways, of course)
as part of its internal evaluation function.

Another issue that arises is whether to execute multiple C simultaneously.
In many cases this won’t be possible because two different C’s will contradict
each other. It seems simplest to assume that C’s that can be fused together
into a single plan of action, are presented to the schema execution process as
a single fused C. In other words, the fusion is done during the schema learning
process rather than the execution process.

A question emerges regarding how this process deals with false causal-
ity, e.g. with a schema that, due to the existence of a common cause, often
happens to occur immediately prior to the occurrence of a given goal. For
instance, roosters crowing often occurs prior to the sun rising. This matter
is discussed in more depth in the PLN book and The Hidden Pattern; but in
brief, the answer is: In the current approach, if roosters crowing often causes
the sun to rise, then if the system wants to cause the sun to rise, it may well
cause a rooster to crow. Once this fails, then the system will no longer hold
the false belief, and afterwards will choose a different course of action. Fur-
thermore, if it holds background knowledge indicating that roosters crowing
is not likely to cause the sun to rise, then this background knowledge will be
invoked by inference to discount the strength of the ImplicationLink point-
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ing from rooster-crowing to sun-rising, so that the link will never be strong
enough to guide schema execution in the first place.

The problem of credit assignment thus becomes a problem of creating
appropriate heuristics to guide inference of ImplicationLinks of the form de-
scribed above. Assignment of credit is then implicit in the calculation of truth
values for these links. The difficulty is that the predicates F involved may be
large and complex.

23.11 Interaction between ECANs and other CogPrime
Components

We have described above a number of interactions between attention alloca-
tion and other aspects of CogPrime ; in this section we gather a few comments
on these interactions, and some additional ones.

23.11.1 Use of PLN and Procedure Learning to Help
ECAN

MOSES or hillclimbing may be used to help mine the SystemActivityTable
for patterns of usefulness, and create HebbianLinks reflecting these patterns.

PLN inference may be carried out on HebbianLinks by treating (Hebbian-
Link A B) as a virtual predicate evaluation relationship , i.e. as

EvaluationLink Hebbian_predicate (A, B)

PLN inference on HebbianLinks may then be used to update node impor-
tance values, because node importance values are essentially node probabilities
corresponding to HebbianLinks. And similarly, MindAgent-relative node im-
portance values are node probabilities corresponding to MindAgent-relative
HebbianLinks.

Note that conceptually, the nature of this application of PLN is different
from most other uses of PLN in CogPrime . Here, the purpose of PLN is
not to draw conclusions about the outside world, but rather about what
the system should focus its resources on in what context. PLN, used in this
context, effectively constitutes a nonlinear-dynamical iteration governing the
flow of attention through the CogPrime system.

Finally, inference on HebbianLinks leads to the emergence of maps, via
the recognition of clusters in the graph of HebbianLinks.
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23.11.2 Use of ECAN to Help Other Cognitive
Processes

First of all, associative-memory functionality is directly important in Cog-
Prime Prime because it is used to drive concept creation. The CogPrime
heuristic called “map formation” creates new Nodes corresponding to promi-
nent attractors in the ECAN, a step that (according to our preliminary re-
sults) not only increases the memory capacity of the network beyond what
can be achieved with a pure ECAN but also enables attractors to be explicitly
manipulated by PLN inference.

Equally important to associative memory is the capability of ECANs to
facilitate effective allocation of the attention of other cognitive processes to
appropriate knowledge items (Atoms). For example, one key role of ECANs
in CogPrime is to guide the forward and backward chaining processes of
PLN (Probabilistic Logic Network) inference. At each step, the PLN infer-
ence chainer is faced with a great number of inference steps (branches) from
which to choose; and a choice is made using a statistical “bandit problem”
mechanism that selects each possible inference step with a probability pro-
portional to its expected “desirability.” In this context, there is considerable
appeal in the heuristic of weighting inference steps using probabilities pro-
portional to the STI values of the Atoms they contain. One thus arrives at a
combined PLN/ECAN dynamic as follows:

1. An inference step is carried out, involving a choice among multiple possi-
ble inference steps, which is made using STI-based weightings (and made
among Atoms that LTI weightings have deemed valuable enough to re-
main in RAM)

2. The Atoms involved in the inference step are rewarded with STI and LTI
proportionally to the utility of the inference step (how much it increases
the confidence of Atoms in the system’s memory)

3. The ECAN operates, and multiple Atom’s importance values are updated
4. Return to Step 1 if the inference isn’t finished

An analogous interplay may occur between ECANs and MOSES.
It seems intuitively clear that the same attractor-convergence properties

highlighted in the above analysis of associative-memory behavior, will also
be highly valuable for the application of ECANs to attention allocation. If
a collection of Atoms is often collectively useful for some cognitive process
(such as PLN), then the associative-memory-type behavior of ECANs means
that once a handful of the Atoms in the collection are found useful in a
certain inference process, the other Atoms in the collection will get their STI
significantly boosted, and will be likely to get chosen in subsequent portions
of that same inference process. This is exactly the sort of dynamics one would
like to see occur. Systematic experimentation with these interactions between
ECAN and other CogPrime processes is one of our research priorities going
forwards.
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23.12 MindAgent Importance and Scheduling

So far we have discussed economic transactions between Atoms and Atoms,
and between Atoms and Units. MindAgents have played an indirect role, via
spreading stimulation to Atoms which causes them to get paid wages by the
Unit. Now it is time to discuss the explicit role of MindAgents in economic
transactions. This has to do with the integration of economic attention al-
location with the Scheduler that schedules the core MindAgents involved in
the basic cognitive cycle.

This integration may be done in many ways, but one simple approach is:

1. When a MindAgent utilizes an Atom, this results in sending stimulus
to that Atom. (Note that we don’t want to make MindAgents pay for
using Atoms individually; that would penalize MA’s that use more Atoms,
which doesn’t really make much sense.)

2. MindAgents then get currency from the Lobe (as defined in Chapter 19)
periodically, and get extra currency based on usefulness for goal achieve-
ment as determined by the credit assignment process. The Scheduler then
gives more processor time to MindAgents with more STI.

3. However, any MindAgent with LTI above a certain minimum threshold
will get some minimum amount of processor time (i.e. get scheduled at
least once each N cycles).

As a final note: In a multi-Lobe Unit, the Unit may use the different LTI
values of MA’s in different Lobes to control the distribution of MA’s among
Lobes: e.g. a very important (LTI) MA might get cloned across multiple
Lobes.

23.13 Information Geometry for Attention Allocation

Appendix B outlined some very broad ideas regarding the potential utiliza-
tion of information geometry and related ideas for modeling cognition. In this
section, we present some more concrete and detailed experiments inspired by
the same line of thinking. We model CogPrime ’s Economic Attention Net-
works (ECAN) component using information geometric language, and then
use this model to propose a novel information geometric method of updating
ECAN networks (based on an extension of Amari’s ANGL algorithm). Tests
on small networks suggest that information-geometric methods have the po-
tential to vastly improve ECAN’s capability to shift attention from current
preoccupations to desired preoccupations. However, there is a high computa-
tional cost associated with the simplest implementations of these methods,
which has prevented us from carrying out large-scale experiments so far. We
are exploring the possibility of circumventing these issues via using sparse
matrix algorithms on GPUs.
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23.13.1 Brief Review of Information Geometry

"Information geometry" is a branch of applied mathematics concerned with
the application of differential geometry to spaces of probability distributions.
In [GI11] we have suggested some extensions to traditional information ge-
ometry aimed at allowing it to better model general intelligence. However for
the concrete technical work in the present paper, the traditional formulation
of information geometry will suffice.

One of the core mathematical constructs underlying information geome-
try, is the Fisher Information, a statistical quantity which has a a variety of
applications ranging far beyond statistical data analysis, including physics
[Fri98], psychology and AI [AN00]. Put simply, FI is a formal way of measur-
ing the amount of information that an observable random variable X carries
about an unknown parameter θ upon which the probability of X depends.
FI forms the basis of the Fisher-Rao metric, which has been proved the only
Riemannian metric on the space of probability distributions satisfying certain
natural properties regarding invariance with respect to coordinate transfor-
mations. Typically θ in the FI is considered to be a real multidimensional
vector; however, [Dab99] has presented a FI variant that imposes basically
no restrictions on the form of θ. Here the multidimensional FI will suffice,
but the more general version is needed if one wishes to apply FI to AGI more
broadly, e.g. to declarative and procedural as well as attentional knowledge.

In the set-up underlying the definition of the ordinary finite-dimensional
Fisher information, the probability function forX, which is also the likelihood
function for θ ∈ Rn, is a function f(X; θ); it is the probability mass (or
probability density) of the random variable X conditional on the value of θ.
The partial derivative with respect to θi of the log of the likelihood function
is called the score with respect to θi. Under certain regularity conditions, it
can be shown that the first moment of the score is 0. The second moment is
the Fisher information:

I(θ)i = IX(θ)i = E

[((
∂

∂θi
ln f(X; θ)

)2
)
|θ

]
where, for any given value of θi, the expression E[..|θ] denotes the conditional
expectation over values for X with respect to the probability function f(X; θ)
given θ. Note that 0 ≤ I(θ)i <∞. Also note that, in the usual case where the
expectation of the score is zero, the Fisher information is also the variance
of the score.

One can also look at the whole Fisher information matrix

I(θ)i,j = E

[(
∂lnf(X, θ)

∂θi

∂lnf(X, θ)

∂θj

)
|θ
]
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which may be interpreted as a metric gij , that provably is the only "intrinsic"
metric on probability distribution space. In this notation we have I(θ)i =
I(θ)i,i.

Dabak [Dab99] has shown that the geodesic between two parameter
vectors θ and θ′ is given by the exponential weighted curve (γ(t)) (x) =
f(x,θ)1−tf(x,θ′)t∫
f(y,θ)1−tf(y,θ′)tdy

, under the weak condition that the log-likelihood ratios
with respect to f(X, θ) and f(X, θ′) are finite. Also, along this sort of curve,
the sum of the Kullback-Leibler distances between θ and θ′, known as the
J-divergence, equals the integral of the Fisher information along the geodesic
connecting θ and θ′.

This suggests that if one is attempting to learn a certain parameter vector
based on data, and one has a certain other parameter vector as an initial
value, it may make sense to use algorithms that try to follow the Fisher-Rao
geodesic between the initial condition and the desired conclusion. This is
what Amari [Ama85] [AN00] calls "natural gradient" based learning, a con-
ceptually powerful approach which subtly accounts for dependencies between
the components of θ.

23.13.2 Information-Geometric Learning for Recurrent
Networks: Extending the ANGL Algorithm

Now we move on to discuss the practicalities foinformation-geometric learn-
ing within CogPrime ’s ECAN component. As noted above, Amari [Ama85,
AN00] introduced the natural gradient as a generalization of the direction
of steepest descent on the space of loss functions of the parameter space.
Issues with the original implementation include the requirement of calculat-
ing both the Fisher information matrix and its inverse. To resolve these and
other practical considerations, Amari [Ama98] proposed an adaptive version
of the algorithm, the Adaptive Natural Gradient Learning (ANGL) algo-
rithm. Park, Amari, and Fukumizu [PAF00] extended ANGL to a variety
of stochastic models including stochastic neural networks, multi-dimensional
regression, and classification problems.

In particular, they showed that, assuming a particular form of stochastic
feedforward neural network and under a specific set of assumptions concern-
ing the form of the probability distributions involved, a version of the Fisher
information matrix can be written as

G(θ) = Eξ

[(
r′

r

)2
]
Ex

[
∇H (∇H)

T
]
.

Although Park et al considered only feedforward neural networks, their
result also holds for more general neural networks, including the ECAN net-
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work. What is important is the decomposition of the probability distribution
as

p (y|x; θ) =
L∏
i=1

ri (yi −Hi (x, θ) )

where

y = H(x; θ) + ξ, y = (y1, · · · , yL)T , H = (H1, · · · , HL)
T , ξ = (ξ1, · · · , ξL)T ,

where ξ is added noise. If we assume further that each ri has the same form
as a Gaussian distribution with zero mean and standard deviation σ, then
the Fisher information matrix simplifies further to

G(θ) =
1

σ2
Ex

[
∇H (∇H)

T
]
.

The adaptive estimate for Ĝ−1t+1 is given by

Ĝ−1t+1 = (1 + εt)Ĝ
−1
t − εt(Ĝ−1t ∇H)(Ĝ−1t ∇H)T .

and the loss function for our model takes the form

l(x,y; θ) = −
L∑

i=1

log r(yi −Hi(x, θ)).

The learning algorithm for our connection matrix weights θ is then given by

θt+1 = θt − ηtĜ−1t ∇l(θt).

23.13.3 Information Geometry for Economic Attention
Allocation: A Detailed Example

We now present the results of a series of small-scale, exploratory experiments
comparing the original ECAN process running alone with the ECAN process
coupled with ANGL. We are interested in determining which of these two
lines of processing result in focusing attention more accurately.

The experiment started with base patterns of various sizes to be deter-
mined by the two algorithms. In the training stage, noise was added, gen-
erating a number of instances of noisy base patterns. The learning goal is
to identify the underlying base patterns from the noisy patterns as this will
identify how well the different algorithms can focus attention on relevant
versus irrelevant nodes.
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Fig. 23.3 Results from Experiment 1

Next, the ECAN process was run, resulting in the determination of the
connection matrix C. In order to apply the ANGL algorithm, we need the
gradient, ∇H, of the ECAN training process, with respect to the input x.
While calculating the connection matrix C, we used Monte Carlo simulation
to simultaneously calculate an approximation to ∇H.

0	  

20	  

40	  

60	  

80	  

100	  

120	  

0	   0.5	   1	   1.5	   2	   2.5	   3	  

SS
E	  

Noise	  Standard	  Devia0on	  

Graph	  2:	  Sum	  of	  Squares	  of	  Errors	  
versus	  Training	  Noise	  (16	  nodes)	  

ECAN	  

ECAN+ANGL	  

Fig. 23.4 Results from Experiment 2

After ECAN training was completed, we bifurcated the experiment. In
one branch, we ran fuzzed cue patterns through the retrieval process. In the
other, we first applied the ANGL algorithm, optimizing the weights in the
connection matrix, prior to running the retrieval process on the same fuzzed
cue patterns. At a constant value of σ = 0.8 we ran several samples through
each branch with pattern sizes of 4×4, 7×7, 10×10, 15×15, and 20×20. The
results are shown in Figure 23.3. We also ran several experiments comparing
the sum of squares of the errors to the input training noise as measured by
the value of σ.; see Figures 23.4 and ??.

These results suggest two major advantages of the ECAN+ANGL com-
bination compared to ECAN alone. Not only was the performance of the
combination better in every trial, save for one involving a small number of
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nodes and little noise, but the combination clearly scales significantly better
both as the number of nodes increases, and as the training noise increases.





Chapter 24
Economic Goal and Action Selection

24.1 Introduction

A significant portion of CogPrime ’s dynamics is explicitly goal-driven – that
is, based on trying (inasmuch as possible within the available resources) to
figure out which actions will best help the system achieve its goals, given the
current context. A key aspect of this explicit activity is guided by the pro-
cess of "goal and action selection" – prioritizing goals, and then prioritizing
actions based on these goals. We have already outlined the high-level pro-
cess of action selection, in Chapter 22 above. Now we dig into the specifics
of the process, showing how action selection is dynamically entwined with
goal prioritization, and how both processes are guided by economic attention
allocation as described in Chapter 23.

While the basic structure of CogPrime ’s action selection aspect is fairly
similar to MicroPsi (due to the common foundation in Dorner’s Psi model),
the dynamics are less similar. MicroPsi’s dynamics are a little closer to being
a formal neural net model, whereas ECAN’s economic foundation tends to
push it in different directions. The CogPrime goal and action selection de-
sign involves some simple simulated financial mechanisms, building on the
economic metaphor of ECAN, that are different from, and more complex
than, anything in MicroPsi.

The main actors (apart from the usual ones like the AtomTable, economic
attention allocation, etc.) in the tale to be told here are as follows:

• Structures:

– UbergoalPool
– ActiveSchemaPool

• MindAgents:

– GoalBasedSchemaSelection
– GoalBasedSchemaLearning

515
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– GoalAttentionAllocation
– FeasibilityUpdating
– SchemaActivation

The Ubergoal Pool contains the Atoms that the system considers as top-
level goals. These goals must be treated specially by attention allocation:
they must be given funding by the Unit so that they can use it to pay for
getting themselves achieved. The weighting among different top-level goals
is achieved via giving them differential amounts of currency. STICurrency is
the key kind here, but of course ubergoals must also get some LTICurrency
so they won’t be forgotten. (Inadvertently deleting your top-level supergoals
from memory is generally considered to be a bad thing ... it’s in a sense a
sort of suicide...)

24.2 Transfer of STI “Requests for Service” Between
Goals

Transfer of “attentional funds” from goals to subgoals, and schema modules
to other schema modules in the same schema, take place via a mechanism of
promises of funding (or ’requests for service,’ to be called ’RFS’s’ from here
on). This mechanism relies upon and interacts with ordinary economic atten-
tion allocation but also has special properties. Note that we will sometimes
say that an Atom “issues” RFS or “transfers” currency while what we really
mean is that some MindAgent working on that Atom issues RFS or transfers
currency.

The logic of these RFS’s is as follows. If agent A issues a RFS of value x
to agent B, then

1. When B judges it appropriate, B may redeem the note and ask A to
transfer currency of value x to B.

2. A may withdraw the note from B at any time.

(There is also a little more complexity here, in that we will shortly introduce
the notion of RFS’s whose value is defined by a set of constraints. But this
complexity does not contradict the two above points.) The total value of the
of RFS’s possessed by an Atom may be referred to as its ’promise.’

A rough schematic depiction of this RFS process is given in Figure 24.1.
Now we explain how RFS’s may be passed between goals. Given two pred-

icates A and B, if A is being considered as a goal, then B may be considered
as a subgoal of A (and A the supergoal of B) if there exists a Link of the
form

PredictiveImplication B A
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Fig. 24.1 The RFS Propagation Process. An illustration of the process via which
RFS’s propagate from goals to abstract procedures, and finally must get cashed out to pay
for the execution of actual concrete procedures that are estimated relatively likely to lead
to goal fulfillment.

I.e., achieving B may help to achieve A. Of course, the strength of this
link and the temporal characteristics of this link are important in terms of
quantifying how strongly and how usefully B is a subgoal of A.

Supergoals (not only top-level ones, aka ubergoals) allocate RFS’s to sub-
goals as follows. Supergoal A may issue a RFS to subgoal B if it is judged
that achievement (i.e., predicate satisfaction) of B implies achievement of A.
This may proceed recursively: subgoals may allocate RFS’s to subsubgoals
according to the same justification.

Unlike actual currency, RFS’s are not conserved. However, the actual pay-
ment of real currency upon redemption of RFS’s obeys the conservation of
real currency. This means that agents need to be responsible in issuing and
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withdrawing RFS’s. In practice this may be ensured by having agents follow
a couple simple rules in this regard.

1. If B and C are two alternatives for achieving A, and A has x units of cur-
rency, then A may promise both B and C x units of currency. Whomever
asks for a redemption of the promise first, will get the money, and then
the promise will be rescinded from the other one.

2. On the other hand, if the achievement of A requires both B and C to
be achieved, then B and C may be granted RFS’s that are defined by
constraints. If A has x units of currency, then B and C receive an RFS
tagged with the constraint (B+C<x). This means that in order to redeem
the note, either one of B or C must confer with the other one, so that
they can simultaneously request constraint-consistent amounts of money
from A.

As an example of the role of constraints, consider the goal of playing fetch
successfully (a subgoal of “get reward”).... Then suppose it is learned that:
ImplicationLink

SequentialAND
get_ball
deliver_ball

play_fetch

where SequentialAND A B is the conjunction of A and B but with B oc-
curring after A in time. Then, if play_fetch has $10 in STICurrency, it may
know it has $10 to spend on a combination of get_ball and deliver_ball. In
this case both get_ball and deliver_ball would be given RFS’s labeled with
the contraint:
RFS.get_ball + RFS.deliver_ball <= 10

The issuance of RFS’s embodying constraints is different from (and gen-
erally carried out prior to) the evaluation of whether the constraints can be
fulfilled.

An ubergoal may rescind offers of reward for service at any time. And,
generally, if a subgoal gets achieved and has not spent all the money it needed,
the supergoal will not offer any more funding to the subgoal (until/unless it
needs that subgoal achieved again).

As there are no ultimate sources of RFS in OCP besides ubergoals, promise
may be considered as a measure of “goal-related importance.”

Transfer of RFS’s among Atoms is carried out by the GoalAttentionAllo-
cation MindAgent.

24.3 Feasibility Structures

Next, there is a numerical data structure associated with goal Atoms, which
is called the feasibility structure. The feasibility structure of an Atom G
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indicates the feasibility of achieving G as a goal using various amounts of
effort. It contains triples of the form (t,p,E) indicating the truth value t of
achieving goal G to degree p using effort E. Feasibility structures must be
updated periodically, via scanning the links coming into an Atom G; this may
be done by a FeasibilityUpdating MindAgent. Feasibility may be calculated
for any Atom G for which there are links of the form:

Implication
Execution S
G

for some S. Once a schema has actually been executed on various inputs,
its cost of execution on other inputs may be empirically estimated. But this
is not the only case in which feasibility may be estimated. For example, if
goal G inherits from goal G1, and most children (e.g. subgoals) of G1 are
achievable with a certain feasibility, then probably G is achievable with a
similar feasibility as well. This allows feasibility estimation even in cases
where no plan for achieving G yet exists, e.g. if the plan can be produced via
predicate schematization, but such schematization has not yet been carried
out.

Feasibility then connects with importance as follows. Important goals will
get more STICurrency to spend, thus will be able to spawn more costly
schemata. So, the GoalBasedSchemaSelection MindAgent, when choosing
which schemata to push into the ActiveSchemaPool, will be able to choose
more costly schemata corresponding to goals with more STICurrency to
spend.

24.4 Goal Based Schema Selection

Next, the GoalBasedSchemaSelection (GBSS) selects schemata to be placed
into the ActiveSchemaPool. It does this by choosing goals G, and then
choosing schemata that are alleged to be useful for achieving these goals.
It chooses goals via a fitness function that combines promise and feasibility.
This involves solving an optimization problem: figuring out how to maximize
the odds of getting a lot of goal-important stuff done within the available
amount of (memory and space) effort. Potentially this optimization prob-
lem can get quite subtle, but initially some simple heuristics are satisfactory.
(One subtlety involves handling dependencies between goals, as represented
by constraint-bearing RFS’s.)

Given a goal, the GBSS MindAgent chooses a schema to achieve that
goal via the heuristic of selecting the one that maximizes a fitness function
balancing the estimated effort required to achieve the goal via executing the
schema, with the estimated probability that executing the schema will cause
the goal to be achieved.
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When searching for schemata to achieve G, and estimating their effort,
one factor to be taken into account is the set of schemata already in the Ac-
tiveSchemaPool. Some schemata S may simultaneously achieve two goals; or
two schemata achieving different goals may have significant overlap of mod-
ules. In this case G may be able to get achieved using very little or no effort
(no additional effort, if there is already a schema S in the ActiveSchemaPool
that is going to cause G to be achieved). But if G “decides” it can be achieved
via a schema S already in the ActiveSchemaPool, then it should still notify
the ActiveSchemaPool of this, so that G can be added to S’s index (see be-
low). If the other goal G1 that placed S in the ActiveSchemaPool decides to
withdraw S, then S may need to hit up G1 for money, in order to keep itself
in the ActiveSchemaPool with enough funds to actually execute.

24.4.1 A Game-Theoretic Approach to Action Selection

Min Jiang has observed that, mathematically, the problem of action selection
(represented in CogPrime as the problem of goal-based schema selection) can
be modeled in terms of game theory, as follows:

• the intelligent agent is one player, the world is another player
• the agent’s model of the world lets it make probabilistic predictions of

how the world may respond to what the agent does (i.e. to estimate what
mixed strategy the world is following, considering the world as a game
player)

• the agent itself chooses schema probabilistically, so it’s also following a
mixed strategy

• so, in principle the agent can choose schema that it thinks will lead to a
mixed Nash equilibrium1

But the world’s responses are very high-dimensional, which means that
finding a mixed Nash equilibrium even approximately is a very hard compu-
tational problem. Thus, in a sense, the crux of the problem seems to come
down to feature identification. If the world’s response (real or predicted)
can be represented as a low-dimensional set of features, then these features
can be considered as the world’s “move” in the game ... and the game theory
problem becomes tractable via approximation schemes. But without the re-
duction of the world to a low-dimensional set of features, finding the mixed
Nash equilbrium even approximately will not be computationally tractable...

Some AI theorists would argue that this division into “feature identifica-
tion” versus “action selection” is unnecessarily artificial; for instance, Hawkins
[?] or Arel [?] might suggest to use a single hierarchical neural network to do

1 in game theory, a Nash equilibrium is when no player can do better by unilaterally
changing its strategy
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both of them. But the brain after all contains many different regions, with
different architectures and dynamics.... In the visual cortex, it seems that
feature extraction and object classification are done separately. And it seems
that in the brain, action selection has a lot to do with the basal ganglia,
whereas feature extraction is done in the cortex. So the neural analogy pro-
vides some inspiration for an architecture in which feature identification and
action selection are separated.

There is a literature discussing numerical methods for calculating approxi-
mate Nash equilibria, e.g. [?] [ http://www.springerlink.com/content/p08jqj7w7rklb3r5/
]; however, this is an extremely tricky topic in the CogPrime context because
action selection must generally be done in real-time. Like perception process-
ing, this may be an area calling for the use of parallel processing hardware.
For instance, a neural network algorithm for finding mixed Nash equilibria
could be implemented on a GPU supercomputer, enabling rapid real-time ac-
tion selection based on a reduced-dimensionality model of the world produced
by intelligent feature identification.

Consideration of the application of game theory in this context brings out
an important point, which is that to do reasonably efficient and intelligent
action selection, the agent needs some rapidly-evaluable model of the world,
i.e. some way to rapidly evaluate the predicted response of the world
to a hypothetical action by the agent. In the game theory approach (or
any other sufficiently intelligent approach), for the agent to evaluate fitness
of a schema-set S for achieving certain goals in a certain context, it has to
(explicitly or implicitly) estimate

• how the world will respond if the agent does S
• how the agent could usefully respond to the world’s response (call this

action-set S1)
• how the world will respond to the agent doing S1

• etc.

and so to rapidly evaluate the fitness of S, the agent needs to be able to
quickly estimate how the world will respond. This may be done via simulation,
or it may be done via inference (which however will rarely be fast enough,
unless with a very accurate inference control mechanism), or it may be done
by learning some compacted model of the world as represented for instance
in a hierarchical neural network.

24.5 SchemaActivation

And what happens with schemata that are actually in the ActiveSchemaPool?
Let us assume that each of these schema is a collection of modules (subpro-
grams), connected via ActivationLinks, which have semantics: (Activation-
Link A B) means that if the schema that placed module A in the schema
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pool is to be completed, then after A is activated, B should be activated.
(We will have more to say about schemata, and their modularization, in the
following chapter.)

When a goal places a schema in the ActiveSchemaPool, it grants that
schema an RFS equal in value to the total or some fraction of the promis-
sory+real currency it has in its possession. The heuristics for determining
how much currency to grant may become sophisticated; but initially we may
just have a goal give a schema all its promissory currency; or in the case of
a top-level supergoal, all its actual currency.

When a module within a schema actually executes, then it must redeem
some of its promissory currency to turn it into actual currency, because exe-
cuting costs money (paid to the Lobe). Once a schema is done executing, if
it hasn’t redeemed all its promissory currency, it gives the remainder back to
the goal that placed it in the ActiveSchemaPool.

When a module finishes executing, it passes promissory currency to the
other modules to which it points with ActivationLinks.

The network of modules in the ActiveSchemaPool is a digraph (whose
links are ActivationLinks), because some modules may be shared within dif-
ferent overall schemata. Each module must be indexed via which schemata
contain it, and each schema must be indexed via which goal(s) want it in the
ActiveSchemaPool.

24.6 GoalBasedSchemaLearning

Finally, we have the process of trying to figure out how to achieve goals,
i.e. trying to learn links between ExecutionLinks and goals G. This process
should be focused on goals that have a high importance but for which feasible
achievement-methodologies are not yet known. Predicate schematization is
one way of achieving this; another is MOSES procedure evolution.



Chapter 25
Integrative Procedure Evaluation

25.1 Introduction

Procedural knowledge must be learned, an often subtle and difficult process
– but it must also be enacted. Procedure enaction is not as tricky a topic
as procedure learning, but still is far from trivial, and involves the real-time
interaction of procedures, during the course of execution, with other knowl-
edge. In this brief chapter we explain how this process may be most naturally
and flexibly carried out, in the context of CogPrime ’s representation of pro-
cedures as programs ("Combo trees").

While this may seem somewhat of a “mechanical,” implementation-level
topic, it also involves some basic conceptual points, on which CogPrime as an
AGI design does procedure evaluation fundamentally differently from narrow-
AI systems or conventional programming language interpreters. Basically,
what makes CogPrime Combo tree evaluation somewhat subtle is due to the
interfacing between the Combo evaluator itself and the rest of the CogPrime
system.

In the CogPrime design, Procedure objects (which contain Combo trees,
and are associated with ProcedureNodes) are evaluated by ProcedureEval-
uator objects. Different ProcedureEvaluator objects may evaluate the same
Combo tree in different ways. Here we explain these various sorts of evalua-
tion – how they work and what they mean.

25.2 Procedure Evaluators

In this section we will mention three different ProcedureEvaluators: the

• Simple procedure evaluation
• Effort-based procedure evaluation, which is more complex but is required

for integration of inference with procedure evaluation

523



524 25 Integrative Procedure Evaluation

• Adaptive evaluation order based procedure evaluation

In the following section we will delve more thoroughly into the interactions
between inference and procedure evaluation.

Another related issue is the modularization of procedures. This issue how-
ever is actually orthogonal to the distinction between the three ProcedureE-
valuators mentioned above. Modularity simply requires that particular nodes
within a Combo tree be marked as “module roots”, so that they may be ex-
tracted from the Combo tree as a whole and treated as separate modules
(called differently, sub-routines), if the ExecutionManager judges this appro-
priate.

25.2.1 Simple Procedure Evaluation

The SimpleComboTreeEvaluator simply does Combo tree evaluation as de-
scribed earlier. When an Atom is encountered, it looks into the AtomTable
to evaluate the object.

In the case that a Schema refers to an ungrounded SchemaNode (that is
not defined by a ComboTree as defined in Chapter 19), and an appropriate
EvaluationLink value isn’t in the AtomTable, there’s an evaluation failure,
and the whole procedure evaluation returns the truth value 〈.5, 0〉: i.e., a zero-
weight-of-evidence truth value, which is equivalent essentially to returning no
value.

In the case that an Predicate refers to an ungrounded PredicateNode,
and an appropriate EvaluationLink isn’t in the AtomTable, then some very
simple “default thinking” is done, and it is assigned the truth value of the
predicate on the given arguments to be the TruthValue of the corresponding
PredicateNode (which is defined as the mean truth value of the predicate
across all arguments known to CogPrime )

25.2.2 Effort Based Procedure Evaluation

The next step is to introduce the notion of “effort” the amount of effort that
the CogPrime system must undertake in order to carry out a procedure eval-
uation. The notion of effort is encapsulated in Effort objects, which may take
various forms. The simplest Effort objects measure only elapsed processing
time; more advanced Effort objects take into consideration other factors such
as memory usage.

An effort-based Combo tree evaluator keeps a running total of the effort
used in evaluating the Combo tree. This is necessary if inference is to be
used to evaluate Predicates, Schema, Arguments, etc. Without some control
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of effort expenditure, the system could do an arbitrarily large amount of
inference to evaluate a single Atom.

The matter of evaluation effort is nontrivial because in many cases a given
node of a Combo tree may be evaluated in more than one way, with a signif-
icant effort differential between the different methodologies. If a Combo tree
Node refers to a predicate or schema that is very costly to evaluate, then the
ProcedureEvaluator managing the evaluation of the Combo tree must decide
whether to evaluate it directly (expensive) or estimate the result using infer-
ence (cheaper but less accurate). This decision depends on how much effort
the ProcedureEvaluator has to play with, and what percentage of this effort
it finds judicious to apply to the particular Combo tree Node in question.

In the relevant prototypes we built within OpenCog, this kind of decision
was made based on some simple heuristics inside ProcedureEvaluator objects.
However, it’s clear that, in general, more powerful intelligence must be applied
here, so that one needs to have ProcedureEvaluators that - in cases of sub-
procedures that are both important and highly expensive - use PLN inference
to figure out how much effort to assign to a given subproblem.

The simplest useful kind of effort-based Combo tree evaluator is the Effort-
IntervalComboTreeEvaluator, which utilizes an Effort object that contains
three numbers (yes, no, max). The yes parameter tells it how much effort
should be expended to evaluate an Atom if there is a ready answer in the
AtomTable. The no parameter tells it how much effort should be expended in
the case that there is not a ready answer in the AtomTable. The max param-
eter tells it how much effort should be expended, at maximum, to evaluate all
the Atoms in the Combo tree, before giving up. Zero effort, in the simplest
case, may be heuristically defined as simply looking into the AtomTable –
though in reality this does of course take effort, and a more sophisticated
treatment would incorporate this as a factor as well.

Quantification of amounts of effort is nontrivial, but a simple heuristic
guideline is to assign one unit of effort for each inference step. Thus, for
instance,

• (yes, no, max) = (0,5,1000) means that if an Atom can be evaluated
by AtomTable lookup, this is done, but if AtomTable lookup fails, a
minimum of 5 inference steps are done to try to do the evaluation. It also
says that no more than 1000 evaluations will be done in the course of
evaluating the Combo tree.
• (yes, no, max) = (3,5,1000) says the same thing, but with the change that

even if evaluation could be done by direct AtomTable lookup, 3 inference
steps are tried anyway, to try to improve the quality of the evaluation.
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25.2.3 Procedure Evaluation with Adaptive Evaluation
Order

While tracking effort enables the practical use of inference within Combo
tree evaluation, if one has truly complex Combo trees, then a higher degree
of intelligence is necessary to guide the evaluation process appropriately. The
order of evaluation of a Combo tree may be determined adaptively, based on
up to three things:

• The history of evaluation of the Combo tree
• Past history of evaluation of other Combo tree’s, as stored in a special

AtomTable consisting only of relationships about Combo tree-evaluation-
order probabilities

• New information entering into CogPrime ’s primary AtomTable during
the course of evaluation

ProcedureEvaluator objects may be selected at runtime by cognitive schemata,
and they may also utilize schemata and MindAgents internally. The Adap-
tiveEvaluationOrderComboTreeEvaluator is more complex than the other
ProcedureEvaluators discussed, and will involve various calls to CogPrime
MindAgents, particularly those concerned with PLN inference. WIKISOURCE:ProcedureExecutionDetails

25.3 The Procedure Evaluation Process

Now we give a more thorough treatment of the procedure evaluation pro-
cess, as embodied in the effort-based or adaptive-evaluation-order evaluators
discussed above. The process of procedure evaluation is somewhat complex,
because it encompasses three interdependent processes:

• The mechanics of procedure evaluation, which in the CogPrime design
involves traversing Combo trees in an appropriate order. When a Combo
tree node referring to a predicate or schema is encountered during Combo
tree traversal, the process of predicate evaluation or schema execution
must be invoked.

• The evaluation of the truth values of predicates - which involves a com-
bination of inference and (in the case of grounded predicates) procedure
evaluation.

• The computation of the truth values of schemata - which may involve
inference as well as procedure evaluation.

We now review each of these processes.
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25.3.1 Truth Value Evaluation

What happens when the procedure evaluation process encounters a Combo
tree Node that represents a predicate or compound term? The same thing
as when some other CogPrime process decides it wants to evaluate the truth
value of a PredicateNode or CompoundTermNode: the generic process of
predicate evaluation is initiated.

This process is carried out by a TruthValueEvaluator object. There are
several varieties of TruthValueEvaluator, which fall into the following hierar-
chy:

TruthValueEvaluator
DirectTruthValueEvaluator (abstract)

SimpleDirectTruthValueEvaluator
InferentialTruthValueEvaluator (abstract)

SimpleInferentialTruthValueEvaluator
MixedTruthValueEvaluator

A DirectTruthValueEvaluator evaluates a grounded predicate by directly
executing it on one or more inputs; an InferentialTruthValueEvaluator eval-
uates via inference based on the previously recorded, or specifically elicited,
behaviors of other related predicates or compound terms. A MixedTruth-
ValueEvaluator contains references to a DirectTruthValueEvaluator and an
InferentialTruthValueEvaluator, and contains a weight that tells it how to
balance the outputs from the two.

Direct truth value evaluation has two cases. In one case, there is a given
argument for the predicate; then, one simply plugs this argument in to the
predicate’s internal Combo tree, and passes the problem off to an appro-
priately selected ProcedureEvaluator. In the other case, there is no given
argument, and one is looking for the truth value of the predicate in general.
In this latter case, some estimation is required. It is not plausible to evaluate
the truth value of a predicate on every possible argument, so one must sample
a bunch of arguments and then record the resulting probability distribution.
A greater or fewer number of samples may be taken, based on the amount
of effort that’s been allocated to the evaluation process. It’s also possible to
evaluate the truth value of a predicate in a given context (information that’s
recorded via embedding in a ContextLink); in this case, the random sampling
is restricted to inputs that lie within the specified context.

On the other hand, the job of an InferentialTruthValueEvaluator is to use
inference rather than direct evaluation to guess the truth value of a predi-
cate (sometimes on a particular argument, sometimes in general). There are
several different control strategies that may be applied here, depending on
the amount of effort allocated. The simplest strategy is to rely on analogy,
simply searching for similar predicates and using their truth values as guid-
ance. (In the case where a specific argument is given, one searches for similar
predicates that have been evaluated on similar arguments.) If more effort
is available, then a more sophisticated strategy may be taken. Generally,
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an InferentialTruthValueEvaluator may invoke a SchemaNode that embodies
an inference control strategy for guiding the truth value estimation process.
These SchemaNodes may then be learned like any others.

Finally, a MixedTruthValueEvaluator operates by consulting a Direct-
TruthValueEvaluator and/or an InferentialTruthValueEvaluator as necessary,
and merging the results. Specifically, in the case of an ungrounded Predi-
cateNode, it simply returns the output of the InferentialTruthValueEvalua-
tor it has chosen. But in the case of a GroundedPredicateNode, it returns
a weighted average of the directly evaluated and inferred values, where the
weight is a parameter. In general, this weighting may be done by a SchemaN-
ode that is selected by the MixedTruthValueEvaluator; and these schemata
may be adaptively learned.

25.3.2 Schema Execution

Finally, schema execution is handled similarly to truth value evaluation, but
it’s a bit simpler in the details. Schemata have their outputs evaluated by
SchemaExecutor objects, which in turn invoke ProcedureEvaluator objects.
We have the hierarchy:

SchemaExecutor
DirectSchemaExecutor (abstract)

SimpleDirectSchemaExecutor
InferentialSchemaExecutor (abstract)

SimpleInferentialSchemaExecutor
MixedSchemaExecutor

A DirectSchemaExecutor evaluates the output of a schema by directly
executing it on some inputs; an InferentialSchemaExecutor evaluates via in-
ference based on the previously recorded, or specifically elicited, behaviors
of other related schemata. A MixedSchemaExecutor contains references to
a DirectSchemaExecutor and an InferentialSchemaExecutor, and contains a
weight that tells it how to balance the outputs from the two (not always
obvious, depending on the output type in question).

Contexts may be used in schema execution, but they’re used only indi-
rectly, via being passed to TruthValueEvaluators used for evaluating truth
values of PredicateNodes or CompoundTermNodes that occur internally in
schemata being executed.
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Perception and Action





Chapter 26
Perceptual and Motor Hierarchies

26.1 Introduction

Having discussed declarative, attentional, intentional and procedural knowl-
edge, we are left only with sensorimotor and episodic knowledge to complete
our treatment of the basic CogPrime “cognitive cycle” via which a CogPrime
system can interact with an environment and seek to achieve its goals therein.

The cognitive cycle in its most basic form leaves out the most subtle and
unique aspects of CogPrime , which all relate to learning in various forms.
But nevertheless it is the foundation on which CogPrime is built, and within
which the various learning processes dealing with the various forms of mem-
ory all interact. The CogPrime cognitive cycle is more complex in many
respects than it would need to be if not for the need to support diverse forms
of learning. And this learning-driven complexity is present to some extent in
the contents of the present chapter as well. If learning weren’t an issue, per-
ception and actuation could more likely be treated as wholly (or near-wholly)
distinct modules, operating according to algorithms and structures indepen-
dent of cognition. But our suspicion is that this sort of approach is unlikely
to be adequate for achieving high levels of perception and action capabil-
ity under real-world conditions. Instead, we suspect, it’s necessary to create
perception and action processes that operate fairly effectively on their own,
but are capable of cooperating with cognition to achieve yet higher levels of
functionality.

And the benefit in such an approach goes both ways. Cognition helps
perception and actuation deal with difficult cases, where the broad general-
ization that is cognition’s specialty is useful for appropriately biasing per-
ception and actuation based on subtle environmental regularities. And, the
patterns involved in perception and actuation help cognition, via supplying
a rich reservoir of structures and processes to use as analogies for reasoning
and learning at various levels of abstraction. The prominence of visual and
other sensory metaphors in abstract cognition is well known [Arn69, ?]; and
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according to Lakoff and Nunez [LN00] even pure mathematics is grounded in
physical perception and action in very concrete ways.

We begin by discussing the perception and action mechanisms required to
interface CogPrime with an agent operating in a virtual world. We then turn
to the more complex mechanisms needed to effectively interface CogPrime
with a robot possessing vaguely humanoid sensors and actuators, focusing
largely on vision processing. This discussion leads up to deeper discussions
in Chapters 27, 28 and 29 where we describe in detail the strategy that
would be used to integrate CogPrime with the DeSTIN framework for AGI
perception/action (which was described in some detail in Chapter 4 of Part
1).

In terms of the integrative cognitive architecture presented in Chapter 5,
the material presented in the chapters in this section has mostly to do with
the perceptual and motor hierarchies, also touching on the pattern recogni-
tion and imprinting processes that play a role in the interaction between these
hierarchies and the conceptual memory. The commitment to a hierarchical
architecture for perception and action is not critical for the CogPrime design
as a whole – one could build a CogPrime with non-hierarchical perception
and action modules, and the rest of the system would be about the same. The
role of hierarchy here is a reflection of the obvious hierarchical structure of
the everyday human environment, and of the human body. In a world marked
by hierarchical structure, an hierarchically structured perceptual system is
advantageous. To control a body marked by hierarchical structure, an hier-
archically structured action system is advantageous. It would be possible to
create a CogPrime system without this sort of in-built hierarchical structure,
and have it gradually self-adapt in such a way as to grow its own internal
hierarchical structure, based its experience in the world. However, this might
be a case of pushing the "experiential learning" perspective too far. The hu-
man brain definitely has hierarchical structure built into it; it doesn’t need
to learn to experience the world in hierarchical terms; and there seems no
good reason to complicate an AGIs early development phase by forcing it to
learn the basic fact of the world’s and it’s body’s hierarchality.

26.2 The Generic Perception Process

We have already discussed the generic action process of CogPrime , in Chap-
ter 25 on procedure evaluation. Action sequences are generated by Combo
programs, which execute primitive actions, including those corresponding to
actuator control signals as well as those corresponding to, say, mathemati-
cal or cognitive operations. In some cases the actuator control signals may
directly dictate movements; in other cases they may supply inputs and/or
parameters to other software (such as DeSTIN, in the integrated CogBot
architecture to be described below).
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What about the generic perception process? We distinguish sensation from
perception, in a CogPrime context, by defining

• perception as what occurs when some signal from the outside world reg-
isters itself in either: a CogPrime Atom, or some other sort of node (e.g.
a DeSTIN node) that is capable of serving as the target of a CogPrime
Link.

• sensation as any “preprocessing” that occurs between the impact of some
signal on some sensor, and the creation of a corresponding perception

Once perceptual Atoms have been created, various perceptual MindAgents
comes into play, taking perceptual schemata (schemata whose arguments are
perceptual nodes or relations therebetween) and applying them to Atoms
recently created (creating appropriate ExecutionLinks to store the results).
The need to have special, often modality-specific perception MindAgents to
do this, instead of just leaving it to the generic SchemaExecution MindAgent,
has to do with computational efficiency, scheduling and parameter settings.
Perception MindAgents are doing schema execution urgently, and doing it
with parameter settings tuned for perceptual processing. This means that,
except in unusual circumstances, newly received stimuli will be processed
immediately by the appropriate perceptual schemata.

Some newly formed perceptual Atoms will have links to existing atoms,
ready-made at their moment of creation. CharacterInstanceNodes and Num-
berInstanceNodes are examples; they are born linked to the appropriate Char-
acterNodes and NumberNodes. Of course, atoms representing perceived re-
lationships, perceived groupings, etc., will not have ready-made links and
will have to grow such links via various cognitive processes. Also, the Con-
textFormation MindAgent looks at perceptual atom creation events and cre-
ates Context Nodes accordingly; and this must be timed so that the Context
Nodes are entered into the system rapidly, so that they can be used by the
processes doing initial-stage link creation for new perceptual Atoms.

In a full CogPrime configuration, newly created perceptual nodes and per-
ceptual schemata may reside in a special perception-oriented Units, so as to
ensure that perceptual processes occur rapidly, not delayed by slower cogni-
tive processes.

26.2.1 The ExperienceDB

Separate from the ordinary perception process, it may also valuable for there
to be a direct route from the system’s sensory sources to a special “Experi-
enceDB” database that records all of the system’s experience. This does not
involve perceptual schemata at all, nor is it left up to the sensory source;
rather, it is carried out by the CogPrime server at the point where it receives
input from the sensory source. This experience database is a record of what
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the system has seen in the past, and may be mined by the system in the
future for various purposes. The creation of new perceptual atoms may also
be stored in the experience database, but this must be handled with care as
it can pose a large computational expense; it will often be best to store only
a subset of these.

Obviously, such an ExperienceDB is something that has no correlate in the
human mind/brain. This is a case where CogPrime takes advantage of the
non-brainlike properties of its digital computer substrate. The CogPrime per-
ception process is intended to work perfectly well without access to the com-
prehensive database of experiences potentially stored in the ExperienceDB.
However, a complete record of a mind’s experience is a valuable thing, and
there seems no reason for the system not to exploit it fully. Advantages like
this allow the CogPrime system to partially compensate for its lack of some
of the strengths of the human brain as an AI platform, such as massive par-
allelism.

26.3 Interfacing CogPrime with a Virtual Agent

We now discuss some of the particularities of connecting CogPrime to a
virtual world (such as Second Life, Multiverse, or Unity3D, to name some of
the virtual world / gaming platforms to which OpenCog has already been
connected in practice).

26.3.1 Perceiving the Virtual World

The most complex, high-bandwidth sensory data coming in from a typical
virtual world is visual data, so that will be our focus here. We consider three
modes in which a virtual world may present visual data to CogPrime (or any
other system):

• Object vision: CogPrime receives information about polygonal objects
and their colors, textures and coordinates (each object is a set of con-
tiguous polygons, and sometimes objects have “type” information, e.g.
cube or sphere)

• Polygon vision: CogPrime receives information about polygons and their
colors, textures and coordinates

• Pixel vision: CogPrime receives information about pixels and their colors
and coordinates

In each case, coordinates may be given either in “world coordinates” or in
“relative coordinates” (relative to the gaze). This distinction is not a huge
deal since within an architecture like CogPrime , supplying schemata for
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coordinate transformation is trivial; and, even if treated as a machine learning
task, this sort of coordinate transformation is not very difficult to learn. Our
current approach is to prefer relative coordinates, as this approach is more
natural in terms of modern Western human psychology; but we note that
in some other cultures world coordinates are preferred and considered more
psychologically natural.

Currently we have not yet done any work with pixel vision in virtual
worlds. We have been using object vision for most of our experiments, and
consider a combination of polygon vision and object vision as the “right”
approach for early AGI experiments in a virtual worlds context. The problem
with pure object vision is that it removes the possibility for CogPrime to
understand object segmentation. If, for instance, CogPrime perceives a person
as a single object, then how can it recognize a head as a distinct sub-object?
Feeding the system a pre-figured hierarchy of objects, sub-objects and so forth
seems inappropriate in the context of an experiential learning system. On the
other hand, the use of polygon vision instead of pixel vision seems to meet
no such objections. This may take different forms in different platforms. For
instance, in our work with a Minecraft-like world in the Unity3D environment,
we have relied heavily on virtual objects made of blocks, in which case the
polygons of most interest are the faces of the blocks.

Momentarily sticking with the object vision case for simplicity, examples
of the perceptions emanating from the virtual world perceptual preprocessor
into CogPrime are things like:

1. I am at world-coordinates $W
2. Object with metadata $M is at world-coordinates $W
3. Part of object with metadata $M is at world-coordinates $W
4. Avatar with metadata $M is at world-coordinates $W
5. Avatar with metadata $M is carrying out animation $A
6. Statements in natural language, from the pet owner

The perceptual preprocessor takes these signals and translates them into
Atoms, making use of the special Atomspace mechanisms for efficiently in-
dexing spatial and temporal information (the and ) as appropriate.

26.3.1.1 Transforming Real-World Vision into Virtual Vision

One approach to enabling CogPrime to handle visual data coming from the
real world is to transform this data into data of the type CogPrime sees in
the virtual world. While this is not the approach we are taking in our current
work, we do consider it a viable strategy, and we briefly describe it here.

One approach along these lines would involve multiple phases:

• Use a camera eye and a LiDAR (Light Detection And Ranging, used for
high-resolution topographic mapping) sensor in tandem, so as to avoid
having to deal with stereo vision
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• Using the above two inputs, create a continuous 3D contour map of the
perceived visual world

• Use standard mathematical transforms to polygon-ize the 3D contour
map into a large set of small polygons

• Use heuristics to merge together the small polygons, obtaining a smaller
set of larger polygons (but retaining the large set of small polygons for
the system to reference in cases where a high level of detail is necessary)

• Feed the polygons into the perceptual pattern mining subsystem, analo-
gously to the polygons that come in from virtual-world

In this approach, preprocessing is used to make the system see the physical
world in a manner analogous to how it sees the virtual-world world. This is
quite different from the DeSTIN-based approach to CogPrime vision that we
will discuss in Chapter 28, but may well also be feasible.

26.3.2 Acting in the Virtual World

Complementing the perceptual preprocessor is the action postprocessor: code
that translates the actions and action-sequences generated by CogPrime into
instructions the virtual world can understand (such as “launch thus-and-thus
animation”). Due to the particularities of current virtual world architectures,
the current OpenCogPrime system carries out actions via executing pre-
programmed high-level procedures, such as “move forward one step”, “bend
over forward” and so forth. Example action commands are:

1. Move ($D, $S) : $D is a distance, $S is a speed
2. Turn ($A, $S) : $A is an angle, $S is a speed
3. Pitch ($A, $S) : turn vertically up/down... [for birds only]
4. Jump ($D, $H, $S) : $H is a maximum height, at the center of the jump
5. Say ($T), $T is text : for agents with linguistic capability, which is not

enabled in the current version
6. pick up($O) : $O is an object
7. put down($O)

This is admittedly a crude approach, and if a robot simulator rather than
a typical virtual world were used, it would be possible for CogPrime to em-
anate detailed servomotor control commands rather than high-level instruc-
tions such as these. However, as noted in Chapter 16 of Part 1, at the moment
there is no such thing as a “massive multiplayer robot simulator,” and so the
choice is between a multi-participant virtual environment (like the Multiverse
environment currently used with the PetBrain) or a small-scale robot sim-
ulator. Our experiments with virtual worlds so far have used the high-level
approach described here; but we are also experimenting with using physical
robots and corresponding simulators, as will be described below.
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26.4 Perceptual Pattern Mining

Next we describe how perceptual pattern mining may be carried out, to
recognize meaningful structures in the stream of data produced via perceiving
a virtual or physical world.

In this subsection we discuss the representation of knowledge, and then in
the following subsection we discuss the actual mining. We discuss the process
in the context of virtual-world perception as outlined above, but the same
processes apply to robotic perception, whether one takes the “physical world
as virtual world” approach described above or a different sort of approach
such as the DeSTIN hybridization approach described below.

26.4.1 Input Data

First, we may assume that each perception is recorded as set of “transactions”,
each of which is of the form

Time, 3D coordinates, object type

or

Time, 3D coordinates, action type

Each transaction may also come with an additional list of (attribute, value)
pairs, where the list of attributes is dependent upon the object or action type.
Transactions are represented as Atoms, and don’t need to be a specific Atom
type - but are referred to here by the special name transactions simply to
make the discussion clear.

Next, define a transaction template as a transaction with location and
time information set to wild cards - and potentially, some other attributes
set to wild cards. (These are implemented in terms of Atoms involving Vari-
ableNodes.)

For instance, some transaction templates in the current virtual-world
might be informally represented as:

• Reward
• Red cube
• kick
• move_forward
• Cube
• Cube, size 5
• me
• Teacher
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26.4.2 Transaction Graphs

Next we may conceive a transaction graph, whose nodes are transactions and
whose links are labeled with labels like after, SimAND, SSeqAND (short for
SimultaneousSequentialAND), near, in_front_of, and so forth (and whose
links are weighted as well).

We may also conceive a transaction template graph, whose nodes are trans-
action templates, and whose links are the same as in the transaction graph.
Examples of transaction template graphs are

near(Cube, Teacher)

SSeqAND(move_forward, Reward)

where Cube, Teacher, etc are transaction templates since Time and 3D co-
ordinates are left unspecified.

And finally, we may conceive a transaction template relationship graph
(TTRG), whose nodes may be any of: transactions; transaction templates;
basic spatiotemporal predicates evaluated at tuples of transactions or trans-
action templates. For instance

SimAND(near(Cube, Teacher), above(Cube, Chair))

26.4.3 Spatiotemporal Conjunctions

Define a temporal conjunction as a conjunction involving SimultaneousAND
and SequentialAND operators (including SSeqAND as a special case of Se-
qAND: the special case that interests us in the short term). The conjunction
is therefore ordered, e.g.

A SSeqAND B SimAND C SSeqAND D

We may assume that the order of operations favors SimAND, so that no
parenthesizing is necessary.

Next, define a basic spatiotemporal conjunction as a temporal conjunction
that conjoins terms that are either

• transactions, or
• transaction templates, or
• basic spatiotemporal predicates applied to tuples of transactions or trans-

action templates

I.e. a basic spatiotemporal conjunction is a temporal conjunction of nodes
from the transaction template relationship graph.

An example would be:

(hold ball) SimAND ( near(me, teacher) ) SSeqAND Reward
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This assumes that the hold action has an attribute that is the type of
object held, so that

hold ball

in the above temporal conjunction is a shorthand for the transaction tem-
plate specified by

action type: hold

object_held_type: ball

This example says that if the agent is holding the ball and is near the
teacher then shortly after that, the agent will get a reward.

26.4.4 The Mining Task

The perceptual mining task, then, is to find basic spatiotemporal conjunctions
that are interesting. What constitutes interestingness is multifactorial, and
includes.

• involves important Atoms (e.g. Reward)
• has a high temporal cohesion (i.e. the strength of the time relationships

embodied in the SimAND and SeqAND links is high)
• has a high spatial cohesion (i.e. the near() relationships have high

strength)
• has a high frequency
• has a high surprise value (its frequency is far from what would be pre-

dicted by its component sub-conjunctions)

Note that a conjunction can be interesting without satisfying all these criteria;
e.g. if it involves something important and has a high temporal cohesion, we
want to find it regardless of its spatial cohesion.

In preliminary experiments we have worked with a provisional definition
of“interestingness” as the combination of frequency and temporal cohesion,
but this must be extended; and one may even wish to have the combination
function optimized over time (slowly) where the fitness function is defined in
terms of the STI and LTI of the concepts generated.

26.4.4.1 A Mining Approach

One tractable approach to perceptual pattern mining is greedy and iterative,
involving the following steps:

1. Build an initial transaction template graph G
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2. Greedily mine some interesting basic spatiotemporal conjunctions from
it, adding each interesting conjunction found as a new node in G (so that
G becomes a transaction template relationship graph), repeating step 2
until boredom results or time runs out

The same TTRG may be maintained over time, but of course will require a
robust forgetting mechanism once the history gets long or the environment
gets nontrivially complex.

The greedy mining step may involve simply grabbing SeqAND or SimAND
links with probability determined by the (importance and/or interestingness)
of their targets, and the probabilistic strength and temporal strength of the
temporal AND relationship, and then creating conjunctions based on these
links (which then become new nodes in the TTRG, so they can be built up
into larger conjunctions).

26.5 The Perceptual-Motor Hierarchy

The perceptual pattern mining approach described above is “flat,” in the
sense that it simply proposes to recognize patterns in a stream of percep-
tions, without imposing any kind of explicitly hierarchical structure on the
pattern recognition process or the memory of perceptual patterns. This is
different from how the human visual system works, with its clear hierarchical
structure, and also different from many contemporary vision architectures,
such as DeSTIN or Hawkins’ Numenta system which also utilizes hierarchical
neural networks.

However, the approach described above may be easily made hierarchical
within the CogPrime architecture, and this is likely the most effective way
to deal with complex visual scenes. Most simply, in this approach, a hier-
archy may be constructed corresponding to different spatial regions, within
the visual field. The RegionNodes at the lowest level of the hierarchy cor-
respond to small spatial regions, the ones at the next level up correspond
to slightly larger spatial regions, and so forth. Each RegionNode also corre-
spond to a certain interval of time, and there may be different RegionNodes
corresponding to the same spatial region but with different time-durations
attached to them. RegionNodes may correspond to overlapping rather than
disjoint regions.

Within each region mapped by a RegionNode, then, perceptual pattern
mining as defined in the previous section may occur. The patterns recognized
in a region are linked to the corresponding RegionNode - and are then fed
as inputs to the RegionNodes corresponding to larger, encompassing regions;
and as suggestions-to-guide-pattern-recognition to nearby RegionNodes on
the same level. This architecture involves the fundamental hierarchical struc-
ture/dynamic observed in the human visual cortex. Thus, the hierarchy incurs
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a dynamic of patterns-within-patterns-within-patterns, and the heterarchy
incurs a dynamic of patterns-spawning-similar-patterns.

Also, patterns found in a RegionNode should be used to bias the pattern-
search in the RegionNodes corresponding to smaller, contained regions: for
instance, if many of the sub-regions corresponding to a certain region have
revealed parts of a face, then the pattern-mining processes in the remaining
sub-regions may be instructed to look for other face-parts.

This architecture permits the hierarchical dynamics utilized in standard
hierarchical vision models, such as Jeff Hawkins’ and other neural net models,
but within the context of CogPrime ’s pattern-mining approach to perception.
It is a good example of the flexibility intrinsic to the CogPrime architecture.

Finally, why have we called it a perceptual-motor hierarchy above? This
is because, due to the embedding of the perceptual hierarchy in CogPrime ’s
general Atom-network, the percepts in a certain region will automatically be
linked to actions occurring in that region. So, there may be some perception-
cognition-action interplay specific to a region, occurring in parallel with the
dynamics in the hierarchy of multiple regions. Clearly this mirrors some of
the complex dynamics occurring in the human brain, and is also reflected in
the structure of sophisticated perceptual-motor approaches like DeSTIN, to
be discussed below.

26.6 Object Recognition from Polygonal Meshes

Next we describe a more specific perceptual pattern recognition algorithm
– a strategy for identifying objects in a visual scene that is perceived as a
set of polygons. It is not a thoroughly detailed algorithmic approach, but
rather a high-level description of how this may be done effectively within the
CogPrime design. It is offered here largely as an illustration of how specialized
perceptual data processing algorithms may be designed and implemented
within the CogPrime framework.

We deal here with an agent whose perception of the world, at any point
in time, is understood to consist of a set of polygons, each one described in
terms of a list of corners. The corners may be assumed to be described in
coordinates relative to the viewing eye of the agent.

What we mean by “identifying objects” here is something very simple.
We don’t mean identifying that a particular object is a chair, or is Ben’s
brown chair, or anything like that - we simply mean identifying that a given
collection of polygons is meaningfully grouped into an object. That is the task
considered here. The object could be a single block, it could be a person, or it
could be a tower of blocks (which appears as a single object until it is taken
apart).

Of course, not all approaches to polygon-based vision processing would
require this sort of phase: it would be possible, as an alternative, to simply
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compare the set of polygons in the visual field to a database of prior expe-
rience and then do object identification (in the present sense) based on this
database-comparison. But in the approach described in this section, one be-
gins instead with an automated segmentation of the set of perceived polygons
into a set of objects.

26.6.1 Algorithm Overview

The algorithm described here falls into three stages:

1. Recognizing PersistentPolygonNodes (PPNodes) from PolygonNodes.
2. Creating Adjacency Graphs from PPNodes.
3. Clustering in the Adjacency Graph.

Each of these stages involves a bunch of details, not all of which have been
fully resolved: this document just gives a conceptual overview.

We will speak in terms of objects such as PolygonNode, PPNode and so
forth, because inside the CogPrime AI engine, observed and conceived entities
are represented as nodes in an graph. However, this terminology is not very
important here, and what we call a PolygonNode here could just as well be
represented in a host of other ways, within the overall CogPrime framework.

26.6.2 Recognizing PersistentPolygonNodes (PPNodes)
from PolygonNodes

A PolygonNode represents a polygon observed at a point in time. A PPNode
represents a series of PolygonNodes that are heuristically guessed to represent
the same PolygonNode at different moments in time.

Before “object permanence” is learned, the heuristics for recognizing PPN-
odes will only work in the case of a persistent polygon that, over an interval
of time, is experiencing relative motion within the visual field, but is never
leaving the visual field. For example some reasonable heuristics are: If P1
occurs at time t, P2 occurs at time s where s is very close to t, and P1
are similar in shape, size and color and position, then P1 and P2 should be
grouped together into the same PPNode.

More advanced heuristics would deal carefully with the case where some
of these similarities did not hold, which would allow us to deal e.g. with the
case where an object was rapidly changing color.

In the case where the polygons are coming from a simulation world like
OpenSim, then from our positions as programmers and world-masters, we
can see that what a PPNode is supposed to correspond to is a certain side
of a certain OpenSim object; but it doesn’t appear immediately that way
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to CogPrime when controlling an agent in OpenSim since CogPrime isn’t
perceiving OpenSim objects, it’s perceiving polygons. On the other hand,
in the case where polygons are coming from software that postprocesses the
output of a LiDAR based vision system, then the piecing together of PPNodes
from PolygonNodes is really necessary.

26.6.3 Creating Adjacency Graphs from PPNodes

Having identified PPNodes, we may then draw a graph between PPNodes, a
PPGraph (also called an “Adjacency Graph”), wherein the links are Adjacen-
cyLinks (with weights indicating the degree to which the two PPNodes tend
to be adjacent, over time). A more refined graph might also involve Spatial-
CoordinationLinks (with weights indicating the degree to which the vector
between the centroids of the two PPNodes tends to be consistent over time).

We may then use this graph to do object identification:

• First-level objects may be defined as clusters in the graph of PPNodes.
• One may also make a graph between first-level objects, an ObjectGraph

with the same kinds of links as in the PPGraph. Second-level objects may
be defined as clusters in the ObjectGraph.

The “strength” of an identified object may be assigned as the “quality” of the
cluster (measured in terms of how tight the cluster is, and how well separated
from other clusters.)

As an example, consider a robot with two parts: a body and a head. The
whole body may have a moderate strength as a first-level object, but the
head and body individually will have significantly greater strengths as first-
level objects. On the other hand, the whole body should have a pretty strong
strength as a second-level object.

It seems convenient (though not necessary) to have a PhysicalObjectNode
type to represent the objects recognized via clustering; but the first versus
second level object distinction should not need to be made on the Atom type
level.

Building the adjacency graph requires a mathematical formula defining
what it means for two PPNodes to be adjacent. Creating this formula may
require a little tuning. For instance, the adjacency between two PPNodes
PP1 and PP2 may be defined as the average over time of the adjacency of
the PolygonNodes PP1(t) and PP2(t) observed at each time t. (A p′th power
average1 may be used here, and different values of p may be tried.) Then,
the adjacency between two (simultaneous) PolygonNodes P1 and P2 may
be defined as the average over all x in P1 of the minimum over all y in P2
of sim(x,y), where sim(,) is an appropriately scaled similarity function. This

1 the p′th power average is defined as p
√∑

Xp
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latter average could arguably be made a maximum; or perhaps even better a
p′th power average with large p, which approximates a maximum.

26.6.4 Clustering in the Adjacency Graph.

As noted above, the idea is that objects correspond to clusters in the adja-
cency graph. This means we need to implement some hierarchical clustering
algorithm that is tailored to find clusters in symmetric weighted graphs. Prob-
ably some decent algorithms of this character exist, if not it would be fairly
easy to define one, e.g. by mapping some standard hierarchical clustering
algorithm to deal with graphs rather than vectors.

Clusters will then be mapped into PhysicalObjectNodes, interlinked ap-
propriately via PhysicalPartLinks and AdjacencyLinks. (E.g. there would be
a PhysicalPartLink between the PhysicalObjectNode representing a head and
the PhysicalObjectNode representing a body [where the body is considered
as including the head]).

26.6.5 Discussion

It seems probable that, for simple scenes consisting of a small number of
simple objects, clustering for object recognition will be fairly unproblematic.
However, there are two cases that are potentially tricky:

• Sub-objects: e.g. the head and torso of a body, which may move sepa-
rately; or the nose of the head, which may wiggle; or the legs of a walking
dog; etc.

• Coordinated objects: e.g. if a character’s hat is on a table, and then later
on his head, then when it’s on his head we basically want to consider him
and his hat as the same object, for some purposes.

These examples show that partitioning a scene into objects is a borderline-
cognitive rather than purely lower-level-perceptual task, which cannot be
hard-wired in any very simple way.

We also note that, for complex scenes, clustering may not work perfectly
for object recognition and some reasoning may be needed to aid with the
process. Intuitively, these may correspond to scenes that, in human perceptual
psychology, require conscious attention and focus in order to be accurately
and usefully perceived.
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26.7 Interfacing the Atomspace with a Deep Learning
Based Perception-Action Hierarchy

We have discussed how one may do perception processing such as object
recognition within the Atomspace, and this is indeed a viable strategy. But
an alternate approach is also interesting, and likely more valuable in the
case of robotic perception/action: build a separate perceptual-motor hierar-
chy, and link it in with the Atomspace. This approach is appealing in large
part because a lot of valuable and successful work has already been done us-
ing neural networks and related architectures for perception and actuation.
And it is not necessarily contradictory to doing perception processing in the
Atomspace – obviously, one may have complementary, synergetic perception
processing occurring in two different parts of the architecture.

This section reviews some general ideas regarding the interfacing of Cog-
Prime with deep learning hierarchies for perception and action; the following
chapter then discusses one example of this in detail, involving the DeSTIN
deep learning architecture.

26.7.1 Hierarchical Perception Action Networks

CogPrime could be integrated with a variety of different hierarchical percep-
tion/action architectures. For the purpose of this section, however, we will
consider a class of architectures that is neither completely general nor ex-
tremely specific. Many of the ideas to be presented here are in fact more
broadly applicable beyond the architecture described here.

The following assumptions will be made about the HPANs (Hierarchical
Perception/Action Network) to be hybridized with CogPrime . It may be best
to use multiple HPANs, at least one for declarative/sensory/episodic knowl-
edge (we’ll call this the “primary HPAN”) and one for procedural knowledge.
A HPAN for intentional knowledge (a goal hierarchy; in DeSTIN called the
“critic hierarchy”) may be valuable as well. We assume that each HPAN has
the properties:

1. It consists of a network of nodes, endowed with a learning algorithm,
whose connectivity pattern is largely but not entirely hierarchical (and
whose hierarchy contains both feedback, feedforward and lateral connec-
tions)

2. It contains a set of input nodes, receiving perceptual inputs, at the bottom
of the hierarchy

3. It has a set of output nodes, which may span multiple levels of the hi-
erarchy. The “output nodes” indicate informational signals to cognitive
processes lying outside the HPAN, or else control signals to actuators,
which may be internal or external.
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4. Other nodes besides I/O nodes may potentially be observed or influenced
by external processes; for instance they may receive stimulation

5. Link weights in the HPAN get updated via some learning algorithm that
is roughly speaking “statistically Hebbian,” in the sense that on the whole
when a set of nodes get activated together for a period of time, they will
tend to become attractors. By an attractor we mean: a set S of nodes
such that the activation of a subset of S during a brief interval tends to
lead to the activation of the whole set S during a reasonably brief interval
to follow

6. As an approximate but not necessarily strict rule, nodes higher in the
hierarchy tend to be involved in attractors corresponding to events or
objects localized in larger spacetime regions

Examples of specific hierarchical architectures broadly satisfying these re-
quirements are the visual pattern recognition networks constructed by Hawkins
[?] and [PCP00], and Arel’s DeSTIN system discussed earlier (and in more
depth in following chapters). The latter appears to fit the requirements par-
ticularly snugly due to having dynamics very well suited to the formation
of a complex array of attractors, and a richer methodology for producing
outputs. These are all not only HPANs but have a more particular structure
that in Chapter 27 is called a Compositional Spatiotemporal Deep Learning
Network or CSDLN.

The particulars of the use of HPANs with OpenCog are perhaps best
explained via enumeration of memory types and control operations.

26.7.2 Declarative Memory

The key idea here is linkage of primary HPAN attractors to CogPrime
ConceptNodes via MemberLinks. This is in accordance with the notion

of glocal memory, in the language of which the HPAN attractors are the
maps and the corresponding ConceptNodes are the keys. Put simply, when a
HPAN attractor is recognized, MemberLinks are created between the HPAN
nodes comprising the main body of the attractor, and a ConceptNode in
the AtomTable representing the attractor. MemberLink weights may be used
to denote fuzzy attractor membership. Activation may spread from HPAN
nodes to ConceptNodes, and STI may spread from ConceptNodes to HPAN
nodes; a conversion rate between HPAN activation and STI currency must
be maintained by the CogPrime

central bank (see Chapter 23), for ECAN purposes.
Both abstract and concrete knowledge may be represented in this way.

For instance, the Eiffel Tower would correspond to one attractor, the general
shape of the Eiffel Tower would correspond to another, and the general no-
tion of a “tower” would correspond to yet another. As these three examples
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are increasingly abstract, the corresponding attractors would be weighted
increasingly heavily on the upper levels of the hierarchy.

26.7.3 Sensory Memory

CogPrime may also use its primary HPAN to store memories of sense-
perceptions and low-level abstractions therefrom. MemberLinks may join con-
cepts in the AtomTable to percept-attractors in the HPAN. If the HPAN is
engineered to associate specific neural modules to specific spatial regions or
specific temporal intervals, then this may be accounted for by automatically
indexing ConceptNodes corresponding to attractors centered in those mod-
ules in the AtomTable’s TimeServer and SpaceServer objects, which index
Atoms according to time and space.

An attractor representing something specific like the Eiffel Tower, or Bob’s
face, would be weighted largely in the lower levels of the hierarchy, and would
correspond mainly to sensory rather than conceptual memory.

26.7.4 Procedural Memory

The procedural HPAN may be used to learn procedures such as low-level
motion primitives that are more easily learned using HPAN training than
using more abstract procedure learning methods. For example, a Combo tree
learned by MOSES in CogPrime might contain a primitive corresponding to
the predicate-argument relationship pick_up(ball); but the actual procedure
for controlling a robot hand to pick up a ball, might be expressed as an
activity pattern within the low-level procedural HPAN. A procedure P stored
in the low-level procedural HPAN would be represented in the AtomTable as
a ConceptNode C linked to key nodes in the HPAN attractor corresponding
to P. The invocation of P would be accomplished by transferring STI currency
to C and then allowing ECAN to do its work.

On the other hand, CogPrime ’s interfacing of the high-level procedural
HPAN with the CogPrime ProcedureRepository is intimately dependent on
the particulars of the MOSES procedure learning algorithm. As will be out-
lined in more depth in Chapter 33, MOSES is a complex, multi-stage process
that tries to find a program maximizing some specified fitness function, and
that involves doing the following within each “deme” (a deme being an island
of roughly-similar programs)

1. casting program trees into a hierarchical normal form
2. evaluating the program trees on a fitness function
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3. building a model distinguishing fit versus unfit program trees, which in-
volves: 3a. figuring out what program tree features the model should
include; 3b. building the model using a learning algorithm

4. generating new program trees that are inferred likely to give high fitness,
based on the model

5. return to step 1 with these new program trees

There is also a system for managing the creation and deletion of demes.
The weakest point in CogPrime ’s current MOSES-based approach to pro-

cedure learning appears to be step 3. And the main weakness is conceptual
rather than algorithmic; what is needed is to replace the current step 3 with
something that uses long-term memory to do model-building and feature-
selection, rather than (like the current code) doing these things in a manner
that’s restricted to the population of program trees being evolved to optimize
a particular fitness function.

One promising approach to resolving this issue is via replacing step 3b
(and, to a limited extent, 3a) with an interconnection between MOSES and a
procedural HPAN. A HPAN can do supervised categorization, and can be de-
signed to handle feature selection in a manner integrated with categorization,
and also to integrate long-term memory into its categorization decisions.

26.7.5 Episodic Memory

In a hybrid CogPrime /HPAN architecture, episodic knowledge may be han-
dled via a combination of:

1. using a traditional approach to store a large ExperienceDB of actual
experienced episodes [including sensory inputs and actions; and also the
states of the most important items in memory during the experience]

2. using the Atomspace (with its TimeServer and SpaceServer components)
to store declarative knowledge about experiences

3. using dimensional embedding to index the AtomSpace’s episodic knowl-
edge in a spatiotemporally savvy way, as described in Chapter 40

4. training a large HPAN to summarize the scope of experienced episodes
(this could be the primary HPAN used for declarative and sensory mem-
ory, or could potentially be a separate episodic HPAN)

Such a network should be capable of generating imagined episodes based
on cues, as well recalling real episodes. The HPAN would serve as a sort of
index into the memory of episodes, There would be HebbianLinks from the
AtomTable into the episodic HPAN.

For instance, suppose that once the agent built an extremely tall tower
of blocks, taller than any others in its memory. Perhaps it wants to build
another very tall tower again, so it wants to summon up the memory of that
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previous occasion, to see if there is possibly guidance therein. It then proceeds
by thinking about tallness and towerness at the same time, which stimulates
the relevant episode, because at the time of building the extremely tall tower,
the agent was thinking a lot about tallness (so thoughts of tallness are part
of the episodic memory).

26.7.6 Action Selection and Attention Allocation

CogPrime ’s action selection mechanism chooses procedures based on which
ones are estimated most likely to achieve current goals given current context,
and places these in an “active procedure pool” where an ExecutionManager
object mediates their execution.

Attention allocation spans all components of CogPrime , including an
HPAN if one is integrated. Attention flows between the two components due
to the conversion of STI to and from HPAN activation. And in this manner
assignment of credit flows from GoalNodes into the HPAN, because this kind
of simultaneous activation may be viewed as “rewarding” a HPAN link. So,
the HPAN may reward signals from GoalNodes via ECAN, because when a
ConceptNode gets rewarded, if the ConceptNode points to a set of nodes,
these nodes get some of the reward.

26.8 Multiple Interaction Channels

Now we discuss a broader issue regarding the interfacing between CogPrime
and the external world. The only currently existing embodied OpenCog ap-
plications, PetBrain and CogBot, are based on a loosely human model of
perception and action, in which a single CogPrime instance controls a single
mobile body, but this of course is not the only way to do things. More gen-
erally, what we can say is that a variety of external-world events come into
a CogPrime system from physical or virtual world sensors, plus from other
sources such as database interfaces, Web spiders, and/or other sources. The
external systems providing CogPrime with data may be generically referred
to as sensory sources (and in the terminology we adopt here, once Atoms have
been created to represent external data, then one is dealing with perceptions
rather than sensations). The question arises how to architect a CogPrime
system, in general, for dealing with a variety of sensory sources.

We introduce the notion of an “interaction channel”: a collection of sen-
sory sources that is intended to be considered as a whole as a synchronous
stream, and that is also able to receive CogPrime actions - in the sense that
when CogPrime carries out actions relative to the interaction channel, this
directly affects the perceptions that CogPrime receives from the interaction
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channel. A CogPrime meant to have conversations with 10 separate users at
once might have 10 interaction channels. A human mind has only one interac-
tion channel in this sense (although humans may become moderately adept
at processing information from multiple external-world sources, coming in
through the same interaction channel).

Multiple-interaction-channel digital psychology may become extremely
complex - and hard for us, with our single interaction channels, to com-
prehend. This is one among many cases where a digital mind, with its more
flexible architecture, will have a clear advantage over our human minds with
their fixed and limited neural architectures. For simplicity, however, in the
following chapters we will often focus on the single-interaction-channel case.

Events coming in through an interaction channel are presented to the
system as new perceptual Atoms, and relationships amongst these. In the
multiple interaction channel case, the AttentionValues of these newly created
Atoms require special treatment. Not only do they require special rules, they
require additional fields to be added to the AttentionValue object, beyond
what has been discussed so far.

We require newly created perceptual Atoms to be given a high initial
STI. And we also require them to be given a high amount of a quantity
called “interaction-channel STI.” To support this, the AttentionValue objects
of Atoms must be expanded to contain interaction-channel STI values; and
the ImportanceUpdating MindAgent must compute interaction-channel im-
portance separately from ordinary importance.

And, just as we have channel-specific AttentionValues, we may also have
channel-specific TruthValues. This allows the system to separately account
for the frequency of a given perceptual item in a given interaction channel.
However, no specific mechanism is needed for these, they are merely contex-
tual truth values, to be interpreted within a Context Node associated with
the interaction channel.



Chapter 27
Integrating CogPrime with a
Compositional Spatiotemporal Deep
Learning Network

27.1 Introduction

Many different approaches to "low-level" perception and action processing are
possible within the overall CogPrime framework. We discussed several in the
previous chapter, all elaborations of the general hierarchical pattern recogni-
tion approach. Here we describe one sophisticated approach to hierarchical
pattern recognition based perception in more detail: the tight integration of
CogPrime with a sophisticated hierarchical perception/action oriented learn-
ing system such as the DeSTIN architecture reviewed in Chapter 4 of Part
1.

We introduce here the term "Compositional Spatiotemporal Deep Learn-
ing Network" (CSDLN), to refer to deep learning networks whose hierarchi-
cal structure directly mirrors the hierarchical structure of spacetime. In the
language of Chapter 26, a CSDLN is a special kind of HPAN (hierarchical
perception action network), which has the special property that each of its
nodes refers to a certain spatiotemporal region and is concerned with predict-
ing what happens inside that region. Current exemplifications of the CSDLN
paradigm include the DeSTIN architecture that we will focus on here, along
with Jeff Hawkins’ Numenta "HTM" system [HB06] 1, Itamar Arel’s DeS-
TIN [ARC09], Itamar Arel’s HDRN 2 system (the proprietary, closed-source
sibling of DeSTIN), Dileep George’s spin-off from Numenta 3, and work by
Mohamad Tarifi [TSH11], Bundzel and Hashimoto [BH10], and others. CS-
DLNs are reasonably well proven as an approach to intelligent sensory data
processing, and have also been hypothesized as a broader foundation for ar-
tificial general intelligence at the human level and beyond [HB06] [ARC09].

1 While the Numenta system is the best-known CSDLN architecture, other CSDLNs appear
more impressively functional in various respects; and many CSDLN-related ideas existed
in the literature well before Numenta’s advent.
2 http:\binatix.com
3 http:\vicarioussystems.com
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While CSDLNs have been discussed largely in the context of perception,
the specific form of CSDLN we will pursue here goes beyond perception pro-
cessing, and involves the coupling of three separate hierarchies, for perception,
action and goals/reinforcement [GLdG+10]. The "action CSDLNs discussed
here correspond to the procedural HPAN discussed in Chapter 26. Abstract
learning and self-understanding are then hypothesized as related to systems
of attractors emerging from the close dynamic coupling of the upper levels of
the three hierarchies. DeSTIN is our paradigm case of this sort of CSDLN,
but most of the considerations given here would apply to any CSDLN of this
general character.

CSDLNs embody a certain conceptual model of the nature of intelligence,
and to integrate them appropriately with a broader architecture, one must
perform the integration not only on the level of software code but also on
the level of conceptual models. Here we focus here on the problem of inte-
grating an extended version of the DeSTIN CSDLN system with the Cog-
Prime integrative AGI (artificial general intelligence) system. The crux of
the issue here is how to map DeSTIN’s attractors into CogPrime ’s more
abstract, probabilistic "weighted, labeled hypergraph" representation (called
the Atomspace). The main conclusion reached is that in order to perform this
mapping in a conceptually satisfactory way, one requires a system of hierar-
chies involving the structure of DeSTIN’s network but the semantic
structures of the Atomspace. The DeSTIN perceptual hierarchy is aug-
mented by motor and goal hierarchies, leading to a tripartite "extended DeS-
TIN". In this spirit, three "semantic-perceptual" hierarchies are proposed,
corresponding to the three extended-DeSTIN CSDLN hierarchies and explic-
itly constituting an intermediate level of representation between attractors
in DeSTIN and the habitual cognitive usage of CogPrime Atoms and Atom-
networks. For simple reference we refer to this as the "Semantic CSDLN"
approach.

A "tripartite semantic CSDLN" consisting of interlinked semantic percep-
tual, motoric and goal hierarchies could be coupled with DeSTIN or another
CSDLN architecture to form a novel AGI approach; or (our main focus here)
it may be used as a glue between an CSDLN and and a more abstract se-
mantic network such as the cognitive Atoms in CogPrime ’s Atomspace.

One of the core intuitions underlying this integration is that, in order to
achieve the desired level of functionality for tasks like picture interpretation
and assembly of complex block structures, a convenient route is to perform
a fairly tight integration a highly capable CSDLN like DeSTIN with other
CogPrime components. For instance, we believe it’s necessary to go deeper
than just using DeSTIN as an input/output layer for CogPrime , by build-
ing associative links between the nodes inside DeSTIN and those inside the
Atomspace.

This "tightly linked integration" approach is obviously an instantiation of
the general cognitive synergy principle, which hypothesizes particular prop-
erties that the interactions between components in an integrated AGI system
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should display, in order for the overall system to display significant general in-
telligence using limited computational resources. Simply piping output from
an CSDLN to other components, and issuing control signals from these com-
ponents to the CSDLN, is likely an inadequate mode of integration, incapable
of leveraging the full potential of CSDLNs; what we are suggesting here is a
much tighter and more synergetic integration.

In terms of the general principle of mind-world correspondence, the con-
ceptual justification for CSDLN/CogPrime integration would be that the ev-
eryday human world contains many compositional spatiotemporal structures
relevant to human goals, but also contains many relevant patterns that are
not most conveniently cast into a compositional spatiotemporal hierarchy.
Thus, in order to most effectively perceive, remember, represent, manipulate
and enact the full variety of relevant patterns in the world, it is sensible to
have a cognitive structure containing a CSDLN as a significant component,
but not the only component.

27.2 Integrating CSDLNs with Other AI Frameworks

CSDLNs represent knowledge as attractor patterns spanning multiple levels
of hierarchical networks, supported by nonlinear dynamics and (at least in the
case of the overall DeSTIN design) involving cooperative activity of percep-
tual, motor and control networks. These attractors are learned and adapted
via a combination of methods including localized pattern recognition algo-
rithms and probabilistic inference. Other AGI paradigms represent and learn
knowledge in a host of other ways. How then can CSDLNs be integrated with
these other paradigms?

A very simple form of integration, obviously, would be to use an CSDLN as
a sensorimotor cortex for another AI system that’s focused on more abstract
cognition. In this approach, the CSDLN would stream state-vectors to the
abstract cognitive system, and the abstract cognitive system would stream
abstract cognitive inputs to the CSDLN (which would then consider them
together with its other inputs). One thing missing in this approach is the
possibility of the abstract cognitive system’s insights biasing the judgments
inside the CSDLN. Also, abstract cognition systems aren’t usually well pre-
pared to handle a stream of quantitative state vectors (even ones representing
intelligent compressions of raw data).

An alternate approach is to build a richer intermediate layer, which in
effect translates between the internal language of the CSDLN and the internal
language of the other AI system involved. The particulars, and the viability,
of this will depend on the particulars of the other AI system. What we’ll
consider here is the case where the other AI system contains explicit symbolic
representations of patterns (including patterns abstracted from observations
that may have no relation to its prior knowledge or any linguistic terms).
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In this case, we suggest, a viable approach may be to construct a "semantic
CSDLN" to serve as an intermediary. The semantic CSDLN has the same
hierarchical structure as an CSDLN, but inside each node it contains abstract
patterns rather than numerical vectors. This approach has several potential
major advantages: the other AI system is not presented with a large volume of
numerical vectors (which it may be unprepared to deal with effectively); the
CSDLN can be guided by the other AI system, without needing to understand
symbolic control signals; and the intermediary semantic CSDLN can serve
as a sort of "blackboard" which the CSDLN and the other AI system can
update in parallel, and be guided by in parallel, thus providing a platform
encouraging "cognitive synergy".

The following sections go into more detail on the concept of semantic CS-
DLNs. The discussion mainly concerns the specific context of DeSTIN/Cog-
Prime integration, but the core ideas would apply to the integration of any
CSDLN architecture with any other AI architecture involving uncertain sym-
bolic representations susceptible to online learning.

27.3 Semantic CSDLN for Perception Processing

In the standard perceptual CSDLN hierarchy, a node N on level k (consid-
ering level 1 as the bottom) corresponds to a spatiotemporal region S with
size sk (sk increasing monotonically and usually exponentially with k); and,
has children on level k− 1 corresponding to spatiotemporal regions that col-
lectively partition S. For example, a node on level 3 might correspond to a
16x16 pixel region S of 2D space over a time period of 10 seconds, and might
have 4 level 2 children corresponding to disjoint 4x4 regions of 2D space over
10 seconds, collectively composing S.

This kind of hierarchy is very effective for recognizing certain types of
visual patterns. However it is cumbersome for recognizing some other types
of patterns, e.g. the pattern that a face typically contains two eyes beside
each other, but at variable distance from each other.

One way to remedy this deficiency is to extend the definition of the hi-
erarchy, so that nodes do not refer to fixed spatial or temporal positions,
but only to relative positions. In this approach, the internals of a node are
basically the same as in an CSDLN, and the correspondence of the nodes on
level k with regions of size sk is retained, but the relationships between the
nodes are quite different. For instance, a variable-position node of this sort
could contain several possible 2D pictures of an eye, but be nonspecific about
where the eye is located in the 2D input image.

Figure 27.1 depicts this "semantic-perceptual CSDLN" idea heuristically,
showing part of a semantic-perceptual CSDLN indicating the parts of a face,
and also the connections between the semantic-perceptual CSDLN, a stan-



27.3 Semantic CSDLN for Perception Processing 555

dard perceptual CSDLN, and a higher-level cognitive semantic network like
CogPrime ’s Atomspace. 4

More formally, in the suggested "semantic-perceptual CSDLN" approach,
a node N on level k, instead of pointing to a set of level k − 1 children,
points to a small (but not necessarily connected) semantic network , such that
the nodes of the semantic network are (variable-position) level k − 1 nodes;
and the edges of the semantic network possess labels representing spatial or
temporal relationships, for example horizontally_aligned, vertically_aligned,
right_side, left_side, above, behind, immediately_right, immediately_left, im-
mediately_above, immediately_below, after, immediately_after. The edges
may also be weighted either with numbers or probability distributions, indi-
cating the quantitative weight of the relationship indicated by the label.

So for example, a level 3 node could have a child network of the form
horizontally_aligned(N1, N2) where N1 and N2 are variable-position level 2
nodes. This would mean that N1 and N2 are along the same horizontal axis
in the 2D input but don’t need to be immediately next to each other. Or one
could say, e.g. on_axis_perpendicular_to(N1, N2, N3, N4), meaning that N1

and N2 are on an axis perpendicular to the axis between N3 and N4. It
may be that the latter sort of relationship is fundamentally better in some
cases, because horizontally_aligned is still tied to a specific orientation in
an absolute space, whereas on_axis_perpendicular_to is fully relative. But
it may be that both sorts of relationship are useful.

Next, development of learning algorithms for semantic CSDLNs seems a
tractable research area. First of all, it would seem that, for instance, the DeS-
TIN learning algorithms could straightforwardly be utilized in the semantic
CSDLN case, once the local semantic networks involved in the network are
known. So at least for some CSDLN designs, the problem of learning the
semantic networks may be decoupled somewhat from the learning occurring
inside the nodes. DeSTIN nodes deal with clustering of their inputs, and
calculation of probabilities based on these clusters (and based on the parent
node states). The difference between the semantic CSDLN and the traditional
DeSTIN CSDLN has to do with what the inputs are.

Regarding learning the local semantic networks, one relatively straightfor-
ward approach would be to data mine them from a standard CSDLN. That
is, if one runs a standard CSDLN on a stream of inputs, one can then run a
frequent pattern mining algorithm to find semantic networks (using a given
vocabulary of semantic relationships) that occur frequently in the CSDLN as

4 The perceptual CSDLN shown is unrealistically small for complex vision processing (only
4 layers), and only a fragment of the semantic-perceptual CSDLN is shown (a node corre-
sponding to the category face, and then a child network containing nodes corresponding to
several components of a typical face). In a real semantic-perceptual CSDLN, there would
be many other nodes on the same level as the face node, many other parts to the face
subnetwork besides the eyes, nose and mouth depicted here; the eye, nose and mouth
nodes would also have child subnetworks; there would be link from each semantic node to
centroids within a large number of perceptual nodes; and there would also be many nodes
not corresponding clearly to any single English language concept like eye, nose, face, etc.
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Fig. 27.1 Simplified depiction of the relationship between a semantic-perceptual CSDLN,
a traditional perceptual CSDLN (like DeSTIN), and a cognitive semantic network (like
CogPrime ’s AtomSpace).

it processes input. A subnetwork that is identified via this sort of mining, can
then be grouped together in the semantic CSDLN, and a parent node can be
created and pointed to it.

Also, the standard CSDLN can be searched for frequent patterns involv-
ing the clusters (referring to DeSTIN here, where the nodes contain clusters
of input sequences) inside the nodes in the semantic CSDLN. Thus, in the
"semantic DeSTIN" case, we have a feedback interaction wherein: 1) the stan-
dard CSDLN is formed via processing input; 2) frequent pattern mining on
the standard CSDLN is used to create subnetworks and corresponding parent
nodes in the semantic CSDLN; 3) the newly created nodes in the semantic
CSDLN get their internal clusters updated via standard DeSTIN dynamics;
4) the clusters in the semantic nodes are used as seeds for frequent pattern
mining on the standard CSDLN, returning us to Step 2 above.

After the semantic CSDLN is formed via mining the perceptual CSDLN,
it may be used to bias the further processing of the perceptual CSDLN.
For instance, in DeSTIN each node carries out probabilistic calculations in-
volving knowledge of the prior probability of the "observation" coming into
that node over a given interval of time. In the current DeSTIN version, this
prior probability is drawn from a uniform distribution, but it would be more
effective to draw the prior probability from the semantic network – observa-
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tions matching things represented in the semantic network would get a higher
prior probability. One could also use subtler strategies such as using impre-
cise probabilities in DeSTIN [Goe11b], and assigning a greater confidence to
probabilities involving observations contained in the semantic network.

Finally, we note that the nodes and networks in the semantic CSDLN may
either

• be linked into the nodes and links in a semantic network such as CogPrime
’s AtomSpace

• actually be implemented in terms of an abstract semantic network lan-
guage like CogPrime ’s AtomSpace (the strategy to be suggested in Chap-
ter 29).

This allows us to think of the semantic CSDLN as a kind of bridge between
the standard CSDLN and the cognitive layer of an AI system. In an advanced
implementation, the cognitive network may be used to suggest new relation-
ships between nodes in the semantic CSDLN, based on knowledge gained via
inference or language.

27.4 Semantic CSDLN for Motor and Sensorimotor
Processing

Next we consider a semantic CSDLN that focuses on movement rather than
sensation. In this case, rather than a 2D or 3D visual space, one is dealing with
an n-dimensional configuration space (C-space). This space has one dimension
for each degree of freedom of the agent in question. The more joints with
more freedom of movement an agent has, the higher the dimensionality of its
configuration space.

Using the notion of configuration space, one can construct a semantic-
motoric CSDLN hierarchy analogous to the semantic-perceptual CSDLN hi-
erarchy. However, the curse of dimensionality demands a thoughtful approach
here. A square of side 2 can be tiled with 4 squares of side 1, but a 50-
dimensional cube of side 2 can be tiled with 250 50-dimensional cubes of side
1. If one is to build a CSDLN hierarchy in configuration space analogous to
that in perceptual space, some sort of sparse hierarchy is necessary.

There are many ways to build a sparse hierarchy of this nature, but one
simple approach is to build a hierarchy where the nodes on level k represent
motions that combine the motions represented by nodes on level k−1. In this
case the most natural semantic label predicates would seem to be things like
simultaneously, after, immediately_after, etc. So a level k node represents a
sort of "motion plan" corresponded by chaining together (serially and/or in
parallel) the motions encoded in level k − 1 nodes. Overlapping regions of
C-space correspond to different complex movements that share some of the
same component movements, e.g. if one is trying to slap one person while
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elbowing another, or run while kicking a soccer ball forwards. Also note,
the semantic CSDLN approach reveals perception and motor control to have
essentially similar hierarchical structures, more so than with the traditional
CSDLN approach and its fixed-position perceptual nodes.

Just as the semantic-perceptual CSDLN is naturally aligned with a tra-
ditional perceptual CSDLN, similarly a semantic-motoric CSDLN may be
naturally aligned with a "motor CSDLN". A typical motoric hierarchy in
robotics might contain a node corresponding to a robot arm, with children
corresponding to the hand, upper arm and lower arm; the hand node might
then contain child nodes corresponding to each finger, etc. This sort of hierar-
chy is intrinsically spatiotemporal because each individual action of each joint
of an actuator like an arm is intrinsically bounded in space and time. Per-
haps the most ambitious attempt along these lines is [AM01], which shows
how perceptual and motoric hierarchies are constructed and aligned in an
architecture for intelligent automated vehicle control.

Figure 27.2 gives a simplified illustration of the potential alignment be-
tween a semantic-motoric CSDLN and a purely motoric hierarchy (like the
one posited above in the context of extended DeSTIN). 5 In the figure, the
motoric hierarchy is assumed to operate somewhat like DeSTIN, with nodes
corresponding to (at the lowest level) individual servomotors, and (on higher
levels) natural groupings of servomotors. The node corresponding to a set of
servos is assumed to contain centroids of clusters of trajectories through con-
figuration space. The task of choosing an appropriate action is then executed
by finding the appropriate centroids for the nodes. Note an asymmetry be-
tween perception and action here. In perception the basic flow is bottom-up,
with top-down flow used for modulation and for "imaginative" generation
of percepts. In action, the basic flow is top-down, with bottom-up flow used
for modulation and for imaginative, "fiddling around" style generation of
actions. The semantic-motoric hierarchy then contains abstractions of the C-
space centroids from the motoric hierarchy – i.e., actions that bind together
different C-space trajectories that correspond to the same fundamental action
carried out in different contexts or under different constraints. Similarly to
in the perceptual case, the semantic hierarchy here serves as a glue between
lower-level function and higher-level cognitive semantics.

5 In the figure, only a fragment of the semantic-motoric CSDLN is shown (a node corre-
sponding to the "get object" action category, and then a child network containing nodes
corresponding to several components of the action). In a real semantic-motoric CSDLN,
there would be many other nodes on the same level as the get-object node, many other
parts to the get-object subnetwork besides the ones depicted here; the subnetwork nodes
would also have child subnetworks; there would be link from each semantic node to cen-
troids within a large number of motoric nodes; and there might also be many nodes not
corresponding clearly to any single English language concept like "grasp object" etc.
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Fig. 27.2 Simplified depiction of the relationship between a semantic-motoric CSDLN,
a motor control hierarchy (illustrated by the hierarchy of servos associated with a robot
arm), and a cognitive semantic network (like CogPrime ’s AtomSpace).

27.5 Connecting the Perceptual and Motoric
Hierarchies with a Goal Hierarchy

One way to connect perceptual and motoric CSDLN hierarchies is using
a "semantic-goal CSDLN" bridging the semantic-perceptual and semantic-
motoric CSDLNs. The semantic-goal CSDLN would be a "semantic CSDLN"
loosely analogous to the perceptual and motor semantic CSDLNs – and could
optionally be linked into the reinforcement hierarchy of a tripartite CSDLN
like extended DeSTIN. Each node in the semantic-goal CSDLN would con-
tain implications of the form "Context & Procedure → Goal", where Goal is
one of the AI system’s overall goals or a subgoal thereof, and Context and
Procedure refer to nodes in the perceptual and motoric semantic CSDLNs
respectively.

For instance, a semantic-goal CSDLN node might contain an implication
of the form "I perceive my hand is near object X & I grasp object X → I
possess object X." This would be useful if "I possess object X" were a subgoal
of some higher-level system goal, e.g. if X were a food object and the system
had the higher-level goal of obtaining food.

To the extent that the system’s goals can be decomposed into hierarchies of
progressively more and more spatiotemporally localized subgoals, this sort of
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hierarchy will make sense, leading to a tripartite hierarchy as loosely depicted
in Figure 27.3. 6 One could attempt to construct an overall AGI approach
based on a tripartite hierarchy of this nature, counting on the upper levels
of the three hierarchies to come together dynamically to form an integrated
cognitive network, yielding abstract phenomena like language, self, reasoning
and mathematics. On the other hand, one may view this sort of hierarchy
as a portion of a larger integrative AGI architecture, containing a separate
cognitive network, with a less rigidly hierarchical structure and less of a tie
to the spatiotemporal structure of physical reality. The latter view is the one
we are primarily taking within the CogPrime AGI approach, viewing percep-
tual, motoric and goal hierarchies as "lower level" subsystems connected to
a "higher level" system based on the CogPrime AtomSpace and centered on
its abstract cognitive processes.

Learning of the subgoals and implications in the goal hierarchy is of course
a complex matter, which may be addressed via a variety of algorithms, includ-
ing online clustering (for subgoals or implications) or supervised learning (for
implications, the "supervision" being purely internal and provided by goal or
subgoal achievement).

Fig. 27.3 Simplified illustration of the proposed interoperation of perceptual, motoric and
goal semantic CSDLNs.

6 The diagram is simplified in many ways, e.g. only a handful of nodes in each hierarchy
is shown (rather than the whole hierarchy), and lines without arrows are used to indicate
bidirectional arrows, and nearly all links are omitted. The purpose is just to show the
general character of interaction between the components in a simplified context.



Chapter 28
Making DeSTIN Representationally
Transparent

Co-authored with Itamar Arel

28.1 Introduction

In this chapter and the next we describe one particular incarnation of the
above ideas on semantic CSDLNs in more depth: the integration of CogPrime
with the DeSTIN architecture reviewed in Chapter 4 of Part 1.

One of the core intuitions underlying this integration is that, in order to
achieve the desired level of functionality for tasks like picture interpretation
and assembly of complex block structures, it will be necessary to integrate
DeSTIN (or some similar system) and CogPrime components fairly tightly –
going deeper than just using DeSTIN as an input/output layer for CogPrime
, by building a number of explicit linkages between the nodes inside DeSTIN
and CogPrime respectively.

The general DeSTIN design has been described in talks as comprising three
crosslinked hierarchies, handling perception, action and reinforcement; but so
far only the perceptual hierarchy (also called the "spatiotemporal inference
network") has been implemented or described in detail in publications. In
this chapter we will focus on DeSTIN’s perception hierarchy. We will explain
DeSTIN’s perceptual dynamics and representations as we understand them,
more thoroughly than was done in the brief review above; and we will de-
scribe a series of changes to the DeSTIN design, made in the spirit of easing
DeSTIN/OpenCog integration. In the following chapter we will draw action
and reinforcement into the picture, deviating somewhat in the details from
the manner in which these things would be incorporated into a standalone
DeSTIN, but pursuing the same concepts in an OpenCog integration context.

What we describe here is a way to make a "Uniform DeSTIN", in which
the internal representation of perceived visual forms is independent of affine
transformations (translation, scaling, rotation and shear). This "representa-
tional transparency" means that, when Uniform DeSTIN perceives a pattern:
no matter how that pattern is shifted or linearly transformed, the way Uni-
form DeSTIN represents that pattern internally is going to be basically the

561
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same. This makes it easy to look at a collection of DeSTIN states, obtained
by exposing a DeSTIN perception network to the world at different points in
time, and see the commonalities in what they are perceiving and how they
are interpreting it. By contrast, in the original version of DeSTIN (here called
"classic DeSTIN"), it may take significant effort to connect the internal rep-
resentation of a visual pattern and the representation of its translated or
linearly transformed versions. The uniformity of Uniform DeSTIN makes it
easier for humans to inspect DeSTIN’s state and understand what’s going
on, and also (more to the point) makes it easier for other AI components to
recognize patterns in sets of DeSTIN states. The latter fact is critical for the
DeSTIN/OpenCog integration

28.2 Review of DeSTIN Architecture and Dynamics

The hierarchical architecture of DeSTIN’s spatiotemporal inference network
comprises an arrangement into multiple layers of “nodes” comprising multiple
instantiations of an identical processing unit. Each node corresponds to a
particular spatiotemporal region, and uses a statistical learning algorithm to
characterize the sequences of patterns that are presented to it by nodes in
the layer beneath it.

More specifically, at the very lowest layer of the hierarchy nodes receive
as input raw data (e.g. pixels of an image) and continuously construct a
belief state that attempts to characterize the sequences of patterns viewed.
The second layer, and all those above it, receive as input the belief states
of nodes at their corresponding lower layers, and attempt to construct belief
states that capture regularities in their inputs. Each node also receives as
input the belief state of the node above it in the hierarchy (which constitutes
“contextual” information, utilized in the node’s prediction process).

Inside each node, an online clustering algorithm is used to identify regu-
larities in the sequences received by that node. The centroids of the clusters
learned are stored in the node and comprise the basic visual patterns rec-
ognized by that node. The node’s "belief" regarding what it is seeing, is
then understood as a probability density function defined over the centroids
at that node. The equations underlying this centroid formation and belief
updating process are identical for every node in the architecture, and were
given in their original form in [ARC09], though the current open-source DeS-
TIN codebase reflects some significant improvements not yet reflected in the
publication record.

In short, the way DeSTIN represents an item of knowledge is as a probabil-
ity distribution over "network activity patterns" in its hierarchical network.
An activity pattern, at each point in time, comprises an indication of which
centroids in each node are most active, meaning they have been identified
as most closely resembling what that node has perceived, as judged in the
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context of the perceptions of the other nodes in the system. Based on this
methodology, the DeSTIN perceptual network serves the critical role of build-
ing and maintaining a model of the state of the world as visually perceived.

This methodology allows for powerful unsupervised classification. If shown
a variety of real-world scenes, DeSTIN will automatically form internal struc-
tures corresponding to the various natural categories of objects shown in the
scenes, such as trees, chairs, people, etc.; and also to the various natural cate-
gories of events it sees, such as reaching, pointing, falling. In order to demon-
strate the informativeness of these internal structures, experiments have been
done using DeSTIN’s states as input feature vectors for supervised learning
algorithms, enabling high-accuracy supervised learning of classification mod-
els from labeled image data [KAR10]. A closely related algorithm developed
by the same principal researcher (Itamar Arel) has proven extremely success-
ful at audition tasks such as phoneme recognition [ABS+11].

28.2.1 Beyond Gray-Scale Vision

The DeSTIN approach may easily be extended to other senses beyond gray-
scale vision. For color vision, it suffices to replace the one-dimensional signals
coming into DeSTIN’s lower layer with 3D signals representing points in
the color spectrum; the rest of the DeSTIN process may be carried over
essentially without modification. Extension to further senses is also relatively
straightforward on the mathematical and software structure level, though
they may of course require significant additional tuning and refinement of
details.

For instance, while olfaction does not lend itself well to hierarchical mod-
eling, but audition and haptics (touch) do:

• for auditory perception, one could use a DeSTIN architecture in which
each layer is one-dimensional rather than two-dimensional, representing a
certain pitch. Or one could use two dimensions for pitch and volume. This
results in a system quite similar to the DeSTIN-like system shown to per-
form outstanding phoneme recognition in [ABS+11], and is conceptually
similar to Hierarchical Hidden Markov Models (HHMMs), which have
proven quite successful in speech recognition and which Ray Kurzweil
has argued are the central mechanism of human intelligence [Kur12].
Note also recent results published by Microsoft Research, showing dra-
matic improvements over prior speech recognition results based on use of
a broadly HHMM-like deep learning system [HDY+12].

• for haptic perception, one could use a DeSTIN architecture in which the
lower layer of the network possesses a 2D topology reflecting the topol-
ogy of the surface of the body. Similar to the somatosensory cortex in the
human brain, the map could be distorted so that more "pixels" are used
for regions of the body from which more data is available (e.g. currently
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this might be the fingertips, if these were implemented using Syntouch
technology [FL12], which has proved excellent at touch-based object iden-
tification). Input could potentially be multidimensional if multiple kinds
of haptic sensors were available, e.g temperature, pressure and movement
as in the Syntouch case.

Augmentation of DeSTIN to handle action as well as perception is also pos-
sible, and will be discussed in Chapter 29

28.3 Uniform DeSTIN

It would be possible to integrate DeSTIN in its original form with OpenCog
or other AI systems with symbolic aspects, via using an unsupervised ma-
chine learning algorithm to recognize patterns in sets of states of the DeSTIN
network as originally defined. However, this pattern recognition task becomes
much easier if one suitably modifies DeSTIN, so as to make the commonalities
between semantically similar states more obviously perceptible. This can be
done by making the library of patterns recognized within each DeSTIN node
invariant with respect to translation, scale, rotation and shear – a modifica-
tion we call "Uniform DeSTIN." This "uniformization" decreases DeSTIN’s
degree of biological mimicry, but eases integration of DeSTIN with symbolic
AI methods.

28.3.1 Translation-Invariant DeSTIN

The first revision to the "classic DeSTIN" to be suggested here is: All the
nodes on the same level of the DeSTIN hierarchy should share the same
library of patterns. In the context of classic DeSTIN (i.e. in the absence of
further changes to DeSTIN to be suggested below, which extend the type of
patterns usable by DeSTIN), this means: the nodes on the same level should
share the same list of centroids. This makes DeSTIN’s pattern recognition
capability translation-invariant. This translation invariance can be achieved
without any change to the algorithms for updating centroids and matching
inputs to centroids.

In this approach, it’s computationally feasible to have a much larger li-
brary of patterns utilized by each node, as compared to in classic DeSTIN.
Suppose we have a n × n pixel grid, where the lowest level has nodes corre-
sponding to 4 × 4 squares. Then, there are (n4 )

2 nodes on the lowest level,
and on the k’th level there are ( n

4k
)2 nodes. This means that, without in-

creasing computational complexity (actually decreasing it, under reasonable
assumptions), in translation-invariant Uniform DeSTIN we can have a factor
of ( n

4k
)2 more centroids on level k.
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One can achieve a much greater decrease in computational complexity
(with the same amount of centroid increase) via use of a clever data structure
like a cover tree [BKL06] to store the centroids at each level. Then the nearest-
neighbor matching of input patterns to the library (centroid) patterns would
be very rapid, much faster than linearly comparing the input to each pattern
in the list.

28.3.1.1 Conceptual Justification for Uniform DeSTIN

Generally speaking, one may say that: if the class of images that the system
will see is invariant with respect to linear translations, then without loss of
generality, we can assume that the library of patterns at each node on the
same level is the same.

In reality this assumption isn’t quite going to hold. For instance, for an
eye attached to a person or humanoid robot, the top of the pixel grid will
probably look at a person’s hair more often than the bottom ... because the
person stands right-side-up more often than they stand upside-down, and
because they will often fixate the center of their view on a person’s face, etc.
For this reason, we can recognize our friend’s face better if we’re looking at
them directly, with their face centered in our vision.

However, we suggest that this kind of peculiarity is not really essential to
vision processing for general intelligence. There’s no reason you can’t have an
intelligent vision system that recognizes a face just as well whether it’s cen-
tered in the visual field or not. (In fact you could straightforwardly explicitly
introduce this kind of bias within a translation-invariant DeSTIN, but it’s
not clear this is a useful direction.)

By and large, in almost all cases, it seems to us that in a DeSTIN system
exposed to a wide variety of real-world inputs in complex situations, the
library of patterns in the different nodes at the same level would turn out
to be substantially the same. Even if they weren’t exactly the same, they
would be close to the same, embodying essentially the same regularities. But
of course, this sameness would be obscured, because centroid 7 in a certain
node X on level 4 might actually be the same as centroid 18 in some other
node Y on level 4 ... and there would be no way to tell that centroid 7 in node
X and centroid 18 and node Y were actually referring to the same pattern,
without doing a lot of work.

28.3.1.2 Comments on Biological Realism

Translation-invariant DeSTIN deviates further from human brain structure
than classic DeSTIN, but this is for good reason.

The brain has a lot of neurons, since adding new neurons was fairly easy
and cheap for evolution; and tends to do things in a massively parallel manner,
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with great redundancy. For the brain, it’s not so problematically expensive
to have the functional equivalent of a lot of DeSTIN nodes on the same level,
all simultaneously using and learning libraries of patterns that are essentially
identical to each other. Using current computer technology, on the other
hand, this sort of strategy is rather inefficient.

In the brain, messaging between separated regions is expensive, whereas
replicating function redundantly is cheap. In current computers, messaging
between separated regions is fairly cheap (so long as those regions are stored
on the same machine), whereas replicating function redundantly is expen-
sive. Thus, even in cases where the same concept and abstract mathematical
algorithm can be effectively applied in both the brain and a computer, the
specifics needed for efficient implementation may be quite different.

28.3.2 Mapping States of Translation-Invariant
DeSTIN into the Atomspace

Mapping classic DeSTIN’s states into a symbolic pattern-manipulation engine
like OpenCog is possible, but relatively cumbersome. Doing the same thing
with Uniform DeSTIN is much more straightforward.

In Uniform DeSTIN, for example, Cluster 7 means the same thing in ANY
node on level 4. So after a Uniform DeSTIN system has seen a fair number of
images, you can be pretty sure its library of patterns is going to be relatively
stable. Some clusters may come and go as learning progresses, but there’s
going to be a large and solid library of clusters at each level that persists,
because all of its member clusters occur reasonably often across a variety of
inputs.

Define a DeSTIN state-tree as a (quaternary) tree with one node for each
DeSTIN node; and living at each node, a small list of (integer pattern_code,
float weight) pairs. That is, at each node, the state-tree has a short-list of the
patterns that closely match a given state at that node. The weights may be
assumed between 0 and 1. The integer pattern codes have the same meaning
for every node on the same level.

As you feed DeSTIN inputs, at each point in time it will have a certain
state, representable as a state-tree. So, suppose you have a large database of
DeSTIN state-trees, obtained by showing various inputs to DeSTIN over a
long period of time. Then, you can do various kinds of pattern recognition
on this database of state-trees.

More formally, define a state-subtree as a (quaternary) tree with a single
integer at each node. Two state-subtrees may have various relationships with
each other within a single state-tree – for instance they may be adjacent to
each other, or one may appear atop or below the other, etc. In these terms,
one interesting kind of pattern recognition to do is: Recognize frequent state-
subtrees in the stored library of state-trees; and then recognize frequent rela-
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tionships between these frequent state-subtrees. The latter relationships will
form a kind of "image grammar," conceptually similar and formally related
to those described in [ZM06]. Further, temporal patterns may be recognized
in the same way as spatial ones, as part of the state-subtree grammar (e.g.
state-subtree A often occurs right before state-subtree B; state-subtree C
often occurs right before and right below state-subtree D; etc.).

The flow of activation from OpenCog back down to DeSTIN is also fairly
straightforward in the context of translation-invariant DeSTIN. If relation-
ships have been stored between concepts in OpenCogPrimes memory and
grammatical patterns between state-subtrees, then whenever concept C be-
comes important in OpenCogPrimes memory, this can cause a top-down in-
crease in the probability of matching inputs to DeSTIN node centroids, that
would cause the DeSTIN state-tree to contain the grammatical patterns cor-
responding to concept C.

28.3.3 Scale-Invariant DeSTIN

The next step, moving beyond translation invariance, is to make DeSTIN’s
pattern recognition mostly (not wholly) scale invariant. We will describe a
straightforward way to map centroids on one level of DeSTIN, into centroids
on the other levels of DeSTIN. This means that when a centroid has been
learned on one level, it can be experimentally ported to all the other levels,
to see if it may be useful there too.

To make the explanation of this mapping clear, we reiterate some DeSTIN
basics in slightly different language:

• A centroid on Level N is: a spatial arrangement (e.g. k × k square lat-
tice) of beliefs of Level N − 1. (More generally it is a spatiotemporal
arrangement of such beliefs, but we will ignore this for the moment.)

• A belief on Level N is: a probability distribution over centroids on Level
N . For heuristic purposes one can think about this as a mixture of Gaus-
sians, though this won’t always be the best model.

• Thus, a belief on Level N is: a probability distribution over spatial (or
more generally, spatiotemporal) arrangements of beliefs on Level N − 1

On Level 1, the role of centroids is played by simple k × k squares of pixels.
Level 1 beliefs are probability distributions over these small pixel squares.
Level 2 centroids are hence spatial arrangements of probability distributions
over small pixel-squares; and Level 2 beliefs are probability distributions over
spatial arrangements of probability distributions over small pixel-squares.

A small pixel-square S may be mapped into a single pixel P via a heuristic
algorithm such as:

• if S has more black than white pixels, then P is black
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• is S has more white than black pixels, then P is white
• if S has an equal number of white and black pixels, then use some heuris-

tic. For instance if S is 4 × 4 you could look at the central 2 × 2 square
and assign P to the color that occurs most often there. If that is also a
tie, then you can just arbitrarily assign P to the color that occurs in the
upper left corner of S.

A probability distribution over small pixel-squares may then be mapped
into a probability distribution over pixel values (B or W ). A probability
distribution over the two values B and Wmay be approximatively mapped
into a single pixel value – the one that occurs most often in the distribution,
with a random choice made to break a tie. This tells us how to map Level 2
beliefs into spatial arrangements of pixels; and thus, it tells us how to map
Level 2 beliefs into Level 1 beliefs.

But this tells us how to map Level N beliefs into Level N − 1 beliefs,
inductively. Remember, a Level N belief is a probability distribution (pdf for
short) over spatial arrangements of beliefs on Level N − 1. For example: A
Level 3 belief if a pdf over arrangements of Level 2 beliefs. But since we can
map Level 2 beliefs into Level 1 beliefs, this means we can map a Level 3
belief into a pdf over arrangements of Level 1 beliefs – which means we can
map a Level 3 belief into a Level 2 belief. Etc.

Of course, this also tells us how to map Level N centroids into Level N−1
centroids. A Level N centroid is a pdf over arrangements of Level N − 1
beliefs; a Level N − 1 centroid is a pdf over arrangements of Level N − 2
beliefs. But Level N − 1 beliefs can be mapped into Level N − 2 beliefs, so
Level N centroids can be represented as pdfs over arrangements of Level N
beliefs, and hence mapped into Level N − 1 centroids.

In practice, one can implement this idea by moving from the bottom up.
Given the mapping from Level 1 "centroids" to pixels, one can iterate through
the Level 1 beliefs and identify which pixels they correspond to. Then one
can iterate through the Level 2 beliefs and identify which Level 1 beliefs
they correspond to. Etc. Each Level N belief can be explicitly linked to a
corresponding level N − 1 belief. Synchronously, as one moves up the hierar-
chy, Level N centroids can be explicitly linked to corresponding Level N − 1
centroids.

Since there are in principle more possible Level Nbeliefs than Level N − 1
beliefs, the mapping from level Nbeliefs to level N−1 beliefs is many-to-one.
This is a reason not to simply maintain a single centroid pool across levels.
However, when a new centroid C is added to the Level N pool, it can be
mapped into a Level N − 1 centroid to be added to the Level N − 1 pool (if
not there already). And, it can also be used to spawn a Level N +1 centroid,
drawn randomly from the set of possible Level N +1 centroids that map into
C.

Also, note that it is possible to maintain a single centroid numbering system
across levels, so that a reference like "centroid # 175" has only one meaning
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in an entire DeSTIN network, even though some of these centroid may only
be meaningful above a certain level in the network.

28.3.4 Rotation Invariant DeSTIN

With a little more work, one can make DeSTIN rotation and shear invariant
as well 1. Considering rotation first:

• When comparing an input A to a Level N node with a Level N centroid B ,
consider various rotations of A, and see which rotation gives the closest
match.

• When you match a centroid to an input observation-or-belief, record the
rotation angle corresponding to the match.

The second of these points implies the tweaked definitions

• A centroid on Level N is: a spatial arrangement (e.g. k×k square lattice)
of beliefs of Level N − 1

• A belief on Level N is: a probability distribution over (angle, centroid)
pairs on Level N .

From these it follows that a belief on Level N is: a probability distribution
over (angle, spatial arrangement of beliefs) pairs on Level N − 1

An additional complexity here is that two different (angle, centroid) pairs
(on the same level) could be (exactly or approximately) equal to each other.
This necessitates an additional step of "centroid simplification", in which
ongoing checks are made to see if there are any two centroids C1, C2 on the
same level so that: There exist angles A1, A2 so that (A1, C1) is very close
to (A2, C2). In this case the two centroids may be merged into one.

To apply these same ideas to shear, one may simply replace "rotation
angle" in the above by "(rotation angle, shear factor) pair."

28.3.5 Temporal Perception

Translation and scale invariant DeSTIN can be applied perfectly well if the
inputs to DeSTIN, at level 1, are movies rather than static images. Then, in
the simplest version, Level 1 consists of pixel cubes instead of pixel squares,
etc. (the third dimension in the cube representing time). The scale invariance
achieved by the methods described above would then be scale invariance in
time as well as in space.

1 The basic idea in this section, in the context of rotation, is due to Jade O’Neill (private
communication)
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In this context, one may enable rectangular shapes as well as cubes. That
is, one can look at a Level N centroid consisting of m time-slices of a k × k
arrangement of Level N − 1 beliefs – without requiring that m = k .... This
would make the centroid learning algorithm a little more complex, because
at each level one would want to consider centroids with various values of m,
from m = 1, ..., k (and potentially m > k also).

28.4 Interpretation of DeSTIN’s Activity

Uniform DeSTIN constitutes a substantial change in how DeSTIN does its
business of recognizing patterns in the world – conceptually as well as tech-
nically. To explicate the meaning of these changes, we briefly present our
favored interpretation of DeSTIN’s dynamics.

The centroids in the DeSTIN library represent points in "spatial pattern
space", i.e. they represent exemplary spatial patterns. DeSTIN’s beliefs, as
probability distributions over centroids, represent guesses as to which of the
exemplary spatial patterns are the best models of what’s currently being seen
in a certain space-time region.

This matching between observations and centroids might seem to be a
simple matter of "nearest neighbor matching"; but the subtle point is, it’s not
immediately obvious how to best measure the distance between observations
and centroids. The optimal way of measuring distance is going to depend
on context; that is to say, on the actual distribution of observations in the
system’s real environment over time.

DeSTIN’s algorithm for calculating the belief at a node, based on the ob-
servation and centroids at that node plus the beliefs at other nearby nodes,
is essentially a way of tweaking the distance measurement between obser-
vations and centroids, so that this measurement accounts for the context
(the historical distribution of observations). There are many possible ways of
doing this tweaking. Ideally one could use probability theory explicitly, but
that’s not always going to be computationally feasible, so heuristics may be
valuable, and various versions of DeSTIN have contained various heuristics
in this regard.

The various ways of "uniformizing" DeSTIN described above (i.e. mak-
ing its pattern recognition activity approximately invariant with respect to
affine transformations), don’t really affect this story – they just improve the
algorithm’s ability to learn based on small amounts of data (and its rapidity
at learning from data in general), by removing the need for the system to
repeatedly re-learn transformed versions of the same patterns. So the uni-
formization just lets DeSTIN carry out its basic activity faster and using less
data.
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28.4.1 DeSTIN’s Assumption of Hierarchical
Decomposability

Roughly speaking, DeSTIN will work well to the extent that: The average
distance between each part of an actually observed spatial pattern, and the
closest centroid pattern, is not too large (note: the choice of distance measure
in this statement is potentially subtle). That is: DeSTIN’s set of centroids
is supposed to provide a compact model of the probability distribution of
spatial patterns appearing in the experience of the cognitive system of which
DeSTIN is a part.

DeSTIN’s effective functionality relies on the assumption that this proba-
bility distribution is hierarchically decomposable – i.e. that the distribution
of spatial patterns appearing over a k×k region can be compactly expressed,
to a reasonable degree of approximation, as a spatial combination of the
distributions of spatial patterns appearing over (k/4) × (k/4) regions. This
assumption of hierarchical decomposability greatly simplifies the search prob-
lem that DeSTIN faces, but also restricts DeSTIN’s capability to deal with
more general spatial patterns that are not easily hierarchically decomposable.
However, the benefits of this approach seem to outweigh the costs, given that
visual patterns in the environments humans naturally encounter do seem
(intuitively at least) to have this hierarchical property.

28.4.2 Distance and Utility

Above we noted that choice of distance measure involved in the assessment
of DeSTIN’s effective functionality is subtle. Further above, we observed that
the function of DeSTIN’s belief assessment is basically to figure out the con-
textually best way to measure the distance between the observation and the
centroids at a node. These comments were both getting at the same point.

But what is the right measure of distance between two spatial patterns?
Ultimately, the right measure is: the probability that the two patterns A
and B can be used in the same way. That is: the system wants to identify
observation A with centroid B if it has useful action-patterns involving B,
and it can substitute A for B in these patterns without loss.

This is difficult to calculate in general, though. A rough proxy, which it
seems will often be acceptable, is to measure the distance between A and B
in terms of both

• the basic (extensional) distance between the physical patterns they em-
body (e.g. pixel by pixel distance)
• the contextual (intensional) distance, i.e. the difference between the con-

texts in which they occur
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Via enabling the belief in a node’s parent to play a role in modulating a certain
node’s belief, DeSTIN’s core algorithm enables contextual/intensional factors
to play a role in distance assessment.

28.5 Benefits and Costs of Uniform DeSTIN

We now summarize the main benefits and costs of Uniform DeSTIN a little
more systematically. The key point we have made here regarding Uniform
DeSTIN and representational transparency may be summarized as follows:

• Define an "affine perceptual equivalence class" as a set of percepts that
are equivalent to each other, or nearly so, under affine transformation. An
example would be views of the same object from different perspectives
or distances.

• Suppose one has embodied agent using DeSTIN for visual perception,
whose perceptual stream tends to include a lot of reasonably large affine
perceptual equivalence classes.

• Then, supposing the "mechanics" of DeSTIN can be transferred to the
Uniform DeSTIN case without dramatic loss of performance, Uniform
DeSTIN should be able to recognize patterns based on many fewer ex-
amples than classic DeSTIN

As soon as Uniform DeSTIN has learned to recognize one element of a given
affine perceptual equivalence class, it can recognize all of them. Whereas,
classic DeSTIN must learn each element of the equivalence class separately.
So, roughly speaking, the number of cases required for unsupervised training
of Uniform DeSTIN will be less than that for classic DeSTIN, by a ratio equal
to the average size of the affine perceptual equivalence classes in the agent’s
perceptual stream.

Counterbalancing this, we have the performance cost of comparing the
input to each node against a much larger set of centroids (in Uniform DeSTIN
as opposed to classic DeSTIN). However, if a cover tree or other efficient data
structure is used, this cost is not so onerous. The cost of nearest neighbor
queries in a cover tree storing n items (in this case, n centroids) is O(c12logn),
where the constant c represents the "intrinsic dimensionality" of the data;
and in practice the cover tree search algorithm seems to perform quite well.
So, the added time cost for online clustering in Uniform DeSTIN as opposed
to DeSTIN, is a factor on the order of the log of the number of nodes in the
DeSTIN tree. We believe this moderate added time cost is well worth paying,
to gain a significant decrease in the number of training examples required for
unsupervised learning.

Beyond increases in computational cost, there is also the risk that the
online clustering may just not work as well when one has so many clusters in
each node. This is the sort of problem that can really only be identified, and
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dealt with, during extensive practice – since the performance of any clustering
algorithm is largely determined by the specific distribution of the data it’s
dealing with. It may be necessary to improve DeSTIN’s online clustering
in some way to make Uniform DeSTIN work optimally, e.g. improving its
ability to form clusters with markedly non-spherical shapes. This ties in to
a point raised in chapter 29 – the possibility of supplementing traditional
clusters with predicates learned by OpenCog, which may live inside DeSTIN
nodes alongside centroids. Each such predicate in effect defines a (generally
nonconvex) "cluster".

28.6 Imprecise Probability as a Strategy for Linking
CogPrime and DeSTIN

One key aspect of vision processing is the ability to preferentially focus at-
tention on certain positions within a perceived visual scene. In this section
we describe a novel strategy for enabling this in a hybrid CogPrime /DeS-
TIN system, via use of imprecise probabilities. In fact the basic idea suggested
here applies to any probabilistic sensory system, whether deep-learning-based
or not, and whether oriented toward vision or some other sensory modality.
However, for sake of concreteness, we will focus here on the case of DeS-
TIN/CogPrime integration.

28.6.1 Visual Attention Focusing

Since visual input streams contain vast amounts of data, it’s beneficial for
a vision system to be able to focus its attention specifically on the most
important parts of its input. Sometimes knowledge of what’s important will
come from cognition and long-term memory, but sometimes it may come from
mathematical heuristics applied to the visual data itself.

In the human visual system the latter kind of "low level attention focusing"
is achieved largely in the context of the eye changing its focus frequently,
looking preferentially at certain positions in the scene [Cha09]. This works
because the center of the eye corresponds to a greater density of neurons than
the periphery.

So for example, consider a computer vision algorithm like SIFT (Scale-
Invariant Feature Extraction) [Low99], which (as shown in Figure 28.1) math-
ematically isolates certain points in a visual scene as ÒkeypointsÓ which are
particularly important for identifying what the scene depicts (e.g. these may
be corners, or easily identifiable curves in edges). The human eye, when look-
ing at a scene, would probably spend a greater percentage of its time focusing
on the SIFT keypoints than on random points in the image.
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The human visual system’s strategy for low-level attention focusing is ob-
viously workable (at least in contexts similar to those in which the human eye
evolved), but itÕs also somewhat complex, requiring the use of subtle tem-
poral processing to interpret even static scenes. We suggest here that there
may be a simpler way to achieve the same thing, in the context of vision
systems that are substantially probabilistic in nature, via using imprecise
probabilities. The crux of the idea is to represent the most important data,
e.g. keypoints, using imprecise probability values with greater confidence.

Similarly, cognition-guided visual attention-focusing occurs when a mind’s
broader knowledge of the world tells it that certain parts of the visual input
may be more interesting to study than others. For example, in a picture of
a person walking down a dark street, the contours of the person may not
be tremendously striking visually (according to SIFT or similar approaches);
but even so, if the system as a whole knows that it’s looking at a person, it
may decide to focus extra visual attention on anything person-like. This sort
of cognition guided visual attention focusing, we suggest, may be achieved
similarly to visual attention focusing guided on lower-level cues – by increas-
ing the confidence of the imprecise probabilities associated with those aspects
of the input that are judged more cognitively significant.

28.6.2 Using Imprecise Probabilities to Guide Visual
Attention Focusing

Suppose one has a vision system that internally constructs probabilistic val-
ues corresponding to small local regions in visual input (these could be pixels
or voxels, or something a little larger), and then (perhaps via a complex pro-
cess) assigns probabilities to different interpretations of the input based on
combinations of these input-level probabilities. For this sort of vision system,
one may be able to achieve focusing of attention via appropriately replac-
ing the probabilities with imprecise probabilities. Such an approach may be
especially interesting in hierarchical vision systems, that also involve the cal-
culation of probabilities corresponding to larger regions of the visual input.
Examples of the latter include deep learning based vision systems like HTM
or DeSTIN, which construct nested hierarchies corresponding to larger and
larger regions of the input space, and calculate probabilities associated with
each of the regions on each level, based in part on the probabilities associated
with other related regions.

In this context, we now state the basic suggestion of the section:

1. Assign higher confidence to the low-level probabilities that the vision
system creates corresponding to the local visual regions that one wants
to focus attention on (based on cues from visual preprocessing or cognitive
guidance)
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2. Carry out the vision system’s processing using imprecise probabilities
rather than single-number probabilities

3. Wherever the vision system makes a decision based on Òthe most prob-
able choiceÓ from a number of possibilities, change the system to make
a decision based on Òthe choice maximizing the product (expectation *
confidence)Ó.

28.6.3 Sketch of Application to DeSTIN

Internally to DeSTIN, probabilities are assigned to clusters associated with
local regions of the visual input. If a system such as SIFT is run as a prepro-
cessor to DeSTIN, then those small regions corresponding to SIFT keypoints
may be assumed semantically meaningful, and internal DeSTIN probabilities
associated with them can be given a high confidence. A similar strategy may
be taken if a cognitive system such as OpenCog is run together with DeS-
TIN, feeding DeSTIN information on which portions of a partially-processed
image appear most cognitively relevant. The probabilistic calculations inside
DeSTIN can be replaced with corresponding calculations involving imprecise
probabilities. And critically, there is a step in DeSTIN where, among a set of
beliefs about the state in each region of an image (on each of a set of hierar-
chical levels), the one with the highest probability is selected. In accordance
with the above recipe, this step should be modified to select the belief with
the highest probability*confidence.

28.6.3.1 Conceptual Justification

What is the conceptual justification for this approach?
One justification is obtained by assuming that each percept has a cer-

tain probability of being erroneous, and those percepts that appear to more
closely embody the semantic meaning of the visual scene are less likely to be
erroneous. This follows conceptually from the assumption that the perceived
world tends to be patterned and structured, so that being part of a statisti-
cally significant pattern is (perhaps weak) evidence of being real rather than
artifactual. Under this assumption, the proposed approach will maximize the
accuracy of the systemÕs judgments.

A related justification is obtained by observing that this algorithmic ap-
proach follows from the consideration of the perceived world as mutable.
Consider a vision system that has the capability to modify even the low-level
percepts that it intakes Ð i.e. to use what it thinks and knows, to modify
what it sees. The human brain certainly has this potential [Cha09]. In this
case, it will make sense for the system to place some constraints regarding
which of its percepts it is more likely to modify. Confidence values semanti-
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cally embody this Ð a higher confidence being sensibly assigned to percepts
that the system considers should be less likely to be modified based on feed-
back from its higher (more cognitive) processing levels. In that case, a higher
confidence should be given to those percepts that seem to more closely em-
body the semantic meaning of the visual scene Ð which is exactly what we’re
suggesting here.

28.6.3.2 Enabling Visual Attention Focusing in DeSTIN via
Imprecise Probabilities

We now refer back to the mathematical formulation of DeSTIN summarized
in Section 4.3.1 of Chapter 4 above, in the context of which the applica-
tion of imprecise probability based attention focusing to DeSTIN is almost
immediate.

The probabilities P (o|s) may be assigned greater or lesser confidence de-
pending on the assessed semantic criticality of the observation o in question.
So for instance, if one is using SIFT as a preprocessor to DeSTIN, then one
may assign probabilities P (o|s) higher confidence if they correspond to ob-
servations o of SIFT keypoints, than if they do not.

These confidence levels may then be propagated throughout DeSTIN’s
probabilistic mathematics. For instance, if one were using Walley’s interval
probabilities, then one could carry out the probabilistic equations using in-
terval arithmetic.

Finally, one wishes to replace Equation 4.3.1.2 in Chapter 4 with

c = argmax
s

((bp(s)).strength ∗ (bp(s)).confidence) , (28.1)

or some similar variant. The effect of this is that hypotheses based on high-
confidence observations are more likely to be chosen, which of course has a
large impact on the dynamics of the DeSTIN network.
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Fig. 28.1 The SIFT algorithm finds keypoints in an image, i.e. localized features that are
particularly useful for identifying the objects in an image. The top row shows images that
are matched against the image in the middle row. The bottom-row image shows some of the
keypoints used to perform the matching (i.e. these keypoints demonstrate the same features
in the top-row images and their transformed middle-row counterparts). SIFT keypoints are
identified via a staged filtering approach. The first stage identifies key locations in scale
space by looking for locations that are maxima or minima of a difference-of-Gaussian
function. Each point is used to generate a feature vector that describes the local image
region sampled relative to its scale-space co- ordinate frame. The features achieve partial
invariance to local variations, such as affine or 3D projections, by blurring image gradient
locations.





Chapter 29
Bridging the Symbolic/Subsymbolic Gap

29.1 Introduction

While it’s widely accepted that human beings carry out both symbolic and
subsymbolic processing, as integral parts of their general intelligence, the pre-
cise definition of "symbolic" versus "subsymbolic" is a subtle issue, which
different AI researchers will approach in different ways depending on their
differing overall perspectives on AI. Nevertheless, the intuitive meaning of
the concepts is commonly understood:

• "subsymbolic" refers to things like pattern recognition in high-dimensional
quantitative sensory data, and real-time coordination of multiple actua-
tors taking multidimensional control signals

• "symbolic" refers to things like natural language grammar and (certain
or uncertain) logical reasoning, that are naturally modeled in terms of
manipulation of symbolic tokens in terms of particular (perhaps experi-
entially learned) rules

Views on the relationship between these two aspects of intelligence in
human and artificial cognition are quite diverse, including perspectives such
as

1. Symbolic representation and reasoning are the core of human-level intel-
ligence; subsymbolic aspects of intelligence are of secondary importance
and can be thought of as pre or post processors to symbolic representation
and reasoning

2. Subsymbolic representation and learning are the core of human intelli-
gence; symbolic aspects of intelligence

a. emerge from the subsymbolic aspects as needed; or,
b. arise via a relatively simple, thin layer on top of subsymbolic in-

telligence, that merely applies subsymbolic intelligence in a slightly
different way

579
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3. Symbolic and subsymbolic aspects of intelligence are best considered as
different subsystems, which

a. have a significant degree of independent operation, but also need to
coordinate closely together; or,

b. operate largely separately and can be mostly considered as discrete
modules

In evolutionary terms, it is clear that subsymbolic intelligence came first,
and that most of the human brain is concerned with the subsymbolic in-
telligence that humans share with other animals. However, this observation
doesn’t have clear implications regarding the relationship between symbolic
and subsymbolic intelligence in the context of everyday cognition.

In the history of the AI field, the symbolic/subsymbolic distinction was
sometimes aligned with the dichotomy between logic-based and rule-based
AI systems (on the symbolic side) and neural networks (on the subsymbolic
side) [PJ88b]. However, this dichotomy has become much blurrier in the last
couple decades, with developments such as neural network models of language
parsing [GH11] and logical reasoning [LBH10], and symbolic approaches to
perception and action [SR04]. Integrative approaches have also become more
common, with one of the major traditional symbolic AI systems, ACT-R,
spawning a neural network version [LA93] with parallel structures and dy-
namics to the traditional explicitly symbolic version and a hybridization with
a computational neuroscience model [JL08]; and another one, SOAR, incor-
porating perception processing components as separate modules [Lai12]. The
field of "neural-symbolic computing" has emerged, covering the emergence of
symbolic rules from neural networks, and the hybridization of neural networks
with explicitly symbolic systems [HH07].

Our goal here is not to explore the numerous deep issues involved with
the symbolic/subsymbolic dichotomy, but rather to describe the details of
a particular approach to symbolic/subsymbolic integration, inspired by Per-
spective 3a in the above list: the consideration of symbolic and subsymbolic
aspects of intelligence as different subsystems, which have a significant de-
gree of independent operation, but also need to coordinate closely together.
We believe this kind of integration can serve a key role in the quest to create
human-level general intelligence. The approach presented here is at the begin-
ning rather than end of its practical implementation; what we are describing
here is the initial design intention of a project in progress, which is sure to
be revised in some respects as implementation and testing proceed. We will
focus mainly on the tight integration of a subsymbolic system enabling gray-
scale vision processing into a cognitive architecture with significant symbolic
aspects, and will then briefly explain how the same ideas can be used for
color vision, and multi-sensory and perception-action integration.

The approach presented here begins with two separate AI systems, both
currently implemented in open-source software:



29.1 Introduction 581

• OpenCog, an integrative architecture for AGI [Goe10d] [GPW+11],
which is centered on a "weighted, labeled hypergraph" knowledge rep-
resentation called the Atomspace, and features a number of different, so-
phisticated cognitive algorithms acting on the Atomspace. Some of these
cognitive algorithms are heavily symbolic in focus (e.g. a probabilistic
logic engine); others are more subsymbolic in nature (e.g. a neural net like
system for allocating attention and assigning credit). However, OpenCog
in its current form cannot deal with high-dimensional perceptual input,
nor with detailed real-time control of complex actuators. OpenCog is
now being used to control intelligent characters in an experimental vir-
tual world, where the perceptual inputs are the 3D coordinate locations
of objects or small blocks; and the actions are movement commands like
"step forward", "turn head to the right."

• DeSTIN [ARK09a],[ARC09], a deep learning system consisting of a hi-
erarchy of processing nodes, in which the nodes on higher levels corre-
spond to larger regions of space-time, and each node carries out predic-
tion regarding events in the space-time region to which it corresponds.
Feedback and feedforward dynamics between nodes combine with the
predictive activity within nodes, to create a complex nonlinear dynam-
ical system whose state self-organizes to reflect the state of the world
being perceived. The core concepts of DeSTIN are similar to those of
Jeff Hawkins’ Numenta system [HB06] [GH09], Dileep George’s work
(http://vicariousinc.com) and work by Mohamad Tarifi [TSH11],
Bundzel and Hashimoto [BH10], and others. However, the specifics of
DeSTIN’s dynamics have been designed in what we consider a particu-
larly powerful way, and the system has shown good results on small-scale
test problems [KAR10]. So far DeSTIN has been utilized only for vision
processing, but a similar proprietary system has been used for auditory
data as well; and DeSTIN was designed to work together with an accom-
panying action hierarchy.

These two systems were not originally designed to work together, but we will
describe a method for achieving their tight integration via

1. Modifying DeSTIN in several ways, so that

a. the patterns in its states over time will have more easily recognizable
regularities

b. its nodes are able to scan their inputs not only for simple statistical
patterns (DeSTIN "centroids"), but also for patterns recognized by
routines supplied to it by an external source (e.g. another AI system
such as OpenCog)

2. Utilizing one of OpenCogPrimes cognitive processes (the "Fishgram" fre-
quent subhypergraph mining algorithm) to recognize patterns in sets of
DeSTIN states, and then recording these patterns in OpenCogPrimes
Atomspace knowledge store

http://vicariousinc.com
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3. Utilizing OpenCogPrimes other cognitive processes to abstract concepts
and draw conclusions from the patterns recognized in DeSTIN states by
Fishgram

4. Exporting the concepts and conclusions thus formed to DeSTIN, so that
its nodes can explicitly scan for their presence in their inputs, thus al-
lowing the results of symbolic cognition to explicitly guide subsymbolic
perception

5. Creating an action hierarchy corresponding closely to DeSTIN’s percep-
tual hierarchy, and also corresponding to the actuators of a particular
robot. This allows action learning to be done via an optimization ap-
proach ([LKP+05], [YKL+04]), where the optimization algorithm uses
DeSTIN states corresponding to perceived actuator states as part of its
inputs.

The ideas presented here are compatible with those described in [Goe11a],
but different in emphasis. That paper described a strategy for integrating
OpenCog and DeSTIN via creating an intermediate "semantic CSDLN" hi-
erarchy to translate between OpenCog and DeSTIN, in both directions. In
the approach suggested here, this semantic CSDLN hierarchy exists concep-
tually but not as a separate software object: it exists as the combination
of

• OpenCog predicates exported to DeSTIN and used alongside DeSTIN
centroids, inside DeSTIN nodes

• OpenCog predicates living in the OpenCog knowledge repository (Atom-
Space), and interconnected in a hierarchical way using OpenCog nodes
and links (thus reflecting DeSTIN’s hierarchical structure within the
AtomSpace).

This hierarchical network of predicates, spanning the two software systems,
plays the role of a semantic CSDLN as described in [Goe11a].

29.2 Simplified OpenCog Workflow

The dynamics inside an OpenCog system may be highly complex, defying
simple flowcharting, but from the point of view of OpenCog-DeSTIN inte-
gration, one important pattern of information flow through the system is as
follows:

1. Perceptions come into the Atomspace. In the current OpenCog system,
these are provided via a proxy to the game engine where the OpenCog
controlled character interacts. In an OpenCog-DeSTIN hybrid, these will
be provided via DeSTIN.

2. Hebbian learning builds HebbianLinks between perceptual Atoms repre-
senting percepts that have frequently co-occurred
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3. PLN inference, concept blending and other methods act on these per-
ceptual Atoms and their HebbianLinks, forming links between them and
linking them to other Atoms stored in the Atomspace reflecting prior
experience and generalizations therefrom

4. Attention allocation gives higher short and long term importance values
to those Atoms that appear likely to be useful based on the links they
have obtained

5. Based on the system’s current goals and subgoals (the latter learned from
the top-level goals using PLN), and the goal-related links in the Atom-
space, the OpenPsi mechanism triggers the PLN-based planner, which
chooses a series of high-level actions that are judged likely to help the
system achieve its goals in the current context

6. The chosen high-level actions are transformed into series of lower-level,
directly executable actions. In the current OpenCog system, this is done
by a set of hand-coded rules based on the specific mechanics of the game
engine where the OpenCog controlled character interacts. In an OpenCog-
DeSTIN hybrid, the lower-level action sequence will be chosen by an
optimization method acting based on the motor control and perceptual
hierarchies.

This pattern of information flow omits numerous aspects of OpenCog cog-
nitive dynamics, but gives the key parts of the picture in terms of the inter-
action of OpenCog cognition with perception and action. Most of the other
aspects of the dynamics have to do with the interaction of multiple cog-
nitive processes acting on the Atomspace, and the interaction between the
Atomspace and several associated specialized memory stores, dealing with
procedural, episodic, temporal and spatial aspects of knowledge. From the
present point of view, these additional aspects may be viewed as part of Step
3 above, wrapped up in the phrase "É and other methods act on these per-
ceptual Atoms." However, it’s worth noting that in order to act appropriately
on perceptual Atoms, a lot of background cognition regarding more abstract
conceptual Atoms (often generalized from previous perceptual Atoms) may
be drawn on. This background inference incorporates both symbolic and sub-
symbolic aspects, but goes beyond the scope of the present discussion, as its
particulars do not impinge on the particulars of DeSTIN-OpenCog integra-
tion.

OpenCog also possesses a specialized facility for natural language com-
prehension and generation [LGE10] [Goe10c], which may be viewed as a
parallel perception/action pathway, bypassing traditional human-like sense
perception and dealing with text directly. Integrating OpenCogPrimes cur-
rent linguistics processes with DeSTIN-based auditory and visual processing
is a deep and important topic, but one we will bypass here, for sake of brevity
and because it’s not our current research priority.
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29.3 Integrating DeSTIN and OpenCog

The integration of DeSTIN and OpenCog involves two key aspects:

• recognition of patterns in sets of DeSTIN states, and exportation of these
patterns into the OpenCog Atomspace

• use of OpenCog-created concepts within DeSTIN nodes, alongside statistically-
derived "centroids"

From here on, unless specified otherwise, when we mention "DeSTIN" we will
refer to "Uniform DeSTIN" as defined in the companion paper [Goeon], an
extension of "classic DeSTIN" as defined in [ARK09a].

29.3.1 Mining Patterns from DeSTIN States

The first step toward using OpenCog tools to mine patterns from sets of
DeSTIN states, is to represent these states in Atom form in an appropriate
way. A simple but workable approach, restricting attention for the moment
to purely spatial patterns, is to use the six predicates:

• hasCentroid(node N, int k)
• hasParentCentroid(node N, int k)
• hasNorthNeighborCentroid(node N, int k)
• hasSouthNeighborCentroid(node N, int k)
• hasEastNeighborCentroid(node N, int k)
• hasWestNeighborCentroid(node N, int k)

For instance

hasNorthNeighborCentroid(N, 3)

means that N ’s north neighbor has centroid #3
One may consider also the predicates

• hasParent(node N,Node M)
• hasNorthNeighbor(node N,Node M)
• hasSouthNeighbor(node N,Node M)
• hasEastNeighbor(node N,Node M)
• hasWestNeighbor(node N,Node M)

Now suppose we have a stored set of DeSTIN states, saved from the appli-
cation of DeSTIN to multiple different inputs. What we want to find are
predicates P that are conjunctions of instances of the above 10 predicates,
which occur frequently in the stored set of DeSTIN states. A simple example
of such a predicate would be the conjunction of
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• hasNorthNeighbor($N, $M)
• hasParentCentroid($N, 5)
• hasParentCentroid($M, 5)
• hasNorthNeighborCentroid($N, 6)
• hasWestNeighborCentroid($M, 4)

This predicate could be evaluated at any pair of nodes ($N, $M) on the same
DeSTIN level. If it is true for atypically many of these pairs, then it’s a
"frequent pattern", and should be detected and stored.

OpenCogPrimes pattern mining component, Fishgram, exists precisely for
the purpose of mining this sort of conjunction from sets of relationships that
are stored in the Atomspace. It may be applied to this problem as follows:

• Translate each DeSTIN state into a set of relationships drawn from: has-
NorthNeighbor, hasSouthNeighbor, hasEastNeighbor, hasWestNeighbor,
hasCentroid, hasParent

• Import these relationships, describing each DeSTIN state, into the OpenCog
Atomspace

• Run pattern mining on this AtomSpace.

29.3.2 Probabilistic Inference on Mined Hypergraphs

Patterns mined from DeSTIN states can then be reasoned on by OpenCog-
Primes PLN inference engine, allowing analogy and generalization.

Suppose centroids 5 and 617 are estimated to be similar – either via DeS-
TIN’s built-in similarity metric, or, more interestingly via OpenCog inference
on the Atom representations of these centroids. As an example of the latter,
consider: 5 could represent a person’s nose and 617 could represent a rabbit’s
nose. In this case, DeSTIN might not judge the two centroids particularly
similar on a purely visual level, but, OpenCog may know that the images
corresponding to both of these centroids are are called "noses" (e.g. per-
haps via noticing people indicate these images in association with the word
"nose"), and may thus infer (using a simple chain of PLN inferences) that
these centroids seem probabilistically similar.

If 5 and 617 are estimated to be similar, then a predicate like

ANDLink
EvaluationLink

hasNorthNeighbor
ListLink $N $M

EvaluationLink
hasParentCentroid
ListLink $N 5

EvaluationLink
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hasParentCentroid
ListLink $M 5

EvaluationLink
hasNorthNeighborCentroid
ListLink $N 6

EvaluationLink
hasWestNeighborCentroid
ListLink $M 4

mined from DeSTIN states, could be extended via PLN analogical reasoning
to

ANDLink
EvaluationLink

hasNorthNeighbor
ListLink $N $M

EvaluationLink
hasParentCentroid
ListLink $N 617

EvaluationLink
hasParentCentroid
ListLink $M 617

EvaluationLink
hasNorthNeighborCentroid
ListLink $N 6

EvaluationLink
hasWestNeighborCentroid
ListLink $M 4

29.3.3 Insertion of OpenCog-Learned Predicates into
DeSTIN’s Pattern Library

Suppose one has used Fishgram, as described above, to recognize predicates
embodying frequent or surprising patterns in a set of DeSTIN states or state-
sequences. The next natural step is to add these frequent or surprising pat-
terns to DeSTIN’s pattern library, so that the pattern library contains not
only classic DeSTIN centroids, but also these corresponding "image gram-
mar" style patterns. Then, when a new input comes into a DeSTIN node,
in addition to being compared to the centroids at the node, it can be fed as
input to the predicates associated with the node.

What is the advantage of this approach, compared to DeSTIN without
these predicates? The capability for more compact representation of a vari-
ety of spatial patterns. In many cases, a spatial pattern that would require
a large number of DeSTIN centroids to represent, can be represented by a
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single, fairly compact predicate. It is an open question whether these sorts
of predicates are really critical for human-like vision processing. However,
our intuition is that they do have a role in human as well s machine vision.
In essence, DeSTIN is based on a fancy version of nearest-neighbor search,
applied in a clever way on multiple levels of a hierarchy, using context-savvy
probabilities to bias the matching. But we suspect there are many visual
patterns that are more compactly and intuitively represented using a more
flexible language, such as OpenCog predicates formed by combining elemen-
tary predicates involving appropriate spatial and temporal relations.

For example, consider the archetypal spatial pattern of a face as: either two
eyes that are next to each other, or sunglasses, above a nose, which is in turn
above a mouth. (This is an oversimplified toy example, but we’re positing it
for illustration only. The same point applies to more complex and realistic
patterns.) One could represent this in OpenCogPrimes Atom language as
something like:

AND
InheritanceLink N B_nose
InheritanceLink M B_mouth
EvaluationLink

above
ListLink E N

EvaluationLink
above
ListLink N M

OR
AND

MemberLink E1 E
MemberLink E2 E
EvaluationLink

next_to
ListLink E1 E2

InheritanceLink E1 B_eye
AND

InheritanceLink E B_sunglasses

where e.g. B_eye is a DeSTIN belief that corresponds roughly to recognition
of the spatial pattern of a human eye. To represent this using ordinary DeS-
TIN centroids, one couldn’t represent the OR explicitly; instead one would
need to split it into two different sets of centroids, corresponding to the eye
case and the sunglasses caseÉ unless the DeSTIN pattern library contained a
belief corresponding to "eyes or sunglasses." But the question then becomes:
how would classic DeSTIN actually learn a belief like this? In the suggested
architecture, pattern mining on the database of DeSTIN states is proposed
as an algorithm for learning such beliefs.
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This sort of predicate-enhanced DeSTIN will have advantages over the
traditional version, only if the actual distribution of images observed by the
system contains many (reasonably high probability) images modeled accu-
rately by predicates involving disjunctions and/or negations as well as con-
junctions. If the system’s perceived world is simpler than this, then good old
DeSTIN will work just as well, and the OpenCog-learned predicates are a
needless complication.

Without these sorts of predicates, how might DeSTIN be extended to in-
clude beliefs like "eyes or sunglasses"? One way would be to couple DeSTIN
with a reinforcement learning subsystem, that reinforced the creation of be-
liefs that were useful for the system as a whole. If reasoning in terms of faces
(independent of whether they have eyes or sunglasses) got the system reward,
presumably it could learn to form the concept "eyes or sunglasses." We be-
lieve this would also be a workable approach, but that given the strengths
and weaknesses of contemporary computer hardware, the proposed DeSTIN-
OpenCog approach will prove considerably simpler and more effective.

29.4 Multisensory Integration, and Perception-Action
Integration

In Part I we have briefly indicated how DeSTIN could be extended beyond
vision to handle other senses such as audition and touch. If one had multi-
ple perception hierarchies corresponding to multiple senses, the easiest way
to integrate them within an OpenCog context would be to use OpenCog
as the communication nexus – representing DeSTIN centroids in the various
modality-specific hierarchies as OpenCog Atoms (PerceptualCentroidNodes),
and building HebbianLinks in OpenCogPrimes Atomspace between these Per-
ceptualCentroidNodes as appropriate based on their association. So for in-
stance the sound of a person’s footsteps would correspond to a certain belief
(probability distribution over centroids) in the auditory DeSTIN network,
and the sight of a person’s feet stepping would correspond to a certain be-
lief (probability distribution over centroids) in the visual DeSTIN network;
and the OpenCog Atomspace would contain links between the sets of cen-
troids assigned high weights between these two belief distributions. Impor-
tance spreading between these various PerceptualCentroidNodes would cause
a dynamic wherein seeing feet stepping would bias the system to think it was
hearing footsteps, and hearing footsteps would bias it to think it was seeing
feet stepping.

And, suppose there are similarities between the belief distributions for the
visual appearance of dogs, and the visual appearance of cats. Via the inter-
mediary of the Atomspace, this would bias the auditory and haptic DeSTIN
hierarchies to assume a similarity between the auditory and haptic charac-
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teristics of dogs, and the analogous characteristics of cats. Because: PLN
analogical reasoning would extrapolate from, e.g.

• HebbianLinks joining cat-related visual PerceptualCentroidNodes and
dog-related visual PerceptualCentroidNodes

• HebbianLinks joining cat-related visual PerceptualCentroidNodes to cat-
related haptic PerceptualCentroidNodes; and others joining dog-related
visual PerceptualCentroidNodes to dog-related haptic PerceptualCen-
troidNodes

to yield HebbianLinks joining cat-related haptic PerceptualCentroidNodes
and dog-related haptic PerceptualCentroidNodes. This sort of reasoning
would then cause the system DeSTIN to, for example, upon touching a cat,
vaguely expect to maybe hear dog-like things. This sort of simple analogi-
cal reasoning will be right sometimes and wrong sometimes – a cat walking
sounds a fair bit like a dog walking, and cat and dog growls sound fairly
similar, but a cat meowing doesn’t sound that much like a dog barking. More
refined inferences of the same basic sort may be used to get the details right
as the system explores and understands the world more accurately.

29.4.1 Perception-Action Integration

While experimentation with DeSTIN has so far been restricted to percep-
tion processing, the system was designed from the beginning with robotics
applications in mind, involving integration of perception with action and re-
inforcement learning. As OpenCog already handles reinforcement learning
on a high level (via OpenPsi), our approach to robot control using DeSTIN
and OpenCog involves creating a control hierarchy parallel to DeSTIN’s per-
ceptual hierarchy, and doing motor learning using optimization algorithms
guided by reinforcement signals delivered from OpenPsi and incorporating
DeSTIN perceptual states as part of their input information.

Our initial research goal, where action is concerned, is not to equal the best
purely control-theoretic algorithms at fine-grained control of robots carrying
out specialized tasks, but rather to achieve basic perception / control / cog-
nition integration in the rough manner of a young human child. A two year
old child is not particularly well coordinated, but is capable of coordinating
actions involving multiple body parts using an integration of perception and
action with unconscious and deliberative reasoning. Current robots, in some
cases, can carry out specialized actions with great accuracy, but they lack
this sort of integration, and thus generally have difficulty effectively carrying
out actions in unforeseen environments and circumstances.

We will create an action hierarchy with nodes corresponding to different
parts of the robot body, where e.g. the node corresponding to an arm would
have child nodes corresponding to a shoulder, elbow, wrist and hand; and the
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node corresponding to a hand would have child nodes corresponding to the
fingers of the hand; etc. Physical self-perception is then achieved by creating
a DeSTIN "action-perception" hierarchy with nodes corresponding to the
states of body components. In the simplest case this means the lowest-level
nodes will correspond to individual servomotors, and their inputs will be
numerical vectors characterizing servomotor states. If one is dealing with a
robot endowed with haptic technology, e.g. Syntouch [FL12] fingertips, then
numerical vectors characterizing haptic inputs may be used alongside these.

The configuration space of an action-perception node, corresponding to
the degrees of freedom of the servomotors of the body part the node repre-
sents, may be approximated by a set of "centroid" vectors. When an action
is learned by the optimization method used for this purpose, this involves
movements of the servomotors corresponding to many different nodes, and
thus creates a series of "configuration vectors" in each node. These config-
uration vector series may be subjected to online clustering, similar to per-
cepts in a DeSTIN perceptual hierarchy. The result is a library of "code-
words", corresponding to discrete trajectories of movement, associated with
each node. The libraries may be shared by identical body parts (e.g. shared
among legs, shared among fingers), but will be distinct otherwise. Each coor-
dinated whole-body action thus results in a series of (node, centroid) pairs,
which may be mined for patterns, similarly to the perception case.

The set of predicates needed to characterize states in this action-perception
hierarchy is simpler than the one described for visual perception above; here
one requires only

• hasCentroid(node N, int k)
• hasParentCentroid(node N, int k)
• hasParent(node N,Node M)
• hasSibling(node N,Node M)

and most of the patterns will involve specific nodes rather than node variables.
The different nodes in a DeSTIN vision hierarchy are more interchangeable
(in terms of their involvement in various patterns) than, say, a leg and a
finger.

In a pure DeSTIN implementation, the visual and action-perception hier-
archies would be directly linked. In the context of OpenCog integration, it is
simplest to link the two via OpenCog, in a sense using cognition as a bridge
between action and perception. It is unclear whether this strategy will be
sufficient in the long run, but we believe it will be more than adequate for
experimentation with robotic perceptual-motor coordination in a variety of
everyday tasks. OpenCogPrimes Hebbian learning process can be used to find
common associations between action-perception states and visual-perception
states, via mining a data store containing time-stamped state records from
both hierarchies.

Importance spreading along the HebbianLinks learned in this way can then
be used to bias the weights in the belief states of the nodes in both hierarchies.
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So, for example, the action-perception patterns related to clenching the fist,
would be Hebbianly correlated with the visual-perception patterns related
to seeing a clenched fist. When a clenched fist was perceived via servomotor
data, importance spreading would increase the weighting of visual patterns
corresponding to clenched fists, within the visual hierarchy. When a clenched
fist was perceived via visual data, importance spreading would increase the
weighting of servomotor data patterns corresponding to clenched fists, within
the action-perception hierarchy.

29.4.2 Thought-Experiment: Eye-Hand Coordination

For example, how would DeSTIN-OpenCog integration as described here
carry out a simple task of eye-hand coordination? Of course the details of
such a feat, as actually achieved, would be too intricate to describe in a brief
space, but it still is meaningful to describe the basic ideas. Consider the case
of a robot picking up a block, in plain sight immediately in front of the robot,
via pinching it between two fingers and then lifting it. In this case,

• The visual scene, including the block, is perceived by DeSTIN; and ap-
propriate patterns in various DeSTIN nodes are formed

• Predicates corresponding to the distribution of patterns among DeSTIN
nodes are activated and exported to the OpenCog Atomspace

• Recognition that a block is present is carried out, either by

– PLN inference within OpenCog, drawing the conclusion that a block
is present from the exported predicates, using ImplicationLinks com-
prising a working definition of a "block"

– A predicate comprising the definition of "block", previously imported
into DeSTIN from OpenCog and utilized within DeSTIN nodes as a
basic pattern to be scanned for. This option would obtain only if
the system had perceived many blocks in the past, justifying the
automation of block recognition within the perceptual hierarchy.

• OpenCog, motivated by one of its higher-level goals, chooses "picking up
the block" as subgoal. So it allocates effort to finding a procedure whose
execution, in the current context, has a reasonable likelihood of achieving
the goal of picking up the block. For instance, the goal could be curiosity
(which might make the robot want to see what lies under the block),
or the desire to please the agent’s human teacher (in case the human
teacher likes presents, and will reward the robot for giving it a block as
a present), etc.

• OpenCog, based on its experience, uses PLN to reason that "grabbing
the block" is a subgoal of "picking up the block"

• OpenCog utilizes a set of predicates corresponding to the desired state
of "grabbing the the block" as a target for an optimization algorithm,
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designed to figure out a series of servomotor actions that will move the
robot’s body from the current state to the target state. This is a relatively
straightforward control theory problem.

• Once the chosen series of servomotor actions has been executed, the robot
has its fingers poised around the block, ready to pick it up. At this point,
the action-perception hierarchy perceives what is happening in the fin-
gers. If the block is really being grabbed properly, then the fingers are
reporting some force, due to the feeling of grabbing the block (haptic in-
put is another possibility and would be treated similarly, but we will leave
that aside for now). Importance spreads from these action-perception pat-
terns into the Atomspace, and back down into the visual perception hier-
archy, stimulating concepts and percepts related to "something is being
grabbed by the fingers."

• If the fingers aren’t receiving enough force, because the agent is actually
only poking the block with one finger and grabbing the air with another
finder, then the "something is being grabbed by the fingers" stimulation
doesn’t happen, and the agent is less sure it’s actually grabbing anything.
In that case it may withdraw its hand a bit, so that it can more easily
assess its hand’s state visually, and try the optimization-based movement
planning again.

• Once the robot estimates the goal of grabbing the block has been success-
fully achieved, it proceeds to the next sub-subgoal, and asks the action-
sequence optimizer to find a sequence of movements that will likely cause
the predicates corresponding to "hold the block up" to obtain. It then
executes this movement series and picks the block up in the air.

This simple example is a far cry from the perceptual-motor coordination in-
volved in doing embroidery, juggling or serving a tennis ball. But we believe it
illustrates, in a simple way, the same basic cognitive structures and dynamics
used in these more complex instances.

29.5 Conclusion

We have described, at a high level, a novel approach to bridging the symbolic
/ subsymbolic gap, via very tightly integrating DeSTIN with OpenCog. We
don’t claim that this is the only way to bridge the gap, but we do believe it is a
viable way. Given the existing DeSTIN and OpenCog designs and codebases,
the execution of the ideas outlined here seems to be relatively straightforward,
falling closer to the category of "advanced development" than that of blue-
sky research. However, fine-tuning all the details of the approach will surely
require substantial effort.

While we have focused on robotics applications here, the basic ideas de-
scribed could be implemented and evaluated in a variety of other contexts
as well, for example the identification of objects and events in videos, or
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intelligent video summarization. Our interests are broad, however, we feel
that robotics is the best place to start – partly due to a general intuition
regarding the deep coupling between human-like intelligence and human-like
embodiment; and partly due to a more specific intuition regarding the value
of action for perception, as reflected in Heinz von Foerster’s dictum "if you
want to see, learn how to act". We suspect there are important cognitive
reasons why perception in the human brain centrally involves premotor re-
gions. The coupling of a perceptual deep learning hierarchy and a symbolic
AI system doesn’t intrinsically solve the combinatorial explosion problem in-
trinsic in looking for potential conceptual patterns in masses of perceptual
data. However, a system with particular goals and the desire to act in such
a way as to achieve them, possesses a very natural heuristic for pruning the
space of possible perceptual/conceptual patterns. It allows the mind to focus
in on those percepts and concepts that are useful for action. Of course, there
are other ways besides integrating action to enforce effective pruning, but
the integration of perception and action has a variety of desirable properties
that might be difficult to emulate via other methods, such as the natural
alignment of the hierarchical structures of action and reward with that of
perception.

The outcome of any complex research project is difficult to foresee in detail.
However, our intuition – based on our experience with OpenCog and DeSTIN,
and our work with the mathematical and conceptual theories underlying these
two systems – is that the hybridization of OpenCog and DeSTIN as described
here will constitute a major step along the path to human-level AGI. It will
enable the creation of an OpenCog instance endowed with the capability
of flexibly interacting with a rich stream of data from the everyday human
world. This data will not only help OpenCog to guide a robot in carrying
out everyday tasks, but will also provide raw material for OpenCogPrimes
cognitive processes to generalize from in various ways – e.g. to use as the
basis for the formation of new concepts or analogical inferences.
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Chapter 30
Procedure Learning as Program
Learning

30.1 Introduction

Broadly speaking, the learning of predicates and schemata (executable proce-
dures) is done in CogPrime via a number of different methods, including for
example PLN inference and concept predicatization (to be discussed in later
chapters). Most of these methods, however, merely extrapolate procedures
directly from other procedures or concepts in the AtomSpace, in a local way
– a new procedure is derived from a small number of other procedures or
concepts. General intelligence also requires a method for deriving new pro-
cedures that are more “fundamentally new.” This is where CogPrime makes
recourse to explicit procedure learning algorithms such as hillclimbing and
MOSES, discussed in Chapters 32 and 33 below.

In this brief chapter we formulate the procedure learning problem as a
program learning problem in a general way, and make some high-level ob-
servations about it. Conceptually, this chapter is a follow-up to Chapter 21,
which discussed the choice to represent procedures as programs; here we make
some simple observations regarding the implications of this choice for pro-
cedure learning, and the formal representation of procedure learning with
OpenCog.

30.1.1 Program Learning

An optimization problem may be defined as follows: a solution space S is
specified, together with some fitness function on solutions, where “solving the
problem” corresponds to discovering a solution in S with a sufficiently high
fitness.

In this context, we may define program learning as follows: given a
program space P , a behavior space B , an execution function exec : P 7→B ,
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and a fitness function on behaviors, “solving the problem” corresponds to
discovering a program p in P whose corresponding behavior, exec(p), has
a sufficiently high fitness.

In evolutionary learning terms, the program space is the space of geno-
types, and the behavior space is the space of phenotypes.

This formalism of procedure learning serves well for explicit procedure
learning CogPrime , not counting cases like procedure learning within other
systems (like DeSTIN) that may be hybridized with CogPrime .

Of course, this extended formalism can of be entirely vacuous – the behav-
ior space could be identical to the program space, and the execution function
simply identity, allowing any optimization problem to be cast as a problem
of program learning. The utility of this specification arises when we make
interesting assumptions regarding the program and behavior spaces, and the
execution and fitness functions (thus incorporating additional inductive bias):

1. Open-endedness – P has a natural “program size” measure – programs
may be enumerated from smallest to largest, and there is no obvious
problem-independent upper bound on program size.

2. Over-representation – exec often maps many programs to the same
behavior.

3. Compositional hierarchy – programs themselves have an intrinsic hi-
erarchical organization, and may contain subprograms which are them-
selves members of P or some related program space. This provides a
natural family of distance measures on programs, in terms of the the
number and type of compositions / decompositions needed to transform
one program into another (i.e., edit distance).

4. Chaotic Execution – very similar programs (as conceptualized in the
previous item) may have very different behaviors.

Precise mathematical definitions could be given for all of these properties
but would provide little insight – it is more instructive to simply note their
ubiquity in symbolic representations; human programming languages (LISP,
C, etc.), Boolean and real-valued formulae, pattern-matching systems, au-
tomata, and many more. The crux of this line of thought is that the combi-
nation of these four factors conspires to scramble fitness functions – even if
the mapping from behaviors to fitnesss is separable or nearly decomposable,
the complex∗ program space and chaotic execution function will often quickly
lead to intractability as problem size grows. These properties are not super-
ficial inconveniences that can be circumvented by some particularly clever
encoding. On the contrary, they are the essential characteristics that give
programs the power to compress knowledge and generalize correctly, in con-
trast to flat, inert representations such as lookup tables (see Baum [Bau04]
for a full treatment of this line of argument).

∗ Here “complex” means open-ended, over-representing, and hierarchical.
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The consequences of this particular kind of complexity, together with the
fact that most program spaces of interest are combinatorially very large,
might lead one to believe that competent program learning is impossible.
Not so: real-world program learning tasks of interest have a compact struc-
ture† – they are not “needle in haystack” problems or uncorrelated fitness
landscapes, although they can certainly be encoded as such. The most one
can definitively state is that algorithm foo, methodology bar, or represen-
tation baz is unsuitable for expressing and exploiting the regularities that
occur across interesting program spaces. Some of these regularities are as
follows:

1. Simplicity prior – our prior assigns greater probability mass to smaller
programs.

2. Simplicity preference – given two programs mapping to the same be-
havior, we prefer the smaller program (this can be seen as a secondary
fitness function).

3. Behavioral decomposability – the mapping between behaviors and
fitness is separable or nearly decomposable. Relatedly, fitnesss are more
than scalars – there is a partial ordering corresponding to behavioral
dominance, where one behavior dominates another if it exhibits a strict
superset of the latter’s desideratum, according to the fitness function.‡
This partial order will never contradict the total ordering of scalar fit-
nesss.

4. White box execution – the mechanism of program execution is known
a priori, and remains constant across many problems.

How these regularities may be exploited will be discussed in later sections
and chapters. Another fundamental regularity of great interest for artificial
general intelligence is patterns across related problems that may be solvable
with similar programs (e.g., involving common modules).

30.2 Representation-Building

One important issue in achieving competent program learning is represen-
tation building. In an ideally encoded optimization problem, all prespecified
variables would exhibit complete separability, and could be optimized inde-
pendently. Problems with hierarchical dependency structure cannot be en-
coded this way, but are still tractable by dynamically learning the problem
decomposition (as is done by the BOA and hBOA, described in Chapter 33).

† Otherwise, humans could not write programs significantly more compact than lookup
tables.
‡ For example, in supervised classification one rule dominates another if it correctly
classifies all of the items that second rule classifies correctly, as well as some which the
second rule gets wrong.
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For complex problems with interacting subcomponents, finding an accurate
problem decomposition is often tantamount to finding a solution. In an ideal-
ized run of a competent optimization algorithm, the problem decomposition
evolves along with the set of solutions being considered, with parallel conver-
gence to the correct decomposition and the global solution optima. However,
this is certainly contingent on the existence of some compact§ and reasonably
correct decomposition in the space (of decompositions, not solutions) being
searched.

Difficulty arises when no such decomposition exists, or when a more effec-
tive decomposition exists that cannot be formulated as a probabilistic model
over representational parameters. Accordingly, one may extend current ap-
proaches via either: a more general modeling language for expressing problem
decompositions; or additional mechanisms that modify the representations
on which modeling operates (introducing additional inductive bias). in Cog-
Prime we have focused on the latter – the former would appear to require
qualitatively more computational capacity than will be available in the near
future. If one ignores this constraint, such a “universal” approach to general
problem-solving is indeed possible, e.g. AIXItl as discussed above.

We refer to these additional mechanisms as “representation-building” be-
cause they serve the same purpose as the pre-representational mechanisms
employed (typically by humans) in setting up an optimization problem –
to present an optimization algorithm with the salient parameters needed to
build effective problem decompositions and vary solutions along meaningful
dimensions. We return to this issue in detail in Chapter 33 in the context of
MOSES, the most powerful procedure-learning algorithm provided in Cog-
Prime .

30.3 Specification Based Procedure Learning

Now we explain how procedure learning fits in with the declarative and in-
tentional knowledge representation in the Atomspace.

The basic method that CogPrime uses to learn procedures that appear fun-
damentally new from the point of view of the AtomSpace at a given point in
time is “specification-based procedure learning”. This involves taking a Pred-
icateNode with a ProcedureNode input type as a specification, and searching
for ProcedureNodes that fulfill this specification (in the sense of making the
specification PredicateNode as true as possible). In evolutionary computing
lingo, the specification predicate is a fitness function.

§ The decomposition must be compact because in practice only a fairly small sampling
of solutions may be evaluated (relative to the size of the total space) at a time, and the
search mechanism for exploring decomposition-space is greedy and local. This is in also
accordance with the general notion of learning corresponding to compression.
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Searching for PredicateNodes that embody patterns in the AtomSpace
as a whole is a special case of this kind of learning, where the specification
PredicateNode embodies a notion of what constitutes an “interesting pattern”.
The quantification of interestingness is of course an interesting and nontrivial
topic in itself.

Finding schemata that are likely to achieve goals important to the system
is also a special case of this kind of learning. In this case, the specification
predicate is of the form:

F(S) = PredictiveImplicationLink (ExOutLink S) G

This measures the extent to which executing schema S is positively corre-
lated with goal-predicate G being achieved shortly later.

Given a PredicateNode interpretable as a specification, how do we find
a ProcedureNode satisfying the specification? Lacking prior knowledge suf-
ficient to enable an incremental approach like inference, we must search
the space of possible ProcedureNodes, using an appropriate search heuris-
tic, hopefully one that makes use of the system’s existing knowledge as fully
as possible.





Chapter 31
Learning Procedures via Imitation,
Reinforcement and Correction

Co-authored with Moshe Looks, Samir Araujo and Welter Silva

31.1 Introduction

In procedure learning as elsewhere in cognition, it’s not enough to use the
right algorithm, one has to use it in the right way based on the data and con-
text and affordances available. While Chapters ?? and 33 focus on procedure
learning algorithms, this one focuses on procedure learning methodology. We
will delve into the important special case of procedure learning in which the
fitness function involves reinforcement and imitation supplied by a teacher
and/or an environment, and look at examples of this in the context of teach-
ing behaviors to virtual pets controlled by OpenCogPrime . While this may
seem a very narrow context, many of the lessons learned are applicable more
broadly; and the discussion has the advantage of being grounded in actual
experiments done with OpenCogPrimes predecessor system, the Novamente
Cognition Engine, and with an early OpenCog version as well, during the
period 2007-2008.

We will focus mainly on learning from a teacher, and then common on the
very similar case where the environment, rather than some specific agent, is
the teacher.

31.2 IRC Learning

Suppose one intelligent agent (the “teacher”) has knowledge of how to carry
out a certain behavior, and wants to transfer this knowledge to another intel-
ligent agent (the “student”). But, suppose the student agent lacks the power
of language (which might be, for example, because language is the thing being
taught!). How may the knowledge be transferred? At least three methodolo-
gies are possible:
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1. Imitative learning: The teacher acts out the behavior, showing the
student by example

2. Reinforcement learning: The student tries to do the behavior himself,
and the teacher gives him feedback on how well he did

3. Corrective learning: As the student attempts the behavior, the teacher
actively corrects (i.e. changes) the student’s actions, guiding him toward
correct performance

Obviously, these three forms of instruction are not exclusive. What we de-
scribe here, and call IRC learning, is a pragmatic methodology for instructing
AGI systems that combines these three forms of instruction. We believe this
combination is a potent one, and is certainly implicit in the way human beings
typically teach young children and animals.

For sake of concreteness, we present IRC learning here primarily in the
context of virtually embodied AGI systems – i.e., AGI systems that control
virtual agents living in virtual worlds. There is an obvious extension to phys-
ical robots living in the real world and capable of flexible interaction with
humans. In principle, IRC learning is applicable more broadly as well, and
could be explored in various non-embodied context such as (for instance) au-
tomated theorem-proving. In general, the term “IRC learning” may be used
to describe any teacher/student interaction that involves a combination of re-
inforcement, imitation and correction. While we have focused in our practical
work so far on the use of IRC to teach simple “animal-like” behaviors, the ap-
plication that interests us more in the medium term is language instruction,
to which we will return in later chapters.

Harking back to Chapter 9, it is clear that an orientation toward effective
IRC learning will be valuable for any system attempting to achieve complex
goals in an environment heavily populated by other intelligences possessing
significant goal-relevant knowledge. Everyday human environments possess
this characteristic, and we suggest the best way to create human-level AGIs
will be to allow them to develop in environments possessing this characteristic
as well.

31.2.1 A Simple Example of Imitation/Reinforcement
Learning

Perhaps the best way to introduce the essential nature of the IRC teaching
protocol is to give a brief snippet from a script that was created to guide
the actual training of the virtual animals controlled by the PetBrain. This
snippet involves only I and R; the C will be discussed afterwards.

This snippet demonstrates a teaching methodology that involves two
avatars: Bob who is being the teacher, and Jill who is being an “imitation
animal,” showing the animal what to do by example.
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1. Bob wants to teach the dog Fido a trick. He calls his friend Jill over. “Jill,
can you help me teach Fido a trick?”

2. Jill comes over. "How much will you pay me for it?
3. Bob gives her a kiss.
4. “All right,” says Jill, “what do you want to teach him?”
5. “Let’s start with fetching stuff,” replies Bob.
6. So Bob and Jill start teaching Fido to fetch using the Pet language....
7. Bob says: “Fido, I’m going to teach you to play fetch with Jill.”
8. Fido sits attentively, looking at Bob.
9. Bob says: “OK, I’m playing fetch now.”
10. Bob picks up a stick from the ground and throws it. Jill runs to get the

stick and brings it back to Bob.
11. Bob says: "I’m done fetching.
12. Bob says, “You try it."
13. Bob throws a stick. Fido runs to the stick, gets it, and brings it back.
14. Bob says “Good dog!”
15. Fido looks happy.
16. Bob says: “Ok, we’re done with that game of fetch.
17. Bob says, “Now, let’s try playing fetch again."
18. This time, Bob throws a stick in a different direction, where there’s

already a stick lying on the ground (call the other stick Stick 2).
19. Fido runs and retrieves Stick 2. As soon as he picks it up, Bob says

“No.” But Fido keeps on running and brings the stick back to Bob.
20. Bob says “No, that was wrong. That was the wrong stick. Stop trying!”
21. Jill says, “Furry little moron!”
22. Bob says to Jill, “Have some patience, will you? Let’s try again.”
23. Fido is slowly wandering around, sniffing the ground.
24. Bob says “Fido, stay.” Fido returns near Bob and sits.
25. Bob throws Stick 2. Fido starts to get up and Bob repeats “Fido, stay.”
26. Bob goes and picks up Stick 1, and walks back to his original position.
27. Bob says “Fido, I’m playing fetch with Jill again.”
28. Bob throws the first stick in the direction of stick 2.
29. Jill goes and gets stick 1 and brings it back to Bob.
30. Bob says “I’m done playing fetch with Jill.”
31. Bob says “Try playing fetch with me now.” He throws stick 1 in another

direction, where stick 3 and stick 4 are lying on the ground, along with
some other junk.

32. Fido runs and gets stick 1 and brings it back.
33. Bob and Jill both jump up and down smiling and say “Good dog! Good

dog, Fido!! Good dog!!”
34. Fido smiles and jumps up and licks Jill on the face.
35. Bob says, “Fido, we’re done practicing fetch.”

In the above transcript, Line 7 initiates a formal training session, and Line
33 terminates this session. The training session is broken into “exemplar” in-
tervals during which exemplars are being given, and “trial” intervals during
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which the animal is trying to imitate the exemplars, following which is re-
ceives reinforcement on its success or otherwise. For instance line 9 initiates
the presentation of an exemplar interval, and line 11 indicates the termina-
tion of this interval. Line 12 indicates the beginning of a trial interval, and
line 16 indicates the termination of this interval.

The above example of combined imitative/reinforcement learning involves
two teachers, but, this is of course not the only way things can be done.
Jill could be eliminated from the above teaching example. The result of this
would be that, in figuring out how to imitate the exemplars, Fido would have
to figure out which of Bob’s actions were “teacher” actions and which were
“simulated student” actions. This is not a particularly hard problem, but it’s
harder than the case where Jill carries out all the simulated-student actions.
So in the case of teaching fetch with only one teacher avatar, on average,
more reinforcement trials will be required.

31.2.2 A Simple Example of Corrective Learning

Another interesting twist on the imitative/reinforcement teaching methodol-
ogy described above is the use of explicit correctional instructions from the
teacher to the animal. This is not shown in the above example but represents
an important addition to the methodology show there. One good example
of the use of corrections would be the problem of teaching would be teach-
ing an animal to sit and wait until the teacher says "Get Up,” using only a
single teacher. Obviously, using two teachers, this is a much easier problem.
Using only one teacher, it’s still easy, but involves a little more subtlety, and
becomes much more tractable when corrections are allowed.

One way that human dog owners teach their dogs this sort of behavior is
as follows:

1. Tell the dog “sit”
2. tell the dog “stay”
3. Whenever the dog tries to get up, tell him “no” or “sit”, and then he sits

down again
4. eventually, tell the dog to “get up”

The real dog understands, in its own way, that the “no” and “sit” commands
said after the “stay” command are meta-commands rather than part of the
“stay” behavior.

In our virtual-pet case, this would be more like

1. tell the dog “I’m teaching you to stay”
2. Tell the dog “sit”
3. Whenever the dog tries to get up, tell him “no” or “sit”, and then he sits

down again
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4. eventually, tell the dog to “get up”
5. tell the dog “I’m done teaching you to stay”

One easy way to do this, which deviates from the pattern of humanlike
interaction, would be to give the agent knowledge about how to interpret an
explicit META flag in communications directed toward it. In this case, the
teaching would look like

1. tell the dog “I’m teaching you to stay”
2. Tell the dog “META: sit”
3. Whenever the dog tries to get up, tell him “META: no” or “META:sit”,

and then he sits down again
4. eventually, tell the dog to “get up”
5. tell the dog “I’m done teaching you to stay”–

Even without the META tag, this behavior (and other comparable ones) is
learnable via CogPrime ’s learning algorithms within a modest number of re-
inforcement trials. So we have not actually implemented the META approach.
But it well illustrates the give-and-take relationship between the sophistica-
tion of the teaching methodology and the number of reinforcement trials
required. In many cases, the best way to reduce the number of reinforcement
trials required to learn a behavior is not to increase the sophistication of the
learning algorithm, but rather to increase the information provided during
the instruction process. No matter how advanced the learning algorithm, if
the teaching methodology only gives a small amount of information, it’s going
to take a bunch of reinforcement trials to go through the search space and
find one of the right procedures satisfying the teacher’s desires. One of the
differences between the real-world learning that an animal or human child
(or adult) experiences, and the learning “experienced” by standard machine-
learning algorithms, is the richness and diversity of information that the real
world teaching environment provides, beyond simple reinforcement signals.
Virtual worlds provide a natural venue in which to experiment with provid-
ing this sort of richer feedback to AI learning systems, which is one among
the many reasons why we feel that virtual worlds are an excellent venue for
experimentation with and education of early-stage AGI systems.

31.3 IRC Learning in the PetBrain

Continuing the theme of the previous section, we now discuss “trick learning”
in the PetBrain, as tested using OpenCog and the Multiverse virtual world
during 2007-2008. The PetBrain constitutes a specific cognitive infrastructure
implementing the IRC learning methodology in the virtual-animal context,
with some extensibility beyond this context as well.

In the PetBrain, learning itself is carried out by a variety of hillclimbing
as described in Chapter 32, which is a fast learning algorithm but may fail
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on harder behaviors (in the sense of requiring an unacceptably large number
of reinforcement trials). For more complex behaviors, MOSES (Chapter 33)
would need to be integrated as an alternative. Compared to hillclimbing,
MOSES is much smarter but slower, and may take a few minutes to solve
a problem. The two algorithms (as implemented for the PetBrain) share the
same Combo knowledge representation and some other software components
(e.g. normalization rules for placing procedures in an appropriate hierarchical
normal form, as described in Chapter 21).

The big challenge involved in designing the PetBrain system, AI-wise, was
that these learning algorithms, used in a straightforward way with feedback
from a human-controlled avatar as the fitness function, would have needed
need an excessive number of reinforcement trials to learn relatively simple
behaviors. This would bore the human beings involved with teaching the ani-
mals. This is not a flaw of the particular learning algorithms being proposed,
but is a generic problem that would exist with any AI algorithms. To choose
an appropriate behavior out of the space of all possible behaviors satisfying
reasonable constraints, requires more bits of information that is contained in
a handful of reinforcement trials.

Most “animal training” games (e.g. Nintendogs may be considered as a
reference case) work around this “hard problem” by not allowing teaching
of novel behaviors. Instead, a behavior list is made up front by the game
designers. The animals have preprogrammed procedures for carrying out the
behaviors on the list. As training proceeds they make fewer errors, till after
enough training they converge “miraculously” on the pre-programmed plan

This approach only works, however, if all the behaviors the animals will
ever learn have been planned and scripted in advance.

The first key to making learning of non-pre-programmed behaviors work,
without an excessive number of reinforcement trials, is in “fitness estima-
tion” – code that guesses the fitness of a candidate procedure at fulfilling the
teacher’s definition of a certain behavior, without actually having to try out
the procedure and see how it works. This is where the I part of IRC learning
comes in.

At an early stage in designing the PetBrain application, we realized it
would be best if the animals were instructed via a methodology where the
same behaviors are defined by the teacher both by demonstration and by
reinforcement signals. Learning based on reinforcement signals only can also
be handled, but learning will be much slower.

In evolutionary programming lingo, we have

1. Procedures = genotypes
2. Demonstrated exemplars, and behaviors generated via procedures = phe-

notypes
3. Reinforcement signals from pet owner = fitness

One method of imitation-based fitness estimation used in the PetBrain
involves an internal simulation world which we’ll call CogSim, as discussed in
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Chapter 40 ∗. CogSim can be visualized using a simple testing UI, but in the
normal course of operations it doesn’t require a user interface; it is an internal
simulation world, which allows the PetBrain to experiment and see what a
certain procedure would be likely to do if enacted in the SL virtual world. Of
course, the accuracy of this kind of simulation depends on the nature of the
procedure. For procedures that solely involve moving around and interact-
ing with inanimate objects, it can be very effective. For procedures involving
interaction with human-controlled avatars, other animals, or other complex
objects, it may be unreliable – and making it even moderately reliable would
require significant work that has not yet been done, in terms of endowing
CogSim with realistic simulations of other agents and their internal moti-
vational structures and so forth. But short of this, CogSim has nonetheless
proved useful for estimating the fitness of simple behavioral procedures.

When a procedure is enacted in CogSim, this produces an object called a
“behavior description” (BD), which is represented in the AtomSpace knowl-
edge representation format. The BD generated by the procedure is then com-
pared with the BD’s corresponding to the “exemplar” behaviors that the
teacher has generated, and that the student is trying to emulate. Similarities
are calculated, which is a fairly subtle matter that involves some heuristic in-
ferences. An estimate of the likelihood that the procedure, if executed in the
world, will generate a behavior adequately similar to the exemplar behaviors.

Furthermore, this process of estimation may be extended to make use of
the animal’s long-term episodic memory. Suppose a procedure P is being
evaluated in the context of exemplar-set E. Then

1. The episodic memory is mined for pairs (P’, E’) that are similar to (P,E)
2. The fitness of these pairs (P’, E’) is gathered from the experience base
3. An estimate of the fitness of (P,E) is then formed

Of course, if a behavior description corresponding to P has been generated
via CogSim, this may also be used in the similarity matching against long-
term memory. The tricky part here, of course, is the similarity measurement
itself, which can be handled via simple heuristics, but if taken sufficiently
seriously becomes a complex problem of uncertain inference.

One thing to note here is that in the PetBrain context, although learning is
done by each animal individually, this learning is subtly guided by collective
knowledge within the fitness estimation process. Internally, we have a “borg
mind” with multiple animal bodies, and an architecture designed to ensure
the maintenance of unique personalities on the part of the individual animals
in spite of the collective knowledge and learning underneath.

At time of writing, we have just begun to experiment with the learning
system as described above, and are using it to learn simple behaviors such as
playing fetch, basic soccer skills, doing specific dances as demonstrated by the

∗ The few readers familiar with obscure OpenCog documentation may remember that
CogSim was previously called “Third Life”, in reference to the Second Life virtual world
that was being used to embody the OpenCog virtual pets at the time
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teacher, and so forth. We have not yet done enough experimentation to get
a solid feel for the limitations of the methodology as currently implemented.

Note also the possibility of using CogPrime ’s PLN inference component
to allow generalization of learned behaviors. For instance, with inference de-
ployed appropriately, a pet that had learned how to play tag would after-
wards have a relatively easy time learning to play “freeze tag.” A pet that
had learned how to hunt for Easter eggs would have a relatively easy time
learning to play hide-and-seek. Episodic memory can be very useful for fitness
estimation here, but explicit use of inference may allow much more rapid and
far-reaching inference capabilities.

31.3.1 Introducing Corrective Learning

Next, how may corrections be utilized in the learning process we have de-
scribed? Obviously, the corrected behavior description gets added into the
knowledge base as an additional exemplar. And, the fact of the correction
acts as a partial reinforcement (up until the time of the correction, what the
animal was doing was correct). But beyond this, what’s necessary is to prop-
agate the correction backward from the BD level to the procedure level. For
instance, if the animal is supposed to be staying in one place, and it starts to
get up but is corrected by the teacher (who says “sit” or physically pushes the
animal back down), then the part of the behavior-generating procedure that
directly generated the “sit” command needs to be “punished.” How difficult
this is to do, depends on how complex the procedure is. It may be as sim-
ple as providing a negative reinforcement to a specific “program tree node”
within the procedure, thus disincentivizing future procedures generated by
the procedure learning algorithm from containing this node. Or it may be
more complex, requiring the solution of an inference problem of the form
“Find a procedure P” that is as similar as possible to procedure P, but that
does not generate the corrected behavior, but rather generates the behavior
that the teacher wanted instead.” This sort of “working backwards from the
behavior description to the procedure” is never going to be perfect except in
extremely simple cases, but it is an important part of learning. We have not
yet experimented with this extensively in our virtual animals, but plan to do
so as the project proceeds.

There is also an interesting variant of correction in which the agent’s own
memory serves implicitly as the teacher. That is, if a procedure generates
a behavior that seems wrong based on the history of successful behavior
descriptions for similar exemplars, then the system may suppress that par-
ticular behavior or replace it with another one that seems more appropriate
– inference based on history thus serving the role of a correcting teacher.
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31.4 Applying A Similar IRC Methodology to
Spontaneous Learning

We have described the IRC teaching/learning methodology in the context of
learning from a teacher – but in fact a similar approach can be utilized for
purely unsupervised learning. In that case, the animal’s intrinsic goal system
acts implicitly as a teacher.

For instance, suppose the animal wants to learn how to better get itself
fed. In this case,

1. Exemplars are provided by instances in the animal’s history when it has
successfully gotten itself fed

2. Reinforcement is provided by, when it is executing a certain procedure,
whether or not it actually gets itself fed or not

3. Correction as such doesn’t apply, but implicit correction may be used
via deploying history-based inference. If a procedure generates a behavior
that seems wrong based on the history of successful behavior descriptions
for the goal of getting fed, then the system may suppress that particular
behavior.

The only real added complexity here lies in identifying the exemplars. In
surveying its own history, the animal must look at each previous instance
in which it got fed (or same sample thereof), and for each one recollect the
series of N actions that it carried out prior to getting fed. It then must figure
out how to set N – i.e. which of the actions prior to getting fed were part of
the behavior that led up to getting fed, and which were just other things the
animal happened to be doing a while before getting fed. To the extent that
this exemplar mining problem can be solved adequately, innate-goal-directed
spontaneous learning becomes closely analogous to teacher-driven learning as
we’ve described it. Or in other words: Experience, as is well known, can serve
as a very effective teacher.





Chapter 32
Procedure Learning via Adaptively
Biased Hillclimbing

Primary author: Nil Geisweiller

32.1 Introduction

Having chosen to represent procedures as programs, explicit procedure learn-
ing then becomes a matter of automated program learning. In its most general
incarnation, automated program learning is obviously an intractable problem;
so the procedure learning design problem then boils down to finding proce-
dure learning algorithms that are effective on the class of problems relevant
to CogPrime systems in practice. This is a subtle matter because there is no
straightforward way to map from the vaguely-defined category of real-world
"everyday human world like" goals and environments to any formally-defined
class of relevant objective functions for a program learning algorithm.

However, this difficulty is not a particular artifact of the choice of pro-
grams to represent procedures; similar issues would arise with any known
representational mechanism of suitable power. For instance, if procedures
were represented as recurrent neural nets, there would arise similar questions
of how many layers to give the networks, how to determine the connection
statistics, what sorts of neurons to use, which learning algorithm, etc. One
can always push such problems to the meta level and use automated learning
to determine which variety of learning algorithm to use – but then one has to
make some decisions on the metalearning level, based on one’s understanding
of the specific structure of the space of relevant program learning algorithms.
In the fictitious work of unbounded computational resources no such judi-
cious choices are necessary, but that’s not the world we live in, and it’s not
relevant to the design of human-like AGI systems.

At the moment, in CogPrime , we utilize two different procedure learning
systems, which operate on the same knowledge representation and rely on
much of the same internal code. One, which we roughly label "hill climbing",
is used for problems that are sufficiently "easy" in the sense that it’s possible
for the system to solve them using feasible resources without (implicitly or
explicitly) building any kind of sophisticated model of the space of solutions
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to the problem. The other, MOSES, is used for problems that are sufficiently
difficult that the right way to solve them is to build a model of the program
space, progressively as one tries out various solutions, and then use this model
to guide ongoing search for better and better solutions. Hillclimbing is treated
in this chapter; MOSES in the next.

32.2 Hillclimbing

"Hillclimbing," broadly speaking, is not a specific algorithm but a category
of algorithms. It applies in general to any search problem where there is a
large space of possible solutions, which can be compared as to their solution
quality. Here we are interested in applying it specifically to problems of search
through spaces of programs.

In hillclimbing, one starts with a candidate solution to a problem (often
a random one, which may be very low-quality), and iteratively makes small
changes to the candidate to generate new possibilities, hoping one of them will
be a better solution. If a new possibility is better than the current candidate,
then the algorithm adopts the new possibility as its new candidate solution.
When the current candidate solution can no longer be improved via small
changes, the algorithm terminates. Ideally, at that point the current candidate
solution is close to optimal – but this is not guaranteed!

Various tweaks to hillclimbing exist, including "restart" which means that
one starts hillclimbing over and over again, taking the best solution from
multiple trials; and "backtracking", which means that if the algorithm termi-
nates at a solution that seems not adequate, then the search can "backtrack"
to a previously considered candidate solution, and try to make different small
changes to that candidate solution, trying previously unexplored possibilities
in search of a new candidate. The value of these and other tweaks depends
on the specific problem under consideration.

In the specific approach to hillclimbing described here, we use a hillclimber
with backtracking, applied to programs that are represented in the same hier-
archical normal form used with MOSES (based on the program normalization
ideas presented in Chapter 21). The basic pseudocode for the hillclimber may
be given as:

Let L be the list (initially empty) of programs explored so far in decreasing
order with respect to their fitness. Let Np be the neighbors of program p.

1. Take the best program p ∈ L
2. Evaluate all programs of Np
3. Merge Np in L
4. Move p from L to the set of best programs found so far and repeat from

step 1 until time runs out
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In the following sections of this chapter, we show how to speed up the
hillclimbing search for learning procedures via four optimizations, which have
been tested fairly extensively. For concreteness we will refer often to the
specific case of using the hill climbing algorithm to control a virtual agent
in a virtual world – and especially the case of teaching a virtual pet tricks
via imitation learning (as in Chapter 31) but the ideas have more general
importance. The four optimizations are:

• reduce candidates to normal form to minimize over-representation and
increase the syntactic semantic correlation (Chapter 21),

• filter perceptions using an entropy criterion to avoid building candidates
that involve nodes unlikely to be contained in the solution (Section 32.3),

• use sequences of agent actions, observed during the execution of the pro-
gram, as building blocks (Section 32.4),

• choose and calibrate a simplicity measure to focus on simpler solutions
(the “Occam bias”) first (Section 32.5).

32.3 Entity and Perception Filters

The number of program candidates of a given size increases exponentially
with the alphabet of the language; therefore it is important to narrow that
alphabet as much as possible. This is the role of the two filters explained
below, the Entity and the Entropy filter.

32.3.1 Entity filter

This filter is in charge of selecting the entities in the scene the pet should
take into account during an imitation learning session. These entities can be
any objects, avatars or other pets.

In general this is a very hard problem, for instance if a bird is flying near
the owner while teaching a trick, should the pet ignore it? Perhaps the owner
wants to teach the pet to bark at them; if so they should not be ignored.

In our current and prior work with OpenCog controlling virtual world
agents, we have used some fairly crude heuristics for entity filtering, which
must be hand-tuned depending on the properties of the virtual world. How-
ever, our intention is to replace these heuristics with entity filtering based on
Economic Attention Networks (ECAN) as described in Chapter 23.
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32.3.2 Entropy perception filter

The perception filter is in charge of selecting all perceptions in the scene
that are reasonably likely to be part of the solution to the program learning
problem posed. A “perception” in the virtual world context means the evalu-
ation of one of a set of pre-specified perception predicates, with an argument
consisting of one of the entities in the observed environment.

Given N entities (provided by the Entity filter), there are usually O(N2)
potential perceptions in the Atomspace due to binary perceptions like

near(owner bird)

inside(toy box)

...
The perception filter proceeds by computing the entropy of any potential

perceptions happening during a learning session. Indeed if the entropy of a
given perception P is high that means that a conditional if(P B1 B2) has a
rather balanced probability of taking Branch B1 or B2. On the other hand if
the entropy is low then the probability of taking these branches is unbalanced,
for instance the probability of taking B1 may be significantly higher than
the probability of taking B2, and therefore if(P B1 B2) could reasonably be
substituted by B1.

For example, assume that during the teaching sessions, the predicate
near(owner bird) is false 99% percent of the time; then near(owner bird)

will have a low entropy and will possibly be discarded by the filter (depending
on the threshold). If the bird is always far from the owner then it will have
entropy 0 and will surely be discarded, but if the bird comes and goes it will
have a high entropy and will pass the filter. Let P be such a perception and
Pt returns 1 when the perception is true at time t or 0 otherwise, where t
ranges over the set of instants, of size N , recorded between the beginning
and the end of the demonstrated trick. The calculation goes as follows

Entropy(P ) = H

(∑
t Pt
N

)
where H(p) = −p log(p) − (1 − p)log(1 − p). There are additional sub-
tleties when the perception involves random operators, like near(owner

random_object) that is the entropy is calculated by taking into account a
certain distribution over entities grouped under the term random_object.
The calculation is optimized to ignore instants when the perception relates
to object that have not moved which makes the calculation efficient enough,
but there is room to improve it in various ways; for instance it could be made
to choose perceptions based not only on entropy but also inferred relevancy
with respect to the context using PLN.
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32.4 Using Action Sequences as Building Blocks

A heuristic that has been shown to work, in the "virtual pet trick" context,
is to consider sequences of actions that are compatible with the behavior
demonstrated by the avatar showing the trick as building blocks when defin-
ing the neighborhood of a candidate. For instance if the trick is to fetch a
ball, compatible sequences would be

goto(ball), grab(ball), goto(owner), drop
goto(random_object), grab(nearest_object), goto(owner), drop
. . .
Sub-sequences can be considered as well – though too many building blocks

also increase the neighborhood exponentially, so one has to be careful when
doing that. In practice using the set of whole compatible sequences worked
well. This for instance can speed up many fold the learning of the trick
triple_kick as shown in Section 32.6.

32.5 Automatically Parametrizing the Program Size
Penalty

A common heuristic for program learning is an “Occam penalty” that pe-
nalizes large programs, hence biasing search toward compact programs. The
function we use to penalize program size is inspired by Ray Solomonoff’s the-
ory of optimal inductive inference [Sol64a, Sol64b]; simply said, a program
is penalized exponentially with respect to its size. Also, one may say that
since the number of program candidates grows exponentially with their size,
exploring solutions with higher size must be exponentially worth the cost.

In the next subsections we describe the particular penalty function we
have used and how to tune its parameters.

32.5.1 Definition of the complexity penalty

Let p be a program candidate and penalty(p) a function with domain [0,1]
measuring the complexity of p. If we consider the complexity penalty function
penalty(p) as if it denotes the prior probability of p, and score(p) (the quality
of p as utilized within the hill climbing algorithm) as denoting the conditional
probability of the desired behavior knowing p, then Bayes rule∗ tells us that

∗ Bayes rule as used here is P (M |D) = P (M)P (D|M)

P (D)
where M denotes the Model (the

program) and D denotes the data (the behavior to imitate), here P (D) is ignored, that is
the data is assumed to be distributed uniformly
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fitness(p) = score(p)× penalty(p)

denotes the conditional probability of p knowing the right behavior to imitate,
the fitness function that we want to maximize.

It happens that in the pet trick learning context which is our main ex-
ample in this chapter, score(p) does not denote such a probability; instead
it measures how similar the behavior generated by p and the behavior to
imitate are. However, we utilize the above formula anyway, with a heuristic
interpretation. One may construct assumptions under which score(p) does
represent a probability but this would take us too far afield.

The penalty function we use is then given by:

penalty(p) = exp(−a× log(b× |A|+ e)× |p|)

where |p| is the program size, |A| its alphabet size and e = exp(1). The
reason |A| enters into the equation is because the alphabet size varies from
one problem to another due to the perception and action filters. Without
that constraint the term log(b× |A|+ e) could simply be included in a. The
higher a the more intense the penalty is. The parameter b controls how that
intensity varies with the alphabet size.

It is important to remark the difference between such a penalty function
and lexicographic parsimony pressure (literally said everything being equal,
choose the shortest program). Because of the use of sequences as building
blocks, without such a penalty function the algorithm may rapidly reach an
optimal program (a mere long sequence of actions) and remain stuck in an
apparent optimum while missing the very logic of the action sequence that
the human wants to convey.

32.5.2 Parameterizing the complexity penalty

Due to the nature of the search algorithm (hill climbing with restart), the
choice of the candidate used to restart the search is crucial. In our case we
restart with the candidate with the best fitness so far which has not been yet
used to restart. The danger of such an approach is that when the algorithm
enters a region with local optima (like a plateau), it may basically stay there
as long as there exist better candidates in that region than outside of it non
used yet for restart. Longer programs tend to generate larger regions of local
optima (because they have exponentially more syntactic variations that lead
to close behaviors), so if the search enters such region via an overly complex
program it is likely to take a very long time to get out of it. Introducing
probability in the choice of the restart may help avoiding that sort of trap
but having experimented with that it turned out not to be significantly better
on average for learning relatively simple things (indeed although the restart
choice is more diverse it still tends to occur in large region of local optima).
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However, a significant improvement we have found is to carefully choose
the size penalty function so that the search will tend to restart on simpler
programs even if they do not exhibit the best behaviors, but will still be able
to reach the optimal solution even if it is a complex one.

The solution we suggest is to choose a and b such that penalty(p) is:

1. as penalizing as possible, to focus on simpler programs first (although that
constraint may possibly be lightened as the experimentation shows),

2. but still correct in the sense that the optimal solution p maximizes
fitness(p).

And we want that to work for all problems we are interested in. That
restriction is an important point because it is likely that in general the second
constraint will be too strict to produce a good penalty function.

We will now formalize the above problem. Let i be an index that ranges
over the set of problems of interest (in our case pet tricks to learn), scorei
and fitnessi denotes the score and fitness functions of the ith problem. Let
Θi(s) denote the set of programs of score s

Θi(s) = {p|score(p) = s}

Define a family of partial functions

fi : [0, 1] 7→ N

so that

fi(s) = argmin
p∈Θi(p)

|p|

What this says is that for any given score s we want the size of the shortest
program p with that score. And fi is partial because there may not be any
program returning a given score.

Let be the family of partial functions

gi : [0, 1] 7→ [0, 1]

parametrized by a and b such that

gi(s) = s× exp(−a× (log(b× |A|+ e)× fi(s))

That is: given a score s, gi(s) returns the fitness fitness(p) of the shortest
program p that marks that score.
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32.5.3 Definition of the Optimization Problem

Let si be the highest score obtained for fitness function i (that is the score of
the program chosen as the current best solution of i). Now the optimization
problem consists of finding some a and b such that

∀i argmax
s

gi(s) = si

that is the highest score has also the highest fitness. We started by choosing a
and b as high as possible, it is a good heuristic but not the best, the best one
would be to choose a and b so that they minimize the number of iterations
(number of restarts) to reach a global optimum, which is a harder problem.

Also, regarding the resolution of the above equation, it is worth noting
we do not need the analytical expression of score(p). Using past learning
experiences we can get a partial description of the fitness landscape of each
problem just by looking at the traces of the search.

Overall we have found this optimization works rather well; that is, tricks
that would otherwise take several hours or days of computation can be learned
in seconds or minutes. And the method also enables fast learning for new
tricks, in fact all tricks we have experimented with so far could be learned
reasonably fast (seconds or minutes) without the need to retune the penalty
function.

In the current CogPrime codebase, the algorithm in charge of calibrating
the parameters of the penalty function has been written in Python. It takes
in input the log of the imitation learning engine that contains the score, the
size, the penalty and the fitness of all candidates explored for all tricks taken
in consideration for the parameterizing. The algorithm proceeds in 2 steps:

1. Reconstitute the partial functions fi for all fitness functions i already at-
tempted, based on the traces of these previously optimized fitness func-
tions.

2. Try to find the highest a and b so that

∀i argmax
s

gi(s) = si

For step 2, since there are only two parameters to tune, we have used a
2D grid, enumerating all points (a, b) and zooming when necessary. So the
speed of the process depends largely on the resolution of the grid but (on
an ordinary 2009 PC processor) usually it does not require more than 20
minutes to both extract fi and find a and b with a satisfactory resolution.
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32.6 Some Simple Experimental Results

To test the above ideas in a simple context, we initially used them to enable an
OpenCog powered virtual world agent to learn a variety of simple “dog tricks”
based on imitation and reinforcement learning in the Multiverse virtual world.
We have since deployed them on a variety of other applications in various
domains.

We began these experiments by running learning on two tricks, fetch_ball
and triple_kick to be described below, in order to calibrate the size penalty
function:

1. fetch_ball, which corresponds to the Combo program

and_seq(goto(ball)
grab(ball)
goto(owner)
drop)

2. triple_kick, if the stick is near the ball then kick 3 times with the left leg
and otherwise 3 times with the right leg. So for that trick the owner had
to provide 2 exemplars, one for kickL (with the stick near the ball) and
one for kickR, and move away the ball from the stick before showing the
second exemplar. Below is the Combo program of triple_kick

if(near(stick ball)
and_seq(kickL kickL kickL)
and_seq(kickR kickR kickR))

Before choosing an exponential size penalty function and calibrating it
fetch_ball would be learned rather rapidly in a few seconds, but triple_kick
would take more than an hour. After calibration both fetch_ball and triple_kick
would be learned rapidly, the later in less than a minute.

Then we experimented with a new few tricks, some simpler, like sit_under_tree

and_seq(goto(tree) sit)

and others more complex like double_dance, where the trick consists of
dancing until the owner emits the message “stop dancing”, and changing the
dance upon owner’s actions

while(not(says(owner ‘‘stop dancing’’))
if(last_action(owner ‘‘kickL’’)

tap_dance
lean_rock_dance))

That is the pet performs a tap_dance when the last action of the owner
is kickL, and otherwise performs a lean_rock_dance.

We tested learning for 3 tricks, fetch_ball, triple_kick and double_dance.
Each trick was tested in 7 settings denoted conf1 to conf10 summarized in
Table 32.1.

• conf1 is the default configuration of the system, the parameters of the size
penalty function are a = 0.03 and b = 0.34, which is actually not what
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is returned by the calibration technique but close to. That is because in
practice we have found that in average learning is working slightly faster
with these values.

• conf2 is the configuration with the exact values returned by the calibra-
tion, that is a = 0.05, b = 0.94 .

• conf3 has the reduction engine disabled.
• conf4 has the entropy filter disabled (threshold is null so all perceptions

pass the filter).
• conf5 has the intensity of the penalty function set to 0.
• conf6 has the penalty function set with low intensity.
• conf7 and conf8 have the penalty function set with high intensity.
• conf9 has the action sequence building block enabled
• conf10 has the action sequence building block enabled but with a slightly

lower intensity of the size penalty function than normal.

Reduct ActSeq Entropy a b Setting
On Off 0.1 0.03 0.34 conf1
On Off 0.1 0.05 0.94 conf2
Off Off 0.1 0.03 0.34 conf3
On Off 0 0.03 0.34 conf4
On Off 0.1 0 0.34 conf5
On Off 0.1 0.0003 0.34 conf6
On Off 0.1 0.3 0.34 conf7
On Off 0.1 3 0.34 conf8
On On 0.1 0.03 0.34 conf9
On On 0.1 0.025 0.34 conf10

Table 32.1 Settings for each learning experiment

Setting Percep Restart Eval Time
conf1 3 3 653 5s18
conf2 3 3 245 2s
conf3 3 3 1073 8s42
conf4 136 3 28287 4mn7s
conf5 3 >700 >500000 >1h
conf6 3 3 653 5s18
conf7 3 8 3121 23s42
conf8 3 147 65948 8mn10s
conf9 3 0 89 410ms
conf10 3 0 33 161ms

Table 32.2 Learning time for fetch_ball

Tables 32.2, 32.3 and 32.4 contain the results of the learning experiment
for the three tricks, fetch_ball, triple_kick and double_dance. In each table
the column Percept gives the number perceptions which is taken into account
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Setting Percep Restart Eval Time
conf1 1 18 2783 21s47
conf2 1 110 11426 1mn53s
conf3 1 49 15069 2mn15s
conf4 124 ∞ ∞ ∞
conf5 1 >800 >200K >1h
conf6 1 7 1191 9s67
conf7 1 >2500 >200K >1h
conf8 1 >2500 >200K >1h
conf9 1 0 107 146ms
conf10 1 0 101 164ms

Table 32.3 Learning time for triple_kick

Setting Percep Restart Eval Time
conf1 5 1 113 4s
conf2 5 1 113 4s
conf3 5 1 150 6s20ms
conf4 139 >4 >60K >1h
conf5 5 1 113 4s
conf6 5 1 113 4s
conf7 5 1 113 4s
conf8 5 >1000 >300K >1h
conf9 5 1 138 4s191ms
conf10 5 181 219K 56mn3s

Table 32.4 Learning time for double_dance

for the learning. Restart gives the number of restarts hill climbing had to do
before reaching the solution. Eval gives the number of evaluations and Time
the search time.

In Table 32.2 and 32.4 we can see that fetch_ball or double_dance are
learned in a few seconds both in conf1 and conf2. In 32.3 however learning is
about five times faster with conf1 than with conf2, which was the motivation
to go with conf2 as default configuration, but conf2 still performs well.

As Tables 32.2, 32.3 and 32.4 demonstrate for setting conf3, the reduc-
tion engine speeds the search up by less than twice for fetch_ball and dou-
ble_dance, and many times for triple_kick.

The results for conf4 shows the importance of the filtering function, learn-
ing is dramatically slowed down without it. A simple trick like fetch_ball
took few minutes instead of seconds, double_dance could not be learned af-
ter an hour, and triple_kick might never be learned because it did not focus
on the right perception from the start.

The results for conf5 shows that without any kind of complexity penalty
learning can be dramatically slowed down, for the reasons explained in Section
32.5 , that is the search looses itself in large regions of sub-optima. Only
double_dance was not affected by that, which is probably explained by the
fact that only one restart occurred in double_dance and it happened to be
the right one.
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The results for conf6 show that when action sequence building-block is
disabled the intensity of the penalty function could be set even lower. For
instance triple_kick is learned faster (9s67 instead of 21s47 for conf1). Con-
versely the results for conf7 show that when action sequence building-block is
enabled, if the Occam’s razor is too weak it can dramatically slow down the
search. That is because in this circumstance the search is mislead by longer
candidates that fit and takes a very cut before it can reach the optimal more
compact solution.

32.7 Conclusion

In our experimentation with hillclimbing for learning pet tricks in a virtual
world, we have shown that the combination of

1. candidate reduction into normal form,
2. filtering operators to narrow the alphabet,
3. using action sequences that are compatible with the shown behavior as

building blocks,
4. adequately choosing and calibrating the complexity penalty function,

can speed up imitation learning so that moderately complex tricks can be
learned within seconds to minutes instead of hours, using a simple “hill climb-
ing with restarts” learning algorithm.

While we have discussed these ideas in the context of pet tricks, they have
of course been developed with more general applications in mind, and have
been applied in many additional contexts. Combo can be used to represent
any sort of procedure, and both the hillclimbing algorithm and the optimiza-
tion heuristics described here appear broad in their relevance.

Natural extensions of the approach described here include the following
directions:

1. improving the Entity and Entropy filter using ECAN and PLN so that
filtering is not only based on entropy but also relevancy with respect to
the context and background knowledge,

2. using transfer learning (see Section 33.4 of Chapter 33) to tune the pa-
rameters of algorithm using contextual and background knowledge.

Indeed these improvements are under active investigation at time of writing,
and some may well have been implemented and tested by the time you read
this.



Chapter 33
Probabilistic Evolutionary Procedure
Learning

Co-authored with Moshe Looks∗

33.1 Introduction

The CogPrime architecture fundamentally requires, as one of its components,
some powerful algorithm for automated program learning. This algorithm
must be able to solve procedure learning problems relevant to achieving
human-like goals in everyday human environments, relying on the support
of other cognitive processes, and providing them with support in turn. The
requirement is not that complex human behaviors need to be learnable via
program induction alone, but rather than when the best way for the system
to achieve a certain goal seems to be the acquisition of a chunk of procedural
knowledge, the program learning component should be able to carry out the
requisite procedural knowledge.

As CogPrime is a fairly broadly-defined architecture overall, there are no
extremely precise requirements for its procedure learning component. There
could be variants of CogPrime in which procedure learning carried more or
less weight, relative to other components.

Some guidance here may be provided by looking at which tasks are gener-
ally handled by humans primarily using procedural learning, a topic on which
cognitive psychology has a fair amount to say, and which is also relatively
amenable to commonsense understanding based on our introspective and so-
cial experience of being human. When we know how to do something, but
can’t explain very clearly to ourselves or others how we do it, the chances
are high that we have acquired this knowledge using some form of "proce-
dure learning" as opposed to declarative learning. This is especially the case
if we can do this same sort of thing in many different contexts, each time
displaying a conceptually similar series of actions, but adapted to the specific
situation. We would like CogPrime to be able to carry out procedural learning
in roughly the same situations ordinary humans can (and potentially other

∗ First author
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situations as well: maybe even at the start, and definitely as development
proceeds), largely via action of its program learning component.

In practical terms, our intuition (based on considerable experience with
automated program learning, in OpenCog and other contexts) is that one
requires a program learning component capable of learning programs with
between dozens and hundreds of program tree nodes, in Combo or some sim-
ilar representation – not able to learn arbitrary programs of this size, but
rather able to solve problems arising in everyday human situations in which
the simplest acceptable solutions involve programs of this size. We also sug-
gest that the majority of procedure learning problems arising in everyday
human situation can be solved via program with hierarchical structure, so
that it likely suffices to be able to learn programs with between dozens and
hundreds of program tree nodes, where the programs have a modular struc-
ture, consisting of modules each possessing no more than dozens of program
tree nodes. Roughly speaking, with only a few dozen Combo tree nodes, com-
plex behaviors seem only achievable via using very subtle algorithmic tricks
that aren’t the sort of thing a human-like mind in the early stages of develop-
ment could be expected to figure out; whereas, getting beyond a few hundred
Combo tree nodes, one seems to get into the domain where an automated
program learning approach is likely infeasible without rather strong restric-
tions on the program structure, so that a more appropriate approach within
CogPrime would be to use PLN, concept creation or other methods to fuse
together the results of multiple smaller procedure learning runs.

While simple program learning techniques like hillclimbing (as discussed
in Chapter 32 above) can be surprisingly powerful, they do have fundamental
limitations, and our experience and intuition both indicate that they are not
adequate for serving as CogPrime ’s primary program learning component.
This chapter describes an algorithm that we do believe is thus capable – Cog-
Prime ’s most powerful and general procedure learning algorithm, MOSES,
an integrative probabilistic evolutionary program learning algorithm that was
briefly overviewed in Chapter 6 of Part 1.

While MOSES as currently designed and implemented embodies a number
of specific algorithmic and structural choices, at bottom it embodies two fun-
damental insights that are critical to generally intelligent procedure learning:

• Evolution is the right approach to learning of difficult procedures
• Enhancing evolution with probabilistic methods is necessary. Pure evolu-

tion, in the vein of the evolution of organisms and species, is too slow
for broad use within cognition; so what is required is a hybridization of
evolutionary and probabilistic methods, where probabilistic methods pro-
vide a more directed approach to generating candidate solutions that is
possible with typical evolutionary heuristics like crossover and mutation

We summarize these insights in the phrase Probabilistic Evolutionary Program
Learning (PEPL); MOSES is then one particular PEPL algorithm, and in
our view a very good one. We have also considered other related algorithms
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such as the PLEASURE algorithm [Goe08a] (which may also be hybridized
with MOSES), but for the time being it appears to us that MOSES satisfies
CogPrime ’s needs.

Our views on the fundamental role of evolutionary dynamics in intelligence
were briefly presented in Chapter 3 of Part 1. Terrence Deacon said it even
more emphatically: “At every step the design logic of brains is a Darwinian
logic: overproduction, variation, competition, selection . . . it should not come
as a surprise that this same logic is also the basis for the normal millisecond-
by-millisecond information processing that continues to adapt neural software
to the world.” [?] He has articulated ways in which, during neurodevelopment,
difference computations compete with each other (e.g., to determine which
brain regions are responsible for motor control). More generally, he posits a
kind of continuous flux as control shifts between competing brain regions,
again, based on high-level “cognitive demand.”

Deacon’s intuition is similar to the one that led Edelman to propose Neu-
ral Darwinism [Ede93], and Calvin and Bickerton [CB00] to pose the notion
of mind as a “Darwin Machine”. The latter have given plausible neural mech-
anisms (“Darwin Machines”) for synthesizing short “programs”. These pro-
grams are for tasks such as rock throwing and sentence generation, which are
represented as coherent firing patterns in the cerebral cortex. A population
of such patterns, competing for neurocomputational territory, replicates with
variations, under selection pressure to conform to background knowledge and
constraints.

To incorporate these insights, a system is needed that can recombine exist-
ing solutions in a non-local synthetic fashion, learning nested and sequential
structures, and incorporate background knowledge (e.g. previously learned
routines). MOSES is a particular kind of program evolution intended to sat-
isfy these goals, using a combination of probability theory with ideas drawn
from genetic programming, and also incorporating some ideas we have seen
in previous chapters such as program normalization.

The main conceptual assumption about CogPrime ’s world, implicit in
the suggestion of MOSES as the primary program learning component, is
that the goal-relevant knowledge that cannot effectively be acquired by the
other methods at CogPrime ’s disposal (PLN, ECAN, etc.), forms a body of
knowledge that can effectively be induced across via probabilistic modeling
on the space of programs for controlling a CogPrime agent. If this is not
true, then MOSES will provide no advantage over simple methods like well-
tuned hillclimbing as described in Chapter 32. If it is true, then the effort
of deploying a complicated algorithm like MOSES is worthwhile. In essence,
the assumption is that there are relatively simple regularities among the
programs implementing those procedures that are most critical for a human-
like intelligence to acquire via procedure learning rather than other methods.
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33.1.1 Explicit versus Implicit Evolution in CogPrime

Of course, the general importance of evolutionary dynamics for intelligence
does not imply the need to use explicit evolutionary algorithms in one’s AGI
system. Evolution can occur in an intelligent system whether or not the low-
level implementation layer of the system involves any explicitly evolutionary
processes. For instance it’s clear that the human mind/brain involves evolu-
tion in this sense on the emergent level – we create new ideas and procedures
by varying and combining ones that we’ve found useful in the past, and this
occurs on a variety of levels of abstraction in the mind. In CogPrime , how-
ever, we have chosen to implement evolutionary dynamics explicitly, as well
as encouraging it to occur implicitly.

CogPrime is intended to display evolutionary dynamics on the derived-
hypergraph level, and this is intended to be a consequence of both explicitly-
evolutionary and not-explicitly-evolutionary dynamics. Cognitive processes
such as PLN inference may lead to emergent evolutionary dynamics (as use-
ful logical relationships are reasoned on and combined, leading to new logical
relationships in an evolutionary manner); even though PLN in itself is not ex-
plicitly evolutionary in character, it becomes emergently evolutionary via its
coupling with CogPrime ’s attention allocation subsystem, which gives more
cognitive attention to Atoms with more importance, and hence creates an
evolutionary dynamic with importance as the fitness criterion and the whole
constellation of MindAgents as the novelty-generation mechanism. However,
MOSES explicitly embodies evolutionary dynamics for the learning of new
patterns and procedures that are too complex for hillclimbing or other sim-
ple heuristics to handle. And this evolutionary learning subsystem naturally
also contributes to the creation of evolutionary patterns on the emergent,
derived-hypergraph level.

33.2 Estimation of Distribution Algorithms

There is a long history in AI of applying evolution-derived methods to prac-
tical problem-solving; John Holland’s genetic algorithm [Hol75], initially a
theoretical model, has been adapted successfully to a wide variety of appli-
cations (see e.g. the proceedings of the GECCO conferences). Briefly, the
methodology applied is as follows:

1. generate a random population of solutions to a problem
2. evaluate the solutions in the population using a predefined fitness function
3. select solutions from the population proportionate to their fitnesss
4. recombine/mutate them to generate a new population
5. go to step 2
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Holland’s paradigm has been adapted from the case of fixed-length strings
to the evolution of variable-sized and shaped trees (typically Lisp S-expressions),
which in principle can represent arbitrary computer programs [Koz92, Koz94].

Recently, replacements-for/extensions-of the genetic algorithm have been
developed (for fixed-length strings) which may be described as estimation-of-
distribution algorithms (see [Pel05] for an overview). These methods, which
outperform genetic algorithms and related techniques across a range of prob-
lems, maintain centralized probabilistic models of the population learned with
sophisticated datamining techniques. One of the most powerful of these meth-
ods is the Bayesian optimization algorithm (BOA) [Pel05].

The basic steps of the BOA are:

1. generate a random population of solutions to a problem
2. evaluate the solutions in the population using a predefined fitness function
3. from the promising solutions in the population, learn a generative model
4. create new solutions using the model, and merge them into the existing

population
5. go to step 2.

The neurological implausibility of this sort of algorithm is readily apparent
– yet recall that in CogPrime we are attempting to roughly emulate human
cognition on the level of behavior not structure or dynamics.

Fundamentally, the BOA and its ilk (the competent adaptive optimiza-
tion algorithms) differ from classic selecto-recombinative search by attempt-
ing to dynamically learn a problem decomposition, in terms of the variables
that have been pre-specified. The BOA represents this decomposition as a
Bayesian network (directed acyclic graph with the variables as nodes, and an
edge from x to y indicating that y is probabilistically dependent on x ). An
extension, the hierarchical Bayesian optimization algorithm (hBOA) , uses a
Bayesian network with local structure to more accurately represent hierarchi-
cal dependency relationships. The BOA and hBOA are scalable and robust
to noise across the range of nearly decomposable functions. They are also
effective, empirically, on real-world problems with unknown decompositions,
which may or may not be effectively representable by the algorithms; robust,
high-quality results have been obtained for Ising spin glasses and MaxSAT,
as well as a real-world telecommunication problem (see [?] for references).

33.3 Competent Program Evolution via MOSES

In this section we summarize meta-optimizing semantic evolutionary search
(MOSES), a system for competent program evolution, described more thor-
oughly in [Loo06]. Based on the viewpoint developed in the previous section,
MOSES is designed around the central and unprecedented capability of com-
petent optimization algorithms such as the hBOA, to generate new solutions
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that simultaneously combine sets of promising assignments from previous
solutions according to a dynamically learned problem decomposition. The
novel aspects of MOSES described herein are built around this core to ex-
ploit the unique properties of program learning problems. This facilitates
effective problem decomposition (and thus competent optimization).

33.3.1 Statics

The basic goal of MOSES is to exploit the regularities in program spaces
outlined in the previous section, most critically behavioral decomposability
and white box execution, to dynamically construct representations that limit
and transform the program space being searched into a relevant subspace
with a compact problem decomposition. These representations will evolve as
the search progresses.

33.3.1.1 An Example

Let’s start with an easy example. What knobs (meaningful parameters to
vary) exist for the family of programs depicted in Figure ?? on the left? We
can assume, in accordance with the principle of white box execution, that
all symbols have their standard mathematical interpretations, and that x , y ,
and z are real-valued variables.

In this case, all three programs correspond to variations on the behavior
represented graphically on the right in the figure. Based on the principle of
behavioral decomposability, good knobs should express plausible evolutionary
variation and recombination of features in behavior space, regardless of the
nature of the corresponding changes in program space. It’s worth repeating
once more that this goal cannot be meaningfully addressed on a syntactic
level - it requires us to leverage background knowledge of what the symbols
in our vocabulary (cos, +, 0.35 , etc.) actually mean.

A good set of knobs will also be orthogonal. Since we are searching through
the space of combinations of knob settings (not a single change at a time,
but a set of changes), any knob whose effects are equivalent to another knob
or combination of knobs is undesirable.† Correspondingly, our set of knobs
should span all of the given programs (i.e., be able to represent them as
various knob settings).

A small basis for these programs could be the 3-dimensional parameter
space, x1 ∈ {x, z, 0} (left argument of the root node), x2 ∈ {y, x} (argument
of cos), and x3 ∈ [0.3, 0.4] (multiplier for the cos-expression). However, this

† First because this will increase the number of samples needed to effectively model the
structure of knob-space, and second because this modeling will typically be quadratic with
the number of knobs, at least for the BOA or hBOA.
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is a very limiting view, and overly tied to the particulars of how these three
programs happen to be encoded. Considering the space behaviorally (right of
Figure ??), a number of additional knobs can be imagined which might be
turned in meaningful ways, such as:

1. numerical constants modifying the phase and frequency of the cosine
expression,

2. considering some weighted average of x and y instead of one or the other,
3. multiplying the entire expression by a constant,
4. adjusting the relative weightings of the two arguments to +.

33.3.1.2 Syntax and Semantics

This kind of representation-building calls for a correspondence between syn-
tactic and semantic variation. The properties of program spaces that make
this difficult are over-representation and chaotic execution, which lead to
non-orthogonality, oversampling of distant behaviors, and undersampling of
nearby behaviors, all of which can directly impede effective program evolution.

Non-orthogonality is caused by over-representation. For example, based
on the properties of commutativity and associativity, a1 + a2 + ...+ an may
be expressed in exponentially many different ways, if + is treated as a non-
commutative and non-associative binary operator. Similarly, operations such
as addition of zero and multiplication by one have no effect, the successive
addition of two constants is equivalent to the addition of their sum, etc. These
effects are not quirks of real-valued expressions; similar redundancies appear
in Boolean formulae (x AND x ≡ x ), list manipulation (cdr(cons(x, L))
≡ L), and conditionals (if x then y else z ≡ if NOT x then z else y).

Without the ability to exploit these identities, we are forced to work in
a greatly expanded space which represents equivalent expression in many
different ways, and will therefore be very far from orthogonality. Completely
eliminating redundancy is infeasible, and typically NP-hard (in the domain
of Boolean formulae it is reducible to the satisfiability problem, for instance),
but one can go quite far with a heuristic approach.

Oversampling of distant behaviors is caused directly by chaotic exe-
cution, as well as a somewhat subtle effect of over-representation, which can
lead to simpler programs being heavily oversampled. Simplicity is defined
relative to a given program space in terms of minimal length, the number of
symbols in the shortest program that produces the same behavior.

Undersampling of nearby behaviors is the flip side of the oversam-
pling of distant behaviors. As we have seen, syntactically diverse programs
can have the same behavior; this can be attributed to redundancy, as well as
non-redundant programs that simply compute the same result by different
means. For example, 3*x can also be computed as x+x+x ; the first version
uses less symbols, but neither contains any obvious “bloat” such as addition
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of zero or multiplication by one. Note however that the nearby behavior of
3.1*x , is syntactically close to the former, and relatively far from the latter.
The converse is the case for the behavior of 2*x+y . In a sense, these two
expressions can be said to exemplify differing organizational principles, or
points of view, on the underlying function.

Differing organizational principles lead to different biases in sampling
nearby behaviors. A superior organizational principle (one leading to higher-
fitness syntactically nearby programs for a particular problem) might be con-
sidered a metaptation (adaptation at the second tier), in the terminology of
King [21]. Since equivalent programs organized according to different prin-
ciples will have identical fitnesss, some methodology beyond selection for
high fitnesss must be employed to search for good organizational principles.
Thus, the resolution of undersampling of nearby behaviors revolves around
the management of neutrality in search, a complex topic beyond the scope of
this chapter.

These three properties of program spaces greatly affect the performance
of evolutionary methods based solely on syntactic variation and recombina-
tion operators, such as local search or genetic programming. In fact, when
quantified in terms of various fitness-distance correlation measures, they can
be effective predictors of algorithm performance, although they are of course
not the whole story. A semantic search procedure will address these concerns
in terms of the underlying behavioral effects of and interactions between a
language’s basic operators; the general scheme for doing so in MOSES is the
topic of the next subsection.

33.3.1.3 Neighborhoods and Normal Forms

The procedure MOSES uses to construct a set of knobs for a given program
(or family of structurally related programs) is based on three conceptual
steps: reduction to normal form, neighborhood enumeration, and neighborhood
reduction.

Reduction to normal form

- in this step, redundancy is heuristically eliminated by reducing programs to
a normal form. Typically, this will be via the iterative application of a series
of local rewrite rules (e.g., ∀x, x+0→ x ), until the target program no longer
changes. Note that the well-known conjunctive and disjunctive normal forms
for Boolean formulae are generally unsuitable for this purpose; they destroy
the hierarchical structure of formulae, and dramatically limit the range of
behaviors (in this case Boolean functions) that can be expressed compactly.
Rather, hierarchical normal forms for programs are required.
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Neighborhood enumeration

- in this step, a set of possible atomic perturbations is generated for all pro-
grams under consideration (the overall perturbation set will be the union of
these). The goal is to heuristically generate new programs that correspond
to behaviorally nearby variations on the source program, in such a way that
arbitrary sets of perturbations may be composed combinatorially to generate
novel valid programs.

Neighborhood reduction

- in this step, redundant perturbations are heuristically culled to reach a more
orthogonal set. A straightforward way to do this is to exploit the reduction to
normal form outlined above; if multiple knobs lead to the same normal forms
program, only one of them is actually needed. Additionally, note that the
number of symbols in the normal form of a program can be used as a heuristic
approximation for its minimal length - if the reduction to normal form of the
program resulting from twiddling some knob significantly decreases its size,
it can be assumed to be a source of oversampling, and hence eliminated from
consideration. A slightly smaller program is typically a meaningful change to
make, but a large reduction in complexity will rarely be useful (and if so, can
be accomplished through a combination of knobs that individually produce
small changes).

At the end of this process, we will be left with a set of knobs defining a sub-
space of programs centered around a particular region in program space and
heuristically centered around the corresponding region in behavior space as
well. This is part of the meta aspect of MOSES, which seeks not to evaluate
variations on existing programs itself, but to construct parameterized pro-
gram subspaces (representations) containing meaningful variations, guided
by background knowledge. These representations are used as search spaces
within which an optimization algorithm can be applied.

33.3.2 Dynamics

As described above, the representation-building component of MOSES con-
structs a parameterized representation of a particular region of program
space, centered around a single program of family of closely related programs.
This is consonant with the line of thought developed above, that a represen-
tation constructed across an arbitrary region of program space (e.g., all pro-
grams containing less than n symbols), or spanning an arbitrary collection
of unrelated programs, is unlikely to produce a meaningful parameterization
(i.e., one leading to a compact problem decomposition).
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A sample of programs within a region derived from representation-building
together with the corresponding set of knobs will be referred to herein as
a deme;‡ a set of demes (together spanning an arbitrary area within pro-
gram space in a patchwork fashion) will be referred to as a metapopulation.§
MOSES operates on a metapopulation, adaptively creating, removing, and
allocating optimization effort to various demes. Deme management is the sec-
ond fundamental meta aspect of MOSES, after (and above) representation-
building; it essentially corresponds to the problem of effectively allocating
computational resources to competing regions, and hence to competing pro-
grammatic organizational- representational schemes.

33.3.2.1 Algorithmic Sketch

The salient aspects of programs and program learning lead to requirements
for competent program evolution that can be addressed via a representation-
building process such as the one shown above, combined with effective deme
management. The following sketch of MOSES, elaborating Figure 33.1 re-
peated here from Chapter 8 of Part 1, presents a simple control flow that
dynamically integrates these processes into an overall program evolution pro-
cedure:

Fig. 33.1 The top-level architectural components of MOSES, with directed edges indi-
cating the flow of information and program control.

‡ A term borrowed from biology, referring to a somewhat isolated local population of a
species.
§ Another term borrowed from biology, referring to a group of somewhat separate popu-
lations (the demes) that nonetheless interact.
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1. Construct an initial set of knobs based on some prior (e.g., based on an
empty program) and use it to generate an initial random sampling of
programs. Add this deme to the metapopulation.

2. Select a deme from the metapopulation and update its sample, as follows:

a. Select some promising programs from the deme’s existing sample to
use for modeling, according to the fitness function.

b. Considering the promising programs as collections of knob settings,
generate new collections of knob settings by applying some (compe-
tent) optimization algorithm.

c. Convert the new collections of knob settings into their correspond-
ing programs, reduce the programs to normal form, evaluate their
fitnesss, and integrate them into the deme’s sample, replacing less
promising programs.

3. For each new program that meet the criterion for creating a new deme,
if any:

a. Construct a new set of knobs (via representation-building) to define
a region centered around the program (the deme’s exemplar), and use
it to generate a new random sampling of programs, producing a new
deme.

b. Integrate the new deme into the metapopulation, possibly displacing
less promising demes.

4. Repeat from step 2.

The criterion for creating a new deme is behavioral non-dominance (pro-
grams which are not dominated by the exemplars of any existing demes are
used as exemplars to create new demes), which can be defined in a domain-
specific fashion. As a default, the fitness function may be used to induce dom-
inance, in which case the set of exemplar programs for demes corresponds to
the set of top-fitness programs.

33.3.3 Architecture

The preceding algorithmic sketch of MOSES leads to the top-level archi-
tecture depicted in Figure ??. Of the four top-level components, only the
fitness function is problem-specific. The representation-building process is
domain-specific, while the random sampling methodology and optimization
algorithm are domain-general. There is of course the possibility of improv-
ing performance by incorporating domain and/or problem-specific bias into
random sampling and optimization as well.
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33.3.4 Example: Artificial Ant Problem

Let’s go through all of the steps that are needed to apply MOSES to a small
problem, the artificial ant on the Santa Fe trail [Koz92], and describe the
search process. The artificial ant domain is a two-dimensional grid landscape
where each cell may or may not contain a piece of food. The artificial ant
has a location (a cell) and orientation (facing up, down, left, or right), and
navigates the landscape via a primitive sensor, which detects whether or
not there is food in the cell that the ant is facing, and primitive actuators
move (take a single step forward), right (rotate 90 degrees clockwise), and
left (rotate 90 degrees counter-clockwise). The Santa Fe trail problem is a
particular 32 x 32 toroidal grid with food scattered on it (Figure 4), and a
fitness function counting the number of unique pieces of food the ant eats
(by entering the cell containing the food) within 600 steps (movement and
90 degree rotations are considered single steps).

Programs are composed of the primitive actions taking no arguments, a
conditional (if-food-ahead),¶ which takes two arguments and evaluates one
or the other based on whether or not there is food ahead, and progn, which
takes a variable number of arguments and sequentially evaluates all of them
from left to right. To fitness a program, it is evaluated continuously until 600
time steps have passed, or all of the food is eaten (whichever comes first).
Thus for example, the program if-food-ahead(m, r) moves forward as long as
there is food ahead of it, at which point it rotates clockwise until food is again
spotted. It’s can successfully navigate the first two turns of the placeSanta
Fe trail, but cannot cross “gaps” in the trail, giving it a final fitness of 11.

The first step in applying MOSES is to decide what our reduction rules
should look like. This program space has several clear sources of redundancy
leading to over-representation that we can eliminate, leading to the following
reduction rules:

1. Any sequence of rotations may be reduced to either a left rotation, a right
rotation, or a reversal, for example:

progn(left, left, left)
reduces to
right

1. Any if-food-ahead statement which is the child of an if-food-ahead state-
ment may be eliminated, as one of its branches is clearly irrelevant, for
example:

if-food-ahead(m, if-food-ahead(l, r))
reduces to

¶ This formulation is equivalent to using a general three-argument if-then-else statement
with a predicate as the first argument, as there is only a single predicate (food-ahead) for
the ant problem.
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if-food-ahead(m, r)

1. Any progn statement which is the child of a progn statement may be
eliminated and replaced by its children, for example:

progn(progn(left, move), move)
reduces to
progn(left, move, move)
The representation language for the ant problem is simple enough that

these are the only three rules needed – in principle there could be many more.
The first rule may be seen as a consequence of general domain-knowledge per-
taining to rotation. The second and third rules are fully general simplification
rules based on the semantics of if-then-else statements and associative func-
tions (such as progn), respectively.

These rules allow us to naturally parameterize a knob space corresponding
to a given program (note that the arguments to the progn and if-food-ahead
functions will be recursively reduced and parameterized according to the
same procedure). Rotations will correspond to knobs with four possibilities
(left, right, reversal, no rotation). Movement commands will correspond to
knobs with two possibilities (move, no movement). There is also the possi-
bility of introducing a new command in between, before, or after, existing
commands. Some convention (a “canonical form”) for our space is needed to
determine how the knobs for new commands will be introduced. A represen-
tation consists of a rotation knob, followed by a conditional knob, followed
by a movement knob, followed by a rotation knob, etc.‖

The structure of the space (how large and what shape) and default knob
values will be determined by the “exemplar” program used to construct it.
The default values are used to bias the initial sampling to focus around the
prototype associated to the exemplar: all of the n direct neighbors of the
prototype are first added to the sample, followed by a random selection of n
programs at a distance of two from the prototype, n programs at a distance
of three, etc., until the entire sample is filled. Note that the hBOA can of
course effectively recombine this sample to generate novel programs at any
distance from the initial prototype. The empty program progn (which can be
used as the initial exemplar for MOSES), for example, leads to the following
prototype:

progn(
rotate? [default no rotation],
if-food-ahead(

progn(
rotate? [default no rotation],

‖ That there be some fixed ordering on the knobs is important, so that two rotation knobs
are not placed next to each other (as this would introduce redundancy). In this case, the
precise ordering chosen (rotation, conditional, movement) does not appear to be critical.



638 33 Probabilistic Evolutionary Procedure Learning

move? [default no movement]),
progn(

rotate? [default no rotation],
move? [default no movement])),

move? [default no movement])

There are six parameters here, three which are quaternary (rotate), and
three which are binary (move). So the program

progn(left, if-food-ahead(move, left))

would be encoded in the space as

[left, no rotation, move, left, no movement, no movement]

with knobs ordered according to a pre-order left-to-right traversal of the pro-
gram’s parse tree (this is merely for exposition; the ordering of the parameters
has no effect on MOSES). For a prototype program already containing an if-
food-ahead statement, nested conditionals would be considered.

A space with six parameters in it is small enough that MOSES can reli-
ably find the optimum (the program progn(right, if-food-ahead(progn(),left),
move)), with a very small population. After no further improvements have
been made in the search for a specified number of generations (calculated
based on the size of the space based on a model derived from [23] that is
general to the hBOA, and not at all tuned for the artificial ant problem), a
new representation is constructed centered around this program.∗∗ Additional
knobs are introduced “in between” all existing ones (e.g., an optional move
in between the first rotation and the first conditional), and possible nested
conditionals are considered (a nested conditional occurring in a sequence af-
ter some other action has been taken is not redundant). The resulting space
has 39 knobs, still quite tractable for hBOA, which typically finds a global
optimum within a few generations. If the optimum were not to be found,
MOSES would construct a new (possibly larger or smaller) representation,
centered around the best program that was found, and the process would
repeat.

The artificial ant problem is well-studied, with published benchmark re-
sults available for genetic programming as well as evolutionary programming
based solely on mutation (i.e., a form of population-based stochastic hill
climbing). Furthermore, an extensive analysis of the search space has been
carried out by Langdon and Poli [LP02], with the authors concluding:

∗∗ MOSES reduces the exemplar program to normal form before constructing the rep-
resentation; in this particular case however, no transformations are needed. Similarly, in
general neighborhood reduction would be used to eliminate any extraneous knobs (based on
domain-specific heuristics). For the ant domain however no such reductions are necessary.
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Technique Computational Effort
Genetic Programming [10] 450,000 evaluations
Evolutionary Programming [24] 136,000 evaluations
MOSES 23,000 evaluations

Fig. 33.2 On the top, histogram of the number of global optima found after a given
number of program evaluations for 100 runs of MOSES on the artificial ant problem (each
run is counted once for the first global optimum reached). On the bottom, computational
effort required to find an optimal solution for various techniques with probability p=.99
(for MOSES p=1, since an optimal solution was found in all runs).

1. The problem is “deceptive at all levels”, meaning that the partial solutions
that must be recombined to solve the problem to optimality have lower
average fitness than the partial solutions that lead to inferior local optima.

2. The search space contains many symmetries (e.g., between left and right
rotations),

3. There is an unusually high density of global optima in the space (relative
to other common test problems);

4. even though current evolutionary methods can solve the problem, they
are not significantly more effective (in terms of the number of program
evaluations require) than random sample.

5. “If real program spaces have the above characteristics (we expect them to
do so but be still worse) then it is important to be able to demonstrate
scalable techniques on such problem spaces”.
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33.3.4.1 Test Results

Koza [Koz92] reports on a set of 148 runs of genetic programming with a
population size of 500 which had a 16% success rate after 51 generations
when the runs were terminated (a total of 25,500 program evaluations per
run). The minimal “computational effort” needed to achieve success with 99%
probability was attained by processing through generation 14 was 450,000
(based on parallel independent runs). Chellapilla [Che97] reports 47 out of
50 successful runs with a minimal computational effort (again, for success
with 99% probability) of 136,000 for his stochastic hill climbing method.

In our experiment with the artificial ant problem, one hundred runs of
MOSES were executed. Beyond the domain knowledge embodied in the re-
duction and knob construction procedure, the only parameter that needed
to be set was the population scaling factor, which was set to 30 (MOSES
automatically adjusts to generate a larger population as the size of the rep-
resentation grows, with the base case determined by this factor). Based on
these “factory” settings, MOSES found optimal solutions on every run out of
100 trials, within a maximum of 23,000 program evaluations (the computa-
tional effort figure corresponding to 100% success). The average number of
program evaluation required was 6952, with 95% confidence intervals of ±856
evaluations.

Why does MOSES outperform other techniques? One factor to consider
first is that the language programs are evolved in is slightly more expressive
than that used for the other techniques; specifically, a progn is allowed to
have no children (if all of its possible children are “turned off”), leading to the
possibility of if-food-ahead statements which do nothing if food is present (or
not present). Indeed, many of the smallest solutions found by MOSES exploit
this feature. This can be tested by inserting a “do nothing” operation into
the terminal set for genetic programming (for example). Indeed, this reduces
the computational effort to 272,000; an interesting effect, but still over an
order of magnitude short of the results obtained with MOSES (the success
rate after 50 generations is still only 20%).

Another possibility is that the reductions in the search space via simplifi-
cation of programs alone are responsible. However, the results past attempts
at introducing program simplification into genetic programming systems [27,
28] have been mixed; although the system may be sped up (because programs
are smaller), there have been no dramatic improvement in results noted. To
be fair, these results have been primarily focused on the symbolic regression
domain; I am not aware of any results for the artificial ant problem.

The final contributor to consider is the sampling mechanism (knowledge-
driven knob-creation followed by probabilistic model-building). We can test
to what extent model-building contributes to the bottom line by simply dis-
abling it and assuming probabilistic independence between all knobs. The
result here is of interest because model-building can be quite expensive
(O(n2N ) per generation, where n is the problem size and N is the popu-
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lation size††). In 50 independent runs of MOSES without model-building, a
global optimum was still discovered in all runs. However, the variance in the
number of evaluations required was much higher (in two cases over 100,000
evaluations were needed). The new average was 26,355 evaluations to reach
an optimum (about 3.5 times more than required with model-building). The
contribution of model-building to the performance of MOSES is expected to
be even greater for more difficult problems.

Applying MOSES without model-building (i.e., a model assuming no inter-
actions between variables) is a way to test the combination of representation-
building with an approach resembling the probabilistic incremental program
learning (PIPE) algorithm [SS03a], which learns programs based on a proba-
bilistic model without any interactions. PIPE has now been shown to provide
results competitive with genetic programming on a number of problems (re-
gression, agent control, etc.).

It is additionally possible to look inside the models that the hBOA con-
structs (based on the empirical statistics of successful programs) to see what
sorts of linkages between knobs are being learned.‡‡ For the 6-knob model
given above for instance an analysis the linkages learned shows that the three
most common pairwise dependencies uncovered, occurring in over 90% of the
models across 100 runs, are between the rotation knobs. No other individual
dependencies occurred in more than 32% of the models. This preliminary
finding is quite significant given Landgon and Poli’s findings on symmetry,
and their observation that “[t]hese symmetries lead to essentially the same
solutions appearing to be the opposite of each other. E.g. either a pair of
Right or pair of Left terminals at a particular location may be important.”

In this relatively simple case, all of the components of MOSES appear to
mesh together to provide superior performance – which is promising, though
it of course does not prove that these same advantages will apply across the
range of problems relevant to human-level AGI.

33.3.5 Discussion

The overall MOSES design is unique. However, it is instructive at this point
to compare its two primary unique facets (representation-building and deme
management) to related work in evolutionary computation.

Rosca’s adaptive representation architecture [Ros99] is an approach to
program evolution which also alternates between separate representation-
building and optimization stages. It is based on Koza’s genetic programming,
and modifies the representation based on a syntactic analysis driven by the

†† The fact that reduction to normal tends to reduce the problem size is another synergy
between it and the application of probabilistic model-building.
‡‡ There is in fact even more information available in the hBOA models concerning
hierarchy and direction of dependence, but this is difficult to analyze.
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fitness function, as well as a modularity bias. The representation-building
that takes place consists of introducing new compound operators, and hence
modifying the implicit distance function in tree-space. This modification is
uniform, in the sense that the new operators can be placed in any context,
without regard for semantics.

In contrast to Rosca’s work and other approaches to representation-
building such as Koza’s automatically defined functions [KA95], MOSES ex-
plicitly addresses on the underlying (semantic) structure of program space
independently of the search for any kind of modularity or problem decom-
position. This preliminary stage critically changes neighborhood structures
(syntactic similarity) and other aggregate properties of programs.

Regarding deme management, the embedding of an evolutionary algorithm
within a superordinate procedure maintaining a metapopulation is most com-
monly associated with “island model” architectures [?]. One of the motiva-
tions articulated for using island models has been to allow distinct islands to
(usually implicitly) explore different regions of the search space, as MOSES
does explicitly. MOSES can thus be seen as a very particular kind of island
model architecture, where programs never migrate between islands (demes),
and islands are created and destroyed dynamically as the search progresses.

In MOSES, optimization does not operate directly on program space, but
rather on a subspace defined by the representation-building process. This
subspace may be considered as being defined by a sort of template assign-
ing values to some of the underlying dimensions (e.g., it restricts the size
and shape of any resulting trees). The messy genetic algorithm [GKD89],
an early competent optimization algorithm, uses a similar mechanism - a
common “competitive template” is used to evaluate candidate solutions to
the optimization problem which are themselves underspecified. Search con-
sequently centers on the template(s), much as search in MOSES centers on
the programs used to create new demes (and thereby new representations).
The issue of deme management can thus be seen as analogous to the issue of
template selection in the messy genetic algorithm.

33.3.6 Conclusion

Competent evolutionary optimization algorithms are a pivotal development,
allowing encoded problems with compact decompositions to be tractably
solved according to normative principles. We are still faced with the prob-
lem of representation-building – casting a problem in terms of knobs that
can be twiddled to solve it. Hopefully, the chosen encoding will allow for a
compact problem decomposition. Program learning problems in particular
rarely possess compact decompositions, due to particular features generally
present in program spaces (and in the mapping between programs and be-
haviors). This often leads to intractable problem formulations, even if the
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mapping between behaviors and fitness has an intrinsic separable or nearly
decomposable structure. As a consequence, practitioners must often resort to
manually carrying out the analogue of representation-building, on a problem-
specific basis. Working under the thesis that the properties of programs and
program spaces can be leveraged as inductive bias to remove the burden of
manual representation-building, leading to competent program evolution, we
have developed the MOSES system, and explored its properties.

While the discussion above has highlighted many of the features that make
MOSES uniquely powerful, in a sense it has told only half the story. Part of
what makes MOSES valuable for CogPrime is that it’s good on its own; and
the other part is that it cooperates well with the other cognitive processes
within CogPrime . We have discussed aspects of this already in Chapter 8 of
Part 1, especially in regard to the MOSES/PLN relationship. In the following
section we proceed further to explore the interaction of MOSES with other
aspects of the CogPrime system – a topic that will arise repeatedly in later
chapters as well.

33.4 Supplying Evolutionary Learning with Long-Term
Memory

This section introduces an important enhancement to evolutionary learning,
which extends the basic PEPL framework, by forming an adaptive hybridiza-
tion of PEPL optimization with PLN inference (rather than merely using
PLN inference within evolutionary learning to aid with modeling).

The first idea here is the use of PLN to supply evolutionary learning with
a long-term memory. Evolutionary learning approaches each problem as an
isolated entity, but in reality, an CogPrime system will be confronting a long
series of optimization problems, with subtle interrelationships. When trying
to optimize the function f, CogPrime may make use of its experience in op-
timizing other functions g.

Inference allows optimizers of g to be analogically transformed into opti-
mizers of f, for instance it allows one to conclude:
Inheritance f g

EvaluationLink f x
EvaluationLink g x

However, less obviously, inference also allows patterns in populations of op-
timizers of g to be analogically transformed into patterns in populations of
optimizers of f. For example, if pat is a pattern in good optimizers of f, then
we have:
InheritanceLink f g

ImplicationLink
EvaluationLink f x
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EvaluationLink pat x

ImplicationLink
EvaluationLink g x
EvaluationLink pat x

(with appropriate probabilistic truth values), an inference which says that
patterns in the population of f-optimizers should also be patterns in the
population of g-optimizers).

Note that we can write the previous example more briefly as:

InheritanceLink f g
ImplicationLink (EvaluationLink f) (EvaluationLink pat)
ImplicationLink (EvaluationLink g) (EvaluationLink pat)

A similar formula holds for SimilarityLinks.
We may also infer:

ImplicationLink (EvaluationLink g) (EvaluationLink pat_g)

ImplicationLink (EvaluationLink f) (EvaluationLink pat_f)

ImplicationLink
(EvaluationLink (g AND f))
(EvaluationLink (pat_g AND pat_f))

and:

ImplicationLink (EvaluationLink f) (EvaluationLink pat)

ImplicationLink (EvaluationLink ~f) (EvaluationLink ~pat)

Through these sorts of inferences, PLN inference can be used to give evolu-
tionary learning a long-term memory, allowing knowledge about population
models to be transferred from one optimization problem to another. This
complements the more obvious use of inference to transfer knowledge about
specific solutions from one optimization problem to another.

For instance in the problem of finding a compact program generating
some given sequences of bits the system might have noticed that when the
number of 0 roughly balances the number of 1 (let us call this property
STR_BALANCE) successful optimizers tend to give greater biases toward
conditionals involving comparisons of the number of 0 and 1 inside the condi-
tion, let us call this property over optimizers COMP_CARD_DIGIT_BIAS.
This can be expressed in PLN as follows
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AverageQuantifierLink 〈tv〉
ListLink

$X
$Y

ImplicationLink

ANDLink

InheritanceLink

STR_BALANCE
$X

EvaluationLink

SUCCESSFUL_OPTIMIZER_OF
ListLink

$Y
$X

InheritanceLink

COMP_CARD_DIGIT_BIAS
$Y

which translates by, if the problem $X inherits from STR_BALANCE and
$Y is a successful optimizer of $X then, with probability p calculated ac-
cording to tv, $Y tends to be biased according to the property described by
COMP_CARD_DIGIT_BIAS.

33.5 Hierarchical Program Learning

Next we discuss hierarchical program structure, and its reflection in prob-
abilistic modeling, in more depth. This is a surprisingly subtle and critical
topic, which may be approached from several different complementary an-
gles. To an extent, hierarchical structure is automatically accounted for in
MOSES, but it may also be valuable to pay more explicit mind to it.

In human-created software projects, one common approach for dealing
with the existence of complex interdependencies between parts of a program
is to give the program a hierarchical structure. The program is then a hierar-
chical arrangement of programs within programs within programs, each one
of which has relatively simple dependencies between its parts (however its
parts may themselves be hierarchical composites). This notion of hierarchy is
essential to such programming methodologies as modular programming and
object-oriented design.

Pelikan and Goldberg discuss the hierarchal nature of human problem-
solving, in the context of the hBOA (hierarchical BOA) version of BOA.
However, the hBOA algorithm does not incorporate hierarchical program
structure nearly as deeply and thoroughly as the hierarchical procedure learn-
ing approach proposed here. In hBOA the hierarchy is implicit in the models
of the evolving population, but the population instances themselves are not
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necessarily explicitly hierarchical in structure. In hierarchical PEPL as we
describe it here, the population consists of hierarchically structured Combo
trees, and the hierarchy of the probabilistic models corresponds directly to
this hierarchical program structure.

The ideas presented here have some commonalities to John Koza’s ADFs
and related tricks for putting reusable subroutines in GP trees, but there
are also some very substantial differences, which we believe will make the
current approach far more effective (though also involving considerably more
computational overhead).

We believe that this sort of hierarchically-savvy modeling is what will
be needed to get probabilistic evolutionary learning to scale to large and
complex programs, just as hierarchy-based methodologies like modular and
object-oriented programming are needed to get human software engineering
to scale to large and complex programs.

33.5.1 Hierarchical Modeling of Composite Procedures
in the AtomSpace

The possibility of hierarchically structured programs is (intentionally) present
in the CogPrime design, even without any special effort to build hierarchy
into the PEPL framework. Combo trees may contain Nodes that point to
PredicateNodes, which may in turn contain Combo trees, etc. However, our
current framework for learning Combo trees does not take advantage of this
hierarchy. What is needed, in order to do so, is for the models used for instance
generation to include events of the form:

Combo tree Node at position x has type PredicateNode; and the PredicateN-
ode at position x contains a Combo tree that possesses property P.

where x is a position in a Combo tree and P is a property that may or
may not be true of any given Combo tree. Using events like this, a relatively
small program explicitly incorporating only short-range dependencies; may
implicitly encapsulate long-range dependencies via the properties P.

But where do these properties P come from? These properties should be
patterns learned as part of the probabilistic modeling of the Combo tree inside
the PredicateNode at position x. For example, if one is using a decision tree
modeling framework, then the properties might be of the form decision tree D
evaluates to True. Note that not all of these properties have to be statistically
correlated with the fitness of the PredicateNode at position x (although some
of them surely will be).

Thus we have a multi-level probabilistic modeling strategy. The top-level
Combo tree has a probabilistic model whose events may refer to patterns
that are parts of the probabilistic models of Combo trees that occur within
it and so on down.
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In instance generation, when a newly generated Combo tree is given a
PredicateNode at position x, two possibilities exist:

• There is already a model for PredicateNodes at position x in Combo trees
in the given population, in which case a population of PredicateNodes
potentially living at that position are drawn from the known model, and
evaluated.

• There is no such model (because it has never been tried to create a
PredicateNode at position x in this population before), in which case a
new population of Combo trees is created corresponding to the position,
and evaluated.

Note that the fitness of a Combo tree that is not at the top level of the
overall process, is assessed indirectly in terms of the fitness of the higher-
level Combo tree in which it is embedded, due to the requirement of having
certain properties, etc.

Suppose each Combo tree in the hierarchy has on average R adaptable
sub-programs (represented as Nodes pointing to PredicateNodes containing
Combo trees to be learned). Suppose the hierarchy is K levels deep. Then we
will have about R×K program tree populations in the tree. This suggests that
hierarchies shouldn’t get too big, and indeed, they shouldn’t need to, for the
same essential reason that human-created software programs, if well-designed,
tend not to require extremely deep and complex hierarchical structures.

One may also introduce a notion of reusable components across various
program learning runs, or across several portions of the same hierarchical
program. Here is one learning patterns of the form:

If property P1(C, x) applies to a Combo tree C and a node x within it, then
it is often good for node x to refer to a PredicateNode containing a Combo
tree with property P2.

These patterns may be assigned probabilities and may be used in instance
generation. They are general or specialized programming guidelines, which
may be learned over time.

33.5.2 Identifying Hierarchical Structure In Combo
trees via MetaNodes and Dimensional Embedding

One may also apply the concepts of the previous section to model a population
of CTs that doesn’t explicitly have an hierarchical structure, via introducing
the hierarchical structure during the evolutionary process, through the intro-
duction of special extra Combo tree nodes called MetaNodes. This may be
done in a couple different ways, here we will introduce a simple way of doing
this based on dimensional embedding, and then in the next section we will
allude to a more sophisticated approach that uses inference instead.
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The basic idea is to couple decision tree modeling with dimensional em-
bedding of subtrees, a trick that enables small decision tree models to cover
large regions of a CT in an approximate way, and which leads naturally to a
form of probabilistically-guided crossover.

The approach as described here works most simply for CT’s that have
many subtrees that can be viewed as mapping numerical inputs into numer-
ical outputs. There are clear generalizations to other sorts of CT’s, but it
seems advisable to test the approach on this relatively simple case first.

The first part of the idea is to represent subtrees of a CT as numerical
vectors in a relatively low-dimensional space (say N=50 dimensions). This
can be done using our existing dimensional embedding algorithm, which maps
any metric space of entities into a dimensional space. All that’s required is
that we define a way of measuring distance between subtrees. If we look at
subtrees with numerical inputs and outputs, this is easy. Such a subtree can
be viewed as a function mapping Rn into Rm; and there are many standard
ways to calculate the distance between two functions of this sort (for instance
one can make a Monte Carlo estimate of the Lp metric which is defined as:

[Sum{x} (f(x) - g(x))^p] ^ (1/p)

Of course, the same idea works for subtrees with non-numerical inputs and
outputs, the tuning and implementation are just a little trickier.

Next, one can augment a CT with meta-nodes that correspond to sub-
trees. Each meta-node is of a special CT node type MetaNode, and comes
tagged with an N-dimensional vector. Exactly which subtrees to replace with
MetaNodes is an interesting question that must be solved via some heuristics.

Then, in the course of executing the PEPL algorithm, one does decision
tree modeling as usual, but making use of MetaNodes as well as ordinary CT
nodes. The modeling of MetaNodes is quite similar to the modeling of Nodes
representing ConceptNodes and PredicateNodes using embedding vectors. In
this way, one can use standard, small decision tree models to model fairly large
portions of CT’s (because portions of CT’s are approximately represented by
MetaNodes).

But how does one do instance generation, in this scheme? What hap-
pens when one tries to do instance generation using a model that predicts
a MetaNode existing in a certain location in a CT? Then, the instance gen-
eration process has got to find some CT subtree to put in the place where
the MetaNode is predicted. It needs to find a subtree whose corresponding
embedding vector is close to the embedding vector stored in the MetaNode.
But how can it find such a subtree?

There seem to be two ways:

1. A reasonable solution is to look at the database of subtrees that have
been seen before in the evolving population, and choose one from this
database, with the probability of choosing subtree X being proportional
to the distance between X’s embedding vector and the embedding vector
stored in the MetaNode.



33.5 Hierarchical Program Learning 649

2. One can simply choose good subtrees, where the goodness of a subtree
is judged by the average fitness of the instances containing the target
subtree.

One can use a combination of both of these processes during instance gener-
ation.

But of course, what this means is that we’re in a sense doing a form of
crossover, because we’re generating new instances that combine subtrees from
previous instances. But we’re combining subtrees in a judicious way guided by
probabilistic modeling, rather than in a random way as in GP-style crossover.

33.5.2.1 Inferential MetaNodes

MetaNodes are an interesting and potentially powerful technique, but we
don’t believe that they, or any other algorithmic trick, is going to be the so-
lution to the problem of learning hierarchical procedures. We believe that this
is a cognitive science problem that probably isn’t amenable to a purely com-
puter science oriented solution. In other words, we suspect that the correct
way to break a Combo tree down into hierarchical components depends on
context, algorithms are of course required, but they’re algorithms for relating
a CT to its context rather than pure CT-manipulation algorithms. Dimen-
sional embedding is arguably a tool for capturing contextual relationships,
but it’s a very crude one.

Generally speaking, what we need to be learning are patterns of the form
“A subtree meeting requirements X is often fit when linked to a subtree
meeting requirements Y, when solving a problem of type Z”. Here the con-
text requirements Y will not pertain to absolute tree position but rather to
abstract properties of a subtree.

The MetaNode approach as outlined above is a kind of halfway measure
toward this goal, good because of its relative computational efficiency, but
ultimately too limited in its power to deal with really hard hierarchical learn-
ing problems. The reason the MetaNode approach is crude is simply because
it involves describing subtrees via points in an embedding space. We believe
that the correct (but computationally expensive) approach is indeed to use
MetaNodes - but with each MetaNode tagged, not with coordinates in an
embedding space, but with a set of logical relationships describing the sub-
tree that the MetaNode stands for. A candidate subtree’s similarity to the
MetaNode may then be determined by inference rather than by the simple
computation of a distance between points in the embedding space. (And, note
that we may have a hierarchy of MetaNodes, with small subtrees correspond-
ing to MetaNodes, larger subtrees comprising networks of small subtrees also
corresponding to MetaNodes, etc.)

The question then becomes which logical relationships one tries to look
for, when characterizing a MetaNode. This may be partially domain-specific,
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in the sense that different properties will be more interesting when studying
motor-control procedures than when studying cognitive procedures.

To intuitively understand the nature of this idea, let’s consider some ab-
stract but commonsense examples. Firstly, suppose one is learning procedures
for serving a ball in tennis. Suppose all the successful procedures work by first
throwing the ball up really high, then doing other stuff. The internal details
of the different procedures for throwing the ball up really high may be wildly
different. What we need is to learn the pattern

Implication
Inheritance X ‘‘throwing the ball up really high’’
‘‘X then Y’’ is fit

Here X and Y are MetaNodes. But the question is how do we learn to
break trees down into MetaNodes according to the formula “tree=’X then Y’
where X inherits from ’throwing the ball up really high.” ’?

Similarly, suppose one is learning procedures to do first-order inference.
What we need is to learn a pattern such as:

Implication
AND

F involves grabbing pairs from the AtomTable
G involves applying an inference rule to those each pair
H involves putting the results back in the AtomTable

‘‘F ( G (H)))’’ is fit

Here we need MetaNodes for F, G and H, but we need to characterize e.g.
the MetaNode F by a relationship such as “involves grabbing pairs from the
AtomTable.”

Until we can characterize MetaNodes using abstract descriptors like this,
one might argue we’re just doing “statistical learning” rather than “general
intelligence style” procedure learning. But to do this kind of abstraction in-
telligently seems to require some background knowledge about the domain.

In the “throwing the ball up really high” case the assignment of a de-
scriptive relationship to a subtree involves looking, not at the internals of
the subtree itself, but at the state of the world after the subtree has been
executed.

In the “grabbing pairs from the AtomTable” case it’s a bit simpler but
still requires some kind of abstract model of what the subtree is doing, i.e. a
model involving a logic expression such as “The output of F is a set S so that
if P belongs to S then P is a set of two Atoms A1 and A2, and both A1 and
A2 were produced via the getAtom operator.”

How can this kind of abstraction be learned? It seems unlikely that ab-
stractions like this will be found via evolutionary search over the space of
all possible predicates describing program subtrees. Rather, they need to
be found via probabilistic reasoning based on the terms combined in sub-
trees, put together with background knowledge about the domain in which
the fitness function exists. In short, integrative cognition is required to



33.6 Fitness Function Estimation via Integrative Intelligence 651

learn hierarchically structured programs in a truly effective way, because
the appropriate hierarchical breakdowns are contextual in nature, and to
search for appropriate hierarchical breakdowns without using inference to
take context into account, involves intractably large search spaces. WIK-
ISOURCE:FitnessEstimationViaIntegrativeIntelligence

33.6 Fitness Function Estimation via Integrative
Intelligence

If instance generation is very cheap and fitness evaluation is very expensive
(as is the case in many applications of evolutionary learning in CogPrime ),
one can accelerate evolutionary learning via a “fitness function estimation”
approach. Given a fitness function embodied in a predicate P, the goal is to
learn a predicate Q so that:

1. Q is much cheaper than P to evaluate, and
2. There is a high-strength relationship:

Similarity Q P

or else

ContextLink C (Similarity Q P)

where C is a relevant context.
Given such a predicate Q, one could proceed to optimize P by ignoring

evolutionary learning altogether and just repeatedly following the algorithm:

• Randomly generate N candidate solutions.
• Evaluate each of the N candidate solutions according to Q.
• Take the k�N solutions that satisfy Q best, and evaluate them according

to P.

improved based on the new evaluations of P that are done. Of course, this
would not be as good as incorporating fitness function estimation into an
overall evolutionary learning framework.

Heavy utilization of fitness function estimation may be appropriate, for
example, if the entities being evolved are schemata intended to control an
agent’s actions in a real or simulated environment. In this case the specifica-
tion predicate P, in order to evaluate P(S), has to actually use the schema
S to control the agent in the environment. So one may search for Q that do
not involve any simulated environment, but are constrained to be relatively
small predicates involving only cheap-to-evaluate terms (e.g. one may allow
standard combinators, numbers, strings, ConceptNodes, and predicates built
up recursively from these). Then Q will be an abstract predictor of concrete
environment success.
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We have left open the all-important question of how to find the ’specifica-
tion approximating predicate’ Q.

One approach is to use evolutionary learning. In this case, one has a popu-
lation of predicates, which are candidates for Q. The fitness of each candidate
Q is judged by how well it approximates P over the set of candidate solutions
for P that have already been evaluated. If one uses evolutionary learning to
evolve Q’s, then one is learning a probabilistic model of the set of Q’s, which
tries to predict what sort of Q’s will better solve the optimization problem of
approximating P’s behavior. Of course, using evolutionary learning for this
purpose potentially initiates an infinite regress, but the regress can be stopped
by, at some level, finding Q’s using a non-evolutionary learning based tech-
nique such as genetic programming, or a simple evolutionary learning based
technique like standard BOA programming.

Another approach to finding Q is to use inference based on background
knowledge. Of course, this is complementary rather than contradictory to
using evolutionary learning for finding Q. There may be information in the
knowledge base that can be used to “analogize” regarding which Q’s may
match P. Indeed, this will generally be the case in the example given above,
where P involves controlling actions in a simulated environment but Q does
not.

An important point is that, if one uses a certain Q1 within fitness estima-
tion, the evidence one gains by trying Q1 on numerous fitness cases may be
utilized in future inferences regarding other Q2 that may serve the role of Q.
So, once inference gets into the picture, the quality of fitness estimators may
progressively improve via ongoing analogical inference based on the internal
structures of the previously attempted fitness estimators.
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Chapter 34
Probabilistic Logic Networks

Co-authored with Matthew Ikle’

34.1 Introduction

Now we turn to CogPrime ’s methods for handling declarative knowledge –
beginning with a series of chapters discussing the Probabilistic Logic Net-
works (PLN) [GMIH08] approach to uncertain logical reasoning, and then
turning to chapters on pattern mining and concept creation. In this first of
the chapters on PLN, we give a high-level overview, summarizing material
given in the book Probabilistic Logic Networks [GMIH08] more compactly
and in a somewhat differently-organized way. For a more thorough treatment
of the concepts and motivations underlying PLN, the reader is encouraged
to read [GMIH08].

PLN is a mathematical and software framework for uncertain inference,
operative within the CogPrime software framework and intended to enable
the combination of probabilistic truth values with general logical reasoning
rules. Some of the key requirements underlying the development of PLN were
the following:

• To enable uncertainty-savvy versions of all known varieties of logical rea-
soning, including for instance higher-order reasoning involving quanti-
fiers, higher-order functions, and so forth

• To reduce to crisp “theorem prover” style behavior in the limiting case
where uncertainty tends to zero

• To encompass inductive and abductive as well as deductive reasoning
• To agree with probability theory in those reasoning cases where probabil-

ity theory, in its current state of development, provides solutions within
reasonable calculational effort based on assumptions that are plausible in
the context of real-world embodied software systems

• To gracefully incorporate heuristics not explicitly based on probability
theory, in cases where probability theory, at its current state of develop-
ment, does not provide adequate pragmatic solutions

655
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• To provide “scalable” reasoning, in the sense of being able to carry out
inferences involving billions of premises.

• To easily accept input from, and send input to, natural language process-
ing software systems In practice, PLN consists of

• a set of inference rules (e.g. deduction, Bayes rule, variable unification,
modus ponens, etc.), each of which takes one or more logical relationships
or terms (represented as CogPrime Atoms) as inputs, and produces others
as outputs

• specific mathematical formulas for calculating the probability value of
the conclusion of an inference rule based on the probability values of the
premises plus (in some cases) appropriate background assumptions.

PLN also involves a particular approach to estimating the confidence val-
ues with which these probability values are held (weight of evidence, or
second-order uncertainty). Finally, the implementation of PLN in software
requires important choices regarding the structural representation of infer-
ence rules, and also regarding “inference control” – the strategies required to
decide what inferences to do in what order, in each particular practical situa-
tion. Currently PLN is being utilized to enable an animated agent to achieve
goals via combining actions in a game world. For example, it can figure out
that to obtain an object located on top of a wall, it may want to build stairs
leading from the floor to the top of the wall. Earlier PLN applications have
involved simpler animated agent control problems, and also other domains,
such as reasoning based on information extracted from biomedical text using
a language parser.

For all its sophistication, however, PLN falls prey to the same key weakness
as other logical inference systems: combinatorial explosion. In trying to find
a logical chain of reasoning leading to a desired conclusion, or to evaluate the
consequences of a given set of premises, PLN may need to explore an unwieldy
number of possible combinations of the Atoms in CogPrime ’s memory. For
PLN to be practical beyond relatively simple and constrained problems (and
most definitely, for it to be useful for AGI at the human level or beyond),
it must be coupled with a powerful method for “inference tree pruning” –
for paring down the space of possible inferences that the PLN engine must
evaluate as it goes about its business in pursuing a given goal in a certain
context. Inference control will be addressed in Chapter 36.

34.2 First Order Probabilistic Logic Networks

We now review the essentials of PLN in a more formal way. PLN is di-
vided into first-order and higher-order sub-theories (FOPLN and HOPLN).
These terms are used in a nonstandard way drawn conceptually from NARS
[Wan06]. We develop FOPLN first, and then derive HOPLN therefrom.
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FOPLN is a term logic, involving terms and relationships (links) between
terms. It is an uncertain logic, in the sense that both terms and relationships
are associated with truth value objects, which may come in multiple varieties
ranging from single numbers to complex structures like indefinite probabili-
ties. Terms may be either elementary observations, or abstract tokens drawn
from a token-set T .

34.2.1 Core FOPLN Relationships

“Core FOPLN” involves relationships drawn from the set: negation; Inheri-
tance and probabilistic conjunction and disjunction; Member and fuzzy con-
junction and disjunction. Elementary observations can have only Member
links, while token terms can have any kinds of links. PLN makes clear distinc-
tions, via link type semantics, between probabilistic relationships and fuzzy
set relationships. Member semantics are usually fuzzy relationships (though
they can also be crisp), whereas Inheritance relationships are probabilistic,
and there are rules governing the interoperation of the two types.

Suppose a virtual agent makes an elementary VisualObservation o of a
creature named Fluffy. The agent might classify o as belonging, with degree
0.9, to the fuzzy set of furry objects. The agent might also classify o as
belonging with degree 0.8 to the fuzzy set of animals. The agent could then
build the following links in its memory:

Member o furry < 0.9 >
Member o animals < 0.8 >

The agent may later wish to refine its knowledge, by combining these
MemberLinks. Using the minimum fuzzy conjunction operator, the agent
would conclude:

fuzzyAND < 0.8 >
Member o furry
Member o animals

meaning that the observation o is a visual observation of a fairly furry, animal
object.

The semantics of (extensional) Inheritance are quite different from, though
related to, those of the MemberLink. ExtensionalInheritance represents a
purely conditional probabilistic subset relationship and is represented through
the Subset relationship. If A is Fluffy and B is the set of cat, then the state-
ment

Subset < 0.9 >
A
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B

means that
P (x is in the set B|x is in the set A) = 0.9.

34.2.2 PLN Truth Values

PLN is equipped with a variety of different types of truth-value types. In
order of increasing information about the full probability distribution, they
are:

• strength truth-values, which consist of single numbers; e.g., < s > or
< .8 >. Usually strength values denote probabilities but this is not always
the case.

• SimpleTruthValues, consisting of pairs of numbers. These pairs come in
two forms: < s, w >, where s is a strength and w is a “weight of evidence”
and < s, N >, where N is a “count.” “Weight of evidence” is a qualitative
measure of belief, while “count” is a quantitative measure of accumulated
evidence.

• IndefiniteTruthValues, which quantify truth-values in terms of an inter-
val [L,U ], a credibility level b, and an integer k (called the lookahead).
IndefiniteTruthValues quantify the idea that after k more observations
there is a probability b that the conclusion of the inference will appear
to lie in [L,U ].

• DistributionalTruthValues, which are discretized approximations to entire
probability distributions.

34.2.3 Auxiliary FOPLN Relationships

Beyond the core FOPLN relationships, FOPLN involves additional relation-
ship types of two varieties. There are simple ones like Similarity, defined by

Similarity A B

We say a relationship R is simple if the truth value of R A B can be calcu-
lated solely in terms of the truth values of core FOPLN relationships between
A and B. There are also complex "auxiliary" relationships like Intensional-
Inheritance, which as discussed in depth in the Appendix G, measures the
extensional inheritance between the set of properties or patterns associated
with one term and the corresponding set associated with another.
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Returning to our example, the agent may observe that two properties of
cats are that they are furry and purr. Since the Fluffy is also a furry animal,
the agent might then obtain, for example

IntensionalInheritance < 0.5 >
Fluffy
cat

meaning that the Fluffy shares about 50% of the properties of cat. Building
upon this relationship even further, PLN also has a mixed intensional/exten-
sional Inheritance relationship which is defined simply as the disjunction of
the Subset and IntensionalInheritance relationships.

As this example illustrates, for a complex auxiliary relationship R, the
truth value of R A B is defined in terms of the truth values of a number of
different FOPLN relationships among different terms (others than A and B),
specified by a certain mathematical formula.

34.2.4 PLN Rules and Formulas

A distinction is made in PLN between rules and formulas. PLN logical infer-
ences take the form of “syllogistic rules," which give patterns for combining
statements with matching terms. Examples of PLN rules include, but are not
limited to,

• deduction ((A→ B) ∧ (B → C)⇒ (A→ C)),
• induction ((A→ B) ∧ (A→ C)⇒ (B → C)),
• abduction ((A→ C) ∧ (B → C)⇒ (A→ C)),
• revision, which merges two versions of the same logical relationship that

have different truth values
• inversion ((A→ B)⇒ (B → A)).

The basic schematic of the first four of these rules is shown in Figure 34.1. We
can see that the first three rules represent the natural ways of doing inference
on three interrelated terms. We can also see that induction and abduction can
be obtained from the combination of deduction and inversion, a fact utilized
in PLN’s truth value formulas.

Related to each rule is a formula which calculates the truth value resulting
from application of the rule. As an example, suppose sA, sB , sC , sAB , and
sBC represent the truth values for the terms A, B, C, as well the truth
values of the relationships A → B and B → C, respectively. Then, under
suitable conditions imposed upon these input truth values, the formula for
the deduction rule is given by:

sAC = sABsBC +
(1− sAB) (sC − sBsBC)

1− sB
,
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Fig. 34.1 The four most basic first-order PLN inference rules

where sAC represents the truth value of the relationship A→ C. This formula
is directly derived from probability theory given the assumption that A→ B
and B → C are independent.

For inferences involving solely fuzzy operators, the default version of PLN
uses standard fuzzy logic with min/max truth value formulas (though alter-
natives may also be employed consistently with the overall PLN framework).
Finally, the semantics of combining fuzzy and probabilistic operators is hinted
at in [GMIH08] but addressed more rigorously in [GL10], which give a precise
semantics for constructs of the form

Inheritance A B

where A and B are characterized by relationships of the form Member C A,
Member D B, etc. The various PLN rules have been gathered in appendix
[TODO APPENDIX]

It is easy to see that, in the crisp case, where all MemberLinks and Inher-
itanceLinks have strength 0 or 1, FOPLN reduces to standard propositional
logic. Where inheritance is crisp but membership isn’t, FOPLN reduces to
higher-order fuzzy logic (including fuzzy statements about terms or fuzzy
statements, etc.).
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34.3 Higher-Order PLN

Higher-order PLN (HOPLN) is defined as the subset of PLN that applies to
predicates (considered as functions mapping arguments into truth values). It
includes mechanisms for dealing with variable-bearing expressions and higher-
order functions.

A predicate, in PLN, is a special kind of term that embodies a function
mapping terms or relationships into truth-values. HOPLN contains several
relationships that act upon predicates including Evaluation, Implication, and
several types of quantifiers. The relationships can involve constant terms,
variables, or a mixture.

The Evaluation relationship, for example, evaluates a predicate on an input
term. An agent can thus create a relationship of the form

Evaluation
near
(Bob’s house, Fluffy)

or, as an example involving variables,

Evaluation
near
(X, Fluffy)

The Implication relationship is a particularly simple kind of HOPLN re-
lationship in that it behaves very much like FOPLN relationships, via sub-
stitution of predicates in place of simple terms. Since our agent knows, for
example,

Implication
is_Fluffy
AND is_furry purrs

and

Implication
AND is_furry purrs
is_cat

the agent could then use the deduction rule to conclude

Implication is_Fluffy is_cat

PLN supports a variety of quantifiers, including traditional crisp and fuzzy
quantifiers, plus the AverageQuantifier defined so that the truth value of

AverageQuantifier X F (X)
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is a weighted average of F (X) over all relevant inputs X. AverageQuantifier
is used implicitly in PLN to handle logical relationships between predicates,
so that e.g. the conclusion of the above deduction is implicitly interpreted as

AverageQuantifier X
Implication

Evaluation is_Fluffy X
Evaluation is_cat X

We can now connect PLN with the SRAM model (defined in Chapter 7 of
Part 1).

Suppose for instance that the agent observes Fluffy from across the room,
and that it has previously learned a Fetch procedure that tells it how to
obtain an entity once it sees that entity. Then, if the agent has the goal
of finding a cat, and it has concluded based on the above deduction that
Fluffy is indeed a cat (since it is observed to be furry and purr), the cognitive
schematic (knowledge of the form Context & Procedure → Goal as explained
in Chapter 8 of Part 1) may suggest it to execute the Fetch procedure.

34.3.1 Reducing HOPLN to FOPLN

In [GMIH08] it is shown that in principle, over any finite observation set,
HOPLN reduces to FOPLN. The key ideas of this reduction are the elim-
ination of variables via use of higher-order functions, and the use of the
set-theoretic definition of function embodied in the SatisfyingSet operator to
map function-argument relationships into set-member relationships.

As an example, consider the Implication link. In HOPLN, where X is a
variable

Implication
R1 A X
R2 B X

may be reduced to

Inheritance
SatisfyingSet(R1 A X)
SatisfyingSet(R2 B X)

where e.g. SatisfyingSet(R1 A X) is the fuzzy set of all X satisfying the
relationship R1(A,X).

Furthermore in Appendix G, we show how experience-based possible world
semantics can be used to reduce PLN’s existential and universal quantifiers
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to standard higher order PLN relationships using AverageQuantifier rela-
tionships. This completes the reduction of HOPLN to FOPLN in the SRAM
context.

One may then wonder why it makes sense to think about HOPLN at
all. The answer is that it provides compact expression of a specific subset
of FOPLN expressions, which is useful in cases where agents have limited
memory and these particular expressions provide agents practical value (it
biases the agent’s reasoning ability to perform just as well as in first or higher
orders).

34.4 Predictive Implication and Attraction

This section briefly reviews the notions of predictive implication and pre-
dictive attraction, which are critical to many aspects of CogPrime dynamics
including goal-oriented behavior.

Define

Attraction A B <s>

as P(B|A) - P(B|¬A) = s, or in node and link terms
s = (Inheritance A B).s - (Inheritance ¬A B).s

For instance
(Attraction fat pig).s =

(Inheritance fat pig).s - (Inheritance ¬fat pig).s

Relatedly, in the temporal domain, we have the link type PredictiveImpli-
cation, where

PredictiveImplication A B <s>

roughly means that s is the probability that
Implication A B <s>

holds and also A occurs before B. More sophisticated versions of Predic-
tiveImplication come along with more specific information regarding the time
lag between A and B: for instance a time interval T in which the lag must
lie, or a probability distribution governing the lag between the two events.

We may then introduce
PredictiveAttraction A B <s>

to mean
s = (PredictiveImplication A B).s - (PredictiveImplication ¬A B).s

For instance
(PredictiveAttraction kiss_Ben be_happy).s =

(PredictiveImplication kiss_Ben be_happy).s

- (PredictiveImplication ¬kiss_Ben be_happy).s

This is what really matters in terms of determining whether kissing Ben
is worth doing in pursuit of the goal of being happy, not just how likely it is
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to be happy if you kiss Ben, but how differentially likely it is to be happy if
you kiss Ben.

Along with predictive implication and attraction, sequential logical op-
erations are important, represented by operators such as SequentialAND,
SimultaneousAND and SimultaneousOR. For instance:

PredictiveAttraction
SequentialAND

Teacher says ’fetch’
I get the ball
I bring the ball to the teacher

I get a reward

combines SequentialAND and PredictiveAttraction. In this manner, an ar-
bitrarily complex system of serial and parallel temporal events can be con-
structed.

34.5 Confidence Decay

PLN is all about uncertain truth values, yet there is an important kind of
uncertainty it doesn’t handle explicitly and completely in its standard truth
value representations: the decay of information with time.

PLN does have an elegant mechanism for handling this: in the <s,d>
formalism for truth values, strength s may remain untouched by time (except
as new evidence specifically corrects it), but d may decay over time. So,
our confidence in our old observations decreases with time. In the indefinite
probability formalism, what this means is that old truth value intervals get
wider, but retain the same mean as they had back in the good old days.

But the tricky question is: How fast does this decay happen?
This can be highly context-dependent.
For instance, 20 years ago we learned that the electric guitar is the most

popular instrument in the world, and also that there are more bacteria than
humans on Earth. The former fact is no longer true (keyboard synthesizers
have outpaced electric guitars), but the latter is. And, if you’d asked us 20
years ago which fact would be more likely to become obsolete, we would have
answered the former - because we knew particulars of technology would likely
change far faster than basic facts of earthly ecology.

On a smaller scale, it seems that estimating confidence decay rates for
different sorts of knowledge in different contexts is a tractable data mining
problem, that can be solved via the system keeping a record of the observed
truth values of a random sampling of Atoms as they change over time. (Op-
erationally, this record may be maintained in parallel with the SystemAc-
tivityTable and other tables maintained for purposes of effort estimation,
attention allocation and credit assignment.) If the truth values of a certain
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sort of Atom in a certain context change a lot, then the confidence decay rate
for Atoms of that sort should be increased.

This can be quantified nicely using the indefinite probabilities framework.
For instance, we can calculate, for a given sort of Atom in a given context,

separate b-level credible intervals for the L and U components of the Atom’s
truth value at time t-r, centered about the corresponding values at time t.
(This would be computed by averaging over all t values in the relevant past,
where the relevant past is defined as some particular multiple of r; and over
a number of Atoms of the same sort in the same context.)

Since historically-estimated credible-intervals won’t be available for every
exact value of r, interpolation will have to be used between the values calcu-
lated for specific values of r.

Also, while separate intervals for L and U would be kept for maximum ac-
curacy, for reasons of pragmatic memory efficiency one might want to main-
tain only a single number x, considered as the radius of the confidence interval
about both L and U. This could be obtained by averaging together the em-
pirically obtained intervals for L and U.

Then, when updating an Atom’s truth value based on a new observation,
one performs a revision of the old TV with the new, but before doing so, one
first widens the interval for the old one by the amounts indicated by the
above-mentioned credible intervals.

For instance, if one gets a new observation about A with TV (Lnew, Unew),
and the prior TV of A, namely (Lold, Uold), is 2 weeks old, then one may
calculate that Lold should really be considered as:

$(L_{old} - x, L_{old}+x)$

and U_old should really be considered as:

$(U_{old} - x, U_{old} + x)$

so that (L_new, U_new) should actually be revised with:

$(L_{old} - x, U_{old} + x)$

to get the total:

(L,U)

for the Atom after the new observation.
Note that we have referred fuzzily to “sort of Atom” rather than “type of

Atom” in the above. This is because Atom type is not really the right level
of specificity to be looking at. Rather - as in the guitar vs. bacteria example
above - confidence decay rates may depend on semantic categories, not just
syntactic (Atom type) categories. To give another example, confidence in the
location of a person should decay more quickly than confidence in the location
of a building. So ultimately confidence decay needs to be managed by a pool
of learned predicates, which are applied periodically. These predicates are
mainly to be learned by data mining, but inference may also play a role in
some cases.
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The ConfidenceDecay MindAgent must take care of applying the confidence-
decaying predicates to the Atoms in the AtomTable, periodically.

The ConfidenceDecayUpdater MindAgent must take care of:

• forming new confidence-decaying predicates via data mining, and then
revising them with the existing relevant confidence-decaying predicates.

• flagging confidence-decaying predicates which pertain to important Atoms
but are unconfident, by giving them STICurrency, so as to make it likely
that they will be visited by inference.

34.5.1 An Example

As an example of the above issues, consider that the confidence decay of:

Inh Ari male

should be low whereas that of:

Inh Ari tired

should be higher, because we know that for humans, being male tends to be
a more permanent condition than being tired.

This suggests that concepts should have context-dependent decay rates,
e.g. in the context of humans, the default decay rate of maleness is low
whereas the default decay rate of tired-ness is high.

However, these defaults can be overridden. For instance, one can say “As he
passed through his 80’s, Grandpa just got tired, and eventually he died.” This
kind of tiredness, even in the context of humans, does not have a rapid decay
rate. This example indicates why the confidence decay rate of a particular
Atom needs to be able to override the default.

In terms of implementation, one mechanism to achieve the above example
would be as follows. One could incorporate an interval confidence decay rate
as an optional component of a truth value. As noted above one can keep two
separate intervals for the L and U bounds; or to simplify things one can keep
a single interval and apply it to both bounds separately.

Then, e.g., to define the decay rate for tiredness among humans, we could
say:

ImplicationLink_HOJ
InheritanceLink $X human
InheritanceLink $X tired <confidenceDecay = [0,.1]>

or else (preferably):

ContextLink
human
InheritanceLink $X tired <confidenceDecay = [0,.1]>

Similarly, regarding maleness we could say:
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ContextLink
human
Inh $X male <confidenceDecay = [0,.00001]>

Then one way to express the violation of the default in the case of grandpa’s
tiredness would be:
InheritanceLink grandpa tired <confidenceDecay = [0,.001]>

(Another way to handle the violation from default, of course, would be to
create a separate Atom:
tired_from_old_age

and consider this as a separate sense of “tired” from the normal one, with its
own confidence decay setting.)

In this example we see that, when a new Atom is created (e.g. InheritanceLink Ari tired),
it needs to be assigned a confidence decay rate via inference based on rela-
tions such as the ones given above (this might be done e.g. by placing it on
the queue for immediate attention by the ConfidenceDecayUpdater MindA-
gent). And periodically its confidence decay rate could be updated based on
ongoing inferences (in case relevant abstract knowledge about confidence de-
cay rates changes). Making this sort of inference reasonably efficient might
require creating a special index containing abstract relationships that tell you
something about confidence decay adjustment, such as the examples given
above.

34.6 Why is PLN a Good Idea?

We have explored the intersection of the family of conceptual and formal
structures that is PLN, with a specific formal model of intelligent agents
(SRAM) and its extension using the cognitive schematic. The result is a
simple and explicit formulation of PLN as a system by which an agent can
manipulate tokens in its memory, thus represent observed and conjectured
relationships (between its observations and between other relationships), in
a way that assists it in choosing actions according to the cognitive schematic.

We have not, however, rigorously answered the question: What is the con-
tribution of PLN to intelligence, within the formal agents framework intro-
duced above? This is a quite subtle question, to which we can currently offer
only an intuitive answer, not a rigorous one.

Firstly, there is the question of whether probability theory is really the
best way to manage uncertainty, in a practical context. Theoretical results
like those of Cox [?] and de Finetti [?] demonstrate that probability theory
is the optimal way to handle uncertainty, if one makes certain reasonable
assumptions. However, these reasonable assumptions don’t actually apply to
real-world intelligent systems, which must operate with relatively severe com-
putational resource constraints. For example, one of Cox’s axioms dictates
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that a reasoning system must assign the same truth value to a statement,
regardless of the route it uses to derive the statement. This is a nice ideal-
ization, but it can’t be expected of any real-world, finite-resources reasoning
system dealing with a complex environment. So an open question exists, as to
whether probability theory is actually the best way for practical AGI systems
to manage uncertainty. Most contemporary AI researchers assume the answer
is yes, and probabilistic AI has achieved increasing popularity in recent years.
However, there are also significant voices of dissent, such as Pei Wang [?] in
the AGI community, and many within the fuzzy logic community.

PLN is not strictly probabilistic, in the sense that it combines formulas de-
rived rigorously from probability theory with others that are frankly heuristic
in nature. PLN was created in a spirit of open-mindedness regarding whether
probability theory is actually the optimal approach to reasoning under uncer-
tainty using limited resources, versus merely an approximation to the optimal
approach in this case. Future versions of PLN might become either more or
less strictly probabilistic, depending on theoretical and practical advances.

Next, aside from the question of the practical value of probability theory,
there is the question of whether PLN in particular is a good approach to
carrying out significant parts of what an AGI system needs to do, to achieve
human-like goals in environments similar to everyday human environments.

Within a cognitive architecture where explicit utilization the cognitive
schematic (Context & Procedure → Goal) is useful, clearly PLN is useful if
it works reasonably well – so this question partially reduces to: what are the
environments in which agents relying on the cognitive schematic are intelli-
gent according to formal intelligent measures like those defined in Chapter
7 of Part 1. And then there is the possibility that some uncertain reason-
ing formalism besides PLN could be even more useful in the context of the
cognitive schematic.

In particular, the question arises: What are the unique, peculiar aspects
of PLN that makes it more useful in the context of the cognitive schematic,
than some other, more straightforward approach to probabilistic inference?
Actually there are multiple such aspects that we believe make it particularly
useful. One is the indefinite probability approach to truth values, which we
believe is more robust for AGI than known alternatives. Another is the clean
reduction of higher order logic (as defined in PLN) to first-order logic (as
defined in PLN), and the utilization of term logic instead of predicate logic
wherever possible – these aspects make PLN inferences relatively simple in
most cases where, according to human common sense, they should be simple.

A relatively subtle issue in this regard has to do with PLN intension. The
cognitive schematic is formulated in terms of PredictiveExtensionalImpli-
cation (or any other equivalent way like PredictiveExtensionalAttraction),
which means that intensional PLN links are not required for handling it. The
hypothesis of the usefulness of intensional PLN links embodies a subtle as-
sumption about the nature of the environments that intelligent agents are
operating in. As discussed in [Goe06a] it requires an assumption related to
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Peirce’s philosophical axiom of the “tendency to take habits,” which posits
that in the real world, entities possessing some similar patterns have a prob-
abilistically surprising tendency to have more similar patterns.

Reflecting on these various theoretical subtleties and uncertainties, one
may get the feeling that the justification for applying PLN in practice is
quite insecure! However, it must be noted that no other formalism in AI has
significantly better foundation, at present. Every AI method involves certain
heuristic assumptions, and the applicability of these assumptions in real life is
nearly always a matter of informal judgment and copious debate. Even a very
rigorous technique like a crisp logic formalism or support vector machines for
classification, requires non-rigorous heuristic assumptions to be applied to
the real world (how does sensation and actuation get translated into logic
formulas, or SVM feature vectors)? It would be great if it were possible to
use rigorous mathematical theory to derive an AGI design, but that’s not
the case right now, and the development of this sort of mathematical theory
seems quite a long way off. So for now, we must proceed via a combination
of mathematics, practice and intuition.

In terms of demonstrated practical utility, PLN has not yet confronted any
really ambitious AGI-type problems, but it has shown itself capable of simple
practical problem-solving in areas such as virtual agent control [?] and natu-
ral language based scientific reasoning [?]. The current PLN implementation
within CogPrime can be used to learn to play fetch or tag, draw analogies
based on observed objects, or figure out how to carry out tasks like finding a
cat. We expect that further practical applications, as well as very ambitious
AGI development, can be successfully undertaken with PLN without a theo-
retical understanding of exactly what are the properties of the environments
and goals involved that allow PLN to be effective. However, we expect that
a deeper theoretical understanding may enable various aspects of PLN to be
adjusted in a more effective manner.





Chapter 35
Spatiotemporal Inference

35.1 Introduction

Most of the problems and situations humans confront every day involve space
and time explicitly and centrally. Thus, any AGI system aspiring to humanlike
general intelligence must have some reasonably efficient and general capability
to solve spatiotemporal problems. Regarding how this capability might get
into the system, there is a spectrum of possibilities, ranging from rigid hard-
coding to tabula rasa experiential learning. Our bias in this regard is that
it’s probably sensible to somehow "wire into" CogPrime some knowledge
regarding space and time – these being, after all, very basic categories for
any embodied mind confronting the world.

It’s arguable whether the explicit insertion of prior knowledge about space-
time is necessary for achieving humanlike AGI using feasible resources. As an
argument against the necessity of this sort of prior knowledge, Ben Kuipers
and his colleagues [SMK12] have shown that an AI system can learn via ex-
perience that its perceptual stream comes from a world with three, rather
than two or four dimensions. There is a long way from learning the number
of dimensions in the world to learning the full scope of practical knowledge
needed for effectively reasoning about the world – but it does seem plausible,
from their work, that a broad variety of spatiotemporal knowledge could be
inferred from raw experiential data. On the other hand, it also seems clear
that the human brain does not do it this way, and that a rich fund of spa-
tiotemporal knowledge is "hard-coded" into the brain by evolution – often
in ways so low-level that we take them for granted, e.g. the way some mo-
tion detection neurons fire in the physical direction of motion, and the way
somatosensory cortex presents a distorted map of the body’s surface. On a
psychological level, it is known that some fundamental intuition for space
and time is hard-coded into the human infant’s brain [Joh05]. So while we
consider the learning of basic spatiotemporal knowledge from raw experience
a worthy research direction, and fully compatible with the CogPrime vision;

671
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yet for our main current research, we have chosen to hard-wire some basic
spatiotemporal knowledge.

If one does wish to hard-wire some basic spatiotemporal knowledge into
one’s AI system, multiple alternate or complementary methodologies may be
used to achieve this, including spatiotemporal logical inference, internal sim-
ulation, or techniques like recurrent neural nets whose dynamics defy simple
analytic explanation. Though our focus in this chapter is on inference, we
must emphasize that inference, even very broadly conceived, is not the only
way for an intelligent agent to solve spatiotemporal problems occurring in
its life. For instance, if the agent has a detailed map of its environment, it
may be able to answer some spatiotemporal questions by directly retrieving
information from the map. Or, logical inference may be substituted or aug-
mented by (implicitly or explicitly) building a model that satisfies the initial
knowledge – either abstractly or via incorporating “visualization” connected
to sensory memory – and then interpret new knowledge over that model in-
stead of inferring it. The latter is one way to interpret what DeSTIN and
other CSDLNs do; indeed, DeSTIN’s perceptual hierarchy is often referred
to as a "state inference hierarchy." Any CSDLN contains biasing toward the
commonsense structure of space and time, in its spatiotemporal hierarchical
structure. It seems plausible that the human mind uses a combination of mul-
tiple methods for spatiotemporal understanding, just as we intend CogPrime
to do.

In this chapter we focus on spatiotemporal logical inference, addressing
the problem of creating a spatiotemporal logic adequate for use within an
AGI system that confronts the same sort of real-world problems that humans
typically do. The idea is not to fully specify the system’s understanding of
space and time in advance, but rather to provide some basic spatiotemporal
logic rules, with parameters to be adjusted based on experience, and the
opportunity for augmenting the logic over time with experientially-acquired
rules. Most of the ideas in this chapter are reviewed in more detail, with
more explanation, in the book Real World Reasoning [GCG+11]; this chapter
represent a concise summary, compiled with the AGI context specifically in
mind.

A great deal of excellent work has already been done in the areas of spa-
tial, temporal and spatiotemporal reasoning; however, this work does not
quite provide an adequate foundation for a logic-incorporating AGI system
to do spatiotemporal reasoning, because it does not adequately incorporate
uncertainty. Our focus here is to extend existing spatiotemporal calculi to ap-
propriately encompass uncertainty, which we argue is sufficient to transform
them into an AGI-ready spatiotemporal reasoning framework. We also find
that a simple extension of the standard PLN uncertainty representations, in-
spired by P(Z)-logic [Yan10], allows more elegant expression of probabilistic
fuzzy predicates such as arise naturally in spatiotemporal logic.

In the final section of the chapter, we discuss the problem of planning,
which has been considered extensively in the AI literature. We describe an
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approach to planning that incorporates PLN inference using spatiotempo-
ral logic, along with MOSES as a search method, and some record-keeping
methods inspired by traditional AI planning algorithms.

35.2 Related Work on Spatio-temporal Calculi

We now review several calculi that have previously been introduced for rep-
resenting and reasoning about space, time and space-time combined.

Spatial Calculi

Calculi dealing with space usually model three types of relationships between
spatial regions: topological, directional and metric.

The most popular calculus dealing with topology is the Region Connection
Calculus (RCC) [RCC93], relying on a base relationship C (for Connected)
and building up other relationships from it, like P (for PartOf), or O (for
Overlap). For instance P(X,Y ), meaning X is a part of Y , can be defined
using C as follows

P(X,Y ) iff ∀Z ∈ U , C(Z,X) =⇒ C(Z, Y ) (35.1)

Where U is the universe of regions. RCC-8 models eight base relationships,
see Figure 35.1. And it is possible, using the notion of convexity, to model

EC(X, Y)

EQ(X, Y)

YX

YX Y
X

TPP(X, Y)

TPPi(X, Y)

Y

X

PO(X, Y)

YX

YX

DC(X, Y)

Y

X

NTPP(X, Y)

NTPPi(X, Y)

Y

X

Fig. 35.1 The eight base relationships of RCC-8

more relationships such as inside, partially inside and outside, see Figure 35.2.
For instance RCC-23 [Ben94] is an extension of RCC-8 using relationships
based on the notion of convexity. The 9-intersection calculus [Win95, Kur09]
is another calculus for reasoning on topological relationships, but handling
relationships between heterogeneous objects, points, lines, surfaces.
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XY

P−Inside(X, Y)

XY

Inside(X, Y)

Y X

Outside(X, Y)

Fig. 35.2 Additional relationships using convexity

Regarding reasoning about direction, the Cardinal Direction Calculus
[GE01, ZLLY08] considers directional relationships between regions, to ex-
press propositions such as “region A is to the north of region B”.

And finally regarding metric reasoning, spatial reasoning involving quali-
tative distance (such as close, medium, far) and direction combined is con-
sidered in [CFH97].

Some work has also been done to extend and combine these various calculi,
such as combining RCC-8 and the Cardinal Direction Calculus [LLR09], or
using size [GR00] or shape [Coh95] information in RCC.

Temporal Calculi

The best known temporal calculus is Allen’s Interval Algebra [All83], which
considers 13 relationships over time intervals, such as Before, During,
Overlap, Meet, etc. For instance one can express that digestion occurs
after or right after eating by

Before(Eat,Digest) ∨ Meet(Eat,Digest)

equivalently denoted Eat{Before, Meet}Digest. There also exists a general-
ization of Allen’s Interval Algebra that works on semi-intervals [FF92], that
are intervals with possibly undefined start or end.

There are modal temporal logics such as LTL and CTL, mostly used to
check temporal constraints on concurrent systems such as deadlock or fairness
using Model Checking [Mai00].

Calculi with Space and Time Combined

There exist calculi combining space and time, first of all those obtained by
“temporizing” spatial calculus, that is tagging spatial predicates with times-
tamps or time intervals. For instance STCC (for Spatio-temporal Constraint
Calculus) [GN02] is basically RCC-8 combined with Allen’s Algebra. With
STCC one can express spatiotemporal propositions such as
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Meet(DC(Finger,Key), EC(Finger,Key))

which means that the interval during which the finger is away from the key
meets the interval during which the finger is against the key.

Another way to combine space and time is by modeling motion; e.g. the
Qualitative Trajectory Calculus (QTC) [WKB05] can be used to express
whether 2 objects are going forward/backward or left/right relative to each
other.

Uncertainty in Spatio-temporal Calculi

In many situations it is worthwhile or even necessary to consider non-crisp
extensions of these calculi. For example it is not obvious how one should
consider in practice whether two regions are connected or disconnected. A
desk against the wall would probably be considered connected to it even if
there is a small gap between the wall and the desk. Or if A is not entirely
part of B it may still be valuable to consider to which extent it is, rather
than formally rejecting PartOf(A,B). There are several ways to deal with
such phenomena; one way is to consider probabilistic or fuzzy extensions of
spatiotemporal calculi.

For instance in [SDCCK08b, SDCCK08a] the RCC relationship C (for
Connected) is replaced by a fuzzy predicate representing closeness between
regions and all other relationships based on it are extended accordingly. So
e.g. DC (for Disconnected) is defined as follows

DC(X,Y ) = 1− C(X,Y ) (35.2)

P (for PartOf) is defined as

P(X,Y ) = inf
Z∈U

I(C(Z,X), C(Z, Y )) (35.3)

where I is a fuzzy implication with some natural properties (usually I(x1, x2) =
max(1− x1, x2)). Or, EQ (for Equal) is defined as

EQ(X,Y ) = min(P(X,Y ), P(Y,X)) (35.4)

and so on.
However the inference rules cannot determine the exact fuzzy values of the

resulting relationships but only a lower bound, for instance

T (P(X,Y ), P(Y, Z)) ≤ P(X,Z) (35.5)

where T (x1, x2) = max(0, x1 + x2 − 1). This is to be expected since in order
to know the resulting fuzzy value one would need to know the exact spatial
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configuration. For instance Figure 35.3 depicts 2 possible configurations that
would result in 2 different values of P(X,Z).

X ZX

(a) (b)

ZY Y

Fig. 35.3 Depending on where Z is, in dashline, P(X,Z) gets a different value.

One way to address this difficulty is to reason with interval-value fuzzy
logic [DP09], with the downside of ending up with wide intervals. For exam-
ple applying the same inference rule from Equation 35.5 in the case depicted
in Figure 35.4 would result in the interval [0, 1], corresponding to a state of
total ignorance. This is the main reason why, as explained in the next sec-
tion, we have decided to use distributional fuzzy values for our AGI-oriented
spatiotemporal reasoning.

There also exist attempts to use probability with RCC. For instance
in [Win00], RCC relationships are extracted from computer images and
weighted based on their likelihood as estimated by a shape recognition algo-
rithm. However, to the best of our knowledge, no one has used distributional
fuzzy values [Yan10] in the context of spatiotemporal reasoning; and we be-
lieve this is important for the adaptation of spatiotemporal calculi to the AGI
context.

35.3 Uncertainty with Distributional Fuzzy Values

P(Z) [Yan10] is an extension of fuzzy logic that considers distributions of
fuzzy values rather than mere fuzzy values. That is, fuzzy connectors are
extended to apply over probability density functions of fuzzy truth value.
For instance the connector ¬ (often defined as ¬x = 1− x) is extended such
that the resulting distribution µ¬ : [0, 1] 7→ R+ is

µ¬(x) = µ(1− x) (35.6)

where µ is the probability density function of the unique argument. Similarly,
one can define µ∧ : [0, 1] 7→ R+ as the resulting density function of the
connector x1 ∧ x2 = min(x1, x2) over the 2 arguments µ1 : [0, 1] 7→ R+ and
µ2 : [0, 1] 7→ R+
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µ∧(x) = µ1(x)

∫ 1

x

µ2(x2)dx2

+µ2(x)

∫ 1

x

µ1(x1)dx1

(35.7)

See [Yan10] for the justification of Equations 35.6 and 35.7.

Besides extending the traditional fuzzy operators, one can also define a
wider class of connectors that can fully modulate the output distribution. Let
F : [0, 1]n 7→ ([0, 1] 7→ R+) be a n-ary connector that takes n fuzzy values and
returns a probability density function. In that case the probability density
function resulting from the extension of F over distributional fuzzy values is:

µF =∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
n

F (x1, . . . , xn)µ1(x1) . . . µn(xn)dx1 . . . dxn (35.8)

where µ1, . . ., µn are the n input arguments. That is, it is the average of all
density functions output by F applied over all fuzzy input values. Let us call
that type of connectors fuzzy-probabilistic.

In the following we give an example of such a fuzzy-probabilistic connector.

Example with PartOf

Let us consider the RCC relationship PartOf (P for short as defined in Equa-
tion 35.1). A typical inference rule in the crisp case would be:

P(X,Y ) P(Y, Z)

P(X,Z)
(35.9)

expressing the transitivity of P. But using a distribution of fuzzy values we
would have the following rule

P(X,Y ) 〈µ1〉 P(Y, Z) 〈µ2〉
P(X,Z) 〈µPOT 〉

(35.10)

POT stands for PartOf Transitivity. The definition of µPOT for that par-
ticular inference rule may depend on many assumptions like the shapes and
sizes of regions X, Y and Z. In the following we will give an example of a
definition of µPOT with respect to some oversimplified assumptions chosen
to keep the example short.

Let us define the fuzzy variant of PartOf(X,Y ) as the proportion of X
which is part of Y (as suggested in [Pal04]). Let us also assume that every
region is a unitary circle. In this case, the required proportion depends solely
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on the distance dXY between the centers of X and Y , so we may define a
function f that takes that distance and returns the according fuzzy value;
that is, f(dXY ) = P(X,Y )

f(dXY ) =

{
4α− dXY sin (α)

2π
if 0 ≤ dXY ≤ 2

0 if dXY > 2
(35.11)

where α = cos−1 (dXY /2).

For 0 ≤ dXY ≤ 2, f(dXY ) is monotone decreasing, so the inverse of
f(dXY ), that takes a fuzzy value and returns a distance, is a function de-
clared as f−1(x) : [0, 1] 7→ [0, 2].

Let be xXY = P(X,Y ), xY Z = P(Y, Z), x = P(X,Z), dXY = f−1(xXY ),
dY Z = f−1(xY Z), l = |dXY − dY Z | and u = dXY + dY Z . For dXY and dY Z
fixed, let g : [0, π] 7→ [l, u] be a function that takes as input the angle β of
the two lines from the center of Y to X and Y to Z (as depicted in Figure
35.4) and returns the distance dXZ . g is defined as follows

g(β) =
√

(dXY − dY Z sin (β))2 + (dY Z cos (β))2

So l ≤ dXZ ≤ u. It is easy to see that g is monotone increasing and surjective,
therefore there exists a function inverse g−1 : [l, u] 7→ [0, π]. Let h = f ◦g, so h

YX

Z

β

Y

Z

X

β

YX

Z

β

(c)(b)(a)

Fig. 35.4 dXZ , in dashline, for 3 different angles

takes an angle as input and returns a fuzzy value, h : [0, π] 7→ [0, 1]. Since f is
monotone decreasing and g is monotone increasing, h is monotone decreasing.
Note that the codomain of h is [0, f−1(l)] if l < 2 or {0} otherwise. Assuming
that l < 2, then the inverse of h is a function with the following signature
h−1 : [0, f−1(l)] 7→ [0, π]. Using h−1 and assuming that the probability of
picking β ∈ [0, π] is uniform, we can define the binary connector POT . Let
us define ν = POT (xXY , xY Z), recalling that POT returns a density function
and assuming x < f−1(l)
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ν(x) = 2 lim
δ→0

∫ h−1(x)

h−1(x+δ)

1

π
dβ

δ

=
2

π
lim
δ→0

h−1(x)− h−1(x+ δ)

δ

= −2h−1
′
(x)

π
(35.12)

where h−1
′
is the derivative of h−1. If x ≥ f−1(l) then ν(x) = 0. For sake of

simplicity the exact expressions of h−1 and ν(x) have been left out, and the
case where one of the fuzzy arguments xXY , xY Z or both are null has not
been considered but would be treated similarly assuming some probability
distribution over the distances dXY and dXZ .

It is now possible to define µPOT in rule 35.10 (following Equation 35.8)

µPOT =∫ 1

0

∫ 1

0

POT (x1, x2)µ1(x1)µ2(x2)dx1dx2
(35.13)

Obviously, assuming that regions are unitary circles is crude; in practice,
regions might be of very different shapes and sizes. In fact it might be so
difficult to chose the right assumptions (and once chosen to define POT
correctly), that in a complex practical context it may be best to start with
overly simplistic assumptions and then learn POT based on the experience
of the agent. So the agent would initially perform spatial reasoning not too
accurately, but would improve over time by adjusting POT , as well as the
other connectors corresponding to other inference rules.

It may also be useful to have more premises containing information about
the sizes (e.g Big(X)) and shapes (e.g Long(Y )) of the regions, like

B(X) 〈µ1〉 L(Y ) 〈µ2〉 P(X,Y ) 〈µ3〉 P(Y, Z) 〈µ4〉
P(X,Z) 〈µ〉

where B and L stand respectively for Big and Long.

Simplifying Numerical Calculation

Using probability density as described above is computationally expensive,
and in many practical cases it’s overkill. To decrease computational cost,
several cruder approaches are possible, such as discretizing the probability
density functions with a coarse resolution, or restricting attention to beta
distributions and treating only their means and variances (as in [Yan10]).

The right way to simplify depends on the fuzzy-probabilistic connector
involved and on how much inaccuracy can be tolerated in practice.
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35.4 Spatio-temporal Inference in PLN

We have discussed the representation of spatiotemporal knowledge, including
associated uncertainty. But ultimately what matters is what an intelligent
agent can do with this knowledge. We now turn to uncertain reasoning based
on uncertain spatiotemporal knowledge, using the integration of the above-
discussed calculi into the Probabilistic Logic Networks reasoning system, an
uncertain inference framework designed specifically for AGI and integrated
into the OpenCog AGI framework.

We give here a few examples of spatiotemporal inference rules coded in
PLN. Although the current implementation of PLN incorporates both fuzzi-
ness and probability it does not have a built-in truth value to represent distri-
butional fuzzy values, or rather a distribution of distribution of fuzzy value,
as this is how, in essence, confidence is represented in PLN. At that point,
depending on design choice and experimentation, it is not clear whether we
want to use the existing truth values and treat them as distributional truth
values or implement a new type of truth value dedicated for that, so for our
present theoretical purposes we will just call it DF Truth Value.

Due to the highly flexible HOJ formalism (Higher Order Judgment, ex-
plained in the PLN book in detail) we can express the inference rule for the
relationship PartOf directly as Nodes and Links as follows

ForAllLink $X $Y $Z
ImplicationLink_HOJ

ANDLink

PartOf($X, $Y) 〈tv1〉
PartOf($Y, $Z) 〈tv2〉

ANDLink

tv3 = µPOT (tv1, tv2)
PartOf($X, $Z) 〈tv3〉

(35.14)

where µPOT is defined in Equation 35.13 but extended over the domain of
PLN DF Truth Value instead of P(Z) distributional fuzzy value. Note that
PartOf($X, $Y) 〈tv〉 is a shorthand for

EvaluationLink 〈tv〉
PartOf

ListLink

$X
$Y

(35.15)

and ForAllLink $X $Y $Z is a shorthand for
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ForAllLink

ListLink

$X
$Y
$Z

(35.16)

Of course one advantage of expressive the inference rule directly in Nodes
and Links rather than a built-in PLN inference rule is that we can use
OpenCog itself to improve and refine it, or even create new spatiotemporal
rules based on its experience. In the next 2 examples the fuzzy-probabilistic
connectors are ignored, (so no DF Truth Value is indicated) but one could
define them similarly to µPOT .

First consider a temporal rule from Allen’s Interval Algebra. For instance
“if $I1 meets $I2 and $I3 is during $I2 then $I3 is after $I1” would be
expressed as

ForAllLink $I1 $I2 $I3
ImplicationLink

ANDLink

Meet($I1, $I2)
During($I3, $I2)

After($I3, $I1)

(35.17)

And a last example with a metric predicate could be “if $X is near $Y and $X
is far from $Z then $Y is far from $Y”

ForAllLink $X $Y $Z
ImplicationLink_HOJ

ANDLink

Near($X, $Y)
Far($X, $Z)

Far($Y, $Z)

(35.18)

That is only a small and partial illustrative example – for instance other rules
may be used to specify that Near and Far and reflexive and symmetric.

35.5 Examples

The ideas presented here have extremely broad applicability; but for sake of
concreteness, we now give a handful of examples illustrating applications to
commonsense reasoning problems.
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35.5.1 Spatiotemporal Rules

The rules provided here are reduced to the strict minimum needed for the
examples:

1. At $T, if $X is inside $Y and $Y is inside $Z then $X is inside $Z
ForAllLink $T $X $Y $Z

ImplicationLink_HOJ
ANDLink

atTime($T, Inside($X, $Y))
atTime($T, Inside($Y, $Z))

atTime($T, Inside($X, $Z))
2. If a small object $X is over $Y and $Y is far from $Z then $X is far from

$Z
ForAllLink

ImplicationLink_HOJ
ANDLink

Small($X)
Over($X, $Y)
Far($Y)

Far($X)

That rule is expressed in a crisp way but again is to be understood in an
uncertain way, although we haven’t worked out the exact formulae.

35.5.2 The Laptop is Safe from the Rain

A laptop is over the desk in the hotel room, the desk is far from the win-
dow and we want assess to which extend the laptop is far from the window,
therefore same from the rain.

Note that the truth values are ignored but each concept is to be under-
stood as fuzzy, that is having a PLN Fuzzy Truth Value but the numerical
calculation are left out.

We want to assess how much the Laptop is far from the window
Far(Window, Laptop)
Assuming the following

1. The laptop is small
Small(Laptop)

2. The laptop is over the desk
Over(Laptop, Desk)

3. The desk is far from the window
Far(Desk, Window)
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Now we can show an inference trail that lead to the conclusion, the numeric
calculation are let for later.

1. using axioms 1, 2, 3 and PLN AND rule
ANDLink

Small(Laptop)
Over(Laptop, Desk)
Far(Desk, Window)

2. using spatiotemporal rule 2, instantiated with $X = Laptop, $Y = Desk

and $Z = Window
ImplicationLink_HOJ

ANDLink

Small(Laptop)
Over(Laptop, Desk)
Far(Desk, Window)

Far(Laptop, Window)
3. using the result of previous step as premise with PLN implication rule

Far(Laptop, Window)

35.5.3 Fetching the Toy Inside the Upper Cupboard

Suppose we know that there is a toy in an upper cupboard and near a bag,
and want to assess to which extend climbing on the pillow is going to bring
us near the toy.

Here are the following assumptions

1. The toy is near the bag and inside the cupboard. The pillow is near and
below the cupboard
Near(toy, bag) 〈tv1〉
Inside(toy, cupboard) 〈tv2〉
Below(pillow, cupboard) 〈tv3〉
Near(pillow, cupboard) 〈tv4〉

2. The toy is near the bad inside the cupboard, how much the toy is near
the edge of the cupboard?
ImplicationLink_HOJ

ANDLink

Near(toy, bag) 〈tv1〉
Inside(toy, cupboard) 〈tv2〉

ANDLink

tv3 = µF1
(tv1, tv2)

Near(toy, cupboard_edge) 〈tv3〉
3. If I climb on the pillow, then shortly after I’ll be on the pillow

PredictiveImplicationLink

Climb_on(pillow)
Over(self, pillow)
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4. If I am on the pillow near the edge of the cupboard how near am I from
the toy?
ImplicationLink_HOJ

ANDLink

Below(pillow, cupboard) 〈tv1〉
Near(pillow, cupboard) 〈tv2〉
Over(self, pillow) 〈tv3〉
Near(toy, cupboard_edge) 〈tv4〉

ANDLink

tv5 = µF2
(tv1, tv2, tv3, tv4)

Near(self, toy) 〈tv5〉

The target theorem is “How near I am from the toy if I climb on the pillow.”
PredictiveImplicationLink

Climb_on(pillow)
Near(self, toy) 〈?〉

And the inference chain as follows

1. Axiom 2 with axiom 1
Near(toy, cupboard_edge) 〈tv6〉

2. Step 1 with axiom 1 and 3
PredictiveImplicationLink

Climb_on(pillow)
ANDLink

Below(pillow, cupboard) 〈tv3〉
Near(pillow, cupboard) 〈tv4〉
Over(self, pillow) 〈tv7〉
Near(toy, cupboard_edge) 〈tv6〉

3. Step 2 with axiom 4, target theorem: How near I am from the toy if I
climb on the pillow
PredictiveImplicationLink

Climb_on(pillow)
Near(self, toy) 〈tv9〉

35.6 An Integrative Approach to Planning

Planning is a major research area in the mainstream AI community, and
planning algorithms have advanced dramatically in the last decade. However,
the best of breed planning algorithms are still not able to deal with planning
in complex environments in the face of a high level of uncertainty, which
is the sort of situation routinely faced by humans in everyday life. Really
powerful planning, we suggest, requires an approach different than any of the
dedicated planning algorithms, involving spatiotemporal logic combined with
a sophisticated search mechanism (such as MOSES).
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It may be valuable (or even necessary) for an intelligent system involved
in planning-intensive goals to maintain a specialized planning-focused data
structure to guide general learning mechanisms toward more efficient learning
in a planning context. But even if so, we believe planning must ultimately
be done as a case of more general learning, rather than via a specialized
algorithm.

The basic approach we suggest here is to

• use MOSES for the core plan learning algorithm. That is, MOSES would
maintain a population of "candidate partial plans", and evolve this pop-
ulation in an effort to find effective complete plans.

• use PLN to help in the fitness evaluation of candidate partial plans. That
is, PLN would be used to estimate the probability that a partial plan
can be extended into a high-quality complete plan. This requires PLN
to make heavy use of spatiotemporal logic, as described in the previous
sections of this chapter.

• use a GraphPlan-style [BF97] planning graph, to record information
about candidate plans, and to propagate information about mutual ex-
clusion between actions. The planning graph maybe be used to help guide
both MOSES and PLN.

In essence, the planning graph simply records different states of the world that
may be achievable, with a high-strength PredictiveImplicationLink pointing
between state X and Y if X can sensibly serve as a predecessor to X; and
a low-strength (but potentially high-confidence) PredictiveImplicationLink
between X and Y if the former excludes the latter. This may be a subgraph
of the Atomspace or it may be separately cached; but in each case it must be
frequently accessed via PLN in order for the latter to avoid making a massive
number of unproductive inferences in the course of assisting with planning.

One can think of this as being a bit like PGraphPlan [BL99], except that

• MOSES is being used in place of forward or backward chaining search,
enabling a more global search of the plan space (mixing forward and
backward learning freely)

• PLN is being used to estimate the value of partial plans, replacing heuris-
tic methods of value propagation

Regarding PLN, one possibility would be to (explicitly, or in effect) create
a special API function looking something like

EstimateSuccessProbability(PartialPlan PP, Goal G)

(assuming the goal statement contains information about the time allot-
ted to achieve the goal). The PartialPlan is simply a predicate composed of
predicates linked together via temporal links such as PredictiveImplication
and SimultaneousAND. Of course, such a function could be used within many
non-MOSES approaches to planning also.
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Put simply, the estimation of the success probability is "just" a matter of
asking the PLN backward-chainer to figure out the truth value of a certain
ImplicationLink, i.e.

PredictiveImplicationLink [time-lag T]
EvaluationLink do PP
G

But of course, this may be a very difficult inference without some special
guidance to help the backward chainer. The GraphPlan-style planning graph
could be used by PLN to guide it in doing the inference, via telling it what
variables to look at, in doing its inferences. This sort of reasoning also requires
PLN to have a fairly robust capability to reason about time intervals and
events occurring therein (i.e., basic temporal inference).

Regarding MOSES, given a candidate plan, it could look into the plan-
ning graph to aid with program tree expansion. That is, given a population of
partial plans, MOSES would progressively add new nodes to each plan, rep-
resenting predecessors or successors to the actions already described in the
plans. In choosing which nodes to add, it could be probabilistically biased
toward adding nodes suggested by the planning graph.

So, overall what we have is an approach to doing planning via MOSES,
with PLN for fitness estimation – but using a GraphPlan-style planning graph
to guide MOSES’s exploration of the neighborhood of partial plans, and to
guide PLN’s inferences regarding the success likelihood of partial plans.



Chapter 36
Adaptive, Integrative Inference Control

36.1 Introduction

The subtlest and most difficult aspect of logical inference is not the logical
rule-set nor the management of uncertainty, but the control of inference: the
choice of which inference steps to take, in what order, in which contexts.
Without effective inference control methods, logical inference is an unscal-
able and infeasible approach to learning declarative knowledge. One of the
key ideas underlying the CogPrime design is that inference control cannot
effectively be handled by looking at logic alone. Instead, effective inference
control must arise from the intersection between logical methods and other
cognitive processes. In this chapter we describe some of the general principles
used for inference control in the CogPrime design.

Logic itself is quite abstract and relatively (though not entirely) indepen-
dent of the specific environment and goals with respect to which a system’s
intelligence is oriented. Inference control, however, is (among other things)
a way of adapting a logic system to operate effectively with respect to a
specific environment and goal-set. So, the reliance of CogPrime ’s inference
control methods on the integration between multiple cognitive processes, is
a reflection of the foundation of CogPrime on the assumption (articulated
in Chapter 9) that the relevant environment and goals embody interactions
between world-structures and interaction-structures best addressed by these
various processes.

36.2 High-Level Control Mechanisms

The PLN implementation in CogPrime is complex and lends itself to utiliza-
tion via many different methods. However, a convenient way to think about
it is in terms of three basic backward-focused query operations:

687



688 36 Adaptive, Integrative Inference Control

• findtv, which takes in an expression and tries to find its truth value.
• findExamples, which takes an expression containing variables and tries

to find concrete terms to fill in for the variables.
• createExamples, which takes an expression containing variables and

tries to create new Atoms to fill in for the variables, using concept cre-
ation heuristics as discussed in a later chapter, coupled with inference for
evaluating the products of concept creation.

and one forward-chaining operation:

• findConclusions, which takes a set of Atoms and seeks to draw the most
interesting possible set of conclusions via combining them with each other
and with other knowledge in the AtomTable.

These inference operations may of course call themselves and each other
recursively, thus creating lengthy chains of diverse inference.

Findtv is quite straightforward, at the high level of discussion adopted
here. Various inference rules may match the Atom; in our current PLN im-
plementation, loosely described below, these inference rules are executed by
objects called Evaluators. In the course of executing findtv, a decision must
be made regarding how much attention to allocate to each one of these Eval-
uator objects, and some choices must be made by the objects themselves -
issues that involve processes beyond pure inference, and will be discussed
later in this chapter. Depending on the inference rules chosen, findtv may
lead to the construction of inferences involving variable expressions, which
may then be evaluated via findExamples or createExamples queries.

The findExamples operation, on the other hand, sometimes reduces to a
simple search through the AtomSpace. On the other hand, it can also be
done in a subtler way. If the findExamples Evaluator wants to find examples
of $X so that F($X), but can’t find any, then its next step is to run another
findExamples query, looking for $G so that
Implication $G F

and then running findExamples on G rather than F. But what if this find-
Examples query doesn’t come up with anything? Then it needs to run a
createExamples query on the same implication, trying to build a $G satisfy-
ing the implication.

Finally, forward-chaining inference (findConclusions) may be conceived of
as a special heuristic for handling special kinds of findExample problems.
Suppose we have K Atoms and want to find out what consequences logically
ensue from these K Atoms, taken together. We can form the conjunction of
the K Atoms (let’s call it C), and then look for $D so that
Implication C $D

Conceptually, this can be approached via findExamples, which defaults to
createExamples in cases where nothing is found. However, this sort of find-
Examples problem is special, involving appropriate heuristics for combining
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the conjuncts contained in the expression C, which embody the basic logic of
forward-chaining rather than backward-chaining inference.

36.2.1 The Need for Adaptive Inference Control

It is clear that in humans, inference control is all about context. We use differ-
ent inference strategies in different contexts, and learning these strategies is
most of what learning to think is all about. One might think to approach this
aspect of cognition, in the CogPrime design, by introducing a variety of differ-
ent inference control heuristics, each one giving a certain algorithm for choos-
ing which inferences to carry out in which order in a certain context. (This is
similar to what has been done within Cyc, for example http:\cyc.com.)
However, in keeping with the integrated intelligence theme that pervades Cog-
Prime , we have chosen an alternate strategy for PLN. We have one inference
control scheme, which is quite simple, but which relies partially on structures
coming from outside PLN proper. The requisite variety of inference control
strategies is provided by variety in the non-PLN structures such as

• HebbianLinks existing in the AtomTable.
• Patterns recognized via pattern-mining in the corpus of prior inference

trails

36.3 Inference Control in PLN

We will now describe the basic “inference control” loop of PLN in CogPrime
. We will discuss it in the context of backward chaining; the case of forward
chaining is very similar.

Given an expression to evaluate via inference (according to any one of the
query operations mentioned above), there is a collection of Evaluator objects
that matches the expression.

First, each Evaluator object makes a preliminary assessment regarding
how likely it is to come up with decent results. This assessment is made
based on some preliminary explorations of what Atoms it might use to draw
its conclusions - and study of various links (including HebbianLinks) that
exist relating to its actions on these Atoms (we will give some examples of
this shortly), and information regarding what Evaluators have been useful
in what prior inferences in related contexts (stored in a structure called the
InferencePatternRepository, to be discussed below).

Then, the overall evaluation process looks at the assessments made by
each Evaluator and decides how much computational resource to allocate to
each Evaluator. This we may call the “Evaluator choice problem” of inference
control.

http:\cyc.com
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Finally, each Evaluator chosen, then needs to make choices regarding which
Atoms to use in its inference - and this choice must be made by use of existing
links, and information in the InferencePatternRepository. This is the “Atom
choice problem” of inference control.

As an example of the choices to be made by an individual Evaluator,
consider that to evaluate (Inheritance A C) via a deduction-based Evaluator,
some collection of intermediate nodes for the deduction must be chosen. In
the case of higher-order deduction, each deduction may involve a number of
complicated subsidiary steps, so perhaps only a single intermediate node will
be chosen. This choice of intermediate nodes must also be made via context-
dependent probabilities. In the case of other Evaluators besides deduction,
other similar choices must be made.

So the basic inference algorithm we have discussed is basic backward-
chaining inference, but aggressive and adaptive pruning using HebbianLinks
and other existing knowledge is done at every stage.

36.3.1 The Evaluator Choice Problem as a Bandit
Problem

The evaluator choice problem, as described above, is an example of a “multi-
armed bandit problem” as commonly studied in statistics. The atom choice
problem is also a bandit problem. Both of these problems can be approached
via using standard “bandit problem” heuristics.

The paradigm bandit problem involves a slot machine (“multi-armed ban-
dit”) with N levers to pull, each of which may have a different odds of yielding
a reward each time it is pulled. The player’s goal is to maximize his earnings,
but when he starts out playing with the bandit, he has no idea which levers
lead to which levels of reward. So, at any given point, he must balance two
factors:

• Exploitation: pulling the level that seems to give maximum reward, based
on experience so far
• Exploration: trying out various levers to get a sample of their perfor-

mance, so as to get more confident estimates of the reward level offered
by each lever

Obviously, as more experience is gained, the bias should shift from exploration
towards exploitation. There is a substantial body of mathematics regarding
bandit problems, but most of the results prove inapplicable in real-world
situations due to making inappropriate statistical assumptions. In practice,
the two most common algorithms for solving bandit problems are:

• epsilon-greedy: spend 1− epsilon of your time exploiting the best option
found so far (with “best” defined in terms of expected reward), and epsilon
of your time randomly exploring other options
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• softmax: assign a probability to each option, using a heuristics formula
based on thermodynamics that assigns higher probabilities to options
that have proved more successful in the past, with an exponential scaling
that favors successful options non-linearly over unsuccessful ones

The only modification we choose to make to these simple algorithms in the
CogPrime context is to replace the probability with a product:

probability * weight_of_evidence

This evidence-weighted probability may be used within both epsilon-
greedy and softmax.

Choosing an Evaluator for an inference step within PLN is a bandit prob-
lem, where prior experience is used to provide initial probabilities for the
options (which are possible Evaluators rather than levers to pull), and then
inferences done using each option are used to provide increasingly confident
probabilities for each option. The default approach within CogPrime is soft-
max, though epsilon-greedy is also provided and may prove better in some
contexts.

In Atom selection, the options (levers) are Atoms to use within an inference
rule (an Evaluator).

It is important to note, however, that the statistical nature of the Atom-
choice bandit problem is different from the statistics of the Evaluator-choice
bandit problem, because there are not that many Evaluators, but there are
a lot of Atoms. It would be possible to merge the two into a single bandit
problem, whose options were (Evaluator, Atom-set) tuples, but this seems
an inferior heuristic approach. The Evaluator bandit problem involves a rel-
atively small number of options, which makes it more tractable. So we have
chosen to break down the inference control process into two levels of bandit
problems: Evaluator choice and Atom choice.

The complexity of the inference control problem can be well-understood
by observing that each individual step poses two difficult statistical inference
problems, one nested within the other! What allows pragmatic inferences
to be achievable at all is, clearly, prior knowledge, which allows most of
the bandit problems occurring in a complex inference to be “pre-solved” via
assumption of prior probabilities. Normally, only a handful of difficult steps in
an inference need to actually be studied statistically via numerous iterations
of the epsilon-greedy or softmax algorithms. On the other hand, the first
few inferences in an unfamiliar domain may not connect with the system’s
knowledge base of prior probabilities, and may thus need to be done in a
much slower, more statistically thorough way.
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36.3.2 Chains of Thought

An alternate solution for inference control might be to try to segregate rules
into pipeline stages. Thus, one might have two sets of rules: A and B, and we
know (either a-priori, or from experience) that no rule in set B will produce
results until some rule in set A has already produced results. By structuring
the rule sets into such a pipeline, one has an alternate, and very attractive
solution to the inference control problem.

In fact, one would want to push this to a hierarchical extreme: so, if rule
A5 from set A triggered, we might know that rules B3, B8 and B9 from set
B were almost sure to follow, and that rules B1, B2, B4, etc almost never
fired. And so on for set C. These kinds of correlations can be discovered via
entropy/mutual-information techniques.

This sort of chain-of-thought processing would be most useful for process-
ing data from input sources (i.e. from the environment, from reading text,
from chat, from Virtual Reality interactions) where forward-chaining is the
appropriate mechanism to transform data. Most processing for most situ-
ations would follow well-established, previously-learned chains of thought.
Provided that chains of thought are not heavily branched (i.e. for any given
rule in set A, only a small number of rules in set B follow, etc.), then the
’logical deduction’ or data processing of input can be performed quite rapidly.

At the same time, one would need to have a learning mechanism running
in the background, exploring other possible “chains of thought” to see if they
might produce useful results.

Finally it is interesting to note that the format of these chains of though
may entirely be coded as Nodes and Link in the AtomSpace, thus enabling
OpenCog to reason about it own reasoning process.

WIKISOURCE:InferencePatternMining

36.4 Inference Pattern Mining

Among the data used to guide the solution of the Evaluator choice prob-
lem, the most important component is explicit information regarding which
Evaluators have been useful in which contexts during past inferences.

This information is stored in CogPrime in a data repository called the In-
ferencePatternRepository - which is, quite simply, a special “data table” con-
taining inference trees and patterns recognized therein. An “inference tree”
refers to a tree whose nodes, called InferenceTreeNodes, are Atoms (or gen-
erally Atom-versions, Atoms with truth value relative to a certain context),
and whose links are inference steps (so each link is labeled with a certain
Evaluator).

Note that, in many cases, PLN creates a variety of exploratory inference
trees internally, in the context of doing a single inference. Most of these
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inference trees will never be stored in the AtomTable, because they are un-
confident and may not have produced extremely useful results. However, they
should still be stored in the InferencePatternRepository. Ideally one would
store all inference trees there. In a large CogPrime system this may not be
feasible, but then a wide variety of trees should still be retained, including
mainly successful ones but also a sampling of unsuccessful ones for purpose
of comparison.

The InferencePatternRepository may then be used in two ways:

• An inference tree being actively expanded (i.e. utilized within the PLN
inference system) may be compared to inference trees in the repository,
in real time, for guidance. That is, if a node N in an inference tree is
being expanded, then the repository can be searched for nodes similar to
N, whose contexts (within their inference trees) are similar to the context
of N within its inference tree. A study can then be made regarding which
Evaluators and Atoms were most useful in these prior, similar inferences,
and the results of this can be used to guide ongoing inference.

• Patterns can be extracted from the store of inference trees in the Infer-
encePatternRepository, and stored separately from the actual inference
trees (in essence, these patterns are inference subtrees with variables in
place of some of their concrete nodes or links). An inference tree being
expanded can then be compared to these patterns instead of, or in addi-
tion to, the actual trees in the repository. This provides greater efficiency
in the case of common patterns among inference trees.

A reasonable approach may be to first check for inference patterns and see if
there are any close matches; and if there are not, to then search for individual
inference trees that are close matches.

Mining patterns from the repository of inference trees is a potentially
highly computationally expensive operation, but this doesn’t particularly
matter since it can be run periodically in the background while inference
proceeds at its own pace in the foreground, using the mined patterns. Algo-
rithmically, it may be done either by exhaustive frequent-itemset-mining (as
in the Apriori or Relim algorithms), or by stochastic greedy mining. These
operations should be carried out by an InferencePatternMiner.

36.5 Hebbian Inference Control

One aspect of inference control is Evaluator choice, which is based on mining
contextually relevant information from the InferencePatternRepository (see
InferencePatternMining). But, what about the Atom choice aspect? This can
in some cases be handled via the InferencePatternRepository as well, but
it is less likely to serve the purpose than in the case of Evaluator choice.
Evaluator choice is about finding structurally similar inferences in roughly
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similar contexts, and using them as guidance. But Atom choice has a different
aspect: it is also about what Atoms have tended to be related to the other
Atoms involved in an inference, generically, not just in the context of prior
inferences, but in the context of prior perceptions, cognition and actions in
general.

Concretely, this means that Atom choice must make heavy use of Hebbian-
Links (see Chapter 23). The formation of HebbianLinks will be discussed in
the following chapter, on attention allocation. Here it will suffice to get across
the basic idea. The discussion of HebbianLinks here will hopefully serve to
help you understand the motivation for the HebbianLink formation algorithm
to be discussed later. Of course, inference is not the only user of HebbianLinks
in the CogPrime system, but its use of HebbianLinks is somewhat represen-
tative. Figure 36.1 gives a simple illustrative example of the use of attention
allocation, via HebbianLink, for PLN backward chaining.

Fig. 36.1 The Use of Attention Allocation for Guiding Backward Chaining
Inference.
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The semantics of a HebbianLink between A and B is, intuitively: In the
past, when A was important, B was also important. HebbianLinks are cre-
ated via two basic mechanisms: pattern-mining of associations between im-
portances in the system’s history, and PLN inference based on HebbianLinks
created via pattern mining (and inference). Thus, saying that PLN inference
control relies largely on HebbianLinks is in part saying that PLN inference
control relies on PLN. There is a bit of a recursion here, but it’s not a bottom-
less recursion because it bottoms out with HebbianLinks learned via pattern
mining.

As an example of the Atom-choices to be made by an individual Evaluator
in the course of doing inference, consider that to evaluate (Inheritance A C)
via a deduction-based Evaluator, some collection of intermediate nodes for
the deduction must be chosen. In the case of higher-order deduction, each
deduction may involve a number of complicated subsidiary steps, so perhaps
only a single intermediate node will be chosen. This choice of intermediate
nodes must be made via context-dependent prior probabilities. In the case of
other Evaluators besides deduction, other similar choices must be made.

The basic means of using HebbianLinks in inferential Atom-choice is sim-
ple: If there are Atoms linked via HebbianLinks with the other Atoms in the
inference tree, then these Atoms should be given preference in the Evaluator’s
(bandit problem based) selection process.

Along the same lines but more subtly, another valuable heuristic for guid-
ing inference control is “on-the-fly associatedness assessment.” If there is a
chance to apply the chosen Evaluator via working with Atoms that are:

• strongly associated with the Atoms in the Atom being evaluated (via
HebbianLinks)
• strongly associated with each other via HebbianLinks (hence forming a
cohesive set)

then this should be ranked as a good thing.
For instance, it may be the case that, when doing deduction regarding

relationships between humans, using relationships involving other humans as
intermediate nodes in the deduction is often useful. Formally this means that,
when doing inference of the form:

AND
Inheritance A human
Inheritance A B
Inheritance C human
Inheritance C B

|-
Inheritance A C

then it is often valuable to choose B so that:

HebbianLink B human

has high strength. This would follow from the above-mentioned heuristic.
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Next, suppose one has noticed a more particular heuristic - that in trying
to reason about humans, it is particularly useful to think about their wants.
This suggests that in abductions of the above form it is often useful to choose
B of the form:

B = SatisfyingSet [ wants(human, $X) ]

This is too fine-grained of a cognitive-control intuition to come from simple
association-following. Instead, it requires fairly specific data-mining of the
system’s inference history. It requires the recognition of “Hebbian predicates”
of the form:

HebbianImplication
AND

Inheritance $A human
Inheritance $C human
Similarity

$B
SatisfyingSet

Evaluation wants (human, $X)
AND

Inheritance $A $B
Inheritance $C $B

The semantics of:

HebbianImplication X Y

is that when X is being thought about, it is often valuable to think about Y
shortly thereafter.

So what is required to do inference control according to heuristics like think
about humans according to their wants is a kind of backward-chaining infer-
ence that combines Hebbian implications with PLN inference rules. PLN in-
ference says that to assess the relationship between two people, one approach
is abduction. But Hebbian learning says that when setting up an abduction
between two people, one useful precondition is if the intermediate term in
the abduction regards wants. Then a check can be made whether there are
any relevant intermediate terms regarding wants in the system’s memory.

What we see here is that the overall inference control strategy can be
quite simple. For each Evaluator that can be applied, a check can be made
for whether there is any relevant Hebbian knowledge regarding the general
constructs involved in the Atoms this Evaluator would be manipulating. If
so, then the prior probability of this Evaluator is increased, for the purposes
of the Evaluator-choice bandit problem. Then, if the Evaluator is chosen,
the specific Atoms this Evaluator would involve in the inference can be sum-
moned up, and the relevant Hebbian knowledge regarding these Atoms can
be utilized.

To take another similar example, suppose we want to evaluate:

Inheritance pig dog
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via the deduction Evaluator (which also carries out induction and abduction).
There are a lot of possible intermediate terms, but a reasonable heuristic is
to ask a few basic questions about them: How do they move around? What
do they eat? How do they reproduce? How intelligent are they? Some of
these standard questions correspond to particular intermediate terms, e.g.
the intelligence question partly boils down to computing:

Inheritance pig intelligent

and:

Inheritance dog intelligent

So a link:

HebbianImplication animal intelligent

may be all that’s needed to guide inference to asking this question. This
HebbianLink says that when thinking about animals, it’s often interesting to
think about intelligence. This should bias the deduction Evaluator to choose
intelligent as an intermediate node for inference.

On the other hand, the what do they eat question is subtler and boils down
to asking; Find $X so that when:

R($X) = SatisfyingSet[$Y] eats ($Y,$X)

holds (R($X) is a concept representing what eat $X), then we have:

Inheritance pig R($X)

and:

Inheritance dog R($X)

In this case, a HebbianLink from animal to eat would not really be fine-
grained enough. Instead we want a link of the form:

HebbianImplication
Inheritance $X animal
SatisfyingSet[$Y] eats ($X, $Y)

This says that when thinking about an animal, it’s interesting to think about
what that animal eats.

The deduction Evaluator, when choosing which intermediate nodes to use,
needs to look at the scope of available HebbianLinks and HebbianPredicates
and use them to guide its choice. And if there are no good intermediate nodes
available, it may report that it doesn’t have enough experience to assess
with any confidence whether it can come up with a good conclusion. As a
consequence of the bandit-problem dynamics, it may be allocated reduced
resources, or another Evaluator is chosen altogether.
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36.6 Evolution As an Inference Control Scheme

It is possible to use PEPL (Probabilistic Evolutionary Program Learning) as,
in essence, an InferenceControl scheme. Suppose we are using an evolution-
ary learning mechanism such as MOSES or PLEASURE [Goe08a] to evolve
populations of predicates or schemata. Recall that there are two ways to
evaluate procedures in CogPrime : by inference or by direct evaluation. Con-
sider the case where inference is needed in order to provide high-confidence
estimates of the evaluation or execution relationships involved. Then, there
is the question of how much effort to spend on inference, for each procedure
being evaluated as part of the fitness evaluation process. Spending a small
amount of effort on inference means that one doesn’t discover much beyond
what’s immediately apparent in the AtomSpace. Spending a large amount of
effort on inference means that one is trying very hard to use indirect evidence
to support conjectures regarding the evaluation or execution Links involved.

When one is evolving a large population of procedures, one can’t afford
to do too much inference on each candidate procedure being evaluated. Yet,
of course, doing more inference may yield more accurate fitness evaluations,
hence decreasing the number of fitness evaluations required.

Often, a good heuristic is to gradually increase the amount of inference
effort spent on procedure evaluation, during the course of evolution. Specif-
ically, one may make the amount of inference effort roughly proportional to
the overall population fitness. This way, initially, evolution is doing a cursory
search, not thinking too much about each possibility. But once it has some
fairly decent guesses in its population, then it starts thinking hard, applying
more inference to each conjecture.

Since the procedures in the population are likely to be interrelated to each
other, inferences done on one procedure are likely to produce intermediate
knowledge that’s useful for doing inference on other procedures. Therefore,
what one has in this scheme is evolution as a control mechanism for higher-
order inference.

Combined with the use of evolutionary learning to achieve memory across
optimization runs, this is a very subtle approach to inference control, quite
different from anything in the domain of logic-based AI. Rather than guiding
individual inference steps on a detailed basis, this type of control mechanism
uses evolutionary logic to guide the general direction of inference, pushing the
vast mass of exploratory inferences in the direction of solving the problem at
hand, based on a flexible usage of prior knowledge.
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36.7 Incorporating Other Cognitive Processes Into
Inference

Hebbian inference control is a valuable and powerful process, but it is not
always going to be enough. The solution of some problems that CogPrime
chooses to address via inference will ultimately require the use of other meth-
ods, too. In these cases, one workaround is for inference to call on other
cognitive processes to help it out.

This is done via the forward or backward chainer identifying specific Atoms
deserving of attention by other cognitive processes, and then spawning Tasks
executing these other cognitive processes on the appropriate Atoms.

Firstly, which Atoms should be selected for this kind of attention? What
we want are InferenceTreeNodes that:

• have high STI.
• have the impact to significantly change the overall truth value of the

inference tree they are embedded in (something that can be calculated
by hypothetically varying the truth value of the InferenceTreeNode and
seeing how the truth value of the overall conclusion is affected).

• have truth values that are known with low confidence.

Truth values meeting these criteria should be taken as strong candidates for
attention by other cognitive processes.

The next question is which other cognitive processes do we apply in which
cases?

MOSES in supervised categorization mode can be applied to a candidate
InferenceTreeNode representing a CogPrime Node if it has a sufficient number
of members (Atoms linked to it by MemberLinks); and, a sufficient number
of new members have been added to it (or have had their membership degree
significantly changed) since MOSES in supervised categorization mode was
used on it last.

Next, pattern mining can be applied to look for connectivity patterns else-
where in the AtomTable, similar to the connectivity patterns of the candidate
Atom, if the candidate Atom has changed significantly since pattern mining
last visited it.

More subtly, what if, we try to find whether “cross breed” implies “Ugli-
ness”, and we know that “bad genes” implies Ugliness, but can’t find a way,
by backward chaining, to prove that “cross breed” implies “bad genes”. Then
we could launch a non-backward-chaining algorithm to measure the over-
lap of SatisfyingSet(cross breed) and SatisfyingSet(bad genes). Specifically,
we could use MOSES in supervised categorization mode to find relation-
ships characterizing “cross breed” and other relationships characterizing “bad
genes”, and then do some forward chaining inference on these relationships.
This would be a general heuristic for what to do when there’s a link with low
confidence but high potential importance to the inference tree.
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SpeculativeConceptFormation (see Chapter 38) may also be used to create
new concepts and attempt to link them to the Atoms involved in an inference
(via subsidiary inference processes, or HebbianLink formation based on usage
in learned procedures, etc.), so that they may be used in inference.

36.8 PLN and Bayes Nets

Finally, we give some comments on the relationship between PLN and Bayes
Nets [PJ88a]. We have not yet implemented such an approach, but it may well
be that Bayes Nets methods can serve as a useful augmentation to PLN for
certain sorts of inference (specifically, for inference on networks of knowledge
that are relatively static in nature).

We can’t use standard Bayes Nets as the primary way of structuring rea-
soning in CogPrime because CogPrime ’s knowledge network is loopy. The
peculiarities that allow standard Bayes net belief propagation to work in
standard loopy Bayes nets, don’t hold up in CogPrime , because of the way
you have to update probabilities when you’re managing a very large network
in interaction with a changing world, so that different parts of which get
different amounts of focus. So in PLN we use different mechanisms (the “in-
ference trail” mechanism) to avoid “repeated evidence counting” whereas in
loopy Bayes nets they rely on the fact that in the standard loopy Bayes net
configuration, extra evidence counting occurs in a fairly constant way across
the network.

However, when you have within the AtomTable a set of interrelated knowl-
edge items that you know are going to be static for a while, and you want to
be able to query them probabilistically, then building a Bayes Net of some
sort (i.e. “freezing” part of CogPrime ’s knowledge network and mapping
it into a Bayes Net) may be useful. I.e., one way to accelerate some PLN
inference would be:

1. Freeze a subnetwork of the AtomTable which is expected not to change
a lot in the near future

2. Interpret this subnetwork as a loopy Bayes net, and use standard Bayesian
belief propagation to calculate probabilities based on it

This would be a highly efficient form of “background inference” in certain
contexts. (Note that this requires an “indefinite Bayes net” implementation
that propagates indefinite probabilities through the standard Bayes-net local
belief propagation algorithms, but this is not problematic.)



Chapter 37
Pattern Mining

Co-authored with Jade O’Neill

37.1 Introduction

Having discussed inference in depth we now turn to other, simpler but equally
important approaches to creating declarative knowledge. This chapters deals
with pattern mining – the creation of declarative knowledge representing
patterns among other knowledge (which may be declarative, sensory, episodic,
procedural, etc.) – and the following chapter deals with speculative concept
creation.

Within the scope of pattern mining, we will discuss two basic approaches:

• supervised learning: given a predicate, finding a pattern among the enti-
ties that satisfy that predicate.

• unsupervised learning: undirected search for “interesting patterns”.

The supervised learning case is easier and we have done a number of ex-
periments using MOSES for supervised pattern mining, on biological (mi-
croarray gene expression and SNP) and textual data. In the CogPrime case,
the “positive examples” are the elements of the SatisfyingSet of the predicate
P, and the “negative examples” are everything else. This can be a relatively
straightforward problem if there are enough positive examples and they ac-
tually share common aspects ... but some trickiness emerges, of course, when
the common aspects are, in each example, complexly intertwined with other
aspects.

The unsupervised learning case is considerably trickier. The main problem
issue here regards the definition of an appropriate fitness function. We are
searching for “interesting patterns.” So the question is, what constitutes an
interesting pattern?

We will also discuss two basic algorithmic approaches:

• program learning, via MOSES or hillclimbing
• frequent subgraph mining, using greedy algorithms

701
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The value of these various approaches is contingent on the environment
and goal set being such that algorithms of this nature can actually recognize
relevant patterns in the world and mind. Fortunately, the everyday human
world does appear to have the property of possessing multiple relevant pat-
terns that are recognizable using varying levels of sophistication and effort.
It has patterns that can be recognized via simple frequent pattern mining,
and other patterns that are too subtle for this, and are better addressed by
a search-based approach. In order for an environment and goal set to be ap-
propriate for the learning and teaching of a human-level AI, it should have
the same property of possessing multiple relevant patterns recognizable using
varying levels of subtlety.

37.2 Finding Interesting Patterns via Program Learning

As one important case of pattern mining, we now discuss the use of program
learning to find “interesting” patterns in sets of Atoms.

Clearly, “interestingness” is a multidimensional concept. One approach to
defining it is empirical, based on observation of which predicates have and
have not proved interesting to the system in the past (based on their long-
term importance values, i.e. LTI).

In this approach, one has a supervised categorization problem: learn a rule
predicting whether a predicate will fall into the interesting category or the
uninteresting category. Once one has learned this rule, which has expressed
this rule as a predicate itself, one can then use this rule as the fitness function
for evolutionary learning evolution.

There is also a simpler approach, which defines an objective notion of
interestingness. This objective notion is a weighted sum of two factors:

• Compactness.
• Surprisingness of truth value.

Compactness is easy to understand: all else equal, a predicate embodied in
a small Combo tree is better than a predicate embodied in a big one. There
is some work hidden here in Combo tree reduction; ideally, one would like to
find the smallest representation of a given Combo tree, but this is a compu-
tationally formidable problem, so one necessarily approaches it via heuristic
algorithms.

Surprisingness of truth value is a slightly subtler concept. Given a Boolean
predicate, one can envision two extreme ways of evaluating its truth value
(represented by two different types of ProcedureEvaluator). One can use an
IndependenceAssumingProcedureEvaluator, which deals with all AND and
OR operators by assuming probabilistic independence. Or, one can use an
ordinary EffortBasedProcedureEvaluator, which uses dependency informa-
tion wherever feasible to evaluate the truth values of AND and OR opera-
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tors. These two approaches will normally give different truth values but, how
different? The more different, the more surprising is the truth value of the
predicate, and the more interesting may the predicate be.

In order to explore the power of this kind of approach in a simple context,
we have tested pattern mining using MOSES on Boolean predicates as a
data mining algorithm on a number of different datasets, including some
interesting and successful work in the analysis of gene expression data, and
some more experimental work analyzing sociological data from the National
Longitudinal Survey of Youth (NLSY) (http://stats.bls.gov/nls/).

A very simple illustrative result from the analysis of the NLSY data is the
pattern:

OR
(NOT(MothersAge(X)) AND NOT(FirstSexAge(X)))
(Wealth(X) AND PIAT(X))

where the domain of X are individuals, meaning that:

• being the child of a young mother correlates with having sex at a younger
age;

• being in a wealthier family correlates with better Math (PIAT) scores;
• the two sets previously described tend to be disjoint.

Of course, many data patterns are several times more complex than the
simple illustrative pattern shown above. However, one of the strengths of the
evolutionary learning approach to pattern mining is its ability to find simple
patterns when they do exist, yet without (like some other mining methods)
imposing any specific restrictions on the pattern format.

37.3 Pattern Mining via Frequent/Surprising Subgraph
Mining

Probabilistic evolutionary learning is an extremely powerful approach to pat-
tern mining, but, may not always be realistic due to its high computational
cost. A cheaper, though also weaker, alternative, is to use frequent subgraph
mining algorithms such as [HWP03, KK01], which may straightforwardly be
adapted to hypergraphs such at the Atomspace.

Frequent subgraph mining is a port to the graph domain of the older,
simpler idea of frequent itemset mining, which we now briefly review. There
are a number of algorithms in the latter category, the classic is Apriori [AS94],
and an alternative is relim [Bor05] which is conceptually similar but seems
to give better performance.

The basic goal of frequent itemset mining is to discover frequent subsets
("itemsets") in a group of sets, whose members are all drawn from some base

http://stats.bls.gov/nls/
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set of items. One knows that for a set of N items, there are 2N − 1 possible
subgroups. The algorithm operates in several rounds. Round i heuristically
computes frequent i-itemsets (i.e. frequent sets containing i items). A round
has two steps: candidate generation and candidate counting. In the candidate
generation step, the algorithm generates a set of candidate i-itemsets whose
support – the percentage of events in which the item must appear – has
not been yet been computed. In the candidate-counting step, the algorithm
scans its memory database, counting the support of the candidate itemsets.
After the scan, the algorithm discards candidates with support lower than the
specified minimum (an algorithm parameter) and retains only the sufficiently
frequent i-itemsets. The algorithm reduces the number of tested subsets by
pruning apriori those candidate itemsets that cannot be frequent, based on
the knowledge about infrequent itemsets obtained from previous rounds. So
for instance if {A,B} is a frequent 2-itemset then {A,B,C} will be considered
as a potential 3-itemset, on the contrary if {A,B} is not a frequent itemset
then {A,B,C}, as well as any superset of {A,B}, will be discarded. Although
the worst case of this sort of algorithm is exponential, practical executions
are generally fast, depending essentially on the support limit.

Frequent subgraph mining follows the same pattern, but instead of a set
of items it deals with a group of graphs. There are many frequent subgraph
mining algorithms in the literature, but the basic concept underlying nearly
all of them is the same: first find small frequent subgraphs. Then seek to
find slightly larger frequent patterns encompassing these small ones. Then
seek to find slightly larger frequent patterns encompassing these, etc. This
approach is much faster than something like MOSES, although management
of the large number of subgraphs to be searched through can require subtle
design and implementation of data structures.

If, instead of an ensemble of small graphs, one has a single large graph like
the AtomSpace, one can follow the same approach, via randomly subsampling
from the large graph to find the graphs forming the ensemble to be mined
from; see [ZH10] for a detailed treatment of this sort of approach. The fact
that the AtomSpace is a hypergraph rather than a graph doesn’t fundamen-
tally affect the matter since a hypergraph may always be considered a graph
via introduction of an additional node for each hyperedge (at the cost of a
potentially great multiplication of the number of links).

Frequent subgraph mining algorithms appropriately deployed can find sub-
graphs which occur repeatedly in the Atomspace, including subgraphs con-
taining Atom-valued variables . Each such subgraph may be represented as a
PredicateNode, and frequent subgraph mining will find such PredicateNodes
that have surprisingly high truth values when evaluated across the Atom-
space. But unlike MOSES when applied as described above, such an algo-
rithm will generally find such predicates only in a "greedy" way.

For instance, a greedy subgraph mining algorithm would be unlikely to
find

OR



37.4 Fishgram 705

(NOT(MothersAge(X)) AND NOT(FirstSexAge(X)))
(Wealth(X) AND PIAT(X))

as a surprising pattern in an AtomSpace, unless at least one (and preferably
both) of

Wealth(X) AND PIAT(X)

and

NOT(MothersAge(X)) AND NOT(FirstSexAge(X))

were surprising patterns in that Atomspace on their own.

37.4 Fishgram

Fishgram is an efficient algorithm for finding patterns in OpenCog knowl-
edge, instantiating the general concepts presented in the previous section. It
represents patterns as conjunctions (AndLink) of Links, which usually con-
tain variables. It does a greedy search, so it can quickly find many patterns.
In contrast, algorithms like MOSES are designed to find a small number of
the best patterns. Fishgram works by finding a set of objects that have links
in common, so it will be most effective if the AtomSpace has a lot of raw
data, with simple patterns. For example, it can be used on the perceptions
from the virtual world. There are predicates for basic perceptions (e.g. what
kind of object something is, objects being near each other, types of blocks,
and actions being performed by the user or the AI).

37.4.1 Example Patterns

Here is some example output from Fishgram, when run on the virtual agent’s
memories.

(AndLink
(EvaluationLink is_edible:PredicateNode (ListLink $1000041))
(InheritanceLink $1000041 Battery:ConceptNode)
)

This means a battery which can be “eaten” by the virtual robot. The
variable $1000041 refers to the object (battery).

Fishgram can also find patterns containing a sequence of events. In this
case, there is a list of EvaluationLinks or InheritanceLinks which describe the
objects involved, followed by the sequence of events.

(AndLink
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(InheritanceLink $1007703 Battery:ConceptNode)
(SequentialAndLink
(EvaluationLink isHolding:PredicateNode (ListLink $1008725 $1007703)))
)
)

This means the agent was holding a battery. $1007703 is the battery, and
there is also a variables for the agent itself. Many interesting patterns involve
more than one object. This pattern would also include the user (or another
AI) holding a battery, because the pattern does not refer to the AI character
specifically.

It can find patterns where it performs an action and achieves a goal. There
is code to create implications based on these conjunctions. After finding many
conjunctions, it can produce ImplicationLinks based on some of them. Here is
an example where the AI-controlled virtual robot discovers how to get energy.

(ImplicationLink
(AndLink
(EvaluationLink is_edible:PredicateNode (ListLink $1011619))
(InheritanceLink $1011619 Battery:ConceptNode)
)
(PredictiveImplicationLink
(EvaluationLink actionDone:PredicateNode (ListLink (ExecutionLink eat:GroundedSchemaNode (ListLink $1011619))))
(EvaluationLink increased:PredicateNode (ListLink (EvaluationLink

EnergyDemandGoal:PredicateNode)))
)
)

37.4.2 The Fishgram Algorithm

The core Fishgram algorithm, in pseudocode, is as follows:

initial layer = every pair (relation, binding)

while previous layer is not empty:
foreach (conjunction, binding) in previous layer:
let incoming = all (relation, binding) pairs containing an object in the conjunction
let possible_next_events = all (event, binding) pairs where the event happens during or shortly after the last event in conjunction
foreach (relation, relation_binding) in incoming and possible_next_events:
new_relation = a copy of relation, where every variable that refer
if new_relation is already in conjunction, skip it
new_conjunction = conjunction + new_relation
if new_conjunction has been found already, skip it
otherwise, add new_conjunction to the current layer
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map_to_existing_variables(conjunction, conjunction_binding, relation, relation_binding)
r’, s’ = a copy of the relation and binding using new variables
foreach variable v, object o in relation_binding:
foreach variable v2, object o2 in conjunction_binding:
if o == o2:
change r’ and s’ to use v2 instead of v

37.4.3 Preprocessing

There are several preprocessing steps to make it easier for the main Fishgram
search to find patterns. There is a list of things that have to be variables. For
example, any predicate that refers to object (including agents) will be given
a variable so it can refer to any object. Other predicates or InheritanceLinks
can be added to a pattern, to restrict it to specific kinds of objects, as shown
above. So there is a step which goes through all of the links in the AtomSpace,
and records a list of predicates with variables. Such as “X is red” or “X eats Y”.
This makes the search part simpler, because it never has to decide whether
something should be a variable or a specific object.

There is also a filter system, so that things which seem irrelevant can be
excluded from the search. There is a combinatorial explosion as patterns be-
come larger. Some predicates may be redundant with each other, or known
not to be very useful. It can also try to find only patterns in the AI’s “atten-
tional focus”, which is much smaller than the whole AtomSpace.

The Fishgram algorithm cannot currently handle patterns involving num-
bers, although it could be extended to do so. The two options would be to
either have a separate discretization step, creating predicates for different
ranges of a value. Or alternatively, have predicates for mathematical opera-
tors. It would be possible to search for a “splitpoint” like in decision trees.
So a number would be chosen, and only things above that value (or only
things below that value) would count for a pattern. It would also be possible
to have multiple numbers in a pattern, and compare them in various ways.
It is uncertain how practical this would be in Fishgram. MOSES is good for
finding numeric patterns, so it may be better to simply use those patterns
inside Fishgram.

The “increased” predicate is added by a preprocessing step. The goals have
a fuzzy TruthValue representing how well the goal is achieved at any point in
time, so e.g. the EnergyDemandGoal represents how much energy the virtual
robot has at some point in time. The predicate records times that a goal’s
TruthValue increased. This only happens immediately after doing something
to increase it, which helps avoid finding spurious patterns.



708 37 Pattern Mining

37.4.4 Search Process

Fishgram search is breadth-first. It starts with all predicates (or Inheri-
tanceLinks) found by the preprocessing step. Then it finds pairs of predicates
involving the same variable. Then they are extended to conjunctions of three
predicates, and so on. Many relations apply at a specific time, for example the
agent being near an object, or an action being performed. These are included
in a sequence, and are added in the order they occurred.

Fishgram remembers the examples for each pattern. If there is only one
variable in the pattern, an example is a single object; otherwise each example
is a vector of objects for each variable in the pattern. Each time a relation
is added to a pattern, if it has no new variables, some of the examples may
be removed, because they don’t satisfy the new predicate. It needs to have
at least one variable in common with the previous relations. Otherwise the
patterns would combine many unrelated things.

In frequent itemset mining (for example the APRIORI algorithm), there
is effectively one variable, and adding a new predicate will often decrease
the number of items that match. It can never increase it. The number of
possible conjunctions increases with the length, up to some point, after which
it decreases. But when mining for patterns with multiple objects there is a
much larger combinatorial explosion of patterns. Various criteria can be used
to prune the search.

The most basic criterion is the frequency. Only patterns with at least N
examples will be included, where N is an arbitrary constant. You can also set
a maximum number of patterns allowed for each length (number of relations),
and only include the best ones. The next level of the breadth-first search will
only search for extensions of those patterns.

One can also use a measure of statistical interestingness, to make sure the
relations in a pattern are correlated with each other. There are many spurious
frequent patterns, because anything which is frequent will occur together with
other things, whether they are relevant or not. For example “breathing while
typing” is a frequent pattern, because people breathe at all times. But “moving
your hands while typing” is a much more interesting pattern. As people only
move their hands some of the time, a measure of correlation would prefer the
second pattern. The best measure may be interaction information, which is a
generalisation of mutual information that applies to patterns with more than
two predicates. An early-stage AI would not have much knowledge of cause
and effect, so it would rely on statistical measures to find useful patterns.

37.4.5 Comparison to other algorithms

Fishgram is more suitable for OpenCogPrimes purposes than existing graph
mining algorithms, most of which were designed with molecular datasets in
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mind. The OpenCog AtomSpace is a different graph in various ways. For one,
there are many possible relations between nodes (much like in a semantic
network). Many relations involve more than two objects, and there are also
properties Ð predicates about a single object. So the relations are effectively
directed links of varying arity. It also has events, and many states can change
over time (e.g. an egg changes state while it’s cooking). Fishgram is designed
for general knowledge in an embodied agent.

There are other major differences. Fishgram uses a breadth-first search,
rather than depth-first search like most graph mining algorithms. And it
does an “embedding-based” search, searching for patterns that can be embed-
ded multiple times in a large graph. Molecular datasets have many separate
graphs for separate molecules, but the embodied perceptions are closer to
a single, fairly well-connected graph. Depth-first search would be very slow
on such a graph, as there are many very long paths through the graph, and
the search would mostly find those. Whereas the useful patterns tend to be
compact and repeated many times.

Lastly the design of Fishgram makes it easy to experiment with multiple
different scoring functions, from simple ones like frequency to much more
sophisticated functions such as interaction information.





Chapter 38
Speculative Concept Formation

38.1 Introduction

One of the hallmarks of general intelligence is its capability to deal with nov-
elty in its environment and/or goal-set. And dealing with novelty intrinsically
requires creating novelty. It’s impossible to efficiently handle new situations
without creating new ideas appropriately. Thus, in any environment complex
and dynamic enough to support human-like general intelligence (or any other
kind of highly powerful general intelligence), the creation of novel ideas will
be paramount. New idea creation takes place in OpenCog via a variety of
methods – e.g. inside MOSES which creates new program trees, PLN which
creates new logical relationships, ECAN which creates new associative rela-
tionships, etc. But there is also a role for explicit, purposeful creation of new
Atoms representing new concepts, outside the scope of these other learning
mechanisms.

The human brain gets by, in adulthood, without creating that many new
neurons – although neurogenesis does occur on an ongoing basis. But this
is achieved only via great redundancy, because for the brain it’s cheaper
to maintain a large number of neurons in memory at the same time, than
to create and delete neurons. Things are different in a digital computer:
memory is more expensive but creation and deletion of object is cheaper.
Thus in CogPrime , forgetting and creation of Atoms is a regularly occurring
phenomenon. In this chapter we discuss a key class of mechanisms for Atom
creation, ”speculative concept formation.” Further methods will be discussed
in following chapters.

The philosophy underlying CogPrime ’s speculative concept formation is
that new things should be created from pieces of good old things (a form
of “evolution”, broadly construed), and that probabilistic extrapolation from
experience should be used to guide the creation of new things (inference). It’s
clear that these principles are necessary for the creation of new mental forms
but it’s not obvious that they’re sufficient: this is a nontrivial hypothesis,

711
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which may also be considered a family of hypotheses since there are many
different ways to do extrapolation and intercombination. In the context of
mind-world correspondence, the implicit assumption underlying this sort of
mechanism is that the relevant patterns in the world can often be combined to
form other relevant patterns. The everyday human world does quite markedly
display this kind of combinatory structure, and such a property seems basic
enough that it’s appropriate for use as an assumption underlying the design
of cognitive mechanisms.

In CogPrime we have introduced a variety of heuristics for creating new
Atoms - especially ConceptNodes - which may then be reasoned on and sub-
jected to implicit (via attention allocation) and explicit (via the application
of evolutionary learning to predicates obtained from concepts via “concept
predicatization”) evolution. Among these are the node logical operators de-
scribed in the PLN book, which allow the creation of new concepts via AND,
OR, XOR and so forth. However, logical heuristics alone are not sufficient.
In this chapter we will review some of the nonlogical heuristics that are used
for speculative concept formation. These operations play an important role
in creativity - to use cognitive-psychology language, they are one of the ways
that CogPrime implements the process of blending, which Falconnier and
Turner (2003) have argued is key to human creativity on many different lev-
els. Each of these operations may be considered as implicitly associated with
an hypothesis that, in fact, the everyday human world tends to assign util-
ity to patterns that are combinations of other patterns produced via said
operation.

An evolutionary perspective may also be useful here, on a technical level as
well as philosophically. As noted in The Hidden Pattern and hinted Chapter
in 3 of Part 1, one way to think about an AGI system like CogPrime is
as a huge evolving ecology. The AtomSpace is a biosphere of sorts, and the
mapping from Atom types into species has some validity to it (though not
complete accuracy: Atom types do not compete with each other; but they
do reproduce with each other, and according to most of the reproduction
methods in use, Atoms of differing type cannot cross-reproduce). Fitness is
defined by importance. Reproduction is defined by various operators that
produce new Atoms from old, including the ones discussed in this chapter, as
well as other operators such as inference and explicit evolutionary operators.

New ConceptNode creation may be triggered by a variety of circumstances.
If two ConceptNodes are created for different purposes, but later the system
finds that most of their meanings overlap, then it may be more efficient to
merge the two into one. On the other hand, a node may become overloaded
with different usages, and it is more useful to split it into multiple nodes, each
with a more consistent content. Finally, there may be patterns across large
numbers of nodes that merit encapsulation in individual nodes. For instance,
if there are 1000 fairly similar ConceptNodes, it may be better not to merge
them all together, but rather to create a single node to which they all link,
reifying the category that they collectively embody.
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In the following sections, we will begin by describing operations that create
new ConceptNodes from existing ones on a local basis: by mutating individual
ConceptNodes or combining pairs of ConceptNodes. Some of these operations
are inspired by evolutionary operators used in the GA, others are based on the
cognitive psychology concept of “blending.” Then we will turn to the use of
clustering and formal concept analysis algorithms inside CogPrime to refine
the system’s knowledge about existing concepts, and create new concepts.

38.2 Evolutionary Concept Formation

A simple and useful way to combine ConceptNodes is to use GA-inspired
evolutionary operators: crossover and mutation. In mutation, one replaces
some number of a Node’s links with other links in the system. In crossover,
one takes two nodes and creates a new node containing some links from one
and some links from another.

More concretely, to cross over two ConceptNodes X and Y, one may pro-
ceed as follows (in short clustering the union of X and Y):

• Create a series of empty nodes Z1, Z2, . . . , Zk
• Form a “link pool” consisting of all X’s links and all Y’s links, and then

divide this pool into clusters (clustering algorithms will be described be-
low).
• For each cluster with significant cohesion, allocate the links in that cluster

to one of the new nodes Zi

On the other hand, to mutate a ConceptNode, a number of different mutation
processes are reasonable. For instance, one can

• Cluster the links of a Node, and remove one or more of the clusters,
creating a node with less links

• Cluster the links, remove one or more clusters, and then add new links
that are similar to the links in the remaining clusters

The EvolutionaryConceptFormation MindAgent selects pairs of nodes
from the system, where the probability of selecting a pair is determined by

• the average importance of the pair
• the degree of similarity of the pair
• the degree of association of the pair

(Of course, other heuristics are possible too). It then crosses over the pair,
and mutates the result.

Note that, unlike in some GA implementations, the parent node(s) are
retained within the system; they are not replaced by the children. Regardless
of how many offspring they generate by what methods, and regardless of their
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age, all Nodes compete and cooperate freely forever according to the fitness
criterion defined by the importance updating function. The entire AtomSpace
may be interpreted as a large evolutionary, ecological system, and the action
of CogPrime dynamics, as a whole, is to create fit nodes.

A more advanced variant of the EvolutionaryConceptFormation MindA-
gent would adapt its mutation rate in a context-dependent way. But our in-
tuition is that it is best to leave this kind of refinement for learned cognitive
schemata, rather than to hard-wire it into a MindAgent. To encourage the
formation of such schemata, one may introduce elementary schema functions
that embody the basic node-level evolutionary operators:
ConceptNode ConceptCrossover(ConceptNode A, ConceptNode B)

ConceptNode mutate(ConceptNode A, mutationAmount m)

There will also be a role for more abstract schemata that utilize these. An
example cognitive schema of this sort would be one that said: “When all my
schema in a certain context seem unable to achieve their goals, then maybe
I need new concepts in this context, so I should increase the rate of concept
mutation and crossover, hoping to trigger some useful concept formation.”

As noted above, this component of CogPrime views the whole AtomSpace
as a kind of genetic algorithm - but the fitness function is “ecological” rather
than fixed, and of course the crossover and mutation operators are highly
specialized. Most of the concepts produced through evolutionary operations
are going to be useless nonsense, but will be recognized by the importance
updating process and subsequently forgotten from the system. The useful
ones will link into other concepts and become ongoing aspects of the system’s
mind. The importance updating process amounts to fitness evaluation, and
it depends implicitly on the sum total of the cognitive processes going on in
CogPrime .

To ensure that importance updating properly functions as fitness evalua-
tion, it is critical that evolutionarily-created concepts (and other speculatively
created Atoms) always comprise a small percentage of the total concepts in
the system. This guarantees that importance will serve as a meaningful “fit-
ness function” for newly created ConceptNodes. The reason for this is that
the importance measures how useful the newly created node is, in the context
of the previously existing Atoms. If there are too many speculative, possibly
useless new ConceptNodes in the system at once, the importance becomes an
extremely noisy fitness measure, as it’s largely measuring the degree to which
instances of new nonsense fit in with other instances of new nonsense. One
may find interesting self-organizing phenomena in this way, but in an AGI
context we are not interested in undirected spontaneous pattern-formation,
but rather in harnessing self-organizing phenomena toward system goals. And
the latter is achieved by having a modest but not overwhelming amount of
speculative new nodes entering into the system.

Finally, as discussed earlier, evolutionary operations on maps may occur
naturally and automatically as a consequence of other cognitive operations.
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Maps are continually mutated due to fluctuations in system dynamics; and
maps may combine with other maps with which they overlap, as a conse-
quence of the nonlinear properties of activation spreading and importance up-
dating. Map-level evolutionary operations are not closely tied to their Atom-
level counterparts (a difference from e.g. the close correspondence between
map-level logical operations and underlying Atom-level logical operations).

38.3 Conceptual Blending

The notion of Conceptual Blending (aka Conceptual Integration) was pro-
posed by Gilles Fauconnier and Mark Turner [FT02] as general theory of
cognition. According to this theory, the basic operation of creative thought
is the “blend” in which elements and relationships from diverse scenarios are
merged together in a judicious way. As a very simple example, we may con-
sider the blend of “tower” and “snake” to form a new concept of “snake tower”
(a tower that looks somewhat like a snake). However, most examples of blends
will not be nearly so obvious. For instance, the complex numbers could be
considered a blend between 2D points and real numbers. Figure 38.1 gives a
conceptual illustration of the blending process.

The production of a blend is generally considered to have three key stages
(elucidated via the example of building a snake-tower out of blocks):

• composition: combining judiciously chosen elements from two or more
concept inputs

– Example: Taking the “buildingness“ and “verticalness” of a tower, and
the “head” and “mouth” and “tail” of a snake

• completion: adding new elements from implicit background knowledge
about the concept inputs

– Example: Perhaps a mongoose-building will be built out of blocks,
poised in a position indicating it is chasing the snake-tower (incorpo-
rating the background knowledge that mongeese often chase snakes)

• elaboration: fine-tuning, which shapes the elements into a new concept,
guided by the desire to optimize certain criteria

– Example: The tail of the snake-tower is a part of the building that
rests on the ground, and connects to the main tower. The head of the
snake-tower is a portion that sits atop the main tower, analogous to
the restaurant atop the Space Needle.

The “judiciousness” in the composition phase may be partially captured in
CogPrime via PLN inference, via introducing a “consistency criterion" that
the elements chosen as part of the blend should not dramatically decrease
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Fig. 38.1 Conceptual Illustration of Conceptual Blending

in confidence after the blend’s relationships are submitted to PLN inference.
One especially doesn’t want to choose mutually contradictory elements from
the two inputs. For instance one doesn’t want to choose “alive” as an ele-
ment of “snake”, and “non-living” as an element of “building.” This kind of
contradictory choice can be ruled out by inference, because after very few
inference steps, this choice would lead to a drastic confidence reduction for
the InheritanceLinks to both “alive” and “non-living.”

Aside from consistency, some other criteria considered relevant to evalu-
ating the quality of a blend, are:

• topology principle: relations in the blend should match the relations of
their counterparts in other concepts related to the concept inputs

• web principle that the representation in the blended space should main-
tain mappings to the concept inputs

• unpacking principle that, given a blended concept, the interpreter should
be able to infer things about other related concepts

• good reason principle that there should be simple explanations for the
elements of the blend

• metonymic tightening that when metonymically related elements are pro-
jected into the blended space, there is pressure to compress the “distance”
between them.
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While vague-sounding in their verbal formulations, these criteria have been
computationally implemented in the Sapper system, which uses blending the-
ory to model analogy and metaphor [VK94, VO07]; and in a different form in
[Car06]’s framework for computational creativity. In CogPrime terms, these
various criteria essentially boil down to: the new, blended concept should
get a lot of interesting links.

One could implement blending in CogPrime very straightforwardly via
an evolutionary approach: search the space of possible blends, evaluating
each one according to its consistency but also the STI that it achieves when
released into the Atomspace. However, this will be quite computationally
expensive, so a wiser approach is to introduce heuristics aimed at increasing
the odds of producing important blends.

A simple heuristic is to calculate, for each candidate blend, the amount
of STI that the blend would possess N cycles later if, at the current time,
it was given a certain amount of STI. A blend that would accumulate more
STI in this manner may be considered more promising, because this means
that its components are more richly interconnected. Further, this heuristic
may be used as a guide for greedy heuristics for creating blends: e.g. if one
has chosen a certain element A of the first blend input, then one may seek
an element B of the second blend input that has a strong Hebbian link to A
(if such a B exists).

However, it may also be interesting to pursue different sorts of heuristics,
using information-theoretic or other mathematical criteria to preliminarily
filter possible blends before they are evaluated more carefully via integrated
cognition and importance dynamics.

38.3.1 Outline of a CogPrime Blending Algorithm

A rough outline of a concept blending algorithm for CogPrime is as follows:

• Choose a pair of concepts C1 and C2, which have a nontrivially-strong
HebbianLink between them, but not an extremely high-strength Simi-
larityLink between them [i.e. the concepts should have something to do
with each other, but not be extremely similar; blends of extremely similar
things are boring]. These parameters may be twiddled.
• Form a new concept C3, which has some of C1’s links, and some of C2’s

links
• If C3 has obvious contradictions, resolve them by pruning links. (For

instance, if C1 inherits from alive to degree .9 and C2 inherits from alive
to degree .1, then one of these two TruthValue versions for the inheritance
link from alive, has got to be pruned...)
• For each of C3’s remaining links L, make a vector indicating everything it

or its targets are associated with (via HebbianLinks or other links). This
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is basically a list of "what’s related to L". Then, assess whether there are
a lot of common associations to the links L that came from C1 and the
links L that came from C2

• If the filter in step 4 is passed, then let the PLN forward chainer derive
some conclusions about C3, and see if it comes up with anything interest-
ing (e.g. anything with surprising truth value, or anything getting high
STI, etc.)

Steps 1 and 2 should be repeated over and over. Step 5 is basically "cog-
nition as usual" – i.e. by the time the blended concept is thrown into the
Atomspace and subjected to Step 5, it’s being treated the same as any other
ConceptNode.

The above is more of a meta-algorithm than a precise algorithm. Many
avenues for variation exist, including

• Step 1: heuristics for choosing what to try to blend
• Step 3: how far do we go here, at removing contradictions? Do we try

simple PLN inference to see if contradictions are unveiled, or do we just
limit the contradiction-check to seeing if the same exact link is given
different truth-values?

• Step 4: there are many different ways to build this association-vector.
There are also many ways to measure whether a set of association-vectors
demonstrates "common associations". Interaction information [?] is one
fancy way; there are also simpler ones.

• Step 5: there are various ways to measure whether PLN has come up with
anything interesting

38.3.2 Another Example of Blending

To illustrate these ideas further, consider the example of the SUV – a blend
of "Car" and "Jeep"

Among the relevant properties of Car are:

• appealing to ordinary consumers
• fuel efficient
• fits in most parking spots
• easy to drive
• 2 wheel drive

Among the relevant properties of Jeep are:

• 4 wheel drive
• rugged
• capable of driving off road
• high clearance
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• open or soft top

Obviously, if we want to blend Car and Jeep, we need to choose properties
of each that don’t contradict each other. We can’t give the Car/Jeep both
2 wheel drive and 4 wheel drive. 4 wheel drive wins for Car/Jeep because
sacrificing it would get rid of "capable of driving off road", which is critical to
Jeep-ness; whereas sacrificing 2WD doesn’t kill anything that’s really critical
to car-ness.

On the other hand, having a soft top would really harm "appealing to
consumers", which from the view of car-makers is a big part of being a suc-
cessful car. But getting rid of the hard top doesn’t really harm other aspects
of jeep-ness in any series way.

However, what really made the SUV successful was that "rugged" and
"high clearance" turned out to make SUVs look funky to consumers, thus ful-
filling the "appealing to ordinary consumers" feature of Car. In other words,
the presence of the links

• looks funky → appealing to ordinary consumers
• rugged & high clearance → looks funky

made a big difference. This is the sort of thing that gets figured out once one
starts doing PLN inference on the links associated with a candidate blend.

However, if one views each feature of the blend as a probability distribution
over concept space (e.g., indicating how closely associated with feature is
with each other concept (e.g. via HebbianLinks) É then we see that the
mutual information (and more generally interaction information) between
the features of the blend, is a quick estimate of how likely it is that inference
will lead to interesting conclusions via reasoning about the combination of
features that the blend possesses.

38.4 Clustering

Next, a different method for creating new ConceptNodes in CogPrime is
using clustering algorithms. There are many different clustering algorithms
in the statistics and data mining literature, and no doubt many of them could
have value inside CogPrime . We have experimented with several different
clustering algorithms in the CogPrime context, and have selected one, which
we call Omniclust [GCPM06], based on its generally robust performance on
high-volume, noisy data. However, other methods such as EM (Expectation-
Maximization) clustering [WF05] would likely serve the purpose very well
also.

In the above discussion on evolutionary concept creation, we mentioned the
use of a clustering algorithm to cluster links. The same algorithm we describe
here for clustering ConceptNodes directly and creating new ConceptNodes
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representing these clusters, can also be used for clustering links in the context
of node mutation and crossover.

The application of Omniclust or any other clustering algorithm for Con-
ceptNode creation in CogPrime is simple. The clustering algorithm is run
periodically, and the most significant clusters that it finds are embodied as
ConceptNodes, with InheritanceLinks to their members. If these significant
clusters have subclusters also identified by Omniclust, then these subclus-
ters are also made into ConceptNodes, etc., with InheritanceLinks between
clusters and subclusters.

Clustering technology is famously unreliable, but this unreliability may be
mitigated somewhat by using clusters as initial guesses at concepts, and using
other methods to refine the clusters into more useful concepts. For instance,
a cluster may be interpreted as a disjunctive predicate, and a search may be
made to determine sub-disjunctions about which interesting PLN conclusions
may be drawn.

38.5 Concept Formation via Formal Concept Analysis

Another approach to concept formation is an uncertain version of Formal
Concept Analysis [GSW05]. There are many ways to create such a version,
here we describe one approach we have found interesting, called Fuzzy Con-
cept Formation (FCF).

The general formulation of FCF begins with n objects O1, ..., On, m basic
attributes a1, ..., am, and information that object Oi possesses attribute aj
to degree wij ∈ [0, 1]. In CogPrime , the objects and attributes are Atoms,
and wij is the strength of the InheritanceLink pointing from Oi to aj .

In this context, we may define a concept as a fuzzy set of objects, and a
derived attribute as a fuzzy set of attributes.

Fuzzy concept formation (FCF) is, then, a process that produces N
“concepts” Cn+1, ..., Cn+N andM “derived attributes” dm+1, ..., dm+M , based
on the initial set of objects and attributes. We can extend the weight matrix
wij to include entries involving concepts and derived attributes as well, so
that e.g. wn+3,m+5 indicates the degree to which concept Cn+3 possesses
derived attribute dm+5.

The learning engine underlying FCF is a clustering algorithm clust =
clust(X1, ..., Xr; b) which takes in r vectors Xr ∈ [0, 1]n and outputs b or
fewer clusters of these vectors. The overall FCF process is independent of
the particular clustering algorithm involved, though the interestingness of
the concepts and attributes formed will of course vary widely based on the
specific clustering algorithm. Some clustering algorithms will work better
with large values of b, others with smaller values of b.

We then define the process form_concepts(b) to operate as follows. Given
a set S = S1, ..., Sk containing objects, concepts, or a combination of objects
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and concepts, and an attribute vector wi of length h with entries in [0, 1] cor-
responding to each Si, one applies clust to find b clusters of attribute vectors
wi: B1, ..., Bb. Each of these clusters may be considered as a fuzzy set, for in-
stance by considering the membership of x in cluster B to be 2−d(x,centroid(B))

for an appropriate metric d. These fuzzy sets are the b concepts produced by
form_concepts(b).

38.5.1 Calculating Membership Degrees of New
Concepts

The degree to which a concept defined in this way possesses an attribute, may
be defined in a number of ways, maybe the simplest is: weighted-summing
the degree to which the members of the concept possess the attribute. For
instance, to figure out the degree to which beautiful women (a concept) are
isane (an attribute), one would calculate∑

w∈beautiful_women χbeautiful_women(w)χinsane(w)∑
w∈beautiful_women χbeautiful_women(w)

where χX(w) denotes the fuzzy membership degree of w in X. One could
probably also consider ExtensionalInheritance beautiful_women insane.

38.5.2 Forming New Attributes

One may define an analogous process form_attributes(b) that begins with a
set A = A1, ..., Ak containing (basic and/or derived) attributes, and a column
vector w1i

...
whi


of length h with entries in [0, 1] corresponding to each Ai (the column vector
tells the degrees to which various objects possess the attributes Ai). One
applies clust to find b clusters of vectors vi: B1, ..., Bb. These clusters may be
interpreted as fuzzy sets, which are derived attributes.
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38.5.2.1 Calculating Membership Degrees of New, Derived
Attributes

One must then defines the degree to which an object or concept possesses a
derived attribute. One way to do this is using a geometric mean. For instance,
suppose there is a derived attribute formed by combining the attributes vain,
selfish and egocentric. Then, the degree to which the concept banker possesses
this new derived attribute could be defined by∑

b∈banker χbanker(b) (χvain(b)χselfish(b)χegocentric(b))
1/3∑

b∈banker χbanker(b)

38.5.3 Iterating the Fuzzy Concept Formation Process

Given a set S of concepts and/or objects with a set A of attributes, one may
define

• append_concepts(S′, S) as the result of adding the concepts in the set
S′ to S, and evaluating all the attributes in A on these concepts, to get
an expanded matrix w

• append_attributes(A′, A) as the result of adding the attributes in the
set A′ to A, and evaluating all the attributes in A′ on the concepts and
objects in S, to get an expanded matrix w

• collapse(S,A) is the result of taking (S,A) and eliminating any concept
or attribute that has distance less than ε from some other concept or
attribute that comes before it in the lexicographic ordering of concepts
or attributes. I.e., collapse removes near-duplicate concepts or attributes.

Now, one may begin with a set S of objects and attributes, and iteratively
run a process such as

b = r^c \\e.g. r=2, or r=1.5
while(b>1) {

S = append_concepts(S, form_concepts(S,b))
S = collapse(S)
S = append_attributes(S, form_attributes(S,b))
S = collapse(S)
b = b/r

}

with c corresponding to the number of iterations. This will terminate in finite
time with a finitely expanded matrix w containing a number of concepts and
derived attributes in addition to the original objects and basic attributes.

Or, one may look at
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while(S is different from old_S) {
old_S = S
S = add_concepts(S, form_concepts(S,b))
S = collapse(S)
S = add_attributes(S, form_attributes(S,b))
S = collapse(S)

}

This second version raises the mathematical question of the speed with
which it will terminate (as a function of ε). I.e., when does the concept and
attribute formation process converge, and how fast? This will surely depend
on the clustering algorithm involved.





Section XI
Integrative Learning





Chapter 39
Dimensional Embedding

39.1 Introduction

Among the many key features of the human brain omitted by typical formal
neural network models, one of the foremost is the brain’s three-dimensionality.
The brain is not just a network of neurons arranged as an abstract graph;
it’s a network of neurons arranged in three-dimensional space, and making
use of this three-dimensionality directly and indirectly in various ways and
for various purposes. The somatosensory cortex contains a geometric map re-
flecting, approximatively, the geometric structure of parts of the body. Visual
cortex uses the 2D layout of cortical sheets to reflect the geometric structure
of perceived space; motion detection neurons often fire in the actual phys-
ical direction of motion, etc. The degree to which the brain uses 2D and
3D geometric structure to reflect conceptual rather than perceptual or mo-
toric knowledge is unclear, but we suspect considerable. One well-known idea
in this direction is the "self-organizing map" or Kohonen net [?], a highly
effective computer science algorithm that performs automated classification
and clustering via projecting higher-dimensional (perceptual, conceptual or
motoric) vectors into a simulated 2D sheet of cortex.

It’s not clear that the exploitation of low-dimensional geometric structure
is something an AGI system necessarily must support – there are always
many different approaches to any aspect of the AGI problem. However, the
brain does make clear that exploitation of this sort of structure is a powerful
way to integrate various useful heuristics. In the context of mind-world corre-
spondence theory, there seems clear potential value in having a mind mirror
the dimensional structure of the world, at some level of approximation.

It’s also worth emphasizing that the brain’s 3D structure has minuses
as well as plusses – one suspects it complexities and constrains the brain,
along with implicitly suggesting various useful heuristics. Any mathematical
graph can be represented in 3 dimensions without links crossing (unlike in
2 dimensions), but that doesn’t mean the representation will always be effi-
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cient or convenient – sometimes it may result in conceptually related, and/or
frequently interacting, entities being positioned far away from each other ge-
ometrically. Coupled with noisy signaling methods such as the brain uses,
this sometime lack of alignment between conceptual/pragmatic and geomet-
ric structure can lead to various sorts of confusion (i.e. when neuron A sends
a signal to physical distant neurons B, this may cause various side-effects
along the path, some of which wouldn’t happen if A and B were close to each
other).

In the context of CogPrime , the most extreme way to incorporate a brain-
like 3D structure would be to actually embed an Atomspace in a bounded 3D
region. Then the Atomspace would be geometrically something like a brain,
but with abstract nodes and links (some having explicit symbolic content)
rather than purely sub symbolic neurons. This would not be a ridiculous
thing to do, and could yield interesting results. However, we are unsure this
would be an optimal approach. Instead we have opted for a more moderate
approach: couple the non-dimensional Atomspace with a dimensional space,
containing points corresponding to Atoms. That is, we perform an embedding
of Atoms in the OpenCog AtomSpace into n-dimensional space – a judicious
transformation of (hyper)graphs into vectors.

This embedding has applications to PLN inference control, and to the
guidance of instance generation in PEPL learning of Combo trees. It is also,
in itself, a valuable and interesting heuristic for sculpting the link topology of a
CogPrime AtomSpace. The basic dimensional embedding algorithm described
here is fairly simple and not original to CogPrime , but it has not previously
been applied in any similar context.

The intuition underlying this approach is that there are some cases (e.g.
PLN control, and PEPL guidance) where dimensional geometry provides a
useful heuristic for constraining a huge search space, via providing a com-
pact way of storing a large amount of information. Dimensionally embedding
Atoms lets CogPrime be dimensional like the brain when it needs to be,
yet with the freedom of nondimensionality the rest of the time. This dual
strategy is one that may be of value for AGI generally beyond the CogPrime
design, and is somewhat related to (though different in detail from) the way
the CLARION cognitive architecture [SZ04] maps declarative knowledge into
knowledge appropriate for its neural net layer.

There is an obvious way to project CogPrime Atoms into n-dimensional
space, by assigning each Atom a numerical vector based on the weights of its
links. But this is not a terribly useful approach, because the vectors obtained
in this way will live, potentially, in millions- or billions-dimensional space.
The approach we describe here is a bit different. We are defining more specific
embeddings, each one based on a particular link type or set of link types. And
we are doing the embedding into a space whose dimensionality is high but not
too high, e.g. n=50. This moderate dimensional space could then be projected
down into a lower dimensional space, like a 3D space, if needed.
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The philosophy underlying the ideas proposed here is similar to that
underlying Principal Components Analysis (PCA) in statistics [?]. The n-
dimensional spaces we define here, like those used in PCA or LSI (for Latent
Semantic Indexing [LMDK07]), are defined by sets of orthogonal concepts
extracted from the original space of concepts. The difference is that PCA
and LSI work on spaces of entities defined by feature vectors, whereas the
methods described here work for entities defined as nodes in weighted graphs.
There is no precise notion of orthogonality for nodes in a weighted graph, but
one can introduce a reasonable proxy.

39.2 Link Based Dimensional Embedding

In this section we define the type of dimensional embedding that we will be
talking about. For concreteness we will speak in terms of CogPrime nodes
and links but the discussion applies much more generally than that.

A link based dimensional embedding is defined as a mapping that maps a
set of CogPrime Atoms into points in an n-dimensional real space, by:

• mapping link strength into coordinate values in an embedding space, and
• representing nodes as points in this embedding space, using the coordi-

nate values defined by the strengths of their links.

In the usual case, a dimensional embedding is formed from links of a sin-
gle type, or from links whose types are very closely related (e.g. from all
symmetrical logical links).

Mapping all the link strengths of the links of a given type into coordinate
values in a dimensional space is a simple, but not a very effective strategy.
The approach described here is based on strategically choosing a subset of
particular links and forming coordinate values from them. The choice of links
is based on the desire for a correspondence between the metric structure of
the embedding space, and the metric structure implicit in the weights of the
links of the type being embedded. The basic idea of metric preservation is
depicted in Figure 39.1.

More formally, let proj(A) denote the point in Rn corresponding to the
Atom A. Then if, for example, we are doing an embedding based on Similar-
ityLinks, we want there to be a strong correlation (or rather anticorrelation)
between:
(SimilarityLink A B).tv.s

and

dE(proj(A), proj(B))

where dE denotes the Euclidean distance on the embedding space. This is
a simple case because SimilarityLink is symmetric. Dealing with asymmetric
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Fig. 39.1 Metric-Preserving Dimensional Embedding. The basic idea of the sort of
embedding described here is to map Atoms into numerical vectors, in such a way that, on
average, distance between Atoms roughly correlates with distance between corresponding
vectors. (The picture shows a 3D embedding space for convenience, but in reality the
dimension of the embedding space will generally be much higher.)

links like InheritanceLinks is a little subtler, and will be done below in the
context of inference control.

Larger dimensions generally allow greater correlation, but add complexity.
If one chooses the dimensionality equal to the number of nodes in the graph,
there is really no point in doing the embedding. On the other hand, if one
tries to project a huge and complex graph into 1 or 2 dimensions, one is
bound to lose a lot of important structure. The optimally useful embedding
will be into a space whose dimension is large but not too large.

For internal CogPrime inference purposes, we should generally use a mod-
erately high-dimensional embedding space, say n=50 or n=100.



39.3 Harel and Koren’s Dimensional Embedding Algorithm 731

39.3 Harel and Koren’s Dimensional Embedding
Algorithm

Our technique for embedding CogPrime Atoms into high-dimensional space is
based on an algorithm suggested by David Harel and Yehuda Koren [HK02].
Their work is concerned with visualizing large graphs, and they propose a
two-phase approach:

1. embed the graph into a high-dimensional real space
2. project the high-dimensional points into 2D or 3D space for visualization

In CogPrime , we don’t always require the projection step (step 2); our focus
is on the initial embedding step. Harel and Koren’s algorithm for dimensional
embedding (step 1) is directly applicable to the CogPrime context.

Of course this is not the only embedding algorithm that would be reason-
able to use in an CogPrime context; it’s just one possibility that seems to
make sense.

Their algorithm works as follows.
Suppose one has a graph with symmetric weighted links. Further, assume

that between any two nodes in the graph, there is a way to compute the
weight that a link between those two nodes would have, even if the graph in
fact doesn’t contain a link between the two nodes.

In the CogPrime context, for instance, the nodes of the graph may be
ConceptNodes, and the links may be SimilarityLinks. We will discuss the
extension of the approach to deal with asymmetric links like InheritanceLinks,
later on.

Let n denote the dimension of the embedding space (e.g. n = 50). We wish
to map graph nodes into points in Rn, in such a way that the weight of the
graph link between A and B correlates with the distance between proj(A)
and proj(B) in Rn.

39.3.1 Step 1: Choosing Pivot Points

Choose n “pivot points” that are roughly uniformly distributed across the
graph.

To do this, one chooses the first pivot point at random and then iteratively
chooses the i’th point to be maximally distant from the previous (i−1) points
chosen.

One may also use additional criteria to govern the selection of pivot points.
In CogPrime , for instance, we may use long-term stability as a secondary
criterion for selecting Atoms to serve as pivot points. Greater computational
efficiency is achieved if the pivot-point Atoms don’t change frequently.
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39.3.2 Step 2: Similarity Estimation

Estimate the similarity between each Atom being projected, and the n pivot
Atoms.

This is expensive. However, the cost is decreased somewhat in the Cog-
Prime case by caching the similarity values produced in a special table (they
may not be important enough otherwise to be preserved in CogPrime ). Then,
in cases where neither the pivot Atom nor the Atom being compared to it
have changed recently, the cached value can be reused.

39.3.3 Step 3: Embedding

Create an n-dimensional space by assigning a coordinate axis to each pivot
Atom. Then, for an Atom i, the i’th coordinate value is given by its similarity
to the i’th pivot Atom.

After this step, one has transformed one’s graph into a collection of n-
dimensional vectors. WIKISOURCE:EmbeddingBasedInference

39.4 Embedding Based Inference Control

One important application for dimensional embedding in CogPrime is to help
with the control of

• Logical inference
• Direct evaluation of logical links

We describe how it can be used specifically to stop the CogPrime system
from continually trying to make the same unproductive inferences.

To understand the problem being addressed, suppose the system tries to
evaluate the strength of the relationship

SimilarityLink foot toilet

Assume that no link exists in the system representing this relationship.
Here “foot” and “toilet” are hypothetical ConceptNodes that represent as-

pects of the concepts of foot and toilet respectively. In reality these concepts
might well be represented by complex maps rather than individual nodes.

Suppose the system determines that the strength of this Link is very close
to zero. Then (depending on a threshold in the MindAgent), it will probably
not create a SimilarityLink between the “foot” and “toilet” nodes.

Now, suppose that a few cycles later, the system again tries to evaluate
the strength of the same Link,
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SimilarityLink foot toilet

Again, very likely, it will find a low strength and not create the Link at
all.

The same problem may occur with InheritanceLinks, or any other (first or
higher order) logical link type.

Why would the system try, over and over again, to evaluate the strength of
the same nonexistent relationship? Because the control strategies of the cur-
rent forward-chaining inference and pattern mining MindAgents are simple
by design. These MindAgents work by selecting Atoms from the AtomTable
with probability proportional to importance, and trying to build links be-
tween them. If the foot and toilet nodes are both important at the same
time, then these MindAgents will try to build links between them - regard-
less of how many times they’ve tried to build links between these two nodes
in the past and failed.

How do we solve this problem using dimensional embedding? Generally:

• one will need a different embedding space for each link type for which
one wants to prevent repeated attempted inference of useless relation-
ships. Sometimes, very closely related link types might share the same
embedding space; this must be decided on a case-by-case basis.
• in the embedding space for a link type L, one only embeds Atoms of a

type that can be related by links of type L

It is too expensive to create a new embedding very often. Fortunately, when
a new Atom is created or an old Atom is significantly modified, it’s easy to
reposition the Atom in the embedding space by computing its relationship
to the pivot Atoms. Once enough change has happened, however, new pivot
Atoms will need to be recomputed, which is a substantial computational
expense. We must update the pivot point set every N cycles, where N is large;
or else, whenever the total amount of change in the system has exceeded a
certain threshold.

Now, how is this embedding used for inference control? Let’s consider the
case of similarity first. Quite simply, one selects a pair of Atoms (A,B) for
SimilarityMining (or inference of a SimilarityLink) based on some criterion
such as, for instance:
importance(A) * importance(B) * simproj(A,B)

where
distproj(A,B) = dE( proj(A) , proj(B) )

simproj = 2-c*distproj

and c is an important tunable parameter.
What this means is that, if A and B are far apart in the SimilarityLink

embedding space, the system is unlikely to try to assess their similarity.
There is a tremendous space efficiency of this approach, in that, where

there are N Atoms and m pivot Atoms, Nˆ2 similarity relationships are being
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approximately stored in m*N coordinate values. Furthermore, the cost of
computation is m*N times the cost of assessing a single SimilarityLink. By
accepting crude approximations of actual similarity values, one gets away
with linear time and space cost.

Because this is just an approximation technique, there are definitely going
to be cases where A and B are not similar, even though they’re close together
in the embedding space. When such a case is found, it may be useful for
the AtomSpace to explicitly contain a low-strength SimilarityLink between
A and B. This link will prevent the system from making false embedding-
based decisions to explore (SimilarityLink A B) in the future. Putting explicit
low-strength SimilarityLinks in the system in these cases, is obviously much
cheaper than using them for all cases.

We’ve been talking about SimilarityLinks, but the approach is more
broadly applicable. Any symmetric link type can be dealt with about the
same way. For instance, it might be useful to keep dimensional embedding
maps for

• SimilarityLink
• ExtensionalSimilarityLink
• EquivalenceLink
• ExtensionalEquivalenceLink

On the other hand, dealing with asymmetric links in terms of dimensional
embedding requires more subtlety – we turn to this topic below.

39.5 Dimensional Embedding and InheritanceLinks

Next, how can we use dimensional embedding to keep an approximate record
of which links do not inherit from each other? Because inheritance is an asym-
metric relationship, whereas distance in embedding spaces is a symmetrical
relationship, there’s no direct and simple way to do so.

However, there is an indirect approach that solves the problem, which in-
volves maintaining two embedding spaces, and combining information about
them in an appropriate way. In this subsection, we’ll discuss an approach
that should work for InheritanceLink, SubsetLink, ImplicationLink, and Ex-
tensionalImplicationLink and other related link types. But we’ll explicitly
present it only for the InheritanceLink case.

Although the embedding algorithm described above was intended for sym-
metric weighted graphs, in fact we can use it for asymmetric links in just
about the same way. The use of the embedding graph for inference control
differs, but not the basic method of defining the embedding.

In the InheritanceLink case, we can define pivot Atoms in the same way,
and then we can define two vectors for each Atom A:
proj_{parent}(A)_i = (InheritanceLink A A_i).tv.s
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proj_{child}(A)_i = (InheritanceLink A_i A).tv.s

where Ai is the i’th pivot Atom.
If generally projchild(A)i ≤ projchild(B)i then qualitatively “children of A

are children of B”; and if generally projparent(A)i ≥ projparet(B)i then qual-
itatively “parents of B are parents of A”. The combination of these two condi-
tions means heuristically that (Inheritance A B) is likely. So, by combining
the two embedding vectors assigned to each Atom, one can get heuristic
guidance regarding inheritance relations, analogous to the case with similar-
ity relationships. One may produce mathematical formulas estimating the
error of this approach under appropriate conditions, but in practice it will
depend on the probability distribution of the vectors.





Chapter 40
Mental Simulation and Episodic memory

40.1 Introduction

This brief chapter deals with two important, coupled cognitive components
of CogPrime : the component concerned with creating internal simulations of
situations and episodes in the external physical world, and the one concerned
with storing and retrieving memories of situations and episodes.

This are components that are likely significantly different in CogPrime
from anything that exists in the human brain, yet, the functions they carry
out are obviously essential to human cognition (perhaps more so to human
cognition than to CogPrime ’s cognition, because CogPrime is by design more
reliant on formal reasoning than the human brain is).

Much of human thought consists of internal, quasi-sensory “imaging” of
the external physical world – and much of human memory takes place of re-
membering autobiographical situations and episodes from daily life, or from
stories heard from others or absorbed via media. Often this episodic remem-
bering takes the form of visualization, but not always. Blind people generally
think and remember in terms of non-visual imagery, and many sighted people
think in terms of sounds, tastes or smells in addition to visual images.

So far, the various mechanisms proposed as part of CogPrime do not
have much to do with either internal imagery or episodic remembering, even
though both seem to play a large role in human thought. This is OK, of
course, since CogPrime is not intended as a simulacrum of human thought,
but rather as a different sort of intelligence.

However, we believe it will actually be valuable to CogPrime to incorporate
both of these factors. And for that purpose, we propose

• a novel mechanism: the incorporation within the CogPrime system of a
3D physical-world simulation engine.
• an episodic memory store centrally founded on dimensional embedding,

and linked to the internal simulation model
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40.2 Internal Simulations

The current use of virtual worlds for OpenCog is to provide a space in which
human-controlled agents and CogPrime -controlled agents can interact, thus
allowing flexible instruction of the CogPrime system by humans, and flexi-
ble embodied, grounded learning by CogPrime systems. But this very same
mechanism may be used internally to CogPrime , i.e. a CogPrime system may
be given an internal simulation world, which serves as a sort of “mind’s eye.”
Any sufficiently flexible virtual world software may be used for this purpose,
for example OpenSim (http:\opensim.org).

Atoms encoding percepts may be drawn from memory and used to generate
forms within the internal simulation world. These forms may then interact
according to

• the patterns via which they are remembered to act
• the laws of physics, as embodied in the simulation world

This allows a kind of “implicit memory,” in that patterns emergent from
the world-embedded interaction of a number of entities need not explicitly
be stored in memory, so long as they will emerge when the entities are re-
awakened within the internal simulation world.

The SimulatorMindAgent grabs important perceptual Atoms and uses
them to generate forms within the internal simulation world, which then
act according to remembered dynamical patterns, with the laws of physics
filling in the gaps in memory. This provides a sort of running internal vi-
sualization of the world. Just as important, however, are specific schemata
that utilize visualization in appropriate contexts. For instance, if reasoning
is having trouble solving a problem related to physical entities, it may feed
these entities to the internal simulation world to see what can be discovered.
Patterns discovered via simulation can then be fed into reasoning for further
analysis.

The process of perceiving events and objects in the simulation world is
essentially identical to the process of perceiving events and objects in the
“actual” world.

And of course, an internal simulation world may be used whether the
CogPrime system in question is hooked up to a virtual world like OpenSim,
or to a physical robot.

Finally, perhaps the most interesting aspect of internal simulation is the
generation of “virtual perceptions” from abstract concepts. Analogical rea-
soning may be used to generate virtual perceptions that were never actually
perceived, and these may then be visualized. The need for “reality discrimi-
nation” comes up here, and is easier to enforce in CogPrime than in humans.
A PerceptNode that was never actually perceived may be explicitly embed-
ded in a HypotheticalLink, thus avoiding the possibility of confusing virtual
percepts with actual ones. How useful the visualization of virtual perceptions
will be to CogPrime cognition, remains to be seen. This kind of visualization

http:\opensim.org
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is key to human imagination but this doesn’t mean it will play the same role
in CogPrime ’s quite different cognitive processes. But it is important that
CogPrime has the power to carry out this kind of imagination.

40.3 Episodic Memory

Episodic memory refers to the memory of our own "life history" that each of
us has. Loss of this kind of memory is the most common type of amnesia in
fiction – such amnesia is particularly dramatic because our episodic memories
constitute so much of what we consider as our "selves." To a significant
extent, we as humans remember, reason and relate in terms of stories – and
the centerpiece of our understanding of stories is our episodic memory. A
CogPrime system need not be as heavily story-focused as a typical human
being (though it could be, potentially) – but even so, episodic memory is a
critical component of any CogPrime system controlling an agent in a world.

The core idea underlying CogPrime ’s treatment of episodic memory is
a simple one: two dimensional embedding spaces dedicated to episodes. An
episode – a coherent collection of happenings, often with causal interrela-
tionships, often (but not always) occurring near the same spatial or temporal
locations as each other – may be represented explicitly as an Atom, and im-
plicitly as a map whose key is that Atom. These episode-Atoms may then be
mapped into two dedicated embedding spaces:

• one based on a distance metric determined by spatiotemporal proximity
• one based on a distance metric determined by semantic similarity

A story is then a series of episodes – ideally one that, if the episodes in the
series become important sequentially in the AtomSpace, causes a significant
emotional response in the system. Stories may also be represented as Atoms,
in the simplest case consisting of SequentialAND links joining episode-Atoms.
Stories then correspond to paths through the two episodic embedding spaces.
Each path through each embedding space implicitly has a sort of "halo" in
the space – visualizable as a tube snaking through the space, centered on
the path. This tube contains other paths – other stories – that related to the
given center story, either spatiotemporally or semantically.

The familiar everyday human experience of episodic memory may then
be approximatively emulated via the properties of the dimensional embed-
ding space. For instance, episodic memory is famously associative – when we
think of one episode or story, we think of others that are spatiotemporally or
semantically associated with it. This emerges naturally from the embedding
space approach, due to the natural emergence of distance-based associative
memory in an embedding space.

Figures 40.1 and 40.2 roughly illustrates the link between episodic/per-
ceptual and declarative memory.
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Fig. 40.1 Relationship Between Episodic, Declarative and Perceptual Mem-
ory. The nodes and links at the bottom depict declarative memory stored in the Atom-
space; the picture at the top illustrates an archetypal episode stored in episodic memory,
and linked to the perceptual hierarchy enabling imagistic simulation.
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Fig. 40.2 Relationship Between Episodic, Declarative and Perceptual Mem-
ory. Another example similar to the one in ??, but referring specifically to events occurring
in an OpenCogPrime -controlled agent’s virtual world.





Chapter 41
Integrative Procedure Learning

41.1 Introduction

"Procedure learning" – learning step-by-step procedures for carrying out in-
ternal or external operations – is a highly critical aspect of general intelli-
gence, and is carried out in CogPrime via a complex combination of methods.
This somewhat heterogeneous chapter reviews several advanced aspects of
procedure learning in CogPrime , mainly having to do with the integration
between different cognitive processes.

In terms of general cognitive theory and mind-world correspondence, this
is some of the subtlest material in the book. We are not concerned just with
how the mind’s learning of one sort of knowledge correlated with the way
this sort of knowledge is structured in the mind’s habitual environments, in
the context of its habitual goals. Rather, we are concerned with how vari-
ous sorts of knowledge intersect and interact with each other. The proposed
algorithmic intersections between, for instance, declarative and procedural
learning processes, are reflective of implicit assumptions about how declara-
tive and procedural knowledge are presented in the world in the context of
the system’s goals – but these implicit assumptions are not always easy to
tease out and state in a compact way. We will do our best to highlight these
assumptions as they arise throughout the chapter.

Key among these assumptions, however, are that a human-like mind

• is presented with various procedure learning problems at various levels
of difficulty (so that different algorithms may be appropriate depending
on the difficulty level). This leads for instance to the possibility of using
various different algorithms like MOSES or hill climbing, for different
procedure learning problems.

• is presented with some procedure learning problems that may be han-
dled in a relatively isolated way, and others that are extremely heavily
dependent on context, often in a way that recurs across multiple learning
instances in similar contexts. This leads to a situations where the value of

743
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bringing declarative (PLN) and associative (ECAN) and episodic knowl-
edge into the procedure learning process, has varying value depending on
the situation.

• is presented with a rich variety of procedure learning problems with com-
plex interrelationships, including many problems that are closely related
to previously solved problems in various ways. This highlights the value
of using PLN analogical reasoning, and importance spreading along Heb-
bianLinks learned by ECAN, to help guide procedure learning in various
ways.

• needs to learn some procedures whose execution may be carried out in
a relatively isolated way, and other procedures whose execution requires
intensive ongoing interaction with other cognitive processes

The diversity of procedure learning situations reflected in these assumptions,
leads naturally to the diversity of technical procedure learning approaches
described in this chapter. Potentially one could have a single, unified algo-
rithm covering all the different sorts of procedure learning, but instead we
have found it more practical to articulate a small number of algorithms which
are then combined in different ways to yield the different kinds of procedure
learning.

41.1.1 The Diverse Technicalities of Procedure Learning
in CogPrime

On a technical level, this chapter discusses two closely related aspects of
CogPrime : schema learning and predicate learning, which we group under
the general category of “procedure learning.”

Schema learning - the learning of SchemaNodes and schema maps (ex-
plained further in the Chapter 42) - is CogPrime lingo for learning how to
do things. Learning how to act, how to perceive, and how to think - beyond
what’s explicitly encoded in the system’s MindAgents. As an advanced Cog-
Prime system becomes more profoundly self-modifying, schema learning will
drive more and more of its evolution.

Predicate learning, on the other hand, is the most abstract and general
manifestation of pattern recognition in the CogPrime system. PredicateN-
odes, along with predicate maps, are CogPrime ’s way of representing general
patterns (general within the constraints imposed by the system parameters,
which in turn are governed by hardware constraints). Predicate evolution,
predicate mining and higher-order inference - specialized and powerful forms
of predicate learning - are the system’s most powerful ways of creating general
patterns in the world and in the mind. Simpler forms of predicate learning
are grist for the mill of these processes.
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It may be useful to draw an analogy with another (closely related) very
hard problem in CogPrime , discussed in the PLN book: probabilistic logical
unification, which in the CogPrime /PLN framework basically comes down to
finding the SatisfyingSets of given predicates. Hard logical unification prob-
lems can often be avoided by breaking down large predicates into small ones
in strategic ways, guided by non-inferential mind processes, and then doing
unification only on the smaller predicates. Our limited experimental experi-
ence indicates that the same “hierarchical breakdown” strategy also works for
schema and predicate learning, to an extent. But still, as with unification,
even when one does break down a large schema or predicate learning problem
into a set of smaller problems, one is still in most cases left with a set of fairly
hard problems.

More concretely, CogPrime procedure learning may be generally decom-
posed into three aspects:

1. Converting back and forth between maps and ProcedureNodes (encapsu-
lation and expansion)

2. Learning the Combo Trees to be embedded in grounded ProcedureNodes
3. Learning procedure maps (networks of grounded ProcedureNodes acting

in a coordinated way to carry out procedures)

Each of these three aspects of CogPrime procedure learning mentioned above
may be dealt with somewhat separately, though relying on largely overlapping
methods.

CogPrime approaches these problems using a combination of techniques:

• Evolutionary procedure learning and hillclimbing for dealing with brand
new procedure learning problems, requiring the origination of innovative,
highly approximate solutions out of the blue

• Inferential procedure learning for taking approximate solutions and mak-
ing them exact, and for dealing with procedure learning problems within
domains where closely analogous procedure learning problems have pre-
viously been solved

• Heuristic, probabilistic data mining for the creation of encapsulated pro-
cedures (which then feed into inferential and evolutionary procedure
learning), and the expansion of encapsulated procedures into procedure
maps

• PredictiveImplicationLink formation (augmented by PLN inference on
such links) as a CogPrime version of goal-directed reinforcement learning

Using these different learning methods together, as a coherently-tuned whole,
one arrives at a holistic procedure learning approach that combines specu-
lation, systematic inference, encapsulation and credit assignment in a single
adaptive dynamic process.

We are relying on a combination of techniques to do what none of the
techniques can accomplish on their own. The combination is far from arbi-
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trary, however. As we will see, each of the techniques involved plays a unique
and important role.

41.1.1.1 Comments on an Alternative Representational Approach

We briefly pause to contrast certain technical aspects of the present approach
to analogous aspects of the Webmind AI Engine (one of CogPrime ’s prede-
cessor AI systems, briefly discussed above). This predecessor system used
a knowledge representation somewhat similar to the Atomspace, but with
various differences; for instance the base types were Node and Link rather
than Atom, and there was a Node type not used in CogPrime called the
SchemaInstanceNode (each one corresponding to a particular instance of a
SchemaNode, used within a particular procedure).

In this approach, complex, learned schema were represented as distributed
networks of elementary SchemaInstanceNodes, but these networks were not
defined purely by function application - they involved explicit passing of vari-
able values through VariableNodes. Special logic-gate-bearing objects were
created to deal with the distinction between arguments of a SchemaInstan-
ceNode, and predecessor tokens giving a SchemaInstanceNode permission to
act.

While this approach is in principle workable, it proved highly complex in
practice, and for the Novamente Cognition Engine and CogPrime we chose
to store and manipulate procedural knowledge separately from declarative
knowledge (via Combo trees).

41.2 Preliminary Comments on Procedure Map
Encapsulation and Expansion

Like other knowledge in CogPrime , procedures may be stored in either a
localized (Combo tree) or globalized (procedure map) manner, with the dif-
ferent approaches being appropriate for different purposes. Activation of a
localized procedure may spur activation of a globalized procedure, and vice
versa – so on the overall mind-network level the representation of procedures
is heavily "glocal."

One issue that looms large in this context is the conversion between local-
ized and globalized procedures – i.e., in CogPrime lingo, the encapsulation
and expansion of procedure maps. This matter will be considered in more
detail in Chapter 42 but here we briefly review some key ideas.

Converting from grounded ProcedureNodes into maps is a relatively sim-
ple learning problem: one enacts the procedure, observes which Atoms are
active at what times during the enaction process, and then creating Predic-
tiveImplicationLinks between the Atoms active at a certain time and those
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active at subsequent times. Generally it will be necessary to enact the pro-
cedure multiple times and with different inputs, to build up the appropriate
library of PredictiveImplicationLinks.

Converting from maps into ProcedureNodes is significantly trickier. First,
it involves carrying out data mining over the network of ProcedureNodes,
identifying subnetworks that are coherent schema or predicate maps. Then
it involves translating the control structure of the map into explicit logical
form, so that the encapsulated version will follow the same order of execution
as the map version. This is an important case of the general process of map
encapsulation, to be discussed in Chapter 42

Next, the learning of grounded ProcedureNodes is carried out by a syner-
gistic combination of multiple mechanisms, including pure procedure learn-
ing methods like hillclimbing and evolutionary learning, and logical inference.
These two approaches have quite different characteristics. Evolutionary learn-
ing and hillclimbing excel at confronting a problem that the system has no
clue about, and arriving at a reasonably good solution in the form of a schema
or predicate. Inference excels at deploying the system’s existing knowledge
to form useful schemata or predicates. The choice of the appropriate mech-
anism for a given problem instance depends largely on how much relevant
knowledge is available.

A relatively simple case of ProcedureNode learning is where one is given a
ConceptNode and wants to find a ProcedureNode matching it. For instance,
given a ConceptNode C, one may wish to find the simplest possible predicate
whose corresponding PredicateNode P satisfies

SatisfyingSet(P) = C

On the other hand, given a ConceptNode C involved in inferred Execution-
Links of the form

ExecutionLink C Ai Bi
i=1,...,n

one may wish to find a SchemaNode so that the corresponding SchemaNode
will fulfill this same set of ExecutionLinks. It may seem surprising at first
that a ConceptNode might be involved with ExecutionLinks, but remember
that a function can be seen as a set of tuples (ListLink in CogPrime ) where
the first elements, the inputs of the function, are associated with a unique
output. These kinds of ProcedureNode learning may be cast as optimization
problems, and carried out by hillclimbing or evolutionary programming. Once
procedures are learned via evolutionary programming or other techniques,
they may be refined via inference.

The other case of ProcedureNode learning is goal-driven learning. Here one
seeks a SchemaNode whose execution will cause a given goal (represented by
a Goal Node) to be satisfied. The details of Goal Nodes have already been
reviewed; but all we need to know here is simply that a Goal Node presents an
objective function, a function to be maximized; and that it poses the problem
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of finding schemata whose enaction will cause this function to be maximized
in specified contexts.

The learning of procedure maps, on the other hand, is carried out by rein-
forcement learning, augmented by inference. This is a matter of the system
learning HebbianLinks between ProcedureNodes, as will be described below.

41.3 Predicate Schematization

Now we turn to the process called "predicate schematization," by which
declarative knowledge about how to carry out actions may be translated into
Combo trees embodying specific procedures for carrying out actions. This
process is straightforward and automatic in some cases, but in other cases
requires significant contextually-savvy inference. This is a critical process be-
cause some procedure knowledge – especially that which is heavily dependent
on context in either its execution or its utility – will be more easily learned
via inferential methods than via pure procedure-learning methods. But, even
if a procedure is initially learned via inference (or is learned by inference
based on cruder initial guesses produced by pure procedure learning meth-
ods), it may still be valuable to have this procedure in compact and rapidly
executable form such as Combo provides.

To proceed with the technical description of predicate schematization in
CogPrime , we first need the notion of an “executable predicate”. Some predi-
cates are executable in the sense that they correspond to executable schemata,
others are not. There are executable atomic predicates (represented by in-
dividual PredicateNodes), and executable predicates (which are link struc-
tures). In general, a predicate may be turned into a schema if it is an atomic
executable predicate, or if it is a compound link structure that consists en-
tirely of executable atomic predicates (e.g. pick_up, walk_to, can_do, etc.)
and temporal links (e.g. SimultaneousAND, PredictiveImplication, etc.)

Records of predicate execution may then be made using ExecutionLinks,
e.g.

ExecutionLink pick_up ( me, ball_7)

is a record of the fact that the schema corresponding to the pick_up predicate
was executed on the arguments (me, ball_7).

It is also useful to introduce some special (executable) predicates related
to schema execution:

• can_do, which represents the system’s perceived ability to do something
• do, which denotes the system actually doing something; this is used to

mark actions as opposed to perceptions
• just_done, which is true of a schema if the schema has very recently been

executed.
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The general procedure used in figuring out what predicates to schematize, in
order to create a procedure achieving a certain goal, is: Start from the goal
and work backwards, following PredictiveImplications and EventualPredic-
tiveImplications and treating can_do’s as transparent, stopping when you
find something that can currently be done, or else when the process dwindles
due to lack of links or lack of sufficiently certain links.

In this process, an ordered list of perceptions and actions will be created.
The Atoms in this perception/action-series (PA-series) are linked together
via temporal-logical links.

The subtlety of this process, in general, will occur because there may be
many different paths to follow. One has the familiar combinatorial explosion
of backward-chaining inference, and it may be hard to find the best PA-series
among all the mess. Experience-guided pruning is needed here just as with
backward-chaining inference.

Specific rules for translating temporal links into executable schemata, used
in this process, are as follows. All these rule-statements assume that B is in
the selected PA-series. All node variables not preceded by do or can_do are
assumed to be perceptions. The → denotes the transformation from predi-
cates to executable schemata.

EventualPredictiveImplicationLink (do A) B

→
Repeat (do A) Until B

EventualPredictiveImplicationLink (do A) (can_do B)

→
Repeat

do A
do B

Until
Evaluation just_done B

the understanding being that the agent may try to do B and fail, and then
try again the next time around the loop

PredictiveImplicationLink (do A) (can_do B) <time-lag T>

→
do A
wait T
do B

SimultaneousImplicationLink A (can_do B)

→
if A then do B
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SimultaneousImplicationLink (do A) (can_do B)

→
do A
do B

PredictiveImplicationLink A (can_do B)

→
if A then do B

SequentialAndLink A1 ... An

→
A1
...
An

SequentialAndLink A1 ... An <time_lag T>

→
A1
Wait T
A2
Wait T
...
Wait T
An

SimultaneousANDLink A1 ? An

→
A1
...
An

Note how all instances of can_do are stripped out upon conversion from
predicate to schema, and replaced with instances of do.

41.3.1 A Concrete Example

For a specific example of this process, consider the knowledge that: “If I walk
to the teacher while whistling, and then give the teacher the ball, I’ll get
rewarded.”

This might be represented by the predicates
walk to the teacher while whistling
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A_1 :=
SimultaneousAND

do Walk_to
ExOutLink locate teacher

EvaluationLink do whistle

If I walk to the teacher while whistling, eventually I will be next to the teacher
EventualPredictiveImplication

A_1
Evaluation next_to teacher

While next to the teacher, I can give the teacher the ball
SimultaneousImplication

EvaluationLink next_to teacher
can_do

EvaluationLink give (teacher, ball)

If I give the teacher the ball, I will get rewarded
PredictiveImplication

just_done
EvaluationLink done give (teacher, ball)

Evaluation reward

Via goal-driven predicate schematization, these predicates would become
the schemata
walk toward the teacher while whistling
Repeat:

do WalkTo
ExOut locate teacher

do Whistle
Until:

next_to(teacher, ball)

if next to the teacher, give the teacher the ball
If:

Evaluation next_to teacher
Then

do give(teacher, ball)

Carrying out these two schemata will lead to the desired behavior of walking
toward the teacher while whistling, and then giving the teacher the ball when
next to the teacher.

Note that, in this example:

• The walk_to, whistle, locate and give used in the example schemata are
procedures corresponding to the executable predicates walk_to, whistle,
locate and give used in the example predicates
• Next_to is evaluated rather than executed because (unlike the other

atomic predicates in the overall predicate being made executable) it has
no “do” or “can_do” next to it
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41.4 Concept-Driven Schema and Predicate Creation

In this section we will deal with the “conversion” of ConceptNodes into Sche-
maNodes or PredicateNodes. The two cases involve similar but nonidentical
methods; we will begin with the simpler PredicateNode case. Conceptually,
the importance of this should be clear: sometimes knowledge may be gained
via concept-learning or linguistic means, but yet may be useful to the mind in
other forms, e.g. as executable schema or evaluable predicates. For instance,
the system may learn conceptually about bicycle-riding, but then may also
want to learn executable procedures allowing it to ride a bicycle. Or it may
learn conceptually about criminal individuals, but may then want to learn
evaluable predicates allowing it to quickly evaluate whether a given individual
is a criminal or not.

41.4.1 Concept-Driven Predicate Creation

Suppose we have a ConceptNode C, with a set of links of the form
MemberLink A_i C, i=1,...,n

Our goal is to find a PredicateNode so that firstly,
MemberLink X C

is equivalent to

X ’’within’’ SatisfyingSet(P)

and secondly,
P is as simple as possible

This is related to the “Occam’s Razor,” Solomonoff induction related
heuristic to be presented later in this chapter.

We now have an optimization problem: search the space of predicates for
P that maximize the objective function f(P,C), defined as for instance

f(P,C) = cp(P )× r(C,P )

where cp(P ), the complexity penalty of P , is a positive function that decreases
when P gets larger and with r(C,P ) =
GetStrength

SimilarityLink
C
SatisfyingSet(P)

This is an optimization problem over predicate space, which can be solved
in an approximate way by the evolutionary programming methods described
earlier.
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The ConceptPredicatization MindAgent selects ConceptNodes based on

• Importance
• Total (truth value based) weight of attached MemberLinks and Evalua-

tionLinks

and launches an evolutionary learning or hillclimbing task focused on learning
predicates based on the nodes it selects.

41.4.2 Concept-Driven Schema Creation

In the schema learning case, instead of a ConceptNode with MemberLinks
and EvaluationLinks, we begin with a ConceptNode C with ExecutionLinks.
These ExecutionLinks were presumably produced by inference (the only Cog-
Prime cognitive process that knows how to create ExecutionLinks for non-
ProcedureNodes).

The optimization problem we have here is: search the space of schemata
for S that maximize the objective function f(S,C), defined as follows:

f(S,C) = cp(S)× r(S,C)

Let Q(C) be the set of pairs (X,Y ) so that ExecutionLink C X Y , and

r(S,C) =

GetStrength
SubsetLink

Q(C)
Graph(S)

whereGraph(S) denotes the set of pairs (X,Y ) so that ExecutionLink S X Y ,
where S has been executed over all valid inputs.

Note that we consider a SubsetLink here because in practice C would have
been observed on a partial set of inputs.

Operationally, the situation here is very similar to that with concept pred-
icatization. The ConceptSchematization MindAgent must select ConceptN-
odes based on:

• Importance
• Total (truth value based) weight of ExecutionLinks

and then feed these to evolutionary optimization or hillclimbing.
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41.5 Inference-Guided Evolution of Pattern-Embodying
Predicates

Now we turn to predicate learning – the learning of PredicateNodes, in par-
ticular.

Aside from logical inference and learning predicates to match existing con-
cepts, how does the system create new predicates? Goal-driven schema learn-
ing (via evolution or reinforcement learning) provides one alternate approach:
create predicates in the context of creating useful schema. Pattern mining,
discussed in Chapter 37, provides another. Here we will describe (yet) another
complementary dynamic for predicate creation: pattern-oriented, inference-
guided PredicateNode evolution.

In most general terms, the notion pursued here is to form predicates that
embody patterns in itself and in the world. This brings us straight back
to the foundations of the patternist philosophy of mind, in which mind is
viewed as a system for recognizing patterns in itself and in the world, and
then embodying these patterns in itself. This general concept is manifested
in many ways in the CogPrime design, and in this section we will discuss two
of them:

• Reward of surprisingly probable Predicates
• Evolutionary learning of pattern-embodying Predicates

These are emphatically not the only way pattern-embodying PredicateNodes
get into the system. Inference and concept-based predicate learning also cre-
ate PredicateNodes embodying patterns. But these two mechanisms complete
the picture.

41.5.1 Rewarding Surprising Predicates

The TruthValue of a PredicateNode represents the expected TruthValue ob-
tained by averaging its TruthValue over all its possible legal argument-values.
Some Predicates, however, may have high TruthValue without really being
worthwhile. They may not add any information to their components. We
want to identify and reward those Predicates whose TruthValues actually
add information beyond what is implicit in the simple fact of combining
their components.

For instance, consider the PredicateNode

AND
InheritanceLink X man
InheritanceLink X ugly

If we assume the man and ugly concepts are independent, then this Predi-
cateNode will have the TruthValue
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man.tv.s× ugly.tv.s

In general, a PredicateNode will be considered interesting if:

1. Its Links are important
2. Its TruthValue differs significantly from what would be expected based

on independence assumptions about its components

It is of value to have interesting Predicates allocated more attention than
uninteresting ones. Factor 1 is already taken into account, in a sense: if the
PredicateNode is involved in many Links this will boost its activation which
will boost its importance. On the other hand, Factor 2 is not taken into
account by any previously discussed mechanisms.

For instance, we may wish to reward a PredicateNode if it has a surpris-
ingly large or small strength value. One way to do this is to calculate:

sdiff = |actual strength− strength predicted via independence assumptions|
×weight_of_evidence

and then increment the value:

K × sdiff

onto the PredicateNode’s LongTermImportance value, and similarly incre-
ment STI using a different constant.

Another factor that might usefully be caused to increment LTI is the sim-
plicity of a PredicateNode. Given two Predicates with equal strength, we
want the system to prefer the simpler one over the more complex one. How-
ever, the OccamsRazor MindAgent, to be presented below, rewards simpler
Predicates directly in their strength values. Hence if the latter is in use, it
seems unnecessary to reward them for their simplicity in their LTI values as
well. This is an issue that may require some experimentation as the system
develops.

Returning to the surprisingness factor, consider the PredicateNode repre-
senting

AND
InheritanceLink X cat
EvaluationLink (eats X) fish

If this has a surprisingly high truth value, this means that there are more
X known to (or inferred by) the system, that both inherit from cat and
eat fish, than one would expect given the probabilities of a random X both
inheriting from cat and eating fish. Thus, roughly speaking, the conjunction
of inheriting from cat and eating fish may be a pattern in the world.
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We now see one very clear sense in which CogPrime dynamics implicitly
leads to predicates representing patterns. Small predicates that have surpris-
ing truth values get extra activation, hence are more likely to stick around in
the system. Thus the mind fills up with patterns.

41.5.2 A More Formal Treatment

It is worth taking a little time to clarify the sense in which we have a pattern
in the above example, using the mathematical notion of pattern reviewed in
Chapter 3 of Part 1.

Consider the predicate:

pred1(T).tv
equals

>
GetStrength

AND
Inheritance $X cat
Evaluation eats ($X, fish)

T

where T is some threshold value (e.g. .8). Let B = SatisfyingSet(pred1(T)).
B is the set of everything that inherits from cat and eats fish.

Now we will make use of the notion of basic complexity. If one assumes the
entire AtomSpace A constituting a given CogPrime system as given back-
ground information, then the basic complexity c(B||A) may be considered
as the number of bits required to list the handles of the elements of B, for
lookup in A; whereas c(B) is the number of bits required to actually list the
elements of B. Now, the formula given above, defining the set B, may be
considered as a process P whose output is the set B. The simplicity c(P ||A)
is the number of bits needed to describe this process, which is a fairly small
number. We assume A is given as background information, accessible to the
process.

Then the degree to which P is a pattern in B is given by

1− c(P ||A)/c(B||A)

which, if B is a sizable category, is going to be pretty close to 1.
The key to there being a pattern here is that the relation:

(Inheritance X cat) AND (eats X fish)

has a high strength and also a high count. The high count means that
B is a large set, either by direct observation or by hypothesis (inference).
In the case where the count represents actual pieces of evidence observed
by the system and retained in memory, then quite literally and directly, the
PredicateNode represents a pattern in a subset of the system (relative to the
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background knowledge consisting of the system as a whole). On the other
hand, if the count value has been obtained indirectly by inference, then it is
possible that the system does not actually know any examples of the relation.
In this case, the PredicateNode is not a pattern in the actual memory store
of the system, but it is being hypothesized to be a pattern in the world in
which the system is embedded.

41.6 PredicateNode Mining

We have seen how the natural dynamics of the CogPrime system, with a lit-
tle help from special heuristics, can lead to the evolution of Predicates that
embody patterns in the system’s perceived or inferred world. But it is also
valuable to more aggressively and directly create pattern-embodying Predi-
cates. This does not contradict the implicit process, but rather complements
it. The explicit process we use is called PredicateNode Mining and is carried
out by a PredicateNodeMiner MindAgent.

Define an Atom structure template as a schema expression correspond-
ing to a CogPrime Link in which some of the arguments are replaced with
variables. For instance,

Inheritance X cat

EvaluationLink (eats X) fish

are Atom structure templates. (Recall that Atom structure templates are
important in PLN inference control, as reviewed in 36)

What the PredicateNodeMiner does is to look for Atom structure tem-
plates and logical combinations thereof which

• Minimize PredicateNode size
• Maximize surprisingness of truth value

This is accomplished by a combination of heuristics.
The first step in PredicateNode mining is to find Atom structure templates

with high truth values. This can be done by a fairly simple heuristic search
process.

First, note that if one specifies an (Atom, Link type), one is specifying a
set of Atom structure templates. For instance, if one specifies

(cat, InheritanceLink)

then one is specifying the templates

InheritanceLink $X cat

and

InheritanceLink cat $X
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One can thus find Atom structure templates as follows. Choose an Atom with
high truth value, and then, for each Link type, tabulate the total truth value
of the Links of this type involving this Atom. When one finds a promising
(Atom, Link type) pair, one can then do inference to test the truth value of
the Atom structure template one has found.

Next, given high-truth-value Atom structure templates, the PredicateN-
odeMiner experiments with joining them together using logical connectives.
For each potential combination it assesses the fitness in terms of size and
surprisingness. This may be carried out in two ways:

1. By incrementally building up larger combinations from smaller ones, at
each incremental stage keeping only those combinations found to be valu-
able

2. For large combinations, by evolution of combinations

Option 1 is basically greedy data mining (which may be carried out via
various standard algorithms, as discussed in Chapter 37), which has the ad-
vantage of being much more rapid than evolutionary programming, but the
disadvantage that it misses large combinations whose subsets are not as sur-
prising as the combinations themselves. It seems there is room for both ap-
proaches in CogPrime (and potentially many other approaches as well). The
PredicateNodeMiner MindAgent contains a parameter telling it how much
time to spend on stochastic pattern mining vs. evolution, as well as parame-
ters guiding the processes it invokes.

So far we have discussed the process of finding single-variable Atom struc-
ture templates. But multivariable Atom structure templates may be obtained
by combining single-variable ones. For instance, given
eats $X fish

lives_in $X Antarctica

one may choose to investigate various combinations such as
(eats $X $Y) AND (lives_in $X $Y)

(this particular example will have a predictably low truth value). So, the
introduction of multiple variables may be done in the same process as the
creation of single-variable combinations of Atom structure templates.

When a suitably fit Atom structure template or logical combination thereof
is found, then a PredicateNode is created embodying it, and placed into the
AtomSpace. WIKISOURCE:SchemaMaps

41.7 Learning Schema Maps

Next we plunge into the issue of procedure maps - schema maps in particular.
A schema map is a simple yet subtle thing - a subnetwork of the AtomSpace



41.7 Learning Schema Maps 759

consisting of SchemaNodes, computing some useful quantity or carrying out
some useful process in a cooperative way. The general purpose of schema
maps is to allow schema execution to interact with other mental processes in
a more flexible way than is allowed by compact Combo trees with internal
hooks into the AtomSpace. I.e., to handle cases where procedure execution
needs to be very highly interactive, mediated by attention allocation and
other CogPrime dynamics in a flexible way.

But how can schema maps be learned? The basic idea is simply rein-
forcement learning. In a goal-directed system consisting of interconnected,
cooperative elements, you reinforce those connections and/or those elements
that have been helpful for achieving goals, and weaken those connections that
haven’t. Thus, over time, you obtain a network of elements that achieves goals
effectively.

The central difficulty in all reinforcement learning approaches is the ’as-
signment of credit’ problem. If a component of a system has been directly
useful for achieving a goal, then rewarding it is easy. But if the relevance of a
component to a goal is indirect, then things aren’t so simple. Measuring in-
direct usefulness in a large, richly connected system is difficult - inaccuracies
creep into the process easily.

In CogPrime , reinforcement learning is handled via HebbianLinks, acted
on by a combination of cognitive processes. Earlier, in Chapter 23, we re-
viewed the semantics of HebbianLinks, and discussed two methods for form-
ing HebbianLinks:

1. Updating HebbianLink strengths via mining of the System Activity Table
2. Logical inference on HebbianLinks, which may also incorporate the use of

inference to combine HebbianLinks with other logical links (for instance,
in the reinforcement learning context, PredictiveImplicationLinks)

We now describe how HebbianLinks, formed and manipulated in this manner,
may play a key role in goal-driven reinforcement learning. In effect, what
we will describe is an implicit integration of the bucket brigade with PLN
inference. The addition of robust probabilistic inference adds a new kind of
depth and precision to the reinforcement learning process.

Goal Nodes have an important ability to stimulate a lot of SchemaNode
execution activity. If a goal needs to be fulfilled, it stimulates schemata that
are known to make this happen. But how is it known which schemata tend
to fulfill a given goal? A link:

PredictiveImplicationLink S G

means that after schema S has been executed, goal G tends to be fulfilled. If
these links between goals and goal-valuable schemata exist, then activation
spreading from goals can serve the purpose of causing goal-useful schemata
to become active.

The trick, then, is to use HebbianLinks and inference thereon to implicitly
guess PredictiveImplicationLinks. A HebbianLink between S1 and S says that
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when thinking about S1 was useful in the past, thinking about S was also
often useful. This suggests that if doing S achieves goal G, maybe doing S1
is also a good idea. The system may then try to find (by direct lookup or
reasoning) whether, in the current context, there is a PredictiveImplication
joining S1 to S. In this way Hebbian reinforcement learning is being used as
an inference control mechanism to aid in the construction of a goal-directed
chain of PredictiveImplicationLinks, which may then be schematized into a
contextually useful procedure.

Note finally that this process feeds back into itself in an interesting way,
via contributing to ongoing HebbianLink formation. Along the way, while
leading to the on-the-fly construction of context-appropriate procedures that
achieve goals, it also reinforces the HebbianLinks that hold together schema
maps, sculpting new schema maps out of the existing field of interlinked
SchemaNodes.

41.7.1 Goal-Directed Schema Evolution

Finally, as a complement to goal-driven reinforcement learning, there is also
a process of goal-directed SchemaNode learning. This combines features of
the goal-driven reinforcement learning and concept-driven schema evolution
methods discussed above. Here we use a Goal Node to provide the fitness
function for schema evolution.

The basic idea is that the fitness of a schema is defined by the degree to
which enactment of that schema causes fulfillment of the goal. This requires
the introduction of CausalImplicationLinks, as defined in PLN. In the sim-
plest case, a CausalImplicationLink is simply a PredictiveImplicationLink.

One relatively simple implementation of the idea is as follows. Suppose we
have a Goal Node G, whose satisfaction we desire to have achieved by time
T1. Suppose we want to find a SchemaNode S whose execution at time T2
will cause G to be achieved. We may define a fitness function for evaluating
candidate S by:

f(S,G, T1, T2) = cp(S)× r(S,G, T1, T2)

r(S,G,T1,T2) =
GetStrength

CausalImplicationLink
EvaluationLink

AtTime
T1
ExecutionLink S X Y

EvaluationLink AtTime (T2, G)

Another variant specifies only a relative time lag, not two absolute times.
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f(S,G, T ) = cp(S)× v(S,G, T )

v(S,G,T) =
AND

NonEmpty
SatisfyingSet r(S,G,T1,T2)

T1 > T2 - T

Using evolutionary learning or hillclimbing to find schemata fulfilling these
fitness functions, results in SchemaNodes whose execution is expected to
cause the achievement of given goals. This is a complementary approach to
reinforcement-learning based schema learning, and to schema learning based
on PredicateNode concept creation. The strengths and weaknesses of these
different approaches need to be extensively experimentally explored. How-
ever, prior experience with the learning algorithms involved gives us some
guidance.

We know that when absolutely nothing is known about an objective func-
tion, evolutionary programming is often the best way to proceed. Even when
there is knowledge about an objective function, the evolution process can
take it into account, because the fitness functions involve logical links, and
the evaluation of these logical links may involve inference operations.

On the other hand, when there’s a lot of relevant knowledge embodied in
previously executed procedures, using logical reasoning to guide new proce-
dure creation can be cumbersome, due to the overwhelming potentially useful
number of facts to choose when carrying inference. The Hebbian mechanisms
used in reinforcement learning may be understood as inferential in their con-
ceptual foundations (since a HebbianLink is equivalent to an ImplicationLink
between two propositions about importance levels). But in practice they pro-
vide a much-streamlined approach to bringing knowledge implicit in existing
procedures to bear on the creation of new procedures. Reinforcement learn-
ing, we believe, will excel at combining existing procedures to form new ones,
and modifying existing procedures to work well in new contexts. Logical in-
ference can also help here, acting in cooperation with reinforcement learning.
But when the system has no clue how a certain goal might be fulfilled, evolu-
tionary schema learning provides a relatively time-efficient way for it to find
something minimally workable.

Pragmatically, the GoalDrivenSchemaLearning MindAgent handles this
aspect of the system’s operations. It selects Goal Nodes with probability
proportional to importance, and then spawns problems for the Evolutionary
Optimization Unit Group accordingly. For a given Goal Node, PLN control
mechanisms are used to study its properties and select between the above
objective functions to use, on an heuristic basis.
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41.8 Occam’s Razor

Finally we turn to an important cognitive process that fits only loosely into
the category of “CogPrime Procedure learning” &mdash; it’s not actually a
procedure learning process, but rather a process that utilizes the fruits of
procedure learning.

The well-known “Occam’s razor” heuristic says that all else being equal,
simpler is better. This notion is embodied mathematically in the Solomonoff-
Levin “universal prior,” according to which the a priori probability of a com-
putational entity X is defined as a normalized version of:

m(X) =
∑
p

2−l(p)

where:

• the sum is taken over all programs p that compute X
• l(p) denotes the length of the program p

Normalization is necessary because these values will not automatically sum
to 1 over the space of all X.

Without normalization, m is a semimeasure rather than a measure; with
normalization it becomes the “Solomonoff-Levin measure” [Lev94].

Roughly speaking, Solomonoff’s induction theorem [?, Sol64a] shows that,
if one is trying to learn the computer program underlying a given set of
observed data, and one does Bayesian inference over the set of all programs
to try and obtain the answer, then if one uses the universal prior distribution
one will arrive at the correct answer.

CogPrime is not a Solomonoff induction engine. The computational cost
of actually applying Solomonoff induction is unrealistically large. However,
as we have seen in this chapter, there are aspects of CogPrime that are rem-
iniscent of Solomonoff induction. In concept-directed schema and predicate
learning, in pattern-based predicate learning - and in causal schema learning,
we are searching for schemata and predicates that minimize complexity while
maximizing some other quality. These processes all implement the Occam’s
Razor heuristic in a Solomonoffian style.

Now we will introduce one more method of imposing the heuristic of algo-
rithmic simplicity on CogPrime Atoms (and hence, indirectly, on CogPrime
maps as well). This is simply to give a higher a priori probability to entities
that are more simply computable.

For starters, we may increase the node probability of ProcedureNodes
proportionately to their simplicity. A reasonable formula here is simply:

2−rc(P )
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where P is the ProcedureNode and r > 0 is a parameter. This means
that infinitely complex P have a priori probability zero, whereas an infinitely
simple P has an a priori probability 1.

This is not an exact implementation of the Solomonoff-Levin measure,
but it’s a decent heuristic approximation. It is not pragmatically realistic
to sum over the lengths of all programs that do the same thing as a given
predicate P. Generally the first term of the Solomonoff-Levin summation is
going to dominate the sum anyway, so if the ProcedureNode P is maximally
compact, then our simplified formula will be a good approximation of the
Solomonoff-Levin summation. These apriori probabilities may be merged with
node probability estimates from other sources, using the revision rule.

A similar strategy may be taken with ConceptNodes. We want to reward
a ConceptNode C with a higher apriori probability if C ∈ SatisfyingSet(P )
for a simple PredicateNode P. To achieve this formulaically, let sim(X,Y )
denote the strength of the SimilarityLink between X and Y, and let:

sim′(C,P ) = sim(C,SatisfyingSet(P ))

We may then define the apriori probability of a ConceptNode as:

pr(C) =
∑
P

sim′(C,P )2−rc(P )

where the sum goes over all P in the system. In practice of course it’s
only necessary to compute the terms of the sum corresponding to P so that
sim′(C,P ) is large.

As with the a priori PredicateNode probabilities discussed above, these
apriori ConceptNode probabilities may be merged with other node proba-
bility information, using the revision rule, and using a default parameter
value for the weight of evidence. There is one pragmatic difference here from
the PredicateNode case, though. As the system learns new PredicateNodes,
its best estimate of pr(C) may change. Thus it makes sense for the system
to store the apriori probabilities of ConceptNodes separately from the node
probabilities, so that when the apriori probability is changed, a two step
operation can be carried out:

• First, remove the old apriori probability from the node probability esti-
mate, using the reverse of the revision rule
• Then, add in the new apriori probability

Finally, we can take a similar approach to any Atom Y produced by a Sche-
maNode. We can construct:

pr(Y ) =
∑
S,X

s(S,X, Y )2−r(c(S)+c(X))

where the sum goes over all pairs (S,X) so that:
ExecutionLink S X Y
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and s(S,X, Y ) is the strength of this ExecutionLink. Here, we are reward-
ing Atoms that are produced by simple schemata based on simple inputs.

The combined result of these heuristics is to cause the system to prefer
simpler explanations, analysis, procedures and ideas. But of course this is
only an apriori preference, and if more complex entities prove more useful,
these will quickly gain greater strength and importance in the system.

Implementationally, these various processes are carried out by the Occam-
sRazor MindAgent. This dynamic selects ConceptNodes based on a combi-
nation of:

• importance
• time since the apriori probability was last updated (a long time is pre-

ferred)

It selects ExecutionLinks based on importance and based on the amount of
time since they were last visited by the OccamsRazor MindAgent. And it
selects PredicateNodes based on importance, filtering out PredicateNodes it
has visited before.



Chapter 42
Map Formation

Abstract

42.1 Introduction

In Chapter [?] we distinguished the explicit versus implicit aspects of knowl-
edge representation in CogPrime . The explicit level consists of Atoms with
clearly comprehensible meanings, whereas the implicit level consists of “maps”
– collections of Atoms that become important in a coordinated manner, anal-
ogously to cell assemblies in an attractor neural net. The combination of
the two is valuable because the world-patterns useful to human-like minds
in achieving their goals, involve varying degrees of isolation and interpene-
tration, and their effective goal-oriented processing involves both symbolic
manipulation (for which explicit representation is most valuable) and asso-
ciative creative manipulation (for which distributed, implicit representation
is most valuable).

The chapters since have focused primarily on explicit representation, com-
menting on the implicit “map” level only occasionally. There are two reasons
for this: one theoretical, one pragmatic. The theoretical reason is that the
majority of map dynamics and representations are implicit in Atom-level
correlates. And the pragmatic reason is that, at this stage, we simply do not
know as much about CogPrime maps as we do about CogPrime Atoms. Maps
are emergent entities and, lacking a detailed theory of CogPrime dynamics,
the only way we have to study them in detail is to run CogPrime systems and
mine their System Activity Tables and logs for information. If CogPrime re-
search goes well, then updated versions of this book may include more details
on observed map dynamics in various contexts.

In this chapter, however, we finally turn our gaze directly to maps and
their relationships to Atoms, and discuss processes that convert Atoms into
maps (expansion) and vice versa (encapsulation). These processes represent

765
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a bridge between the concretely-implemented and emergent aspects of Cog-
Prime ’s mind.

Map encapsulation is the process of recognizing Atoms that tend to become
important in a coordinated manner, and then creating new Atoms grouping
these. As such it is essentially a form of AtomSpace pattern mining. In terms
of patternist philosophy, map encapsulation is a direct incarnation of the so-
called “cognitive equation”; that is, the process by which the mind recognizes
patterns in itself, and then embodies these patterns as new content within
itself – an instance of what Hofstadter famously labeled a “strange loop”
[Hof79]. In SMEPH terms, the encapsulation process is how CogPrime ex-
plicitly studies its own derived hypergraph and then works to implement this
derived hypergraph more efficiently by recapitulating it at the concretely-
implemented-mind level. This of course may change the derived hypergraph
considerably. Among other things, map encapsulation has the possibility of
taking the things that were the most abstract, highest level patterns in the
system and forming new patterns involving them and their interrelationships
– thus building the highest level of patterns in the system higher and higher.
Figures 42.2 and 42.1 illustrate concrete examples of the process.

Fig. 42.1 Illustration of the process of creating explicit Atoms corresponding to a pattern
previously represented as a distributed "map."

Map expansion, on the other hand, is the process of taking knowledge that
is explicitly represented and causing the AtomSpace to represent it implicitly,
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Fig. 42.2 Illustration of the process of creating explicit Atoms corresponding to a pattern
previously represented as a distributed "map."

on the map level. In many cases this will happen automatically. For instance,
a ConceptNode C may turn into a concept map if the importance updating
process iteratively acts in such a way as to create/reinforce a map consist-
ing of C and its relata. Or, an Atom-level InheritanceLink may implicitly
spawn a map-level InheritanceEdge (in SMEPH terms). However, there is
one important case in which Atom-to-map conversion must occur explicitly:
the expansion of compound ProcedureNodes into procedure maps. This must
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occur explicitly because the process graphs inside ProcedureNodes have no
dynamics going on except evaluation; there is no opportunity for them to
manifest themselves as maps, unless a MindAgent is introduced that explic-
itly does so. Of course, just unfolding a Combo tree into a procedure map
doesn’t intrinsically make it a significant part of the derived hypergraph - but
it opens the door for the inter-cognitive-process integration that may make
this occur.

42.2 Map Encapsulation

Returning to encapsulation: it may be viewed as a form of symbolization,
in which the system creates concrete entities to serve as symbols for its own
emergent patterns. It can then study an emergent pattern’s interrelationships
by studying the interrelationships of the symbol with other symbols.

For instance, suppose a system has three derived-hypergraph ConceptVer-
tices A, B and C, and observes that:

InheritanceEdge A B
InheritanceEdge B C

Then encapsulation may create ConceptNodes A’, B’ and C’ for A, B and C,
and InheritanceLinks corresponding to the InheritanceEdges, where e.g. A’
is a set containing all the Atoms contained in the static map A. First-order
PLN inference will then immediately conclude:

InheritanceLink A’ C’

and it may possibly do so with a higher strength than the strength corre-
sponding to the (perhaps not significant) InheritanceEdge between A and C.
But if the encapsulation is done right then the existence of the new Inheri-
tanceLink will indirectly cause the formation of the corresponding:

InheritanceEdge A C

via the further action of inference, which will use (InheritanceLink A’ C’) to
trigger the inference of further inheritance relationships between members of
A’ and members of C’, which will create an emergent inheritance between
members of A (the map corresponding to A’) and C (the map corresponding
to C’).

The above example involved the conversion of static maps into ConceptN-
odes. Another approach to map encapsulation is to represent the fact that a
set of Atoms constitutes a map as a predicate; for instance if the nodes A,
B and C are habitually used together, then the predicate P may be formed,
where:

P =
AND

A is used at time T
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B is used at time T
C is used at time T

The habitualness of A, B and C being used together will be reflected in the
fact that P has a surprisingly high truth value. By a simple concept formation
heuristic, this may be used to form a link AND(A, B, C), so that:
AND(A, B, C) is used at time T

This composite link AND(A, B, C) is then an embodiment of the map in
single-Atom form.

Similarly, if a set of schemata is commonly used in a certain series, this may
be recognized in a predicate, and a composite schema may then be created
embodying the component schemata. For instance, suppose it is recognized
as a pattern that:
AND

S1 is used at time T on input I1 producing output O1
S2 is used at time T+s on input O1 producing output O2

Then we may explicitly create a schema that consists of S1 taking input
and feeding its output to S2. This cannot be done via any standard concept
formation heuristic; it requires a special process.

One might wonder why this Atom-to-map conversion process is necessary:
Why not just let maps combine to build new maps, hierarchically, rather than
artificially transforming some maps into Atoms and letting maps then form
from these map-representing Atoms. It is all a matter of precision. Operations
on the map level are fuzzier and less reliable than operations on the Atom
level. This fuzziness has its positive and its negative aspects. For example, it
is good for spontaneous creativity, but bad for constructing lengthy, confident
chains of thought. WIKISOURCE:ActivityTables

42.3 Atom and Predicate Activity Tables

A major role in map formation is played by a collection of special tables. Map
encapsulation takes place, not by data mining directly on the AtomTable,
but by data mining on these special tables constructed from the AtomTable,
specifically with efficiency of map mining in mind.

First, there is the Atom Utilization Table, which may be derived from the
SystemActivityTable. The Atom Utilization Table, in its most simple possible
version, takes the form
The calculation of “utility” values for this purpose must be done in a “local”
way by MindAgents, rather than by a global calculation of the degree to
which utilizing a certain Atom has led to the achievement of a certain system
goal (this kind of global calculation would be better in principle, but it would
require massive computational effort to calculate for every Atom in the system
at frequent intervals). Each MindAgent needs to estimate how much utility
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Time Atom Handle H
? ? ?
T ? (Effort spent on Atom H at time t, utility derived from atom H at time t)
? ? ?

Table 42.1 Atom Utilization Table

it has obtained from a given Atom, as well as how much effort it has spent
on this Atom, and report these numbers to the Atom Utilization Table.

The normalization of effort values is simple, since effort can be quanti-
fied in terms of time and space expended. Normalization of utility values is
harder, as it is difficult to define a common scale to span all the different
MindAgents, which in some cases carry out very different sorts of opera-
tions. One reasonably “objective” approach is to assign each MindAgent an
amount of “utility credit”, at time T, equal to the amount of currency that the
MindAgent has spent since it last disbursed its utility credits. It may then
divide up its utility credit among the Atoms it has utilized. Other reasonable
approaches may also be defined.

The use of utility and utility credit for Atoms and MindAgents is similar
to the stimulus used in the Attention allocation system. There, MindAgents
reward Atoms with stimulus to indicate that their short and long term impor-
tance should be increased. Merging utility and stimulus is a natural approach
to implementing utility in OpenCogPrime .

Note that there are many practical manifestations that the abstract notion
of an ActivityTable may take. It could be an ordinary row-and-column style
table, but that is not the only nor the most interesting possibility. An Ac-
tivityTable may also be effectively stored as a series of graphs corresponding
to time intervals - one graph for each interval, consisting of HebbianLinks
formed solely based on importance during that interval. In this case it is ba-
sically a set of graphs, which may be stored for instance in an AtomTable,
perhaps with a special index.

Then there is the Procedure Activity Table, which records the inputs and
outputs associated with procedures:

Time ProcedureNode Handle H
? ? ?
T ? (Inputs to H, Outputs from H)
? ? ?

Table 42.2 Procedure Activity Table for a Particular MindAgent

Data mining on these tables may be carried out by a variety of algorithms
(see MapMining) - the more advanced the algorithm, the fuller the transfer
from the derived-hypergraph level to the concretely-implemented level. There
is a tradeoff here similar to that with attention allocation - if too much time is
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spent studying the derived hypergraph, then there will not be any interesting
cognitive dynamics going on anymore because other cognitive processes get no
resources, so the map encapsulation process will fail because there is nothing
to study!

These same tables may be used in the attention allocation process, for as-
signing of MindAgent-specific AttentionValues to Atoms. WIKISOURCE:MapMining

42.4 Mining the AtomSpace for Maps

Searching for general maps in a complex AtomSpace is an unrealistically
difficult problem, as the search space is huge. So, the bulk of map-mining
activity involves looking for the most simple and obvious sorts of maps. A
certain amount of resources may also be allocated to looking for subtler maps
using more resource-intensive methods.

The following categories of maps can be searched for at relatively low cost:

• Static maps
• Temporal motif maps

Conceptually, a static map is simply a set of Atoms that all tend to be
active at the same time.

Next, by a “temporal motif map” we mean a set of pairs:

(Ai, ti)

of the type:

(Atom, int)

so that for many activation cycle indices T , Ai is highly active at some time
very close to index T + ti. The reason both static maps and temporal motif
maps are easy to recognize is that they are both simply repeated patterns.

Perceptual context formation involves a special case of static and temporal
motif mining. In perceptual context formation, one specifically wishes to mine
maps involving perceptual nodes associated with a single interaction channel
(see Chapter 26 for interaction channel). These maps then represent real-
world contexts, that may be useful in guiding real-world-oriented goal activity
(via schema-context-goal triads).

In CogPrime so far we have considered three broad approaches for mining
static and temporal motif maps from AtomSpaces:

• Frequent subgraph mining, frequent itemset mining, or other sorts of
datamining on Activity Tables
• Clustering on the network of HebbianLinks
• Evolutionary Optimization based datamining on Activity Tables
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The first two approaches are significantly more time-efficient than the latter,
but also significantly more limited in the scope of patterns they can find.

Any of these approaches can be used to look for maps subject to several
types of constraints, such as for instance:

• Unconstrained: maps may contain any kinds of Atoms
• Strictly constrained: maps may only contain Atom types contained on

a certain list
• Probabilistically constrained: maps must contain Atom types con-

tained on a certain list, as x% of their elements
• Trigger-constrained: the map must contain an Atom whose type is on

a certain list, as its most active element

Different sorts of constraints will lead to different sorts of maps, of course. We
don’t know at this stage which sorts of constraints will yield the best results.
Some special cases, however, are reasonably well understood. For instance:

• procedure encapsulation, to be discussed below, involves searching for
(strictly-constrained) maps consisting solely of ProcedureInstanceNodes.

• to enhance goal achievement, it is likely useful to search for trigger-
constrained maps triggered by Goal Nodes.

What the MapEncapsulation CIM-Dynamic (Concretely-Implemented-
Mind-Dynamic, see Chapter 19) does once it finds a map, is dependent upon
the type of map it’s found. In the special case of procedure encapsulation, it
creates a compound ProcedureNode (selecting SchemaNode or PredicateN-
ode based on whether the output is a TruthValue or not). For static maps, it
creates a ConceptNode, which links to all members of the map with Member-
Links, the weight of which is determined by the degree of map membership.
For dynamic maps, it creates PredictiveImplication links depicting the pat-
tern of change.

42.4.1 Frequent Itemset Mining for Map Mining

One class of technique that is useful here is frequent itemset mining (FIM),
a process that looks to find all frequent combinations of items occurring
in a set of data. Another useful class of algorithms is greedy or stochastic
itemset mining, which does roughly the same thing as FIM but without being
completely exhaustive (the advantage being greater execution speed). Here
we will discuss FIM, but the basic concepts are the same if one is doing greedy
or stochastic mining instead.

The basic goal of frequent itemset mining is to discover frequent subsets in
a group of items. One knows that for a set of N items, there are 2N-1 possible
subgroups. To avoid the exponential explosion of subsets, one may compute
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the frequent itemsets in several rounds. Round i computes all frequent i-
itemsets.

A round has two steps: candidate generation and candidate counting. In
the candidate generation step, the algorithm generates a set of candidate i-
itemsets whose support - a minimum percentage of events in which the item
must appear - has not been yet been computed. In the candidate-counting
step, the algorithm scans its memory database, counting the support of the
candidate itemsets. After the scan, the algorithm discards candidates with
support lower than the specified minimum (an algorithm parameter) and re-
tains only the frequent i-itemsets. The algorithm reduces the number of tested
subsets by pruning apriori those candidate itemsets that cannot be frequent,
based on the knowledge about infrequent itemsets obtained from previous
rounds. So for instance if {A,B} is a frequent 2-itemset then {A,B,C} may
possibly be a 3-itemset, on the contrary if {A,B} is not a frequent itemset
then {A,B,C}, as well as any super set of {A,B}, will be discarded. Although
the worst case of this sort of algorithm is exponential, practical executions
are generally fast, depending essentially on the support limit.

To apply this kind of approach to search for static maps, one simply creates
a large set of sets of Atoms – one set for each time-point. In the set S(t)
corresponding to time t, we place all Atoms that were firing activation at
time t. The itemset miner then searches for sets of Atoms that are subsets of
many different S(t) corresponding to many different times t. These are Atom
sets that are frequently co-active.

Table ?? presents a typical example of data prepared for frequent item-
set mining, in the context of context formation via static-map recognition.
Columns represent important nodes and rows indicate time slices. For sim-
plicity, we have thresholded the values and show only activity values; so that
a 1 in a cell indicates that the Atom indicated by the column was being
utilized at the time indicated by the row.

In the example, if we assume minimum support as 50 percent, the context
nodes C1 = {Q, R}, and C2 = {Q, T, U} would be created.

Using frequent itemset mining to find temporal motif maps is a similar,
but slightly more complex process. Here, one fixes a time-window W. Then,
for each activation cycle index t, one creates a set S(t) consisting of pairs of
the form:
(A, s)

where A is an Atom and 0 ≤ s ≤W is an integer temporal offset. We have:
(A,s) ’’within’’ S(t)

if Atom A is firing activation at time t+s. Itemset mining is then used to
search for common subsets among the S(t). These common subsets are com-
mon patterns of temporal activation, i.e. repeated temporal motifs.

The strength of this approach is its ability to rapidly search through a huge
space of possibly significant subsets. Its weakness is its restriction to finding
maps that can be incrementally built up from smaller maps. How significant
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this weakness is, depends on the particular statistics of map occurrence in
CogPrime . Intuitively, we believe frequent itemset mining can perform rather
well in this context, and our preliminary experiments have supported this
intuition.

Frequent Subgraph Mining for Map Mining

A limitation of FIM techniques, from a CogPrime perspective, is that they
are intended for relational databases; but the information about co-activity in
a CogPrime instance is generally going to be more efficiently stored as graphs
rather than RDB’s. Indeed an ActivityTable may be effectively stored as a
series of graphs corresponding to time intervals - one graph for each interval,
consisting of HebbianLinks formed solely based on importance during that
interval. From an ActivityTable stores like this, the way to find maps is
not frequent itemset mining but rather frequent subgraph mining, a variant
of FIM that is conceptually similar but algorithmically more subtle, and
on which there has arisen a significant literature in recent years. We have
already briefly discussed this technology in Chapter 37 on pattern mining
the Atomspace – map mining being an important special case of Atomspace
pattern mining. As noted there, some of the many approaches to frequent
subgraph mining are described in [HWP03, KK01].

42.4.2 Evolutionary Map Detection

Just as general Atomspace pattern mining may be done via evolutionary
learning as well as greedy mining, the same holds for the special case of
map mining. Complementary to the itemset mining approach, the CogPrime
design also uses evolutionary optimization to find maps. Here the data setup
is the same as in the itemset mining case, but instead of using an incremental
search approach, one sets up a population of subsets of the sets S(t), and
seeks to evolve the population to find an optimally fit S(t). Fitness is defined
simply as high frequency - relative to the frequency one would expect based
on statistical independence assumptions alone.

In principle one could use evolutionary learning to do all map encapsu-
lation, but this isn’t computationally feasible – it would limit too severely
the amount of map encapsulation that could be done. Instead, evolutionary
learning must be supplemented by some more rapid, less expensive technique.
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42.5 Map Dynamics

Assume one has a collection of Atoms, with:

• Importance values I(A), assigned via the economic attention allocation
mechanism.

• HebbianLink strengths (HebbianLink A B).tv.s, assigned as (loosely
speaking) the probability of B’s importance assuming A’s importance.

Then, one way to search for static maps is to look for collections C of Atoms
that are strong clusters according to HebbianLinks. That is, for instance, to
find collections C so that:

• The mean strength of (HebbianLink A B).tv.s, where A and B are in the
collection C, is large.

• The mean strength of (HebbianLink A Z).tv.s, where A is in the collection
C and Z is not, is small.

(this is just a very simple cluster quality measurement; there is a variety of
other cluster quality measurements one might use instead.)

Dynamic maps may be more complex, for instance there might be two
collections C1 and C2 so that:

• Mean strength of (HebbianLink A B).s, where A is in C1 and B is in C2
• Mean strength of (HebbianLink B A).s, where B is in C2 and A is in C1

are both very large.
A static map will tend to be an attractor for CogPrime ’s attention-

allocation-based dynamics, in the sense that when a few elements of the map
are acted upon, it is likely that other elements of the map will soon also come
to be acted upon. The reason is that, if a few elements of the map are acted
upon usefully, then their importance values will increase. Node probability
inference based on the HebbianLinks will then cause the importance values of
the other nodes in the map to increase, thus increasing the probability that
the other nodes in the map are acted upon. Critical here is that the Heb-
bianLinks have a higher weight of evidence than the node importance values.
This is because the node importance values are assumed to be ephemeral -
they reflect whether a given node is important at a given moment or not -
whereas the HebbianLinks are assumed to reflect longer-lasting information.

A dynamic map will also be an attractor, but of a more complex kind. The
example given above, with C1 and C2, will be a periodic attractor rather than
a fixed-point attractor. WIKISOURCE:ProcedureEncapsulation
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42.6 Procedure Encapsulation and Expansion

One of the most important special cases of map encapsulation is procedure
encapsulation. This refers to the process of taking a schema/predicate map
and embodying it in a single ProcedureNode. This may be done by mining
on the Procedure Activity Table, described in Activity Tables, using either:

• a special variant of itemset mining that seeks for procedures whose out-
puts serve as inputs for other procedures.

• Evolutionary optimization with a fitness function that restricts attention
to sets of procedures that form a digraph, where the procedures lie at
the vertices and an arrow from vertex A to vertex B indicates that the
outputs of A become the inputs of B.

The reverse of this process, procedure expansion, is also interesting, though
algorithmically easier - here one takes a compound ProcedureNode and ex-
pands its internals into a collection of appropriately interlinked ProcedureN-
odes. The challenge here is to figure out where to split a complex Combo tree
into subtrees. But if the Combo tree has a hierarchical structure then this
is very simple; the hierarchical subunits may simply be split into separate
ProcedureNodes.

These two processes may be used in sequence to interesting effect: ex-
panding an important compound ProcedureNode so it can be modified via
reinforcement learning, then encapsulating its modified version for efficient
execution, then perhaps expanding this modified version later on.

To an extent, the existence of these two different representations of proce-
dures is an artifact of CogPrime ’s particular software design (and ultimately,
a reflection of certain properties of the von Neumann computing architec-
ture). But it also represents a more fundamental dichotomy, between:

• Procedures represented in a way that is open to interaction with other
mental processes during the execution process.

• Procedures represented in a way that is encapsulated and mechanical,
with no room for interference from other aspects of the mind during
execution.

Conceptually, we believe that this is a very useful distinction for a mind to
make. In nearly any reasonable cognitive architecture, it’s going to be more
efficient to execute a procedure if that procedure is treated as a world unto
itself, so it can simply be executed without worrying about interactions. This
is a strong motivation for an artificial cognitive system to have a dual (at
least) representation of procedures.



42.6 Procedure Encapsulation and Expansion 777

42.6.1 Procedure Encapsulation in More Detail

A procedure map is a temporal motif: it is a set of Atoms (ProcedureNodes),
which are habitually executed in a particular temporal order, and which
implicitly pass arguments amongst each other. For instance, if procedure A
acts to create node X, and procedure B then takes node X as input, then we
may say that A has implicitly passed an argument to B.

The encapsulation process can recognize some very subtle patterns, but
a fair fraction of its activity can be understood in terms of some simple
heuristics.

For instance, the map encapsulation process will create a node

h = Bfg = f ◦ g = f composed with g

(B as in combinatory logic) when there are many examples in the system of:
ExecutionLink g x y
ExecutionLink f y z

The procedure encapsulation process will also recognize larger repeated sub-
graphs, and their patterns of execution over time. But some of its recognition
of larger subgraphs may be done incrementally, by repeated recognition of
simple patterns like the ones just described.

42.6.2 Procedure Encapsulation in the Human Brain

Finally, we briefly discuss some conceptual issues regarding the relation be-
tween CogPrime procedure encapsulation and the human brain. Current
knowledge of the human brain is weak in this regard, but we won’t be sur-
prised if, in time, it is revealed that the brain stores procedures in several
different ways, that one distinction between these different ways has to do
with degree of openness to interactions, and that the less open ways lead to
faster execution.

Generally speaking, there is good evidence for a neural distinction between
procedural, episodic and declarative memory. But knowledge about distinc-
tions between different kinds of procedural memory is scanter. It is known
that procedural knowledge can be “routinized” - so that, e.g., once you get
good at serving a tennis ball or solving a quadratic equation, your brain han-
dles the process in a different way than before when you were learning. And
it seems plausible that routinized knowledge, as represented in the brain,
has fewer connections back to the rest of the brain than the pre-routinized
knowledge. But there will be much firmer knowledge about such things in
the coming years and decades as brain scanning technology advances.

Overall, there is more knowledge in cognitive and neural science about mo-
tor procedures than cognitive procedures (see e.g. [SW05]. In the brain, much
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of motor procedural memory resides in the pre-motor area of the cortex. The
motor plans stored here are not static entities and are easily modified through
feedback, and through interaction with other brain regions. Generally, a mo-
tor plan will be stored in a distributed way across a significant percentage of
the premotor cortex; and a complex or multipart actions will tend to involve
numerous sub-plans, executed in both parallel and in serial. Often what we
think of as separate/distinct motor-plans may in fact be just slightly different
combinations of subplans (a phenomenon also occurring with schema maps
in CogPrime ).

In the case of motor plans, a great deal of the routinization process has
to do with learning the timing necessary for correct coordination between
muscles and motor subplans. This involves integration of several brain regions
- for instance, timing is handled by the cerebellum to a degree, and some
motor-execution decisions are regulated by the basal ganglia.

One can think of many motor plans as involving abstract and concrete
sub-plans. The abstract sub-plans are more likely to involve integration with
those parts of the cortex dealing with conceptual thought. The concrete sub-
plans have highly optimized timings, based on close integration with cere-
bellum, basal ganglia and so forth - but are not closely integrated with the
conceptualization-focused parts of the brain. So, a rough CogPrime model
of human motor procedures might involve schema maps coordinating the
abstract aspects of motor procedures, triggering activity of complex Sche-
maNodes containing precisely optimized procedures that interact carefully
with external actuators. WIKISOURCE:MapsAndAttention

42.7 Maps and Focused Attention

The cause of map formation is important to understand. Formation of small
maps seems to follow from the logic of focused attention, along with hierar-
chical maps of a certain nature. But the argument for this is somewhat subtle,
involving cognitive synergy between PLN inference and economic attention
allocation.

The nature of PLN is that the effectiveness of reasoning is maximized by
(among other strategies) minimizing the number of incorrect independence
assumptions. If reasoning on N nodes, the way to minimize independence
assumptions is to use the full inclusion-exclusion formula to calculate in-
terdependencies between the N nodes. This involves 2N terms, one for each
subset of the N nodes. Very rarely, in practical cases, will one have significant
information about all these subsets. However, the nature of focused attention
is that the system seeks to find out about as many of these subsets as possible,
so as to be able to make the most accurate possible inferences, hence min-
imizing the use of unjustified independence assumptions. This implies that
focused attention cannot hold too many items within it at one time, because
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if N is too big, then doing a decent sampling of the subsets of the N items is
no longer realistic.

So, suppose that N items have been held within focused attention, mean-
ing that a lot of predicates embodying combinations of N items have been
constructed and evaluated and reasoned on. Then, during this extensive pro-
cess of attentional focus, many of the N items will be useful in combination
with each other - because of the existence of predicates joining the items.
Hence, many HebbianLinks will grow between the N items - causing the set
of N items to form a map.

By this reasoning, it seems that focused attention will implicitly be a map
formation process - even though its immediate purpose is not map forma-
tion, but rather accurate inference (inference that minimizes independence
assumptions by computing as many cross terms as is possible based on avail-
able direct and indirect evidence). Furthermore, it will encourage the forma-
tion of maps with a small number of elements in them (say, N<10). However,
these elements may themselves be ConceptNodes grouping other nodes to-
gether, perhaps grouping together nodes that are involved in maps. In this
way, one may see the formation of hierarchical maps, formed of clusters of
clusters of clusters..., where each cluster has N<10 elements in it. These
hierarchical maps manifest the abstract dual network concept that occurs
frequently in CogPrime philosophy.

It is tempting to postulate that any intelligent system must display similar
properties - so that focused attention, in general, has a strictly limited scope
and causes the formation of maps that have central cores of roughly the
same size as its scope. If this is indeed a general principle, it is an important
one, because it tells you something about the general structure of derived
hypergraphs associated with intelligent systems, based on the computational
resource constraints of the systems.

The scope of an intelligent system’s attentional focus would seem to gen-
erally increase logarithmically with the system’s computational power. This
follows immediately if one assumes that attentional focus involves free inter-
combination of the items within it. If attentional focus is the major locus of
map formation, then - lapsing into SMEPH-speak - it follows that the bulk of
the ConceptVertices in the intelligent system’s derived hypergraphs may cor-
respond to maps focused on a fairly small number of other ConceptVertices.
In other words, derived hypergraphs may tend to have a fairly localized struc-
ture, in which each ConceptVertex has very strong InheritanceEdges pointing
from a handful of other ConceptVertices (corresponding to the other things
that were in the attentional focus when that ConceptVertex was formed).
WIKISOURCE:RecognizingAndCreatingSelfReferentialStructures



780 42 Map Formation

42.8 Recognizing And Creating Self-Referential
Structures

Finally, this brief section covers a large and essential topic: how CogPrime
will be able to recognize and create large-scale self-referential structures.

Some of the most essential structures underlying human-level intelligence
are self-referential in nature. These include:

• the phenomenal self (see Thomas Metzinger’s book “Being No One”)
• the will
• reflective awareness

These structures are arguably not critical for basic survival functionality in
natural environments. However, they are important for adequate function-
ality within advanced social systems, and for abstract thinking regarding
science, humanities, arts and technology.

Recall that in Chapter 3 of Part 1 these entities are formalized in terms
of hypersets and, the following recursive definitions are given:

• “S is conscious of X” is defined as: The declarative content that “S is
conscious of X” correlates with “X is a pattern in S”

• “S wills X” is defined as: The declarative content that “S wills X” causally
implies “S does X”

• “X is part of S’s self ” is defined as: The declarative content that “X is a
part of S’s self ” correlates with “X is a persistent pattern in S over time”

Relatedly, one may posit multiple similar processes that are mutually recur-
sive, e.g.

• S is conscious of T and U
• T is conscious of S and U
• U is conscious of S and T

The cognitive importance of this sort of mutual recursion is further discussed
in Appendix C.

According to the philosophy underlying CogPrime , none of these are
things that should be programmed into an artificial mind. Rather, they must
emerge in the course of a mind’s self-organization in connection with its en-
vironment. However, a mind may be constructed so that, by design, these
sorts of important self-referential structures are encouraged to emerge.

42.8.1 Encouraging the Recognition of Self-Referential
Structures in the AtomSpace

How can we do this - encourage a CogPrime instance to recognize complex
self-referential structures that may exist in its AtomTable? This is important,
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because, according to the same logic as map formation: if these structures are
explicitly recognized when they exist, they can then be reasoned on and oth-
erwise further refined, which will then cause them to exist more definitively ...
and hence to be explicitly recognized as yet more prominent patterns ... etc.
The same virtuous cycle via which ongoing map recognition and encapsula-
tion is supposed to lead to concept formation, may be posited on the level of
complex self-referential structures, leading to their refinement, development
and ongoing complexity.

One really simple way is to encode self-referential operators in the Combo
vocabulary, that is used to represent the procedures grounding Grounded-
PredicateNodes.

That way, one can recognize self-referential patterns in the AtomTable
via standard CogPrime methods like MOSES and integrative procedure and
predicate learning as discussed in Chapter 41, so long as one uses Combo
trees that are allowed to include self-referential operators at their nodes. All
that matters is that one is able to take one of these Combo trees, compare it
to an AtomTable, and assess the degree to which that Combo tree constitutes
a pattern in that AtomTable.

But how can we do this? How can we match a self-referential structure
like:

EquivalenceLink
EvaluationLink will (S,X)
CausalImplicationLink

EvaluationLink will (S,X)
EvaluationLink do (S,X)

against an AtomTable or portion thereof?
The question is whether there is some “map” of Atoms (some set of Pred-

icateNodes) willMap, so that we may infer the SMEPH (see Chapter 14)
relationship:

EquivalenceEdge
EvaluationEdge willMap (S,X)
CausalImplicationEdge

EvaluationEdge willMap (S,X)
EvaluationEdge doMap (S,X)

as a statistical pattern in the AtomTable’s history over the recent past. (Here,
doMap is defined to be the map corresponding to the built-in “do” predicate.)

If so, then this map willMap, may be encapsulated in a single new Node
(call it willNode), which represents the system’s will. This willNode may then
be explicitly reasoned upon, used within concept creation, etc. It will lead
to the spontaneous formation of a more sophisticated, fully-fleshed-out will
map. And so forth.

Now, what is required for this sort of statistical pattern to be recogniz-
able in the AtomTable’s history? What is required is that EquivalenceEdges
(which, note, must be part of the Combo vocabulary in order for any MOSES-
related algorithms to recognize patterns involving them) must be defined
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according to the logic of hypersets rather than the logic of sets. What is
fascinating is that this is no big deal! In fact, the AtomTable software struc-
tures support this automatically; it’s just not the way most people are used
to thinking about things. There is no reason, in terms of the AtomTable, not
to create self-referential structures like the one given above.

The next question is how to we calculate the truth values of structures
like the above, though. The truth value of a hyperset structure turns out to
be an infinite order probability distribution, which is a funny and complex
[Goe10b]. Infinite-order probability distributions are partially-ordered, and so
one can compare the extent to which two different self-referential structures
apply to a given body of data (e.g. an AtomTable), via comparing the infinite-
order distros that constitute their truth values. In this way, one can recognize
self-referential patterns in an AtomTable, and carry out encapsulation of self-
referential maps. This sounds very abstract and complicated, but the class
of infinite-order distributions defined in the above-referenced papers actually
have their truth values defined by simple matrix mathematics, so there is
really nothing that abstruse involved in practice.

Finally, there is the question of how these hyperset structures are to be
logically manipulated within PLN. The answer is that regular PLN inference
can be applied perfectly well to hypersets, but some additional hyperset op-
erations may also be introduced; these are currently being researched and
will be presented later.

Clearly, with this subtle, currently unimplemented component of the Cog-
Prime design we have veered rather far from anything the human brain could
plausibly be doing in detail. But yet, some meaningful connections may be
drawn. In Chapter 13 of Part 1 we have discussed how probabilistic logic
might emerge from the brain, and also how the brain may embody self-
referential structures like the ones considered here, via (perhaps using the
hippocampus) encoding whole neural nets as inputs to other neural nets.
Regarding infinite-order probabilities, it is certainly the case that the brain
is wired to carry out matrix manipulations, and [?] reduced infinite-order
probabilities to them, so that it’s not completely outlandish to posit the
brain could be doing something mathematically analogous. Thus, all in all,
it seems at least plausible that the brain could be doing something roughly
analogous to what we’ve described here, though the details would obviously
be very different.
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Chapter 43
Communication Between Artificial
Minds

43.1 Introduction

Language is a key aspect of human intelligence, and seems to be one of two
critical factors separating humans from other intelligent animals – the other
being the ability to use tools. Steven Mithen [?] argues that the key factor
in the emergence of the modern human mind from its predecessors was the
coming-together of formerly largely distinct mental modules for linguistic
communication and tool making/use. Other animals do appear to have fairly
sophisticated forms of linguistic communication, which we don’t understand
very well at present; but as best we can tell, modern human language has
many qualitatively different aspects from these, which enable it to synergize
effectively with tool making and use, and which have enabled it to co-evolve
with various aspects of tool-dependent culture.

Some AGI theorists have argued that, since the human brain is largely the
same as that of apes and other mammals without human-like language, the
emulation of human-like language is not the right place to focus if one wants
to build human-level AGI. Rather, this argument goes, one should proceed
in the same order that evolution did – start with motivated perception and
action, and then once these are mastered, human-like language will only be
a small additional step. We suspect this would indeed be a viable approach
– but may not be well suited for the hardware available today. Robot hard-
ware is quite primitive compared to animal bodies, but the kind of motivated
perception and action that non-human animals do is extremely body-centric
(even more so than is the case in humans). On the other hand, modern com-
puting technology is quite sophisticated as regards language – we program
computers (including AIs) using languages of a sort, for example. This sug-
gests that on a pragmatic basis, it may make sense to start working with
language at an earlier stage in AGI development, than the analogue with the
evolution of natural organisms would suggest.

785
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The CogPrime architecture is compatible with a variety of different ap-
proaches to language learning and capability, and frankly at this stage we
are not sure which approach is best. Our intention is to experiment with a
variety of approaches and proceed pragmatically and empirically. One option
is to follow the more "natural" course and let sophisticated non-linguistic
cognition emerge first, before dealing with language in any serious way – and
then encourage human-like language facility to emerge via experience. An-
other option is to integrate some sort of traditional computational linguistics
system into CogPrime , and then allow CogPrime ’s learning algorithms to
modify this system based on its experience. Discussion of this latter option
occupies most of this section of the book – involves many tricks and compro-
mises, but could potentially constitute a faster route to success. Yet another
option is to communicate with young CogPrime systems using an invented
language halfway between the human-language and programming-language
domains, such as Lojban (this possibility is discussed in Appendix E).

In this initial chapter on communication, we will pursue a direction quite
different from the latter chapters, and discuss a kind of communication that
we think may be very valuable in the CogPrime domain, although it has no
close analogue among human beings. Many aspects of CogPrime closely re-
semble aspects of the human mind; but in the end CogPrime is not intended
as an emulation of human intelligence, and there are some aspects of Cog-
Prime that bear no resemblance to anything in the human mind, but exploit
some of the advantages of digital computing infrastructure over neural wet-
ware. One of the latter aspects is Psynese, a word we have introduced to refer
to direct mind-to-mind information transfer between artificial minds.

Psynese has some relatively simple practical applications: e.g. it could aid
with the use of linguistic resources and hand-coded or statistical language
parsers within a learning-based language system, to be discussed in following
chapters. In this use case, one sets up one CogPrime using the traditional NLP
approaches, and another CogPrime using a purer learning-based approach,
and lets the two systems share mind-stuff in a controlled way. Psynese may
also be useful in the context of intelligent virtual pets, where one may wish
to set up a CogPrime representing “collective knowledge” of multiple virtual
pets

But it also has some grander potential implications, such as the ability
to fuse multiple AI systems into “mindplexes” as discussed in Chapter 12 of
Part 1.

One might wonder why a community of two or more CogPrime s would
need a language at all, in order to communicate. After all, unlike humans,
CogPrime systems can simply exchange “brain fragments” - subspaces of their
Atomspaces. One CogPrime can just send relevant nodes and links to another
CogPrime (in binary form,or in an XML representation, etc.), bypassing the
linear syntax of language. This is in fact the basis of Psynese: why transmit
linear strings of characters when one can directly transit Atoms? But the
details are subtler than it might at first seem.



43.2 A Simple Example Using a PsyneseVocabulary Server 787

One CogPrime can’t simply “transfer a thought” to another CogPrime .
The problem is that the meaning of an Atom consists largely of its relation-
ships with other Atoms, and so to pass a node to another CogPrime , it also
has to pass the Atoms that it is related to, and so on, and so on. Atom-
spaces tend to be densely interconnected, and so to transmit one thought
fully accurately, a CogPrime system is going to end up having to transmit a
copy of its entire Atomspace! Even if privacy were not an issue, this form of
communication (each utterance coming packaged with a whole mind-copy)
would present rather severe processing load on the communicators involved.

The idea of Psynese is to work around this interconnectedness problem
by defining a mechanism for CogPrime instances to query each others’ minds
directly, and explicitly represent each others’ concepts internally. This doesn’t
involve any unique cognitive operations besides those required for ordinary
individual thought, but it requires some unique ways of wrapping up these
operations and keeping track of their products.

Another idea this leads to is the notion of a PsyneseVocabulary: a collec-
tion of Atoms, associated with a community of CogPrime s, approximating
the most important Atoms inside that community. The combinatorial ex-
plosion of direct-Atomspace communication is then halted by an appeal to
standardized Psynese Atoms. Pragmatically, a PsyneseVocabulary might be
contained in a PsyneseVocabulary server, a special CogPrime instance that
exists to mediate communications between other CogPrime s, and provide
CogPrime s with information. Psynese makes sense both as a mechanism for
peer-to-peer communication between CogPrime s, and as a mechanism allow-
ing standardized communication between a community of CogPrime s using
a PsyneseVocabulary server.

43.2 A Simple Example Using a PsyneseVocabulary
Server

Suppose CogPrime 1 wanted to tell CogPrime 2 that “Russians are crazy”
(with the latter word meaning something inbetween “insane” and “impracti-
cal”); and suppose that both CogPrime s are connected to the same Psynese
CogPrime with PsyneseVocabulary PV. Then, for instance, it must find the
Atom in PV corresponding to its concept “crazy.” To do this it must create
an AtomStructureTemplate such as

Pred1(C1)
equals
ThereExists

W1, C2, C3, W2, W3
AND

ConceptNode: C1
ReferenceLink C1 W1
WordNode: W1 #crazy
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ConceptNode: C2
HebbianLink C1 C2
ReferenceLink C2 W2
WordNode: W2 #insane
ConceptNode: C3
HebbianLink C1 C3
ReferenceLink C3 W3
WordNode: W3 #impractical

encapsulating relevant properties of the Atom it wants to grab from PV. In
this example the properties specified are:

• is a ConceptNode, linked via a ReferenceLink to the WordNode for
“crazy”

• is associated via HebbianLinks with ConceptNodes linked via Refer-
enceLinks to the WordNodes for “insane” and “impractical”

So, what CogPrime 1 can do is fish in PV for “some concept that is denoted
by the word ’crazy’ and is associated with ’insane’ and ’impractical’. ” The
association with “insane” provides more insurance of getting the correct sense
of the word “crazy” as opposed to e.g. the one in the phrase “He was crazy
about her” or in “That’s crazy, man, crazy” (in the latter slang usage “crazy”
basically means “excellent”). The association with “impractical” biases away
from the interpretation that all Russians are literally psychiatric patients. ∗

So, suppose that CogPrime 1 has fished the appropriate Atoms for “crazy”
and “Russian” from PV. Then it may represent in its Atomspace something
we may denote crudely (a better notation will be introduced later)as

InheritanceLink PV:477335:1256953732 PV:744444:1256953735 <.8.,6>

where e.g. “PV:744444” means “the Atom with Handle 744444 in CogPrime
PV at time 1256953735,” and may also wish to store additional information
such as

PsyneseEvaluationLink <.9>
PV
Pred1
PV:744444:1256953735

meaning that Pred1(PV : 744444 : 1256953735) holds true with truth value
< .9 > if all the Atoms referred to within Pred1 are interpreted as existing in
PV rather than CogPrime 1.

The InheritanceLink then means: “In the opinion of CogPrime 1, ’Rus-
sian’ as defined by PV:477335:1256953732 inherits from ’crazy’ as defined by
PV:744444:1256953735 with truth value <.8,.6>.”

∗ A similar but perhaps more compelling example would be the interpretation of the
phrase “the accountant cooked the books.” In this case both “cooked” and “books” are used
in atypical senses, but specifying a HebbianLink to “accounting” would cause the right
Nodes to get retrieved from PV.
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Suppose CogPrime 1 then sends the InheritanceLink to CogPrime 2. It is
going to be meaningfully interpretable by CogPrime 2 to the extent that Cog-
Prime 2 can interpret the relevant PV Atoms, for instance by finding Atoms
of its own that correspond to them. To interpret these Atoms, CogPrime 2
must carry out the reverse process that CogPrime 1 did to find the Atoms in
the first place. For instance, to figure out what PV:744444:1256953735 means
to it, CogPrime 2 may find some of the important links associated with the
Node in PV, and make a predicate accordingly, e.g.:

Pred2(C1)
equals
ThereExists

W1, C2, C3, W2, W3
AND

ConceptNode: C1
ReferenceLink C1 W1
WordNode: W1 #crazy
ConceptNode: C2
HebbianLink C1 C2
ReferenceLink C2 W2
WordNode: W2 #lunatic
ConceptNode: C3
HebbianLink C1 C3
ReferenceLink C3 W3
WordNode: W3 #unrealistic

On the other hand, if there is no PsyneseVocabulary involved, then Cog-
Prime 1 can submit the same query directly to CogPrime 2. There is no
problem with this, but if there is a reasonably large community of CogPrime
s it becomes more efficient for them all to agree on a standard vocabulary
of Atoms to be used for communication – just as, at a certain point in hu-
man history, it was recognized as more efficient for people to use dictionaries
rather than to rely on peer-to-peer methods for resolution of linguistic dis-
agreements.

The above examples involve human natural language terms, but this does
not have to be the case. PsyneseVocabularies can contain Atoms represent-
ing quantitative or other types of data, and can also contain purely abstract
concepts. The basic idea is the same. A CogPrime has some Atoms it wants
to convey to another CogPrime , and it looks in a PsyneseVocabulary to see
how easily it can approximate these Atoms in terms of “socially understood”
Atoms. This is particularly effective if the CogPrime receiving the communi-
cation is familiar with the PsyneseVocabulary in question. Then the recipient
may already know the PsyneseVocabulary Atoms it is being pointed to; it may
have already thought about the difference between these consensus concepts
and its own related concepts. Also, if the sender CogPrime is encapsulating
maps for easy communication, it may specifically seek approximate encapsu-
lations involving PsyneseVocabulary terms, rather than first encapsulating in
its own terms and then translating into PsyneseVocabulary terms.
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43.2.1 The Psynese Match Schema

One way to streamline the above operations is to introduce a Psynese Match
Schema, with the property that
ExOut

PsyneseMatch PV A

within CogPrime instance CP1, denotes the Atom within CogPrime instance
PV that most closely matches the Atom A in CP1. Note that the Psyne-
seMatch schema implicitly relies on various parameters, because it must
encapsulate the kind of process described explicitly in the above example.
PsyneseMatch must, internally, decide how many and which Atoms related
to A should be used to formulate a query to PV , and also how to rank the
responses to the query (e.g. by strength× confidence).

Using PsyneseMatch, the example written above as
Inheritance PV:477335:1256953732 PV:744444:1256953735 <.8.,6>

could be rewritten as
Inheritance <.8.,6>

ExOut
PsyneseMatch PV C1

ExOut
PsyneseMatch PV C2

where C1 and C2 are the ConceptNodes in CP1 corresponding to the
intended senses of “crazy” and “Russian.”

43.3 Psynese as a Language

The general definition of a psynese expression for CogPrime is: a Set of Atoms
that contains only:

• Nodes from PsyneseVocabularies
• Perceptual nodes (numbers, words, etc.)
• Relationships relating no nodes other than the ones in the above two

categories, and relating no relationships except ones in this category
• Predicates or Schemata involving no relationships or nodes other than:

the ones in the above three categories, or in this category

The PsyneseEvaluationLink type indicated earlier forces interpretation of a
predicate as a Psynese expression.

In what sense is the use of Psynese expressions to communicate a language?
Clearly it is a formal language in the mathematical sense. It is not quite a
“human language” as we normally conceive it, but it is ideally suited to serve
the same functions for CogPrime s as human language serves for humans.
The biggest differences from human language are:
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• Psynese uses weighted, typed hypergraphs (i.e. Atomspaces) instead of
linear strings of symbols. This eliminates the “parsing” aspect of language
(syntax being mainly a way of projecting graph structures into linear
expressions).

• Psynese lacks subtle and ambiguous referential constructions like “this”,
“it” and so forth. These are tools allowing complex thoughts to be com-
pactly expressed in a linear way, but CogPrime s don’t need them. Atoms
can be named and pointed to directly without complex, poorly-specified
mechanisms mediating the process.

• Psynese has far less ambiguity. There may be Atoms with more than
one aspect to their meanings, but the cost of clarifying such ambiguities
is much lower for CogPrime s than for humans using language, and so
habitually there will not be the rampant ambiguity that we see in human
expressions.

On the other hand, mapping Psynese into Lojban – a syntactically formal,
semantically highly precise language created for communication between hu-
mans – rather than a true natural language would be much more straightfor-
ward. Indeed, one could create a PsyneseVocabulary based on Lojban, which
might be ideally suited to serve as an intermediary between different Cog-
Prime s. And Lojban may be used to create a linearized version of Psynese,
that looks more like a natural language. We return to this point in Appendix
E.

43.4 Psynese Mindplexes

We now recall from Chapter 12 of Part 1 the notion of a mindplex: that is,
an intelligent system that:

1. Is composed of a collection of intelligent systems, each of which has its
own “theater of consciousness” and autonomous control system, but which
interact tightly, exchanging large quantities of information frequently

2. Has a powerful control system on the collective level, and an active “the-
ater of consciousness” on the collective level as well

In informal discussions, we have found that some people, on being in-
troduced to the mindplex concept, react by contending that either human
minds or human social groups are mindplexes. However, I believe that, while
there are significant similarities between mindplexes and minds, and between
mindplexes and social groups, there are also major qualitative differences.
It’s true that an individual human mind may be viewed as a collective, both
from a theory-of-cognition perspective (e.g. Minsky’s “society of mind” the-
ory [Min88]) and from a personality-psychology perspective (e.g. the theory
of subpersonalities [Row90]). And it’s true that social groups display some au-
tonomous control and some emergent-level awareness. However, in a healthy
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human mind, the collective level rather than the cognitive-agent or subper-
sonality level is dominant, the latter existing in service of the former; and
in a human social group, the individual-human level is dominant, the group-
mind clearly “cognizing” much more crudely than its individual-human com-
ponents, and exerting most of its intelligence via its impact on individual
human minds. A mindplex is a hypothetical intelligent system in which nei-
ther level is dominant, and both levels are extremely powerful. A mindplex is
like a human mind in which the subpersonalities are fully-developed human
personalities, with full independence of thought, and yet the combination of
subpersonalities is also an effective personality. Or, from the other direction,
a mindplex is like a human society that has become so integrated and so
cohesive that it displays the kind of consciousness and self-control that we
normally associate with individuals.

There are two mechanisms via which mindplexes may possibly arise in the
medium-term future:

1. Humans becoming more tightly coupled via the advance of communi-
cation technologies, and a communication-centric AI system coming to
embody the “emergent conscious theater” of a human-incorporating mind-
plex

2. A society of AI systems communicating amongst each other with a rich-
ness not possible for human beings, and coming to form a mindplex rather
than merely a society of distinct AI’s

The former sort of mindplex relates to the concept of a “global brain”
discussed in Chapter 12 of Part 1. Of course, these two sorts of mindplexes
are not mutually contradictory, and may coexist or fuse. The possibility also
exists for higher-order mindplexes, meaning mindplexes whose component
minds are themselves mindplexes. This would occur, for example, if one had
a mindplex composed of a family of closely-interacting AI systems, which
acted within a mindplex associated with the global communication network.

Psynese, however, is more directly relevant to the latter form of mindplex.
It gives a concrete mechanism via which such a mindplex might be sculpted.

43.4.1 AGI Mindplexes

How does one get from CogPrime s communicating via Psynese to CogPrime
mindplexes?

Clearly, with the Psynese mode of communication, the potential is there
for much richer communication than exists between humans. There are limi-
tations, posed by the private nature of many concepts – but these limitations
are much less onerous than for human language, and can be overcome to some
extent by the learning of complex cognitive schemata for translation between
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the “private languages” of individual Atomspaces and the “public languages”
of Psynese servers.

But rich communication does not in itself imply the evolution of mind-
plexes. It is possible that a community of Psynese-communicating CogPrime
s might spontaneously evolve a mindplex structure - at this point, we don’t
know enough about CogPrime individual or collective dynamics to say. But
it is not necessary to rely on spontaneous evolution. In fact it is possible, and
even architecturally simple, to design a community of CogPrime s in such a
way as to encourage and almost force the emergence of a mindplex structure.

The solution is simple: simply beef up PsyneseVocabulary servers. Rather
than relatively passive receptacles of knowledge from the CogPrime s they
serve, allow them to be active, creative entities, with their own feelings, goals
and motivations.

The PsyneseVocabulary servers serving a community of CogPrime s are
absolutely critical to these CogPrime s. Without them, high-level inter-
CogPrime communication is effectively impossible. And without the concepts
the PsyneseVocabularies supply, high-level individual CogPrime thought will
be difficult, because CogPrime s will come to think in Psynese to at least the
same extent to which humans think in language.

Suppose each PsyneseVocabulary server has its own full CogPrime mind,
its own “conscious theater”. These minds are in a sense “emergent minds” of
the CogPrime community they serve - because their contents are a kind of
“nonlinear weighted average” of the mind-contents of the community. Further-
more, the actions these minds take will feed back and affect the community
in direct and indirect ways - by affecting the language by which the minds
communicate. Clearly, the definition of a mindplex is fulfilled.

But what will the dynamics of such a CogPrime mindplex be like? What
will be the properties of its cognitive and personality psychology? We could
speculate on this here, but would have very little faith in the possible accuracy
of our speculations. The psychology of mindplexes will reveal itself to us
experimentally as our work on AGI engineering, education and socialization
proceeds.

One major issue that arises, however, is that of personality filtering. Put
simply: each intelligent agent in a mindplex must somehow decide for itself
which knowledge to grab from available PsyneseVocabulary servers and other
minds, and which knowledge to avoid grabbing from others in the name of
individuality. Different minds may make different choices in this regard. For
instance, one choice could be to, as a matter of routine, take only extremely
confident knowledge from the PsyneseVocabulary server. This corresponds
roughly to ingesting “facts” from the collective knowledge pool, but not opin-
ions or speculations. Less confident knowledge would then be ingested from
the collective knowledge pool on a carefully calculated and as-needed basis.
Another choice could be to accept only small networks of Atoms from the
collective knowledge pool, on the principle that these can be reflectively un-
derstood as they are ingested, whereas large networks of Atoms are difficult
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to deliberate and reflect about. But any policies like this are merely heuristic
ones.

43.5 Psynese and Natural Language Processing

Next we review a more near-term, practical application of the Psynese mech-
anism: the fusion of two different approaches to natural language processing
in CogPrime , the experiential learning approach and the “engineered NLP
subsystem” approach.

In the former approach, language is not given any extremely special role,
and CogPrime is expected to learn language much as it would learn any
other complex sort of knowledge. There may of course be learning biases pro-
grammed into the system, to enable it to learn language based on its experi-
ence more rapidly. But there is no concrete linguistic knowledge programmed
in.

In the latter approach, one may use knowledge from statistical corpus
analysis, one may use electronic resources like WordNet and FrameNet, and
one may use sophisticated, specialized tools like natural language parsers with
hand-coded grammars. Rather than trying to emulate the way a human child
learns language, one is trying to emulate the way a human adult comprehends
and generates language.

Of course, there is not really a rigid dichotomy between these two ap-
proaches. Many linguistic theorists who focus on experiential learning also be-
lieve in some form of universal grammar, and would advocate for an approach
where learning is foundational but is biased by in-built abstract structures
representing universal grammar. There is of course very little knowledge (and
few detailed hypotheses) about how universal grammar might be encoded in
the human brain, though there is reason to think it may be at a very abstract
level, due to the significant overlaps between grammatical structure, social
role structure [CB00], and physical reasoning [Cas04].

The engineered approach to NLP provides better functionality right “out
of the box,” and enables the exploitation of the vast knowledge accumulated
by computational linguists in the past decades. However, we suspect that
computational linguistics may have hit a ceiling in some regards, in terms of
the quality of the language comprehension and generation that it can deliver.
It runs up against problems related to the disambiguation of complex syn-
tactic constructs, which don’t seem to be resolvable using either a tractable
number of hand-coded rules, or supervised or unsupervised learning based
on a tractably large set of examples. This conclusion may be disputed, and
some researchers believe that statistical computational linguistics can even-
tually provide human-level functionality, once the Web becomes a bit larger
and the computers used to analyze it become a bit more powerful. But in
our view it is interesting to explore hybridization between the engineered and
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experiential approaches, with the motivation that the experiential approach
may provide a level of flexibility and insight at dealing with ambiguity that
the engineered approach apparently lacks.

After all, the way a human child deals with the tricky disambiguation
problems that stump current computational linguistics systems is not via
analysis of trillion-word corpuses, bur rather via correlating language with
non-linguistic experience. One may argue that the genome implicitly con-
tains a massive corpus of speech, but there it’s also to be noted that this is
experientially contextualized speech. And it seems clear from the psycholin-
guistic evidence [Tom03] that for young human children, language is part and
parcel of social and physical experience, learned in a manner that’s intricately
tied up with the learning of many other sorts of skills.

One interesting approach to this sort of hybridization, using Psynese, is to
create multiple CogPrime instances taking different approaches to language
learning, and let them communicate. Most simply one may create

• A CogPrime instance that learns language mainly based on experience,
with perhaps some basic in-built structure and some judicious biasing to
its learning (let’s call this CPexp)

• A CogPrime instance using an engineered NLP system (let’s call this
CPeng)

In this case, CPexp can use CPeng as a cheap way to test its ideas. For
instance suppose, CPexp thinks it has correctly interpreted a certain sentence
S into Atom-set A. Then it can send its interpretation A to CPeng and see
whether CPeng thinks A is a good interpretation of S, by consulting CPengthe
truth value of

ReferenceLink
ExOut

PsyneseMatch CPeng S
ExOut

PsyneseMatch CPeng A

Similarly, if CPexp believes it has found a good way (S) to linguistically
express a collection S of Atoms A, it can check whether these two match
reasonably well in CPeng.

Of course, this approach could be abused in an inefficient and foolish way,
for instance if CPexp did nothing but randomly generate sentences and then
test them against CPeng. In this case we would have a much less efficient
approach than simply using CPeng directly. However, effectively making use
of CPeng as a resource requires a different strategy: throwing CPeng only
a relatively small selection of things that seem to make sense, and using
CPeng as a filter to avoid trying out rough-draft guesses in actual human
conversation.

This hybrid approach, we suggest, may provide a way of getting the best
of both worlds: the flexibility of a experiential-learning-based language ap-
proach, together with the exploitation of existing linguistic tools and re-
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sources. With this in mind, in the following chapters we will describe both
engineering and experiential-learning based approaches to NLP.

43.5.1 Collective Language Learning

Finally we bring the language-learning and mindplex themes together, in the
notion of collective language learning. One of the most interesting uses for
a mindplex architecture is to allow multiple CogPrime agents to share the
linguistic knowledge they gain. One may envision a PsyneseVocabulary server
into which a population of CogPrime agents input their linguistic knowledge
specifically, and which these agents then consult when they wish to compre-
hend or express something in language, and their individual NLP systems
are not up to the task.

This could be a very powerful approach to language learning, because it
would allow a potentially very large number of AI systems to effectively act as
a single language learning system. It is an especially appealing approach in the
context of CogPrime systems used to control animated agents in online virtual
worlds or multiplayer games. The amount of linguistic experience undergone
by, say, 100,000 virtually embodied CogPrime agents communicating with
human virtual world avatars and game players, would be far more than any
single human child or any single agent could undergo. Thus, to the extent that
language learning can be accelerated by additional experience, this approach
could enable language to be learned quite rapidly.



Chapter 44
Natural Language Comprehension

Co-authored with Michael Ross and Linas Vepstas and Ruiting
Lian

44.1 Introduction

Two key approaches to endowing AGI systems with linguistic facility exist,
as noted above:

• “Experiential” – shorthand here for “gaining most of its linguistic knowl-
edge from interactive experience”

• “Engineered” – shorthand here for “gaining most of its linguistic knowl-
edge from sources other than the system’s own experience in the world,’

This dichotomy is somewhat fuzzy, since getting experiential language
learning to work well may involve some specialized engineering, and engi-
neered NLP systems may also involve some learning from experience. How-
ever, in spite of the fuzziness, the dichotomy is still real and important; there
are concrete choices to be made in designing an NLP system and this di-
chotomy compactly symbolizes some of them. Much of this chapter and the
next will be focused on the engineering approach, but atthe end of each chap-
ter we will turn to the experience-based approach. Our overall perspective on
the dichotomy is that

• the engineering-based approach, on its own, is unlikely to take us to
human-level NLP ... but this isn’t wholly impossible, if the engineering
is done in a manner that integrates linguistic functionality richly with
other kinds of experiential learning

• using a combination of experience-based and engineering-based approaches,
along the lines described in Chapter 43 may be the most practical option

• the engineering approach is useful for guiding the experiential approach,
because it tells us a lot about what kinds of general structures and dy-
namics may be adequate for intelligent language processing. To simplify
a bit, one can prepare an AGI system for experiential learning by sup-
plying it with structures and dynamics capable of supporting the key
components of an engineered NLP system – and biased toward learning

797
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things similar to known engineered NLP systems – but requiring all, or
the bulk of, the actual linguistic content to be learned via experience.
This approach may be preferable to requiring a system to learn language
based on more abstract structures and dynamics, and may indeed be
more comparable to what human brains do, given the large amount of
linguistic biasing that is probably built into the human genome.

Further distinctions, overlapping with this one, may also be useful. One
may distinguish (at least) five modes of instructing NLP systems, the first
three of which are valid only for engineered NLP systems, but the latter two
of which are valid both for engineered and experiential NLP systems:

• hand-coded rules
• supervised learning on hand-tagged corpuses, or via other mechanisms of

explicit human training
• unsupervised learning from static bodies of data
• unsupervised learning via interactive experience
• supervised learning via interactive experience

Note that, in principle, any of these modes may be used in a pure-language
or a socially/physically embodied language context. Of course, there is also
semi-supervised learning which may be used in place of supervised learning
in the above list [CSZ06].

Another key dichotomy related to linguistic facility is language compre-
hension versus language generation ( each of which is typically divided into
a number of different subprocesses). In language comprehension, we have
processes like stemming, part-of-speech tagging, grammar-based parsing, se-
mantic analysis, reference resolution and discourse analysis. In language gen-
eration, we have semantic analysis, syntactic sentence generation, pragmatic
discourse generation, reference-insertion, and so forth. In this chapter and
the next two we will briefly review all these different topics and explain how
they may be embodied in CogPrime . Then, in Chapter ?? we present a com-
plementary approach to linguistic interaction with AGI systems based on the
invented language Lojban; and in Chapter 47 we discuss the use of CogPrime
cognition to regulate the dialogue process.

A typical, engineered computational NLP system involves hand-coded al-
gorithms carrying out each of the specific tasks mentioned in the previous
paragraph, sometimes with parameters, rules or number tables that are tuned
statistically based on corpuses of data. In fact, most NLP systems handle only
understanding or only generation; systems that cover both aspects in a uni-
fied way are quite rare. The human mind, on the other hand, carries out
these tasks in a much more interconnected way - using separate procedures
for the separate tasks, to some extent, but allowing each of these procedures
to be deeply informed by the information generated by the other procedures.
This interconnectedness is what allows the human mind to really understand
language - specifically because human language syntax is complex and am-
biguous enough that the only way to master it is to infuse one’s syntactic
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analyses with semantic (and to a lesser extent pragmatic) knowledge. In our
treatment of NLP we will pay attention to connections between linguistic
functionalities, as well as to linguistic functionalities in isolation.

It’s worth emphasizing that what we mean by a “experience based” lan-
guage system is quite different from corpus-based language systems as are
commonplace in computational linguistics today [MS99]. In fact, we feel the
distinction between corpus-based and rule-based language processing systems
is often overblown. Whether one hand-codes a set of rules, or carefully marks
up a corpus so that rules can be induced from it, doesn’t ultimately make
that much difference. For instance, OpenCogPrimes RelEx system (to be de-
scribed below) uses hand-coded rules to do much the same thing that the
Stanford parser does using rules induced from a tagged corpus. But both sys-
tems do roughly the same thing. RelEx is faster due to using fewer rules, and
it handles some complex cases like comparatives better (presumably because
they were not well covered in the Stanford parser’s training corpus); but the
Stanford parser may be preferable in other respects, for instance it’s more
easily generalizable to languages beyond English (for a language with struc-
ture fairly similar to English, one just has to supply a new marked-up training
corpus; whereas porting RelEx rules to other languages requires more effort).

The bigger difference, in our view, is between language systems that learn
language in a social and physical context, versus those that deal with language
in isolation. Dealing with language in context immediately changes the way
the linguistics problem appears (to the AI system, and also to the researcher),
and makes hand-coded rules and hand-tagged corpuses less viable, shifting
attention toward experiential learning based approaches.

Ultimately we believe that the “right” way to teach an AGI system lan-
guage is via semi-supervised learning in a socially and physically embodied
context. That is: talk to the system, and have it learn both from your rein-
forcement signals and from unsupervised analysis of the dialogue. However,
we believe that other modes of teaching NLP systems can also contribute, es-
pecially if used in support of a system that also does semi-supervised learning
based on embodied interactive dialogue.

Finally, a note on one aspect of language comprehension that we don’t
deal with here. We deal only with text processing, not speech understanding
or generation. A CogPrime approach to speech would be quite feasible to
develop, for instance using neural-symbolic hybridization with DeSTIN or a
similar perceptual-motor hierarchy. However, this potential aspect of Cog-
Prime has not been pursued in detail yet, and we won’t devote space to it
here.
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44.2 Linguistic Atom Types

Explicit representation of linguistic knowledge in terms of Atoms is not a
deep issue, more of a “plumbing” type of issue, but it must be dealt with
before moving on to subtler aspects.

In principle, for dealing with linguistic information coming in through
ASCII, all we need besides the generic CogPrime structures and dynamics
are two node types and one relationship type:

• CharacterNode
• CharacterInstanceNode
• a unary relationship concat denoting an externally-observed list of items

Sequences of characters may then be represented in terms of lists and
the concat schema. For instance the word “pig” is represented by the list
concat(#p,#i,#g)

The concat operator can be used to help define special NL atom types,
such as:

• MorphemeNode/ MorphemeInstanceNode
• WordNode/WordInstanceNode
• PhraseNode/PhraseInstanceNode
• SentenceNode/ SentenceInstanceNode
• UtteranceNode/ UtteranceInstanceNode

44.3 The Comprehension and Generation Pipelines

Exactly how the “comprehension pipeline” is broken down into component
transformations, depends on one’s linguistic theory of choice. The approach
taken in OpenCogPrimes engineered NLP framework, in use from 2008-2012,
looked like:

Text→ Tokenizer → Link Parser → Syntactico−SemanticRelationshipExtractor (RelEx)→ SemanticRelationshipExtractor (RelEx2Frame)→ SemanticNodes&Links

In 2012, a new approach has been undertaken, which simplifies things a
little and looks like

Text→ Tokenizer → Link Parser → Syntactico−SemanticRelationshipExtractor (Link2Atom)→ SemanticNodes&Links

Note that many other variants of the NL pipeline include a “tagging”
stage, which assigns part of speech tags to words based on the words occur-
ring around them. In our current approach, tagging is essentially subsumed
within parsing; the choice of a POS (part-of-speech) tag for a word instance is
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carried out within the link parser. However, it may still be valuable to derive
information about likely POS tags for word instances from other techniques,
and use this information within a link parsing framework by allowing it to
bias the probabilities used in the parsing process.

None of the processes in this pipeline are terribly difficult to carry out, if
one is willing to use hand-coded rules within each step, or derive rules via
supervised learning, to govern their operation. The truly tricky aspects of NL
comprehension are:

• arriving at the rules used by the various subprocesses, in a way that
naturally supports generalization and modification of the rules based on
ongoing experience

• allowing semantic understanding to bias the choice of rules in particular
contexts

• knowing when to break the rules and be guided by semantic intuition
instead

Importing rules straight from linguistic databases results in a system that
(like the current RelEx system) is reasonably linguistically savvy on the
surface, but lacks the ability to adapt its knowledge effectively based on
experience, and has trouble comprehending complex language. Supervised
learning based on hand-created corpuses tends to result in rule-bases with
similar problems. This doesn’t necessarily mean that hand-coding or super-
vised learning of linguistic rules has no place in an AGI system, but it means
that if one uses these methods, one must take extra care to make one’s rules
modifiable and generalizable based on ongoing experience, because the initial
version of one’s rules is not going to be good enough.

Generation is the subject of the following chapter, but for comparison
we give here a high-level overview of the generation pipeline, which may be
conceived as:

1. Content determination: figuring out what needs to be said in a given
context

2. Discourse planning : overall organization of the information to be com-
municated

3. Lexicalization: assigning words to concepts
4. Reference generation: linking words in the generated sentences using pro-

nouns and other kinds of reference
5. Syntactic and morphological realization: the generation of sentences via a

process inverse to parsing, representing the information gathered in the
above phases

6. Phonological or orthographic realization: turning the above into spoken
or written words, complete with timing (in the spoken case), punctuation
(in the written case), etc.

In Chapter 45 we explain how this pipeline is realized in OpenCogPrimes
current engineered NL generation system.
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44.4 Parsing with Link Grammar

Now we proceed to explain some of the details of OpenCogPrimes engineered
NL comprehension system. This section gives an overview of link grammar, a
key part of the current OpenCog NLP framework, and explains what makes
it different from other linguistic formalisms.

We emphasize that this particular grammatical formalism is not, in itself,
a critical part of the CogPrime design. In fact, it should be quite possible
to create and teach a CogPrime AGI system without using any particular
grammatical formalism – having it acquire linguistic knowledge in a purely
experiential way. However, a great deal of insight into CogPrime -based lan-
guage processing may be obtained by considering the relevant issues in the
concrete detail that the assumption of a specific grammatical formalism pro-
vides. This insight is of course useful if one is building a CogPrime that makes
use of that particular grammatical formalism, but it’s also useful to some de-
gree even if one is building a CogPrime that deals with human language
entirely experientially.

This material will be more comprehensible to the reader who has some
familiarity with computational linguistics, e.g. with notions such as parts
of speech, feature structures, lexicons, dependency grammars, and so forth.
Excellent references are [MS99, Jac03]. We will try to keep the discussion
relatively elementary, but have opted not to insert a computational linguistics
tutorial.

The essential idea of link grammar is that each word comes with a feature
structure consisting of a set of typed connectors. Parsing consists of matching
up connectors from one word with connectors from another

To understand this in detail, the best course is to consider an example
sentence. We will use the following example, drawn from the classic paper
“Parsing with a Link Grammar” by Sleator and Temperley [ST93]:

The cat chased a snake

The link grammar parse structure for this sentence is:

In phrase structure grammar terms, this corresponds loosely to

(S (NP The cat)
(VP chased

(NP a snake))
.)

but the OpenCog linguistic pipeline makes scant use of this kind of phrase
structure rendition (which is fine in this simple example; but in the case of
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complex sentences, construction of analogous mappings from link parse struc-
tures to phrase structure grammar parse trees can be complex and problem-
atic). Currently the hierarchical view is used in OpenCog only within some
reference resolution heuristics.

There is a database called the “link grammar dictionary” which contains
connectors associated with all common English words. The notation used to
describe feature structures in this dictionary is quite simple. Different kinds
of connectors are denoted by letters or pairs of letters like S or SX. Then if a
word W1 has the connector S+, this means that the word can have an S link
coming out to the right side. If a word W2 has the connector S-, this means
that the word can have an S link coming out to the left side. In this case, if
W1 occurs to the left of W2 in a sentence, then the two words can be joined
together with an S link.

The features of the words in our example sentence, as given in the S&T
paper, are:

Words Formula
a, the D+
snake, cat D- & (O- or S+)
Chased S- & O+
To illustrate the role of syntactic sense disambiguation, we will introduce

alternate formulas for one of the words in the example: the verb sense of
“snake.” We then have

Words Formula
A, the D+
snake_N, cat, ran_N D- & (O- or S+)
Chased S- & O+
snake_V S-
The variables to be used in parsing this sentence are, for each word:

1. the features in the Agreement structure of the word (for any of its senses)
2. the words matching each of the connectors of the word

For example,

1. For “snake,” there are features for “word that links to D-”, “word that links
to O-” and “word that links to S+”. There are also features for “tense”
and “person”.

2. For “the”, the only feature is “word that links to D+”. No features for
Agreement are needed.

The nature of linkage imposes constraints on the variable assignments; for
instance, if “the” is assigned as the value of the “word that links to D-” feature
of “snake”, then “snake” must be assigned as the value of the “word that links
to D+” feature of “the.”

The rules of link grammar impose additional constraints – i.e. the pla-
narity, connectivity, ordering and exclusion metarules described in Sleator
and Temperley’s papers. Planarity means that links don’t cross – a rule that
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S&T’s parser enforces with absoluteness, whereas we have found it is prob-
ably better to impose it as a probabilistic constraint, since sometimes it’s
really nice to let links cross (the representation of conjunctions is one exam-
ple). Connectivity means that the links and words of a sentence must form
a connected graph – all the words must be linked into the other words in
the sentence via some path. Again connectivity is a valuable constraint but
in some cases one wants to relax it – if one just can’t understand the whole
sentence, one may wish to understand at least some parts of it, meaning
that one has a disconnected graph whose components are the phrases of the
sentence that have been successfully comprehended. Finally, linguistic trans-
formations may potentially be applied while checking if these constraints are
fulfilled (that is, instead of just checking if the constraints are fulfilled, one
may check if the constraints are fulfilled after one or more transformations
are performed.)

We will use the term “Agreement” to refer to “person” values or ordered
pairs (tense, person), and NAGR to refer to the number of agreement val-
ues (12-40, perhaps, in most realistic linguistic theories). Agreement may be
dealt with alongside the connector constraints. For instance, “chased” has the
Agreement values (past, third person), and it has the constraint that its S-
argument must match the person component of its Agreement structure.

Semantic restrictions may be imposed in the same framework. For instance,
it may be known that the subject of “chased” is generally animate. In that
case, we’d say

Words Formula
A, the D+
snake_N, cat D- & (O- or S+)
Chased (S-, C Inheritance animate <.8>)

& O+
Snake_V S-

where we’ve added the modifier (C Inheritance animate) to the S- connector
of the verb “chased,” to indicate that with strength .8, the word connecting
to this S- connector should denote something inheriting from “animate.” In
this example, “snake” and “cat” inherit from “animate”, so the probabilistic
restriction doesn’t help the parser any. If the sentence were instead

The snake in the hat chased the car

then the “animate” constraint would tell the parsing process not to start out
by trying to connect “hat” to “chased”, because the connection is semantically
unlikely.
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44.4.1 Link Grammar vs. Phrase Structure Grammar

Before proceeding further, it’s worth making a couple observations about the
relationship between link grammars and typical phrase structure grammars.
These could also be formulated as observations about the relationship be-
tween dependency grammars and phrase structure grammars, but that gets
a little more complicated as there are many kinds of dependency grammars
with different properties; for simplicity we will restrict our discussion here to
the link grammar that we actually use in OpenCog. Two useful observations
may be:

1. Link grammar formulas correspond to grammatical categories. For exam-
ple, the link structure for “chased” is “S- & O +.” In categorical grammar,
this would seem to mean that “ ‘chased’ belongs to the category of words
with link structure ‘S- & O+’.” In other words, each “formula” in link
grammar corresponds to a category of words attached to that formula.

2. Links to words might as well be interpreted as links to phrases headed
by those words. For example, in the sentence “the cat chased a snake”,
there’s an O-link from “chased” to “snake.” This might as well be inter-
preted as “there’s an O-link from the phrase headed by ‘chased’ to the
phrase headed by ‘snake’.” Link grammar simplifies things by implicitly
identifying each phrase by its head.

Based on these observations, one could look at phrase structure as implicit
in a link parse; and this does make sense, but also leads to some linguistic
complexities that we won’t enter into here.

44.5 The RelEx Framework for Natural Language
Comprehension

Now we move forward in the pipeline from syntax toward semantics. The NL
comprehension framework provided with OpenCog at its inception in 2008
is RelEx, an English-language semantic relationship extractor, which con-
sists of two main components: the dependency extractor and the relationship
extractor. It can identify subject, object, indirect object and many other de-
pendency relationships between words in a sentence; it generates dependency
trees, resembling those of dependency grammars. In 2012 we are in the pro-
cess of replacing RelEx with a different approach that we believe will be more
amenable to generalization based one experience. Here we will describe both
approaches.

The overall processing scheme of RelEx is shown in Figure 44.1.
The dependency extractor component carries out dependency grammar

parsing via a customized version of the open-source Sleator and Temperley’s
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Fig. 44.1 A Overview of the RelEx Architecture for Language Comprehension

link parser, as reviewed above. The link parser outputs several parses, and the
dependencies of the best one are taken. The relationship extractor component
is composed of a number of template matching algorithms that act upon the
link parser’s output to produce a semantic interpretation of the parse. It
contains three steps:

1. Convert the Link Parser output to a feature structure representation
2. Execute the Sentence Algorithm Applier, which contains a series of Sen-

tence Algorithms, to modify the feature structure.
3. Extract the final output representation by traversing the feature struc-

ture.

A feature structure, in the RelEx context, is a directed graph in which
each node contains either a value, or an unordered list of features. A feature
is just a labeled link to another node. Sentence Algorithm Applier loads a list
of SentenceAlgorithms from the algorithm definition file, and the SentenceAl-
gorithms are executed in the order they are listed in the file. RelEx iterates
through every single feature node in the feature structure, and attempts to
apply the algorithm to each node. Then the modified feature structures are
used to generate the final RelEx semantic relationships.
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44.5.1 RelEx2Frame: Mapping Syntactico-Semantic
Relationships into FrameNet Based Logical
Relationships

Next in the current OpenCog NL comprehension pipeline, the RelEx2Frame
component uses hand-coded rules to map RelEx output into sets of rela-
tionships utilizing FrameNet and other similar semantic resources. This is
definitively viewed as a "stopgap" without a role in a human-level AGI sys-
tem, but it’s described here because it’s part of the current OpenCog system
and is now being used together with other OpenCog components in practical
projects, including those with proto-AGI intentions.

The syntax currently used for describing semantic relationships drawn
from FrameNet and other sources is exemplified by the example

^1_Benefit:Benefitor(give,$var1)

The 1 indicates the data source, where 1 is a number indicating that the
resource is FrameNet. The “give” indicates the word in the original sentence
from which the relationship is drawn, that embodies the given semantic re-
lationship. So far the resources we’ve utilized are:

1. FrameNet
2. Custom relationship names

but using other resources in future is quite possible.
An example using a custom relationship would be:

^2_inheritance($var1,$var2)

which defines an inheritance relationship: something that is part of CogPrime
’s ontology but not part of FrameNet.

The “Benefit” part of the first example indicates the frame indicated, and
the “Benefitor” indicates the frame element indicated. This distinction (frame
vs. frame element) is particular to FrameNet; other knowledge resources
might use a different sort of identifier. In general, whatever lies between the
underscore and the initial parenthese should be considered as particular to the
knowledge-resource in question, and may have different format and semantics
depending on the knowledge resource (but shouldn’t contain parentheses or
underscores unless those are preceded by an escape character).

As an example, consider:

Put the ball on the table

Here the RelEx output is:

imperative(Put) [1]
_obj(Put, ball) [1]
on(Put, table) [1]
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singular(ball) [1]
singular(table) [1]

, the relevant FrameNet Mapping Rules are

$var0 = ball
$var1 = table
# IF imperative(put) THEN ^1_Placing:Agent(put,you)
# IF _obj(put,$var0) THEN ^1_Placing:Theme(put,$var0)
# IF on(put,$var1) & _obj(put,$var0) THEN ^1_Placing:Goal(put,$var1) \
^1_Locative_relation:Figure($var0) ^1_Locative_relation:Ground($var1)

and the output FrameNet Mapping is

^1_Placing:Agent(put,you)
^1_Placing:Theme(put,ball)
^1_Placing:Goal(put,table)
^1_Locative_relation:Figure(put,ball)
^1_Locative_relation:Ground(put,table)

The textual syntax used for the hand-coded rules mapping RelEx to
FrameNet, at the moment, looks like:

# IF imperative(put) THEN ^1_Placing:Agent(put,you)
# IF _obj(put,$var0) THEN ^1_Placing:Theme(put,$var0)
# IF on(put,$var1) & _obj(put,$var0) THEN ^1_Placing:Goal(put,$var1) \
^1_Locative_relation:Figure($var0) ^1_Locative_relation:Ground($var1)

Basically, this means each rule looks like

# IF condition THEN action

where the condition is a series of RelEx relationships, and the action is a
series of FrameNet relationships. The arguments of the relationships may be
words or may be variables in which case their names must start with $ ∗.
The only variables appearing in the action should be ones that appeared in
the condition.

44.5.2 A Priori Probabilities For Rules

It can be useful to attach a priori, heuristic probabilities to RelEx2Frame
rules, say

# IF _obj(put,$var0) THEN ^1_Placing:Theme(put,$var0) <.5>

∗ An escape character “\” must be used to handle cases where the character “$” starts a
word
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to denote that the a priori probability for the rule is 0.5
This is a crude mechanism because the probability of a rule being useful,

in reality, depends so much on context; but it still has some nonzero value.

44.5.3 Exclusions Between Rules

It may be also useful to specify that two rules can’t semantically-consistently
be applied to the same RelEx relationship. To do this, we need to associate
rules with labels, and then specify exclusion relationships such as

# IF on(put,$var1) & _obj(put,$var0) THEN ^1_Placing:Goal(put,$var1) \
^1_Locative_relation:Figure($var0) ^1_Locative_relation:Ground($var1) [1]

# IF on(put,$var1) & _subj(put,$var0) THEN \
^1_Performing_arts:Performance(put,$var1) \
^1_Performing_arts:Performer(put,$var0) [2]

# EXCLUSION 1 2

In this example, Rule 1 would apply to “He put the ball on the table”, whereas
Rule 2 would apply to “He put on a show”. The exclusion says that generally
these two rules shouldn’t be applied to the same situation. Of course some
jokes, poetic expressions, etc., may involve applying excluded rules in parallel.

44.5.4 Handling Multiple Prepositional Relationships

Finally, one complexity arising in such rules is exemplified by the sentence:

“Bob says killing for the Mafia beats killing for the government”

whose RelEx mapping looks like

uncountable(Bob) [6]
present(says) [6]
_subj(says, Bob) [6]
_that(says, beats) [3]
uncountable(killing) [6]
for(killing, Mafia) [3]
singular(Mafia) [6]
definite(Mafia) [6]
hyp(beats) [3]
present(beats) [5]
_subj(beats, killing) [3]
_obj(beats, killing_1) [5]
uncountable(killing_1) [5]
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for(killing_1, government) [2]
definite(government) [6]

In this case there are two instances of “for”. The output of RelEx2Frame
must thus take care to distinguish the two different for’s (or we might want
to modify RelEx to make this distinction). The mechanism currently used for
this is to subscript the for’s, as in

uncountable(Bob) [6]
present(says) [6]
_subj(says, Bob) [6]
_that(says, beats) [3]
uncountable(killing) [6]
for(killing, Mafia) [3]
singular(Mafia) [6]
definite(Mafia) [6]
hyp(beats) [3]
present(beats) [5]
_subj(beats, killing) [3]
_obj(beats, killing_1) [5]
uncountable(killing_1) [5]
for_1(killing_1, government) [2]
definite(government) [6]

so that upon applying the rule:

# IF for($var0,$var1) ^ {present($var0) OR past($var0) OR future($var0)} \
THEN ^2_Benefit:Benefitor(for,$var1) ^2_Benefit:Act(for,$var0)

we obtain

^2_Benefit:Benefitor(for,Mafia)
^2_Benefit:Act(for,killing)

^2_Benefit:Benefitor(for_1,government)
^2_Benefit:Act(for_1,killing_1)

Here the first argument of the output relationships allows us to correctly
associate the different acts of killing with the different benefitors

44.5.5 Comparatives and Phantom Nodes

Next, a bit of subtlety is needed to deal with sentences like

Mike eats more cookies than Ben.

which RelEx handles via
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_subj(eat, Mike)
_obj(eat, cookie)
more(cookie, $cVar0)
$cVar0(Ben)

Then a RelEx2FrameNet mapping rule such as:

IF
_subj(eat,$var0)
_obj(eat,$var1)
more($var1,$cVar0)
$cVar0($var2)
THEN
^2_AsymmetricEvaluativeComparison:ProfiledItem(more, $var1)
^2_AsymmetricEvaluativeComparison:StandardItem(more, $var1_1)
^2_AsymmetricEvaluativeComparison:Valence(more, more)
^1_Ingestion:Ingestor(eat,$var0)
^1_Ingestion:Ingested(eat,$var1)
^1_Ingestion:Ingestor(eat_1,$var2)
^1_Ingestion:Ingested(eat_1,$var1_1)

applies, which embodies the commonsense intuition about comparisons
regarding eating. (Note that we have introduced a new frame Asymmet-
ricEvaluativeComparison here, by analogy to the standard FrameNet frame
Evaluative_comparison.)

Note also that the above rule may be too specialized, though it’s not
incorrect. One could also try more general rules like

IF
%Agent($var0)
%Agent($var1)
_subj($var3,$var0)
_obj($var3,$var1)
more($var1,$cVar0)
$cVar0($var2)
THEN
^2_AsymmetricEvaluativeComparison:ProfiledItem(more, $var1)
^2_AsymmetricEvaluativeComparison:StandardItem(more, $var1_1)
^2_AsymmetricEvaluativeComparison:Valence(more, more)
_subj($var3,$var0)
_obj($var3,$var1)
_subj($var3_1,$var2)
_obj($var3_1,$var1_1)

However, this rule is a little different than most RelEx2Frame rules, in that it
produces output that then needs to be processed by the RelEx2Frame rule-
base a second time. There’s nothing wrong with this, it’s just an added layer
of complexity.
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44.6 Frame2Atom

The next step in the current OpenCog NLP comprehension pipeline is to
translate the output of RelEx2Frame into Atoms. This may be done in a
variety of ways; the current Frame2Atom script embodies one approach that
has proved workable, but is certainly not the only useful one.

The Node types currently used in Frame2Atom are:

• WordNode
• ConceptNode

– DefinedFrameNode
– DefinedLinguisticConceptNode

• PredicateNode

– DefinedFrameElementNode
– DefinedLinguisticRelationshipNode

• SpecificEntityNode

The special node types

• DefinedFrameNode
• DefinedFrameElementNode

have been created to correspond to FrameNet frames and elements respec-
tively (or frames and elements drawn from similar resources to FrameNet,
such as our own frame dictionary).

Similarly, the special node types

• DefinedLinguisticConceptNode
• DefinedLinguisticRelationshipNode

have been created to correspond to RelEx unary and binary relationships
respectively.

The "defined" is in the names because once we have a more advanced Cog-
Prime system, it will be able to learn its own frames, frame elements, linguistic
concepts and relationships. But what distinguishes these "defined" Atoms is
that they have names which correspond to specific external resources.

The Link types we need for Frame2Atom are:

• InheritanceLink
• ReferenceLink (current using WRLink aka "word reference link")
• FrameElementLink

ReferenceLink is a special link type for connecting concepts to the words
that they refer to. (This could be eliminated via using more complex con-
structs, but it’s a very common case so for practical purposes it makes sense
to define it as a link type.)
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FrameElementLink is a special link type connecting a frame to its element.
Its semantics (and how it could be eliminated at cost of increased memory
and complexity) will be explained below.

44.6.1 Examples of Frame2Atom

Below follow some examples to illustrate the nature of the mapping intended.
The examples include a lot of explanatory discussion as well.

Note that, in these examples, [n] denotes an Atom with AtomHandle n.
All Atoms have Handles, but Handles are only denoted in cases where this
seems useful. (In the XML representation used in the current OpenCogPrime
impelmentation, these are replaced by UUID’s)

The notation

WordNode#pig

denotes a WordNode with name pig, and a similar convention is used for
other AtomTypes whose names are useful to know.

These examples pertain to fragments of the parse
Ben slowly ate the fat chickens.

A:_advmod:V(slowly:A, eat:V)
N:_nn:N(fat:N, chicken:N)
N:definite(Ben:N)
N:definite(chicken:N)
N:masculine(Ben:N)
N:person(Ben:N)
N:plural(chicken:N)
N:singular(Ben:N)
V:_obj:N(eat:V, chicken:N)
V:_subj:N(eat:V, Ben:N)
V:past(eat:V)

^1_Ingestion:Ingestor(eat,Ben)
^1_Temporal_colocation:Event(past,eat)
^1_Ingestion:Ingestibles(eat,chicken)
^1_Activity:Agent(subject,Ben)
^1_Activity:Activity(verb,eat)
^1_Transitive_action:Event(verb,eat)
^1_Transitive_action:Patient(object,chicken)

44.6.1.1 Example 1

_obj(eat, chicken)

would map into
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EvaluationLink
DefinedLinguisticRelationshipNode #_obj
ListLink

ConceptNode [2]
ConceptNode [3]

InheritanceLink
[2]
ConceptNode [4]

InheritanceLink
[3]
ConceptNode [5]

ReferenceLink [6]
WordNode #eat [8]
[4]

ReferenceLink [7]
WordNode #chicken [9]
[5]

Please note that the Atoms labeled 4,5,6,7,8,9 would not normally have to
be created when entering the relationship

_obj(eat, chicken)

into the AtomTable. They should already be there, assuming the system
already knows about the concepts of eating and chickens. These would need
to be newly created only if the system had never seen these words before.

For instance, the Atom [2] represents the specific instance of "eat" involved
in the relationship being entered into the system. The Atom [4] represents
the general concept of "eat", which is what is linked to the word "eat."

Note that a very simple step of inference, from these Atoms, would lead
to the conclusion

EvaluationLink
DefinedLinguisticRelationshipNode #_obj
ListLink

ConceptNode [4]
ConceptNode [5]

which represents the general statement that chickens are eaten. This is
such an obvious and important step, that perhaps as soon as the relation-
ship _obj(eat, chicken) is entered into the system, it should immediately be
carried out (i.e. that link if not present should be created, and if present
should have its truth value updated). This is a choice to be implemented in
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the specific scripts or schema that deal with ingestion of natural language
text.

44.6.1.2 Example 2

masculine(Ben)

would map into

InheritanceLink
SpecificEntityNode [40]
DefinedLinguisticConceptNode #masculine

InheritanceLink
[40]
[10]

ReferenceLink
WordNode #Ben
[10]

44.6.1.3 Example 3

The mapping of the RelExToFrame output

Ingestion : Ingestor(eat, Ben)

would use the existing Atoms

DefinedFrameNode #Ingestion [11]
DefinedFrameElementNode #Ingestion:Ingestor [12]

which would be related via

FrameElementLink [11] [12]

(Note that FrameElementLink may in principle be reduced to more elemen-
tary PLN link types.)

Note that each FrameNet frame contains some core elements and some
optional elements. This may be handled by giving core elements links such
as

FrameElementLink F E <1>

and optional ones links such as

FrameElementLink F E <.7>

Getting back to the example at hand, we would then have
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InheritanceLink [2] [11]

(recall, [2] is the instance of eating involved in Example ; and, [11] is the
Ingestion frame), which says that this instance of eating is an instance of
ingestion. (In principle, some instances of eating might not be instances of
ingestion ... or more generally, we can’t assume that all instances of a given
concept will always associate with the same FrameNodes.... This could be
assumed only if we assumed all word-associated concepts were disambiguated
to a single known FrameNet frame, but this can’t be assumed, especially if
later on we want to use cognitive processes to do sense disambiguation....)

We would then also have links denoting the role of Ben as an Ingestor in
the frame-instance [2], i.e.

EvaluationLink
DefinedFrameElementNode #Ingestion:Ingestor [12]
ListLink

[2]
[40]

This says that the specific instance of Ben observed in that sentence ([4])
served the role of Ingestion:Ingestor in regard to the frame-instance [2] (which
is an instance of eating, which is known to be an instance of the frame of
Ingestion).

44.6.2 Issues Involving Disambiguation

Right now, OpenCogPrimes RelEx2Frame rulebase is far from adequately
large (there are currently around 5000 rules) and the link parser and RelEx
are also imperfect. The current OpenCog NLP system does work, but for
complex sentences it tends to generate too many interpretations of each sen-
tence – “parse selection” or more generally “interpretation selection” is not
yet adequately addressed. This is a tricky issue that can be addressed to
some extent via statistical linguistics methods, but we believe that to solve
it convincingly and thoroughly will require more cognitively sophisticated
methods.

The most straightforward way to approach it statistically is to process
a large number of sentences, and then tabulate co-occurrence probabilities
of different relationships across all the sentences. This allows one to calcu-
late the probability of a given interpretation conditional on the corpus, via
looking at the probabilities of the combinations of relationships in the inter-
pretation. This may be done using a Bayes Net or using PLN – in any case
the problem is one of calculating the probability of a conjunction of terms
based on knowledge regarding the probabilities of various sub-conjunctions.
As this method doesn’t require marked-up training data, but is rather purely
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unsupervised, it’s feasible to apply it to a very large corpus of text – the only
cost is computer time.

What the statistical approach won’t handle, though, are the more con-
ceptually original linguistic constructs, containing combinations that didn’t
occur frequently in the system’s training corpus. It will rate innovative se-
mantic constructs as unlikely, which will lead it to errors sometimes – errors
of choosing an interpretation that seems odd in terms of the sentence’s real-
world interpretation, but matches will with things the system has seen before.
The only way to solve this is with genuine understanding – with the system
reasoning on each of the interpretations and seeing which one makes more
sense. And this kind of reasoning generally requires some relevant common-
sense background knowledge – which must be gained via experience, reading
and conversing, or from a hand-coded knowledge base, or via some combina-
tion of the above.

Related issues also involving disambiguation include word sense disam-
biguation (words with multiple meanings) and anaphor resolution (recogniz-
ing the referents of pronouns, and of nouns that refer to other nouns, etc.).

The current RelEx system contains a simple statistical parse ranker (which
rates a parse higher if the links it includes occur more frequently in a large
parsed corpus), statistical methods for word sense disambiguation [Mih07] in-
spired by those in Rada Mihalcea’s work [SM09], and an anaphor resolution
algorithm based on the classic Hobbs Algorithm (customized to work with
the link parser) [Hob78]. While reasonably effective in many cases, from an
AGI perspective these must all be considered "stopgaps" to be replaced with
code that handles these tasks using probabilistic inference. It is conceptually
straightforward to replace statistical linguistic algorithms with comparable
PLN-based methods, however significant attention must be paid to code op-
timization as using a more general algorithm is rarely as efficient as using a
specialized one. But once one is handling things in PLN and the Atomspace
rather than in specialized computational linguistics code, there is the oppor-
tunity to use a variety of inference rules for generalization, analogy and so
forth, which enables a radically more robust form of linguistic intelligence.

44.7 Link2Atom: A Semi-Supervised Alternative to
RelEx and RelEx2Frame

This section describes an alternative approach to the RelEx / RelEx2Frame
approach described above, which is in the midst of implementation at time
of writing. This alternative represents a sort of midway point between the
rule-based RelEx / RelEx2Frame approach, and a conceptually ideal fully
experiential learning based approach.

The motivations underlying this alternative approach have been to create
an OpenCog NLP system with the capability
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• to support simple dialogue in a video game like world, and a robot system
• to leverage primarily semi-supervised experiential learning
• to replace the RelEx2Frame rules, which are currently problematic, with

a different way of mapping syntactic relationships into Atoms, that is still
reasoning and learning friendly

• to require only relatively modest effort for implementation (not multiple
human-years)

The latter requirement ruled out a pure "learn language from experience
with no aid from computational linguistics tools" approach, which may well
happen within OpenCog at some point.

44.8 Mapping Link Parses into Atom Structures

The core idea of the new approach is to learn "Link2Atom" rules that map
link parses into Atom structures. These rules may then be automatically
reversed to form Atom2Link rules, which may be used in language generation.

Note that this is different from the RelEx approach as currently pursued
(the "old approach"), which contains

• one set of rules (the RelEx rules) mapping link parses into semantic
relation-sets ("RelEx relation-sets" or rel-sets)

• another set of rules ( the RelEx2Frame rules) mapping rel-sets into
FrameNet-based relation-sets

• another set of rules (the Frame2Atom rules) mapping FrameNet-based
relation-sets into Atom-sets

In the old approach, all the rules were hand-coded. In the new approach

• nothing needs to be hand-coded (except the existing link parser dictio-
nary); the rules can be learned from a corpus of (link-parse, Atom-set)
pairs. This corpus may be human-created; or may be derived via a sys-
tem’s experience in some domain where sentences are heard or read, and
can be correlated with observed nonlinguistic structures that can be de-
scribed by Atoms.

• in practice, some hand-coded rules are being created to map RelEx rel-
sets into Atom-sets directly (bypassing RelEx2Frame) in a simple way.
These rules will be used, together with RelEx, to create a large corpus
of (link parse, Atom-set) pairs, which will be used as a training corpus.
This training corpus will have more errors than a hand-created corpus,
but will have the compensating advantage of being significantly larger
than any hand-created corpus would feasibly be.

In the old approach, NL generation was done by using a pattern-matching
approach, applied to a corpus of (link parse, rel-set) pairs, to mine rules
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mapping rel-sets to sets of link parser links. This worked to an extent, but
the process of piecing together the generated sets of link parser links to form
coherent "sentence parses" (that could then be turned into sentences) turned
out to be subtler than expected, and appeared to require an escalatingly
complex set of hand-coded rules, to be extended beyond simple cases.

In the new approach, NL generation is done by explicitly reversing the
mapping rules learned for mapping link parses into Atom sets. This is pos-
sible because the rules are explicitly given in a form enabling easy reversal;
whereas in the old approach, RelEx transformed link parses into rel-sets us-
ing a process of successively applying many rules to an ornamented tree, each
rule acting on variables ("ornaments") deposited by previous rules. Put sim-
ply, RelEx transformed link parses into rel-sets via imperative programming,
whereas in the new approach, link parses are transformed into Atom-sets us-
ing learned rules that are logical in nature. The movement from imperative
to logical style dramatically eases automated rule reversal.

44.8.1 Example Training Pair

For concreteness, an example (link parse, Atom-set) pair would be as follows.
For the sentence "Trains move quickly", the link parse looks like

Sp(trains, move)
MVa(move, quickly)

whereas the Atom-set looks like

Inheritance
move_1
move

Evaluation
move_1
train

Inheritance
move_1
quick

Rule learning proceeds, in the new approach, from a corpus consisting of such
pairs.
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44.9 Making a Training Corpus

44.9.1 Leveraging RelEx to Create a Training Corpus

To create a substantial training corpus for the new approach, we are leverag-
ing the existence of RelEx. We have a large corpus of sentences parsed by the
link parser and then processed by RelEx. A new collection of rules is being
created, RelEx2Atom, that directly translates RelEx parses into Atoms, in a
simple way, embodying the minimal necessary degree of disambiguation (in
a sense to be described just below). Using these RelEx2Atom rules, one can
transform a corpus of (link parse, RelEx rel-set) triples into a corpus of (link
parse, Atom-set) pairs – which can then be used as training data for learning
Link2Atom rules.

44.9.2 Making an Experience Based Training Corpus

An alternate approach to making a training corpus would be to utilize a
virtual world such as the Unity3D world now being used for OpenCog game
AI research and development.

A human game-player could create a training corpus by repeated:

• typing in a sentence
• indicating, via the graphic user interface, which entities or events in the

virtual world were referred to by the sentence

Since OpenCog possesses code for transforming entities and events in the
virtual world into Atom-sets, this would implicitly produce a training cor-
pus of (sentence, Atom-set) pairs, which using the link parser could then be
transformed into (link parse, Atom-set) pairs.

44.9.3 Unsupervised, Experience Based Corpus Creation

One could also dispense with the explicit reference-indication GUI, and just
have a user type sentences to the AI agent as the latter proceeds through the
virtual world. The AI agent would then have to figure out what specifically the
sentences were referring to – maybe the human-controlled avatar is pointing
at something; maybe one thing recently changed in the game world and noth-
ing else did; etc. This mode of corpus creation would be reasonably similar
to human first language learning in format (though of course there are many
differences from human first language learning in the overall approach, for
instance we are assuming the link parser, whereas a human language learner
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has to learn grammar for themselves, based on complex and ill-understood
genetically encoded prior probabilistic knowledge regarding the likely aspects
of the grammar to be learned).

This seems a very interesting direction to explore later on, but at time of
writing we are proceeding with the RelEx-based training corpus, for sake of
simplicity and speed of development.

44.10 Limiting the Degree of Disambiguation Attempted

The old approach is in a sense more ambitious than the new approach, be-
cause the RelEx2Frame rules attempt to perform a deeper and more thor-
ough level of semantic disambiguation than the new rules. However, the
RelEx2Frame rule-set in its current state is too "noisy" to be really use-
ful; it would need dramatic improvement to be helpful in practice. The key
difference is that,

• In the new approach, the syntax-to-semantics mapping rules attempt
only the disambiguation that needs to be done to get the structure of the
resultant Atom-set correct. Any further disambiguation is left to be done
later, by MindAgents acting on the Atom-sets after they’ve already been
placed in the AtomSpace.

• In the old approach, the RelEx2Frame rules attempted, in many cases,
to disambiguate between different meanings beyond the level needed to
disambiguate the structure of the Atom-set

To illustrate the difference, consider the sentences

• Love moves quickly
• Trains move quickly

These sentences involve different senses of "move" – change in physical loca-
tion, versus a more general notion of progress. However, both sentences map
to the same basic conceptual structure, e.g.

Inheritance
move_1
move

Evaluation
move_1
train

Inheritance
move_1
quick
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versus

Inheritance
move_2
move

Evaluation
move_2
love

Inheritance
move_2
quick

The RelEx2Frame rules try to distinguish between these cases via, in effect,
associating the two instances move_1 and move_2 with different frames,
using hand-coded rules that map RelEx rel-sets into appropriate Atom-sets
defined in terms of FrameNet relations. This is not a useless thing to do;
however, doing it well requires a very large and well-honed rule-base. Cyc’s
natural language engine attempts to do something similar, though using a
different parser than the link parser and a different ontology than FrameNet;
it does a much better job than the current version of RelEx2Frame, but still
does a surprisingly incomplete job given the massive amount of effort put
into sculpting the relevant rule-sets.

The new approach does not try to perform this kind of disambiguation
prior to mapping things into Atom-sets. Rather, this kind of disambiguation
is left for inference to do, after the relevant Atoms have already been placed
in the AtomSpace. The rule of thumb is: Do precisely the disambiguation
needed to map the parse into a compact, simple Atom-set, whose component
nodes correspond to English words. Let the disambiguation of the meaning of
the English words be done by some other process acting on the AtomSpace.

44.11 Rule Format

To represent Link2Atom rules, it is convenient to represent link parses as
Atom-sets. Each element of the training corpus will then be of the form (Atom
set representing link parse, Atom-set representing semantic interpretation).
Link2Atom rules are then rules mapping Atom-sets to Atom-sets.

Broadly speaking, the format of a Link2Atom rule is then

Implication
Atom-set representing portion of link parse
Atom-set representing portion of semantic interpretation
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44.11.1 Example Rule

A simple example rule would be

Implication
Evaluation

Predicate: Sp
\$V1
\$V2

Evaluation
\$V2
\$V1

This rule, in essence, maps verbs into predicates that take their subjects as
arguments.

On the other hand, an Atom2Link rule would look like the reverse:

Implication
Atom-set representing portion of link parse
Atom-set representing portion of semantic interpretation

Our currentapproach is to begin with Link2Atom rules, because, due to
the nature of natural language, these rules will tend to be more certain. That
is: it is more strongly the case in natural languages that each syntactic con-
struct maps into a small set of semantic structures, than that each semantic
structure is realizable only via a small set of syntactic constructs. There are
usually more ways structurally different, reasonably sensible ways to say an
arbitrary thought, than there are structurally different, reasonably sensible
ways to interpret an arbitrary sentence. Because of this fact about language,
the design of the Atom-sets in the corpus is based on the principle of finding
an Atom structure that most simply represents the meaning of the sentence
corresponding to each given link parse. Thus, there will be many Link2Atom
rules with a high degree of certitude attached to them. On the other hand,
the Atom2Link rules will tend to have less certitude, because there may be
many different syntactic ways to realize a given semantic expression.

44.12 Rule Learning

Learning of Link2Atom rules may be done via any algorithm that is able
to search rule space for rules of the proper format with high truth value as
evaluated across the training set. Currently we are experimenting with using
OpenCogPrimes frequent subgraph mining algorithm in this context. MOSES
could also potentially be used to learn Link2Atom rules. One suspects that
MOSES might be better than frequent subgraph mining for learning complex
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rules, but based on preliminary experimentation, frequent subgraph mining
seems fine for learning the simple rules involved in simple sentences.

PLN inference may also be used to generate new rules by combining pre-
vious ones, and to generalize rules into more abstract forms.

44.13 Creating a Cyc-Like Database via Text Mining

The discussion of these NL comprehension mechanisms leads naturally to one
interesting potential application of the OpenCog NL comprehension pipeline
– which is only indirectly related to CogPrime , but would create a valuable
resource for use by CogPrime if implemented. The possibility exists to use
the OpenCog NL comprehension system to create a vaguely Cyc-like database
of common-sense rules.

The approach would be as follows:

1. Get a corpus of text
2. Parse the text using OpenCog (RelEx or Link2Atom)
3. Mine logical relationships among Atomrelationships from the data thus

produced, using greedy data-mining, MOSES, or other methods

These mined logical relationships will then be loosely analogous to the rules
the Cyc team have programmed in. For instance, there will be many rules
like:

# IF _subj(understand,$var0) THEN ^1_Grasp:Cognizer(understand,$var0)
# IF _subj(know,$var0) THEN ^1_Grasp:Cognizer(understand,$var0)

So statistical mining would learn rules like

IF ^1_Mental_property(stupid) & ^1_Mental_property:Protagonist($var0)
THEN ^1_Grasp:Cognizer(understand,$var0) <.3>

IF ^1_Mental_property(smart) & ^1_Mental_property:Protagonist($var0)
THEN ^1_Grasp:Cognizer(understand,$var0) <.8>

which means that stupid people mentally grasp less than smart people do.
Note that these commonsense rules would come out automatically proba-

bilistically quantified.
Note also that to make such rules come out well, one needs to do some

(probabilistic) synonym-matching on nouns, adverbs and adjectives, e.g. so
that mentions of “smart”, “intelligent”, “clever”, etc. will count as instances of

^1_Mental_property(smart)

By combining probabilistic synonymmatching on words, with mapping RelEx
output into FrameNet input, and doing statistical mining, it should be pos-
sible to build a database like Cyc but far more complete and with coherent
probabilistic weightings.
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Although this way of building a commonsense knowledge base requires
a lot of human engineering, it requires far less than something like Cyc.
One “just” needs to build the RelEx2FrameNet mapping rules, not all the
commonsense knowledge relationships directly – those come from text. We
do not advocate this as a solution to the AGI problem, but merely suggest
that it could produce a large amount of useful knowledge to feed into an
AGI’s brain.

And of course, the better an AI one has, the better one can do the step
labeled “Rank the parses and FrameNet interpretations using inference or
heuristics or both.” So there is a potential virtuous cycle here: more com-
monsense knowledge mined helps create a better AI mind, which helps mine
better commonsense knowledge, etc.

44.14 PROWL Grammar

We have described the crux of the NL comprehension pipeline that is cur-
rently in place in the OpenCog codebase, plus some ideas for fairly moderate
modifications or extensions. This section is a little more speculative, and de-
scribes an alternative approach that fits better with the overall CogPrime
design, which however has not yet been implemented. The ideas given here
lead more naturally to a design for experience-based language learning and
processing, a connection that will be pointed out in a later section.

What we describe here is a partially-new theory of language formed
via combining ideas from three sources: Hudson’s Word Grammar [Hud90,
Hud07], Sleator and Temperley’s link grammar, and Probabilistic Logic Net-
works. Reflecting its origin in these three sources, we have named the new
theory PROWL grammar, meaning PRObabilistic Word Link Grammar. We
believe PROWL has value purely as a conceptual approach to understand-
ing language; however, it has been developed largely from the standpoint of
computational linguistics – as part of an attempt to create a framework for
computational language understanding and generation that both

1. yields broadly adequate behavior based on hand-coding of “expert rules”
such as grammatical rules, combined with statistical corpus analysis

2. integrates naturally with a broader AI framework that combines language
with embodied social, experiential learning, that ultimately will allow
linguistic rules derived via expert encoding and statistical corpus analysis
to be replaced with comparable, more refined rules resulting from the
system’s own experience

PROWL has been developed as part of the larger CogPrime project; but, it
is described in this section mostly in a CogPrime -independent way, and is
intended to be independently evaluable (and, hopefully, valuable).
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As an integration of three existing frameworks, PROWL could be pre-
sented in various different ways. One could choose any one of the three com-
ponents as an initial foundation, and then present the combined theory as
an expansion/modification of this component. Here we choose to present it
as an expansion/modification of Word Grammar, as this is the way it origi-
nated, and it is also the most natural approach for readers with a linguistics
background. From this perspective, to simplify a fair bit, one may describe
PROWL as consisting of Word Grammar with three major changes:

1. Word Grammar’s network knowledge representation is replaced with a
richer PLN-based network knowledge representation.

a. This includes, for instance, the replacement of Word Grammar’s sin-
gle “isa” relationship type with a more nuanced collection of logically
distinct probabilistic inheritance relationship types

2. Going along with the above, Word Grammar’s “default inheritance” mech-
anism is replaced by an appropriate PLN control mechanism that guides
the use of standard PLN inference rules

a. This allows the same default-inheritance based inferences that Word
Grammar relies upon, but embeds these inferences in a richer prob-
abilistic framework that allows them to be integrated with a wide
variety of other inferences

3. Word Grammar’s small set of syntactic link types is replaced with a richer
set of syntactic link types as used in Link Grammar

a. The precise optimal set of link types is not clear; it may be that
the link grammar’s syntactic link type vocabulary is larger than nec-
essary, but we also find it clear that the current version of Word
Grammar’s syntactic link type vocabulary is smaller than feasible
(at least, without the addition of large, new, and as yet unspecified
ideas to Word Grammar)

In the following subsections we will review these changes in a little more
detail. Basic familiarity with Word Grammar, Link Grammar and PLN is
assumed.

Note that in this section we will focus mainly on those issues that are some-
how nonobvious. This means that a host of very important topics that come
along with the Word Grammar / PLN integration are not even mentioned.
The way Word Grammar deals with morphology, semantics and pragmatics,
for instance, seems to us quite sensible and workable – and doesn’t really
change at all when you integrate Word Grammar with PLN, except that
Word Grammar’s crisp isa links become PLN-style probabilistic Inheritance
links.
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44.14.1 Brief Review of Word Grammar

Word Grammar is a theory of language structure which Richard Hudson be-
gan developing in the early 1980’s [?]. While partly descended from Systemic
Functional Grammar, there are also significant differences. The main ideas
of Word Grammar are as follows †:

• It presents language as a network of knowledge, linking concepts about
words, their meanings, etc. - e.g. the word "dog" is linked to the meaning
‘dog’, to the form /dog/, to the word-class ‘noun’, etc.

• If language is a network, then it is possible to decide what kind of network
it is (e.g. it seems to be a scale-free small-world network)

• It is monostratal - only one structure per sentence, no transformations.
• It uses word-word dependencies - e.g. a noun is the subject of a verb.
• It does not use phrase structure - e.g. it does not recognise a noun phrase

as the subject of a clause, though these phrases are implicit in the de-
pendency structure.

• It shows grammatical relations/functions by explicit labels - e.g. ‘subject’
and ‘object’.

• It uses features only for inflectional contrasts that are mentioned in agree-
ment rules - e.g. number but not trense or transitivity.

• It uses default inheritance, as a very general way of capturing the contrast
between ‘basic’ or ‘underlying’ patterns and ‘exceptions’ or ‘transforma-
tions’ - e.g. by default, English words follow the word they depend on,
but exceptionally subjects precede it; particular cases ‘inherit’ the default
pattern unless it is explicitly overridden by a contradictory rule.

• It views concepts as prototypes rather than ‘classical’ categories that
can be defined by necessary and sufficient conditions. All characteristics
(i.e. all links in the network) have equal status, though some may for
pragmatic reasons be harder to override than others.

• In this network there are no clear boundaries between different areas of
knowledge - e.g. between ‘lexicon’ and ‘grammar’, or between ‘linguis-
tic meaning’ and ‘encyclopedic knowledge’; language is not a separate
module of cognition.

• In particular, there is no clear boundary between ‘internal’ and ‘external’
facts about words, so a grammar should be able to incorporate sociolin-
guistic facts - e.g. the speaker of "sidewalk" is an American.

† the following list is paraphrased with edits from http://www.phon.ucl.ac.uk/
home/dick/wg.htm downloaded on June 27 2010

http://www.phon.ucl.ac.uk/home/dick/wg.htm
http://www.phon.ucl.ac.uk/home/dick/wg.htm
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44.14.2 Word Grammar’s Logical Network Model

Word Grammar presents an elegant framework in which all the different as-
pects of language are encompassed within a single knowledge network. Rep-
resentationally, this network combines two key aspects:

1. Inheritance (called is-a) is explicitly represented
2. General relationships between n-ary predicates and their arguments, in-

cluding syntactic relationships, are explicitly represented

Dynamically, the network contains two key aspects:

1. An inference rule called “default inheritance”
2. Activation-spreading, similar to in a neural network or standard semantic

network

The similarity between Word Grammar and CogPrime is fairly strong. In the
latter, inheritance and generic predicate-argument relationships are explicitly
represented; and, a close analogue of activation spreading is present in the
“attention allocation” subsystem. As in Word Grammar, important cognitive
phenomena are grounded in the symbiotic combination of logical-inference
and activation-spreading dynamics.

At the most general level, the reaction of the Word Grammar network to
any situation is proposed to involve three stages:

1. Node creation and identification: of nodes representing the situation as
understood, in its most relevant aspects

2. Where choices need to be made (e.g. where an identified predicate needs
to choose which other nodes to bind to as arguments), activation spread-
ing is used, and the most active eligible argument is utilized (this is called
“best fit binding”)

3. Default inheritance is used to supply new links to the relevant nodes as
necessary

Default inheritance is a process that relies on the placement of each node
in a hierarchy (dag) of isa links. The basic idea is as follows. Suppose one
has a node N, and a predicate f(N,L), where L is another argument or list of
arguments. Then, if the truth value of f(N,L) is not explicitly stored in the
network, N inherits the value from any ancestor A in the dag so that: f(A,L)
is explicitly stored in the network; and there is not any node P inbetween N
and A for which f(P,L) is explicitly stored in the network. Note that multiple
inheritance is explicitly supported, and in cases where this leads to multiple
assignments of truth values to a predicate, confusion in the linguistic mind
may ensue. In many cases the option coming from the ancestor with the
highest level of activity may be selected.

Our suggestion is that Word Grammar’s network representation may be
replaced with PLN’s logical network representation without any loss, and
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with significant gain. Word Grammar’s network representation has not been
fleshed out as thoroughly as that of PLN, it does not handle uncertainty, and
it is not associated with general mechanisms for inference. The one nontrivial
issue that must be addressed in porting Word Grammar to the PLN repre-
sentation is the role of default inheritance in Word Grammar. This is covered
in the following subsection.

The integration of activation spreading and default inheritance proposed
in Word Grammar, should be easily achievable within CogPrime assuming a
functional attention allocation subsystem.

44.14.3 Link Grammar Parsing vs Word Grammar
Parsing

From a CogPrime /PLN point of view, perhaps the most striking original
contribution of Word Grammar is in the area of syntax parsing. Word Gram-
mar’s treatment of morphology and semantics is, basically, exactly what one
would expect from representing such things in a richly structured semantic
network. PLN adds much additional richness to Word Grammar via allow-
ing nuanced representation of uncertainty, which is critical on every level of
the linguistic hierarchy – but this doesn’t change the fundamental linguistic
approach of Word Grammar. Regarding syntax processing, however, Word
Grammar makes some quite specific and unique hypotheses, which if correct
are very valuable contributions.

The conceptual assumption we make here is that syntax processing, while
carried out using generic cognitive processes for uncertain inference and ac-
tivation spreading, also involves some highly specific constraints on these
processes. The extent to which these constraints are learned versus inherited
is yet unknown, and for the subtleties of this issue the reader is referred to
[EBJ+97]. Word Grammar and Link Grammar are then understood as em-
bodying different hypotheses regarding what these constraints actually are.

It is interesting to consider the contributions of Word Grammar to syntax
parsing via comparing it to Link Grammar.

Note that Link Grammar, while a less comprehensive conceptual theory
than Word Grammar, has been used to produce a state-of-the-art syntax
parser, which has been incorporated into a number of other software systems
including OpenCog. So it is clear that the Link Grammar approach has a
great deal of pragmatic value. On the other hand, it also seems clear that
Link Grammar has certain theoretical shortcomings. It deals with many lin-
guistic phenomena very elegantly, but there are other phenomena for which
its approach can only be described as “hacky.”

Word Grammar contains fewer hacks than Link Grammar, but has not yet
been put to the test of large-scale computational implementation, so it’s not
yet clear how many hacks would need to be added to give it the relatively
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broad coverage that Link Grammar currently has. Our own impression is that
to make Word Grammar actually work as the foundation for a broad-coverage
grammar parser (whether standalone, or integrated into a broader artificial
cognition framework), one would need to move it somewhat in the direction
of link grammar, via adding a greater number of specialized syntactic link
types (more on this shortly). There are in fact concrete indications of this in
[Hud07].

The Link Grammar framework may be decomposed into three aspects:

1. The link grammar dictionary, which for each word in English, contains a
number of links of different types. Some links point left, some point right,
and each link is labeled. Furthermore, some links are required and others
are optional.

2. The “no-links-cross” constraint, which states that the correct parse of a
sentence will involve drawing links between words, in such a way that all
the required links of each word are fulfilled, and no two links cross when
the links are depicted in two dimensions

3. A processing algorithm, which involves first searching the space of all
possible linkages among the words in a sentence to find all complete link-
ages that obey the no-links-cross constraint; and then applying various
postprocessing rules to handle cases (such as conjunctions) that aren’t
handled properly by this algorithm

In PROWL, what we suggest is that

1. The link grammar dictionary is highly valuable and provides a level of
linguistic detail that is not present in Word Grammar; and, we suggest
that in order to turn Word Grammar into a computationally tractable
system, one will need something at least halfway between the currently
minimal collection of syntactic link types used in Word Grammar and
the much richer collection used in Link Grammar

2. The no-links-cross constraint is an approximation of a deeper syntac-
tic constraint (“landmark transitivity”) that has been articulated in the
most recent formulations of Word Grammar. Specifically: when a no-
links-crossing parse is found, it is correct according to Word Grammar;
but Word Grammar correctly recognizes some parses that violate this
constraint

3. The Link Grammar parsing algorithm is not cognitively natural, but is
effective in a standalone-parsing framework. The Word Grammar ap-
proach to parsing is cognitively natural, but as formulated could only be
computationally implemented in the context of an already-very-powerful
general intelligence system. Fortunately, various intermediary approaches
to parsing seem possible.
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44.14.3.1 Using Landmark Transitivity with the Link Grammar
Dictionary

An earlier version of Word Grammar utilized a constraint called “no tangled
links” which is equivalent to the link parser’s “no links cross” constraint.
In the new version of Word Grammar this is replaced with a subtler and
more permissive constraint called “landmark transitivity.” While in Word
Grammar, landmark transitivity is used with a small set of syntactic link
types, there is no reason why it can’t be used with the richer set of link types
that Link Grammar provides. In fact, this seems to us a probably effective
method of eliminating most or all of the “postprocessing rules” that exist
in the link parser, and that constitute the least elegant aspect of the Link
Grammar framework.

The first foundational concept, on the path to the notion of landmark tran-
sitivity, is the notion of a syntactic parent. In Word Grammar each syntactic
link has a parent end and a child end. In a dependency grammar context,
the notion is that the child depends upon the parent. For instance, in Word
Grammar, in the link between a noun and an adjective, the noun is the
parent.

To apply landmark transitivity in the context of the Link Grammar, one
needs to provide some additional information regarding each link in the Link
Grammar dictionary. One needs to specify which end of each of the link
grammar links is the “parent” and which is the “child.” Examples of this kind
of markup are as follows (with P shown by the parent):

P

S: subject-noun ------- finite verb

P

O: transitive verb ----- direct or indirect object

P

D: determiner ----- noun

P

MV: verb ----- verb modifier
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P

J: preposition ----- object

P

ON: on ----- time-expression

P

M: noun ----- modifiers

In some cases a word may have more than one parent. In this case, the rule is
that the landmark is the one that is superordinate to all the other parents. In
the rare case that two words are each others’ parents, then either may serve
as the landmark.

The concept of a parent leads naturally into that of a landmark. The
first rule regarding landmarks is that a parent is a landmark for its child.
Next, two kinds of landmarks are introduced: Before landmarks (in which
the child is before the parent) and After landmarks (in which the child is
after the parent). The Before/After distinction should be obvious in the Link
Grammar examples given above.

The landmark transitivity rule, then, has two parts. If A is a landmark for
B, of subtype L (where L is either Before or After), then

1. Subordinate transitivity says that if B is a landmark for C, then A is
also a type-L landmark for C

2. Sister transitivity says that if A is a landmark for C, then B is also a
landmark for C

Finally, there are some special link types that cause a word to depend
on its grandparents or higher ancestors as well as its parents. I note that
these are not treated thoroughly in (Hudson, 2007); one needs to look to the
earlier, longer and rarer work [Hud90]. Some questions are dealt with this
way. Another example is what in Word Grammar is called a “proxy link”, as
occurs between “with” and “whom” in

The person with whom she works

The link parser deals with this particular example via a Jw link
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so to apply landmark transitivity in the context of the Link Grammar, in
this case, it seems one would need to implement the rule that in the case of
two words connected by a Jw-link, the child of one of the words is also the
child of the other. Handling other special cases like this in the context of Link
Grammar seems conceptually unproblematic, though naturally some hidden
rocks may appear. Basically a list needs to be made of which kinds of link
parser links embody proxy relationships for which other kinds of link parser
links.

According to the landmark transitivity approach, then, the criterion for
syntactic correctness of a parse is that, if one takes the links in the parse
and applies the landmark transitivity rule (along with the other special-case
“raising” rules we’ve discussed), one does not arrive at any contradictions (i.e.
no situations where A is a Before landmark of B, and

The main problem with the landmark-transitivity constraint seems to be
computational tractability. The problem exists for both comprehension and
generation, but we’ll focus on comprehension here.

To find all possible parses of a sentence using Hudson’s landmark-transitivity-
based approach, one needs to find all linkages that don’t lead to contradictions
when used as premises for reasoning based on the landmark-transitivity ax-
ioms. This appears to be extremely computationally intensive! So, it seems
that Word Grammar style parsing is only computationally feasible for a sys-
tem that has extremely strong semantic understanding, so as to be able to
filter out the vast majority of possible parses on semantic rather than purely
syntactic grounds.

On the other hand, it seems possible to apply landmark-transitivity to-
gether with no-links-cross, to provide parsing that is both efficient and gen-
eral. If applying the no-links-cross constraint finds a parse in which no links
cross, without using postprocessing rules, then this will always be a legal
parse according to the landmark-transitivity rule.

However, landmark-transitivity also allows a lot of other parses that link
grammar either needs postprocessing rules to handle, or can’t find even with
postprocessing rules. So, it would make sense to apply no-links-cross parsing
first, but then if this fails, apply landmark-transitivity parsing starting from
the partial parses that the former stage produced. This is the approach sug-
gested in PROWL, and a similar approach may be suggested for language
generation.
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44.14.3.2 Overcoming the Current Limitations of Word Grammar

Finally, it is worth noting that expanding the Word Grammar parsing frame-
work to include the link grammar dictionary, will likely allow us to solve some
unsolved problems in Word Grammar. For instance, [Hud07] notes that the
current formulation of Word Grammar has no way to distinguish the behavior
of last vs. this in

I ate last night
I ate this ham

The issue he sees is that in the first case, night should be considered the
parent of last ; whereas in the second case, this should be considered the
parent of ham.

The current link parser also fails to handle this issue according to Hudson’s
intuition:

However, the link grammar framework gives us a clear possibility for allowing
the kind of interpretation Hudson wants: just allow this to take a left-going O-
link, and (in PROWL) let it optionally assume the parent role when involved
in a D-link relationship. There are no funky link-crossing or semantic issues
here; just a straightforward link-grammar dictionary edit.

This illustrates the syntactic flexibility of the link parsing framework, and
also the inelegance – adding new links to the dictionary generally solves syn-
tactic problems, but at the cost of creating more complexity to be dealt with
further down the pipeline, when the various link types need to be compressed
into a smaller number of semantic relationship types for purposes of actual
comprehension (as is done in RelEx, for example). However, as far as we
can tell, this seems to be a necessary cost for adequately handling the full
complexity of natural language syntax. Word Grammar holds out the hope
of possibly avoiding this kind of complexity, but without filling in enough
details to allow a clear estimate of whether this hope can ever be fulfilled.
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44.14.4 Contextually Guided Greedy Parsing and
Generation Using Word Link Grammar

Another difference between Link Grammar and currently utilized, and
Word Grammar as described, is the nature of the parsing algorithm. Link
Grammar operates in a manner that is fairly traditional among contemporary
parsing algorithms: given a sentence, it produces a large set of possible parses,
and then it is left to other methods/algorithms to select the right parse,
and to form a semantic interpretation of the selected parse. Parse selection
may of course involve semantic interpretation: one way to choose the right
parse is to choose the one that has the most contextually sensible semantic
interpretation. We may call this approach whole-sentence purely-syntactic
parsing, or WSPS parsing.

One of the nice things about Link Grammar, as compared to many other
computational parsing frameworks, is that it produces a relatively small num-
ber of parses, compared for instance to typical head-driven phrase-structure
grammar parsers. For simple sentences the link parser generally produces
only handful of parses. But for complex sentences the link parser can pro-
duce hundreds of parses, which can be computationally costly to sift through.

Word Grammar, on the other hand, presents far fewer constraints regard-
ing which words may link to other words. Therefore, to apply parsing in the
style of the current link parser, in the context of Word Grammar, would be
completely infeasible. The number of possible parses would be tremendous.
The idea of Word Grammar is to pare down parses via semantic/pragmatic
sensibleness, during the course of the syntax parsing process, rather than
breaking things down into two phases (parsing followed by semantic/prag-
matic interpretation). Parsing is suggested to proceed forward through a
sentence: when a word is encountered, it is linked to the words coming be-
fore it in the sentence, in a way that makes sense. If this seems impossible,
consistently with the links that have already been drawn in the course of
the parsing process, then some backtracking is done and prior choices may
be revisited. This approach is more like what humans do when parsing a
sentence, and does not have the effect of producing a large number of syntac-
tically possible, semantically/pragmatically absurd parses, and then sorting
through them afterwards. It is what we call a contextually-guided greedy pars-
ing (CGGP) approach.

For language generation, the link parser and Word Grammar approaches
also suggest different strategies. Link Grammar suggests taking a semantic
network, then searching holistically for a linear sequence of words that, when
link-parsed, would give rise to that semantic network as the interpretation. On
the other hand, Word Grammar suggests taking that same semantic network
and iterating through it progressively, verbalizing each node of the network
as one walks through it, and backtracking if one reaches a point where there
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is no way to verbalize the current node consistently with how one has already
verbalized the previous nodes.

The main observation we want to make here is that, while Word Grammar
by its nature (due to the relative paucity of explicit constraints on which
syntactic links may be formed), can operate with CGGP but not WSPS
parsing. On the other hand, while Link Grammar is currently utilized with
WPSP parsing, there is no reason one can’t use it with CGGP parsing just
as well. There is no objection to using CGGP parsing together with the
link-parser dictionary, nor with the no-links cross constraint rather than the
landmark-transitivity constraint (in fact, as noted above, earlier versions of
Word Grammar made use of the no-links-cross constraint).

What we propose in PROWL is to use the link grammar dictionary to-
gether with the CGGP parsing approach. The WSPS parsing approach may
perhaps be useful as a fallback for handling extremely complex and perverted
sentences where CGGP takes too long to come to an answer – it corresponds
to sentences that are so obscure one has to do really hard, analytical thinking
to figure out what they mean.

Regarding constraints on link structure, the suggestion in PROWL is to
use the no-links-cross constraint as a first approximation. In comprehension,
if no sufficiently high-probability interpretation obeying the no-links-cross
constraint is found, then the scope of investigation should expand to include
link-structures obeying landmark-transitivity but violating no-links-cross. In
generation, things are a little subtler: a list should be kept of link-type combi-
nations that often correctly violate no-links-cross, and when these combina-
tions are encountered in the generation process, then constructs that satisfy
landmark-transitivity but not no-links-cross should be considered.

Arguably, the PROWL approach is less elegant than either Link Grammar
or Word Grammar considered on its own. However, we are dubious of the
proposition that human syntax processing, with all its surface messiness and
complexity, is really generated by a simple, unified, mathematically elegant
underlying framework. Our goal is not to find a maximally elegant theoretical
framework, but rather one that works both as a standalone computational-
linguistics system, and as an integrated component of an adaptively-learning
AGI system.

44.15 Aspects of Language Learning

Now we finally turn to language learning – a topic that spans the engineered
and experiential approaches to NLP. In the experiential approach, learning
is required to gain even simple linguistic functionality. In the engineered ap-
proach, even if a great deal of linguistic functionality is built in, learning
may be used for adding new functionality and modifying the initially given
functionality. In this section we will focus on a few aspects of language learn-
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ing that would be required even if the current engineered OpenCog compre-
hension pipeline were completed to a high level of functionality. The more
thoroughgoing language learning required for the experiential approach will
then be discussed in the following section.

44.15.1 Word Sense Creation

In our examples above, we’ve frequently referred to ReferenceLinks between
WordNodes and ConceptNodes. But, how do these links get built? One aspect
of this is the process of word sense creation.

Suppose we have a WordNode W that has ReferenceLinks to a number of
different ConceptNodes. A common case is that these ConceptNodes fall into
clusters, each one denoting a “sense” of the word. The clusters are defined by
the following relationships:

1. ConceptNodes within a cluster have high-strength SimilarityLinks to each
other

2. ConceptNodes in different clusters have low-strength (i.e. dissimilarity-
denoting) SimilarityLinks to each other

When a word is first learned, it will normally be linked only to mutually
agreeable ConceptNodes, i.e. there will only be one sense of the word. As more
and more instances of the word are seen, however, eventually the WordNode
will gather more than one sense. Sometimes different senses are different
syntactically, other times they are different only semantically, but are involved
in the same syntactic relationships. In the case of a word with multiple senses,
most of the relevant feature structure information will be attached to word-
sense-representing ConceptNodes, not to WordNodes themselves.

The formation of sense-representing ConceptNodes may be done by the
standard clustering and predicate mining processes, which will create such
ConceptNodes when there are adequately many Atoms in the system satis-
fying the criteria represent. It may also be valuable to create a particular
SenseMining CIM-Dynamic, which uses the same criteria for node formation
as the clustering and predicate mining CIM-Dynamics, but focuses specif-
ically on creating predicates related to WordNodes and their nearby Con-
ceptNodes.

44.15.2 Feature Structure Learning

We’ve mentioned above the obvious fact that, to intelligently use a feature-
structure based grammar, the system needs to be capable of learning new



838 44 Natural Language Comprehension

linguistic feature structures. Probing into this in more detail, we see that
there are two distinct but related kinds of feature structure learning:

1. learning the values that features have for particular word senses.
2. learning new features altogether.

Learning the values that features have for particular word senses must
be done when new senses are created; and even for features imported from
resources like the link grammar, the possibility of corrections must obviously
be accepted. This kind of learning can be done by straightforward inference
– inference from examples of word usage, and by analogy from features for
similar words. A simple example to think about, e.g., is learning the verb
sense of “fax” when only the noun sense is known.

Next, the learning of new features can be viewed as a reasoning problem, in
that inference can learn new relations applied to nodes representing syntactic
senses of words. In principle, these “features” may be very general or very
specialized, depending on the case. New feature learning, in practice, requires
a lot of examples, and is a more fundamental but less common kind of learning
than learning feature values for known word senses. A good example would
be the learning of “third person” by an agent that knows only first and second
person.

In this example, it’s clear that information from embodied experience
would be extremely helpful. In principle, it could be learned from corpus anal-
ysis alone – but the presence of knowledge that certain words (“him”, “her”,
“they”, etc.) tend to occur in association with observed agents different from
the speaker or the hearer, would certainly help a lot with identifying “third
person” as a separate construct. It seems that either a very large number
of un-embodied examples or a relatively small number of embodied exam-
ples would be needed to support the inference of the “third person” feature.
And we suspect this example is typical – i.e. that the most effective route to
new feature structure learning involves both embodied social experience and
rather deep commonsense knowledge about the world.

44.15.3 Transformation and Semantic Mapping Rule
Learning

Word sense learning and feature structure learning are important parts of
language learning, but they’re far from the whole story. An equally impor-
tant role is played by linguistic transformations, such as the rules used in
RelEx and RelEx2Frame. At least some of these must be learned based on
experience, for human-level intelligent language processing to proceed.

Each of these transformations can be straightforwardly cast as an Implica-
tionLink between PredicateNodes, and hence formalistically can be learned
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by PLN inference, combined with one or another heuristic methods for com-
pound predicate creation. The question is what knowledge exists for PLN to
draw on in assessing the strengths of these links, and more critically, to guide
the heuristic predicate formation methods. This is a case that likely requires
the full complexity of “integrative predicate learning” as discussed in Chap-
ter 41. And, as with feature structure learning, it’s a case that will be much
more effectively handled using knowledge from social embodied experience
alongside purely linguistic knowledge.

44.16 Experiential Language Learning

We have talked a great deal about “engineered” approaches to NL comprehen-
sion and only peripherally about experiential approaches. But there has been
a not-so-secret plan underlying this approach. There are many approaches
to experiential language learning, ranging from a “tabula rasa” approach
in which language is just treated as raw data, to an approach where the
whole structure of a language comprehension system is programmed in, and
“merely” the content remains to be learned. There isn’t much to say about
the tabula rasa approach – we have already discussed CogPrime ’s approach
to learning, and in principle it is just as applicable to language learning as to
any other kind of learning. The more structured approach has more unique
aspects to it, so we will turn attention to it here. Of course, various interme-
diate approaches may be constructed by leaving out various structures.

The approach to experiential language learning we consider most promis-
ing is based on the PROWL approach, discussed above. In this approach one
programs in a certain amount of “universal grammar,” and then allows the
system to learn content via experience that obeys this universal grammar.
In a PROWL approach, the basic linguistic representational infrastructure is
given by the Atomspace that already exists in OpenCog, so the content of
“universal grammar” is basically

• the propensity to identify words
• the propensity to create a small set of asymmetric (i.e. parent/child)

labeled relationship types, to use to label relationships between semanti-
cally related word-instances. These are “syntactic link types.”

• the set of constraints on syntactic links implicit in word grammar, e.g.
landmark transitivity

Building in the above items, without building in any particular syntactic
links, seems enough to motivate a system to learn a grammar resembling that
of human languages.

Of course, experiential language learning of this nature is very, very dif-
ferent from “tabula rasa” experiential language learning. But we note that,
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while PROWL style experiential language learning seems like a difficult prob-
lem given existing AI technologies, tabula rasa language learning seems like
a nearly unapproachable problem. One could infer from this that current AI
technologies are simply inadequate to approach the problem that the young
human child mind solves. However, there seems to be some solid evidence
that the young human child mind does contain some form of universal gram-
mar guiding its learning. Though we don’t yet know what form this universal
prior linguistic knowledge takes in the human mind or brain, the evidence re-
garding common structures arising spontaneously in various unrelated Creole
languages is extremely compelling [Bic08], supporting ideas presented previ-
ously based on different lines of evidence. So we suggest that PROWL based
experiential language learning is actually conceptually closer to human child
language learning than a tabula rasa approach – although we certainly don’t
claim that the PROWL based approach builds in the exact same things as
the human genome does.

What we need to make experiential language learning work, then, is a
language-focused inference-control mechanism that includes, e.g.

• a propensity to look for syntactic link types, as outlined just above
• a propensity to form new word senses, as outlined earlier
• a propensity to search for implications of the general form of RelEx and

RelEx2Frame rules

Given these propensities, it seems reasonable to expect a PLN inference sys-
tem to be able to “fill in the linguistic content” based on its experience, using
links between linguistic and other experiential content as its guide. This is a
very difficult learning problem, to be sure, but it seems in principle a tractable
one, since we have broken it down into a number of interrelated component
learning problems in a manner guided by the structure of language.

Other aspects of language comprehension, such as word sense disambigua-
tion and anaphor resolution, seem to plausibly follow from applying inference
to linguistic data in the context of embodied experiential data, without re-
quiring especial attention to inference control or supplying prior knowledge.

44.17 Which Path(s) Forward?

We have discussed a variety of approaches to achieving human-level NL
comprehension in the CogPrime framework. Which approach do we think
is best? All things considered, we suspect that a tabula rasa experiential
approach is impractical, whereas a traditional computational linguistics ap-
proach (whether based on hand-coded rules, corpus analysis, or a combination
thereof) will reach an intelligence ceiling well short of human capability. On
the other hand we believe that all of these options
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1. the creation of an engineered NL comprehension system (as we have al-
ready done), and the adaptation and enhancement of this system using
learning that incorporates knowledge from embodied experience

2. the creation of an experiential learning based NL comprehension system
using in-built structures, such as the PROWL based approach described
above

3. the creation of an experiential learning based system as described above,
using an engineered system (like the current one) as a “fitness estimation”
resource in the manner described at the end of Chapter 43

have significant promise and are worthy of pursuit. Which of these approaches
we focus on in our ongoing OpenCogPrime implementation work will depend
on logistical issues as much as on theoretical preference.





Chapter 45
Natural Language Generation

Co-authored with Ruiting Lian and Rui Liu

45.1 Introduction

Language generation, unsurprisingly, shares most of the key features of lan-
guage comprehension discussed in chapter 44 – after all, the division between
generation and comprehension is to some extent an artificial convention, and
the two functions are intimately bound up both in the human mind and in
the CogPrime architecture.

In this chapter we discuss language generation, in a manner similar to the
previous chapter’s treatment of language comprehension. First we discuss our
currently implemented, “engineered” language generation system, and then
we discuss some alternative approaches:

• how a more experiential-learning based system might be made by re-
taining the basic structure of the engineered system but removing the
“pre-wired” contents.

• how an "Atom2Link" system might be made, via reversing the Link2Atom
system described in Chapter 44. This is the subject of implementation
effort, at time of writing.

At the start of Chapter 44 we gave a high-level overview of a typical NL
generation pipeline. Here we will focus largely but not entirely on the “syn-
tactic and morphological realization” stage, which we refer to for simplicity
as “sentence generation” (taking a slight terminological liberty, as “sentence
fragment generation” is also included here). All of the stages of language gen-
eration are important, and there is a nontrivial amount of feedback among
them. However, there is also a significant amount of autonomy, such that
it often makes sense to analyze each one separately and then tease out its
interactions with the other stages.

843
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45.2 SegSim for Sentence Generation

The sentence generation approach currently taken in OpenCog (from 2009
- early 2012), which we call SegSim, is relatively simple and is depicted in
Figure ?? and described as follows:

1. The NL generation system stores a large set of pairs of the form (semantic
structure, syntactic/morphological realization)

2. When it is given a new semantic structure to express, it first breaks this
semantic structure into natural parts, using a set of simple syntactic-
semantic rules

3. For each of these parts, it then matches the parts against its memory to
find relevant pairs (which may be full or partial matches), and uses these
pairs to generate a set of syntactic realizations (which may be sentences
or sentence fragments)

4. If the matching has failed, then (a) it returns to Step 2 and carries out the
breakdown into parts again. But if this has happened too many times,
then (b) it recourses to a different algorithm (most likely a search or
optimization based approach, which is more computationally costly) to
determine the syntactic realization of the part in question.

5. If the above step generated multiple fragments, they are pieced together,
and a certain rating function is used to judge if this has been done ade-
quately (using criteria of grammaticality and expected comprehensibility,
among others). If this fails, then Step 3 is tried again on one or more of
the parts; or Step 2 is tried again. (Note that one option for piecing the
fragments together is to string together a number of different sentences;
but this may not be judged optimal by the rating function.)

6. Finally, a “cleanup” phase is conducted, in which correct morphological
forms are inserted, and articles and certain other “function words” are
inserted.

The specific OpenCog software implementing the SegSim algorithm is
called “NLGen”; this is an implementation of the SegSim concept that fo-
cuses on sentence generation from RelEx semantic relationship. In the current
(early 2012) NLGen version, Step 1 is handled in a very simple way using a re-
lational database; but this will be modified in future so as to properly use the
AtomSpace. Work is currently underway to replace NLGen with a different
"Atom2Link" approach, that will be described at the end of this chapter. But
discussion of NLGen is still instructive regarding the intersection of language
generation concepts with OpenCog concepts.

The substructure currently used in Step 2 is defined by the predicates of
the sentence, i.e. we define one substructure for each predicate, which can be
described as follows:

Predicate(Argumenti(Modifyj))
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Fig. 45.1 A Overview of the SegSim Architecture for Language Generation

where

• 1 ≤ i ≤ m and 0 ≤ j ≤ n and m, n are integers
• “Predicate” stands for the predicate of the sentence, corresponding to the

variable $0 of the RelEx relationship _subj($0, $1) or _obj($0, $1)
• Argumenti is the i-th semantic parameter related with the predicate
• Modifyj is the j-th modifier of the Argumenti

If there is more than one predicate, then multiple subnets are extracted anal-
ogously.

For instance, given the sentence “I happily study beautiful mathematics in
beautiful China with beautiful people.” The substructure can be defined as
Figure 45.2.
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Fig. 45.2 Example of a substructure

For each of these substructures, Step 3 is supposed to match the substruc-
tures of a sentence against its global memory (which contains a large body of
previously encountered [semantic structure, syntactic/morphological realiza-
tion] pairs) to find the most similar or same substructures and the relevant
syntactic relations to generate a set of syntactic realizations, which may be
sentences or sentence fragments. In our current implementation, a customized
subgraph matching algorithm has been used to match the subnets from the
parsed corpus at this step.

If Step 3 generated multiple fragments, they must be pieced together. In
Step 4, the Link Parser’s dictionary has been used for detecting the dangling
syntactic links corresponding to the fragments, which can be used to integrate
the multiple fragments. For instance, in the example of Figure 45.3, according
to the last 3 steps, SegSim would generate two fragments: “the parser will
ignore the sentence” and “whose length is too long”. Then it consults the
Link Parser’s dictionary, and finds that “whose” has a connector “Mr-”, which
is used for relative clauses involvi ng “whose”, to connect to the previous noun
“sentence”. Analogously, we can integrate the other fragments into a whole
sentence.

For instance, in the example of Figure 45.3, according to the last 3 steps,
SegSim would generate two fragments: “the parser will ignore the sentence”
and “whose length is too long”. Then it consults the Link Parser’s dictionary,
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Fig. 45.3 Linkage of an example

and finds that “whose” has a connector “Mr-”, which is used for relative clauses
involving “whose”, to connect to the previous noun “sentence”. Analogously,
we can integrate the other fragments into a whole sentence.

Finally, a “cleanup” or “post-processing” phase is conducted, applying the
correct inflections to each word depending on the word properties provided
by the input RelEx relations. For example, we can use the RelEx relation
“DEFINITE-FLAG(cover, T)” to insert the article “the” in front of the word
“cover”. We have considered five factors in this version of NLGen: article,
noun plural, verb intense, possessive and query type (the latter which is only
for interrogative sentences).

In the “cleanup” step, we also use the chunk parser tool from OpenNLP∗
for adjusting the position of an article being inserted. For instance, con-
sider the proto-sentence “I have big red apple.” If we use the RelEx relation
“noun_number(apple, singular)” to inflect the word “apple” directly, the final
sentence will be “I have big red an apple”, which is not well-formed. So we
use the chunk parser to detect the phrase “big red apple” first, then apply
the article rule in front of the noun phrase. This is a pragmatic approach
which may be replaced with something more elegant and principled in later
revisions of the NLGen system.

45.2.1 NLGen: Example Results

NLGen is currently in a relatively early stage of development, and does not
handle the full range of linguistic and semantic phenomena that it will when
it’s completed. However, it can already express a variety of sentences encap-
sulating a variety of syntactic and semantic phenomena; in this section we
will give some specific examples of what it can do.

The SegSim approach performs sentence generation by matching portions
of propositional input to a large corpus of parsed sentences, therefore, when
the successful matches can be found in the corpus, it can generate some
similar and well-formed sentences via the relevant syntactic structures.

There currently do not exist any authoritative evaluation criteria for Nat-
ural Language Generation systems. Among many complicating factors here

∗ http://opennlp.sourceforge.net/
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is the fact that different language generation systems have different kinds of
inputs, depending on many things including their application area. So it’s
complicated to compare the results of NLGen with those obtained by other
systems.

It is easier however to test whether NLGen is implementing SegSim suc-
cessfully. One approach is to take a sentence, run it through RelEx to generate
a set of relationships, and see if NLGen can regenerate the sentence from the
relationship. We show here the results of some simple tests of this nature,
performed with the current version of the system using a very small test
corpus for similarity matching. Note: In each of these example results, the
input of NLGen is the RelEx relationships produced by the sentence before
“==>”; and the sentence to the right side of “==>” was one of the sentences
generated by NLGen.
Example 1 :

I study mathematics at Xiamen University.
==> I study mathematics at Xiamen\_University.

Example 2 :

The red block is next to the blue cup.
==> The red block is next\_to the blue cup.

Example 3 :

Ruiting walked from the table to the door.
==> Ruiting walked to the door from the table.

Example 4 :

I intend to walk very slowly from Ben to Ruiting,
with Hugo’s pencil in my hand.
==> With Hugo’s pencil in my hand,
I intend to walk very slowly from Ben to Ruiting.

Example 5 :

I’d like you to tell me where the red ball is.
==> I tell like you to ’d me where the red ball is.

Example 6 :

I study at Xiamen University, which is located in China.
==> I study at Xiamen\_University.

Example 7:

What is next to the tree?
==> What is next to the tree?
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Example 8:

Where is the red ball?
==> Where is the red ball?

Example 9:

Pass me the ball.
==> Pass me the ball.

Example 10:

Tell Ben where the red ball is.
==> Tell Ben where the red ball is.

To make the process clearer, for Example 1 we also show the RelEx rela-
tionships produced from the sentence before the “==>”:

For instance, in the example of Figure 45.3, according to the last 3 steps,
SegSim would generate two fragments: “the parser will ignore the sentence”
and “whose length is too long”. Then it consults the Link Parser’s dictionary,
and finds that “whose” has a connector “Mr-”, which is used for relative clauses
involving “whose”, to connect to the previous noun “sentence”. Analogously,
we can integrate the other fragments into a whole sentence.

Fig. 45.4 RelEx relationships for Example 1
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Figure 45.4 shows the relationships of Example 1 fed to NLGen as input.
The types of the semantic relationships are documented in the RelEx’s wiki
pages†.

These examples illustrate some key points about the current version of
NLGen. It works well on simple, commonplace sentences (Example 1, 2),
though it may reorder the sentence fragments sometimes (Example 3, 4). On
the other hand, because of its reliance on matching against a corpus, NLGen
is incapable of forming good sentences with syntactic structures not found
in the corpus (Example 5, 6). On a larger corpus these examples would have
given successful results. In Example 5, the odd error is due to the presence of
too many “_subj” RelEx relationships in the relationship-set corresponding
to the sentence, which distracts the matching process when it attempts to
find similar substructures in the small test corpus. Then from Example 7 to
10, we can see NLGen still works well for question sentences and imperative
sentence if the substructures we extract can be matched, but the substruc-
tures may be similar with the assertive sentence, so we need to refine it in the
“clearupcleanup” step. For example: the substructures we extracted for the
sentence “are you a student?” are the same as the ones for “you are a student?”,
since the two sentences both have the same binary RelEx relationships:

\_subj(be, you)

\_obj(be, student)

which are used to guide the extraction of the substructures. So we need to
refine the sentence via some grammatical rules in the post-processing phase,
using the word properties from RelEx, like “TRUTH-QUERY-FLAG(be, T)”
which means if that the referent “be” is a verb/event and the event is involved
is a question.

The particular shortcomings demonstrated in these examples are simple
to remedy within the current NLGen framework, via simply expanding the
corpus. However, to get truly general behavior from NLGen it will be nec-
essary to insert some other generation method to cover those cases where
similarity matching fails, as discussed above. The NLGen2 system created
by Blake Lemoine [Lem10] is one possibility in this regard: based on RelEx
and the link parser, it carries out rule-based generation using an implemen-
tation of Chomsky’s Merge operator. Integration of NLGen with NLGen2 is
currently being considered. We note that the Merge operator is computa-
tionally inefficient by nature, so that it will likely never be suitable for the
primary sentence generation method in a language generation system. How-
ever, pairing NLGen for generation of familiar and routine utterances with
a Merge-based approach for generation of complex or unfamiliar utterances,
may prove a robust approach.

† http://opencog.org/wiki/RelEx#Relations_and_Features
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45.3 Experiential Learning of Language Generation

As in the case of language comprehension, there are multiple ways to create
an experiential learning based language generation system, involving vari-
ous levels of “wired in” knowledge. Our best guess is that for generation
as for comprehension, a “tabula rasa” approach will prove computationally
intractable for quite some time to come, and an approach in which some
basic structures and processes are provided, and then filled out with content
learned via experience, will provide the greatest odds of success.

A highly abstracted version of SegSim may be formulated as follows:

1. The AI system stores semantic and syntactic structures, and its control
mechanism is biased to search for, and remember, linkages between them

2. When it is given a new semantic structure to express, it first breaks this
semantic structure into natural parts, using inference based on whatever
implications it has in its memory that will serve this purpose

3. Its inference control mechanism is biased to carry out inferences with
the following implication: For each of these parts, match it against its
memory to find relevant pairs (which may be full or partial matches),
and use these pairs to generate a set of syntactic realizations (which may
be sentences or sentence fragments)

4. If the matching has failed to yield results with sufficient confidence, then
(a) it returns to Step 2 and carries out the breakdown into parts again.
But if this has happened too many times, then (b) it uses its ordinary
inference control routine to try to determine the syntactic realization of
the part in question.

5. If the above step generated multiple fragments, they are pieced together,
and an attempt is made to infer, based on experience, whether the result
will be effectively communicative. If this fails, then Step 3 is tried again
on one or more of the parts; or Step 2 is tried again.

6. Other inference-driven transformations may occur at any step of the pro-
cess, but are particularly likely to occur at the end. In some languages
these transformations may result in the insertion of correct morphological
forms or other “function words.”

What we suggest is that it may be interesting to supply a CogPrime system
with this overall process, and let it fill in the rest by experiential adaptation.
In the case that the system is learning to comprehend at the same time as
it’s learning to generate, this means that its early-stage generations will be
based on its rough, early-stage comprehension of syntax – but that’s OK.
Comprehension and generation will then “grow up” together.
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45.4 Atom2Link

A subject of current research is the extension of the Link2Atom approach
mentioned above into a reverse-order, Atom2Link system for language gen-
eration.

Given that the Link2Atom rules are expressed as ImplicationLinks, they
can be reversed automatically and immediately – although, the reversed ver-
sions will not necessarily have the same truth values. So if a collection of
Link2Atom rules are learned from a corpus, then they can be used to auto-
matically generate a set of Atom2Link rules, each tagged with a probabilistic
truth value. Application of the whole set of Atom2Link rules to a given Atom-
set in need of articulation, will result in a collection of link-parse links.

To produce a sentence from such a collection of link-parse links, another
process is also needed, which will select a subset of the collection that cor-
responds to a complete sentence, legally parse-able via the link parser. The
overall collection might naturally break down into more than one sentence.

In terms of the abstracted version of SegSim given above, the primary
difference between NLGen and SegSim lies in Step 3. Link2Atom replaces the
SegSim "data-store matching" algorithm with inference based on implications
obtained from reversing the implications used for language comprehension.

45.5 Conclusion

There are many different ways to do language generation within OpenCog,
ranging from pure experiential learning to a database-driven approach like
NLGen. Each of these different ways may have value for certain applications,
and it’s unclear which ones may be viable in a human-level AGI context.
Conceptually we would favor a pure experiential learning approach, but, we
are currently exploring a "compromise" approach based on Atom2Link. This
is an area where experimentation is going to tell us more than abstract theory.



Chapter 46
Embodied Language Processing

Co-authored with Samir Araujo and Welter Silva

46.1 Introduction

"Language" is an important abstraction – but one should never forget that
it’s an abstraction. Language evolved in the context of embodied action, and
even the most abstract language is full of words and phrases referring to em-
bodied experience. Even our mathematics is heavily based on our embodied
experience – geometry is about space; calculus is about space and time; alge-
bra is a sort of linguistic manipulation generalized from experience-oriented
language, etc. (see [?] for detailed arguments in this regard). To consider lan-
guage in the context of human-like general intelligence, one needs to consider
it in the context of embodied experience.

There is a large literature on the importance of embodiment for child lan-
guage learning, but perhaps the most eloquent case has been made by Michael
Tomasello, in his excellent book Constructing a Language ??. Citing a host
of relevant research by himself and others, Tomasello gives a very clear sum-
mary of the value of social interaction and embodiment for language learning
in human children. And while he doesn’t phrase it in these terms, the picture
he portrays includes central roles for reinforcement, imitative and corrective
learning. Imitative learning is obvious: so much of embodied language learn-
ing has to do with the learner copying what it has heard other say in similar
contexts. Corrective learning occurs every time a parent rephrases something
for a child.

In this chapter, after some theoretical discussion of the nature of symbol-
ism and the role of gesture and sound in language, we describe some com-
putational experiments run with OpenCog controlling virtual pets in a vir-
tual world, regarding the use of embodied experience for anaphor resolution
and question-answering. These comprise an extremely simplistic example of
the interplay between language and embodiment, but have the advantage of
concreteness, since they were actually implemented and experimented with.
Some of the specific OpenCog tools used in these experiments are no longer

853
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current (e.g. the use of RelEx2Frame, which is now deprecated in favor of
alternative approaches to mapping parses into more abstract semantic rela-
tionships); but the basic principles and flow illustrated here are still relevant
to current and future work.

46.2 Semiosis

The foundation of communication is semiosis – the representation between the
signifier and the signified. Often the signified has to do with the external world
or the communicating agent’s body; hence the critical role of embodiment in
language.

Thus, before turning to the topic of embodied language use and learning
per se, we will briefly treat the related topic of how an AGI system may learn
semiosis itself via its embodied experience. This is a large and rich topic, but
we will restrict ourselves to giving a few relatively simple examples intended
to make the principles clear. We will structure our discussion of semiotic
learning according to Charles Sanders Peirce’s theory of semiosis [Pei34], in
which there are three basic types of signs: icons, indices and symbols.

In Peirce’s ontology of semiosis, an icon is a sign that physically resembles
what it stands for. Representational pictures, for example, are icons because
they look like the thing they represent. Onomatopoeic words are icons, as they
sound like the object or fact they signify. The iconicity of an icon need not
be immediate to appreciate. The fact that "kirikiriki" is iconic for a rooster’s
crow is not obvious to English-speakers yet it is to many Spanish-speakers;
and the the converse is true for "cock-a-doodle-doo."

Next, an index is a sign whose occurrence probabilistically implies the oc-
currence of some other event or object (for reasons other than the habitual
usage of the sign in connection with the event or object among some commu-
nity of communicating agents). The index can be the cause of the signified
thing, or its consequence, or merely be correlated to it. For example, a smile
on your face is an index of your happy state of mind. Loud music and the
sound of many people moving and talking in a room is an index for a party in
the room. On the whole, more contextual background knowledge is required
to appreciate an index than an icon.

Finally, any sign that is not an icon or index is a symbol. More explicitly,
one may say that a symbol is a sign whose relation to the signified thing
is conventional or arbitrary. For instance, the stop sign is a symbol for the
imperative to stop; the word "dog" is a symbol for the concept it refers to.

The distinction between the various types of signs is not always obvious,
and some signs may have multiple aspects. For instance, the thumbs-up ges-
ture is a symbol for positive emotion or encouragement. It is not an index
– unlike a smile which is an index for happiness because smiling is intrinsi-
cally biologically tied to happiness, there is no intrinsic connection between
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the thumbs-up signal and positive emotion or encouragement. On the other
hand, one might argue that the thumbs-up signal is very weakly iconic , in
that its up-ness resembles the subjective up-ness of a positive emotion (note
that in English an idiom for happiness is "feeling up").

Teaching an embodied virtual agent to recognize simple icons is a relatively
straightforward learning task. For instance, suppose one wanted to teach an
agent that in order to get the teacher to give it a certain type of object, it
should go to a box full of pictures and select a picture of an object of that
type, and bring it to the teacher. One way this may occur in an OpenCog-
controlled agent is for the agent to learn a rule of the following form:

ImplicationLink

ANDLink

ContextLink

Visual
SimilarityLink $X $Y

PredictiveImplicationLink

SequentialANDLink

ExecutionLink goto box
ExecutionLink grab $X
ExecutionLink goto teacher

EvaluationLink give me teacher $Y
While not a trivial learning problem, this is straightforward to a CogPrime
-controlled agent that is primed to consider visual similarities as significant
(i.e. is primed to consider the visual-appearance context within its search for
patterns in its experience).

Next, proceeding from icons to indices: Suppose one wanted to teach an
agent that in order to get the teacher to give it a certain type of object, it
should go to a box full of pictures and select a picture of an object that has
commonly been used together with objects of that type, and bring it to the
teacher. This is a combination of iconic and indexical semiosis, and would be
achieved via the agent learning a rule of the form

Implication
AND

Context
Visual
Similarity $X $Z

Context
Experience
SpatioTemporalAssociation $Z $Y

PredictiveImplication
SequentialAnd

Execution goto box
Execution grab $X
Execution goto teacher

Evaluation give me teacher $Y
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Symbolism, finally, may be seen to emerge as a fairly straightforward ex-
tension of indexing. After all, how does an agent come to learn that a certain
symbol refers to a certain entity? An advanced linguistic agent can learn
this via explicit verbal instruction, e.g. one may tell it "The word Ôhideous’
means Ôvery ugly’." But in the early stages of language learning, this sort
of instructional device is not available, and so the way an agent learns that
a word is associated with an object or an action is through spatiotemporal
association. For instance, suppose the teacher wants to teach the agent to
dance every time the teacher says the word "dance" – a very simple example
of symbolism. Assuming the agent already knows how to dance, this merely
requires the agent learn the implication

PredictiveImplication
SequentialAND

Evaluation say teacher me "dance"
Execution dance

give teacher me Reward

And, once this has been learned, then simultaneously the relationship

SpatioTemporalAssociation dance "dance"

will be learned. What’s interesting is what happens after a number of associ-
ations of this nature have been learned. Then, the system may infer a general
rule of the form

Implication
AND

SpatioTemporalAssociation \$X \$Z
HasType \$X GroundedSchema

PredictiveImplication
SequentialAND

Evaluation say teacher me \$Z
Execution \$X

Evaluation give teacher me Reward

This implication represents the general rule that if the teacher says a word
corresponding to an action the agent knows how to do, and the agent does
it, then the agent may get a reward from the teacher. Abstracting this from
a number of pertinent examples is a relatively straightforward feat of proba-
bilistic inference for the PLN inference engine.

Of course, the above implication is overly simplistic, and would lead an
agent to stupidly start walking every time its teacher used the word "walk"
in conversation and the agent overheard it. To be useful in a realistic social
context, the implication must be made more complex so as to include some
of the pragmatic surround in which the teacher utters the word or phrase $Z.
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46.3 Teaching Gestural Communication

Based on the ideas described above, it is relatively straightforward to teach
virtually embodied agents the elements of gestural comunication. This is im-
portant for two reasons: gestural communication is extremely useful unto
itself, as one sees from its role in communication among young children and
primates [22]; and, gestural communication forms a foundation for verbal
communication, during the typical course of human language learning [23].
Note for instance the study described in [22], which "reports empirical longi-
tudinal data on the early stages of language development," concluding that

...the output systems of speech and gesture may draw on underlying brain
mechanisms common to both language and motor functions. We analyze the
spontaneous interaction with their parents of three typically-developing chil-
dren (2 M, 1 F) videotaped monthly at home between 10 and 23 months of
age. Data analyses focused on the production of actions, representational and
deictic gestures and words, and gesture-word combinations. Results indicate
that there is a continuity between the production of the first action schemes,
the first gestures and the first words produced by children. The relationship
between gestures and words changes over time. The onset of two-word speech
was preceded by the emergence of gesture-word combinations.

If young children learn language as a continuous outgrowth of gestural
communication, perhaps the same approach may be effective for (virtually or
physically) embodied AI’s.

An example of an iconic gesture occurs when one smiles explicitly to illus-
trate to some other agent that one is happy. Smiling is a natural expression of
happiness, but of course one doesn’t always smile when one’s happy. The rea-
son that explicit smiling is iconic is that the explicit smile actually resembles
the unintentional smile, which is what it "stands for."

This kind of iconic gesture may emerge in a socially-embedded learning
agent through a very simple logic. Suppose that when the agent is happy, it
benefits from its nearby friends being happy as well, so that they may then
do happy things together. And suppose that the agent has noticed that when
it smiles, this has a statistical tendency to make its friends happy. Then,
when it is happy and near its friends, it will have a good reason to smile. So
through very simple probabilistic reasoning, the use of explicit smiling as a
communicative tool may result. But what if the agent is not actually happy,
but still wants some other agent to be happy? Using the reasoning from the
prior paragraph, it will likely figure out to smile to make the other agent
happy – even though it isn’t actually happy.

Another simple example of an iconic gesture would be moving one’s hands
towards one’s mouth, mimicking the movements of feeding oneself, when one
wants to eat. Many analogous iconic gestures exist, such as doing a small solo
part of a two-person dance to indicate that one wants to do the whole dance
together with another person. The general rule an agent needs to learn in
order to generate iconic gestures of this nature that, in the context of shared
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activity, mimicking part of a process will sometimes serve the function of
evoking that whole process.

This sort of iconic gesture may be learned in essentially the same way as
an indexical gesture such as a dog repeatedly drawing the owner’s attention
to the owner’s backpack, when the dog wants to go outside. The dog doesn’t
actually care about going outside with the backpack – he would just as soon
go outside without it – but he knows the backpack is correlated with going
outside, which is his actual interest.

The general rule here is

R :=
Implication
SimultaneousImplication
Execution \$X
\$Y
PredictiveImplication
\$X
\$Y

I.e., if doing $X often correlates with $Y, then maybe doing $X will bring
about $Y. This sort of rule can bring about a lot of silly "superstitious"
behavior but also can be particularly effective in social contexts, meaning in
formal terms that

Context
near\_teacher
R

holds with a higher truth value than R itself. This is a very small conglom-
eration of semantic nodes and links yet it encapsulates a very important
communicational pattern: that if you want something to happen, and act out
part of it – or something historically associated with it – around your teacher,
then the thing may happen.

Many other cases of iconic gesture are more complex and mix iconic with
symbolic aspects. For instance, one waves one hand away from oneself, to try
to get someone else to go away. The hand is moving, roughly speaking, in
the direction one wants the other to move in. However, understanding the
meaning of this gesture requires a bit of savvy or experience. One one does
grasp it, however, then one can understand its nuances: For instance, if I
wave my hand in an arc leading from your direction toward the direction of
the door, maybe that means I want you to go out the door.

Purely symbolic (or nearly so) gestures include the thumbs-up symbol
mentioned above, and many others including valence-indicating symbols like
a nodded head for YES, a shaken-side-to-side head for NO, and shrugged
shoulders for "I don’t know." Each of these valence-indicating symbols ac-
tually indicates a fairly complex concept, which is learned from experience
partly via attention to the symbol itself. So, an agent may learn that the
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nodded head corresponds with situations where the teacher gives it a reward,
and also with situations where the agent makes a request and the teacher
complies. The cluster of situations corresponding to the nodded-head then
forms the agent’s initial concept of "positive valence," which encompasses,
loosely speaking, both the good and the true.

Summarizing our discussion of gestural communication: An awful lot of
language exists between intelligent agents even if no word is ever spoken.
And, our belief is that these sorts of non-verbal semiosis form the best pos-
sible context for the learning of verbal language, and that to attack verbal
language learning outside this sort of context is to make an intrinsically-
difficult problem even harder than it has to be. And this leads us to the
final part of the paper, which is a bit more speculative and adventuresome.
The material in this section and the prior ones describes experiments of the
sort we are currently carrying out with our virtual agent control software.
We have not yet demonstrated all the forms of semiosis and non-linguistic
communication described in the last section using our virtual agent control
system, but we have demonstrated some of them and are actively working
on extending our system’s capabilities. In the following section, we venture
a bit further into the realm of hypothesis and describe some functionalities
that are beyond the scope of our current virtual agent control software, but
that we hope to put into place gradually during the next 1-2 years. The basic
goal of this work is to move from non-verbal to verbal communication.

It is interesting to enumerate the aspects in which each of the above com-
ponents appears to be capable of tractable adaptation via experiential, em-
bodied learning:

• Words and phrases that are found to be systematically associated with
particular objects in the world, may be added to the "gazeteer list" used
by the entity extractor

• The link parser dictionary may be automatically extended. In cases where
the agent hears a sentence that is supposed to describe a certain situa-
tion, and realizes that in order for the sentence to be mapped into a set of
logical relationships accurately describing the situation, it would be nec-
essary for a certain word to have a certain syntactic link that it doesn’t
have, then the link parser dictionary may be modified to add the link to
the word. (On the other hand, creating new link parser link types seems
like a very difficult sort of learning – not to say it is unaddressable, but
it will not be our focus in the near term.)

• Similar to with the link parser dictionary, if it is apparent that to interpret
an utterance in accordance with reality a RelEx rule must be added or
modified, this may be automatically done. The RelEx rules are expressed
in the format of relatively simple logical implications between Boolean
combinations of syntactic and semantic relationships, so that learning
and modifying them is within the scope of a probabilistic logic system
such as Novamente’s PLN inference engine.
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• The rules used by RelEx2Frame may be experientially modified quite
analogously to those used by RelEx

• Our current statistical parse ranker ranks an interpretation of a sentence
based on the frequency of occurrence of its component links across a
parsed corpus. A deeper approach, however, would be to rank an in-
terpretation based on its commonsensical plausibility, as inferred from
experienced-world-knowledge as well as corpus-derived knowledge. Again,
this is within the scope of what an inference engine such as PLN should
be able to do.

• Our word sense disambiguation and reference resolution algorithms in-
volve probabilistic estimations that could be extended to refer to the ex-
perienced world as well as to a parsed corpus. For example, in assessing
which sense of the noun "run" is intended in a certain context, the system
could check whether stockings, or sports-events or series-of-events, are
more prominent in the currently-observed situation. In assessing the sen-
tence "The children kicked the dogs, and then they laughed," the system
could map "they" into "children" via experientially-acquired knowledge
that children laugh much more often than dogs.

• NLGen uses the link parser dictionary, treated above, and also uses rules
analogous to (but inverse to) RelEx rules, mapping semantic relations
into brief word-sequences. The "gold standard" for NLGen is whether,
when it produces a sentence S from a set R of semantic relationships, the
feeding of S into the language comprehension subsystem produces R (or
a close approximation) as output. Thus, as the semantic mapping rules
in RelEx and RelEx2Frame adapt to experience, the rules used in NLGen
must adapt accordingly, which poses an inference problem unto itself.

All in all, when one delves in detail into the components that make up our
hybrid statistical/rule-based NLP system, one sees there is a strong oppor-
tunity for experiential adaptive learning to substantially modify nearly every
aspect of the NLP system, while leaving the basic framework intact.

This approach, we suggest, may provide means of dealing with a number of
problems that have systematically vexed existing linguistic approaches. One
example is parse ranking for complex sentences: this seems almost entirely
a matter of the ability to assess the semantic plausibility of different parses,
and doing this based on statistical corpus analysis seems unreasonable. One
needs knowledge about a world to ground reasoning about plausiblity.

Another example is preposition disambiguation, a topic that is barely dealt
with at all in the computational linguistics literature (see e.g. [33] for an in-
dication of the state of the art). Consider the problem of assessing which
meaning of "with" is intended in sentences like "I ate dinner with a fork",
"I ate dinner with my sister", "I ate dinner with dessert." In performing this
sort of judgment, an embodied system may use knowledge about which inter-
pretations have matched observed reality in the case of similar utterances it
has processed in the past, and for which it has directly seen the situations re-
ferred to by the utterances. If it has seen in the past, through direct embodied
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experience, that when someone said "I ate cereal with a spoon," they meant
that the spoon was their tool not part of their food or their eating-partner;
then when it hears "I ate dinner with a fork," it may match "cereal" to "din-
ner" and "spoon" to "fork" (based on probabilistic similarity measurement)
and infer that the interpretation of "with" in the latter sentence should also
be to denote a tool. How does this approach to computational language un-
derstanding tie in with gestural and general semiotic learning as we discussed
earlier? The study of child language has shown that early language use is not
purely verbal by any means, but is in fact a complex combination of ver-
bal and gestural communication [23]. With the exception of point 1 (entity
extraction) above, every one of our instances of experiential modification of
our language framework listed above involves the use of an understanding of
what situation actually exists in the world, to help the system identify what
the logical relationships output by the NLP system are supposed to be in a
certain context. But a large amount of early-stage linguistic communication
is social in nature, and a large amount of the remainder has to do with the
body’s relationship to physical objects. And, in understanding "what actually
exists in the world" regarding social and physical relationships, a full under-
standing of gestural communication is important. So, the overall pathway we
propose for achieving robust, ultimately human-level NLP functionality is as
follows:

• The capability for learning diverse instances of semiosis is established
• Gestural communication is mastered, via nonverbal imitative/reinforce-

ment/corrective learning mechanisms such as we are now utilizing for our
embodied virtual agents

• Gestural communication, combined with observation of and action in the
world and verbal interaction with teachers, allows the system to adapt
numerous aspects of its initial NLP engine to allow it to more effectively
interpret simple sentences pertaining to social and physical relationships

• Finally, given the ability to effectively interpret and produce these simple
and practical sentences, probabilistic logical inference allows the system
to gradually extend this ability to more and more complex and abstract
senses, incrementally adapting aspects of the NLP engine as its scope
broadens.

In this brief section we will mention another potentially important factor
that we have intentionally omitted in the above analysis – but that may
wind up being very important, and that can certainly be taken into account
in our framework if this proves necessary. We have argued that gesture is an
important predecessor to language in human children, and that incorporating
it in AI language learning may be valuable. But there is another aspect of
early language use that plays a similar role to gesture, which we have left out
in the above discussion: this is the acoustic aspects of speech.

Clearly, pre-linguistic children make ample use of communicative sounds
of various sorts. These sounds may be iconic, indexical or symbolic; and they
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may have a great deal of subtlety. Steven Mithen [34] has argued that non-
verbal utterances constitute a kind of proto-language, and that both music
and language evolved out of this. Their role in language learning is well-
documented also [35]. We are uncertain as to whether an exclusive focus on
text rather than speech would critically impair the language learning process
of an AI system. We are fairly strongly convinced of the importance of gesture
because it seems bound up with the importance of semiosis – gesture, it
seems, is how young children learn flexible semiotic communication skills,
and then these skills are gradually ported from the gestural to the verbal
domain. Semiotically, on the other hand, phonology doesn’t seem to give
anything special beyond what gesture gives. What it does give is an added
subtlety of emotional expressiveness – something that is largely missing from
virtual agents as implemented today, due to the lack of really fine-grained
facial expressions. Also, it provides valuable clues to parsing, in that groups
of words that are syntactically bound together are often phrased together
acoustically.

If one wished to incorporate acoustics into the framework described above,
it would not be objectionably difficult on a technical level. Speech-to-text [36]
and text-to-speech software [37] both exist, but neither have been developed
with a view specifically toward conveyance of emotional information. One
could approach the problem of assessing the emotional state of an utter-
ance based on its sound as a supervised categorization problem, to be solved
via supplying a machine learning algorithm with training data consisting of
human-created pairs of the form (utterance, emotional valence). Similarly,
one could tune the dependence of text-to-speech software for appropriate
emotional expressiveness based on the same training corpus.

46.4 Simple Experiments with Embodiment and
Anaphor Resolution

Now we turn to some fairly simple practical work that was done in 2008
with the OpenCog -based PetBrain software, involving the use of virtually
embodied experience to help with interpretation of linguistic utterances. This
work has been superseded somewhat by more recent work using OpenCog to
control virtual agents; but the PetBrain work was especially clear and simple,
so suitable in an expository sense for in-depth discussion here.

One of the two ways the PetBrain related language processing to embodied
experience was via using the latter to resolve anaphoric references in text
produced by human-controlled avatars.

The PetBrain controlled agent lived in a world with many objects, each
one with their own characteristics. For example, we could have multiple balls,
with varying colors and sizes. We represent this in the OpenCog Atomspace
via using multiple nodes: a single ConceptNode to represent the concept
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“ball”, a WordNode associated with the word “ball”, and numerous SemeNodes
representing particular balls. There may of course also be ConceptNodes
representing ball-related ideas not summarized in any natural language word,
e.g. “big fat squishy balls,” “balls that can usefully be hit with a bat”, etc.

As the agent interacts with the world, it acquires information about the
objects it finds, through perceptions. The perceptions associated with a given
object are stored as other nodes linked to the node representing the specific
object instance. All this information is represented in the Atomspace using
FrameNet-style relationships (exemplified in the next section).

When the user says, e.g., “Grab the red ball”, the agent needs to figure
out which specific ball the user is referring to – i.e. it needs to invoke the
Reference Resolution (RR) process. RR uses the information in the sentence
to select instances and also a few heuristic rules. Broadly speaking, Reference
Resolution maps nouns in the user’s sentences to actual objects in the virtual
world, based on world-knowledge obtained by the agent through perceptions.

In this example, first the brain selects the ConceptNodes related to the
word “ball”. Then it examines all individual instances associated with these
concepts, using the determiners in the sentence along with other appropriate
restrictions (in this example the determiner is the adjective “red”; and since
the verb is “grab” it also looks for objects that can be fetched). If it finds
more than one “fetchable red ball”, a heuristic is used to select one (in this
case, it chooses the nearest instance).

The agent also needs to map pronouns in the sentences to actual objects
in the virtual world. For example, if the user says “I like the red ball. Grab
it,” the agent must map the pronoun “it” to a specific red ball. This process
is done in two stages: first using anaphor resolution to associate the pronoun
“it” with the previously heard noun “ball”; then using reference resolution to
associate the noun “ball” with the actual object.

The subtlety of anaphor resolution is that there may be more than one
plausible “candidate” noun corresponding to a given pronouns. As noted
above, at time writing RelEx’s anaphor resolution system is somewhat sim-
plistic and is based on the classical Hobbs algorithm[Hob78]. Basically, when
a pronoun (it, he, she, they and so on) is identified in a sentence, the Hobbs
algorithm searches through recent sentences to find the nouns that fit this
pronoun according to number, gender and other characteristics. The Hobbs
algorithm is used to create a ranking of candidate nouns, ordered by time
(most recently mentioned nouns come first).

We improved the Hobbs algorithm results by using the agent’s world-
knowledge to help choose the best candidate noun. Suppose the agent heard
the sentences:

‘‘The ball is red.’’
‘‘The stick is brown.’’

and then it receives a third sentence

‘‘Grab it.’’.
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the anaphor resolver will build a list containing two options for the pronoun
“it” of the third sentence: ball and stick. Given that the stick corresponds to
the most recently mentioned noun, the agent will grab it instead of (as Hobbs
would suggest) the ball.

Similarly, if the agent’s history contains

‘‘From here I can see as tree and a ball.’’
‘‘Grab it.’’

Hobbs algorithm returns as candidate nouns “tree” and “ball”, in this order.
But using our integrative Reference Resolution process, the agent will con-
clude that a tree cannot be grabbed, so this candidate is discarded and “ball”
is chosen.

46.5 Simple Experiments with Embodiment and
Question Answering

The PetBrain was also capable of answering simple questions about its feel-
ings/emotions (happiness, fear, etc.) and about the environment in which it
lives. After a question is asked to the agent, it is parsed by RelEx and classi-
fied as either a truth question or a discursive one. After that, RelEx rewrites
the given question as a list of Frames (based on FrameNet∗ with some cus-
tomizations), which represent its semantic content. The Frames version of
the question is then processed by the agent and the answer is also written in
Frames. The answer Frames are then sent to a module that converts it back
to the RelEx format. Finally the answer, in RelEx format, is processed by
the NLGen module, that generates the text of the answer in English. We will
discuss this process here in the context of the simple question “What is next
to the tree?”, which in an appropriate environment receives the answer “The
red ball is next to the tree.”

Question answering (QA) of course has a long history in AI [May04],
and our approach fits squarely into the tradition of “deep semantic QA sys-
tems”; however it is innovative in its combination of dependency parsing with
FrameNet and most importantly in the manner of its integration of QA with
an overall cognitive architecture for agent control.

46.5.1 Preparing/Matching Frames

In order to answer an incoming question, the agent tries to match the Frames
list, created by RelEx, against the Frames stored in its own memory. In gen-

∗ http://framenet.icsi.berkeley.edu
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eral these Frames could come from a variety of sources, including inference,
concept creation and perception; but in the current PetBrain they primarily
come from perception, and simple transformations of perceptions.

However, the agent cannot use the incoming perceptual Frames in their
original format because they lack grounding information (information that
connects the mentioned elements to the real elements of the environment).
So, two steps are then executed before trying to match the Frames: Refer-
ence Resolution (described above) and Frames Rewriting. Frames Rewriting
is a process that changes the values of the incoming Frames elements into
grounded values. Here is an example:

Incoming Frame (Generated by RelEx)

EvaluationLink
DefinedFrameElementNode Color:Color
WordInstanceNode ‘‘red@aaa’’

EvaluationLink
DefinedFrameElementNode Color:Entity
WordInstanceNode ‘‘ball@bbb’’

ReferenceLink
WordInstanceNode ‘‘red@aaa’’
WordNode ‘‘red’’

After Reference Resolution

ReferenceLink
WordInstanceNode ‘‘ball@bbb’’
SemeNode ‘‘ball_99’’

Grounded Frame (After Rewriting)

EvaluationLink
DefinedFrameElementNode Color:Color
ConceptNode ‘‘red’’

EvaluationLink
DefinedFrameElementNode Color:Entity
SemeNode ‘‘ball_99’’

Frame Rewriting serves to convert the incoming Frames to the same struc-
ture used by the Frames stored into the agent’s memory. After Rewriting, the
new Frames are then matched against the agent’s memory and if all Frames
were found in it, the answer is known by the agent, otherwise it is unknown.

In the PetBrain system, if a truth question was posed and all Frames were
matched successfully, the answer would be be “yes”; otherwise the answer is
“no”. Mapping of ambiguous matching results into ambiguous responses were
not handled in the PetBrain.

If the question requires a discursive answer the process is slightly different.
For known answers the matched Frames are converted into RelEx format by
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Frames2RelEx and then sent to NLGen, which prepares the final English text
to be answered. There are two types of unknown answers. The first one is
when at least one Frame cannot be matched against the agent’s memory and
the answer is “I don’t know”. And the second type of unknown answer occurs
when all Frames were matched successfully but they cannot be correctly con-
verted into RelEx format or NLGen cannot identify the incoming relations.
In this case the answer is “I know the answer, but I don’t know how to say
it”.

46.5.2 Frames2RelEx

As mentioned above, this module is responsible for receiving a list of grounded
Frames and returning another list containing the relations, in RelEx format,
which represents the grammatical form of the sentence described by the given
Frames. That is, the Frames list represents a sentence that the agent wants
to say to another agent. NLGen needs an input in RelEx Format in order to
generate an English version of the sentence; Frames2RelEx does this conver-
sion.

Currently, Frames2RelEx is implemented as a rule-based system in which
the preconditions are the required frames and the output is one or more
RelEx relations e.g.

#Color(Entity,Color) =>
present($2) .a($2) adj($2) _predadj($1, $2)

definite($1) .n($1) noun($1) singular($1)
.v(be) verb(be) punctuation(.) det(the)

where the precondition comes before the symbol => and Color is a frame
which has two elements: Entity and Color. Each element is interpreted as a
variable Entity = $1 and Color = $2. The effect, or output of the rule, is a
list of RelEx relations. As in the case of RelEx2Frame, the use of hand-coded
rules is considered a stopgap, and for a powerful AGI system based on this
framework such rules will need to be learned via experience.

46.5.3 Example of the Question Answering Pipeline

Turning to the example “What is next to the tree?”, Figure 46.5.3 illustrates
the processes involved:

The question is parsed by RelEx, which creates the frames indicating that
the sentence is a question regarding a location reference (next) relative to an
object (tree). The frame that represents questions is called Questioning and
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Fig. 46.1 Overview of current PetBrain language comprehension process

it contains the elements Manner that indicates the kind of question (truth-
question, what, where, and so on), Message that indicates the main term
of the question and Addressee that indicates the target of the question. To
indicate that the question is related to a location, the Locative_relation
frame is also created with a variable inserted in its element Figure, which
represents the expected answer (in this specific case, the object that is next
to the tree).

The question-answer module tries to match the question frames in the
Atomspace to fit the variable element. Suppose that the object that is next
to the tree is the red ball. In this way, the module will match all the frames
requested and realize that the answer is the value of the element Figure of
the frame Locative_relation stored in the Atom Table. Then, it creates lo-
cation frames indicating the red ball as the answer. These frames will be
converted into RelEx format by the RelEx2Frames rule based system as de-
scribed above, and NLGen will generate the expected sentence “the red ball
is next to the tree”.

46.5.4 Example of the PetBrain Language Generation
Pipeline

To illustrate the process of language generation using NLGen, as utilized in
the context of PetBrain query response, consider the sentence “The red ball
is near the tree”. When parsed by RelEx, this sentence is converted to:
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_obj(near, tree)
_subj(near, ball)
imperative(near)
hyp(near)
definite(tree)
singular(tree)
_to-do(be, near)
_subj(be, ball)
present(be)
definite(ball)
singular(ball)

So, if sentences with this format are in the system’s experience, these
relations are stored by NLGen and will be used to match future relations
that must be converted into natural language. NLGen matches at an abstract
level, so sentences like “The stick is next to the fountain” will also be matched
even if the corpus contain only the sentence “The ball is near the tree”.

If the agent wants to say that “The red ball is near the tree”, it must invoke
NLGen with the above RelEx contents as input. However, the knowledge that
the red ball is near the tree is stored as frames, and not as RelEx format. More
specifically, in this case the related frame stored is the Locative_relation one,
containing the following elements and respective values: Figure → red ball,
Ground → tree, Relation_type→ near.

So we must convert these frames and their elements’ values into the RelEx
format accept by NLGen. For AGI purposes, a system must learn how to
perform this conversion in a flexible and context-appropriate way. In our cur-
rent system, however, we have implemented a temporary short-cut: a system
of hand-coded rules, in which the preconditions are the required frames and
the output is the corresponding RelEx format that will generate the sentence
that represents the frames. The output of a rule may contains variables that
must be replaced by the frame elements’ values. For the example above, the
output _subj(be, ball) is generated from the rule output _subj(be, $var1)
with the $var1 replaced by the Figure element value.

Considering specifically question-answering (QA), the PetBrain’s Lan-
guage Comprehension module represents the answer to a question as a list of
frames. In this case, we may have the following situations:

• The frames match a precondition and the RelEx output is correctly rec-
ognized by NLGen, which generates the expected sentence as the answer;
• The frames match a precondition, but NLGen did not recognize the RelEx

output generated. In this case, the answer will be “I know the answer, but
I don’t know how to say it”, which means that the question was answered
correctly by the Language Comphrehension, but the NLGen could not
generate the correct sentence;
• The frames didn’t match any precondition; then the answer will also be

“I know the answer, but I don’t know how to say it” ;
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• Finally, if no frames are generated as answer by the Language Compre-
hension module, the agent’s answer will be “I don’t know”.

If the question is a truth-question, then NLGen is not required. In this
case, the creation of frames as answer is considered as a “Yes”, otherwise, the
answer will be “No” because it was not possible to find the corresponding
frames as the answer.

46.6 The Prospect of Massively Multiplayer Language
Teaching

Now we tie in the theme of embodied language learning with more general
considerations regarding embodied experiential learning.

Potentially, this may provide a means to facilitate robust language learning
on the part of virtually embodied agents, and lead to an experientially-trained
AGI language facility that can then be used to power other sorts of agents
such as virtual babies, and ultimately virtual adult-human avatars that can
communicate with experientially-grounded savvy rather than in the manner
of chat-bots.

As one concrete, evocative example, imagine millions of talking parrots
spread across different online virtual worlds – - all communicating in simple
English. Each parrot has its own local memories, its own individual knowledge
and habits and likes and dislikes – - but there’s also a common knowledge-base
underlying all the parrots, which includes a common knowledge of English.

The interest of many humans in interacting with chatbots suggests that
virtual talking parrots or similar devices would be likely to meet with a large
and enthusiastic audience.

Yes, humans interacting with parrots in virtual worlds can be expected
to try to teach the parrots ridiculous things, obscene things, and so forth.
But still, when it comes down to it, even pranksters and jokesters will have
more fun with a parrot that can communicate better, and will prefer a parrot
whose statements are comprehensible.

And for a virtual parrot, the test of whether it has used English correctly,
in a given instance, will come down to whether its human friends have re-
warded it, and whether it has gotten what it wanted. If a parrot asks for
food incoherently, it’s less likely to get food – - and since the virtual parrots
will be programmed to want food, they will have motivation to learn to speak
correctly. If a parrot interprets a human-controlled avatar’s request “Fetch my
hat please” incorrectly, then it won’t get positive feedback from the avatar –
- and it will be programmed to want positive feedback.

And of course parrots are not the end of the story. Once the collective
wisdom of throngs of human teachers has induced powerful language under-
standing in the collective bird-brain, this language understanding (and the



870 46 Embodied Language Processing

commonsense understanding coming along with it) will be useful for many,
many other purposes as well. Humanoid avatars – - both human-baby avatars
that may serve as more rewarding virtual companions than parrots or other
virtual animals; and language-savvy human-adult avatars serving various use-
ful and entertaining functions in online virtual worlds and games. Once AIs
have learned enough that they can flexibly and adaptively explore online vir-
tual worlds and gather information from human-controlled avatars according
to their own goals using their linguistic facilities, it’s easy to envision dramatic
acceleration in their growth and understanding.

A baby AI has numerous disadvantages compared to a baby human being:
it lacks the intricate set of inductive biases built into the human brain, and
it also lacks a set of teachers with a similar form and psyche to it. . . and for
that matter, it lacks a really rich body and world. However, the presence of
thousands to millions of teachers constitutes a large advantage for the AI
over human babies. And a flexible AGI framework will be able to effectively
exploit this advantage. If nonlinguistic learning mechanisms like the ones
we’ve described here, utilized in a virtually-embodied context, can go beyond
enabling interestingly trainable virtual animals and catalyze the process of
language learning – then, within a few years time, we may find ourselves
significantly further along the path to AGI than most observers of the field
currently expect.



Chapter 47
Natural Language Dialogue

Co-authored with Ruiting Lian

47.1 Introduction

Language evolved for dialogue – not for reading, writing or speechifying. So
it’s natural that dialogue is broadly considered a critical aspect of humanlike
AGI – even to the extent that (for better or for worse) the conversational
“Turing Test” is the standard test of human-level AGI.

Dialogue is a high-level functionality rather than a foundational cognitive
process, and in the CogPrime approach it is something that must largely be
learned via experience rather than being programmed into the system. In
that sense, it may seem odd to have a chapter on dialogue in a book sec-
tion focused on engineering aspects of general intelligence. One might think:
Dialogue is something that should emerge from an intelligent system in con-
junction with other intelligent systems, not something that should need to
be engineered. And this is certainly a reasonable perspective! We do think
that, as a CogPrime system develops, it will develop its own approach to
natural language dialogue, based on its own embodiment, environment and
experience – with similarities and differences to human dialogue.

However, we have also found it interesting to design a natural language
dialogue system based on CogPrime , with the goal not of emulating human
conversation, but rather of enabling interesting and intelligent conversational
interaction with CogPrime systems. We call this system “ChatPrime” and will
describe its architecture in this chapter. The components used in ChatPrime
may also be useful for enabling CogPrime systems to carry out more human-
like conversation, via their incorporation in learned schemata; but we will not
focus on that aspect here. In addition to its intrinsic interest, consideration
of ChatPrime sheds much light on the conceptual relationship between the
NLP and other aspects of CogPrime .

We are aware that there is an active subfield of computational linguistics
focused on dialogue systems [Wah06, ?], however we will not draw signifi-
cantly on that literature here. Making practical dialogue systems in the ab-

871
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sence of a generally functional cognitive engine is a subtle and difficult art,
which has been addressed in a variety of ways; however, we have found that
designing a dialogue system within the context of an integrative cognitive
engine like CogPrime is a somewhat different sort of endeavor.

47.1.1 Two Phases of Dialogue System Development

In practical terms, we envision the ChatPrime system as possessing two
phases of development:

1. Phase 1:

• "Lower levels" of NL comprehension and generation executed by a rel-
atively traditional approach incorporating statistical and rule-based
aspects (the RelEx and NLGen systems)

• Dialogue control utilizes hand-coded procedures and predicates (SpeechActSchema
and SpeechActTriggers) corresponding to fine-grained types of speech
act

• Dialogue control guided by general cognitive control system (OpenPsi,
running within OpenCog)

• SpeechActSchema and SpeechActTriggers, in some cases, will inter-
nally consult probabilistic inference, thus supplying a high degree of
adaptive intelligence to the conversation

2. Phase 2:

• "Lower levels" of NL comprehension and generation carried out
within primary cognition engine, in a manner enabling their under-
lying rules and probabilities to be modified based the system’s expe-
rience. Concretely, one way this could be done in OpenCog would be
via
– Implementing the RelEx and RelEx2Frame rules as PLN impli-
cations in the Atomspace

– Implementing parsing via expressing the link parser dictionary
as Atoms in the Atomspace, and using the SAT link parser to
do parsing as an example of logical unification (carried out by a
MindAgent wrapping an SAT solver)

– Implementing NLGen within the OpenCog core, via making NL-
Gen’s sentence database a specially indexed Atomspace, and
wrapping the NLGen operations in a MindAgent

• Reimplement the SpeechActSchema and SpeechActTriggers in an ap-
propriate combination of Combo and PLN logical link types, so they
are susceptible to modification via inference and evolution

It’s worth noting that the work required to move from Phase 1 to Phase
2 is essentially software development and computer science algorithm opti-
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mization work, rather than computational linguistics or AI theory. Then after
the Phase 2 system is built there will, of course, be significant work involved
in "tuning" PLN, MOSES and other cognitive algorithms to experientially
adapt the various portions of the dialogue system that have been moved into
the OpenCog core and refactored for adaptiveness.

47.2 Speech Act Theory and its Elaboration

We review here the very basics of speech act theory, and then the specific
variant of speech act theory that we feel will be most useful for practical
OpenCog dialogue system development.

The core notion of speech act theory is to analyze linguistic behavior in
terms of discrete speech acts aimed at achieving specific goals. This is a
convenient theoretical approach in an OpenCog context, because it pushes
us to treat speech acts just like any other acts that an OpenCog system may
carry out in its world, and to handle speech acts via the standard OpenCog
action selection mechanism.

Searle, who originated speech act theory, divided speech acts according to
the following (by now well known) ontology:

• Assertives : The speaker commits herself to something being true. The
sky is blue.

• Directives: The speaker attempts to get the hearer to do something.
Clean your room!

• Commissives: The speaker commits to some future course of action. I
will do it.

• Expressives: The speaker expresses some psychological state. IÕm
sorry.

• Declarations: The speaker brings about a different state of the world.
The meeting is adjourned.

Inspired by this ontology, Twitchell and Nunamaker (in their 2004 pa-
per "Speech Act Profiling: A Probabilistic Method for Analyzing Persistent
Conversations and Their Participants") created a much more fine-grained
ontology of 42 kinds of speech acts, called SWBD-DAMSL (DAMSL = Dia-
logue Act Markup in Several Layers). Nearly all of their 42 speech act types
can be neatly mapped into one of Searle’s 5 high level categories, although a
handful don’t fit Searle’s view and get categorized as "other." Figures 47.1
and 47.2 depict the 42 acts and their relationship to Searle’s categories.
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Fig. 47.1 The 42 DAMSL speech act categories.

Fig. 47.2 Connecting the 42 DAMSL speech act categories to Searle’s 5 higher-level
categories.
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47.3 Speech Act Schemata and Triggers

In the suggested dialogue system design, multiple SpeechActSchema would be
implemented, corresponding roughly to the 42 SWBD-DAMSL speech acts.
The correspondence is "rough" because

• we may wish to add new speech acts not in their list
• sometimes it may be most convenient to merge 2 or more of their speech

acts into a single SpeechActSchema. For instance, it’s probably easiest to
merge their YES ANSWER and NO ANSWER categories into a single
TRUTH VALUE ANSWER schema, yielding affirmative, negative, and
intermediate answers like "probably", "probably not", "I’m not sure",
etc.

• sometimes it may be best to split one of their speech acts into several, e.g.
to separately consider STATEMENTs which are responses to statements,
versus statements that are unsolicited disbursements of "what’s on the
agent’s mind."

Overall, the SWBD-DAMSL categories should be taken as guidance rather
than doctrine. However, they are valuable guidance due to their roots in de-
tailed analysis of real human conversations, and their role as a bridge between
concrete conversational analysis and the abstractions of speech act theory.

Each SpeechActSchema would take in an input consisting of a DialogueN-
ode, a Node type possessing a collection of links to

• a series of past statements by the agent and other conversation partici-
pants, with

– each statement labeled according to the utterer
– each statement uttered by the agent, labeled according to which

SpeechActSchema was used to produce it, plus (see below) which
SpeechActTrigger and which response generator was involved

• a set of Atoms comprising the context of the dialogue. These Atoms
may optionally be linked to some of the Atoms representing some of the
past statements. If they are not so linked, they are considered as general
context.

The enaction of SpeechActSchema would be carried out via PredictiveIm-
plicationLinks embodying "Context AND Schema → Goal" schematic impli-
cations, of the general form

PredictiveImplication
AND

Evaluation
SpeechActTrigger T
DialogueNode D

Execution
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SpeechActSchema S
DialogueNode D

Evaluation
Evaluation

Goal G

with

ExecutionOutput
SpeechActSchema S
DialogueNode D
UtteranceNode U

being created as a result of the enaction of the SpeechActSchema. (An Ut-
teranceNode is a series of one or more SentenceNodes.)

A single SpeechActSchema may be involved in many such implications,
with different probabilistic weights, if it naturally has many different Trigger
contexts.

Internally each SpeechActSchema would contain a set of one or more re-
sponse generators, each one of which is capable of independently producing
a response based on the given input. These may also be weighted, where the
weight determines the probability of a given response generation process be-
ing chosen in preference to the others, once the choice to enact that particular
SpeechActSchema has already been made.

47.3.1 Notes Toward Example SpeechActSchema

To make the above ideas more concrete, let’s consider a few specific SpeechActSchema.
We won’t fully specify them here, but will outline them sufficiently to make
the ideas clear.

47.3.1.1 TruthValueAnswer

The TruthValueAnswer SpeechActSchema would encompass SWBD-DAMSL’s
YES ANSWER and NO ANSWER, and also more flexible truth value based
responses.

Trigger context

: when the conversation partner produces an utterance that RelEx maps into
a truth-value query (this is simple as truth-value-query is one of RelEx’s
relationship types).
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Goal

: the simplest goal relevant here is pleasing the conversation partner, since
the agent may have noticed in the past that other agents are pleased when
their questions are answers. (More advanced agents may of course have other
goals for answering questions, e.g. providing the other agent with information
that will let it be more useful in future.)

Response generation schema

: for starters, this SpeechActSchema could simply operate as follows. It takes
the relationship (Atom) corresponding to the query, and uses it to launch a
query to the pattern matcher or PLN backward chainer. Then based on the
result, it produces a relationship (Atom) embodying the answer to the query,
or else updates the truth value of the existing relationship corresponding to
the answer to the query. This "answer" relationship has a certain truth value.
The schema could then contain a set of rules mapping the truth values into
responses, with a list of possible responses for each truth value range. For ex-
ample a very high strength and high confidence truth value would be mapped
into a set of responses like {definitely, certainly, surely, yes, indeed}.

This simple case exemplifies the overall Phase 1 approach suggested here.
The conversation will be guided by fairly simple heuristic rules, but with
linguistic sophistication in the comprehension and generation aspects, and
potentially subtle inference invoked within the SpeechActSchema or (less
frequently) the Trigger contexts. Then in Phase 2 these simple heuristic rules
will be refactored in a manner rendering them susceptible to experiential
adaptation.

47.3.1.2 Statement: Answer

The next few SpeechActSchema (plus maybe some similar ones not given
here) are intended to collectively cover the ground of SWBD-DAMSL’s
STATEMENT OPINION and STATEMENT NON-OPINION acts.

Trigger context

: The trigger is that the conversation partner asks a wh- question
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Goal

: Similar to the case of a TruthValueAnswer, discussed above

Response generation schema

: When a wh- question is received, one reasonable response is to produce a
statement comprising an answer. The question Atom is posed to the pattern
matcher or PLN, which responds with an Atom-set comprising a putative
answer. The answer Atoms are then pared down into a series of sentence-
sized Atom-sets, which are articulated as sentences by NLGen. If the answer
Atoms have very low-confidence truth values, or if the Atomspace contains
knowledge that other agents significantly disagree with the agent’s truth value
assessments, then the answer Atom-set may have Atoms corresponding to "I
think" or "In my opinion" etc. added onto it (this gives an instance of the
STATEMENT NON-OPINION act).

47.3.1.3 Statement: Unsolicited Observation

Trigger context

: when in the presence of another intelligent agent (human or AI) and nothing
has been said for a while, there is a certain probability of choosing to make
a "random" statement.

Goal 1

: Unsolicited observations may be made with a goal of pleasing the other
agent, as it may have been observed in the past that other agents are happier
when spoken to

Goal 2

: Unsolicited observations may be made with goals of increasing the agent’s
own pleasure or novelty or knowledge – because it may have been observed
that speaking often triggers conversations, and conversations are often more
pleasurable or novel or educational than silence
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Response generation schema

: One option is a statement describing something in the mutual environment,
another option is a statement derived from high-STI Atoms in the agent’s
Atomspace. The particulars are similar to the "Statement: Answer" case.

47.3.1.4 Statement: External Change Notification

Trigger context

: when in a situation with another intelligent agent, and something significant
changes in the mutually perceived situation, a statement describing it may
be made.

Goal 1

: External change notification utterances may be made for the same reasons
as Unsolicited Observations, described above.

Goal 2

: The agent may think a certain external change is important to the other
agent it is talking to, for some particular reason. For instance, if the agent
sees a dog steal Bob’s property, it may wish to tell Bob about this.

Goal 3

: The change may be important to the agent itself – and it may want its
conversation partner to do something relevant to an observed external change
... so it may bring the change to the partner’s attention for this reason. For
instance, "Our friends are leaving. Please try to make them come back."

Response generation schema

: The Atom-set for expression characterizes the change observed. The partic-
ulars are similar to the "Statement: Answer" case.



880 47 Natural Language Dialogue

47.3.1.5 Statement: Internal Change Notification

Trigger context 1

: when the importance level of an Atom increases dramatically while in the
presence of another intelligent agent, a statement expressing this Atom (and
some of its currently relevant surrounding Atoms) may be made

Trigger context 2

: when the truth value of a reasonably important Atom changes dramatically
while in the presence of another intelligent agent, a statement expressing this
Atom and its truth value may be made

Goal

: Similar goals apply here as to External Change Notification, considered
above

Response generation schema

: Similar to the "Statement: External Change Notification" case.

47.3.1.6 WHQuestion

Trigger context

: being in the presence of an intelligent agent thought capable of answering
questions

Goal 1

: the general goal of increasing the agent’s total knowledge

Goal 2

: the agent notes that, to achieve one of its currently important goals, it
would be useful to possess a Atom fulfilling a certain specification
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Response generation schema

: Formulate a query whose answer would be an Atom fulfilling that speci-
fication, and then articulate this logical query as an English question using
NLGen

47.4 Probabilistic Mining of Trigger contexts

One question raised by the above design sketch is where the Trigger contexts
come from. They may be hand-coded, but this approach may suffer from
excessive brittleness. The approach suggested by Twitchell and Nunamaker’s
work (which involved modeling human dialogues rather than automatically
generating intelligent dialogues) is statistical. That is, they suggest marking
up a corpus of human dialogues with tags corresponding to the 42 speech
acts, and learning from this annotated corpus a set of Markov transition
probabilities indicating which speech acts are most likely to follow which
others. In their approach the transition probabilities refer only to series of
speech acts.

In an OpenCog context one could utilize a more sophisticated training
corpus in a more sophisticated way. For instance, suppose one wants to build
a dialogue system for a game character conversing with human characters
in a game world. Then one could conduct experiments in which one human
controls a "human" game character, and another human puppeteers an "AI"
game character. That is, the puppeteered character funnels its perceptions
to the AI system, but has its actions and verbalizations controlled by the
human puppeteer. Given the dialogue from this sort of session, one could
then perform markup according to the 42 speech acts.

As a simple example, consider the following brief snippet of annotated
conversation:

speaker utterance speech act type
Ben Go get me the ball ad
AI Where is it? qw
Ben Over there [points] sd
AI By the table? qy
Ben Yeah ny
AI Thanks ft
AI I’ll get it now. commits

A DialogueNode object based on this snippet would contain the information
in the table, plus some physical information about the situation, such as, in
this case: predicates describing the relative locations of the two agents, the
ball an the table (e.g. the two agents are very near each other, the ball and
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the table are very near each other, but these two groups of entities are only
moderately near each other); and, predicates involving

Then, one could train a machine learning algorithm such as MOSES to
predict the probability of speech act type S1 occurring at a certain point
in a dialogue history, based on the prior history of the dialogue. This prior
history could include percepts and cognitions as well as utterances, since one
has a record of the AI system’s perceptions and cognitions in the course of
the marked-up dialogue.

One question is whether to use the 42 SWBD-DAMSL speech acts for the
creation of the annotated corpus, or whether instead to use the modified set
of speech acts created in designing SpeechActSchema. Either way could work,
but we are mildly biased toward the former, since this specific SWBD-DAMSL
markup scheme has already proved its viability for marking up conversations.
It seems unproblematic to map probabilities corresponding to these speech
acts into probabilities corresponding to a slightly refined set of speech acts.
Also, this way the corpus would be valuable independently of ongoing low-
level changes in the collection of SpeechActSchema.

In addition to this sort of supervised training in advance, it will be impor-
tant to enable the system to learn Trigger contexts online as a consequence
of its life experience. This learning may take two forms:

1. Most simply, adjustment of the probabilities associated with the Predic-
tiveImplicationLinks between SpeechActTriggers and SpeechActSchema

2. More sophisticatedly, learning of new SpeechActTrigger predicates, using
an algorithms such as MOSES for predicate learning, based on mining
the history of actual dialogues to estimate fitness

In both cases the basis for learning is information regarding the extent to
which system goals were fulfilled by each past dialogue. PredictiveImplica-
tions that correspond to portions of successful dialogues will be have their
truth values increased, and those corresponding to portions of unsuccessful
dialogues will have their truth values decreased. Candidate SpeechActTrig-
gers will be valued based on the observed historical success of the responses
they would have generated based on historically perceived utterances; and
(ultimately) more sophisticatedly, based on the estimated success of the re-
sponses they generate. Note that, while somewhat advanced, this kind of
learning is much easier than th procedure learning required to learn new
SpeechActSchema.

47.5 Conclusion

While the underlying methods are simple, the above methods appear capable
of producing arbitrarily complex dialogues about any subject that is repre-
sented by knowledge in the AtomSpace. There is no reason why dialogue
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produced in this manner should be indistinguishable from human dialogue;
but it may nevertheless be humanly comprehensible, intelligent and insight-
ful. What is happening in this sort of dialogue system is somewhat similar
to current natural language query systems that query relational databases,
but the "database" in question is a dynamically self-adapting weighted la-
beled hypergraph rather than a static relational database, and this difference
means a much more complex dialogue system is required, as well as more
flexible language comprehension and generation components.

Ultimately, a CogPrime system – if it works as desired – will be able to
learn increased linguistic functionality, and new languages, on its own. But
this is not a prerequisite for having intelligent dialogues with a CogPrime
system. Via building a ChatPrime type system, as outlined here, intelligent
dialogue can occur with a CogPrime system while it is still at relatively early
stages of cognitive development, and even while the underlying implementa-
tion of the CogPrime design is incomplete. This is not closely analogous to
human cognitive and linguistic development, but, it can still be pursued in
the context of a CogPrime development plan that follows the overall arc of
human developmental psychology.
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Chapter 48
Summary of Argument for the
CogPrime Approach

48.1 Introduction

By way of conclusion, we now return to the “key claims” that were listed at
the end of Chapter 1 of Part 1. Quite simply, this is a list of claims such that
– roughly speaking – if the reader accepts these claims, they should accept
that the CogPrime approach to AGI is a viable one. On the other hand if
the reader rejects one or more of these claims, they may well find one or
more aspects of CogPrime unacceptable for some related reason. In Chapter
1 of Part 1 we merely listed these claims; here we briefly discuss each one in
the context of the intervening chapters, giving each one its own section or
subsection.

As we clarified at the start of Part 1, we don’t fancy that we have provided
an ironclad argument that the CogPrime approach to AGI is guaranteed to
work as hoped, once it’s fully engineered, tuned and taught. Mathematics
isn’t yet adequate to analyze the real-world behavior of complex systems
like these; and we have not yet implemented, tested and taught enough of
CogPrime to provide convincing empirical validation. So, most of the claims
listed here have not been rigorously demonstrated, but only heuristically
argued for. That is the reality of AGI work right now: one assembles a design
based on the best combination of rigorous and heuristic arguments one can,
then proceeds to create and teach a system according to the design, adjusting
the details of the design based on experimental results as one goes along.

For an uncluttered list of the claims, please refer back to Chapter 1 of Part
1; here we will review the claims integrated into the course of discussion.

The following chapter, aimed at the more mathematically-minded reader,
gives a list of formal propositions echoing many of the ideas in the chapter –
propositions such that, if they are true, then the success of CogPrime as an
architecture for general intelligence is likely.

887
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48.2 Multi-Memory Systems

The first of our key claims is that to achieve general intelligence in the context
of human-intelligence-friendly environments and goals using feasible compu-
tational resources, it’s important that an AGI system can handle different
kinds of memory (declarative, procedural, episodic, sensory, intentional, at-
tentional) in customized but interoperable ways. The basic idea is that these
different kinds of knowledge have very different characteristics, so that trying
to handle them all within a single approach, while surely possible, is likely to
be unacceptably inefficient.

The tricky issue in formalizing this claim is that “single approach” is an
ambiguous notion: for instance, if one has a wholly logic-based system that
represents all forms of knowledge using predicate logic, then one may still have
specialized inference control heuristics corresponding to the different kinds of
knowledge mentioned in the claim. In this case one has “customized but in-
teroperable ways” of handling the different kinds of memory, and one doesn’t
really have a “single approach” even though one is using logic for everything.
To bypass such conceptual difficulties, one may formalize cognitive synergy
using a geometric framework as discussed in Appendix B, in which differ-
ent types of knowledge are represented as metrized categories, and cognitive
synergy becomes a statement about paths to goals being shorter in metric
spaces combining multiple knowledge types than in those corresponding to
individual knowledge types.

In CogPrime we use a complex combination of representations, including
the Atomspace for declarative, attentional and intentional knowledge and
some episodic and sensorimotor knowledge, Combo programs for procedural
knowledge, simulations for episodic knowledge, and hierarchical neural nets
for some sensorimotor knowledge (and related episodic, attentional and in-
tentional knowledge). In cases where the same representational mechanism is
used for different types of knowledge, different cognitive processes are used,
and often different aspects of the representation (e.g. attentional knowledge is
dealt with largely by ECAN acting on AttentionValues and HebbianLinks in
the Atomspace; whereas declarative knowledge is dealt with largely by PLN
acting on TruthValues and logical links, also in the AtomSpace). So one has
a mix of the “different representations for different memory types” approach
and the “different control processes on a common representation for different
memory types” approach.

It’s unclear how closely dependent the need for a multi-memory approach
is on the particulars of “human-friendly environments.” We argued in Chapter
9 of Part 1 that one factor militating in favor of a multi-memory approach is
the need for multimodal communication: declarative knowledge relates to lin-
guistic communication; procedural knowledge relates to demonstrative com-
munication; attentional knowledge relates to indicative communication; and
so forth. But in fact the multi-memory approach may have a broader impor-
tance, even to intelligences without multimodal communication. This is an
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interesting issue but not particularly critical to the development of human-
like, human-level AGI, since in the latter case we are specifically concerned
with creating intelligences that can handle multimodal communication. So if
for no other reason, the multi-memory approach is worthwhile for handling
multi-modal communication.

Pragmatically, it is also quite clear that the human brain takes a multi-
memory approach, e.g. with the cerebellum and closely linked cortical regions
containing special structures for handling procedural knowledge, with special
structures for handling motivational (intentional) factors, etc. And (though
this point is certainly not definitive, it’s meaningful in the light of the above
theoretical discussion) decades of computer science and narrow-AI practice
strongly suggest that the “one memory structure fits all” approach is not
capable of leading to effective real-world approaches.

48.3 Perception, Action and Environment

The more we understand of human intelligence, the clearer it becomes how
closely it has evolved to the particular goals and environments for which
the human organism evolved. This is true in a broad sense, as illustrated by
the above issues regarding multi-memory systems, and is also true in many
particulars, as illustrated e.g. by Changizi’s [Cha09] evolutionary analysis of
the human visual system. While it might be possible to create a human-like,
human-level AGI by abstracting the relevant biases from human biology and
behavior and explicitly encoding them in one’s AGI architecture, it seems
this would be an inordinately difficult approach in practice, leading to the
claim that to achieve human-like general intelligence, it’s important for an
intelligent agent to have sensory data and motoric affordances that roughly
emulate those available to humans. We don’t claim this is a necessity – just a
dramatic convenience. And if one accepts this point, it has major implications
for what sorts of paths toward AGI it makes most sense to follow.

Unfortunately, though, the idea of a “human-like” set of goals and envi-
ronments is fairly vague; and when you come right down to it, we don’t know
exactly how close the emulation needs to be to form a natural scenario for the
maturation of human-like, human-level AGI systems. One could attempt to
resolve this issue via a priori theory, but given the current level of scientific
knowledge it’s hard to see how that would be possible in any definitive sense
... which leads to the conclusion that our AGI systems and platforms need
to support fairly flexible experimentation with virtual-world and/or robotic
infrastructures.

Our own intuition is that currently neither current virtual world plat-
forms, nor current robotic platforms, are quite adequate for the development
of human-level, human-like AGI. Virtual worlds would need to become a lot
more like robot simulators, allowing more flexible interaction with the en-
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vironment, and more detailed control of the agent. Robots would need to
become more robust at moving and grabbing – e.g. with Big Dog’s move-
ment ability but the grasping capability of the best current grabber arms.
We do feel that development of adequate virtual world or robotics platforms
is quite possible using current technology, and could be done at fairly low cost
if someone were to prioritize this. Even without AGI-focused prioritization,
it seems that the needed technological improvements are likely to happen
during the next decade for other reasons. So at this point we feel it makes
sense for AGI researchers to focus on AGI and exploit embodiment-platform
improvements as they come along – at least, this makes sense in the case
of AGI approaches (like CogPrime ) that can be primarily developed in an
embodiment-platform-independent manner.

48.4 Developmental Pathways

But if an AGI system is going to live in human-friendly environments, what
should it do there? No doubt very many pathways leading from incompetence
to adult-human-level general intelligence exist, but one of them is much better
understood than any of the others, and that’s the one normal human children
take. Of course, given their somewhat different embodiment, it doesn’t make
sense to try to force AGI systems to take exactly the same path as human
children, but having AGI systems follow a fairly close approximation to the
human developmental path seems the smoothest developmental course ...
a point summarized by the claim that: To work toward adult human-level,
roughly human-like general intelligence, one fairly easily comprehensible path
is to use environments and goals reminiscent of human childhood, and seek to
advance one’s AGI system along a path roughly comparable to that followed
by human children.

Human children learn via a rich variety of mechanisms; but broadly speak-
ing one conclusion one may drawn from studying human child learning is that
it may make sense to teach an AGI system aimed at roughly human-like gen-
eral intelligence via a mix of spontaneous learning and explicit instruction,
and to instruct it via a combination of imitation, reinforcement and correc-
tion, and a combination of linguistic and nonlinguistic instruction. We have
explored exactly what this means in Chapter 31 and others, via looking at
examples of these types of learning in the context of virtual pets in virtual
worlds, and exploring how specific CogPrime learning mechanisms can be
used to achieve simple examples of these types of learning.

One important case of learning that human children are particularly good
at is language learning; and we have argued that this is a case where it
may pay for AGI systems to take a route somewhat different from the one
taken by human children. Humans seem to be born with a complex system of
biases enabling effective language learning, and it’s not yet clear exactly what
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these biases are nor how they’re incorporated into the learning process. It is
very tempting to give AGI systems a “short cut” to language proficiency via
making use of existing rule-based and statistical-corpus-analysis-based NLP
systems; and we have fleshed out this approach sufficiently to have convinced
ourselves it makes practical as well as conceptual sense, in the context of the
specific learning mechanisms and NLP tools built into OpenCog. Thus we
have provided a number of detailed arguments and suggestions in support
of our claim that one effective approach to teaching an AGI system human
language is to supply it with some in-built linguistic facility, in the form of
rule-based and statistical-linguistics-based NLP systems, and then allow it to
improve and revise this facility based on experience.

48.5 Knowledge Representation

Many knowledge representation approaches have been explored in the AI lit-
erature, and ultimately many of these could be workable for human-level AGI
if coupled with the right cognitive processes. The key goal for a knowledge
representation for AGI should be naturalness with respect to the AGI’s cogni-
tive processes – i.e. the cognitive processes shouldn’t need to undergo complex
transformative gymnastics to get information in and out of the knowledge rep-
resentation in order to do their cognitive work. Toward this end we have come
to a similar conclusion to some other researchers (e.g. Joscha Bach and Stan
Franklin), and concluded that given the strengths and weaknesses of current
and near-future digital computers, a (loosely) neural-symbolic network is a
good representation for directly storing many kinds of memory, and interfac-
ing between those that it doesn’t store directly. CogPrime ’s AtomSpace is a
neural-symbolic network designed to work nicely with PLN, MOSES, ECAN
and the other key CogPrime cognitive processes; it supplies them with what
they need without causing them undue complexities. It provides a platform
that these cognitive processes can use to adaptively, automatically construct
specialized knowledge representations for particular sorts of knowledge that
they encounter.

48.6 Cognitive Processes

The crux of intelligence is dynamics, learning, adaptation; and so the crux
of an AGI design is the set of cognitive processes that the design provides.
These processes must collectively allow the AGI system to achieve its goals
in its environments using the resources at hand. Given CogPrime ’s multi-
memory design, it’s natural to consider CogPrime ’s cognitive processes in
terms of which memory subsystems they focus on (although, this is not a
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perfect mode of analysis, since some of the cognitive processes span multiple
memory types).

48.6.1 Uncertain Logic for Declarative Knowledge

One major decision made in the creation of CogPrime was that given the
strengths and weaknesses of current and near-future digital computers, un-
certain logic is a good way to handle declarative knowledge. Of course this is
not obvious nor is it the only possible route. Declarative knowledge can po-
tentially be handled in other ways; e.g. in a hierarchical network architecture,
one can make declarative knowledge emerge automatically from procedural
and sensorimotor knowledge, as is the goal in the Numenta and DeSTIN de-
signs reviewed in Chapter 4 of Part 1. It seems clear that the human brain
doesn’t contain anything closely parallel to formal logic – even though one
can ground logic operations in neural-net dynamics as explored in Chapter
34, this sort of grounding leads to “uncertain logic enmeshed with a host of
other cognitive dynamics” rather than “uncertain logic as a cleanly separable
cognitive process.”

But contemporary digital computers are not brains – they lack the hu-
man brain’s capacity for cheap massive parallelism, but have a capability
for single-operation speed and precision far exceeding the brain’s. In this
way computers and formal logic are a natural match (a fact that’s not sur-
prising given that Boolean logic lies at the foundation of digital computer
operations). Using uncertain logic is a sort of compromise between brainlike
messiness and fuzziness, and computerlike precision. An alternative to using
uncertain logic is using crisp logic and incorporating uncertainty as content
within the knowledge base – this is what SOAR does, for example, and it’s
not a wholly unworkable approach. But given that the vast mass of knowl-
edge needed for confronting everyday human reality is highly uncertain, and
that this knowledge often needs to be manipulated efficiently in real-time,
it seems to us there is a strong argument for embedding uncertainty in the
logic.

Many approaches to uncertain logic exist in the literature, including prob-
abilistic and fuzzy approaches, and one conclusion we reached in formulating
CogPrime is that none of them was adequate on its own – leading us, for ex-
ample, to the conclusion that to deal with the problems facing a human-level
AGI, an uncertain logic must integrate imprecise probability and fuzziness
with a broad scope of logical constructs. The arguments that both fuzziness
and probability are needed seem hard to counter – these two notions of un-
certainty are qualitatively different yet both appear cognitively necessary.

The argument for using probability in an AGI system is assailed by some
AGI researchers such as Pei Wang, but we are swayed by the theoretical ar-
guments in favor of probability theory’s mathematically fundamental nature,
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as well as the massive demonstrated success of probability theory in various
areas of narrow AI and applied science. However, we are also swayed by the
arguments of Pei Wang, Peter Walley and others that using single-number
probabilities to represent truth values leads to untoward complexities related
to the tabulation and manipulation of amounts of evidence. This has led us
to an imprecise probability based approach; and then technical arguments
regarding the limitations of standard imprecise probability formalisms has
led us to develop our own “indefinite probabilities” formalism.

The PLN logic framework is one way of integrating imprecise probability
and fuzziness in a logical formalism that encompasses a broad scope of log-
ical constructs. It integrates term logic and predicate logic – a feature that
we consider not necessary, but very convenient, for AGI. Either predicate or
term logic on its own would suffice, but each is awkward in certain cases, and
integrating them as done in PLN seems to result in more elegant handling
of real-world inference scenarios. Finally, PLN also integrates intensional in-
ference in an elegant manner that demonstrates integrative intelligence – it
defines intension using pattern theory, which binds inference to pattern recog-
nition and hence to other cognitive processes in a conceptually appropriate
way.

Clearly PLN is not the only possible logical formalism capable of serving
a human-level AGI system; however, we know of no other existing, fleshed-
out formalism capable of fitting the bill. In part this is because PLN has
been developed as part of an integrative AGI project whereas other logical
formalisms have mainly been developed for other purposes, or purely theo-
retically. Via using PLN to control virtual agents, and integrating PLN with
other cognitive processes, we have tweaked and expanded the PLN formalism
to serve all the roles required of the “declarative cognition” component of an
AGI system with reasonable elegance and effectiveness.

48.6.2 Program Learning for Procedural Knowledge

Even more so than declarative knowledge, procedural knowledge is repre-
sented in many different ways in the AI literature. The human brain also
apparently uses multiple mechanisms to embody different kinds of proce-
dures. So the choice of how to represent procedures in an AGI system is
not particularly obvious. However, there is one particular representation of
procedures that is particularly well-suited for current computer systems, and
particularly well-tested in this context: programs. In designing CogPrime , we
have acted based on the understanding that programs are a good way to rep-
resent procedures – including both cognitive and physical-action procedures,
but perhaps not including low-level motor-control procedures.

Of course, this begs the question of programs in what programming lan-
guage, and in this context we have made a fairly traditional choice, using a
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special language called Combo that is essentially a minor variant of LISP, and
supplying Combo with a set of customized primitives intended to reduce the
length of the typical programs CogPrime needs to learn and use. What differ-
entiates this use of LISP from many traditional uses of LISP in AI is that we
are only using the LISP-ish representational style for procedural knowledge,
rather than trying to use it for everything.

One test of whether the use of Combo programs to represent procedural
knowledge makes sense is whether the procedures useful for a CogPrime sys-
tem in everyday human environments have short Combo representations. We
have worked with Combo enough to validate that they generally do in the
virtual world environment – and also in the physical-world environment if
lower-level motor procedures are supplied as primitives. That is, we are not
convinced that Combo is a good representation for the procedure a robot
needs to do to move its fingers to pick up a cup, coordinating its movements
with its visual perceptions. It’s certainly possible to represent this sort of
thing in Combo, but Combo may be an awkward tool. However, if one rep-
resents low-level procedures like this using another method, e.g. learned cell
assemblies in a hierarchical network like DeSTIN, then it’s very feasible to
make Combo programs that invoke these low-level procedures, and encode
higher-level actions like “pick up the cup in front of you slowly and quietly,
then hand it to Jim who is standing next to you.”

Having committed to use programs to represent many procedures, the
next question is how to learn programs. One key conclusion we have come
to via our empirical work in this area is that some form of powerful program
normalization is essential. Without normalization, it’s too hard for existing
learning algorithms to generalize from known, tested programs and draw
useful uncertain conclusions about untested ones. We have worked extensively
with a generalization of Holman’s “Elegant Normal Form” in this regard.

For learning normalized programs, we have come to the following conclu-
sions:

• for relatively straightforward procedure learning problems, hillclimbing
with random restart and a strong Occam bias is an effective method
• for more difficult problems that elude hillclimbing, probabilistic evolution-
ary program learning is an effective method

The probabilistic evolutionary program learning method we have worked with
most in OpenCog is MOSES, and significant evidence has been gathered
showing it to be dramatically more effective than genetic programming on
relevant classes of problems. However, more work needs to be done to evalu-
ate its progress on complex and difficult procedure learning problems. Alter-
nate, related probabilistic evolutionary program learning algorithms such as
PLEASURE have also been considered and may be implemented and tested
as well.
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48.6.3 Attention Allocation

There is significant evidence that the brain uses some sort of “activation
spreading” type method to allocate attention, and many algorithms in this
spirit have been implemented and utilized in the AI literature. So, we find
ourselves in agreement with many others that activation spreading is a rea-
sonable way to handle attentional knowledge (though other approaches, with
greater overhead cost, may provide better accuracy and may be appropriate
in some situations). We also agree with many others who have chosen Heb-
bian learning as one route of learning associative relationships, with
more sophisticated methods such as information-geometric ones potentially
also playing a role

Where CogPrime differs from standard practice is in the use of an eco-
nomic metaphor to regulate activation spreading. In this matter CogPrime
is broadly in agreement with Eric Baum’s arguments about the value of eco-
nomic methods in AI, although our specific use of economic methods is very
different from his. Baum’s work (e.g. Hayek) embodies more complex and
computationally expensive uses of artificial economics, whereas we believe
that in the context of a neural-symbolic network, artificial economics is an
effective approach to activation spreading; and CogPrime ’s ECAN frame-
work seeks to embody this idea. ECAN can also make use of more sophisti-
cated and expensive uses of artificial currency when large amount of system
resources are involved in a single choice, rendering the cost appropriate.

One major choice made in the CogPrime design is to focus on two kinds
of attention: processor (represented by ShortTermImportance) and memory
(represented by LongTermImportance). This is a direct reflection of one of the
key differences between the von Neumann architecture and the human brain:
in the former but not the latter, there is a strict separation between memory
and processing in the underlying compute fabric. We carefully considered the
possibility of using a larger variety of attention values, and in Chapter 23 we
presented some mathematics and concepts that could be used in this regard,
but for reasons of simplicity and computational efficiency we are currently
using only STI and LTI in our OpenCogPrime implementation, with the
possibility of extending further if experimentation proves it necessary.

48.6.4 Internal Simulation and Episodic Knowledge

For episodic knowledge, as with declarative and procedural knowledge, Cog-
Prime has opted for a solution motivated by the particular strengths of con-
temporary digital computers. When the human brain runs through a “mental
movie” of past experiences, it doesn’t do any kind of accurate physical simu-
lation of these experiences. But that’s not because the brain wouldn’t benefit
from such – it’s because the brain doesn’t know how to do that sort of thing!
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On the other hand, any modern laptop can run a reasonable Newtonian
physics simulation of everyday events, and more fundamentally can recall
and manage the relative positions and movements of items in an internal 3D
landscape paralleling remembered or imagined real-world events. With this in
mind, we believe that in an AGI context, simulation is a good way to handle
episodic knowledge; and running an internal “world simulation engine” is an
effective way to handle simulation.

CogPrime can work with many different simulation engines; and since sim-
ulation technology is continually advancing independently of AGI technology,
this is an area where AGI can buy some progressive advancement for free as
time goes on. The subtle issues here regard interfacing between the simula-
tion engine and the rest of the mind: mining meaningful information out of
simulations using pattern mining algorithms; and more subtly, figuring out
what simulations to run at what times in order to answer the questions most
relevant to the AGI system in the context of achieving its goals. We believe
we have architected these interactions in a viable way in the CogPrime de-
sign, but we have tested our ideas in this regard only in some fairly simple
contexts regarding virtual pets in a virtual world, and much more remains to
be done here.

48.6.5 Low-Level Perception and Action

The centrality or otherwise of low-level perception and action in human in-
telligence is a matter of ongoing debate in the AI community. Some feel that
the essence of intelligence lies in cognition and/or language, with perception
and action having the status of “peripheral devices.” Others feel that mod-
eling the physical world and one’s actions in it is the essence of intelligence,
with cognition and language emerging as side-effects of these more funda-
mental capabilities. The CogPrime architecture doesn’t need to take sides
in this debate. Currently we are experimenting both in virtual worlds, and
with real-world robot control. The value added by robotic versus virtual em-
bodiment can thus be explored via experiment rather than theory, and may
reveal nuances that no one currently foresees.

As noted above, we are unconfident of CogPrime ’s generic procedure learn-
ing or pattern recognition algorithms in terms of their capabilities to handle
large amounts of raw sensorimotor data in real time, and so for robotic ap-
plications we advocate hybridizing CogPrime with a separate (but closely
cross-linked) system better customized for this sort of data, in line with our
general hypothesis that Hybridization of one’s integrative neural-symbolic
system with a spatiotemporally hierarchical deep learning system is an ef-
fective way to handle representation and learning of low-level sensorimotor
knowledge. While this general principle doesn’t depend on any particular ap-
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proach, DeSTIN is one example of a deep learning system of this nature that
can be effective in this context

We have not yet done any sophisticated experiments in this regard – our
current experiments using OpenCog to control robots involve cruder inte-
gration of OpenCog with perceptual and motor subsystems, rather than the
tight hybridization described in Chapter 26. Creating such a hybrid system
is “just” a matter of software engineering, but testing such a system may lead
to many surprises!

48.6.6 Goals

Given that we have characterized general intelligence as “the ability to achieve
complex goals in complex environments,” it should be plain that goals play
a central role in our work. However, we have chosen not to create a sepa-
rate subsystem for intentional knowledge, and instead have concluded that
one effective way to handle goals is to represent them declaratively, and al-
locate attention among them economically. An advantage of this approach is
that it automatically provides integration between the goal system and the
declarative and attentional knowledge systems.

Goals and subgoals are related using logical links as interpreted and ma-
nipulated by PLN, and attention is allocated among goals using the STI
dynamics of ECAN, and a specialized variant based on RFS’s (requests for
service). Thus the mechanics of goal management is handled using uncertain
inference and artificial economics, whereas the figuring-out of how to achieve
goals is done integratively, relying heavily on procedural and episodic knowl-
edge as well as PLN and ECAN.

The combination of ECAN and PLN seems to overcome the well-known
shortcomings found with purely neural-net or purely inferential approaches to
goals. Neural net approaches generally have trouble with abstraction, whereas
logical approaches are generally poor at real-time responsiveness and at tun-
ing their details quantitatively based on experience. At least in principle, our
hybrid approach overcomes all these shortcomings; though of current, it has
been tested only in fairly simple cases in the virtual world.

48.7 Fulfilling the “Cognitive Equation”

A key claim based on the notion of the “Cognitive Equation” posited in
Chaotic Logic [Goe94] is that it is important for an intelligent system to
have some way of recognizing large-scale patterns in itself, and then embody-
ing these patterns as new, localized knowledge items in its memory. This
dynamic introduces a feedback dynamic between emergent pattern and sub-
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strate, which is hypothesized to be critical to general intelligence under fea-
sible computational resources. It also ties in nicely with the notion of “glocal
memory” – essentially positing a localization of some global memories, which
naturally will result in the formation of some glocal memories. One of the
key ideas underlying the CogPrime design is that given the use of a neural-
symbolic network for knowledge representation, a graph-mining based “map
formation” heuristic is one good way to do this.

Map formation seeks to fulfill the Cognitive Equation quite directly, prob-
ably more directly than happens in the brain. Rather than relying on other
cognitive processes to implicitly recognize overall system patterns and em-
body them in the system as localized memories (though this implicit recogni-
tion may also happen), the MapFormation MindAgent explicitly carries out
this process. Mostly this is done using fairly crude greedy pattern mining
heuristics, though if really subtle and important patterns seem to be there,
more sophisticated methods like evolutionary pattern mining may also be
invoked.

It seems possible that this sort of explicit approach could be less efficient
than purely implicit approaches; but, there is no evidence for this, and it may
also provided increased efficiency. And in the context of the overall CogPrime
design, the explicit MapFormation approach seems most natural.

48.8 Occam’s Razor

The key role of “Occam’s Razor” or the urge for simplicity in intelligence
has been observed by many before (going back at least to Occam himself,
and probably earlier!), and is fully embraced in the CogPrime design. Our
theoretical analysis of intelligence, presented in Chapter 2 of Part 1 and
elsewhere, portrays intelligence as closely tied to the creation of procedures
that achieve goals in environments in the simplest possible way. And this quest
for simplicity is present in many places throughout the CogPrime design, for
instance

• In MOSES and hillclimbing, where program compactness is an explicit
component of program tree fitness
• In PLN, where the backward and forward chainers explicitly favor shorter

proof chains, and intensional inference explicitly characterizes entities in
terms of their patterns (where patterns are defined as compact charac-
terizations)
• In pattern mining heuristics, which search for compact characterizations

of data
• In the forgetting mechanism, which seeks the smallest set of Atoms that

will allow the regeneration of a larger set of useful Atoms via modestly-
expensive application of cognitive processes
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• Via the encapsulation of procedural and declarative knowledge in simu-
lations, which in many cases provide a vastly compacted form of storing
real-world experiences

Like cognitive synergy and emergent networks, Occam’s Razor is not some-
thing that is implemented in a single place in the CogPrime design, but rather
an overall design principle that underlies nearly every part of the system.

48.8.1 Mind Geometry

What about the three mind-geometric principles outlined in Appendix B:

• syntax-semantics correlation
• cognitive geometrodynamics
• cognitive synergy

?
The key role of syntax-semantics correlation in CogPrime is clear. It plays

an explicit role in MOSES. In PLN, it is critical to inference control, to
the extent that inference control is based on the extraction of patterns from
previous inferences. The syntactic structures are the inference trees, and the
semantic structures are the inferential conclusions produced by the trees.
History-guided inference control assumes that prior similar trees will be a
good starting-point for getting results similar to prior ones – i.e. it assumes a
reasonable degree of syntax-semantics correlation. Also, without a correlation
between the core elements used to generate an episode, and the whole episode,
it would be infeasible to use historical data mining to understand what core
elements to use to generate a new episode – and creation of compact, easily
manipulable seeds for generating episodes would not be feasible.

Cognitive geometrodynamics is about finding the shortest path from the
current state to a goal state, where distance is judged by an appropriate met-
ric including various aspects of computational effort. The ECAN and effort
management frameworks attempt to enforce this, via minimizing the amount
of effort spent by the system in getting to a certain conclusion. MindAgents
operating primarily on one kind of knowledge (e.g. MOSES, PLN) may for a
time seek to follow the shortest paths within their particular corresponding
memory spaces; but then when they operate more interactively and synerget-
ically, it becomes a matter of finding short paths in the composite mindspace
corresponding to the combination of the various memory types.

Finally, cognitive synergy is thoroughly and subtly interwoven throughout
CogPrime . In a way the whole design is about cognitive synergy – it’s critical
for the design’s functionality that it’s important that the cognitive processes
associated with different kinds of memory can appeal to each other for assis-
tance in overcoming bottlenecks in a manner that: a) works in “real time”, i.e.
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on the time scale of the cognitive processes internal processes; b) enables each
cognitive process to act in a manner that is sensitive to the particularities of
each others’ internal representations.

Recapitulating in a bit more depth, recall that another useful way to for-
mulate cognitive synergy as follows. Each of the key learning mechanisms
underlying CogPrime is susceptible to combinatorial explosions. As the prob-
lems they confront become larger and larger, the performance gets worse and
worse at an exponential rate, because the number of combinations of items
that must be considered to solve the problems grows exponentially with the
problem size. This could be viewed as a deficiency of the fundamental design,
but we don’t view it that way. Our view is that combinatorial explosion is
intrinsic to intelligence. The task at hand is to dampen it sufficiently that
realistically large problems can be solved, rather than to eliminate it entirely.
One possible way to dampen it would be to design a single, really clever
learning algorithm - one that was still susceptible to an exponential increase
in computational requirements as problem size increases, but with a surpris-
ingly small exponent. Another approach is the mirrorhouse approach: Design
a bunch of learning algorithms, each focusing on different aspects of the learn-
ing process, and design them so that they each help to dampen each others’
combinatorial explosions. This is the approach taken within CogPrime . The
component algorithms are clever on their own - they are less susceptible to
combinatorial explosion than many competing approaches in the narrow-AI
literature. But the real meat of the design lies in the intended interactions
between the components, manifesting cognitive synergy.

48.9 Cognitive Synergy

To understand more specifically how cognitive synergy works in CogPrime
, in the following subsections we will review some synergies related to the
key components of CogPrime as discussed above. These synergies are abso-
lutely critical to the proposed functionality of the CogPrime system. Without
them, the cognitive mechanisms are not going to work adequately well, but
are rather going to succumb to combinatorial explosions. The other aspects
of CogPrime - the cognitive architecture, the knowledge representation, the
embodiment framework and associated developmental teaching methodology
- are all critical as well, but none of these will yield the critical emergence of
intelligence without cognitive mechanisms that effectively scale. And, in the
absence of cognitive mechanisms that effectively scale on their own, we must
rely on cognitive mechanisms that effectively help each other to scale. The
reasons why we believe these synergies will exist are essentially qualitative:
we have not proved theorems regarded these synergies, and we have observed
them in practice only in simple cases so far. However, we do have some ideas
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regarding how to potentially prove theorems related to these synergies, and
some of these are described in Appendix H.

48.9.1 Synergies that Help Inference

The combinatorial explosion in PLN is obvious: forward and backward chain-
ing inference are both fundamentally explosive processes, reined in only by
pruning heuristics. This means that for nontrivial complex inferences to oc-
cur, one needs really, really clever pruning heuristics. The CogPrime de-
sign combines simple heuristics with pattern mining, MOSES and economic
attention allocation as pruning heuristics. Economic attention allocation as-
signs importance levels to Atoms, which helps guide pruning. Greedy pattern
mining is used to search for patterns in the stored corpus of inference trees,
to see if there are any that can be used as analogies for the current inference.
And MOSES comes in when there is not enough information (from impor-
tance levels or prior inference history) to make a choice, yet exploring a wide
variety of available options is unrealistic. In this case, MOSES tasks may be
launched, pertinently to the leaves at the fringe of the inference tree, under
consideration for expansion. For instance, suppose there is an Atom A at the
fringe of the inference tree, and its importance hasn’t been assessed with high
confidence, but a number of items B are known so that:

MemberLink A B

Then, MOSES may be used to learn various relationships characterizing A,
based on recognizing patterns across the set of B that are suspected to be
members of A. These relationships may then be used to assess the importance
of A more confidently, or perhaps to enable the inference tree to match one
of the patterns identified by pattern mining on the inference tree corpus. For
example, if MOSES figures out that:

SimilarityLink G A

then it may happen that substituting G in place of A in the inference tree,
results in something that pattern mining can identify as being a good (or
poor) direction for inference.

48.10 Synergies that Help MOSES

MOSES’s combinatorial explosion is obvious: the number of possible pro-
grams of size N increases very rapidly with N. The only way to get around
this is to utilize prior knowledge, and as much as possible of it. When solv-
ing a particular problem, the search for new solutions must make use of prior



902 48 Summary of Argument for the CogPrime Approach

candidate solutions evaluated for that problem, and also prior candidate solu-
tions (including successful and unsuccessful ones) evaluated for other related
problems.

But, extrapolation of this kind is in essence a contextual analogical in-
ference problem. In some cases it can be solved via fairly straightforward
pattern mining; but in subtler cases it will require inference of the type pro-
vided by PLN. Also, attention allocation plays a role in figuring out, for a
given problem A, which problems B are likely to have the property that can-
didate solutions for B are useful information when looking for better solutions
for A.

48.10.1 Synergies that Help Attention Allocation

Economic attention allocation, without help from other cognitive processes,
is just a very simple process analogous to “activation spreading” and “Hebbian
learning” in a neural network. The other cognitive processes are the things
that allow it to more sensitively understand the attentional relationships
between different knowledge items (e.g. which sorts of items are often usefully
thought about in the same context, and in which order).

48.10.2 Further Synergies Related to Pattern Mining

Statistical, greedy pattern mining is a simple process, but it nevertheless can
be biased in various ways by other, more subtle processes.

For instance, if one has learned a population of programs via MOSES,
addressing some particular fitness function, then one can study which items
tend to be utilized in the same programs in this population. One may then
direct pattern mining to find patterns combining these items found to be
in the MOSES population. And conversely, relationships denoted by pattern
mining may be used to probabilistically bias the models used within MOSES.

Statistical pattern mining may also help PLN by supplying it with informa-
tion to work on. For instance, conjunctive pattern mining finds conjunctions
of items, which may then be combined with each other using PLN, leading to
the formation of more complex predicates. These conjunctions may also be
fed to MOSES as part of an initial population for solving a relevant problem.

Finally, the main interaction between pattern mining and MOSES/PLN
is that the former may recognize patterns in links created by the latter.
These patterns may then be fed back into MOSES and PLN as data. This
virtuous cycle allows pattern mining and the other, more expensive cognitive
processes to guide each other. Attention allocation also gets into the game,
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by guiding statistical pattern mining and telling it which terms (and which
combinations) to spend more time on.

48.10.3 Synergies Related to Map Formation

The essential synergy regarding map formation is obvious: Maps are formed
based on the HebbianLinks created via PLN and simpler attentional dynam-
ics, which are based on which Atoms are usefully used together, which is based
on the dynamics of the cognitive processes doing the “using.” On the other
hand, once maps are formed and encapsulated, they feed into these other
cognitive processes. This synergy in particular is critical to the emergence of
self and attention.

What has to happen, for map formation to work well, is that the cognitive
processes must utilize encapsulated maps in a way that gives rise overall to
relatively clear clusters in the network of HebbianLinks. This will happen if
the encapsulated maps are not too complex for the system’s other learning
operations to understand. So, there must be useful coordinated attentional
patterns whose corresponding encapsulated-map Atoms are not too compli-
cated. This has to do with the system’s overall parameter settings, but largely
with the settings of the attention allocation component. For instance, this is
closely tied in with the limited size of “attentional focus” (the famous 7 +/-
2 number associated with humans’ and other mammals short term memory
capacity). If only a small number of Atoms are typically very important at a
given point in time, then the maps formed by grouping together all simulta-
neously highly important things will be relatively small predicates, which will
be easily reasoned about - thus keeping the “virtuous cycle” of map formation
and comprehension going effectively.

48.11 Emergent Structures and Dynamics

We have spent much more time in this book on the engineering of cognitive
processes and structures, than on the cognitive processes and structures that
must emerge in an intelligent system for it to display human-level AGI. How-
ever, this focus should not be taken to represent a lack of appreciation for the
importance of emergence. Rather, it represents a practical focus: engineering
is what we must do to create a software system potentially capable of AGI,
and emergence is then what happens inside the engineered AGI to allow it to
achieve intelligence. Emergence must however be taken carefully into account
when deciding what to engineer!

One of the guiding ideas underlying the CogPrime design is that an AGI
system with adequate mechanisms for handling the key types of knowledge
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mentioned above, and the capability to explicitly recognize large-scale pattern
in itself, should upon sustained interaction with an appropriate en-
vironment in pursuit of appropriate goals, emerge a variety of com-
plex structures in its internal knowledge network, including (but not limited
to): a hierarchical network, representing both a spatiotemporal hierarchy and
an approximate “default inheritance” hierarchy, cross-linked; a heterarchical
network of associativity, roughly aligned with the hierarchical network; a self
network which is an approximate micro image of the whole network; and
inter-reflecting networks modeling self and others, reflecting a “mirrorhouse”
design pattern.

The dependence of these posited emergences on the environment and goals
of the AGI system should not be underestimated. For instance, PLN and pat-
tern mining don’t have to lead to a hierarchical structured Atomspace, but
if the AGI system is placed in an environment which it itself hierarchically
structured, then they very likely will do so. And if this environment consists
of hierarchically structured language and culture, then what one has is a sys-
tem of minds with hierarchical networks, each reinforcing the hierarchality of
each others’ networks. Similarly, integrated cognition doesn’t have to lead to
mirrorhouse structures, but integrated cognition about situations involving
other minds studying and predicting and judging each other, is very likely to
do so. What is needed for appropriate emergent structures to arise in a mind,
is mainly that the knowledge representation is sufficiently flexible to allow
these structures, and the cognitive processes are sufficiently intelligent to ob-
serve these structures in the environment and then mirror them internally.
Of course, it also doesn’t hurt if the internal structures and processes are at
least slightly biased toward the origination of the particular high-level emer-
gent structures that are characteristic of the system’s environment/goals; and
this is indeed the case with CogPrime ... biases toward hierarchical, heter-
archical, dual and mirrorhouse networks are woven throughout the system
design, in a thoroughgoing though not extremely systematic way.

48.12 Ethical AGI

Creating an AGI with guaranteeably ethical behavior seems an infeasible
task; but of course, no human is guaranteeably ethical either, and in fact
it seems almost guaranteed that in any moderately large group of humans
there are going to be some with strong propensities for extremely unethical
behaviors, according to any of the standard human ethical codes. One of our
motivations in developing CogPrime has been the belief that an AGI system,
if supplied with a commonsensically ethical goal system and an intentional
component based on rigorous uncertain inference, should be able to reliably
achieve a much higher level of commonsensically ethical behavior than any
human being.
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Our explorations in the detailed design of CogPrime ’s goal system have
done nothing to degrade this belief. While we have not yet developed any
CogPrime system to the point where experimenting with its ethics is mean-
ingful, based on our understanding of the current design it seems to us that

• a typical CogPrime system will display a much more consistent and less
conflicted and confused motivational system than any human being, due
to its explicit orientation toward carrying out actions that (based on its
knowledge) rationally seem most likely to lead to achievement of its goals

• if a CogPrime system is given goals that are consistent with common-
sensical human ethics (say, articulated in natural language), and then
educated in an ethics-friendly environment such as a virtual or phys-
ical school, then it is reasonable to expect the CogPrime system will
ultimately develop an advanced (human adult level or beyond) form of
commmonsensical human ethics

Human ethics is itself wracked with inconsistencies, so one cannot expect a
rationality-based AGI system to precisely mirror the ethics of any particular
human individual or cultural system. But given the degree to which general
intelligence represents adaptation to its environment, and interpretation of
natural language depends on life history and context, it seems very likely to
us that a CogPrime system, if supplied with a human-commonsense-ethics
based goal system and then raised by compassionate and intelligent humans
in a school-type environment, would arrive at its own variant of human-
commonsense-ethics. The AGI system’s ethics would then interact with hu-
man ethical systems in complex ways, leading to ongoing evolution of both
systems and the development of new cultural and ethical patterns. Predicting
the future is difficult even in the absence of radical advanced technologies, but
our intuition is that this path has the potential to lead to beneficial outcomes
for both human and machine intelligence.

48.13 Toward Superhuman General Intelligence

Human-level AGI is a difficult goal, relative to the current state of scientific
understanding and engineering capability, and most of this book has been
focused on our ideas about how to achieve it. However, we also suspect the
CogPrime architecture has the ultimate potential to push beyond the human
level in many ways. As part of this suspicion we advance the claim that once
sufficiently advanced, a CogPrime system should be able to radically self-
improve via a variety of methods, including supercompilation and automated
theorem-proving.

Supercompilation allows procedures to be automatically replaced with
equivalent but massively more time-efficient procedures. This is particularly
valuable in that it allows AI algorithms to learn new procedures without
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much heed to their efficiency, since supercompilation can always improve the
efficiency afterwards. So it is a real boon to automated program learning.

Theorem-proving is difficult for current narrow-AI systems, but for an AGI
system with a deep understanding of the context in which each theorem exists,
it should be much easier than for human mathematicians. So we envision that
ultimately an AGI system will be able to design itself new algorithms and data
structures via proving theorems about which ones will best help it achieve
its goals in which situations, based on mathematical models of itself and its
environment. Once this stage is achieved, it seems that machine intelligence
may begin to vastly outdo human intelligence, leading in directions we cannot
now envision.

While such projections may seem science-fictional, we note that the Cog-
Prime architecture explicitly supports such steps. If human-level AGI is
achieved within the CogPrime framework, it seems quite feasible that pro-
foundly self-modifying behavior could be achieved fairly shortly thereafter.
For instance, one could take a human-level CogPrime system and teach it
computer science and mathematics, so that it fully understood the reasoning
underlying its own design, and the whole mathematics curriculum leading up
the the algorithms underpinning its cognitive processes.

48.13.1 Conclusion

What we have sought to do in these pages is, mainly,

• to articulate a theoretical perspective on general intelligence, according
to which the creation of a human-level AGI doesn’t require anything that
extraordinary, but “merely” an appropriate combination of closely inter-
operating algorithms operating on an appropriate multi-type memory
system, utilized to enable a system in an appropriate body and environ-
ment to figure out how to achieve its given goals

• to describe a software design (CogPrime ) that, according to this some-
what mundane but theoretically quite well grounded vision of general
intelligence, appears likely (according to a combination of rigorous and
heuristic arguments) to be able to lead to human-level AGI using feasible
computational resources

• to describe some of the preliminary lessons we’ve learned via imple-
menting and experimenting with aspects of the CogPrime design, in the
OpenCog system

In this concluding chapter we have focused on the “combination of rigorous
and heuristic arguments” that lead us to consider it likely that CogPrime
has the potential to lead to human-level AGI using feasible computational
resources.



48.13 Toward Superhuman General Intelligence 907

We also wish to stress that not all of our arguments and ideas need to be
100% correct in order for the project to succeed. The quest to create AGI is a
mix of theory, engineering, and scientific and unscientific experimentation. If
the current CogPrime design turns out to have significant shortcomings, yet
still brings us a significant percentage of the way toward human-level AGI,
the results obtained along the path will very likely give us clues about how
to tweak the design to more effectively get the rest of the way there. And the
OpenCog platform is extremely flexible and extensible, rather than being tied
to the particular details of the CogPrime design. While we do have faith that
the CogPrime design as described here has human-level AGI potential, we
are also pleased to have a development strategy and implementation platform
that will allow us to modify and improve the design in whatever suggestions
are made by our ongoing experimentation.

Many great achievements in history have seemed more magical before their
first achievement than afterwards. Powered flight and spaceflight are the most
obvious examples, but there are many others such as mobile telephony, pros-
thetic limbs, electronically deliverable books, robotic factory workers, and
so on. We now even have wireless transmission of power (one can recharge
cellphones via wifi), though not yet as ambitiously as Tesla envisioned. We
very strongly suspect that human-level AGI is in the same category as these
various examples: an exciting and amazing achievement, which however is
achievable via systematic and careful application of fairly mundane princi-
ples. We believe computationally feasible human-level intelligence is both
complicated (involving many interoperating parts, each sophisticated in their
own right) and complex (in the sense of involving many emergent dynamics
and structures whose details are not easily predictable based on the parts of
the system) ... but that neither the complication nor the complexity is an
obstacle to engineering human-level AGI.

Furthermore, while ethical behavior is a complex and subtle matter for
humans or machines, we believe that the production of human-level AGIs
that are not only intelligent but also beneficial to humans and other biological
sentiences, is something that is probably tractable to achieve based on a
combination of careful AGI design and proper AGI education and “parenting.”
One of the motivations underlying our design has been to create an artificial
mind that has broadly humanlike intelligence, yet has a more rational and
self-controllable motivational system than humans, thus ultimately having
the potential for a greater-than-human degree of ethical reliability alongside
its greater-than-human intelligence.

In our view, what is needed to create human-level AGI is not a new sci-
entific breakthrough, nor a miracle, but “merely” a sustained effort over a
number of years by a moderate-sized team of appropriately-trained profes-
sionals, completing the implementation of the design in this book and then
parenting and educating the resulting implemented system. CogPrime is by
no means the only possible path to human-level AGI, but we believe it is
considerably more fully thought-through and fleshed-out than any available
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alternatives. Actually, we would love to see CogPrime and a dozen alterna-
tives simultaneously pursued – this may seem ambitious, but it would cost a
fraction of the money currently spent on other sorts of science or engineer-
ing, let alone the money spent on warfare or decorative luxury items. We
strongly suspect that, in hindsight, our human and digital descendants will
feel amazed that their predecessors allocated so few financial and attentional
resources to the creation of powerful AGI, and consequently took so long to
achieve such a fundamentally straightforward thing.



Chapter 49
Build Me Something I Haven’t Seen: A
CogPrime Thought Experiment

49.1 Introduction

AGI design necessarily leads one into some rather abstract spaces – but being
a human-like intelligence in the everyday world is a pretty concrete thing. If
the CogPrime research program is successful, it will result not just in abstract
ideas and equations, but rather in real AGI robots carrying out tasks in the
world, and AGI agents in virtual worlds and online digital spaces conducting
important business, doing science, entertaining and being entertained by us,
and so forth. With this in mind, in this final chapter we will bring the discus-
sion closer to the concrete and everyday, and pursue a thought experiment
of the form ”How would a completed CogPrime system carry out this specific
task?”

The task we will use for this thought-experiment is one we have used as
a running example now and then in the preceding chapters. We consider the
case of a robotically or virtually embodied CogPrime system, operating in
a preschool type environment, interacting with a human whom it already
knows and given the task of ”Build me something with blocks that I haven’t
seen before.”

This target task is fairly simple, but it is complex enough to involve es-
sentially every one of CogPrime ’s processes, interacting in a unified way.

We will consider the case of a simple interaction based on the above task
where:

1. The human teacher tells the CogPrime agent ”Build me something with
blocks that I haven’t seen before.”

2. After a few false starts, the agent builds something it thinks is appropriate
and says ”Do you like it?”

3. The human teacher says ”It’s beautiful. What is it?”
4. The agent says ”It’s a car man” [and indeed, the construct has 4 wheels

and a chassis vaguely like a car, but also a torso, arms and head vaguely
like a person]

909
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Of course, a complex system like CogPrime could carry out an interaction
like this internally in many different ways, and what is roughly described here
is just one among many possibilities.

First we will enumerate a number of CogPrime processes and explain some
ways that each one may help CogPrime carry out the target task. Then we
will give a more evocative narrative, conveying the dynamics that would occur
in CogPrime while carrying out the target task, and mentioning how each of
the enumerated cognitive processes as it arises in the narrative.

49.2 Roles of Selected Cognitive Processes

Now we review a number of the more interesting CogPrime cognitive pro-
cesses mentioned in previous chapters of the book, for each one indicating
one or more of the roles it might play in helping a CogPrime system carry
out the target task. Note that this list is incomplete in many senses, e.g. it
doesn’t list all the cognitive processes, nor all the roles played by the ones
listed. The purpose is to give an evocative sense of the roles played by the
different parts of the design in carrying out the task.

• Chapter 19 (OpenCog Framework)

– Freezing/defrosting.
· When the agent builds a structure from blocks and decides it’s
not good enough to show off to the teacher, what does it do with
the detailed ideas and thought process underlying the structure it
built? If it doesn’t like the structure so much, it may just leave this
to the generic forgetting process. But if it likes the structure a lot,
it may want to increase the VLTI (Very Long Term Importance)
of the Atoms related to the structure in question, to be sure that
these are stored on disk or other long-term storage, even after
they’re deemed sufficiently irrelevant to be pushed out of RAM
by the forgetting mechanism.
· When given the target task, the agent may decide to revive
from disk the mind-states it went through when building crowd-
pleasing structures from blocks before, so as to provide it with
guidance.

• Chapter 22 (Emotion, Motivation, Attention and Control)

– Cognitive cycle.
· While building with blocks, the agent’s cognitive cycle will be
dominated by perceiving, acting on, and thinking about the
blocks it is building with.
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· When interacting with the teacher, then interaction-relevant lin-
guistic, perceptual and gestural processes will also enter into the
cognitive cycle.

– Emotion. The agent’s emotions will fluctuate naturally as it carries
out the task.
· If it has a goal of pleasing the teacher, then it will experience
happiness as its expectation of pleasing the teacher increases.
· If it has a goal of experiencing novelty, then it will experience
happiness as it creates structures that are novel in its experience.
· If it has a goal of learning, then it will experience happiness as it
learns new things about blocks construction.
· On the other hand, it will experience unhappiness as its experi-
enced or predicted satisfaction of these goals decreases.

– Action selection
· In dialoguing with the teacher, action selection will select one or
more DialogueController schema to control the conversational in-
teraction (based on which DC schema have proved most effective
in prior similar situations.
· When the agent wants to know the teacher’s opinion of its
construct, what is happening internally is that the ”please
teacher” Goal Atom gets a link of the conceptual form (Im-
plication ”find out teacher’s opinion of my current construct”
”please teacher”). This link may be created by PLN infer-
ence, probably largely by analogy to previously encountered
similar situations. Then, GoalImportance is spread from the
”please teacher” Goal Atom to the ”find out teacher’s opinion
of my current construct” Atom (via the mechanism of sending
an RFS package to the latter Atom). More inference causes
a link (Implication ”ask the teacher for their opinion of my
current construct” ”find out teacher’s opinion of my current
construct”) to be formed, and the ”ask the teacher for their
opinion of my current construct” Atom to get GoalImportance
also. Then PredicateSchematization causes the predicate ”ask
the teacher for their opinion of my current construct” to get
turned into an actionable schema, which gets GoalImpor-
tance, and which gets pushed into the ActiveSchemaPool via
Goal-driven action selection. Once the schema version of ”ask
the teacher for their opinion of my current construct” is in
the ActiveSchemaPool, it then invokes natural language gen-
eration Tasks, which lead to the formulation of an English
sentence such as ”Do you like it?”
· When the teacher asks ”It’s beautiful. What is it?”, then the
NL comprehension MindAgent identifies this as a question,
and the ”please teacher” Goal Atom gets a link of the concep-
tual form (Implication ”answer the question the teacher just
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asked” ”please teacher”). This follows simply from the knowl-
edge ( Implication (”teacher has just asked a question” AND
”I answer the teacher’s question”) (”please teacher”)), or else
from more complex knowledge refining this Implication. From
this point, things proceed much as in the case ”Do you like
it?” described just above.

· Consider a schema such as ”pick up a red cube and place it on top
of the long red block currently at the top of the structure” (let’s
call this P ). Once P is placed in the ActiveSchemaPool, then
it runs and generates more specific procedures, such as the ones
needed to find a red cube, to move the agent’s arm toward the red
cube and grasp it, etc. But the execution of these specific low-level
procedures is done via the ExecutionManager, analogously to the
execution of the specifics of generating a natural language sen-
tence from a collection of semantic relationships. Loosely speak-
ing, reaching for the red cube and turning simple relationships
into a simple sentences, are considered as ”automated processes”
not requiring holistic engagement of the agent’s mind. What the
generic, more holistic Action Selection mechanism does in the
present context is to figure out to put P in the ActiveSchemaPool
in the first place. This occurs because of a chain such as: P predic-
tively implies (with a certain probabilistic weight) ”completion of
the car-man structure”, which in turn predictively implies ”com-
pletion of a structure that is novel to the teacher,” which in turn
predictively implies ”please the teacher,” which in turn implies
”please others,” which is assumed an Ubergoal (a top-level sys-
tem goal).

– Goal Atoms. As the above items make clear, the scenario in question
requires the initial Goal Atoms to be specialized, via the creation of
more and more particular subgoals suiting the situation at hand.

– Context Atoms.
· Knowledge of the context the agent is in can help it disambiguate
language it hears, e.g. knowing the context is blocks-building
helps it understand which sense of the word ”blocks” is meant.
· On the other hand, if the context is that the teacher is in a bad
mood, then the agent might know via experience that in this
context, the strength of (Implication ”ask the teacher for their
opinion of my current construct” ”find out teacher’s opinion of
my current construct”) is lower than in other contexts.

– Context formation.
· A context like blocks-building or ”teacher in a bad mood” may be
formed by clustering over multiple experience-sets, i.e. forming
Atoms that refer to spatiotemporally grouped sets of percept-
s/concepts/actions, and grouping together similar Atoms of this
nature into clusters.
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· The Atom referring to the cluster of experience-sets involving
blocks-building will then survive as an Atom if it gets involved in
relationships that are important or have surprising truth values. If
many relationships have significantly different truth-value inside
the blocks-building context than outside it, this means it’s likely
that the blocks-building ConceptNode will remain as an Atom
with reasonably high LTI, so it can be used as a context in future.

– Time-dependence of goals. Many of the agent’s goals in this sce-
nario have different importances over different time scales. For in-
stance ”please the teacher” is important on multiple time-scales: the
agent wants to please the teacher in the near term but also in the
longer term. But a goal like ”answer the question the teacher just
asked” has an intrinsic time-scale to it; if it’s not fulfilled fairly rapidly
then its importance goes away.

• Chapter 23 (Attention allocation)

– ShortTermImportance versus LongTermImportance. While
conversing, the concepts and immediately involved in the conversa-
tion (including the Atoms describing the agents in the conversation)
have very high STI. While building, Atoms representing to the blocks
and related ideas about the structures being built (e.g. images of cars
and people perceived or imagined in the past) have very high STI.
But the reason these Atoms are in RAM prior to having their STI
boosted due to their involvement in the agent’s activities, is because
they had their LTI boosted at some point in the past. And after
these Atoms leave the AttentionalFocus and their STI reduces, they
will have boosted LTI and hence likely remain in RAM for a long
while, to be involved in ”background thought”, and in case they’re
useful in the AttentionalFocus again.

– HebbianLink formation As a single example, the car-man has both
wheels and arms, so now a Hebbian association between wheels and
arms will exist in the agent’s memory, to potentially pop up again
and guide future thinking. The very idea of a car-man likely emerged
partly due to previously formed HebbianLinks – because people were
often seen sitting in cars, the association between person and car
existed, which made the car concept and the human concept natural
candidates for blending.

– Data mining the System Activity Table. The HebbianLinks
mentioned above may have been formed via mining the SystemAc-
tivityTable

– ECAN based associative memory. When the agent thinks about
making a car, this spreads importance to various Atoms related to
the car concept, and one thing this does is lead to the emergence
of the car attractor into the AttentionalFocus. The different aspects
of a car are represented by heavily interlinked Atoms, so that when
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some of them become important, there’s a strong tendency for the
others to also become important – and for ”car” to then emerge as an
attractor of importance dynamics.

– Schema credit assignment.
· Suppose the agent has a subgoal of placing a certain blue block on
top of a certain red block. It may use a particular motor schema
for carrying out this action – involving, for instance, holding the
blue block above the red block and then gradually lowering it. If
this schema results in success (rather than in, say, knocking down
the red block), then it should get rewarded via having its STI and
LTI boosted and also having the strength of the link between it
and the subgoal increased.
· Next, suppose that a certain cognitive schema (say, the schema of
running multiple related simulations and averaging the results, to
estimate the success probability of a motor procedure) was used
to arrive at the motor schema in question. Then this cognitive
schema may get passed some importance from the motor schema,
and it will get the strength of its link to the goal increased. In this
way credit passes backwards from the goal to the various schema
directly or indirectly involved in fulfilling it.

– Forgetting. If the agent builds many structures from blocks during
its lifespan, it will accumulate a large amount of perceptual memory.

• Chapter 24 (Goal and Action Selection). Much of the use of the material
in this chapter was covered above in the bullet point for Chapter 22, but
a few more notes are:

– Transfer of RFS between goals. Above it was noted that the
link (Implication ”ask the teacher for their opinion of my current
construct” ”find out teacher’s opinion of my current construct”) might
be formed and used as a channel for GoalImportance spreading.

– Schema Activation. Supposing the agent is building a man-car, it
may have car-building schema and man-building schema in its Ac-
tiveSchemaPool at the same time, and it may enact both of them in
an interleaved manner. But if each tend to require two hands for their
real-time enaction, then schema activation will have to pass back and
forth between the two of them, so that at any one time, one is active
whereas the other one is sitting in the ActiveSchemaPool waiting to
get activated.

– Goal Based Schema Learning. To take a fairly low-level example,
suppose the agent has the (sub)goal of making an arm for a blocks-
based person (or man-car), given the presence of a blocks-based torso.
Suppose it finds a long block that seems suitable to be an arm. It then
has the problem of figuring out how to attach the arm to the body. It
may try out several procedures in its internal simulation world, until
it finds one that works: hold the arm in the right position while one
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end of it rests on top of some block that is part of the torso, then
place some other block on top of that end, then slightly release the
arm and see if it falls. If it doesn’t fall, leave it. If it seems about
to fall, then place something heavier atop it, or shove it further in
toward the center of the torso. The procedure learning process could
be MOSES here, or it could be PLN.

• Chapter 25 (Procedure Evaluation)

– Inference Based Procedure Evaluation. A procedure for man-
building such as ”first put up feet, then put up legs, then put up
torso, then put up arms and head” may be synthesized from logi-
cal knowledge (via predicate schematization) but without filling in
the details of how to carry out the individual steps, such as ”put up
legs.” If a procedure with abstract (ungrounded) schema like PutUp-
Torso is chosen for execution and placed into the ActiveSchemaPool,
then in the course of execution, inferential procedure evaluation
must be used to figure out how to make the abstract schema ac-
tionable. The GoalDrivenActionSelection MindAgent must make the
choice whether to put a not-fully-grounded schema into the Ac-
tiveSchemaPool, rather than grounding it first and then making it
active; this is the sort of choice that may be made effectively via
learned cognitive schema.

• Chapter 26 (Perception and Action)

– ExperienceDB. No person remembers every blocks structure they
ever saw or built, except maybe some autists. But a CogPrime can
store all this information fairly easily, in its ExperienceDB, even if
it doesn’t keep it all in RAM in its AtomSpace. It can also store
everything anyone ever said about blocks structures in its vicinity.

– Perceptual Pattern Mining
– Object Recognition. Recognizing structures made of blocks as cars,

people, houses, etc. requires fairly abstract object recognition, involv-
ing identifying the key shapes and features involved in an object-type,
rather than just going by simple visual similarity.

– Hierarchical Perception Networks. If the room is well-lit, it’s
easy to visually identify individual blocks within a blocks structure.
If the room is darker, then more top-down processing may be needed
– identifying the overall shape of the blocks structure may guide one
in making out the individual blocks.

– Hierarchical Action Networks. Top-down action processing tells
the agent that, if it wants to pick up a block, it should move its arm
in such a way as to get its hand near the block, and then move its
hand. But if it’s still learning how to do that sort of motion, more
likely it will do this, but then start moving its its hand and find that
it’s hard to get a grip on the block – and then have to go back and
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move its arm a little differently. Iterating between broader arm/hand
movements and more fine-grained hand/finger movements is an in-
stance of information iteratively passing up and down an hierarchical
action network.

– Coupling of Perception and Action Networks. Picking up a
block in the dark is a perfect example of rich coupling of perception
and action networks. Feeling the block with the fingers helps with
identifying blocks that can’t be clearly seen.

• Chapter 30 (Procedure Learning)

– Specification Based Procedure Learning.
· Suppose the agent has never seen a horse, but the teacher builds
a number of blocks structures and calls them horses, and draws a
number of pictures and calls them horses. This may cause a proce-
dure learning problem to be spawned, where the fitness function
is accuracy at distinguishing horses from non-horses.
· Learning to pick up a block is specification-based procedure learn-
ing, where the specification is to pick up the block and grip it and
move it without knocking down the other stuff near the block.

– Representation Building.
· In the midst of building a procedure to recognize horses, MOSES
would experimentally vary program nodes recognizing visual fea-
tures into other program nodes recognizing other visual features
· In the midst of building a procedure to pick up blocks, MOSES
would experimentally vary program nodes representing physical
movements into other nodes representing physical movements
· In both of these cases, MOSES would also carry out the standard
experimental variations of mathematical and control operators
according to its standard representation-building framework

• Chapter 31 (Imitative, Reinforcement and Corrective Learning)

– Reinforcement Learning.
· Motor procedures for placing blocks (in simulations or reality) will
get rewarded if they don’t result in the blocks structure falling
down, punished otherwise.
· Procedures leading to the teacher being pleased, in internal sim-
ulations (or in repeated trials of scenarios like the one under con-
sideration), will get rewarded; procedures leading to the teacher
being displeased will get punished.

– Imitation Learning. If the agent has seen others build with blocks
before, it may summon these memories and then imitate the actions
it has seen others take.

– Corrective Learning. This would occur if the teacher intervened in
the agent’s block-building and guided him physically – e.g. steadying
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his shaky arm to prevent him from knocking the blocks structure
over.

• Chapter 32 (Hillclimbing)

– Complexity Penalty. In learning procedures for manipulating blocks,
the complexity penalty will militate against procedures that contain
extraneous steps.

• Chapter 33 (Probabilistic Evolutionary Procedure Learning)

– Supplying Evolutionary Learning with Long-Term Memory.
Suppose the agent has previously built people from clay, but never
from blocks. It may then have learned a ”classification model” pre-
dicting which clay people will look appealing to humans, and which
won’t. It may then transfer this knowledge, using PLN, to form a clas-
sification model predicting which blocks-people will look appealing to
humans, and which won’t.

– Fitness Function Estimation via Integrative Intelligence. To
estimate the fitness of a procedure for, say, putting an arm on a
blocks-built human, the agent may try out the procedure in the in-
ternal simulation world; or it may use PLN inference to reason by
analogy to prior physical situations it’s observed. These allow fitness
to be estimated without actually trying out the procedure in the en-
vironment.

• Chapter 34 (Probabilistic Logic Networks)

– Deduction. This is a tall skinny structure; tall skinny structures fall
down easily; thus this structure may fall down easily.

– Induction. This teacher is talkative; this teacher is friendly; therefore
the talkative are generally friendly.

– Abduction. This structure has a head and arms and torso; a person
has a head and arms and torso; therefore this structure is a person.

– PLN forward chaining. What properties might a car-man have,
based on inference from the properties of cars and the properties of
men?

– PLN backward chaining.
· An inference target might be: Find X so that X looks something
like a wheel and can be attached to this blocks-chassis, and I can
find four fairly similar copies.
· Or: Find the truth value of the proposition that this structure looks
like a car.

– Indefinite truth values. Consider the deductive inference ”This is a
tall skinny structure; tall skinny structures fall down easily; thus this
structure may fall down easily.” In this case, the confidence of the sec-
ond premise may be greater than the confidence of the first premise,
which may result in an intermediate confidence for the conclusion,
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according to the propagation of indefinite probabilities through the
PLN deduction rule.

– Intensional inference. Is the blocks-structure a person? According
to the definition of intensional inheritance, it shares many informative
properties with people (e.g. having arms, torso and head), so to a
significant extent, it is a person.

– Confidence decay. The agent’s confidence in propositions regard-
ing building things with blocks should remain nearly constant. The
agent’s confidence in propositions regarding the teacher’s taste should
decay more rapidly. This should occur because the agent should ob-
serve that, in general, propositions regarding physical object manipu-
lation tend to retain fairly constant truth value, whereas propositions
regarding human tastes tend to have more rapidly decaying truth
value.

• Chapter 35 (Spatiotemporal Inference)

– Temporal reasoning. Suppose, after the teacher asks ”What is it?”,
the agent needs to think a while to figure out a good answer. But
maybe the agent knows that it’s rude to pause too long before an-
swering something to a direct question. Temporal reasoning helps
figure out ”how long is too long” to wait before answering.

– Spatial reasoning. Suppose the agent puts shoes on the wheels of
the car. This is a joke relying on the understanding that wheels hold
a car up, whereas feet hold a person up, and the structure is a car-
man. But it also relies on the spatial inferences that: the car’s wheels
are in the right position for the man’s feet (below the torso); and, the
wheels are below the car’s chassis just like a person’s feet are below
its torso.

• Chapter 36 (Inference Control)

– Evaluator Choice as a Bandit Problem. In doing inference re-
garding how to make a suitably humanlike arm for the blocks-man,
there may be a choice between multiple inference pathways, perhaps
one that relies on analogy to other situations building arms, versus
one that relies on more general reasoning about lengths and weights
of blocks. The choice between these two pathways will be made ran-
domly with a certain probabilistic bias assigned to each one, via prior
experience.

– Inference Pattern Mining. The probabilities used in choosing
which inference path to take, are determined in part by prior experi-
ence – e.g. maybe it’s the case that in prior situations of building com-
plex blocks structures, analogy has proved a better guide than naive
physics, thus the prior probability of the analogy inference pathway
will be nudged up.
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– PLN and Bayes Nets. What’s the probability that the blocks-
man’s hat will fall off if the man-car is pushed a little bit to simulate
driving? This question could be resolved in many ways (e.g. by in-
ternal simulation), but one possibility is inference. If this is resolved
by inference, it’s the sort of conditional probability calculation that
could potentially be done faster if a lot of the probabilistic knowledge
from the AtomSpace were summarized in a Bayes Net. Updating the
Bayes net structure can be slow, so this is probably not appropriate
for knowledge that is rapidly shifting; but knowledge about proper-
ties of blocks structures may be fairly persistent after the agent has
gained a fair bit of knowledge by playing with blocks a lot.

• Chapter 37 (Pattern Mining)

– Greedy Pattern Mining.
· ”Push a tall structure of blocks and it tends to fall down” is the
sort of repetitive pattern that could easily be extracted from a
historical record of perceptions and (the agent’s and others’) ac-
tions via simple greedy pattern mining algorithm.
· If there is a block that is shaped like a baby’s rattle, with a
long slender handle and then a circular shape at the end, then
greedy pattern mining may be helpful due to having recognized
the pattern that structures like this are sometimes rattles – and
also that structures like this are often stuck together, with the
handle part connected sturdily to the circular part.

– Evolutionary Pattern Mining ”Push a tall structure of blocks
with a wide base and a gradual narrowing toward the top and it may
not fall too badly” is a more complex pattern that may not be found
via greedy mining, unless the agent has dealt with a lot of pyramids.
But

• Chapter 38 (Concept Formation)

– Formal Concept Analysis. Suppose there are many long, slender
blocks of different colors and different shapes (some cylindrical, some
purely rectangular for example). Learning this sort of concept based
on common features is exactly what FCA is good at (and when the
features are defined fuzzily or probabilistically, it’s exactly what un-
certain FCA is good at). Learning the property of ”slender” itself is
another example of something uncertain FCA is good at – it would
learn this if there were many concepts that preferentially involved
slender things (even though formed on the basis of concepts other
than slenderness)

– Conceptual Blending . The concept of a ”car-man” or ”man-car”
is an obvious instance of conceptual blending. The agents know that
building a man won’t surprise the teacher, and nor will building a
car ... but both ”man” and ”car” may pop to the forefront of its mind
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(i.e. get a briefly high STI) when it thinks about what to build. But
since it knows it has to do something new or surprising, there may be
a cognitive schema that boosts the amount of funds to the Concept-
Blending MindAgent, causing it to be extra-active. In any event, the
ConceptBlending agent seeks to find ways to combine important con-
cepts; and then PLN explores these to see which ones may be able
to achieve the given goal of surprising the teacher (which includes
subgoals such as actually being buildable).

• Chapter 39 (Dimensional Embedding)

– Dimensional Embedding . When the agent needs to search its
memory for a previously seen blocks structure similar to the currently
observed one – or for a previously articulated thought similar to the
one it’s currently trying to articulate – then it needs to to a search
through its large memory for ”an entity similar to X” (where X is a
structure or a thought). This kind of search can be quite computa-
tionally difficult – but if the entities in question have been projected
into an embedding space, then it’s quite rapid. (The cost is shifted to
the continual maintenance of the embedding space, and its periodic
updating; and there is some error incurred in the projection, but in
many cases this error is not a show-stopper.)

– Embedding Based Inference Control . Rapid search for an-
swers to similarity or inheritance queries can be key for guiding in-
ference in appropriate directions; for instance reasoning about how
to build a structure with certain properties, can benefit greatly from
rapid search for previously-encountered substructures currently struc-
turally or functionally similar to the substructures one desires to
build.

• Chapter 40 (Simulation and Episodic Memory)

– Fitness Estimation via Simulation . One way to estimate whether
a certain blocks structure is likely to fall down or not, is to build it
in one’s ”mind’s eye” and see if the physics engine in one’s mind’s-eye
causes it to fall down. This is something that in many cases will work
better for CogPrime than for humans, because CogPrime has a more
mathematically accurate physics engine than the human mind does;
however, in cases that rely heavily on naive physics rather than, say,
direct applications of Newton’s Laws, then CogPrime ’s simulation
engine may underperform the typical human mind.

– Concept Formation via Simulation . Objects may be joined into
categories using uncertain FCA, based on features that they are iden-
tified to have via ”simulation experiments” rather than physical world
observations. For instance, it may be observed that pyramid-shaped
structures fall less easily than pencil-shaped tower structures – and
the concepts corresponding to these two categories may be formed
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– from experiments run in the internal simulation world, perhaps
inspired by isolated observations in the physical world.

– Episodic Memory . Previous situations in which the agent has seen
similar structures built, or been given similar problems to solve, may
be brought to mind as "episodic movies" playing in the agent’s mem-
ory. By watching what happens in these replayed episodic movies,
the agent may learn new declarative or procedural knowledge about
what to do. For example, maybe there was some situation in the
agent’s past where it saw someone asked to do something surprising,
and that someone created something funny. This might (via a sim-
ple PLN step) bias the agent to create something now, which it has
reason to suspect will cause others to laugh.

• Chapter 41 (Integrative Procedure Learning)

– Concept-Driven Procedure Learning . Learning the concept of
”horse”, as discussed above in the context of Chapter 30, is an example
of this

– Predicate Schematization . The synthesis of a schema for man-
building, as discussed above in the context of Chapter 25 , is an
example of this

• Chapter 42 (Map Formation)

– Map Formation . The notion of a car involves many aspects: the
physical appearance of cars, the way people get in and out of cars,
the ways cars drive, the noises they make, etc. All these aspects are
represented by Atoms that are part of the car map, and are richly
interconnected via HebbianLinks as well as other links.

– Map Encapsulation . The car map forms implicitly via the interac-
tion of multiple cognitive dynamics, especially ECAN. But then the
MapEncapsulation MindAgent may do its pattern mining and recog-
nize this map explicitly, and form a PredicateNode encapsulating it.
This PredicateNode may then be used in PLN inference, conceptual
blending, and so forth (e.g. helping with the formation of a concept
like car-man via blending).

• Chapter 44 (Natural Language Comprehension)

– Experience Based Disambiguation . The particular dialogue in-
volved in the present example doesn’t require any nontrivial word
sense disambiguation. But it does require parse selection, and seman-
tic interpretation selection:
· In ”Build me something with blocks,” the agent has no trouble
understanding that ”blocks” means ”toy building blocks” rather
than, say, ”city blocks”, based on many possible mechanisms, but
most simply importance spreading
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· ”Build me something with blocks” has at least three interpreta-
tions: the building could be carried out using blocks with a tool;
or the thing built could be presented alongside blocks; or the
thing built could be composed of blocks. The latter is the most
commonsensical interpretation for most humans, but that is be-
cause we have heard the phrase ”building with blocks” used in a
similarly grounded way before (as well as other similar phrases
such as ”playing with Legos”, etc., whose meaning helps militate
toward the right interpretation via PLN inference and importance
spreading). So here we have a simple example of experience-based
disambiguation, where experiences at various distances of asso-
ciation from the current one are used to help select the correct
parse.
· A subtler form of semantic disambiguation is involved in inter-
preting the clause ”that I haven’t seen before.” A literal-minded
interpretation would say that this requirement is fulfilled by
any blocks construction that’s not precisely identical to one the
teacher has seen before. But of course, any sensible human knows
this is an idiomatic clause that means ”significantly different from
anything I’ve seen before.” This could be determined by the Cog-
Prime agent if it has heard the idiomatic clause before, or if it’s
heard a similar idiomatic phrase such as ”something I’ve never
done before.” Or, even if the agent has never heard such an idiom
before, it could potentially figure out the intended meaning sim-
ply because the literal-minded interpretation would be a pointless
thing for the teacher to say. So if it knows the teacher usually
doesn’t add useless modificatory clauses onto their statements,
then potentially the agent could guess the correct meaning of the
phrase.

• Chapter 45 (Language Generation)

– Experience-Based Knowledge Selection for Language Gen-
eration . When the teacher asks ”What is it?”, the agent must decide
what sort of answer to give. Within the confines of the QuestionAn-
swering DialogueController, the agent could answer ”A structure of
blocks”, or ”A part of the physical world”, or ”A thing”, or ”Mine.”
(Or, if it were running another DC, it could answer more broadly,
e.g. ”None of your business,” etc.). However, the QA DC tells it that,
in the present context, the most likely desired answer is one that the
teacher doesn’t already know; and the most important property of
the structure that the teacher doesn’t obviously already know is the
fact that it depicts a ”car man.” Also, memory of prior conversations
may bring up statements like ”It’s a horse” in reference to a horse
built of blocks, or a drawing of a horse, etc.
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– Experience-Based Guidance of Word and Syntax Choice .
The choice of phrase ”car man” requires some choices to be made.
The agent could just as well say ”It’s a man with a car for feet” or
”It’s a car with a human upper body and head” or ”It’s a car centaur,”
etc. A bias toward simple expressions would lead to ”car man.” If the
teacher were known to prefer complex expressions, then the agent
might be biased toward expressing the idea in a different way.

• Chapter 47 (Natural Language Dialogue)

– Adaptation of Dialogue Controllers . The QuestionAsking and
QuestionAnswering DialogueControllers both get reinforcement from
this interaction, for the specific internal rules that led to the given
statements being made.

49.3 A Semi-Narrative Treatment

Now we describe how a CogPrime system might carry out the specified task
in a semi-narrative form, weaving in the material from the previous section as
we go along, and making some more basic points as well. The semi-narrative
covers most but not all of the bullet points from the previous section, but
with some of the technical details removed; and it introduces a handful of
new examples not given in the bullet points.

The reason this is called a semi-narrative rather than a narrative is that
there is no particular linear order to the processes occurring in each phase
of the situation described here. CogPrime ’s internal cognitive processes do
not occur in a linear narrative; rather, what we have is a complex network of
interlocking events. But still, describing some of these events concretely in a
manner correlated with the different stages of a simple interaction, may have
some expository value.

The human teacher tells the CogPrime agent ”Build me some-
thing with blocks that I haven’t seen before.”

Upon hearing this, the agent’s cognitive cycles are dominated by language
processing and retrieval from episodic and sensory memory.

The agent may decide to revive from disk the mind-states it went through
when building human-pleasing structures from blocks before, so as to provide
it with guidance

It will likely experience the emotion of happiness, because it anticipates
the pleasure of getting rewarded for the task in future.

The ubergoal of pleasing the teacher gets active (gets funded significantly
with STI currency), as there it becomes apparent there are fairly clear ways
of fulfilling that goal (via the subgoal S of building blocks structures that
will get positive response from the teacher). Other ubergoals like gaining
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knowledge are not funded as much with STI currency just now, as they are
not immediately relevant.

Action selection, based on ImplicationLinks derived via PLN (between
various possible activities and the subgoal S) causes it to start experimentally
building some blocks structures. Past experience with building (turned into
ImplicationLinks via mining the SystemActivityTable) tells it that it may
want to build a little bit in its internal simulation world before building in the
external world, causing STI currently to flow to the simulation MindAgent.

The Atom corresponding to the context blocks-building gets high STI
and is pushed into the AttentionalFocus, making it likely that many future
inferences will occur in this context. Other Atoms related to this one also get
high STI (the ones in the blocks-building map, and others that are especially
related to blocks-building in this particular context).

After a few false starts, the agent builds something it thinks is
appropriate and says ”Do you like it?”

Now that the agent has decided what to do to fulfill its well-funded goal,
its cognitive cycles are dominated by action, perception and related memory
access and concept creation.

An obvious subgoal is spawned: build a new structure now, and make this
particular structure under construction appealing and novel to the teacher.
This subgoal has a shorter time scale than the high level goal. The subgoal
gets some currency from its supergoal using the mechanism of RFS spreading.

Action selection must tell it when to continue building the same structure
and when to try a new one, as well as more micro level choices

Atoms related to the currently pursued blocks structure get high STI.
After a failed structure (a Òfalse startÓ) is disassembled, the correspond-

ing Atoms lose STI dramatically (leaving AF) but may still have significant
LTI, so they can be recalled later as appropriate. They may also have VLTI
so they will be saved to disk later on if other things push them out of RAM
due to getting higher LTI.

Meanwhile everything that’s experienced from the external world goes into
the ExperienceDB.

Atoms representing different parts of aspects of the same blocks structure
will get Hebbian links between them, which will guide future reasoning and
importance spreading.

Importance spreading helps the system go from an idea for something to
build (say, a rock or a car) to the specific plans and ideas about how to build
it, via increasing the STI of the Atoms that will be involved in these plans
and ideas.

If something apparently good is done in building a blocks structure, then
other processes and actions that helped lead to or support that good thing,
get passed some STI from the Atoms representing the good thing, and also
may get linked to the Goal Atom representing ÒgoodÓ in this context. This
leads to reinforcement learning.
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The agent may play with building structures and then seeing what they
most look like, thus exercising abstract object recognition (that uses pro-
cedures learned by MOSES or hillclimbing, or uncertain relations learned
by inference, to guess what object category a given observed collection of
percepts most likely falls into).

Since the agent has been asked to come up with something surprising, it
knows it should probably try to formulate some new concepts. Because it
has learned in the past, via SystemActivityTable mining, that often newly
formed concepts are surprising to others. So, more STI currency is given to
concept formation MindAgents, such as the ConceptualBlending Mind Agent
(which, along with a lot of stuff that gets thrown out or stored for later use,
comes up with Òcar-manÓ).

When the notion of ÒcarÓ is brought to mind, the distributed map of
nodes corresponding to ÒcarÓ get high STI. When car-man is formed, it
is reasoned about (producing new Atoms), but it also serves as a nexus of
importance-spreading, causing the creation of a distributed car-man map.

If the goal of making an arm for a man-car occurs, then goal-driven schema
learning may be done to learn a procedure for arm-making (where the actual
learning is done by MOSES or hill-climbing).

If the agent is building a man-car, it may have man-building and car-
building schema in its ActiveSchemaPool at the same time, and SchemaAc-
tivation may spread back and forth between the different modules of these
two schema.

If the agent wants to build a horse, but has never seen a horse made of
blocks (only various pictures and movies of horses), it may uses MOSES or
hillclimbing internally to solve the problem of creating a horse-recognizer or
a horse-generator which embodies appropriate abstract properties of horses.
Here as in all cases of procedure learning, a complexity penalty rewards sim-
pler programs, from among all programs that approximately fulfill the goals
of the learning process.

If a procedure being executed has some abstract parts, then these may be
executed by inferential procedure evaluation (which makes the abstract parts
concrete on the fly in the course of execution).

To guess the fitness of a procedure for doing something (say, building an
arm or recognizing a horse), inference or simulation may be used, as well as
direct evaluation in the world.

Deductive, inductive and abductive PLN inference may be used in figuring
out what a blocks structure will look or act like like before building it (it’s
tall and thin so it may fall down; it won’t be bilaterally symmetric so it won’t
look much like a person; etc.)

Backward-chaining inference control will help figure out how to assemble
something matching a certain specification Ð e.g. how to build a chassis
based on knowledge of what a chassis looks like. Forward chaining inference
(critically including intensional relationships) will be used to estimate the
properties that the teacher will perceive a given specific structure to have.



926 49 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment

Spatial and temporal algebra will be used extensively in this reasoning, within
the PLN framework.

Coordinating different parts of the body Ð say an arm and a hand Ð will
involve importance spreading (both up and down) within the hierarchical
action network, and from this network to the hierarchical perception network
and the heterarchical cognitive network.

In looking up Atoms in the AtomSpace, some have truth values whose con-
fidences have decayed significantly (e.g. those regarding the teacher’s tastes),
whereas others have confidences that have hardly decayed at all (e.g. those
regarding general physical properties of blocks).

Finding previous blocks structures similar to the current one (useful for
guiding building by analogy to past experience) may be done rapidly by
searching the system’s internal dimensional-embedding space.

As the building process occurs, patterns mined via past experience (tall
things often fall down) are used within various cognitive processes (reason-
ing, procedure learning, concept creation, etc.); and new pattern mining also
occurs based on the new observations made as different structures are build
and experimented with and destroyed.

Simulation of teacher reactions, based on inference from prior examples,
helps with the evaluation of possible structures, and also of procedures for
creating structures.

As the agent does all this, it experiences the emotion of curiosity (likely
among other emotions), because as it builds each new structure it has ques-
tions about what it will look like and how the teacher would react to it.

The human teacher says ”It’s beautiful. What is it?” The agent
says ”It’s a car man”

Now that the building is done and the teacher says something, the agent’s
cognitive cycles are dominated by language understanding and generation.
The Atom representing the context of talking to the teacher gets high STI,
and is used as the context for many ensuing inferences.

Comprehension of “it” uses anaphor resolution based on a combination of
ECAN and PLN inference based on a combination of previously interpreted
language and observation of the external world situation.

The agent experiences the emotion of happiness because the teacher has
called its creation beautiful, which is recognizes as a positive evaluation Ð so
the agent knows one of its ubergoals (“please the teacher”) has been signifi-
cantly fulfilled.

The goal of pleasing the teacher causes the system to want to answer the
question. So the QuestionAnswering DialogueController schema gets paid a
lot and gets put into the ActiveSchemaPool. In reaction to the question asked,
this DC chooses a semantic graph to speak, then invokes NL generation to
say it.

NL generation chooses the most compact expression that seems to ade-
quately convey the intended meaning, so it decides on “car man” as the best
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simple verbalization to match the newly created conceptual blend that it
thinks effectively describes the newly created blocks structure.

The positive feedback from the user leads to reinforcement of the Atoms
and processes that led to the construction of the blocks structure that has
been judged beautiful (via importance spreading and SystemActivityTable
mining).

49.4 Conclusion

The simple situation considered in this chapter is complex enough to in-
volve nearly all the different cognitive processes in the CogPrime system –
and many interactions between these processes. This fact illustrates one of
the main difficulties of designing, building and testing an artificial mind like
CogPrime – until nearly all of the system is build and made to operate in
an integrated way, it’s hard to do any meaningful test of the system. Testing
PLN or MOSES or conceptual blending in isolation may be interesting com-
puter science, but it doesn’t tell you much about CogPrime as a design for a
thinking machine.

According to the CogPrime approach, getting a simple child-like inter-
action like ”build me something with blocks that I haven’t seen before” to
work properly requires a holistic, integrated cognitive system. Once one has
built a system capable of this sort of simple interaction then, according to
the theory underlying CogPrime , one is not that far from a system with
adult human-level intelligence. Of course there will be a lot of work to do to
get from a child-level system to an adult-level system – it won’t necessarily
unfold as ”automatically” as seems to happen with a human child, because
CogPrime lacks the suite of developmental processes and mechanisms that
the young human brain has. But still, a child CogPrime mind capable of do-
ing the things outlined in this chapter will have all the basic components and
interactions in place, all the ones that are needed for a much more advanced
artificial mind.

Of course, one could concoct a narrow-AI system carrying out the specific
activities described in this chapter, much more simply than one could build a
CogPrime system capable of doing these activities. But that’s not the point
– the point of this chapter is not to explain how to achieve some particular
narrow set of activities ”by any means necessary”, but rather to explain how
these activities might be achieved within the CogPrime framework, which
has been designed with much more generality in mind.

It would be worthwhile to elaborate a number of other situations similar
to the one described in this chapter, and to work through the various cog-
nitive processes and structures in CogPrime carefully in the context of each
of these situations. In fact this sort of exercise has frequently been carried
out informally in the context of developing CogPrime . But this book is al-
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ready long enough, so we will end here, and leave the rest for future works
– emphasizing that it is via intimate interplay between concrete consider-
ations like the ones presented in this chapter, and general algorithmic and
conceptual considerations as presented in most of the chapters of this book,
that we have the greatest hope of creating advanced AGI. The value of this
sort of interplay actually follows from the theory of real-world general intel-
ligence presented in Part 1 of the book. Thoroughly general intelligence is
only possible given unrealistic computational resources, so real-world general
intelligence is about achieving high generality given limited resources relative
to the specific classes of environments relevant to a given agent. Specific sit-
uations like building surprising things with blocks are particularly important
insofar as they embody broader information about the classes of environments
relevant to broadly human-like general intelligence.

No doubt, once a CogPrime system is completed, the specifics of its han-
dling of the situation described here will differ somewhat from the treatment
presented in this chapter. Furthermore, the final CogPrime system may dif-
fer algorithmically and structurally in some respects from the specifics given
in this book – it would be surprising if the process of building, testing and
interacting with CogPrime didn’t teach us some new things about various of
the topics covered. But our conjecture is that, if sufficient effort is deployed
appropriately, then a system much like the CogPrime system described in
this book will be able to handle the situation described in this chapter in a
roughly similar manner to the one described in this chapter – and that this
will serve as a natural precursor to much more dramatic AGI achievements.



Appendix A
Glossary

: :
This glossary clarifies the meaning of various terms as they are commonly

used in the context of OpenCog & CogPrime
. It doesn’t attempt to provide general definitions of the terms involved;

it is intentionally highly OpenCog/CogPrime
-specific. Where terms are used in multiple ways within the OpenCog/Cog-

Prime
sphere, more than one meaning is given.

• Abduction: A general form of inference that goes from data describ-
ing something to a hypothesis that accounts for the data. Often in an
OpenCog context, this refers to the PLN abduction rule, a specific First-
Order PLN rule (If A implies C, and B implies C, then maybe A is B),
which embodies a simple form of abductive inference. But OpenCog may
also carry out abduction, as a general process, in other ways.
• Action Selection: The process via which the OpenCog system chooses

which Schema to enact, based on its current goals and context.
• Active Schema Pool: The set of Schema currently in the midst of

Schema Execution.
• Adaptive Inference Control: Algorithms or heuristics for guiding PLN

inference, that cause inference to be guided differently based on the con-
text in which the inference is taking place, or based on aspects of the
inference that are noted as it proceeds.
• AGI Preschool: A virtual world or robotic scenario roughly similar to

the environment within a typical human preschool, intended for AGIs to
learn in via interacting with the environment and with other intelligent
agents

• Atom: The basic entity used in OpenCog as an element for building
representations. Some Atoms directly represent patterns in the world or
mind, others are components of representations. There are two kinds of
Atoms: Nodes and Links.
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• Atom, Frozen: See Atom, Saved
• Atom, Realized: An Atom that exists in RAM at a certain point in

time
• Atom, Saved: An Atom that has been saved to disk or other similar

media, and is not actively being processed
• Atom, Serialized: An Atom that is serialized for transmission from one

software process to another, or for saving to disk, etc.
• Atom2Link: A part of OpenCogPrime

s language generation system, that transforms appropriate Atoms into
words connected via link parser link types.

• Atomspace: A collection of Atoms, comprising the central part of the
memory of an OpenCog instance.

• Attention: The aspect of an intelligent system’s dynamics focused on
guiding which aspects of an OpenCog system’s memory & functionality
gets more computational resources at a certain point in time

• Attention Allocation: The cognitive process concerned with managing
the parameters and relationships guiding what the system pays atten-
tion to, at what points in time. This is a term inclusive of Importance
Updating and Hebbian Learning.

• Attentional Currency: Short Term Importance and Long Term Impor-
tance values are implemented in terms of two different types of artificial
money, STICurrency and LTICurrency. Theoretically these may be con-
verted to one another.

• Attentional Focus: The Atoms in an OpenCog Atomspace whose Short-
TermImportance values lie above a critical threshold (the AttentionalFo-
cus Boundary). The Attention Allocation subsystem treats these Atoms
differently. Qualitatively, these Atoms constitute the system’s main focus
of attention during a certain interval of time, i.e. it’s moving bubble of
attention.

• Attentional Memory: A system’s memory of what it’s useful to pay
attention to, in what contexts. In CogPrime this is managed by the at-
tention allocation subsystem.

• Backward Chainer: A piece of software, wrapped in a MindAgent, that
carries out backward chaining inference using PLN

• CIM-Dynamic: Concretely-Implemented Mind Dynamic, a term for a
cognitive process that is implemented explicitly in OpenCog (as opposed
to allowed to emerge implicitly from other dynamics). Sometimes a CIM-
Dynamic will be implemented via a single MindAgent, sometimes via a
set of multiple interrelated MindAgents, occasionally by other means.

• Cognition: In an OpenCog context, this is an imprecise term. Sometimes
this term means any process closely related to intelligence; but more often
it’s used specifically to refer to more abstract reasoning/learning/etc, as
distinct from lower-level perception and action.

• Cognitive Architecture: This refers to the logical division of an AI
system like OpenCog into interacting parts and processes representing
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different conceptual aspects of intelligence. It’s different from the software
architecture, though of course certain cognitive architectures and certain
software architectures fit more naturally together.

• Cognitive Cycle: The basic ”loop” of operations that an OpenCog sys-
tem, used to control an agent interacting with a world, goes through
rapidly each ”subjective moment.” Typically a cognitive cycle should be
completed in a second or less. It minimally involves perceiving data from
the world, storing data in memory, and deciding what if any new actions
need to be taken based on the data perceived. It may also involve other
processes like deliberative thinking or metacognition. Not all OpenCog
processing needs to take place within a cognitive cycle.

• Cognitive Schematic: An implication of the form ”Context AND Proce-
dure IMPLIES goal”. Learning and utilization of these is key to CogPrime
’s cognitive process.

• Cognitive Synergy: The phenomenon by which different cognitive pro-
cesses, controlling a single agent, work together in such a way as to help
each other be more intelligent. Typically, if one has cognitive processes
that are individually susceptible to combinatorial explosions, cognitive
synergy involves coupling them together in such a way that they can help
one another over come each other’s internal combinatorial explosions. The
CogPrime design is reliant on the hypothesis that its key learning algo-
rithms will display dramatic cognitive synergy when utilized for agent
control in appropriate environments.

• CogPrime : The name for the AGI design presented in this book, which
is designed specifically for implementation within the OpenCog software
framework (and this implementation is OpenCogPrime )

• CogServer: A piece of software, within OpenCog, that wraps up an
Atomspace and a number of MindAgents, along with other mechanisms
like a Scheduler for controlling the activity of the MindAgents, and code
for important and exporting data from the Atomspace.

• Cognitive Equation: The principle, identified in Ben Goertzel’s 1994
book ”Chaotic Logic, ”that minds are collections of pattern-recognition
elements, that work by iteratively recognizing patterns in each other and
then embodying these patterns as new system elements. This is seen as
distinguishing mind from ”self-organization” in general, as the latter is not
so focused on continual pattern recognition. Colloquially this means that
”a mind is a system continually creating itself via recognizing patterns in
itself.”

• Combo: The programming language used internally by MOSES to repre-
sent the programs it evolves. SchemaNodes may refer to Combo programs,
whether the latter are learned via MOSES or via some other means. The
textual realization of Combo resembles LISP with less syntactic sugar.
Internally a Combo program is represented as a program tree.

• Composer: In the PLN design, a rule is denoted a composer if it needs
premises for generating its consequent. See generator.
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• CogBuntu: an Ubuntu Linux remix that contains all required packages
and tools to test and develop OpenCog.

• Concept Creation: A general term for cognitive processes that create
new ConceptNodes, PredicateNodes or concept maps representing new
concepts.

• Conceptual Blending: A process of creating new concepts via judi-
ciously combining pieces of old concepts. This may occur in OpenCog in
many ways, among them the explicit use of a ConceptBlending MindA-
gent, that blends two or more ConceptNodes into a new one.

• Confidence: A component of an OpenCog/PLN TruthValue, which is a
scaling into the interval [0,1] of the weight of evidence associated with a
truth value. In the simplest case (of a probabilistic Simple Truth Value),
one uses confidence c = n / (n+k), where n is the weight of evidence and
k is a parameter. In the case of an Indefinite Truth Value, the confidence
is associated with the width of the probability interval.

• Confidence Decay: The process by which the confidence of an Atom
decreases over time, as the observations on which the Atom’s truth value
is based become increasingly obsolete. This may be carried out by a spe-
cial MindAgent. The rate of confidence decay is subtle and contextually
determined, and must be estimated via inference rather than simply as-
sumed a priori.

• Consciousness: CogPrime is not predicated on any particular concep-
tual theory of consciousness. Informally, the AttentionalFocus is some-
times referred to as the ”conscious” mind of a CogPrime system, with
the rest of the Atomspace as ”unconscious” Ð but this is just an informal
usage, not intended to tie the CogPrime design to any particular theory
of consciousness. The primary originator of the CogPrime
design (Ben Goertzel) tends toward panpsychism, as it happens.

• Context: In addition to its general common-sensical meaning, in Cog-
Prime the term Context also refers to an Atom that is used as the first
argument of a ContextLink. The second argument of the ContextLink
then contains Links or Nodes, with TruthValues calculated only restricted
to the context defined by the first argument. For instance, (ContextLink
USA (InheritanceLink person obese )).

• Core: The MindOS portion of OpenCog, comprising the Atomspace, the
CogServer, and other associated ”infrastructural” code.

• Corrective Learning: When an agent learns how to do something, by
having another agent explicitly guide it in doing the thing. For instance,
teaching a dog to sit by pushing its butt to the ground.

• CSDLN: Compositional Spatiotemporal Deep Learning Network): A hi-
erarchical pattern recognition network, in which each layer corresponds
to a certain spatiotemporal granularity, the nodes on a given layer cor-
respond to spatiotemporal regions of a given size, and the children of a
node correspond to sub-regions of the region the parent corresponds to.



A Glossary 933

Jeff Hawkins HTM is one example CSDLN, and Itamar Arel’s DeSTIN
(currently used in OpenCog) is another.

• Declarative knowledge: Semantic knowledge as would be expressed in
propositional or predicate logic Ð facts or beliefs.

• Deduction: In general, this refers to the derivation of conclusions from
premises using logical rules. In PLN in particular, this often refers to the
exercise of a specific inference rule, the PLN Deduction rule (A → B, B
→ C, therefore A→ C)

• Deep Learning: Learning in a network of elements with multiple layers,
involving feedforward and feedback dynamics, and adaptation of the links
between the elements. An example deep learning algorithm is DeSTIN,
which is being integrated with OpenCog for perception processing.

• Defrosting: Restoring, into the RAM portion of an Atomspace, an Atom
(or set thereof) previously saved to disk.

• Demand: In CogPrime ’s OpenPsi subsystem, this term is used in a
manner inherited from the Psi model of motivated action. A Demand in
this context is a quantity whose value the system is motivated to adjust.
Typically the system wants to keep the Demand between certain mini-
mum and maximum values. An Urge develops when a Demand deviates
from its target range.

• Deme: In MOSES, an ”island” of candidate programs, closely clustered
together in program space, being evolved in an attempt to optimize a cer-
tain fitness function. The idea is that within a deme, programs are gener-
ally similar enough that reasonable syntax-semantics correlation obtains.

• Derived Hypergraph: The SMEPH hypergraph obtained via modeling
a system in terms of a hypergraph representing its internal states and
their relationships. For instance, a SMEPH vertex represents a collection
of internal states that habitually occur in relation to similar external
situations. A SMEPH edge represents a relationship between two SMEPH
vertices (e.g. a similarity or inheritance relationship). The terminology
”edge /vertex” is used in this context, to distinguish from the ”link /
node” terminology used in the context of the Atomspace.

• DeSTIN: A specific CSDLN created by Itamar Arel, tested on visual
perception, and appropriate for integration within CogPrime .

• Dialogue: Linguistic interaction between two or more parties. In a Cog-
Prime
context, this may be in English or another natural language, or it may
be in Lojban or Psynese.

• Dialogue Control: The process of determining what to say at each
juncture in a dialogue. This is distinguished from the linguistic aspects
of dialogue, language comprehension and language generation. Dialogue
control applies to Psynese or Lojban, as well as to human natural lan-
guage.

• Dimensional Embedding: The process of embedding entities from
some non-dimensional space (e.g. the Atomspace) into an n-dimensional
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Euclidean space. This can be useful in an AI context because some sorts
of queries (e.g. ”find everything similar to X”, ”find a path between X and
Y”) are much faster to carry out among points in a Euclidean space, than
among entities in a space with less geometric structure.

• Distributed Atomspace: An implementation of an Atomspace that
spans multiple computational processes; generally this is done to enable
spreading an Atomspace across multiple machines.

• Dual Network: A network of mental or informational entities with both
a hierarchical structure and a heterarchical structure, and an alignment
among the two structures so that each one helps with the maintenance
of the other. This is hypothesized to be a critical emergent structure,
that must emerge in a mind (e.g. in an Atomspace) in order for it to
achieve a reasonable level of human-like general intelligence (and possibly
to achieve a high level of pragmatic general intelligence in any physical
environment).

• Efficient Pragmatic General Intelligence: A formal, mathematical
definition of general intelligence (extending the pragmatic general intelli-
gence), that ultimately boils down to: the ability to achieve complex goals
in complex environments using limited computational resources (where
there is a specifically given weighting function determining which goals
and environments have highest priority). More specifically, the definition
weighted-sums the system’s normalized goal-achieving ability over (goal,
environment) pairs, where the weights are given by some assumed mea-
sure over (goal, environment pairs), and where the normalization is done
via dividing by the (space and time) computational resources used for
achieving the goal.

• Elegant Normal Form (ENF): Used in MOSES, this is a way of
putting programs in a normal form while retaining their hierarchical
structure. This is critical if one wishes to probabilistically model the
structure of a collection of programs, which is a meaningful operation if
the collection of programs is operating within a region of program space
where syntax-semantics correlation holds to a reasonable degree. The
Reduct library is used to place programs into ENF.

• Embodied Communication Prior: The class of prior distributions
over goal/environment pairs, that are imposed by placing an intelligent
system in an environment where most of its tasks involve controlling a
spatially localized body in a complex world, and interacting with other
intelligent spatially localized bodies. It is hypothesized that many key
aspects of human-like intelligence (e.g. the use of different subsystems
for different memory types, and cognitive synergy between the dynamics
associated with these subsystems) are consequences of this prior assump-
tion. This is related to the Mind-World Correspondence Principle.

• Embodiment: Colloquially, in an OpenCog context, this usually means
the use of an AI software system to control a spatially localized body in
a complex (usually 3D) world. There are also possible ”borderline cases”
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of embodiment, such as a search agent on the Internet. In a sense any
AI is embodied, because it occupies some physical system (e.g. computer
hardware) and has some way of interfacing with the outside world.

• Emergence: A property or pattern in a system is emergent if it arises
via the combination of other system components or aspects, in such a
way that its details would be very difficult (not necessarily impossible in
principle) to predict from these other system components or aspects.

• Emotion: Emotions are system-wide responses to the system’s current
and predicted state. Dorner’s Psi theory of emotion contains explanations
of many human emotions in terms of underlying dynamics and motiva-
tions, and most of these explanations make sense in a CogPrime context,
due to CogPrime ’s use of OpenPsi (modeled on Psi) for motivation and
action selection.

• Episodic Knowledge: Knowledge about episodes in an agent’s life his-
tory, or the life-history of other agents. CogPrime includes a special di-
mensional embedding space only for episodic knowledge, easing organi-
zation and recall.

• Evolutionary Learning: Learning that proceeds via the rough process
of iterated differential reproduction based on fitness, incorporating varia-
tion of reproduced entities. MOSES is an explicitly evolutionary-learning-
based portion of CogPrime ; but CogPrime ’s dynamics as a whole may
also be conceived as evolutionary.

• Exemplar: (in the context of imitation learning) - When the owner wants
to teach an OpenCog controlled agent a behavior by imitation, he/she
gives the pet an exemplar. To teach a virtual pet "fetch" for instance,
the owner is going to throw a stick, run to it, grab it with his/her mouth
and come back to its initial position.

• Exemplar: (in the context of MOSES) – Candidate chosen as the core
of a new deme , or as the central program within a deme, to be varied
by representation building for ongoing exploration of program space

• Explicit Knowledge Representation: Knowledge representation in
which individual, easily humanly identifiable pieces of knowledge corre-
spond to individual elements in a knowledge store (elements that are
explicitly there in the software and accessible via very rapid, determinis-
tic operations)

• Extension: In PLN, the extension of a node refers to the instances of
the category that the node represents. In contrast is the intension.

• Fishgram (Frequent and Interesting Sub-hypergraph Mining):
A pattern mining algorithm for identifying frequent and/or interesting
sub-hypergraphs in the Atomspace.

• First-Order Inference (FOI): The subset of PLN that handles Logical
Links not involving VariableAtoms or higher-order functions. The other
aspect of PLN, Higher-Order Inference, uses Truth Value formulas derives
from First-Order Inference.
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• Forgetting: The process of removing Atoms from the in-RAM portion
of Atomspace, when RAM gets short and they are judged not as valuable
to retain in RAM as other Atoms. This is commonly done using the
LTI values of the Atoms (removing lowest LTI-Atoms, or more complex
strategies involving the LTI of groups of interconnected Atoms). May
be done by a dedicated Forgetting MindAgent. VLTI may be used to
determine the fate of forgotten Atoms.

• Forward Chainer: A control mechanism (MindAgent) for PLN infer-
ence, that works by taking existing Atoms and deriving conclusion from
them using PLN rules, and then iterating this process. The goal is to
derive new Atoms that are interesting according to some given criterion.

• Frame2Atom: A simple system of hand-coded rules for translating the
output of RelEx2Frame (logical representation of semantic relationships
using FrameNet relationships) into Atoms

• Freezing: Saving Atoms from the in-RAM Atomspace to disk
• General Intelligence: Often used in an informal, commonsensical sense,

to mean the ability to learn and generalize beyond specific problems or
contexts. Has been formalized in various ways as well, including formaliza-
tions of the notion of ”achieving complex goals in complex environments”
and ”achieving complex goals in complex environments using limited re-
sources.” Usually interpreted as a fuzzy concept, according to which abso-
lutely general intelligence is physically unachievable, and humans have a
significant level of general intelligence, but far from the maximally phys-
ically achievable degree.

• Generalized Hypergraph: A hypergraph with some additional fea-
tures, such as links that point to links, and nodes that are seen as ”con-
taining” whole sub-hypergraphs. This is the most natural and direct way
to mathematically/visually model the Atomspace.

• Generator: In the PLN design, a rule is denoted a generator if it can
produce its consequent without needing premises (e.g. LookupRule, which
just looks it up in the AtomSpace). See composer.

• Global, Distributed Memory: Memory that stores items as implicit
knowledge, with each memory item spread across multiple components,
stored as a pattern of organization or activity among them.

• Glocal Memory: The storage of items in memory in a way that involves
both localized and global, distributed aspects.

• Goal: An Atom representing a function that a system (like OpenCog)
is supposed to spend a certain non-trivial percentage of its attention
optimizing. The goal, informally speaking, is to maximize the Atom’s
truth value.

• Goal, Implicit: A goal that an intelligent system, in practice, strives to
achieve; but that is not explicitly represented as a goal in the system’s
knowledge base.

• Goal, Explicit: A goal that an intelligent system explicitly represents in
its knowledge base, and expends some resources trying to achieve. Goal
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Nodes (which may be Nodes or, e.g. ImplicationLinks) are used for this
purpose in OpenCog.

• Goal-Driven Learning: Learning that is driven by the cognitive schematic
Ð i.e. by the quest of figuring out which procedures can be expected to
achieve a certain goal in a certain sort of context.

• Grounded SchemaNode: See SchemaNode, Grounded
• Hebbian Learning: An aspect of Attention Allocation, centered on cre-

ating and updating HebbianLinks, which represent the simultaneous im-
portance of the Atoms joined by the HebbianLink

• Hebbian Links: Links recording information about the associative re-
lationship (co-occurrence) between Atoms. These include symmetric and
asymmetric HebbianLinks.

• Heterarchical Network: A network of linked elements in which the
semantic relationships associated with the links are generally symmetrical
(e.g. they may be similarity links, or symmetrical associative links). This
is one important sort of subnetwork of an intelligent system; see Dual
Network.

• Hierarchical Network: A network of linked elements in which the se-
mantic relationships associated with the links are generally asymmetri-
cal, and the parent nodes of a node have a more general scope and some
measure of control over their children (though there may be important
feedback dynamics too). This is one important sort of subnetwork of an
intelligent system; see Dual Network.

• Higher-Order Inference (HOI): PLN inference involving variables or
higher-order functions. In contrast to First-Order Inference (FOI).

• Hillclimbing: A general term for greedy, local optimization techniques,
including some relatively sophisticated ones that involve ”mildly nonlocal”
jumps.

• Human-Level Intelligence: General intelligence that’s ”as smart as”
human general intelligence, even if in some respects quite unlike human
intelligence. An informal concept, which generally doesn’t come up much
in CogPrime work, but is used frequently by some other AI theorists.

• Human-Like Intelligence: General intelligence with properties and ca-
pabilities broadly resembling those of humans, but not necessarily pre-
cisely imitating human beings.

• Hypergraph: A conventional hypergraph is a collection of nodes and
links, where each link may span any number of nodes. OpenCog makes
use of generalized hypergraphs (the Atomspace is one of these).

• Imitation Learning: Learning via copying what some other agent is
observed to do.

• Implication: Often refers to an ImplicationLink between two Predi-
cateNodes, indicating an (extensional, intensional or mixed) logical im-
plication.

• Implicit Knowledge Representation: Representation of knowledge
via having easily humanly identifiable pieces of knowledge correspond to
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the pattern of organization and/or dynamics of elements, rather than
via having individual elements correspond to easily humanly identifiable
pieces of knowledge.

• Importance: A generic term for the Attention Values associated with
Atoms. Most commonly these are STI (short term importance) and LTI
(long term importance) values. Other importance values corresponding
to various different time scales are also possible. In general an importance
value reflects an estimate of the likelihood an Atom will be useful to the
system over some particular future time-horizon. STI is generally relevant
to processor time allocation, whereas LTI is generally relevant to memory
allocation.

• Importance Decay: The process of Atom’ importance values (e.g. STI
and LTI) decreasing over time, if the Atoms are not utilized. Importance
decay rates may in general be context-dependent.

• Importance Spreading: A synonym for Importance Updating, in-
tended to highlight the similarity with ”activation spreading” in neural
and semantic networks

• Importance Updating: The CIM-Dynamic that periodically (frequently)
updates the STI and LTI values of Atoms based on their recent activity
and their relationships.

• Imprecise Truth Value: Peter Walley’s imprecise truth values are in-
tervals [L,U], interpreted as lower and upper bounds of the means of
probability distributions in an envelope of distributions. In general, the
term may be used to refer to any truth value involving intervals or related
constructs, such as indefinite probabilities.

• Indefinite Probability: An extension of a standard imprecise probabil-
ity, comprising a credible interval for the means of probability distribu-
tions governed by a given second-order distribution.

• Indefinite Truth Value: An OpenCog TruthValue object wrapping up
an indefinite probability

• Induction: In PLN, a specific inference rule (A→ B, A→ C, therefore B
-→ C). In general, the process of heuristically inferring that what has been
seen in multiple examples, will be seen again in new examples. Induction
in the broad sense, may be carried out in OpenCog by methods other
than PLN induction. When emphasis needs to be laid on the particular
PLN inference rule, the phrase ”PLN Induction” is used.

• Inference: Generally speaking, the process of deriving conclusions from
assumptions. In an OpenCog context, this often refers to the PLN infer-
ence system. Inference in the broad sense is distinguished from general
learning via some specific characteristics, such as the intrinsically incre-
mental nature of inference: it proceeds step by step.

• Inference Control: A cognitive process that determines what logical
inference rule (e.g. what PLN rule) is applied to what data, at each point
in the dynamic operation of an inference process



A Glossary 939

• Integrative AGI: An AGI architecture, like CogPrime , that relies on a
number of different powerful, reasonably general algorithms all cooperat-
ing together. This is different from an AGI architecture that is centered
on a single algorithm, and also different than an AGI architecture that
expects intelligent behavior to emerge from the collective interoperation
of a number of simple elements (without any sophisticated algorithms
coordinating their overall behavior).

• Integrative Cognitive Architecture: A cognitive architecture in-
tended to support integrative AGI.

• Intelligence: An informal, natural language concept. ”General intelli-
gence” is one slightly more precise specification of a related concept;
”Universal intelligence” is a fully precise specification of a related concept.
Other specifications of related concepts made in the particular context of
CogPrime research are the pragmatic general intelligence and the efficient
pragmatic general intelligence.

• Intension: In PLN, the intention of a node consists of Atoms representing
properties of the entity the node represents

• Intentional memory: A system’s knowledge of its goals and their sub-
goals, and associations between these goals and procedures and contexts
(e.g. cognitive schematics).

• Internal Simulation World: A simulation engine used to simulate an
external environment (which may be physical or virtual), used by an AGI
system as its ”mind’s eye” in order to experiment with various action‘ q
sequences and envision their consequences, or observe the consequences of
various hypothetical situations. Particularly important for dealing with
episodic knowledge.

• Interval Algebra: Allen Interval Algebra, a mathematical theory of the
relationships between time intervals. CogPrime utilizes a fuzzified version
of classic Interval Algebra.

• IRC Learning (Imitation, Reinforcement, Correction): Learning
via interaction with a teacher, involving a combination of imitating the
teacher, getting explicit reinforcement signals from the teacher, and hav-
ing one’s incorrect or suboptimal behaviors guided toward betterness by
the teacher in real-time. This is a large part of how young humans learn.

• Knowledge Base: A shorthand for the totality of knowledge possessed
by an intelligent system during a certain interval of time (whether or
not this knowledge is explicitly represented). Put differently: this is an
intelligence’s total memory contents (inclusive of all types of memory)
during an interval of time.

• Language Comprehension: The process of mapping natural language
speech or text into a more ”cognitive”, largely language-independent rep-
resentation. In OpenCog this has been done by various pipelines consist-
ing of dedicated natural language processing tools, e.g. a pipeline: text
→ Link Parser→ RelEx→ RelEx2Frame→ Frame2Atom Ð Atomspace;
and alternatively a pipeline Link Parser → Link2Atom → Atomspace.
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It would also be possible to do language comprehension purely via PLN
and other generic OpenCog processes, without using specialized language
processing tools.

• Language Generation: The process of mapping (largely language-
independent) cognitive content into speech or text. In OpenCog this has
been done by various pipelines consisting of dedicated natural language
processing tools, e.g. a pipeline: Atomspace→ NLGen→ text; or more re-
cently Atomspace → Atom2Link → surface realization → text. It would
also be possible to do language generation purely via PLN and other
generic OpenCog processes, without using specialized language process-
ing tools.

• Language Processing: Processing of human language is decomposed,
in CogPrime , into Language Comprehension, Language Generation, and
Dialogue Control

• Learning: In general, the process of a system adapting based on ex-
perience, in a way that increases its intelligence (its ability to achieve
its goals). The theory underlying CogPrime doesn’t distinguish learning
from reasoning, associating, or other aspects of intelligence.

• Learning Server: In some OpenCog configurations, this refers to a soft-
ware server that performs ”offline” learning tasks (e.g. using MOSES
or hillclimbing), and is in communication with an Operational Agent
Controller software server that performs real-time agent control and dis-
patches learning tasks to and receives results from the Learning Server.

• Linguistic Links: A catch-all term for Atoms explicitly representing
linguistic content, e.g. WordNode, SentenceNode, CharacterNodeÉ.

• Link: A type of Atom, representing a relationship among one or more
Atoms. Links and Nodes are the two basic kinds of Atoms.

• Link Parser: A natural language syntax parser, created by Sleator and
Temperley at Carnegie-Mellon University, and currently used as part of
OpenCogPrime
s natural language comprehension and natural language generation sys-
tem.

• Link2Atom: A system for translating link parser links into Atoms. It
attempts to resolve precisely as much ambiguity as needed in order to
translate a given assemblage of link parser links into a unique Atom
structure.

• Lobe: A term sometime used to refer to a portion of a distributed Atom-
space that lives in a single computational process. Often different lobes
will live on different machines.

• Localized Memory: Memory that stores each item using a small num-
ber of closely-connected elements.

• Logic: In an OpenCog context, this usually refers to a set of formal rules
for translating certain combinations of Atoms into ”conclusion” Atoms.
The paradigm case at present is the PLN probabilistic logic system, but
OpenCog can also be used together with other logics.
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• Logical Links: Any Atoms whose truth values are primarily determined
or adjusted via logical rules, e.g. PLN’s InheritanceLink, SimilarityLink,
ImplicationLink, etc. The term isn’t usually applied to other links like
HebbianLinks whose semantics isn’t primarily logic-based, even though
these other links can be processed via (e.g. PLN) logical inference via
interpreting them logically.

• Lojban: A constructed human language, with a completely formalized
syntax and a highly formalized semantics, and a small but active com-
munity of speakers. In principle this seems an extremely good method
for communication between humans and early-stage AGI systems.

• Lojban++: A variant of Lojban that incorporates English words, en-
abling more flexible expression without the need for frequent invention
of new Lojban words.

• Long Term Importance (LTI): A value associated with each Atom,
indicating roughly the expected utility to the system of keeping that
Atom in RAM rather than saving it to disk or deleting it. It’s possible
to have multple LTI values pertaining to different time scales, but so far
practical implementation and most theory has centered on the option of
a single LTI value.

• LTI: Long Term Importance
• Map: A collection of Atoms that are interconnected in such a way that

they tend to be commonly active (i.e. to have high STI, e.g. enough to
be in the AttentionalFocus, at the same time)

• Map Encapsulation: The process of automatically identifying maps in
the Atomspace, and creating Atoms that ”encapsulate” them; the Atom
encapsulation a map would link to all the Atoms in the map. This is a way
of making global memory into local memory, thus making the system’s
memory glocal and explicitly manifesting the ”cognitive equation.” This
may be carried out via a dedicated MapEncapsulation MindAgent.

• Map Formation: The process via which maps form in the Atomspace.
This need not be explicit; maps may form implicitly via the action of
Hebbian Learning. It will commonly occur that Atoms frequently co-
occurring in the AttentionalFocus, will come to be joined together in a
map.

• Memory types: In CogPrime
this generally refers to the different types of memory that are embodied
in different data structures or processes in the CogPrime
architecture, e.g. declarative (semantic), procedural, attentional, inten-
tional, episodic, sensorimotor.

• Mind-World Correspondence Principle: The principle that, for a
mind to display efficient pragmatic general intelligence relative to a world,
it should display many of the same key structural properties as that world.
This can be formalized by modeling the world as mind as probabilistic
state transition graphs, and saying that the categories implicit in the
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state transition graphs of the mind and world should be inter-mappable
via a high-probability morphism.

• Mind OS: A synonym for the OpenCog Core
• MindAgent: An OpenCog software object, residing in the CogServer,

that carries out some processes in interaction with the Atomspace. A
given conceptual cognitive process (e.g. PLN inference, Attention allo-
cation, etc.) may be carried out by a number of different MindAgents
designed to work together.

• Mindspace: A model of the set of states of an intelligent system as a
geometrical space, imposed by assuming some metric on the set of mind-
states. This may be used as a tool for formulating general principles about
the dynamics of generally intelligent systems.

• Modulators: Parameters in the Psi model of motivated, emotional cog-
nition, that modulate the way a system perceives, reasons about and
interacts with the world.

• MOSES (Meta-Optimizing Semantic Evolutionary Search): An
algorithm for procedure learning, which in the current implementation
learns programs in the Combo language. MOSES is an evolutionary learn-
ing system, which differs from typical genetic programming systems in
multiple aspects including: a subtler framework for managing multiple
”demes” or ”islands” of candidate programs; a library called Reduct for
placing programs in Elegant Normal Form; and the use of probabilistic
modeling in place of, or in addition to, mutation and crossover as means
of determining which new candidate programs to try.

• Motoric: Pertaining to the control of physical actuators, e.g. those con-
nected to a robot. May sometimes be used to refer to the control of
movements of a virtual character as well.

• Moving Bubble of Attention: The Attentional Focus of a CogPrime
system

• Natural Language Comprehension: See Language Comprehension
• Natural Language Generation: See Language Generation
• Natural Language Processing: See Language Processing
• NLGen: Software for carrying out the surface realization phase of natural

language generation, via translating collections of RelEx output relation-
ships into English sentences. Was made functional for simple sentences
and some complex sentences; not currently under active development, as
work has shifted to the related Atom2Link approach to language gener-
ation.

• Node: A type of Atom. Links and Nodes are the two basic kinds of
Atoms. Nodes, mathematically, can be thought of as ”0-ary links. Some
types Nodes refer to external or mathematical entities (e.g. WordNode,
NumberNode); others are purely abstract, e.g. a ConceptNode is charac-
terized purely by the Links relating it to other atoms. GroundedPredi-
cateNodes and GroundedSchemaNodes connect to explicitly represented
procedures (sometimes in the Combo language); ungrounded PredicateN-
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odes and SchemaNodes are abstract and, like ConceptNodes, purely char-
acterized by their relationships.

• Node Probability: Many PLN inference rules rely on probabilities as-
sociated with Nodes. Node probabilities are often easiest to interpret in
a specific context, e.g. the probability P(cat) makes obvious sense in the
context of a typical American house, or in the context of the center of
the sun. Without any contextual specification, P(A) is taken to mean the
probability that a randomly chosen occasion of the system’s experience
includes some instance of A.

• Novamente Cognition Engine (NCE): A proprietary proto-AGI soft-
ware system, the predecessor to OpenCog. Many parts of the NCE were
open-sourced to form portions of OpenCog, but some NCE code was not
included in OpenCog; and now OpenCog includes multiple aspects and
plenty of code that was not in NCE.

• OpenCog: A software framework intended for development of AGI sys-
tems, and also for narrow-AI application using tools that have AGI appli-
cations. Co-designed with the CogPrime cognitive architecture, but not
exclusively bound to it.

• OpenCog Prime: The implementation of the CogPrime cognitive ar-
chitecture within the OpenCog software framework

• OpenPsi: CogPrime ’s architecture for motivation-driven action selec-
tion, which is based on adapting Dorner’s Psi model for use in the
OpenCog framework.

• Operational Agent Controller (OAC): In some OpenCog configura-
tions, this is a software server containing a CogServer devoted to real-time
control of an agent (e.g. a virtual world agent, or a robot). Background,
offline learning tasks may then be dispatched to other software processes,
e.g. to a Learning Server.

• Pattern: In a CogPrime context, the term ”pattern” is generally used to
refer to a process that produces some entity, and is judged simpler than
that entity.

• Pattern Mining: Pattern mining is the process of extracting an (often
large) number of patterns from some body of information, subject to
some criterion regarding which patterns are of interest. Often (but not
exclusively) it refers to algorithms that are rapid or ”greedy”, finding a
large number of simple patterns relatively inexpensively.

• Pattern Recognition: The process of identifying and representing a
pattern in some substrate (e.g. some collection of Atoms, or some raw
perceptual data, etc.)

• Patternism: The philosophical principle holding that, from the perspec-
tive of engineering intelligent systems, it is sufficient and useful to think
about mental processes in terms of (static and dynamical) patterns.

• Perception: The process of understanding data from sensors. When nat-
ural language is ingested in textual format, this is generally not considered
perceptual. Perception may be taken to encompass both pre-processing
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that prepares sensory data for ingestion into the Atomspace, processing
via specialized perception processing systems like DeSTIN that are con-
nected to the Atomspace, and more cognitive-level process within the
Atomspace that is oriented toward understanding what has been sensed.

• Piagetan Stages: A series of stages of cognitive development hypoth-
esized by developmental psychologist Jean Piaget, which are easy to in-
terpret in the context of developing CogPrime systems. The basic stages
are: Infantile, Pre-operational, Concrete Operational and Formal. Post-
formal stages have been discussed by theorists since Piaget and seem
relevant to AGI, especially advanced AGI systems capable of strong self-
modification.

• PLN: short for Probabilistic Logic Networks
• PLN, First-Order: See First-Order Inference
• PLN, Higher-Order: See Higher-Order Inference
• PLN Rules: A PLN Rule takes as input one or more Atoms (the

”premises”, usually Links), and output an Atom that is a ”logical conclu-
sion” of those Atoms. The truth value of the consequence is determined
by a PLN Formula associated with the Rule.

• PLN Formulas: A PLN Formula, corresponding to a PLN Rule, takes
the TruthValues corresponding to the premises and produces the Truth-
Value corresponding to the conclusion. A single Rule may correspond
to multiple Formulas, where each Formula deals with a different sort of
TruthValue.

• Pragmatic General Intelligence: A formalization of the concept of
general intelligence, based on the concept that general intelligence is the
capability to achieve goals in environments, calculated as a weighted av-
erage over some fuzzy set of goals and environments.

• Predicate Evaluation: The process of determining the Truth Value of
a predicate, embodied in a PredicateNode. This may be recursive, as
the predicate referenced internally by a Grounded PredicateNode (and
represented via a Combo program tree) may itself internally reference
other PredicateNodes.

• Probabilistic Logic Networks (PLN): A mathematical and concep-
tual framework for reasoning under uncertainty, integrating aspects of
predicate and term logic with extensions of imprecise probability theory.
OpenCogPrime
s central tool for symbolic reasoning.

• Procedural Knowledge: Knowledge regarding which series of actions
(or action-combinations) are useful for an agent to undertake in which
circumstances. In CogPrime these may be learned in a number of ways,
e.g. via PLN or via Hebbian learning of Schema Maps, or via explicit
learning of Combo programs via MOSES or hillclimbing. Procedures are
represented as SchemaNodes or Schema Maps.

• Procedure Evaluation/Execution: A general term encompassing both
Schema Execution and Predicate Evaluation, both of which are similar
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computational processes involving manipulation of Combo trees associ-
ated with ProcedureNodes.

• Procedure Learning: Learning of procedural knowledge, based on any
method, e.g. evolutionary learning (e.g. MOSES), inference (e.g. PLN),
reinforcement learning (e.g. Hebbian learning)

• Procedure Node: A SchemaNode or PredicateNode
• Psi: A model of motivated action, and emotion, originated by Dietrich

Dorner and further developed by Joscha Bach, who incorporated it in his
proto-AGI system MicroPsi. OpenCogPrime
s motivated-action component, OpenPsi, is roughly based on the Psi
model.

• Psynese: A system enabling different OpenCog instances to communi-
cate without using natural language, via directly exchanging Atom sub-
graphs, using a special system to map references in the speaker’s mind
into matching references in the listener’s mind.

• Psynet Model: An early version of the theory of mind underlying Cog-
Prime , referred to in some early writings on the Webmind AI Engine
and Novamente Cognition Engine. The concepts underlying the psyynet
model are still part of the theory underlying CogPrime , but the name
has been deprecated as it never really caught on.

• Reasoning: See inference
• Reduct: A code library, used within MOSES, applying a collection of

hand-coded rewrite rules that transform Combo programs into Elegant
Normal Form.

• Region Connection Calculus: A mathematical formalism describing
a system of basic operations among spatial regions. Used in CogPrime as
part of spatial inference, to provide relations and rules to be referenced
via PLN and potentially other subsystems.

• Reinforcement Learning: Learning procedures via experience, in a
manner explicitly guided to cause the learning of procedures that will
maximize the system’s expected future reward. CogPrime does this im-
plicitly whenever it tries to learn procedures that will maximize some
Goal whose Truth Value is estimated via an expected reward calcula-
tion (where ”reward” may mean simply the Truth Value of some Atom
defined as ”reward”). Goal-driven learning is more general than reinforce-
ment learning as thus defined; and the learning that CogPrime does,
which is only partially goal-driven, is yet more general.

• RelEx: A software system used in OpenCog as part of natural language
comprehension, to map the output of the link parser into more abstract
semantic relationships. These more abstract relationships may then be
entered directly into the Atomspace, or they may be further abstracted
before being entered into the Atomspace, e.g. by RelEx2Frame rules.

• RelEx2Frame: A system of rules for translating RelEx output into
Atoms, based on the FrameNet ontology. The output of the RelEx2Frame
rules make use of the FrameNet library of semantic relationships. The cur-
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rent (2012) RelEx2Frame rule-based is problematic and the RelEx2Frame
system is deprecated as a result, in favor of Link2Atom. However, the
ideas embodied in these rules may be useful; if cleaned up the rules might
profitably be ported into the Atomspace as ImplicationLinks.

• Representation Building: A stage within MOSES, wherein a candidate
Combo program tree (within a deme) is modified by replacing one or more
tree nodes with alternative tree nodes, thus obtaining a new, different
candidate program within that deme. This process currently relies on
hand-coded knowledge regarding which types of tree nodes a given tree
node should be experimentally replaced with (e.g. an AND node might
sensibly be replaced with an OR node, but not so sensibly replaced with
a node representing a ”kick” action).

• Request for Services (RFS): In CogPrime ’s Goal-driven action sys-
tem, a RFS is a package sent from a Goal Atom to another Atom, offering
it a certain amount of STI currency if it is able to deliver the goal what
it wants (an increase in its Truth Value). RFS’s may be passed on, e.g.
from goals to subgoals to sub-subgoals, but eventually an RFS reaches a
Grounded SchemaNode, and when the corresponding Schema is executed,
the payment implicit in the RFS is made.

• Robot Preschool: An AGI Preschool in our physical world, intended
for robotically embodied AGIs

• Robotic Embodiment: Using an AGI to control a robot. The AGI may
be running on hardware physically contained in the robot, or may run
elsewhere and control the robot via networking methods such as wifi.

• Scheduler: Part of the CogServer that controls which processes (e.g.
which MindAgents) get processor time, at which point in time.

• Schema: A ”script” describing a process to be carried out. This may be
explicit, as in the case of a GroundedSchemaNode, or implicit, as the case
in Schema maps or ungrounded SchemaNodes.

• Schema Encapsulation: The process of automatically recognizing a
Schema Map in an Atomspace, and creating a Combo (or other) pro-
gram embodying the process carried out by this Schema Map, and then
storing this program in the Procedure Repository and associating it with
a particular SchemaNode. This translates distributed, global procedu-
ral memory into localized procedural memory. It’s a special case of Map
Encapsulation.

• Schema Execution: The process of ”running” a Grounded Schema, simi-
lar to running a computer program. Or, phrased alternately: The process
of executing the Schema referenced by a Grounded SchemaNode. This
may be recursive, as the predicate referenced internally by a Grounded
SchemaNode (and represented via a Combo program tree) may itself in-
ternally reference other Grounded SchemaNodes.

• Schema, Grounded: A Schema that is associated with a specific exe-
cutable program (either a Combo program or, say, C++ code)
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• Schema Map: A collection of Atoms, including SchemaNodes, that tend
to be enacted in a certain order (or set of orders), thus habitually enacting
the same process. This is a distributed, globalized way of storing and
enacting procedures.

• Schema, Ungrounded: A Schema that represents an abstract proce-
dure, not associated with any particular executable program.

• Schematic Implication: A general, conceptual name for implications
of the form ((Context AND Procedure) IMPLIES Goal)

• SegSim: A name for the main algorithm underlying the NLGen language
generation software. The algorithm is based on segmenting a collection of
Atoms into small parts, and matching each part against memory to find,
for each part, cases where similar Atom-collections already have known
linguistic expression.

• Self-Modification: A term generally used for AI systems that can pur-
posefully modify their core algorithms and representations. Formally and
crisply distinguishing this sort of ”strong self-modification” from ”mere”
learning is a tricky matter.

• Sensorimotor: Pertaining to sensory data, motoric actions, and their
combination and intersection.

• Sensory: Pertaining to data received by the AGI system from the outside
world. In a CogPrime system that perceives language directly as text, the
textual input will generally not be considered as ”sensory” (on the other
hand, speech audio data would be considered as ”sensory”).

• Short Term Importance: A value associated with each Atom, indi-
cating roughly the expected utility to the system of keeping that Atom
in RAM rather than saving it to disk or deleting it. It’s possible to have
multple LTI values pertaining to different time scales, but so far practical
implementation and most theory has centered on the option of a single
LTI value.

• Similarity: a link type indicating the probabilistic similarity between
two different Atoms. Generically this is a combination of Intensional Sim-
ilarity (similarity of properties) and Extensional Similarity (similarity of
members).

• Simple Truth Value: a TruthValue involving a pair (s,d) indicating
strength (e.g. probability or fuzzy set membership) and confidence d. d
may be replaced by other options such as a count n or a weight of evidence
w.

• Simulation World: See Internal Simulation World
• SMEPH (Self-Modifying Evolving Probabilistic Hypergraphs):

a style of modeling systems, in which each system is associated with a
derived hypergraph

• SMEPH Edge: A link in a SMEPH derived hypergraph, indicating an
empirically observed relationship (e.g. inheritance or similarity) between
two
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• SMEPH Vertex: A node in a SMEPH derived hypergraph representing
a system, indicating a collection of system states empirically observed to
arise in conjunction with the same external stimuli

• Spatial Inference: PLN reasoning including Atoms that explicitly ref-
erence spatial relationships

• Spatiotemporal Inference: PLN reasoning including Atoms that ex-
plicitly reference spatial and temporal relationships

• STI: Shorthand for Short Term Importance
• Strength: The main component of a TruthValue object, lying in the in-

terval [0,1], referring either to a probability (in cases like InheritanceLink,
SimilarityLink, EquivalenceLink, ImplicationLink, etc.) or a fuzzy value
(as in MemberLink, EvaluationLink).

• Strong Self-Modification: This is generally used as synonymous with
Self-Modification, in a CogPrime context.

• Subsymbolic: Involving processing of data using elements that have no
correspondence to natural language terms, nor abstract concepts; and
that are not naturally interpreted as symbolically ”standing for” other
things. Often used to refer to processes such as perception processing or
motor control, which are concerned with entities like pixels or commands
like ”rotate servomotor 15 by 10 degrees theta and 55 degrees phi.” The
distinction between ”symbolic” and ”subsymbolic” is conventional in the
history of AI, but seems difficult to formalize rigorously. Logic-based AI
systems are typically considered ”symbolic”, yet

• Supercompilation: A technique for program optimization, which glob-
ally rewrites a program into a usually very different looking program that
does the same thing. A prototype supercompiler was applied to Combo
programs with successful results.

• Surface Realization: The process of taking a collection of Atoms and
transforming them into a series of words in a (usually natural) language.
A stage in the overall process of language generation.

• Symbol Grounding: The mapping of a symbolic term into perceptual
or motoric entities that help define the meaning of the symbolic term.
For instance, the concept ”Cat” may be grounded by images of cats,
experiences of interactions with cats, imaginations of being a cat, etc.

• Symbolic: Pertaining to the formation or manipulation of symbols, i.e.
mental entities that are explicitly constructed to represent other entities.
Often contrasted with subsymbolic.

• Syntax-Semantics Correlation: In the context of MOSES and pro-
gram learning more broadly, this refers to the property via which distance
in syntactic space (distance between the syntactic structure of programs,
e.g. if they’re represented as program trees) and semantic space (dis-
tance between the behaviors of programs, e.g. if they’re represented as
sets of input/output pairs) are reasonably well correlated. This can of-
ten happen among sets of programs that are not too widely dispersed
in program space. The Reduct library is used to place Combo programs
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in Elegant Normal Form, which increases the level of syntax-semantics
programs between them. The programs in a single MOSES deme are
often closely enough clustered together that they have reasonably high
syntax-semantics correlation.

• System Activity Table: An OpenCog component that records infor-
mation regarding what a system did in the past.

• Temporal Inference: Reasoning that heavily involves Atoms represent-
ing temporal information, e.g. information about the duration of events,
or their temporal relationship (before, after, during, beginning, ending).
As implemented in CogPrime , makes use of an uncertain version of Allen
Interval Algebra.

• Truth Value: A package of information associated with an Atom, in-
dicating its degree of truth. SimpleTruthValue and IndefiniteTruthValue
are two common, particular kinds. Multiple truth values associated with
the same Atom from different perspectives may be grouped into Com-
positeTruthValue objects.

• Universal Intelligence: A technical term introduced by Shane Legg
and Marcus Hutter, describing (roughly speaking) the average capability
of a system to carry out computable goals in computable environments,
where goal/environment pairs are weighted via the length of the shortest
program for computing them.

• Urge: In OpenPsi, an Urge develops when a Demand deviates from its
target range.

• Very Long Term Importance (VLTI): A bit associated with Atoms,
which determines whether, when an Atom is forgotten (removed from
RAM), it is saved to disk (frozen) or simply deleted.

• Virtual AGI Preschool: A virtual world intended for AGI teaching/-
training/learning, bearing broad resemblance to the preschool environ-
ments used for young humans.

• Virtual Embodiment: Using an AGI to control an agent living in a
virtual world or game world, typically (but not necessarily) a 3D world
with broad similarity to the everyday human world.

• Webmind AI Engine: A predecessor to the Novamente Cognition En-
gine and OpenCog, developed 1997-2001 Ð with many similar concepts
(and also some different ones) but quite different algorithms and software
architecture





Appendix B
Steps Toward a Formal Theory of
Cognitive Structure and Dynamics

B.1 Introduction

Transforming the conceptual and formal ideas of Section ?? into rigorous
mathematical theory will be a large enterprise, and is not something we have
achieved so far. However, we do believe we have some idea regarding what
kind of mathematical and conceptual toolset will be useful for enacting this
transformation. In this appendix we will elaborate our ideas regarding this
toolset, and in the process present some concrete notions such as a novel
mathematical formulation of the concept of cognitive synergy, and a more
formal statement of many of the "key claims" regarding CogPrime given in
Chapter 6.

The key ideas involved here are: modeling multiple memory types as math-
ematical categories (with functors mapping between them), modeling memory
items as probability distributions, and measuring distance between memory
items using two metrics, one based on algorithmic information theory and one
on classical information geometry. Building on these ideas, core hypotheses
are then presented:

• a syntax-semantics correlation principle, stating that in a successful
AGI system, these two metrics should be roughly correlated

• a cognitive geometrodynamics principle, stating that on the whole
intelligent minds tend to follow geodesics (shortest paths) in mindspace,
according to various appropriately defined metrics (e.g. the metric mea-
suring the distance between two entities in terms of the length and/or
runtime of the shortest programs computing one from the other).

• a cognitive synergy principle, stating that shorter paths may be found
through the composite mindspace formed by considering multiple mem-
ory types together, than by following the geodesics in the mindspaces
corresponding to individual memory types.

These ideas are not strictly necessary for understanding the CogPrime de-
sign as outlined in Part 2 of this book. However, our hope is that they will
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be helpful later on for elaborating a deeper theoretical understanding of Cog-
Prime , and hence in developing the technical aspects of the CogPrime design
beyond the stage presented in Part 2. Our sense is that, ultimately, the theory
and practice of AGI will both go most smoothly if they can proceed together,
with theory guiding algorithm and architecture tuning, but also inspired by
lessons learned via practical experimentation. At present the CogPrime de-
sign has been inspired by a combination of broad theoretical notions about
the overall architecture, and specific theoretical calculations regarding spe-
cific components. One of our hopes is that in later versions of CogPrime ,
precise theoretical calculations regarding the overall architecture may also be
possible, perhaps using ideas descending from those in this appendix.

B.2 Modeling Memory Types Using Category Theory

We begin by formalizing the different types of memory critical for a human-
like integrative AGI system, in a manner that makes it easy to study mappings
between different memory types. One way to do this is to consider each type
of memory as a category, in the sense of category theory. Specifically, in
this section we roughly indicate how one may model declarative, procedural,
episodic, attentional and intentional categories, thus providing a framework in
which mapping between these different memory types can be modeled using
functors. The discussion is quite brief and general, avoiding commitments
about how memories are implemented.

B.2.1 The Category of Procedural Memory

We model the space of procedures as a graph. We assume there exists a set
T of “atomic transformations” on the category CProc of procedures, so that
each t ∈ T maps an input procedure into a unique output procedure. We then
consider a labeled digraph whose nodes are objects in CProc (i.e. procedures),
and which has a link labeled t between procedure P1 and P2 if t maps P1

into P2. Morphisms on program space may then be taken as paths in this
digraph, i.e. as composite procedure transformations defined by sequences of
atomic procedure transformations.

As an example, if procedures are represented as ensembles of program
trees, where program trees are defined in the manner suggested in [LG09]
and 21, then one can consider tree edit operations as defined in [Bil05] as
one’s atomic transformations. If procedures are represented as formal neural
nets or ensembles thereof, one can take a similar approach.
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B.2.2 The Category of Declarative Memory

The category CDec of declarative knowledge may be handled somewhat simi-
larly, via assuming the existence of a set of transformations between declara-
tive knowledge items, constructing a labeled digraph induced by these trans-
formations, and defining morphisms as paths in this digraph. For example,
if declarative knowledge items are represented as expressions in some logi-
cal language, then transformations may be naturally taken to correspond to
inference steps in the associated logic system. Morphisms then represent se-
quences of inference steps that transform one logical expression into another.

B.2.3 The Category of Episodic Memory

What about episodic memory – the record an intelligence keeps of its own
experiences? Given that we are talking about intelligences living in a world
characterized by 3 spatial dimensions and one temporal dimension, one way to
model a remembered episode (i.e., an object in the category CEp of episodic
memories) is as as a scalar field defined over a grid-cell discretization of
4D spacetime. The scalar field, integrated over some region of spacetime,
tells the extent to which that region belongs to the episode. In this way one
may also consider episodes as fuzzy sets of spacetime regions. We may then
consider a category whose objects are episode-sets, i.e. fuzzy sets of fuzzy sets
of spacetime regions.

To define morphisms on the space of episode-sets, one approach is to as-
sociate an episode E with the set PE,ε of programs that calculate the episode
within a given error ε. One may then construct a graph whose nodes are
episode-sets, and in which E1 is linked to E2 if applying an atomic procedure-
transformation to some program in PE1,ε yields a program in PE2,ε .

B.2.4 The Category of Intentional Memory

To handle the category CInt of intentional knowledge, we recall that in our
formal agents model, goals are functions. Therefore, to specify the category
of goals a logic of functions may be used (e.g. as in [HP91]), transformations
corresponding to logical inference steps in the logic of functions.
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B.2.5 The Category of Attentional Memory

Finally, the category CAtt of attentional knowledge is handled somewhat
similarly to goals. Attentional evaluations may be modeled as maps from
elements of CInt ∪ CDec ∪ CEp ∪ CProc into a space V of AttentionValues.
As such, attentional evaluations are functions, and may be considered as a
category in a manner similar to the goal functions.

B.3 Modeling Memory Type Conversions Using
Functors

Having modeled memory types as categories, we may now model conversions
between memory types as mappings between categories. This is one step on
the path to formalizing the notion of cognitive synergy within the formal
cognitive architecture presented in the previous section.

B.3.1 Converting Between Declarative and Procedural
Knowledge

To understand conversion back and forth between declarative and procedural
knowledge, consider the cases:

• the category blue versus the procedure isBlue that outputs a number in
[0, 1] indicating the degree of blueness of its input
• the statement “the sky is blue” versus the procedure that outputs a num-

ber [0, 1] indicating the degree to which its input is semantically similar
to the statement “the sky is blue”
• a procedure for serving a tennis ball on the singles boundary at the edge

of the service box, as close as possible to the net; versus a detailed descrip-
tion of this procedure, of the sort that could be communicated verbally
(though it might take a long time)
• a procedure for multiplying numbers, versus a verbal description of that

procedure
• a logical description of the proof of a theorem based on some axioms;

versus a procedure that produces the theorem given the axioms as inputs

From these examples we can see that procedural and declarative knowledge
are in a sense interchangeable; and yet, some entities seem more naturally rep-
resented procedurally, whereas other seem more naturally represented declar-
atively. Relatedly, it seems that some knowledge is more easily obtained via
learning algorithms that operate on procedural representations; and other
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knowledge is more easily obtained via learning algorithms that operate on
declarative representations.

Formally, we may define a “procedure declaratization” as a functor from
KProc to KDec; in other words, a pair of mappings (r, s) so that

• r maps each object in KProc into some object in KDec

• s maps each morphism fProc,i in KProc into some morphism in KDec, in
a way that obeys s(fProc,i ◦ fProc,j) = s(fProc,i) ◦ s(fProc,j)

Similarly, we may define a “declaration procedurization” as a functor from
KDec to KProc.

B.3.2 Symbol Grounding: Converting Between Episodic
and Declarative Knowledge

Next we consider converting back and forth between episodic and declara-
tive knowledge. Particular cases of this conversion have received significant
attention in the cognitive science literature, referred to by the term “symbol
grounding.”

It is relatively straightforward to define “episode declaratization” and “dec-
laration episodization” functors formally in the manner of the above defini-
tions regarding declarative/procedural conversion. Conceptually,

• Episode declaratization produces a declaration describing an episode-set
(naturally this declaration may be a conjunction of many simple decla-
rations)
• Declaration episodization produces an episode-set defined as the set of

episodes whose descriptions include a certain declaration

As a very simple example of declaration episodization: the predicate
isCat(x) could be mapped into the fuzzy set E of episodes containing cats,
where the degree of membership of e in E could be measured as the de-
gree to which e contains a cat. In this case, the episode-set would commonly
be called the “grounding” of the predicate. Similarly, a relationship such as
a certain sense of the preposition “with” could be mapped into the set of
episodes containing relationships between physical entities that embody this
word-sense.

As a very simple example of episode declaratization: an episode that an
agent experienced while playing fetch with someone, could be mapped into a
description of the episode including information about the kind of ball being
used in the “fetch” game, the name and other properties of the other person
participating in the “fetch” game, the length of time the game lasted, etc.
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B.3.2.1 Algorithmically Performing Episodic/Declarative
Conversion

One way that these processes could occur in an intelligent system would
be for episode declaratization to guide both processes. That is, the system
would need some capability to abstract declarative knowledge from observed
or remembered episodes. Then, given a description, the system could carry
out declaration episodization via solving the “inverse problem” of episode
declaratization, i.e. given a declarative object D

1. First it could search episodic memory for episodes Ei whose (stored or
on-the-fly-computed) descriptions fully or approximately match D

2. If any of the Ei is extremely accurately describable by D, then it is
returned as the answer

3. Otherwise, if some of the Ei are moderately but not extremely accurately
describable by D, they are used as initial guesses for local search aimed
at finding some episode E whose description closely matches D

4. If no sufficiently promising Ei can be found, then a more complex cogni-
tive process is carried out, for instance in an CogPrime system,

• Inference may be carried out to find Ei that lead to descriptions Di

that are inferentially found to be closely equivalent to D (in spite of
this near-equivalence not being obvious without inference)

• Evolutionary learning may be carried out to “evolve” episodes, with
the fitness function defined in terms of describability by D

B.3.2.2 Development of Better Symbol Groundings as Natural
Transformation

As an application of the modeling of memory types as categories, it’s in-
teresting to think about the interpretation of functor categories and natural
transformations in the context of memory types, and in particular in the con-
text of “symbol groundings” of declarative knowledge in episodic knowledge.

First of all, the functor category (CEp)CDec

• has as objects all functors from CDec to CEp (e.g. all methods of assigning
experiences to the sets of declarations satisfying them, which nicely map
transformation paths into transformation paths)
• has as morphisms the natural transformations between these functors.

That is, suppose F and G are functors between CDec and CEp ; that is, F
and G are two different ways of grounding declarative knowledge in episodic
knowledge. Then, a natural transformation η from F to G associates to every
object X in CDec (i.e., to every declaration X) a morphism ηX : F (X) →
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G(X) in CEp (that is, ηX is a composite transformation mapping the episode-
set F (X) into the episode-set G(X)) so that: for every morphism f : X → Y
in CDec we have ηY ◦ F (f) = G(f) ◦ ηX .

An easier way to conceptualize this may be to note that in the commutative
diagram

F (X)
F (f) //

ηX

��

F (Y )

ηY

��
G(X)

G(f)
// G(Y )

we have a situation where

• X and Y represent declarations
• f represents a sequence of atomic transformations between declarations
• all corners of the diagram correspond to episode-sets
• all arrows correspond to sequences of atomic transformations between

episode-sets
• ηX and ηY represent sequences of atomic transformations between episode-

sets

In other words, a natural transformation between two methods of ground-
ing is: a mapping that assigns to each declaration, a morphism on episodic
memory that preserves the commutative diagram with respect to the two
methods of grounding

Cognitively, what this suggest is that developing better and better ground-
ings is a matter of starting with one grounding and then naturally transform-
ing it into better and better groundings.

To make things a little clearer, we now present the above commutative dia-
gram using a more transparent, application-specific notation. Let us consider
a specific example wherein:

• X is represented by the predicate isT iger, Y is represented by the pred-
icate isCat

• f is represented by an example inference trail (i.e. transformation process)
leading from isT iger to isCat, which we will denote isa(tiger, cat)

• F and G are relabeled Grounding1 and Grounding2 (as these are two
functors that ground declarative knowledge in episodic knowledge)

• F (X) is relabeled TigerEpisodes1 (as it’s the set of episodes associated
with isT iger under the grounding Grounding1; similarly, F (Y ) is re-
labeled CatEpisodes1, G(X) is relabeled TigerEpisodes2, and G(Y ) is
relabeled CatEpisodes2

• F (f) is relabeled Grounding1(isa(tiger, cat)); and G(f) is relabeled
Grounding2(isa(tiger, cat))
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• ηX and ηY become ηisT iger and ηisCat respectively

With these relabelings, the above commutative diagram looks like

TigerEpisodes1
Grounding1(isa(tiger,cat)) //

ηisTiger

��

CatEpisodes1

ηisCat

��
TigerEpisodes2

Grounding2(isa(tiger,cat))
// CatEpisodes2

One may draw similar diagrams involving the other pairs of memory types,
with similar interpretations.

B.3.3 Converting Between Episodic and Procedural
Knowledge

Mapping between episodic and procedural knowledge may be done indirectly
via the mappings already described above. Of course, such mappings could
also be constructed directly but for our present purposes, the indirect ap-
proach will suffice.

Episode procedurization maps an episode-set into the set of procedures
whose execution is part of the description of the episode-set. A simple example
of episode procedurization would be: mapping a set of episodes involving
playing “fetch” into procedures for coordinating the fetch game, throwing an
object, catching an object, walking, and so forth.

Procedure episodization maps a procedure into the set of episodes ap-
pearing to contain executions of the procedure. For instance, a procedure for
playing fetch would map into a set of episodes involving playing fetch; or,
a procedure for adding numbers would map into a set of episodes involving
addition, which might include a variety of things such as:

• “textbook examples” such as: a set of two apples, and a set of three apples,
merging to form a set of five apples
• a financial transaction at a cash register in a store, involving the purchase

of several items and the summing of their prices into a composite price
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B.3.4 Converting Intentional or Attentional Knowledge
into Declarative or Procedural Knowledge

Attentional valuations and goals are considered as functions, thus, though
they may be represented in various “native” forms, their conversion into pro-
cedural knowledge is conceptually straightforward.

Conversion to declarative knowledge may occur by way of procedural
knowledge, or may be more easily considered directly in some cases. For
instance, the assignment of attention values to declarative knowledge items
is easily represented as declarative knowledge, i.e. using statements of the
form “Knowledge item K1 has attention value V1.”

B.3.5 Converting Episodic Knowledge into Intentional
or Attentional Knowledge

Episodes may contain implicit information about which entities should be
attended in which contexts, and which goals have which subgoals in which
contexts. Mining this information is not a simple process and requires appli-
cation of significant intelligence.

B.4 Metrics on Memory Spaces

Bringing together the ideas from the previous sections, we now explain how
to use the above ideas to define geometric structures for cognitive space, via
defining two metrics on the space of memory store dynamic states. Specif-
ically, we define the dynamic state or d-state of a memory store (e.g. at-
tentional, procedural, etc.) as the series of states of that memory store (as a
whole) during a time-interval. Generally speaking, it is necessary to look at d-
states rather than instantaneous memory states because sometimes memory
systems may store information using dynamical patterns rather than fixed
structures.

It’s worth noting that, according to the metrics introduced here, the above-
described mappings between memory types are topologically continuous,
but involve considerable geometric distortion – so that e.g., two procedures
that are nearby in the procedure-based mindspace, may be distant in the
declarative-based mindspace. This observation will lead us to the notion of
cognitive synergy, below.
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B.4.1 Information Geometry on Memory Spaces

Our first approach involves viewing memory store d-states as probability dis-
tributions. A d-state spanning time interval (p, q)may be viewed as a mapping
whose input is the state of the world and the other memory stores during a
given interval of time (r, s), and whose output is the state of the memory itself
during interval (t, u). Various relations between these endpoints may be uti-
lized, achieving different definitions of the mapping e.g. p = r = t, q = s = u
(in which case the d-state and its input and output are contemporaneous) or
else p = r, q = s = t (in which case the output occurs after the simultaneous
d-state and input), etc. In many cases this mapping will be stochastic. If one
assumes that the input is an approximation of the state of the world and the
other memory stores, then the mapping will nearly always be stochastic. So
in this way, we may model the total contents of a given memory store at a
certain point in time as a probability distribution. And the process of learn-
ing is then modeled as one of coupled changes in multiple memory stores, in
such a way as to enable ongoingly improved achievement of system goals.

Having modeled memory store states as probability distributions, the prob-
lem of measuring distance between memory store states is reduced to the
problem of measuring distance between probability distributions. But this
problem has a well-known solution: the Fisher-Rao metric!

Fisher information is a statistical quantity which has a a variety of ap-
plications, ranging beyond statistical data analysis, including physics [Fri98],
psychology and AI [AN00]. Put simply, FI is a formal way of measuring the
amount of information that an observable random variable X carries about
an unknown parameter θ upon which the probability of X depends. FI forms
the basis of the Fisher-Rao metric, which has been proved the only Rieman-
nian metric on the space of probability distributions satisfying certain natural
properties regarding invariance with respect to coordinate transformations.
Typically θ in the FI is considered to be a real multidimensional vector; how-
ever, [Dab99] has presented a FI variant that imposes basically no restrictions
on the form of θ, which is what we need here.

Suppose we have a random variable X with a probability function f(X, θ)
that depends on a parameter θ that lives in some space M that is not nec-
essarily a dimensional space. Let E ⊆ R have a limit point at t ∈ R, and let
γ : E →M be a path. We may then consider a function G(t) = ln f(X, γ(t));
and, letting γ(0) = θ, we may then define the generalized Fisher information
as I(θ)γ = IX(θ)γ = E

[((
∂
∂t ln f(X; γ(t))

)2) |θ].
Next, Dabak [Dab99] has shown that the geodesic between θ and θ′ is given

by the exponential weighted curve (γ(t)) (x) = f(x,θ)1−tf(x,θ′)t∫
f(y,θ)1−tf(y,θ′)tdy

, under the
weak condition that the log-likelihood ratios with respect to f(X, θ) and
f(X, θ′) are finite. It follows that if we use this form of curve, then the
generalized Fisher information reduces properly to the Fisher information in
the case of dimensional spaces. Also, along this sort of curve, the sum of
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the Kullback-Leibler distances between θ and θ′, known as the J-divergence,
equals the integral of the Fisher information along the geodesic connecting θ
and θ′.

Finally, another useful step for our purposes is to bring Fisher information
together with imprecise and indefinite probabilities as discussed in [GIGH08].
For instance an indefinite probability takes the form ((L,U), k, b) and rep-
resents an envelope of probability distributions, whose means after k more
observations lie in (L,U) with probability b. The Fisher-Rao metric between
probability distributions is naturally extended to yield a metric between in-
definite probability distributions.

B.4.2 Algorithmic Distance on Memory Spaces

A conceptually quite different way to measure the distance between two d-
states, on the other hand, is using algorithmic information theory. Assum-
ing a fixed Universal Turing Machine M , one may define H(S1, S2) as the
length of the shortest self-delimiting program which, given as input d-state
S1, produces as output d-state S2. A metric is then obtained via setting
d(S1, S2) = (H(S1, S2) +H(S2, S1)/2. This tells you the computational cost
of transforming S1 into S2.

There are variations of this which may also be relevant; for instance
[YGSS10] defines the generalized complexity criterionKΦ(x) = mini∈N{Φ(i, τi)|L(pi)) =
x}, where L is a programming language, pi is the i’th program executable
by L under an enumeration in order of nonincreasing program length, τi is
the execution time of the program pi, L(x) is the result of L executing pi
to obtain output x, and Φ is a function mapping pairs of integers into pos-
itive reals, representing the trade-off between program length and memory.
Via modulating Φ, one may cause this complexity criterion to weight only
program length (like standard algorithmic information theory), only runtime
(like the speed prior), or to balance the two against each other in various
ways.

Suppose one uses the generalized complexity criterion, but looking only
at programs pi that are given S1 as input. Then KΦ(S2), relative to this
list of programs, yields an asymmetric distance HΦ(S1, S2), which may be
symmetrized as above to yield dΦ(S1, S2). This gives a more flexible measure
of how hard it is to get to one of (S1, S2) from the other one, in terms of both
memory and processing time.

One may discuss geodesics in this sort of algorithmic metric space, just as
in Fisher-Rao space. A geodesic in algorithmic metric space has the property
that, between any two points on the path, the integral of the algorithmic
complexity incurred while following the path is less than or equal to that
which would be incurred by following any other path between those two
points. The algorithmic metric is not equivalent to the Fisher-Rao metric, a
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fact that is consistent with Cencov’s Theorem because the algorithmic metric
is not Riemannian (i.e. it is not locally approximated by a metric defined via
any inner product).

B.5 Three Hypotheses About the Geometry of Mind

Now we present three hypotheses regarding generally intelligent systems, us-
ing the conceptual and mathematical machinery we have built.

B.5.1 Hypothesis 1: Syntax-Semantics Correlation

The informational and algorithmic metrics, as defined above, are not equiv-
alent nor necessarily closely related; however, we hypothesize that on the
whole, systems will operate more intelligently if the two metrics are well cor-
related, implying that geodesics in one space should generally be relatively
short paths (even if not geodesics) in another.

This hypothesis is a more general version of the “syntax-semantics cor-
relation" property studied in [Loo06] in the context of automated program
learning. There, it is shown empirically that program learning is more effec-
tive when programs with similar syntax also have similar behaviors. Here,
we are suggesting that an intelligent system will be more effective if mem-
ory stores with similar structure and contents lead to similar effects (both
externally to the agent, and on other memory systems). Hopefully the basic
reason for this is clear. If syntax-semantics correlation holds, then learning
based on the internal properties of the memory store, can help figure out
things about the external effects of the memory store. On the other hand, if
it doesn’t hold, then it becomes quite difficult to figure out how to adjust the
internals of the memory to achieve desired effects.

The assumption of syntax-semantics correlation has huge implications for
the design of learning algorithms associated with memory stores. All of Cog-
Prime ’s learning algorithms are built on this assumption. For, example Cog-
Prime ’s MOSES procedure learning component [Loo06] assumes syntax-
semantics correlation for individual programs, from which it follows that the
property holds also on the level of the whole declarative memory store. And
CogPrime ’s PLN probabilistic inference component [GIGH08] uses an in-
ference control mechanism that seeks to guide a new inference via analogy
to prior similar inferences, thus embodying an assumption that structurally
similar inferences will lead to similar behaviors (conclusions).
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B.5.2 Hypothesis 2: Cognitive Geometrodynamics

In general relativity theory there is the notion of “geometrodynamics," refer-
ring to the feedback by which matter curves space, and then space determines
the movement of matter (via the rule that matter moves along geodesics in
curved spacetime) [MTW73]. One may wonder whether an analogous feed-
back exists in cognitive geometry. We hypothesize that the answer is yes, to a
limited extent. On the one hand, according to the above formalism, the cur-
vature of mindspace is induced by the knowledge in the mind. On the other
hand, one may view cognitive activity as approximately following geodesics
in mindspace.

Let’s say an intelligent system has the goal of producing knowledge meeting
certain characteristics (and note that the desired achievement of a practical
system objective may be framed in this way, as seeking the true knowledge
that the objective has been achieved). The goal then corresponds to some set
of d-states for some of the mind’s memory stores. A simplified but meaningful
view of cognitive dynamics is, then, that the system seeks the shortest path
from the current d-state to the region in d-state space comprising goal d-
states. For instance, considering the algorithmic metric, this reduces to the
statement that at each time point, the system seeks to move itself along a
path toward its goal, in a manner that requires the minimum computational
cost – i.e. along some algorithmic geodesic. And if there is syntax-semantics
correlation, then this movement is also approximately along a Fisher-Rao
geodesic.

And as the system progresses from its current state toward its goal-state, it
is creating new memories – which then curve mindspace, possibly changing it
substantially from the shape it had before the system started moving toward
its goal. This is a feedback conceptually analogous to, though in detail very
different from, general-relativistic geometrodynamics.

There is some subtlety here related to fuzziness. A system’s goals may be
achievable to various degrees, so that the goal region may be better modeled
as a fuzzy set of lists of regions. Also, the system’s current state may be better
viewed as a fuzzy set than as a crisp set. This is the case with CogPrime
, where uncertain knowledge is labeled with confidence values along with
probabilities; in this case the confidence of a logical statement may be viewed
as the fuzzy degree with which it belongs to the system’s current state. But
this doesn’t change the overall cognitive-geometrodynamic picture, it just
adds a new criterion; one may say that the cognition seeks a geodesic from
a high-degree portion of the current-state region to a high-degree portion of
the goal region.
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B.5.3 Hypothesis 3: Cognitive Synergy

Cognitive synergy, discussed extensively above, is a conceptual explanation of
what makes it possible for certain sorts of integrative, multi-component cog-
nitive systems to achieve powerful general intelligence [Goe09a]. The notion
pertains to systems that possess knowledge creation (i.e. pattern recognition
/ formation / learning) mechanisms corresponding to each multiple memory
types. For such a system to display cognitive synergy, each of these cognitive
processes must have the capability to recognize when it lacks the informa-
tion to perform effectively on its own; and in this case, to dynamically and
interactively draw information from knowledge creation mechanisms deal-
ing with other types of knowledge. Further, this cross-mechanism interac-
tion must have the result of enabling the knowledge creation mechanisms to
perform much more effectively in combination than they would if operated
non-interactively.

How does cognitive synergy manifest itself in the geometric perspective
we’ve sketched here? Perhaps the most straightforward way to explore it
is to construct a composite metric, merging together the individual metrics
associated with specific memory spaces.

In general, given N metrics dk(x, z), k = 1 . . . N defined on the same finite
space M , we can define the "min-combination" metric

dd1,...,dN (x, z) = miny0=x,yn+1=z,yi∈M,r(i)∈{1,...,N},i∈{1,...,n},n∈Z

n∑
i=0

dr(i)(yi, yi+1)

This metric is conceptually similar to (and mathematically generalizes) min-
cost metrics like the Levenshtein distance used to compare strings [Lev66]. To
see that it obeys the metric axioms is straightforward; the triangle inequality
follows similarly to the case of the Levenshtein metric. In the case where
M is infinite, one replaces min with inf (the infimum) and things proceed
similarly. The min-combination distance from x to z tells you the length of
the shortest path from x to z, using the understanding that for each portion
of the path, one can choose any one of the metrics being combined. Here we
are concerned with cases such as dsyn = ddProc,dDec,dEp,dAtt .

We can now articulate a geometric version of the principle of cognitive
synergy. Basically: cognitive synergy occurs when the synergetic metric yields
significantly shorter distances between relevant states and goals than any of
the memory-type-specific metrics. Formally, one may say that:

Definition B.1. An intelligent agent A (modeled by SRAM) displays cog-
nitive synergy to the extent

syn(A) ≡
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(dsynergetic(x, z)−min (dProc(x, z), dDec(x, z), dEp(x, z), dAtt(x, z))) dµ(x)dµ(z)

where µ measures the relevance of a state to the system’s goal-achieving
activity.

B.6 Next Steps in Refining These Ideas

These ideas may be developed in both practical and theoretical directions. On
the practical side, we have already had an interesting preliminary success, de-
scribed briefly in 23 where we show that (in some small examples at any rate)
replacing CogPrime ’s traditional algorithm for attentional learning with an
explicitly information-geometric algorithm leads to dramatic increases in the
intelligence of the attentional component. This work needs to be validated via
implementation of a scalable version of the information geometry algorithm
in question, and empirical work also needs to be done to validate the (qualita-
tively fairly clear) syntax-semantics correlation in this case. But tentatively,
this seems to be an early example of improvement to an AGI system result-
ing from modifying its design to more explicitly exploit the mind-geometric
principles outlined here.

Potentially, each of the inter-cognitive-process synergies implicit in the
CogPrime design may be formalized in the geometric terms outlined here,
and doing so is part of our research programme going forward.

More generally, on the theoretical side, a mass of open questions looms.
The geometry of spaces defined by the min-combination metric is not yet
well-understood, and neither is the Fisher-Rao metric over nondimensional
spaces or the algorithmic metric (especially in the case of generalized com-
plexity criteria). Also the interpretation of various classes of learning algo-
rithms in terms of cognitive geometrodynamics is a subtle matter, and may
prove especially fruitful for algorithms already defined in probabilistic or
information-theoretic terms.

B.7 Returning to Our Basic Claims about CogPrime

Finally, we return to the list of basic claims about CogPrime given at the end
of Chapter 1, and review their connection with the ideas in this appendix.
Not all of the claims there are directly related to the ideas given here, but
many of them are; to wit:

6. It is most effective to teach an AGI system aimed at roughly human-
like general intelligence via a mix of spontaneous learning and explicit
instruction, and to instruct it via a combination of imitation, reinforce-
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ment and correction, and a combination of linguistic and nonlinguistic
instruction

• Mindspace interpretation. Different sorts of learning are primar-
ily focused on different types of memory, and hence on different
mindspaces. The effectiveness of learning focused on a particular
memory type depends on multiple factors including: the general com-
petence of the agent’s learning process corresponding to that memory
store, the amount of knowledge already built up in that memory store,
and the degree of syntax-semantics correlation corresponding to that
memory store. In terms of geometrodynamics, learning in a manner
focused on a certain memory type, has significant impact in terms of
reshaping the mindspace implied by that memory store.

7. One effective approach to teaching an AGI system human language is
to supply it with some in-built linguistic facility, in the form of rule-
based and statistical-linguistics-based NLP systems, and then allow it to
improve and revise this facility based on experience

• Mindspace interpretation. Language learning purely in declara-
tive space (formal grammar rules), or purely in attentional space (sta-
tistical correlations between linguistic inputs), or purely in episodic or
procedural space (experiential learning), will not be nearly so effective
as language learning which spans multiple memory spaces. Language
learning (like many other kinds of humanly natural learning) is better
modeled as cognitive-synergetic cognitive geometrodynamics, rather
than as single-memory-type cognitive geometrodynamics.

8. An AGI system with adequate mechanisms for handling the key types
of knowledge mentioned above, and the capability to explicitly recognize
large-scale pattern in itself, should, upon sustained interaction with
an appropriate environment in pursuit of appropriate goals,
emerge a variety of complex structures in its internal knowledge network,
including (but not limited to)

• a hierarchical network, representing both a spatiotemporal hierarchy
and an approximate "default inheritance" hierarchy, cross-linked

• a heterarchical network of associativity, roughly aligned with the hi-
erarchical network

• a self network which is an approximate micro image of the whole
network

• inter-reflecting networks modeling self and others, reflecting a "mir-
rorhouse" design pattern

What does this mean geometrically?

• Mindspace interpretation. The self network and mirrorhouse net-
works imply a roughly fractal structure for mindspace, especially
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when considered across multiple memory types (since the self network
spans multiple memory types). Peripherally, it’s interesting that the
physical universe has a very roughly fractal structure too, e.g. with
solar systems within galaxies within galactic clusters; so doing ge-
ometrodynamics in roughly fractal curved spaces is not a new idea.

9. Given the strengths and weaknesses of current and near-future digital
computers,

a. A (loosely) neural-symbolic network is a good representation for di-
rectly storing many kinds of memory, and interfacing between those
that it doesn’t store directly
• Mindspace interpretation. The "neural" aspect stores asso-

ciative knowledge, and the "symbolic" aspect stores declarative
knowledge; and the superposition of the two in a single network
makes it convenient to implement cognitive processes embodying
cognitive synergy between the two types of knowledge.

b. Uncertain logic is a good way to handle declarative knowledge
• Mindspace interpretation. There are many senses in which

uncertain logic is "good" for AGI; but the core points are that:
– it makes representation of real-world relationships relatively

compact
– it makes inference chains of real-world utility relatively short
– it gives high syntax-semantics correlation for logical relation-

ships involving uncertainty (because it lends itself to syntactic
distance measures that treat uncertainty naturally, gauging
distance between two logical relationships based partly on
the distances between the corresponding uncertainty values;
e.g. the PLN metric defined in terms of SimilarityLink truth
values)

– because the statistical formulas for truth value calculation
are related to statistical formulas for association-finding, it
makes synergy between declarative and associative knowledge
relatively straightforward.

c. Programs are a good way to represent procedures (both cognitive and
physical-action, but perhaps not including low-level motor-control
procedures)

d. Evolutionary program learning is a good way to handle difficult pro-
gram learning problems
• Probabilistic learning on normalized programs is one effective ap-

proach to evolutionary program learning
• MOSES is one good realization

– Mindspace interpretation. Program normalization cre-
ates relatively high syntax-semantics correlation in procedu-
ral knowledge (program) space, and MOSES is an algorithm
that systematically exploits this knowledge.
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e. Multistart hill-climbing on normalized programs, with a strong Oc-
cam prior, is a good way to handle relatively straightforward program
learning problems

f. Activation spreading is a reasonable way to handle attentional knowl-
edge (though other approaches, with greater overhead cost, may pro-
vide better accuracy and may be appropriate in some situations)
• Artificial economics is an effective approach to activation spread-

ing in the context of neural-symbolic network.
• ECAN is one good realization, with Hebbian learning as one

route of learning associative relationships, and more sophisticated
methods such as information-geometric ones potentially also play-
ing a role

• A good trade-off between comprehensiveness and efficiency is to
focus on two kinds of attention: processor attention (represented
in CogPrime by ShortTermImportance) and memory attention
(represented in CogPrime by LongTermImportance)

The mindspace interpretation includes the observations that
• Artificial economics provides more convenient conversion between

attentional and declarative knowledge, compared to more biolog-
ically realistic neural net type models of attentional knowledge

• In one approach to structuring the attentional mindspace, his-
torical knowledge regarding what was worth attending (i.e. high-
strength HebbianLinks between Atoms that were in the Atten-
tionalFocus at the same time, and linkages between these maps
and system goals) serves to shape the mindspace, and learning
the other HebbianLinks in the network may be viewed as an at-
tempt to follow short paths through attentional mindspace (as
explicitly shown in Chapter 23).

g. Simulation is a good way to handle episodic knowledge (remembered
and imagined)
• Running an internal "world simulation engine" is an effective way

to handle simulation
What’s the mindspace interpretation? For example,
• The world simulation engine takes a certain set of cues and scat-

tered memories related to an episode, and creatively fills in the
gaps to create a full-fledged simulation of the episode. Syntax-
semantics correlation means that stating "sets of cues and scat-
tered memories" A and B are similar, is approximately the same
as stating that the corresponding full-fledged simulations are sim-
ilar.

• Many dreams seem to be examples of following paths through
episode space, from one episode to another semantically related
one, etc. But these paths are often aimless, though generally fol-
lowing semantic similarity. Trying to think of or remember an
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episode matching certain constraints, is a process where follow-
ing short paths through episodic mindspace is relevant.

h. Hybridization of one’s integrative neural-symbolic system with a spa-
tiotemporally hierarchical deep learning system is an effective way to
handle representation and learning of low-level sensorimotor knowl-
edge
• DeSTIN is one example of a deep learning system of this nature

that can be effective in this context
The mindspace interpretation includes the observations that
• Linkages between the internal nodes of DeSTIN and the
• Spatio-temporally hierarchical perception-action systems like DeS-

TIN have high syntax-sematics correlation for sensory knowledge,
as they embody the spatiotemporally hierarchical structure of the
perceived world

i. One effective way to handle goals is to represent them declaratively,
and allocate attention among them economically
• CogPrime ’s PLN/ECAN based framework for handling inten-

tional knowledge is one good realization
One aspect of themindspace interpretation is that using PLN and
ECAN together to represent goals, aids with the cognitive synergy
between declarative, associative and intentional space. Achieving a
goal is then (among other things) about finding short paths to the
goal thru declarations, associations and actions.

10. It is important for an intelligent system to have some way of recognizing
large-scale patterns in itself, and then embodying these patterns as new,
localized knowledge items in its memory

• Given the use of a neural-symbolic network for knowledge represen-
tation, a graph-mining based "map formation" heuristic is one good
way to do this

Key aspects of the mindspace interpretation are that:

• via map formation, associative (map) and declarative, procedural or
episodic (localized) knowledge are correlated, promoting cognitive
synergy

• approximate and emergent inference on concept maps, occurring via
associational processes, roughly mirrors portions of PLN reasoning
on declarative concepts and relationships. This aids greatly with cog-
nitive synergy, and in fact one can draw "natural transformations"
(in the language of category theory) between map inference and lo-
calized, declarative concept inference.

11. Occam’s Razor: Intelligence is closely tied to the creation of procedures
that achieve goals in environments in the simplest possible way.
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• Each of an AGI system’s cognitive algorithms should embody a "sim-
plicity bias" in some explicit or implicit form

Obviously, one aspect of the mindspace interpretation of this prin-
ciple is simply the geometrodynamic idea of following the shortest path
through mindspace, toward the appointed set of goal states. Also, this
principle is built into the definition of semantic space used in the
mindspace framework developed above, since computational simplicity
is used to define the semantic metric between memory items.

While the abstract "mind geometry" theory presented in this appendix
doesn’t (yet) provide a way of deriving the CogPrime design from first prin-
ciples, it does provide a useful general vocabulary for discussing the various
memory types and cognitive processes in CogPrime in a unified way. And it
also has some power to suggest novel algorithms to operated within cognitive
processes, as in the case of our work on information geometry and ECAN.
Whether mind geometry will prove a really useful ingredient in CogPrime
theory or AGI theory more broadly, remains to be determined; but we are
cautiously optimistic and intend to pursue further in this direction.



Appendix C
Emergent Reflexive Mental Structures

Co-authored with Tony Smith, Onar Aam and Kent Palmer

C.1 Introduction

This appendix deals with some complex emergent structures we suspect may
emerge in advanced CogPrime and other AGI systems. The ideas presented
here are flatly conjectural, and we stress that the CogPrime design is not
dependent thereupon. The more engineering-oriented reader may skip them
without any near-term loss. However, we do believe that this sort of rigorous
lateral thinking is an important part of any enterprise as ambitious as building
a human-level AGI.

We have stated that the crux of an AGI system really lies on the emergent
level – on the structures and dynamics that arise in the system as a result
of its own self-organization and its coupling with other minds and the ex-
ternal world. We have talked a bit about some of these emergent patterns –
e.g. maps and various sorts of networks – but by and large they have stayed
in the background. In this appendix we will indulge in a bit of speculative
thinking about some of the high-level emergent patterns that we believe may
emerge in AGI systems once they begin to move toward human-level intelli-
gence, and specifically once they acquire a reasonably sophisticated ability to
model themselves and other minds. ∗ These patterns go beyond the relatively
well-accepted network structures reviewed in chapter ??, and constitute an

∗ A note from Ben Goertzel. In connection with the material in this appendix, I would
like to warmly acknowledge Louis Kauffman for an act of kindness that occurred back in
1986, when I was a 19 year old PhD student, when he mailed me a copy of his manuscript
Sign and Space, which contained so many wonderful ideas and drawings related to the
themes considered here. Lou’s manuscript wasn’t my first introduction to the meme of
consciousness and self-reference – I got into these ideas first via reading Douglas Hofstadter
at age 13 in 1979, and then later via reading G. Spencer-Brown. But my brief written
correspondence with Lou (this was before email was common even in universities) and his
lovely hand-written and -drawn manuscript solidified my passion for these sorts of ideas,
and increased my confidence that they are not only fascinating but deeply meaningful.
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edgier, more ambitious hypothesis regarding the emergent network structures
of general intelligence.

More specifically, the thesis of this appendix is that there are certain ab-
stract algebraic structures that typify the self-structure of human beings and
any other intelligent systems relying on empathy for social intelligence. These
structures may be modeled using various sorts of mathematics, including hy-
persets and also algebraic structures called quaternions and octonions (which
also play a critical role in modern theoretical physics [DG94]). And, assuming
mature, reasonably intelligent AGI systems are created, it will be possible to
empirically determine whether the mathematical structures posited here do
or do not emerge in them.

C.2 Hypersets and Patterns

The first set of hypotheses we will pursue in this appendix is that the abstract
structures corresponding to free will, reflective consciousness and phenomenal
self are effectively modeled using the mathematics of hypersets.

What are these things called hypersets, which we posit as cognitive mod-
els?

In the standard axiomatizations of set theory, such as Zermelo-Frankel set
theory [?], there is an axiom called the Axiom of Foundation, which implies
that no set can contain itself as a member. That is, it implies that all sets are
"well founded" – they are built up from other sets, which in turn are built up
from other sets, etc., ultimately being built up from the empty set or from
atomic elements. The hierarchy via which sets are built from other sets may
be infinite (according to the usual Axiom of Infinity), but it goes in only one
direction – if set A is built from set B (or from some other set built from set
B), then set B can’t be built from set A (or from any other set built from set
A).

However, since very shortly after the Axiom of Foundation was formulated,
there have been various alternative axiomatizations which allow "non-well-
founded" sets (aka hypersets), i.e. sets that can contain themselves as mem-
bers, or have more complex circular membership structures. Hyperset theory
is generally formulated as an extension of classical set theory rather than a
replacement – i.e., the well-founded sets within a hyperset domain conform
to classical set theory. In recent decades the theory of non-well-founded sets
has been applied in computer science (e.g. process algebra [?]), linguistics
and natural language semantics (situation theory [Bar89]), philosophy (work
on the Liar Paradox [BE89]), and other areas.

For instance, in hyperset theory you can have

A = {A}
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A = {B, {A}}

and so forth. Using hypersets you can have functions that take themselves as
arguments, and many other interesting phenomena that aren’t permitted by
the standard axioms of set theory. The main work of this paper is to suggest
specific models of free will, reflective consciousness and phenomenal self in
terms of hyperset mathematics.

The reason the Axiom of Foundation was originally introduced was to
avoid paradoxes like the Russell Set (the set of all sets that contain them-
selves). None of these variant set theories allow all possible circular mem-
bership structures; but they allow restricted sets of such, sculpted to avoid
problems like the Russell Paradox.

One currently popular form of hyperset theory is obtained by replacing the
Axiom of Foundation with the Anti-Foundation Axiom (AFA) which, roughly
speaking, permits circular membership structures that map onto graphs in
a certain way. All the hypersets discussed here are easily observed to be
allowable under the AFA (according to the the Solution Lemma stated in
[Acz88]).

Specifically, the AFA uses the notion of an accessible pointed graph – a
directed graph with a distinguished element (the "root") such that for any
node in the graph there is at least one path in the directed graph from the root
to that node. The AFA states that every accessible pointed graph corresponds
to a unique set. For example, the graph consisting of a single vertex with a
loop corresponds to a set which contains only itself as element,

While the specific ideas presented here are novel, the idea of analyzing
consciousness and related structures in terms of infinite recursions and non-
foundational structures has occurred before, for instance in the works of Dou-
glas Hofstadter [Hof79], G. Spencer-Brown [SB67], Louis Kauffmann [Kau]
and Francisco Varela [Var79]. None of these works uses hypersets in partic-
ular; but a more important difference is that none of them attempts to deal
with particular psychological phenomena in terms of correlation, causation,
pattern theory or similar concepts; they essentially stop at the point of noting
the presence of a formalizable pattern of infinite recursion in reflective con-
sciousness. [Var79] does venture into practical psychology via porting some
of R.D. Laing’s psychosocial "knots" [Lai72] into a formal non-foundational
language; but this is a very specialized exercise that doesn’t involve model-
ing general psychological structures or processes. Situation semantics [Bar89]
does analyze various commonsense concepts and relationships using hyper-
sets; however, it doesn’t address issues of subjective experience explicitly, and
doesn’t present formal treatments of the phenomena considered here.
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C.2.1 Hypersets as Patterns in Physical or
Computational Systems

Hypersets are large infinite sets – they are certainly not computable – and
so one might wonder if a hyperset model of consciousness supports Penrose
[Pen96] and Hameroff’s [Ham87] notion of consciousness as involving as-yet
unknown physical dynamics involving uncomputable mathematics. However,
this is not our perspective.

In the following we will present a number of particular hypersets and
discuss their presence as patterns in intelligent systems. But this does not
imply that we are positing intelligent systems to fundamentally be hypersets,
in the sense that, for instance, classical physics posits intelligent systems to be
matter in 3+ 1 dimensional space. Rather, we are positing that it is possible
for hypersets to serve as patterns in physical systems, where the latter may be
described in terms of classical or modern physics, or in terms of computation.

How is this possible? If a hyperset can produce a somewhat accurate model
of a physical system, and is judged simpler than a detailed description of the
physical system, then it may be a pattern in that system according to the
definition of pattern given above.

Recall the definition of pattern given in chapter 3:

Definition 10 Given a metric space (M,d), and two functions c : M →
[0,∞] (the “simplicity measure”) and F : M → M (the “production relation-
ship”), we say that P ∈M is a pattern in X ∈M to the degree

ιPX =

((
1− d(F (P), X)

c(X)

)
c(X)− c(P)

c(X)

)+

This degree is called the pattern intensity of P in X.

To use this definition to bridge the gap between hypersets and ordinary
computer programs and physical systems, we may define the metric space
M to contain both hypersets and computer programs, and also tuples whose
elements may be freely drawn from either of these classes. Define the partial
order < so that if X is an entry in a tuple T , then X < T .

Distance between two programs may be defined using the algorithmic in-
formation metric

dI(A,B) = I(A|B) + I(B|A)

where I(A|B) is the length of the shortest self-delimiting program for com-
puting A given B [Cha08]. Distance between two hypersets X and Y may be
defined as

dH(X,Y ) = dI(g(A), g(B))
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where g(A) is the graph (A’s apg, in AFA lingo) picturing A’s membership
relationship. If A is a program and X is a hyperset, we may set d(A,X) =∞.

Next, the production relation F may be defined to act on a (hyper-
set,program) pair P = (X,A) via feeding the graph representing X (in some
standard encoding) to A as an input. According to this production relation,
P may be a pattern in the bit string B = A(g(X)); and since X < P , the
hyperset X may be a subpattern in the bit string B.

It follows from the above that a hyperset can be part of the mind of a
finite system described by a bit string, a computer program, or some other
finite representation. But what sense does this make conceptually? Suppose
that a finite system S contains entities of the form

C

G(C)

G(G(C))

G(G(G(C)))

...

Then it may be effective to compute S using a (hyperset, program) pair
containing the hyperset

X = G(X)

and a program that calculates the first k iterates of the hyperset. If so, then
the hyperset {X = G(X)} may be a subpattern in S. We will see some
concrete examples of this in the following.

Whether one thing is a pattern in another depends not only on production
but also on relative simplicity. So, if a system is studied by an observer who
is able to judge some hypersets as simpler than some computational entities,
then there is the possibility for hypersets to be subpatterns in computational
entities, according to that observer. For such an observer, there is the possi-
bility to model mental phenomena like will, self and reflective consciousness
as hypersets, consistently with the conceptualization of mind as pattern.

C.3 A Hyperset Model of Reflective Consciousness

Now we proceed to use hypersets to model the aspect of mind we call "re-
flective consciousness."

Whatever your view of the ultimate nature of consciousness, you probably
agree that different entities in the universe manifest different kinds of con-
sciousness or “awareness." Worms are aware in a different way than rocks;
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and dogs, pigs, pigeons and people are aware in a different way from worms.
In [Goe94] it is argued that hypersets can be used to model the sense in which
the latter beasts are conscious whereas worms are not – i.e. what might be
called "reflective consciousness."

We begin with the old cliche’ that

Consciousness is consciousness of consciousness

Note that this is nicely approximated by the series

A

Consciousness of A
Consciousness of consciousness of A

...

This is conceptually elegant, but doesn’t really serve as a definition or
precise characterization of consciousness. Even if one replaces it with

Reflective consciousness is reflective consciousness of reflective consciousness

it still isn’t really adequate as a model of most reflectively conscious experi-
ence – although it does seem to capture something meaningful.

In hyperset theory, one can write an equation

f = f(f)

with complete mathematical consistency. You feed f as input: f ... and you
receive as output: f. But while this sort of anti-foundational recursion may
be closely associated with consciousness, this simple equation itself doesn’t
tell you much about consciousness. We don’t really want to say

ReflectiveConsciousness = ReflectiveConsciousness(ReflectiveConsciousness)

It’s more useful to say:

Reflective consciousness is a hyperset, and reflective consciousness is
contained in its membership scope
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Here by the "membership scope" of a hyperset S, what we mean is the mem-
bers of S, plus the members of the members of S, etc. However, this is no
longer a definition of reflective consciousness, merely a characterization. What
it says is that reflective consciousness must be defined anti-foundationally as
some sort of construct via which reflective consciousness builds reflective con-
sciousness from reflective consciousness – but it doesn’t specify exactly how.

Putting this notion together with the discussion from Chapter 3 on pat-
terns, correlations and experience, we arrive at the following working defi-
nition of reflective consciousness. Assume the existence of some formal lan-
guage with enough power to represent nested logical predicates, e.g. standard
predicate calculus will suffice; let us refer to expressions in this language as
"declarative content." Then we may say

Definition C.1. "S is reflectively conscious of X" is defined as:
The declarative content that {"S is reflectively conscious of X" correlates
with "X is a pattern in S"}

For example: Being reflectively conscious of a tree means having in one’s mind
declarative knowledge of the form that one’s reflective consciousness of that
tree is correlated with that tree being a pattern in one’s overall mind-state.
Figure C.1 graphically depicts the above definition.

Note that this declarative knowledge doesn’t have to be explicitly rep-
resented in the experiencer’s mind as a well-formalized language – just as
pigeons, for instance, can carry out deductive reasoning without having a
formalization of the rules of Boolean or probabilistic logic in their brains. All
that is required is that the conscious mind has an internal "informal, possibly
implicit" language capable of expressing and manipulating simple hypersets.
Boolean logic is still a subpattern in the pigeon’s brain even though the pi-
geon never explicitly applies a Boolean logic rule, and similarly the hypersets
of reflective consciousness may be subpatterns in the pigeon’s brain in spite
of its inability to explicitly represent the underlying mathematics.

Turning next to the question of how these hyperset constructs may emerge
from finite systems, Figures C.2, C.3 and C.4 show the first few iterates of a
series of structures that would naturally be computed by a pattern containing
as a subpattern Ben’s reflective consciousness of his inner image of a money
tree. The presence of a number of iterates in this sort of series, as patterns
or subpatterns in Ben, will lead to the presence of the hyperset of "Ben’s
reflective consciousness of his inner image of a money tree" as a subpattern
in his mind.
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Fig. C.1 Graphical depiction of "Ben is reflectively conscious of his inner image of a
money tree"

C.4 A Hyperset Model of Will

The same approach can be used to define the notion of "will," by which is
meant the sort of willing process that we carry out in our minds when we
subjectively feel like we are deciding to make one choice rather than another
[Wal01].

In brief:

Definition C.2. "S wills X" is defined as:
The declarative content that {"S wills X" causally implies "S does X"}

Figure C.5 graphically depicts the above definition.
To fully explicate this is slightly more complicated than in the case of

reflective consciousness, due to the need to unravel what’s meant by "causal
implication." For sake of the present discussion we will adopt the view of cau-
sation presented in [GMIH08], according to which causal implication may be
defined as: Predictive implication combined with the existence of a plausible
causal mechanism.

More precisely, if A and B are two classes of events, then A "predictively
implies B" if it’s probabilistically true that in a situation where A occurs, B
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Fig. C.2 First iterate of a series that converges to Ben’s reflective consciousness of his
inner image of a money tree

often occurs afterwards. (Of course, this is dependent on a model of what is a
"situation", which is assumed to be part of the mind assessing the predictive
implication.)

And, a "plausible causal mechanism" associated with the assertion "A pre-
dictively implies B" means that, if one removed from one’s knowledge base
all specific instances of situations providing direct evidence for "A predic-
tively implies B", then the inferred evidence for "A predictively implies B"
would still be reasonably strong. (In PLN lingo, this means there is strong
intensional evidence for the predictive implication, along with extensional
evidence.)

If X and Y are particular events, then the probability of "X causally implies
Y" may be assessed by probabilistic inference based on the classes (A, B, etc.)
of events that X and Y belong to.
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Fig. C.3 Second iterate of a series that converges to Ben’s reflective consciousness of his
inner image of a money tree

Fig. C.4 Third iterate of a series that converges to Ben’s reflective consciousness of his
inner image of a money tree
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Fig. C.5 Graphical depiction of "Ben wills himself to kick the soccer ball"

C.4.1 In What Sense Is Will Free?

Briefly, what does this say about the philosophical issues traditionally asso-
ciated with the notion of "free will"?

It doesn’t suggest any validity for the idea that will somehow adds a mag-
ical ingredient beyond the familiar ingredients of "rules" plus "randomness."
In that sense, it’s not a very radical approach. It fits in with the modern un-
derstanding that free will is to a certain extent an "illusion", and that some
sort of "natural autonomy" [Wal01] is a more realistic notion.

However, it also suggests that "illusion" is not quite the right word. An act
of will may have causal implication, according to the psychological definition
of the latter, without this action of will violating the notion of deterministic/s-
tochastic equations of the universe. The key point is that causality is itself
a psychological notion (where within "psychological" I include cultural as
well as individual psychology). Causality is not a physical notion; there is no
branch of science that contains the notion of causation within its formal lan-
guage. In the internal language of mind, acts of will have causal impacts – and
this is consistent with the hypothesis that mental actions may potentially be
ultimately determined via determistic/stochastic lower-level dynamics. Acts
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of will exist on a different level of description than these lower-level dynam-
ics. The lower-level dynamics are part of a theory that compactly explains
the behavior of cells, molecules and particles; and some aspects of complex
higher-level systems like brains, bodies and societies. Will is part of a theory
that compactly explains the decisions of a mind to itself.

C.4.2 Connecting Will and Consciousness

Connecting back to reflective consciousness, we may say that:

In the domain of reflective conscious experiences, acts of will are
experienced as causal.

This may seem a perfectly obvious assertion. What’s nice is that, in the
present perspective, it seems to fall out of a precise, abstract characterization
of consciousness and will.

C.5 A Hyperset Model of Self

Finally, we posit a similar characterization for the cognitive structure called
the "phenomenal self" – i.e. the psychosocial model that an organism builds of
itself, to guide its interaction with the world and also its own internal choices.
For a masterfully thorough treatment of this entity, see Thomas Metzinger’s
book Being No One [Met04]).

One way to conceptualize self is in terms of the various forms of mem-
ory comprising a humanlike intelligence [TC05], which include procedural,
semantic and episodic memory.

In terms of procedural memory, an organism’s phenomenal self may be
viewed as a predictive model of the system’s behavior. It need not be a wholly
accurate predictive model; indeed many human selves are wildly inaccurate,
and aesthetically speaking, this can be part of their charm. But it is a pre-
dictive model that the system uses to predict its behavior.

In terms of declarative memory, a phenomenal self is used for explanation –
it is an explanatory model of the organism’s behaviors. It allows the organism
to carry out (more or less uncertain) inferences about what it has done and
is likely to do.

In terms of episodic memory, a phenomenal self is used as the protago-
nist of the organism’s remembered and constructed narratives. It’s a fictional
character, "based on a true story," simplified and sculpted to allow the or-
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ganism to tell itself and others (more or less) sensible stories about what it
does.

The simplest version of a hyperset model of self would be:

Definition C.3. "X is part of S’s phenomenal self" is defined as the declar-
ative content that
{"X is a part of S’s phenomenal self" correlates with "X is a persistent pattern
in S over time"}

Fig. C.6 Graphical depiction of "Ben’s representation-of/adaptation to his parrot is a part
of his phenomenal self" (Image of parrot is from a painting by Scheherazade Goertzel)

Figure C.6 graphically depicts the above definition.
A subtler version of the definition would take into account the multiplicity

of memory types:

Definition C.4. "X is part of S’s phenomenal self" is defined as the declar-
ative content that
{"X is a part of S’s phenomenal self" correlates with "X is a persistent pattern
in S’s declarative, procedural and episodic memory over time"}

One thing that’s nice about this definition (in both versions) is the rela-
tionship that it applies between self and reflective consciousness. In a formula:



984 C Emergent Reflexive Mental Structures

Self is to long-term memory as reflective consciousness is to short-term
memory

According to these definitions:

• A mind’s self is nothing more or less than its reflective consciousness of
its persistent being.

• A mind’s reflective consciousness is nothing more or less than the self of
its short-term being.

C.6 Validating Hyperset Models of Experience

We have made some rather bold hypotheses here, regarding the abstract
structures present in physical systems corresponding to the experiences of
reflective consciousness, free will and phenomenal self. How might these hy-
potheses be validated or refuted?

The key is the evaluation of hypersets as subpatterns in physical systems.
Taking reflective consciousness as an example, one could potentially validate
whether, when a person is (or, in the materialist view, reports being) reflec-
tively conscious of a certain apple being in front of them, the hypothetically
corresponding hyperset structure is actually a subpattern in their brain struc-
ture and dynamics. We cannot carry out this kind of data analysis on brains
yet, but it seems within the scope of physical science to do so.

But, suppose the hypotheses presented here are validated, in the sense
proposed above. Will this mean that the phenomena under discussion – free
will, reflective consciousness, phenomenal self – have been "understood"?

This depends on one’s philosophy of consciousness. According to a panpsy-
chist view, for instance, the answer would seem to be "yes," at least in a broad
sense – the hyperset models presented would then constitute a demonstra-
tively accurate model of the patterns in physical systems corresponding to
the particular manifestations of universal experience under discussion. And
it also seems that the answer would be "yes" according to a purely material-
ist perspective, since in that case we would have figured out what classes of
physical conditions correspond to the "experiential reports" under discussion.
Of course, both the panpsychist and materialist views are ones in which the
"hard problem" is not an easy problem but rather a non-problem!

The ideas presented here have originated within a patternist perspective,
in which what’s important is to identify the patterns constituting a given
phenomenon; and so we have sought to identify the patterns corresponding to
free will, reflective consciousness and phenomenal self. The "hard problem"
then has to do with the relationships between various qualities that these
patterns are hypothesized to possess (experiential versus physical) ... but
from the point of view of studying brains, building AI systems or conducting
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our everyday lives, it is generally the patterns (and their subpatterns) that
matter.

Finally, if the ideas presented above are accepted as a reasonable approach,
there is certainly much more work to be done. There are many different
states of consciousness, many different varieties of self, many different aspects
to the experience of willing, and so forth. These different particulars may
be modeled using hypersets, via extending and specializing the definitions
proposed above. This suggested research program constitutes a novel variety
of consciousness studies, using hypersets as a modeling language, which may
be guided from a variety of directions including empirics and introspection.

C.7 Implications for Practical Work on Machine
Consciousness

But what are the implications of the above ideas for machine consciousness in
particular? One very clear implication is that digital computers probably can
be just as conscious as humans can. Why the hedge "probably"? One reason
is the possibility that there are some very odd, unanticipated restrictions on
the patterns realizable in digital computers under the constraints of physi-
cal law. It is possible that special relativity and quantum theory, together,
don’t allow a digital computer to be smart enough to manifest self-reflective
patterns of the complexity characteristic of human consciousness. (Special
relativity means that big systems can’t think as fast as small ones; quantum
theory means that systems with small enough components have to be consid-
ered quantum computers rather than classical digital computers.) This seems
extremely unlikely to me, but it can’t be rated impossible at this point. And
of course, even if it’s true, it probably just means that machine conscious-
ness needs to use quantum machines, or whatever other kind of machines the
brain turns out to be.

Setting aside fairly remote possibilities, then, it seems that the patterns
characterizing reflective consciousness, self and will can likely emerge from
AI programs running on digital computers. But then, what more can be
said about how these entities might emerge from the particular cognitive
architectures and processes at play in the current AI field?

The answer to this question turns out to depend fairly sensitively on the
particular AI architecture under consideration. Here we will briefly explore
this issue in the context of CogPrime .

How do our hyperset models of reflective consciousness, self and will reflect
themselves in the CogPrime architecture?

There is no simple answer to these questions, as CogPrime is a complex
system with multiple interacting structures and dynamics, but we will give
here a broad outline.
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C.7.1 Attentional Focus in CogPrime

The key to understanding reflective consciousness in CogPrime is the ECAN
(Economic Attention Networks) component, according to which each Atom in
the system’s memory has certain ShortTermImportance (STI) and LongTer-
mImportance (LTI) values. These spread around the memory in a manner
vaguely similar to activation spreading in a neural net, but using equations
drawn from economics. The equations are specifically tuned so that, at any
given time, a certain relatively small subset of Atoms will have significantly
higher STI and LTI values than the rest. This set of important Atoms is
called the AttentionalFocus, and represents the "moving bubble of atten-
tion" mentioned above, corresponding roughly to the Global Workspace in
global workspace theory.

According to the patternist perspective, if some set of Atoms remains in
the AttentionalFocus for a sustained period of time (which is what the ECAN
equations are designed to encourage), then this Atom-set will be a persistent
pattern in the system, hence a significant part of the system’s mind and
consciousness. Furthermore, the ECAN equations encourage the formation
of densely connected networks of Atoms which are probabilistic attractors of
ECAN dynamics, and which serve as hubs of larger, looser networks known
as "maps." The relation between an attractor network in the Attentional-
Focus and the other parts of corresponding maps that have lower STI, is
conceptually related to the feeling humans have that the items in their focus
of reflective consciousness are connected to other dimly-perceived items "on
the fringes of consciousness."

The moving bubble of attention does not in itself constitute humanlike "re-
flective consciousness", but it prepares the context for this. Even a simplistic,
animal-like CogPrime system with almost no declarative understanding of it-
self or ability to model itself, may still have intensely conscious patterns, in
the sense of having persistent networks of Atoms frequently occupying its
AttentionalFocus, its global workspace.

C.7.2 Maps and Focused Attention in CogPrime

The relation between focused attention and distributed cognitive maps in
CogPrime bears some emphasis, and is a subtle point related to CogPrime
knowledge representation, which takes both explicit and implicit forms.
The explicit level consists of Atoms with clearly comprehensible meanings,
whereas the implicit level consists of “maps” as mentioned above– collections
of Atoms that become important in a coordinated manner, analogously to
cell assemblies in an attractor neural net.

Formation of small maps seems to follow from the logic of focused atten-
tion, along with hierarchical maps of a certain nature. But the argument for
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this is somewhat subtle, involving cognitive synergy between PLN inference
and economic attention allocation.

The nature of PLN is that the effectiveness of reasoning is maximized by
(among other strategies) minimizing the number of incorrect probabilistic
independence assumptions. If reasoning on N nodes, the way to minimize
independence assumptions is to use the full inclusion-exclusion formula to
calculate interdependencies between the N nodes. This involves 2N terms,
one for each subset of the N nodes. Very rarely, in practical cases, will one
have significant information about all these subsets. However, the nature
of focused attention is that the system seeks to find out about as many of
these subsets as possible, so as to be able to make the most accurate possible
inferences, hence minimizing the use of unjustified independence assumptions.
This implies that focused attention cannot hold too many items within it at
one time, because if N is too big, then doing a decent sampling of the subsets
of the N items is no longer realistic.

So, suppose that N items have been held within focused attention, mean-
ing that a lot of predicates embodying combinations of N items have been
constructed and evaluated and reasoned on. Then, during this extensive pro-
cess of attentional focus, many of the N items will be useful in combination
with each other - because of the existence of predicates joining the items.
Hence, many HebbianLinks (Atoms representing statistical association rela-
tionships) will grow between the N items - causing the set of N items to form
a map.

By this reasoning, focused attention in CogPrime is implicitly a map for-
mation process – even though its immediate purpose is not map formation,
but rather accurate inference (inference that minimizes independence as-
sumptions by computing as many cross terms as is possible based on available
direct and indirect evidence). Furthermore, it will encourage the formation of
maps with a small number of elements in them (say, N<10). However, these
elements may themselves be ConceptNodes grouping other nodes together,
perhaps grouping together nodes that are involved in maps. In this way, one
may see the formation of hierarchical maps, formed of clusters of clusters of
clusters..., where each cluster has N<10 elements in it.

It is tempting to postulate that any intelligent system must display similar
properties - so that focused consciousness, in general, has a strictly limited
scope and causes the formation of maps that have central cores of roughly
the same size as its scope. If this is indeed a general principle, it is an im-
portant one, because it tells you something about the general structure of
concept networks associated with intelligent systems, based on the computa-
tional resource constraints of the systems. Furthermore this ties in with the
architecture of the self.
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C.7.3 Reflective Consciousness, Self and Will in
CogPrime

So far we have observed the formation of simple maps in OpenCogPrime
systems, but we haven’t yet observed the emergence of the most important
map: the self-map. According to the theory underlying CogPrime , however,
we believe this will ensue once an OpenCogPrime -controlled virtual agent is
provided with sufficiently rich experience, including diverse interactions with
other agents.

The self-map is simply the network of Nodes and Links that a CogPrime
system uses to predict, explain and simulate its own behavior. "Reflection"
in the sense of cognitively reflecting on oneself, is modeled in CogPrime es-
sentially as "doing PLN inference, together with other cognitive operations,
in a manner heavily involving one’s self-map."

The hyperset models of reflective consciousness and self presented above,
appear in the context of CogPrime as approximative models of properties of
maps that emerge in the system due to ECAN AttentionalFocus/map dy-
namics and its relationship with other cognitive processes such as inference.
Our hypothesis is that, once a CogPrime system is exposed to the right sort
of experience, it will internally evolve maps associated with reflective cogni-
tion and self, which possess an internal recursive structure that is effectively
approximated using the hyperset models given above.

Will, then, emerges in CogPrime in part due to logical Atoms known as
CausalImplicationLinks. A link of this sort is formed between A and B if
the system finds it useful to hypothesis that "A causes B." If A is an action
that the system itself can take (a GroundedSchemaNode, in CogPrime lingo)
then this means roughly that "If I chose to do A, then B would be likely to
ensue." If A is not an action the system can take, then the meaning may be
interpreted similarly via abductive inference (i.e. via heuristic reasoning such
as "If I could do A, and I did it, then B would likely ensue").

The self-map is a distributed network phenomenon in CogPrime ’s Atom-
Space, but the cognitive process called MapFormation may cause specific
ConceptNodes to emerge that serve as hubs for this distributed network.
These Self Nodes may then get CausalImplicationLinks pointing out from
them – and in a mature CogPrime system, we hypothesize, these will cor-
relate with the system’s feeling of willing. The recursive structure of will
emerges directly from the recursive structure of self, in this case – if the sys-
tem ascribes cause to its self, then within itself there is also a model of its
ascription of cause to its self (so that the causal ascription becomes part of
the self that is being ascribed causal power), and so forth on multiple levels.
Thus one has a finite-depth recursion that is approximatively modeled by the
hyperset model of will described above.

All this goes well beyond what we have observed in the current CogPrime
system (we have done some causal inference, but not yet in conjunction with
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self-modeling), but it follows from the CogPrime design on a theoretical level,
and we will be working over the next years to bring these abstract notions
into practice.

C.7.4 Encouraging the Recognition of Self-Referential
Structures in the AtomSpace

Finally, we consider the possibility that a CogPrime system might explicitly
model its own self and behavior using hypersets.

This is quite an interesting possibility, because, according to the same logic
as map formation: if these hyperset structures are explicitly recognized when
they exist, they can then be reasoned on and otherwise further refined, which
may then cause them to exist more definitively ... and hence to be explicitly
recognized as yet more prominent patterns ... etc. The same virtuous cycle via
which ongoing map recognition and encapsulation leads to concept formation,
might potentially also be made to occur on the level of complex self-referential
structures, leading to their refinement, development and ongoing complexity.

One relatively simple way to achieve this in CogPrime would be to encode
hyperset structures and operators in the set of primitives of the "Combo"
language that CogPrime uses to represent procedural knowledge (a simple
LISP-like language with carefully crafted hooks into the AtomSpace and some
other special properties). If this were done, one could then recognize self-
referential patterns in the AtomTable via standard CogPrime methods like
MOSES and PLN.

This is quite possible, but it brings up a number of other deep issues that
go beyond the scope of this paper. For instance, most knowledge in Cog-
Prime is uncertain, so if one is to use hypersets in Combo, one would like to
be able to use them probabilistically. The most natural way to assign truth
values to hyperset structure turns is to use infinite order probability distri-
butions, as described in [Goe10b]. Infinite-order probability distributions are
partially-ordered, and so one can compare the extent to which two different
self-referential structures apply to a given body of data (e.g. an AtomTable),
via comparing the infinite-order distributions that constitute their truth val-
ues. In this way, one can recognize self-referential patterns in an AtomTable,
and carry out encapsulation of self-referential maps. This sounds very ab-
stract and complicated, but the class of infinite-order distributions defined
in the above-referenced papers actually have their truth values defined by
simple matrix mathematics, so there is really nothing that abstruse involved
in practice.

Clearly, with this subtle, currently unimplemented aspect of the CogPrime
design we are veering rather far from anything the human brain could plau-
sibly be doing in detail. This is fine, as CogPrime is not intended as a brain
emulation. But yet, some meaningful connections may be drawn to neuro-
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science. In ?? we have discussed how probabilistic logic might emerge from
the brain, and also how the brain may embody self-referential structures
like the ones considered here, via (perhaps using the hippocampus) encoding
whole neural nets as inputs to other neural nets. Regarding infinite-order
probabilities, it is certainly the case that the brain is wired to carry out ma-
trix manipulations, and reduced infinite-order probabilities to them, so that
it’s not completely outlandish to posit the brain could be doing something
mathematically analogous. Thus, all in all, it seems at least plausible that the
brain could be doing something roughly analogous to what we’ve described
here, though the details would obviously be very different.

C.8 Algebras of the Social Self

In the remainder of this appendix we will step even further out on our
philosophico-mathematical limb, and explore the possibility that the recur-
sive structures of the self involve mutual recursion according to the pattern
of the quaternionic and octonionic algebras.

The argument presented in favor of this radical hypothesis has two steps.
First, it is argued that much of human psychodynamics consists of “inter-
nal dialogue” between separate internal actors – some of which may be
conceived as subselves a la [Row90], some of which may be “virtual oth-
ers” intended to explicitly mirror other humans (or potentially other entities
like animals or software programs). Second, it is argued that the structure
of inter-observation among multiple inter-observing actors naturally leads
to quaternionic and octonionic algebras. Specifically, the structure of inter-
observation among three inter-observers is quaternionic; and the structure
of inter-observation among four inter-observers is octonionic. This mapping
between inter-observation and abstract algebra is made particularly vivid by
the realization that the quaternions model the physical situation of three mir-
rors facing each other in a triangle; whereas the octonions model the physical
situation of four mirrors facing each other in a tetrahedron, or more complex
packing structures related to tetrahedra. Using these facts, we may phrase
the main thesis to be pursued in the remainder of the appendix in a simple
form: The structure of the self of an empathic social intelligence is
that of a quaternionic or octonionic mirrorhouse.

There is an intriguing potential tie-in with recent developments in neuro-
biology, which suggest that empathic modeling of other minds may be carried
out in part via a “mirror neuron system” that enables a mind to experience
another’s actions, in a sense, “as if they were its own” [Ram06]. There are
also echoes here of Buckminster Fuller’s [FB82] philosophy, which viewed the
tetrahedron as an essential structure for internal and external reality (since
the tetrahedron is closely tied with the quaternion algebra).
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C.9 The Intrinsic Sociality of the Self

We begin the next step of our journey with a theme that is generally neglected
within AI yet is absolutely critical to humanlike intelligence: the social nature
of the individual mind. In what sense may it be said that the self of an
individual human being is a “social” system?

A 2001 special issue of “Journal of Consciousness Studies” [?] provided
an excellent summary of recent research and thinking on this topic. A basic
theme spanning several papers in the issue was as follows:

1. The human brain contains structures specifically configured to respond
to other humans’ behaviors (these appear to involve “mirror neurons” and
associated “mirror neuron systems,” on which we will elaborate below).

2. these structures are also used internally when no other people (or other
agents) are present, because human self is founded on a process of contin-
ual interaction between “phenomenal self” and “virtual other(s)”, where
the virtual others are reflected by the same neural processes used to mir-
ror actual others

3. so, the iteration between phenomenal self and actual others is highly
wrapped up with the interaction between phenomenal self and virtual
others

In other words, there is a complex dynamics according to which self is
fundamentally grounded in sociality and social interactions. The social in-
teractions that structure the self are in part grounded in the interactions
between the brain structures generating the phenomenal self and the brain
structures generating the virtual others. They are part of the dynamics of
the self as well as part of the interactions between self and actual others.
Human self is intrinsically not autonomous and independent, but rather is
intrinsically dialogic and intersubjective.

Another way to phrase this is in terms of “empathy.” That is, one can
imagine an intelligence that attempted to understand other minds in a purely
impersonal way, simply by reasoning about their behavior. But that doesn’t
seem to be the whole story of how humans do it. Rather, we do it, in part,
by running simulations of the other minds internally – by spawning virtual
actors, virtual selves within our own minds that emulate these other actors
(according our own understanding). This is why we have the feeling of em-
pathy – of feeling what another mind is feeling. It’s because we actually are
feeling what the other mind is feeling – in an approximation, because we’re
feeling what our internal simulation of the other mind is feeling. Thus, one
way to define “empathy” is as the understanding of other minds via inter-
nal simulation of them. Clearly, internal simulation is not the only strategy
the human mind takes to studying other minds – the patterns of errors we
make in predicting others’ behaviors indicates that there is also an inferen-
tial, analytical component to a human’s understanding of others (Carruthers
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and Smith, 1996). But empathic simulation is a key component, and we sug-
gest that, in normal humans (autistic humans may be a counterexample; see
Oberman et al, 2005), it is the most central aspect of other-modeling, the
framework upon which other sorts of other-modeling such as inferencing are
layered.

This perspective has some overlap with John Rowan’s theory of human
subpersonalities [Row90], according to which each person is analyzed as pos-
sessing multiple subselves representing different aspects of their nature ap-
propriate to different situations. Subselves may possess different capabilities,
sometimes different memories, and commonly differently biased views of the
common memory store. Numerous references to this sort of “internal com-
munity” of the mind exist in literature, e.g. Proust’s reference to “the several
gentlemen of whom I consist.”

Putting these various insights together, we arrive at a view of the interior
of the human mind as consisting of not a single self but a handful of actors
representing subselves and virtual others. In other words, we arrive at a
perspective of human mind as social mind, not only in the sense that humans
define themselves largely in terms of their interactions with others, but also in
the sense that humans are substantially internally constituted by collections
of interacting actors each with some level of self-understanding and autonomy.
In the following sections we follow this general concept up by providing a
specific hypothesis regarding the structure of this internal social mind: that
it corresponds to the structures of certain physical constructs (mirrorhouses)
and certain abstract algebras (quaternions, octonions and Clifford algebras).

C.10 Mirror Neurons and Associated Neural Systems

An increasingly popular line of thinking ties together the above ideas regard-
ing self-as-social-system, with recent neurobiological results regarding the
role of mirror neurons and associated neural systems in allowing human and
animal minds to interpret, predict and empathize with other human and ani-
mal minds with which they interact. The biology of mirror neuron systems is
still only partially understood, so that the tie-in between mirror neurons and
psychological structures as discussed here must be viewed as highly subject
to revision based on further refinement of our understanding in the biology
of mirror neurons. Ultimately, the core AI and cognitive science ideas of this
appendix would remain equally valid if one replaced “mirror neurons” and
associated systems with some other, functionally similar neural mechanism.
However, given that we do have some reasonably solid biological data – and
some additional, associated detailed biological hypotheses – regarding the
role of mirror neurons in supporting the functions of empathy and self, it is
interesting to investigate what these data and hypotheses suggest.
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In simplest terms, a mirror neuron is a neuron which fires both when
an animal acts and when the animal observes the same action performed
by another animal, especially one of the same species. Thus, the neuron is
said to “mirror” the behavior of another animal – creating a similar neuronal
activation patterns as if the observer itself were acting. Mirror neurons have
been directly observed in primates, and are believed to exist in humans as
well as in some other mammals and birds [Bla06]. Evidence suggestive of
mirror neuron activity has been found in human premotor cortex and inferior
parietal cortex. V.S. Ramachandran [Ram06] has been among the more vocal
advocates of the important of mirror neurons, arguing that they may be one
of the most important findings of neuroscience in the last decade, based on the
likelihood of their playing a strong role in language acquisition via imitative
learning.

The specific conditions under which mirror neuron activity occurs are still
being investigated and are not fully understood. Among the classic exam-
ples probed in lab experiments are grasping behavior, and facial expressions
indicating emotions such as disgust. When an ape sees another ape grasp
something, or make a face indicating disgust, mirror neurons fire in the ob-
serving ape’s brain, similar to what would happen if the observing ape were
the one doing the grabbing or experiencing the disgust. This is a pretty pow-
erful set of facts – what it says is that shared experience among differently
embodied minds is not a purely cultural or psychological phenomenon, it’s
something that is wired into our physiology. We really can feel each others’
feelings as if they were our own; to an extent, we may even be able to will
each others’ actions as if they were our own [?].

Equally interesting is that mirror neuron response often has to do with
the perceived intention or goal of an action, rather than the specific physical
action observed. If another animal is observed carrying out an action that is
expected to lead to a certain goal, the observing animal may experience neu-
ral activity that it would experience if it had achieved this goal. Furthermore,
mere visual observation of actions doesn’t necessarily elicit mirror neuron ac-
tivity. Recent studies [BBF+01, BLC+04] involved scanning the brains of
various human subjects while they were observing various events, such an-
other person speaking or biting something, a monkey lip-smacking or a dog
barking. The mirror neurons were not activated by the sight of the barking
dog – presumably because this was understood visually and not empathically
(since people don’t bark), but were activated by the sight of other people as
well as of monkeys.

There is also evidence that mirror neurons may come to be associated
with learned rather than just inherited capabilities. For instance, monkeys
have mirror neurons corresponding to specific activities such as tearing paper,
which are learned in the lab and have no close correlate in the wild [RC04].
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C.10.1 Mirror Systems

Perhaps the most ambitious hypothesis regarding the role of mirror neurons in
cognition is Rizzolatti and Arbib’s [RA98] Mirror System Hypothesis, which
conjectures that neural assemblies reliant on mirror neurons played a key role
in the evolution of language. These authors suggest that Broca’s area (asso-
ciated with speech production) evolved on top of a mirror system specialized
for grasping, and inherited from this mirror system a robust capacity for pat-
tern recognition and generation, which was then used to enable imitation of
vocalizations, and to encourage “parity” in which associations involving vo-
calizations are roughly the same for the speaker as for the hearer. According
to the MSH, the evolution of language proceeded according to the following
series of steps [ABR06]:

1. S1: Grasping.
2. S2: A mirror system for grasping, shared with the common ancestor of

human and monkey.
3. S3: A system for simple imitation of grasping shared with the common

ancestor of human and chimpanzee. The next 3 stages distinguish the
hominid line from that of the great apes:

4. S4: A complex imitation system for grasping.
5. S5: Protosign, a manual-based communication system that involves the

breakthrough from employing manual actions for praxis to using them
for pantomime (not just of manual actions), and then going beyond
pantomime to add conventionalized gestures that can disambiguate pan-
tomimes.

6. S6: Protospeech, resulting from linking the mechanisms for mediating the
semantics of protosign to a vocal apparatus of increasing flexibility. The
hypothesis is not that S5 was completed before the inception of S6, but
rather that protosign and protospeech evolved together in an expanding
spiral.

7. S7: Language: the change from action-object frames to verb-argument
structures to syntax and semantics.

As we will point out below, one may correlate this series of stages with a
series of mirrorhouses involving an increasing number of mirrors. This leads
to an elaboration of the MSH, which posits that evolutionarily, as the mirror-
house of self and attention gained more mirrors, the capability for linguistic
interaction became progressively more complex.

C.11 Quaternions and Octonions

In this section, as a preparation for our mathematical treatment of mirror-
houses and the self, we review the basics of the quaternion and octonion
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algebras. This is not original material, but it is repeated here because it is
not well known outside the mathematics and physics community. Readers
who want to learn more should follow the references.

Most readers will be aware of the real numbers and the complex numbers.
The complex numbers are formed by positing an “imaginary number” i so that
i*i=-1, and then looking at “complex numbers” of the form a+bi, where a and
b are real numbers. What is less well known is that this approach to extending
the real number system may be generalized further. The quaternions are
formed by positing three imaginary numbers i, j and k with i*i=j*j=k*k=-1,
and then looking at “quaternionic numbers” of the form a + bi + cj + dk. The
octonions are formed similarly, by positing 7 imaginary numbers i,j,k,E,I,J,K
and looking at “octonionic numbers” defined as linear combinations thereof.

Why 3 and 7? This is where the math gets interesting. The trick is that
only for these dimensionalities can one define a multiplication table for the
multiple imaginaries so that unique division and length measurement (norm-
ing) will work. For quaternions, the “magic multiplication table” looks like

i ∗ j = kj ∗ i = −k

j ∗ k = ik ∗ j = −i

k ∗ i = ji ∗ k = −j

Using this multiplication table, for any two quaternionic numbers A and B,
the equation

x ∗A = B

has a unique solution when solved for x. Quaternions are not commutative
under multiplication, unlike real and complex numbers: this can be seen from
the above multiplication table in which e.g. i*j is not equal to j*i. However,
quaternions are normed: one can define ||A||for a quaternion A, in the familiar
root-mean-square manner, and get a valid measure of length fulfilling the
mathematical axioms for a norm.

Note that you can also define an opposite multiplication for quaternions:
from i*j = k you can reverse to get j*i = k, which is an opposite multiplication,
that still works, and basically just constitutes a relabeling of the quaternions.
This is different from the complex numbers, where there is only one workable
way to define multiplication.

The quaternion algebra is fairly well known due to its uses in classical
physics and computer graphics (Hanson, 2006); the octonion algebra, also
known as Cayley’s octaves, is less well known but is adeptly reviewed by
John Baez (2002).

The magic multiplication table for 7 imaginaries that leads to the proper-
ties of unique division and normed-ness is as follows:



996 C Emergent Reflexive Mental Structures

1 i j k E I J K
i -1 k -j I -E -K J
j -k -1 i J K -E -I
k j -i -1 K -J I -E
E -I -J -K -1 i j k
I E -K J -i -1 -k j
J K E -I -j k -1 -i
K -J I E -k -j i -1

Actually this is just one of 480 basically equivalent (and equally “magical”)
forms of the octonionic multiplication table (as opposed to the 2 varieties
for quaternions, mentioned above). Note that, according to this or any of
the other 479 tables, octonionic multiplication is neither commutative nor
associative; but octonions do satisfy a weaker form of associativity called
alternativity, which means that the subalgebra generated by any two elements
is associative.

As it happens, the only normed division algebras over the reals are the real,
complex, quaternionic and octonionic number systems. These four algebras
also form the only alternative, finite-dimensional division algebras over the
reals. These theorems are nontrivial to prove, and fascinating to contemplate
– and even more fascinating when one considers their possible connection to
the emergent structures of general intelligence.

C.12 Modeling Mirrorhouses Using Quaternions and
Octonions

Now let’s move from algebras to mirrors – houses of mirrors, to be precise.
Interestingly shaped houses of mirrors!

Mirrorhouses are structures built up?from mutually facing mirrors which
reflect each others’ reflections. The?simplest mirrorhouse possible to con-
struct is made of two facing?mirrors, X and Y. X reflects Y and Y reflects
X.

In terms of hypersets, a simple 2-mirror mirrorhouse may be crudely de-
scribed as:

X = {Y }

Y = {X}

(ignoring the inversion effect of mirroring).
Note that if we try to unravel this hyperset by inserting one element into

the other we arrive at an infinite regress:

Y = {X = {Y = {X = {Y = {X = {Y = {{X = {Y = {...}}}}}}}}}



C.12 Modeling Mirrorhouses Using Quaternions and Octonions 997

This corresponds to the illusory infinite tube which interpenetrates both mir-
rors.

Suppose now that we constructed a mirrorhouse from three mirrors instead
of two. What hyper-structure would this have? Amazingly it turns out that
it has precisely the structure of the quaternion imaginaries.

Let i, j and k be hypersets representing three facing mirrors. We then have
that

i = {j, k}

j = {k, i}

and

k = {i, j}

where the notation i={j,k} means, e.g. that mirror i reflects mirrors j and k
in that order.

With three mirrors ordering now starts playing a vital role because mirror-
ing inverts left/right-handedness. If we denote the mirror?inversion operation
by “-” we have that

i = {j, k} = −{k, j}

j = {k, i} = −{i, k}

k = {i, j} = −{j, i}

But the above is exactly the structure of the quaternion triple of imaginaries:

i = j ∗ k = −k ∗ j

j = k ∗ i = −i ∗ k

k = i ∗ j = −j ∗ i

The quaternion algebra therefore is the precise model of three facing mirrors,
where we see mirror inversion as the quaternionic anti-commutation. The two
versions of the quaternion multiplication table correspond to the two possible
ways of arranging three mirrors into a triangular mirrorhouse.

When we move on to octonions, things get considerably subtler – though no
less elegant, and no less conceptually satisfying. While there are 2 possible
quaternionic mirrorhouses, there are 480 possible octonionic mirrorhouses,
corresponding to the 480 possible variant octonion multiplication tables!
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Recall that the octonions have 7 imaginaries i,j,k,E,I,J,K, which have 3
algebraic generators i,j,E (meaning that combining these three imaginaries
can give rise to all the others). The third generator E is distinguished from
the others, and we can vary it to get the 480 multiplications/mirrorhouses.

The simplest octonionic mirrorhouse is simply the tetrahedron (see Figure
C.12). More complex octonionic mirrorhouses correspond to tetrahedra with
extra mirrors placed over their internal corners, as shown in Figure C.12. This
gives rise to very interesting geometric structures, which have been explored
by Buckminster Fuller and also by various others throughout history.

Start with a 3-dimensional tetrahedron of 4 facing mirrors. Let the floor be
the distinguished third generator E and the 3 walls be I,J,K (with a specific
assignment of walls to imaginaries, of course). Then, by reflection through
the E floor, the reflected I J K become i j k, and we now have all 7 imaginary
octonions. This relatively simple tetrahedral mirrorhouse corresponds to one
of the 480 different multiplications; the one given in the table above.

To get another we truncate the tetrahedron. Truncation puts a mirror
parallel to the floor, making a mirror roof. Then, when you look up at the
mirror roof, you see the triangle roof parallel to the floor E. The triangle roof
parallel to the floor E represents the octonion -E, and reflection in the roof
-E gives 7 imaginary octonions with the multiplication rule in which -E is the
distinguished third generator.

Looking up from the floor, you will also see 3 new triangles having a
common side with the triangle roof -E, and 6 new triangles having a common
vertex with the triangle roof -E.

The triangle roof + 9 triangles = 10 triangles form half of the faces (one
hemisphere) of a 20-face quasi-icosahedron. The quasi-icosahedron is only
qualitatively an icosahedron, and is not exact, since the internal angle of the
pentagonal vertex figure of the reflected quasi-icosahedron is not 108 degrees,
but is 109.47 degrees (the octahedral dihedral angle), and the vertex angle is
not 72 degrees, but is 70.53 degrees (the tetrahedral dihedral angle). (To get
an exact icosahedral kaleidoscope, three of the triangles of the tetrahedron
should be golden isosceles triangles.)
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Each of the 9 new triangles is a “reflection roof” defining another mul-
tiplication. Now, look down at the floor E to see 9 new triangles reflected
from the 9 triangles adjoining the roof -E. Each of these 9 new triangles is a
“reflection floor” defining another multiplication. We have now 1 + 1 + 9 +
9 = 20 of the 480 multiplications.

Just as we put a roof parallel to the floor E by truncating the top of the
tetrahedral pyramid, we can put in 3 walls parallel to each of the 3 walls I, J,
K by truncating the other 3 points of the tetrahedron, thus getting 3x20 = 60
more multiplications. That gives us 20 + 60 = 80 of the 480 multiplications.

To get the rest, recall that we fixed the walls I, J, K in a particular order
with respcet to the floor E. There are 3! = 6 permutations of the walls I, J,
K Taking them into account, we get all 6x80 = 480 multiplications.

In mathematical terms, this approach effectively fixes the 20-face quasi-
icosahedron and varies the 4 faces of the EIJK tetrahedron according to the
24-element binary tetrahedral group {3,3,2} = SL(2,3) to get the 20x24 =
480 multiplications.

Note that the truncated tetrahedron with a quasi-icosahedron at each
vertex combines two types of symmetries:

1. tetrahedral, related to the square and the square root of 2, which gives
open systems like: an arithmetic series overtone acoustic musical scale
with common difference 1/8; the Roman Sacred Cut in architecture; and
multilayer space-filling cuboctahedral crystal growth.

2. icosahedral, related to the pentagon, the Golden Mean (aka Golden
Section), and Fibonacci sequences, which gives closed systems like: a har-
monic pentatonic musical scale; Le Corbusier’s Modulor; and single-layer
icosahedral crystals.

It is interesting to observe that the binary icosahedral group is isomorphic
to the binary symmetry group of the 4-simplex, which may be called the
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pentahedron and which David Finkelstein and Ernesto Rodriguez (1984) have
called the “Quantum Pentacle.” A pentahedron has 5 vertices, 10 edges, 10
areas, and 5 cells. The 10 areas of a pentahedron correspond to the 10 area
faces of one hemisphere of an icosahedron.

The pentahedron projected into 3 dimensions looks like a tetrahedron
divided into 4 quarter-tetrahedra (Figure C.12). If you add a quarter-
tetrahedron to each truncation of a truncated tetrahedron, you get a space-
filling polytope (Figure C.12) that can be centered on a vertex of a 3-
dimensional diamond packing to form a Dirichlet domain of the 3-dimensional
diamond packing (Figure ??). (A Dirichlet domain of a vertex in a packing
is the set of points in the space in which the packing is embedded that are
nearer to the given vertex than to any other.) The 4 most distant vertices of
the Dirichlet domain polytope are vertices of the dual diamond packing in
3-dimensional space.

All in all, we conclude that:

1. In its simplest form the octonion mirrorhouse is a tetrahedral mirrorhouse
2. In its more general form, the octonion mirrorhouse shows a tetrahedral

diamond packing network of quasi-icosahedra, or equivalently, of quasi-
pentahedra

Observation as Mirroring
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Now we proceed to draw together the threads of the previous sections:
mirror neurons and subselves, mirrorhouses and normed division algebras.

To map the community of actors inside an individual self into the mirror-
house/algebraic framework of the previous section, it suffices to interpret the
above

X = {Y }

Y = {X}

as

“X observes Y”
“Y observes X”

(e.g. we may have X= primary subself, Y=inner virtual other), and the above

i = {j, k}

j = {k, i}

k = {i, j}

as

“i observes {j observing k}”
“j observes {k observing i}”
“k observes {i observing j}”

Then we can define the - observation as an inverter of observer and observed,
so that e.g.

{j, k} = −{k, j}

We then obtain the quaternions
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i = j ∗ k = −k ∗ j

j = k ∗ i = −i ∗ k

k = i ∗ j = −j ∗ i

where multiplication is observation and negation is reversal of the order of
observation. Three inter-observers = quaternions.

The next step is mathematically natural: if there are four symmetric inter-
observers, one obtains the octonions, according to the logic of the above-
described tetrahedral/tetrahedral-diamond-packing mirrorhouse. Octonions
may also be used to model various situations involving more than four ob-
serves with particular asymmetries among the observers (the additional ob-
servers are the corner-mirrors truncating the tetrahedron.)

Why not go further? Who’s to say that the internal structure of a so-
cial mind isn’t related to mirrorhouses obtained from more complex shapes
than tetrahedra and truncated tetrahedra? This is indeed not impossible, but
intuitively, we venture the hypothesis that where human psychology is con-
cerned, the octonionic structure is complex enough. Going beyond this level
one loses the normed division-algebra structure that makes the octonions
a reasonably nice algebra, and one also gets into a domain of dramatically
escalated combinatorial complexity.

Biologically, what this suggests is that the MSH of Rizzolatti and Arbib
just scratches the surface. The system of mirror neurons in the human mind
may in fact be a “mirrorhouse system,” involving four different cell assem-
blies, each involving substantial numbers of mirror neurons, and arranged
in such a manner as to recursively reflect and model one another. This is a
concrete neurological hypothesis which is neither strongly suggested nor in
any way refuted by available biological data: the experimental tools at our
current disposal are simply not adequate to allow empirical exploration of
this sort of hypothesis. The empirical investigation of cell assembly activ-
ity is possible now only in a very primitive way, using crude tools such as
voltage-sensitive dyes which provide data with a very high noise level (see e.g.
[CMH+07]. Fortunately though, the accuracy of neural measurement technol-
ogy is increasing at an exponential rate [Kur06], so there is reason to believe
that within a few decades hypotheses such as the presently positive “neural
mirrorhouse” will reside in the domain of concretely-explorable rather than
primarily-theoretical science.

And finally, we may take this conceptual vision one more natural step.
The mirrorhouse inside an individual person’s mind is just one small portion
of the overall social mirrorworld. What we really have is a collection of inter-
locking mirrorhouses. If one face of the tetrahedron comprising my internal
mirrorhouse at a certain moment corresponds to one of your currently active
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subselves, then we may view our two selves at that moment as two adjacent
tetrahedra. We thus arrive at a view of a community of interacting individ-
uals as a tiling of part of space using tetrahedra, a vision that would have
pleased Buckminster Fuller very much indeed.

C.13 Specific Instances of Mental Mirrorhousing

We’ve voyaged fairly far out into mathematical modeling land – what does all
this mean in terms of our everyday lives, or in terms of concrete AGI design?

Most examples of mental mirrorhousing, I suggest, are difficult for us to
distinguish introspectively from other aspects of our inner lives. Mirroring
among multiple subselves, simulations of others and so forth is so fully woven
into our consciousness that we don’t readily distinguish it from the rest of
our inner life. Because of this, the nature of mental mirroring is most easily
understood via reference to “extreme cases.”

For instance, consider the following rather mundane real-life situation:
Ben needs to estimate the time-duration of a software project that has been
proposed for the consulting division of his AI software company. Ben knows
he typically underestimates the amount of time required for a project, but
that he can usually arrive at a more accurate estimate via conversation with
his colleague Cassio. But Cassio isn’t available at the moment; or Ben doesn’t
want to bother him. So, Ben simulates an “internal Cassio,” and they dialogue
together, inside Ben’s “mind’s eye.” This is a mirror facing a mirror – an
internal Ben mirroring an internal Cassio.

But this process in itself may be more or less effective depending on the
specifics –depending on, for example, which aspects of Ben or Cassio are simu-
lated. So, an additional internal observing mind may be useful for, effectively,
observing multiple runs of the “Ben and Cassio conversation simulator” and
studying and tuning the behavior. Now we have a quaternionic mirrorhouse.

But is there a deeper inner observer watching over all this? In this case we
have an octonionic, tetrahedral mirrorhouse.

The above is a particularly explicit example – but we suggest that much
of everyday life experience consists of similar phenomena, where the different
inter-mirroring agents are not necessarily associated with particular names
or external physical agents, and thus are more difficult to tangibly discussed.
As noted above, this relates closely to Rowan’s analysis of human personality
as consisting largely of the interactional dynamics of various never-explicitly-
articulated and usually-not-fully-distinct subpersonalities.

For another sort of example, consider the act of creativity, which in (Go-
ertzel, 1997) is modeled in terms of a “creative subself”: a portion of the
mind that is specifically devoted to creative activity in one more more me-
dia, and has its own life and awareness and memory apart from the primary
self-structure. The creative subself may create a work, and present it to the
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main subself for consideration. The three of these participants – the primary
subself, the creative subself and the creative work – may stand in a rela-
tionship of quaternionic mirroring. And then the meta-self who observes this
threefold interaction completes the tetrahedral mirrorhouse.

Next, let us briefly consider the classic Freudian model of personality and
motivation. According to Freud (1962), much of our psychology consists of
interaction between ego, superego and id. Rather than seeking to map the
precise Freudian notions into the present framework, we will briefly comment
on how ideas inspired by these Freudian notions might play a role in the
present framework. The basic idea is that, to the extent that there are neu-
ropsychological subsystems corresponding to Freudian ego, superego and id,
these subsystems may be viewed as agents that mirror each other, and hence
as a totality may be viewed as a quaternionic mirrorhouse. More specifically
we may correlate

1. ego with the neuropsychological structure that Thomas Metzinger (2004)
has identified as the “phenomenal self”

2. superego with the neuropsychological structure that represents the
mind’s learned goal system – the set of goals that the system has cre-
ated

3. id with the neuropsychological structure that represents the mind’s in-
built goal system, which largely consists of basic biological drives

Using this interpretation, we find that a quaternionic ego/superego/id mir-
rorhouse may indeed play a role in human psychology and cognition. How-
ever, there is nothing in the theoretical framework being pursued here to
suggest that this particular configuration of inter-observers has the founda-
tional significance Freud ascribed to it. Rather, from the present perspective,
this Freudian triarchy appears as important configuration (but not the only
one) that may arise within the mirrorhouse of focused attention.

And, of course, if we add in the internal observing eye that allowed Freud to
identify this system in the first place, and we have an octonionic, tetrahedral
mirrorhouse.

Finally, let us consider the subjective experience of meditation, as dis-
cussed e.g. in [Aus99]. Here we have “consciousness without an object”
[MW83], which may be understood as the infusion of the mental mirror-
house with attention but not content. Each mirror is reflecting the others,
without any image to reflect except the mirrors themselves.

C.14 Mirroring in Development

Another naturally arising question regards the origin of the mental mirror-
house faculty, both evolutionarily and developmentally. In both cases, the
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obvious hypothesis is that during the course of growth, the inner mirror-
house gains the capability for using more and more mirrors. First comes the
capability to internally mirror an external agent; then comes the capability
to internally encapsulate an inter-observation process; then comes the capa-
bility to internally observe an inter-observation process; then comes the ca-
pability to internally observe the observation of an inter-observation process.
Of course, the hierarchy need not terminate with the octonionic mirrorhouse;
but qualitatively, our suggestion is that levels beyond the octonionic may
generally beyond the scope of what the human brain/mind needs to deal
with given its limited environment and computational processing power.

To get a better grip on this posited growth process, let us return to Rizzo-
latti and Arbib’s hypothesized role for mirror neurons in language learning.
Their stage S5, as described above, involves “proto-signs,” which may have
initially consisted of pantomime used indirectly (i.e. used, not necessarily to
denote specific motor actions, but to denote other activities loosely resembling
those motor actions). A mental mirrorhouse corresponding to proto-signs may
be understood to comprise 3 mirrors

1. Observer
2. Pantomimer (carrying out manual actions)
3. Object of pantomime (carrying out non-manual actions)

The hypothesis becomes that, via recollecting instances of pantomime us-
ing a quaternionic mirrorhouse, the mind imprints pantomimes on the long-
term memory, so that they become part of the unconscious in a manner
suitable to encourage the formation of new and richer pantomimes.

In general, going beyond the particular example of pantomime, we may
posit a quaternionic mirrorhouse corresponding to

1. Observer
2. Symbols
3. Referent

The addition of a fourth mirror then corresponds to reflection on the pro-
cess of symbolization , which is not necessary for use of language but is
necessary for conscious creation of language, as is involved for instance in
formalizing grammar or creating abstract mathematics.

There is a clear and fascinating connection here with Piagetan develop-
mental psychology, as reviewed in Chapter 11 above, in which the capability
for symbolization is posited to come along with the “concrete operational”
stage of development (between ages 7-14 in the average child); and the ca-
pability for abstract formal reasoning comes later in the “formal” stage of
development. The natural hypothesis in this connection is that the child’s
mind during the concrete operational stage possesses only a quaternionic
mirrorhouse (or at least, that only the quaternionic mirrorhouse is highly
functional at this stage); and that the advent of the formal stage corresponds
to the advent of the octonionic mirrorhouse.
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This hypothesis has interesting biological applications, in the context of
the previously hypothesized relationship between mirror neurons and mental
mirroring. In this case, if the hypothesized correspondence between number-
of-mirrors and developmental stages exists, then it should eventually be neu-
rologically observable via studying the patterns of interaction of cell assem-
blies whose dynamics are dominated by mirror neurons, in the brains of chil-
dren at different stages of cognitive development. As noted above, however,
experimental neuroscience is currently nowhere near being able to validate
or refute such hypotheses, so we must wait at least a couple decades before
pursuing this sort of empirical investigation.

C.15 Concluding Remarks

Overall, the path traced in this appendix has been a somewhat complex one,
but the broad outline of the story is summarizable compactly.

Firstly, there may well be elegant recursive, self-referential structures un-
derlying reflective consciousness, will and self.

And secondly, there may plausibly be elegant abstract-algebraic symme-
tries lurking within the social substructures of the self. The notion of "emer-
gent structures of mind" may include emergent algebraic structures arising
via the intrinsic algebra of reflective processes.

We have some even more elaborate and speculative conjectures extending
the ideas given here, but will not burden the reader with them – we have
gone as far as we have here, largely to indicate the sort of ideas that arise
when one takes the notion of emergent mind structures seriously.

Ultimately, abstract as they are, these ideas must be pursued empirically
rather than via conceptual argumentation and speculation. If the CogPrime
engineering programme is successful, the emergence or otherwise of the struc-
tures discussed here, and others extending them, will be discoverable via the
mundane work of analyzing system logs.



Appendix D
GOLEM: Toward an AGI
Meta-Architecture Enabling Both Goal
Preservation and Radical
Self-Improvement

D.1 Introduction

One question that looms large when thinking about the ultimate roadmap for
AGI and the potential for self-modifying AGI systems is: How to create an
AGI system that will maintain some meaningful variant of its initial
goals even as it dramatically revises and improves itself – and as it
becomes so much smarter via this ongoing improvement that in many ways
it becomes incomprehensible to its creators or its initial condition. We would
like to be able to design AGI systems that are massively intelligent, creatively
self-improving, probably beneficial, and almost surely not destructive.

At this point, it’s not terribly clear whether an advanced CogPrime system
would have this desirable property or not. It’s certainly not implausible that it
would, since CogPrime does have a rich explicit goal system and is oriented
to spend a significant percentage of its effort rationally pursuing its goals.
And with its facility for reinforcement and imitation learning, CogPrime is
well suited to learn ethical habits from its human teachers. But all this falls
very far short of any kind of guarantee.

In this appendix we’ll outline a general AGI meta-architecture called
GOLEM (the Goal Oriented LEarning Meta-architecture), that can be used
as a "wrapper" for more detailed AGI architectures like CogPrime , and that
appears (but hasn’t been formally proved) to have more clearly desirable
properties in terms of long-term ethical behavior. From a CogPrime perspec-
tive, GOLEM may be viewed as a specific CogPrime configuration, which has
powerful "AGI safety" properties but also demands a lot more computational
resources than many other CogPrime configurations would.

To specify these notions a bit further, we may define an intelligent system
as steadfast if, over a long period of time, it either continues to pursue the
same goals it had at the start of the time period, or stops acting altogether.
In this terminology, one way to confront the problem of creating probably-
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beneficial, almost surely non-destructive AGI, is to solve the two problems
of:

• How to encapsulate the goal of beneficialness in an AGI’s goal system
• How to create steadfast AGI, in a way that applies to the "beneficialness"

goal among others

Of course, the easiest way to achieve steadfastness is to create a system that
doesn’t change or grow much. And the interesting question raised is how to
couple steadfastness with ongoing, radical, transformative learning.

In this appendix we’ll present a careful semi-formal argument that, un-
der certain reasonable assumptions (and given a large, but not clearly long-
term infeasible amount of computer power), the GOLEM meta-architecture
is likely to be both steadfast and massively, self-improvingly intelligent. Full
formalization of the argument is left for later, and may be a difficult task
even if the argument is correct.

An alternate version of GOLEM is also described, which possesses more
flexibility to adapt to an unknown future, but lacks a firm guarantee of stead-
fastness.

Discussion of the highly nontrivial problem of "how to encapsulate the
goal of beneficialness in an AGI’s goal system" is also left for elsewhere (see
[Goe10a] for some informal discussion). As reviewed already in Chapter 12 we
suspect this will substantially be a matter of interaction and education rather
than mainly a matter of explicitly formulating ethical content and telling or
feeding it to an AGI system.

D.2 The Goal Oriented Learning Meta-Architecture

The Goal Oriented LEarning Meta-architecture (GOLEM) refers to an AGI
system S with the following high-level meta-architecture, depicted roughly in
Figure D.1:

• Goal Evaluator = component that calculates, for each possible future
world (including environment states and internal program states), how
well this world fulfills the goal (i.e. it calculates the "utility" of the pos-
sible world)

– it may be that the knowledge supplied to the GoalEvaluator initially
(the "base GEOP" i.e. "base GoalEvaluator Operating Program") is
not sufficient to determine the goal-satisfaction provided by a world-
state; in that case the GoalEvaluator may produce a probability dis-
tribution over possible goal-satisfaction values

– initially the GoalEvaluator may be supplied with an inefficient algo-
rithm encapsulating the intended goals, which may then be optimized
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Fig. D.1 The GOLEM meta-architecture. Single-pointed errors indication information
flow; double-pointed arrows indicate more complex interrelationships.

and approximated by application of the Searcher (thus leading to a
GEOP different from the base GEOP)

– if the GoalEvaluator uses a GEOP produced by the Searcher, then
there may be an additional source of uncertainty involved, which
may be modeled by having the GoalEvaluator output a second-order
probability distribution (a distribution over distributions over utility
values), or else by collapsing this into a first-order distribution

• HistoricalRepository = database storing the past history of S’s in-
ternal states and actions, as well as information about the environment
during S’s past

• Operating Program = the program that S is governing its actions by,
at a given point in time

– chosen by the Metaprogram as the best program the Searcher has
found, where "best" is judged as "highest probability of goal achieve-
ment" based on the output of the Predictor and the Goal Evaluator

• Predictor = program that estimates, given a candidate operating pro-
gram P and a possible future world W, the odds of P leading to W

• Searcher = program that searches through program space to find a new
program optimizing a provided objective function

• Memory Manager program = program that decides when to store
new observations and actions in the Historical Repository, and which
ones to delete in order to do so; potentially it may be given some hard-
wired constraints to follow, such as "never forget human history, or the
previous century of your life."
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• Tester = hard-wired program that estimates the quality of a candidate
Predictor, using a simple backtesting methodology

– That is, the Tester assesses how well a Predictor would have per-
formed in the past, using the data in the HistoricalRepository

• Metaprogram = fixed program that uses Searcher program to find a
good

– Searcher program (judged by the quality of the programs it finds, as
judged by the Predictor program)

– Predictor program (as judged by the Tester’s assessments of its pre-
dictions)

– Operating Program (judged by Predictor working with Goal Evalu-
ator, according to the idea of choosing an Operating Program with
the maximum expected goal achievement)

– GoalEvaluator Operating Program (judged by the Tester, evaluat-
ing whether a candidate program effectively predicts goal-satisfaction
given program-executions, according to the HistoricalRepository)

– Memory Manager (as judged by Searcher, which rates potential mem-
ory management strategies based on the Predictor’s predictions of
how well the system will fare under each one)

The Metaprogram’s choice of Operating Program, Goal Evaluator Op-
erating Program and Memory Manager may all be interdependent, as
the viability of a candidate program for each of these roles may depend
on what program is playing each of the other roles. The metaprogram
also determines the amount of resources to allocate to searching for a
Searcher versus a Predictor versus an OP, according to a fixed algorithm
for parameter adaptation.

While this is a very abstract "meta-architecture", it’s worth noting that it
could be implemented using CogPrime or any other practical AGI architec-
ture as a foundation – in this case, CogPrime is "merely" the initial condition
for the OP, the Memory Manager, the Predictor and the Searcher. However,
demonstrating that self-improvement can proceed at a useful rate in any
particular case like this, may be challenging.

Note that there are several fixed aspects in the above: the MetaProgram,
the Tester, the GoalEvaluator, and the structure of the HistoricalRepository.
The standard GOLEM, with these aspects fixed, will also be called the fixed
GOLEM, in contrast to an adaptive GOLEM in which everything is allowed
to be adapted based on experience.
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D.2.1 Optimizing the GoalEvaluator

Note that the GoalEvaluator may need to be very smart indeed to do its job.
However, an important idea of the architecture is that the optimization of
the GoalEvaluator’s functionality may be carried out as part of the system’s
overall learning ∗.

In its initial and simplest form, the GoalEvaluator’s internal Operating
Program (GEOP) could basically be a giant simulation engine, that tells
you, based on a codified definition of the goal function: in world-state W, the
probability distribution of goal-satisfaction values is as follows. It could also
operate in various other ways, e.g. by requesting human input when it gets
confused in evaluating the desirability of a certain hypothetical world-state;
by doing similarity matching according to a certain codified distance measure
against a set of desirable world-states; etc.

However, the Metaprogram may supplement the initial "base GEOP" with
an intelligent GEOP, which is learned by the Searcher, after the Searcher is
given the goal of finding a program that will

• accurately agree with the base GEOP across the situations in the Histor-
icalRepository, as determined by the Tester

• be as compact as possible

In this approach, there is a "base goal evaluator" that may use simplistic
methods, but then the system learns programs that do approximately the
same thing as this but perhaps faster and more compactly, and potentially
embodying more abstraction. Since this program learning has the specific goal
of learning efficient approximations to what the GoalEvaluator does, it’s not
susceptible to "cheating" in which the system revises its goals to make them
easier to achieve (unless the whole architecture gets broken).

What is particularly interesting about this mechanism is: it provides a
built-in mechanism for extrapolation beyond the situations for which the base
GEOP was created. The Tester requires that the learned GEOPs must agree
with the base GEOP on the HistoricalRepository, but for cases not considered
in the HistoricalRepository, the Metaprogram is then doing Occam’s Razor
based program learning, seeing a compact and hence rationally generalizable
explanation of the base GEOP.

D.2.2 Conservative Meta-Architecture Preservation

Next, the GOLEM meta-architecture assumes that the goal embodied by the
GoalEvaluator includes, as a subgoal, the preservation of the overall meta-
∗ this general idea was introduced by Abram Demski upon reading an earlier draft of this
article, though he may not agree with the particular way I have improvised on his idea
here
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architecture described above (with a fallback to inaction if this seems infea-
sible). This may seem a nebulous assumption, but it’s not hard to specify if
one thinks about it the right way.

For instance, one can envision each of the items in the above component
list as occupying a separate hardware component, with messaging protocols
established for communicating between the components along cables. Each
hardware component can be assumed to contain some control code, which is
connected to the I/O system of the component and also to the rest of the
component’s memory and processors.

Then what we must assume is that the goal includes the following criteria,
which we’ll call conservative meta-architecture preservation:

1. No changes to the hardware or control code should be made except in
accordance with the second criterion

2. If changes to the hardware or control code are found, then the system
should stop acting (which may be done in a variety of ways, ranging from
turning off the power to self-destruction; we’ll leave that unspecified for
the time being as that’s not central to the point we want to make here)

Any world-state that violates these criteria, should be rated extremely low
by the GoalEvaluator.

D.3 The Argument For GOLEM’s Steadfastness

Our main goal here is to argue that a program with (fixed) GOLEM meta-
architecture will be steadfast, in the sense that it will maintain its architecture
(or else stop acting) while seeking to maximize the goal function implicit in
its GoalEvaluator.

Why do we believe GOLEM can be steadfast? The basic argument, put
simply, is that: If

• the GoalEvaluator and environment together have the property that:

– world-states involving conservative meta-architecture preservation
tend to have very high fitness

– world-states not involving conservative meta-architecture preserva-
tion tend to have very low fitness

– world-states approximately involving conservative meta-architecture
preservation tend to have intermediate fitness

• the initial Operating Program has a high probability of leading to world-
states involving conservative meta-architecture preservation (and this is
recognized by the GoalEvaluator)

then the GOLEM meta-architecture will be preserved. Because: according
to the nature of the metaprogram, it will only replace the initial Operating
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Program with another program that is predicted to be more effective at
achieving the goal, which means that it will be unlikely to replace the current
OP with one that doesn’t involve conservative meta-architecture preservation.

Obviously, this approach doesn’t allow full self-modification; it assumes
certain key parts of the AGI (meta)architecture are hard-wired. But the
hard-wired parts are quite basic and leave a lot of flexibility. So the argument
covers a fairly broad and interesting class of goal functions.

D.4 A Partial Formalization of the Architecture and
Steadfastness Argument

To partially formalize the above conceptual argument, we will assume the
formal agents model introduced earlier.

D.4.1 Toward a Formalization of GOLEM

We will use the notation [A→ B] to denote the space of functions mapping
space A to space B. Also, in cases where we denote a function signature via
ΦX , we will use X to denote the space of all programs embodying functions of
that signature; e.g. GE is the space of all functions fulfilling the specification
given for ΦGE .

The GOLEM architecture may be formally defined as follows.

• The Historical Repository Ht is a subset of the history x0−t
• An Operating Program is a program embodying a function ΨOP : H →
A. That is, based on a history (specifically, the one contained in the
Historical Repository at a given point in time), it generates actions

• AMemory Manager is a program embodying a function so that ΨMM (Ht, xt) =
Ht+1

• A Goal Evaluator is a program embodying a function ΨGE : H → [0, 1].
That is, it maps histories (hypothetical future histories, in the GOLEM
architecture) into real numbers representing utilities

• A Goal Evaluator Operating Program is an element of class GE
• A Searcher is a program embodying a function ΨSR : [P → [0, 1]] → P.

That is, it maps "fitness functions" on program space into programs.
• A Predictor is a program embodying a function ΨPR : OP ×GE ×H →
[0, 1]

• A Tester is a program embodying a function ΨTR : PR×H → [0, 1], where
the output [0, 1] is to be interpreted as the output of the prediction
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• A Metaprogram is a program embodying a function ΨMP : SR × H ×
PR × TR × GE2 ×MM → SR × PR × OP × GE ×MM . The GE in
the output, and one of the GEs in the input, are GEOPs.

The operation of the Metaprogram is as outlined earlier; and the effectiveness
of the architecture may be assessed as its average level of goal achievement
as evaluated by the GE, according to some appropriate averaging measure.

As discussed above, a fixed GOLEM assumes a fixed GoalEvaluator, Tester
and Metaprogram, and a fixed structure for the Historical Repository, and
lets everything else adapt. One may also define an adaptive GOLEM variant
in which everything is allowed to adapt, and this will be discussed below,
but the conceptual steadfastness argument made above applies only to the
fixed-architecture variant, and the formal proof below is similarly restricted.

Given the above formulation, it may be possible to prove a variety of
theorems about GOLEM’s steadfastness under various assumptions. We will
not pursue this direction very far here, but will only make a few semi-formal
conjectures, proposing some semi-formal propositions that we believe may
result in theorems after more work.

D.4.2 Some Conjectures about GOLEM

The most straightforward cases in which to formally explore the GOLEM
architecture are not particularly realistic ones. However, it may be worthwhile
to begin with less realistic cases that are more analytically tractable, and then
proceed with the more complicated and more realistic cases.

Conjecture D.1. Suppose that

• The Predictor is optimal (for instance an AIXI type system)
• Memory management is not an issue: there is enough memory for the
system to store all its experiences with reasonable access time
• The GE is sufficiently efficient that no approximative GEOP is needed
• The HR contains all relevant information about the world, so that at any
given time, the Predictor’s best choices based on the HR are the same as
the best choices it would make with complete visibility into the past of
the universe

Then, there is some time T so that from T onwards, GOLEM will not get
any worse at achieving the goals specified in the GE, unless it shuts itself off.

The basic idea of Conjecture D.1 is that, under the assumptions, GOLEM will
replace its various components only if the Predictor predicts this is a good
idea, and the Predictor is assumed optimal (and the GE is assumed accurate,
and the Historical Repository is assumed to contain as much information as
needed). The reason one needs to introduce a time T > 0 is that the initial
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programs might be clever or lucky for reasons that aren’t obvious from the
HR.

If one wants to ensure that T = 0 one needs some additional conditions:

Conjecture D.2. In addition to the assumptions of Conjecture D.1, assume
GOLEM’s initial choices of internal programs are optimal based on the state
of the world at that time. Then, GOLEM will never get any worse at achieving
the goals specified in the GE, unless it shuts itself off.

Basically, what this says is: If GOLEM starts off with an ideal initial state,
and it knows virtually everything about the universe that’s relevant to its
goals, and the Predictor is ideal – then it won’t get any worse as new infor-
mation comes in; it will stay ideal. This would be nice to know as it would be
verification of the sensibleness of the architecture, but, isn’t much practical
use as these conditions are extremely far from being achievable.

Furthermore, it seems likely that

Conjecture D.3. Suppose that

• The Predictor is nearly optimal (for instance an AIXItl type system)
• Memory management is not a huge issue: there is enough memory for the
system to store a reasonable proportion of its experiences with reasonable
access time
• The approximative GEOP is place is very close to accurate
• The HR contains a large percentage of the relevant information about the
world, so that at any given time, the Predictor’s best choices based on
the HR are roughly same as the best choices it would make with complete
visibility into the past of the universe

Then, there is some time T so that from T onwards, GOLEM is very un-
likely to get significantly worse at achieving the goals specified in the GE,
unless it shuts itself off.

Basically, this says that if the assumptions of Conjecture D.1 are weakened
to approximations, then the conclusion also holds in an approximate form.
This also would not be a practically useful result, as the assumptions are still
too strong to be realistic.

What might we be able to say under more realistic assumptions? There
may be results such as

Conjecture D.4. Assuming that the environment is given by a specific prob-
ability distribution µ, let

• δ1 be the initial expected error of the Predictor assuming µ, and assuming
the initial GOLEM configuration
• δ2 be the initial expected deviation from optimality of the MM, assuming
µ and the initial GOLEM configuration
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• δ3 be the initial expected error of the GEOP assuming µ and the initial
GOLEM configuration
• δ4 be the initial expected deviation from optimality of the HR assuming
µ and the initial GOLEM configuration

Then, there are ε > 0 and p ∈ [0, 1] so that GOLEM has odds < p of getting
worse at achieving the goals specified in the GE by more than ε, unless it shuts
itself off. The values ε and p may be estimated in terms of the δ values, using
formulas that may perhaps be made either dependent on or independent of
the environment distribution µ.

My suspicion is that, to get reasonably powerful results of the above form,
some particular assumptions will need to be made about the environment
distribution µ – which leads up to the interesting and very little explored
problem of formally characterizing the probability distributions describing
the "human everyday world."

D.5 Comparison to a Reinforcement Learning Based
Formulation

Readers accustomed to reinforcement learning approaches to AI [SB98] may
wonder why the complexity of the GOLEM meta-architecture is necessary.
Instead of using a "goal based architecture" like this, why not just simplify
things to

• Rewarder
• Operating Program
• Searcher
• Metaprogram

where the Rewarder issues a certain amount of reward at each point in time,
and the Metaprogram: invokes the Searcher to search for a program that
maximizes expected future reward, and then installs this program as the
Operating Program (and contains some parameters balancing resource ex-
penditure on the Searcher versus the Operating Program)?

One significant issue with this approach is that ensuring conservative meta-
architecture preservation, based on reward signals, seems problematic. Put
simply: in a pure RL approach, in order to learn that mucking with its own
architecture is bad, the system would need to muck with its architecture and
observe that it got a negative reinforcement signal. This seems needlessly
dangerous! One can work around the problem by assuming an initial OP
that has a bias toward conservative meta-architecture preservation. But then
if one wants to be sure this bias is retained over time, things get complicated.
For the system to learn via RL that removing this bias is bad, it would need
to try it and observe that it got a negative reinforcement signal.
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One could try to achieve the GOLEM within a classical RL framework by
stretching the framework somewhat (RL++ ?) and

• allowing the Rewarder to see the OP, and packing the Predictor and
GoalEvaluator into the Rewarder. In this case the Rewarder is tasked with
giving the system a reward based on the satisfactoriness of the predicted
outcome of running its Operating Program.

• allowing the Searcher to query the Rewarder with hypothetical actions
in hypothetical scenarios (thus allowing the Rewarder to be used like the
GoalEvaluator!)

This RL++ approach is basically the GOLEM in RL clothing. It requires a
very smart Rewarder, since the Rewarder must carry out the job of predicting
the probability of a given OP giving rise to a given world-state. The GOLEM
puts all the intelligence in one place, which seems simpler. In RL++, one
faces the problem of how to find a good Predictor, which may be solved by
putting another Searcher and Metaprogram inside the Rewarder; but that
complicates things inelegantly.

Note that the Predictor and GoalEvaluator are useful in RL++ specifically
because we are assuming that in RL++ the Rewarder can see the OP. If the
Rewarder can see the OP, it can reward the system for what it’s going to do in
the future if it keeps running the same OP, under various possible assumptions
about the environment. In a strict RL design, the Rewarder cannot see the
OP, and hence it can only reward the system for what it’s going to do based
on chancier guesswork. This guesswork might include guessing the OP from
the system’s actions – but note that, if the Rewarder has to learn a good
model of what program the system is running via observing the system’s
actions, it’s going to need to observe a lot of actions to get what it could get
automatically by just seeing the OP. So the learning of the system can be
much, much faster in many cases, if the Rewarder gets to see the OP and
make use of that knowledge. The Predictor and GoalEvaluator are a way of
making use of this knowledge.

Also, note that in GOLEM the Searcher can use the Rewarder to explore
hypothetical scenarios. In a strict RL architecture this is not possible directly;
it’s possible only via the system in effect building an internal model of the
Rewarder, and using it to explore hypothetical scenarios. The risk here is
that the system builds a poor model of the Rewarder, and thus learns less
efficiently.

In all, it seems that RL is not the most convenient framework for thinking
about architecture-preserving AGI systems, and looking at "goal-oriented
architectures" like GOLEM makes things significantly easier.



1018D GOLEM: Toward an AGI Meta-Architecture Enabling Both Goal Preservation and Radical Self-Improvement

D.6 Specifying the Letter and Spirit of Goal Systems
(Are Both Difficult Tasks)

Probably the largest practical issue arising with the GOLEMmeta-architecture
is that, given the nature of the real world, it’s hard to estimate how well the
Goal Evaluator will do its job! If one is willing to assume GOLEM, and if
a proof corresponding to the informal argument given above can be found,
then the”predictably beneficial” part of the problem of "creating predictably
beneficial AGI" is largely pushed into the problem of the GoalEvaluator.

This makes one suspect that the hardest problem of making predictably
beneficial AGI probably isn’t "preservation of formally-defined goal con-
tent under self-modification." This may be hard if one enables total self-
modification, but it seems it may not be that hard if one places some fairly
limited restrictions on self-modification, as is done in GOLEM, and begins
with an appropriate initial condition.

The really hard problem, it would seem, is how to create a GoalEvaluator
that implements the desired goal content – and that updates this goal content
as new information about the world is obtained, and as the world changes ...
in a way that preserves the spirit of the original goals even if the details of the
original goals need to change as the world is explored and better understood.
Because the "spirit" of goal content is a very subtle and subjective thing.

The intelligent updating of the GEOP, including in the GOLEM design,
will not update the original goals, but it will creatively and cleverly apply
them to new situations as they arise – but it will do this according to Occam’s
Razor based on its own biases rather than necessarily according to human
intuition, except insofar as human intuition is encoded in the base GEOP
or the initial Searcher. So it seems sensible to expect that, as unforeseen
situations are encountered, a GOLEM system will act according to learned
GEOPs that are rationally considered "in the spirit of the base GEOP", but
that may interpret that "spirit" in a different way than most humans would.
These are subtle issues, and important ones; but in a sense they’re "good
problems to have", compared to problems like evil, indifferent or wireheaded
† AGI systems.

D.7 A More Radically Self-Modifying GOLEM

It’s also possible to modify the GOLEM design so as to enable it to modify
the GEOP more radically – still with the intention of sticking to the spirit
of the base GEOP, but allowing it to modify the "letter" of the base GEOP
so as to preserve the "spirit." In effect this modification allows GOLEM to

† A term used to refer to situations where a system rewires its reward or goal-satisfaction
mechanisms to directly enable its own maximal satisfaction
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decide that it understands the essence of the base GEOP better than those
who created the particulars of the base GEOP. This is certainly a riskier
approach, but it seems worth exploring at least conceptually.

The basic idea here is that, where the base GEOP is uncertain about
the utility of a world-state, the "inferred GEOP" created by the Searcher is
allowed to be more definite. If the base GEOP comes up with a probability
distribution P in response to a world-state W , then the inferred GEOP is
allowed to come up with Q so long as Q is sensibly considered a refinement
of P .

To see how one might formalize this, imagine P is based on an observation-
set O1 containing N observations. Given another distribution Q over utility
values, one may then ask: What is the smallest number K so that one can
form an observation set O2 containing O1 plus K more observations, so that
Q emerges from O2? For instance, if P is based on 100 observations, are
there 10 more observations one could make so that from the total set of 110
observations, Q would be the consequence? Or would one need 200 more
observations to get Q out of O2?

Given an error ε > 0, let the minimum number K of extra observations
needed to create an O2 yielding Q within error ε, be denoted obsε(P,Q). If
we assume that the inferred GEOP outputs a confidence measure along with
each of its output probabilities, we can then explore the relationship between
these confidence values and the obs values.

Intuitively, if the inferred GEOP is very confident, this means it has a lot
of evidence about Q, which means we can maybe accept a somewhat large
obs(P,Q). On the other hand, if the inferred GEOP is not very confident,
then it doesn’t have much evidence supporting Q, so we can’t accept a very
large obs(P,Q).

The basic idea intended with a "confidence measure" here is that if
inferred_geop(W ) is based on very little information pertinent to W , then
inferred_geop(W ).confidence is small. The Tester could then be required
to test the accuracy of the Searcher at finding inferred GEOPs with accurate
confidence assessments: e.g. via repeatedly dividing the HistoricalRepository
into training vs. test sets, and for each training set, using the test set to eval-
uating the accuracy of the confidence estimates produced by inferred GEOPs
obtained from that training set.

What this seems to amount to is a reasonably elegant method of allowing
the GEOP to evolve beyond the base GEOP in a way that is basically "in the
spirit of the base GEOP." But with this kind of method, we’re not necessarily
going to achieve a long-term faithfulness to the base GEOP. It’s going to be
more of a "continuous, gradual, graceful transcendence" of the base GEOP, it
would seem. There seems not to be any way to let the inferred_GEOP refine
the base_GEOP without running some serious risk of the inferred_GEOP
violating the "spirit" of the base_GEOP . But what one gets in exchange for
this risk is a GOLEM capable of having crisper goal evaluations, moving to-
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ward lower-entropy utility distributions, in those cases where the base GEOP
is highly uncertain.

That is, we can create a GOLEM that knows what it wants better than its
creators did – but the cost is that one has to allow the system some leeway
in revising the details of its creators’ ideas based on the new evidence it’s
gathered, albeit in a way that respects the evidence its creators brought to
bear in making the base GEOP.

D.8 Concluding Remarks

What we’ve sought to do here, in this speculative futuristic appendix, is
to sketch a novel approach to the design of AGI systems that can massively
improve their intelligence yet without losing track of their initial goals. While
we have not proven rigorously that the GOLEM meta-architecture fulfills
this specification, have given what seems to be a reasonable, careful informal
argument, along with some semi-formal conjectures; and proofs along these
lines will be pursued for later publications. T

It’s clear that GOLEM can be wrapped around practical AGI architectures
like CogPrime – and in that sense GOLEM is a natural extension of the re-
marks on self-modifying CogPrime systems from Chapter ??. But the major
open question is, how powerful do these architectures need to be in order
to enable GOLEM to fulfill its potential as a meta-architecture for yielding
significant ongoing intelligence improvement together with a high probabil-
ity of goal system stability. The risk is that the rigors of passing muster
with the Tester are sufficiently difficult that the base AGI architecture (Cog-
Prime or whatever) simply doesn’t pass muster, so that the base operating
programs are never replaced, and one gets goal-system preservation without
self-improvement. Neither our theory nor our practice is currently advanced
enough to resolve this question, but it’s certainly an important one. One ap-
proach to exploring these issues is to seek to derive a variant of CogPrime or
some other practical AGI design as a specialization of GOLEM, rather than
trying to study the combination of GOLEM with a separately defined AGI
system serving as its subcomponent.

There is also the open worry of what happens when the system shuts
down. Hypothetically, if a GOLEM system as described above were in a
battle situation, enemies could exploit its propensity to shut down when
its hardware is compromised. A GOLEM system with this property would
apparently be at a disadvantage in such a battle, relative to a GOLEM system
that avoided shutting down and instead made the best possible effort to repair
its hardware, even if this wound up changing its goal system a bit. So, the
particular safety mechanism used in GOLEM to prevent dangerous runaway
self-improvement, would put a GOLEM at an evolutionary disadvantage. If a
GOLEM system becomes intelligent before competing systems, and achieves
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massively greater power and intelligence than any competing "startup" AGI
system could expect to rapidly achieved, then this may be a nonissue. But
such eventualities are difficult to foresee in detail, and devolve into generic
futurist speculation.

Finally, the dichotomy between the fixed and adaptive GOLEM architec-
tures highlights a major strategic and philosophical issue in the development
of advanced AGI systems more broadly. The fixed GOLEM can grow far
beyond humans in its intelligence and understanding and capability, yet in
a sense, remains rooted in the human world, due to its retention of human
goals. Whether this is a positive or negative aspect of the design is a profound
nontechnical issue. From an evolutionary perspective, one could argue that
adaptive GOLEMs will have greater ability to accumulate power due to their
fewer limitations. However, a fixed GOLEM could hypothetically be created,
with part of its goal system being to inhibit the creation of adaptive GOLEMs
or other potentially threatening AGI systems. Here however we venture yet
further into the territory of science fiction and speculative futurology, and we
will leave further such discussion for elsewhere.





Appendix E
Lojban++: A Novel Linguistic
Mechanism for Teaching AGI Systems

E.1 Introduction

Human “natural language” is unnatural to an AGI program like CogPrime .
Yet, understanding of human language is obviously critical to any AGI sys-
tem that wants to interact flexibly in the human world, and/or that wants to
ingest the vast corpus of knowledge that humans have created and recorded.
With this in mind, it is natural to explore humanly-unnatural ways of grant-
ing AGI systems knowledge of human language; and we have done much of
this in the previous appendices, discussing the use of linguistic resources that
are clearly different in nature from the human brain’s in-built linguistic bi-
ases. In this appendix we consider yet another humanly-unnatural means of
providing AGI systems with linguistic knowledge: the use of the constructed
language Lojban (or, more specifically, its variant Lojban++), which occu-
pies an interesting middle ground between formal languages like logic and
programming languages, and human natural languages. We will argue that
communicating with AGI systems in Lojban++ may provide a way of

• providing AGI systems with experientially-relevant commonsense knowl-
edge, much more easily than via explicitly encoding this knowledge in
logic

• teaching AGI systems natural language much more quickly than would
otherwise be possible, via communicating with AGIs in parallel using
natural language and Lojban++

To put it more precisely: the essential goal of Lojban++ is to constitute
a language for efficient, minimally ambiguous, and user-friendly communica-
tions between humans and suitably-constructed AI software agents such as
CogPrime s. Another way to think about the Lojban++ approach is that
it allows an AGI learning/teaching process that dissociates, to a certain ex-
tent, “learning to communicate with humans” from “learning to deal with the
peculiarities of human languages.” Similar to Lojban on which it is based,
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Lojban++ may also be used for communication between humans, but this
interesting possibility will not be our focus here.

Some details on the particulars of the Lojban++ language proposal, aimed
at readers familiar with Lojban, are given at the end of this appendix. In the
initial portions of the appendix we describe Lojban++ and related ideas at
a more abstract level, in a manner comprehensible to readers without prior
Lojban background.

E.2 Lojban versus Lojban++

Lojban is itself an outgrowth of another constructed language, Loglan, cre-
ated by Dr. James Cooke Brown around 1955 and first widely announced in
a 1960 Scientific American article [Bro60]. Loglan is still under development
but now is not used nearly as widely as Lojban. First separated from Loglan
in 1987, Lojban is a constructed language that lives at the border between
natural language and computing language. It is a “natural-like language” in
that it is speakable and writeable by humans and may be used by humans to
discuss the same range of topics as natural languages. Lojban has a precise,
specified formal syntax that can be parsed in the same manner as a program-
ming language, and it has a semantics, based on predicate logic, in which
ambiguity is carefully controlled. Lojban semantics is not completely unam-
biguous, but it is far less ambiguous than that of any natural language, and
the careful speaker can reduce ambiguity of communication almost to zero
with far less effort than in any natural language. On the other hand, Lojban
also permits the speaker to utilize greater ambiguity when this is desirable
in order to allow compactness of communication.

Many individuals attempting to learn and use Lojban have found, however,
that it has two limitations. The Lojban vocabulary is unfamiliar and difficult
to learn - though no more so than that of any other language belonging to
a language family unfamiliar to the language learner. And, more seriously,
the body of existing Lojban vocabulary is limited compared to that of nat-
ural languages, making Lojban communication sometimes slow and difficult.
When using Lojban, one must sometimes pause to concoct new words (ac-
cording to the Lojban principles of word construction), which can be fun, but
is much like needing to stop over and over to build new tools in the context
of using one’s toolkit to build something; and is clearly not optimal from the
perspective of teaching AGI systems.

To address these issues, Lojban++ constitutes a combination of Lojban
syntax and Lojban vocabulary, extended with English vocabulary. So in a
very rough sense, it may perhaps be understood as a pidgin of Lojban and
English. Lojban++ is less elegant than Lojban but significantly easier to
learn, and much easier to use in domains to which Lojban vocabulary has not
yet been extended. In short, the goal of Lojban++ is to combine the mathe-
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matical precision and pragmatic ontology that characterize Lojban, with the
usability of a natural language like English with its extensive vocabulary.

An extensive formal treatment of Lojban grammar has been published
[Cow97], and while there is no published hard-copy Lojban dictionary, there
is a website jbovlaste.lojban.org/ that serves this purpose and which
is frequently updated as new coinages are created and approved by the Log-
ical Language Group, a standing body charged with the maintenance of the
language.

Although Lojban has not been adopted nearly as widely as Esperanto (an
invented language with several hundred thousand speakers), the fact that
there is a community of several hundred speakers, including several dozen
who are highly fluent at least in written Lojban, is important. The decades
of communicative practice that have occurred within the Lojban community
have been invaluable for refining the language. This kind of practice buys
a level of maturity that cannot be obtained in a shorter period of time via
formal analysis or creative invention. For example, the current Lojban treat-
ment of quantifiers is arguably vastly superior to that of any natural language
[Cow97], but that was not true in 1987 when it excelled more in mathematical
precision than in practical usability. The current approach evolved through a
series of principled revisions suggested from experience with practical conver-
sation in Lojban. Any new natural-like language that was created for human-
CogPrime or CogPrime -CogPrime communication would need to go through
a similar process of iterative refinement through practical use to achieve a
similar level of usability.

E.3 Some Simple Examples

Now we give some examples of Lojban++. While these may be somewhat
opaque to the reader without Lojban experience, we present them anyway
just to give a flavor of what Lojban++ looks like; it would seem wrong to
leave the discussion purely abstract.

Consider the English sentence,

When are you going to the mountain?

When written in Lojban, it looks like:

do cu’e klama le cmana

In Lojban++, with the judicious importation of English vocabulary, it takes
a form more recognizable to an English speaker:

you cu’e go le cmana

A fairly standard predicate logic rendition of this, derived by simple, deter-
ministic rules from the Lojban++ version, would be

jbovlaste.lojban.org/
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atTime(go(you, mountain), ?X)

Next, consider the more complex English sentence,

When are you going to the small obsidian mountain?

In Lojban, there is no word for obsidian, so one needs to be invented (perhaps
by compounding the Lojban words for “glass” and “rock,” for example), or
else a specific linguistic mechanism for quoting non-Lojban words needs to
be invoked. But in Lojban++ one could simply say,

you cu’e go le small obsidian mountain

The construct “small obsidian mountain” is what is called a Lojban tanru,
meaning a compound of words without a precisely defined semantics (though
there are recognized constraints on tanru semantics based on the semantics
of the components [?]). Alternatively, using the Lojban word, marji, which
incorporates explicit place structure (x1= material/stuff/matter of composi-
tion x2), a much less ambiguous translation is achieved:

you cu’e go le small mountain poi marji loi obsidian

in which “poi marji loi obsidian” means “that is composed of [a mass of]
obsidian.” This illustrates the flexible ambiguity achievable in Lojban. One
can use the language in a way that minimizes ambiguity, or one can selectively
introduce ambiguity in the manner of natural languages, when desirable.

The differences between Lojban and Lojban++ are subtler than it might
appear at first. It is key to understand hat Lojban++ is not simply a version
of Lojban with English character-sequences substituted for Lojban character-
sequences. A critical difference lies in the rigid, pre-determined argument
structures associated with Lojban words. For instance, the Lojban phrase

klama fi la .atlantas. fe la bastn. fu le karce

corresponds to the English phrase

that which goes from Atlanta to Boston by car

To say this in Lojban++ without using “klama” would require

go fi’o source Atlanta fi’o destination Boston fi’o vehicle car

which is much more awkward. On the other hand, one could also avoid the
awkward Lojban treatment of English proper nouns and say

klama fi la Atlanta fe la Boston fu le car

or

klama fi la Atlanta fe la Boston fu le karce
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It’s somewhat a matter of taste, but according to ours, the latter most opti-
mally balances simplicity with familiarity. The point is that the Lojban word
“klama” comes with the convention that its second argument (indexed by
“fi”) refers to the source of the going, its third argument (indexed by “fe”)
refers to the destination of the going, and its fifth argument (indexed by “fu”)
refers to the method of conveyance. No such standard argument-structure
template exists in English for “go”, and hence using “go” in place of “klama”
requires the use of the “fi’o” construct to indicate the slot into which each of
the arguments of “go” is supposed to fall.

The following table gives additional examples, both in Lojban and Lo-
jban++.

English I eat the salad with croutons
Lojban mi citka le salta poi mixre lo sudnabybli
Lojban++ mi eat le salad poi mixre lo crouton

mi eat le salad poi contain lo crouton
English I eat the salad with a fork
Lojban mi citka le salta sepi’o lo forca
Lojban++ mi eat le salad sepi’o lo fork
English I will drive along the road with the big trees
Lojban mi litru le dargu poi lamji lo barda tricu
Lojban++ mi ba travel fi’o vehicle lo car fi’o route le road poi adjacent

lo so’i big tree
mi ba litru fi lo car fe le road poi adjacent lo so’i big tree
mi ba drive fi’o route le road poi adjacent lo so’i big tree

English I will drive along the road with great care
Lojban mi litru le dargu ta’i lo nu mi mutce kurji
Lojban++ mi ba drive fi’o route le road ta’i lo nu mi much careful

mi ba litru le road ta’i lo nu mi much careful
English I will drive along the road with my infrared sensors on
Lojban mi ba litru le dargu lo karce gi’e pilno le miktrebo’a terzga
Lojban++ mi litru le road lo car gi’e use le infrared sensor

mi litru le road lo car gi’e pilno le infrared te zgana
mi drive fi’o vehicle lo car fi’o route le road gi’e use le
infrared sensor

English I will drive along the road with the other cars
Lojban mi litru le dargu fi’o kansa lo drata karce
Lojban++ mi ba drive fi’o route le road fi’o kansa lo so’i drata car

mi ba drive fi’o route le road fi’o with lo so’i drata car
mi ba litru le road fi’o kansa lo so’i drata car
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E.4 The Need for Lojban Software

In order that Lojban++ be useful for human-CogPrime communications,
parsing and semantic mapping software need to be produced for the language,
building on existing Lojban software.

There is a fully functional Lojban parser based on a parsing expression
grammar (Powell, no date specified), as well as an earlier parser based on
BNF grammar. (And, parenthetically, the observation that Lojban is more
conveniently formulated in PEG (Parsing Expression Grammar) form is in it-
self a nontrivial theoretical insight.) The creation of a Lojban++ parser based
on the existing Lojban parser, is a necessary and a relatively straightforward
though not trivial task.

On the other hand, no software has yet been written for formal semantic
interpretation (“semantic mapping”) of Lojban expressions - which is mainly
because Lojban has primarily been developed as an experimental language
for communication between humans rather than as a language for human-
CogPrime communication. Such semantic mapping software is necessary to
complete the loop between humans and AI reasoning programs, enabling
powerful cognitive and pragmatic interplay between humans and CogPrime
s. For Lojban++ to be useful for human-CogPrime interaction, this software
must be created and must go in both directions: from Lojban++ to pred-
icate logic and back again. As Lojban++ is a superset of Lojban, creating
such software for Lojban++ will automatically include the creation of such
software for Lojban proper.

There promises to be some subtlety in this process, but not on the level
that’s required to semantically map human language. What is required to
connect a Lojban++ parser with the RelEx NLP framework as described in
Chapter 44 is essentially a mapping between

• the Lojban cmavo (structure word) and the argument-structure of lojban
gismu (root word)
• FrameNet frame-elements, and a handful of other CogPrime relationships

(e.g. for dealing with space, time and inheritance)

These mappings must be built by hand, which should be time-consuming,
but on the order of man-weeks rather than man-years of effort.∗ Once this
is done, then Lojban++ can be entered into CogPrime essentially as English
would be if the RelEx framework worked perfectly. The difficulties of human
language processing will be bypassed, though still – of course – leaving the
difficulties of commonsense reasoning and contextual interpretation.

For example, the Lojban root word klama is defined as

x1 comes/goes to destination x2 from origin x3 via route x4 using
means/vehicle x5.

∗ Carrying out the following mapping took a few minutes, so carrying out similar mappings
for 800 FrameNet frames should take no more than a couple weeks of effort.
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This corresponds closely to the FrameNet frame Motion, which has elements

• Theme (corresponding to x1 in the above Lojban definition)
• Source (x2)
• Goal (x3)
• Path (x4)
• Carrier (x5)

The Motion FrameNet frame also has some elements that klama lacks, e.g.
Distance and Direction, which could of course be specified in Lojban using
explicit labeling.

E.5 Lojban and Inference

Both Lojban and Lojban++ can be straightforwardly translated into pred-
icate logic format (though the translation is less trivial in the case of Lo-
jban++, as a little bit of English-word disambiguation must be done). This
means that as soon as Lojban++ semantic mapping software is constructed,
it will almost immediately be possible for CogPrime systems to reason about
knowledge communicated to them in Lojban. This aspect of Lojban has al-
ready been explored in a preliminary way by Speer and Havasi’s [?] JIMPE
software application, which involves a semantic network guiding logical rea-
soning, Lojban parsing and Lojban language production. While JIMPE is a
relatively simplistic prototype application, it is clear that more complex ex-
ample of Lojban-based artificial inference are also relatively straightforwardly
achievable via a conceptually similar methodology.

An important point to consider in this regard is that Lojban/Lojban++
contains two distinct aspects:

1. an ontology of predicates useful for representing commonsense knowledge
(represented by the Lojban cmavo along with the most common Lojban
content words)

2. a strategy for linearizing nested predicates constructed using these cmavo
into human-pronounceable and -readable strings of letters or phonemes.

The second aspect is of no particular value for inference, but the first aspect
is. We suggest that the Lojban++ ontology provides a useful framework for
knowledge representation that may be incorporated at a fundamental level
into any AI system that centrally utilizes predicate logic or a similar repre-
sentation. While overlapping substantially with FrameNet, it has a level of
commonsensical completeness that FrameNet does not, because it has been
refined via practice to be useful for real-world communication. Similarly, al-
though it is smaller than Cyc, it is more judiciously crafted. Cyc contains
a lot of knowledge not useful for everyday communication, yet has various
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lacunae regarding the description of everyday objects and events – because
no community has ever seriously tried to use it for everyday communication.

E.5.1 Lojban versus Predicate Logic

In the context of Lojban++ and inference, it is interesting to compare Lo-
jban++ formulations with corresponding predicate logic formulations. For
example, consider the English sentence

Hey, I just saw a bunch of troops going into the woods. What do you want
me to do?

translates into the Lojban

ju’i do’u mi pu zi viska lo nu so’i lo sonci cu nenkla le ricfoi .i do djica lo
nu mi mo

or the Lojban++

Hey do’u mi pu zi see lo nu so’i lo soldier cu enter le forest .i do want lo nu
mi mo

which literally transcribed into English would be something like

Hey! [vocative terminator] I [past] [short time] see an event of (many
soldiers enter forest). You want event (me what?)

Omitting the “hey,” a simple and accurate predicate logic rendition of this
sentence would be

past($X) ∧ short_time($X) ∧ ($X = see(me, $Y ))∧
($Y = event(enter($Z, forest))) ∧ soldier($Z) ∧many($Z)∧

want(you, event(?W (me))

where ?W refers to a variable being posed as a question be answered, and X
and so forth refer to internal variables. The Lojban and Lojban++ versions
have the same semantics as the predicate logic version, but are much simpler
to speak, hear and understand due to the lack of explicit variables.

E.6 Conclusion

Hopefully the above exposition of Lojban++, though incomplete, was suffi-
cient to convince you that teaching “infant-level” or “child-level” AGIs about
the world using Lojban++ would be significantly easier than teaching doing
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so using English or other natural languages. The question then is whether
this difference makes any difference.

One could counter-argue that, if an AGI were smart enough to really
learn to interpret Lojban++, then it would be smart enough to learn to
interpret English as well, with only minor additional effort. In sympathy
with this counter-argument is the fact that successfully mapping Lojban++
utterances into predicate logic expressions, and representing these predicate
logic expressions in an AI’s knowledge base, does not in itself constitute any
serious “understanding” of the Lojban++ utterances on the part of the AI
system.

However, this counter-argument ignores the “chicken and egg problem”
of common-sense knowledge and language understanding. If an AGI under-
stands natural language then it can be taught human common-sense knowl-
edge via direct linguistic instruction. On the other hand, it is also clear that
a decent amount of common-sense knowledge is a prerequisite for adequate
natural language understanding (for such tasks as parse selection, semantic
disambiguation and reference resolution, for example). One response to this
is to appeal to feedback, and argue that common-sense knowledge and lin-
guistic understanding are built to arise and grow together. We believe this
is largely true, and yet that there may also be additional dynamics at play
in the developing human mind that accelerate the process, such as inbuilt
inductive biases regarding syntax. In an AGI context, one way to accelerate
the process may be to use Lojban++ to teach the young AGI system com-
monsense knowledge, which then may help it to more easily penetrate the
complexities and ambiguities of natural language.

This assumes, of course, that the knowledge gained by the system from be-
ing instructed in Lojban++ is genuine knowledge rather than merely empty,
ungrounded tokens. For this reason, we suggest, one viable learning project
may be to teach an AGI system using Lojban++ in the context of shared em-
bodied experience in a real or simulated environment. This way Lojban++
expressions may be experientially grounded and richly understood, poten-
tially allowing commonsense knowledge to form in an AGI’s knowledge base,
in a way that can be generalized and utilized to aid with various learning
tasks including learning natural language.

Another interesting teaching strategy may be to present an AGI system
with semantically roughly equivalent English and Lojban sentences, especially
ones that are pertinent to the system’s experiences. Since the system can
interpret the Lojban sentences with minimal ambiguity (especially by using
the experienced context to reduce any ambiguities remaining after parsing,
due to tanru), it will then know the correct interpretation of the English
sentences, which will provide it with very helpful “training data” that it can
then generalize from to help it understand other English sentences.
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E.7 Postscript: Basic Principles for Using English
Words in Lojban++

This section reviews the key principles by which Lojban++ incorporates
English words into Lojban, and discusses some other small additions that
Lojban++makes to Lojban. It is intended mainly for readers who are familiar
with Lojban.

A note is perhaps appropriate here regarding the right approach to learning
Lojban++ at present. Lojban++ is a variant of Lojban, and no systematic
teaching materials for Lojban++ yet exist. Therefore, at the moment the
only way to learn Lojban++ is to learn the basics of Lojban, and then learn
the differences (note however, that the “basics of Lojban” as meant here
does not necessarily include a broad mastery of Lojban vocabulary beyond
the cmavo or “structure words”). Assuming Lojban++ is used for teaching
AGI systems as proposed here, relevant teaching materials should also be
developed. There is no need to write a book-length grammar for Lojban++
comparable to [?], however, since the prinicples of Lojban++ grammar are
all drawn from Lojban.

Finally, a necessary caveat: Lojban++ is not yet refined through practice,
so it should be assumed that the specifics described in this Appendix are
likely to be subjected to change through experience, as the language is used
and developed.

This list of principles will likely be extended and refined through usage.

1. Content words only! English words that are about syntactic relationship
have no place in Lojban++.

2. No “being verbs” or “helping verbs.” The English “is” and its conjugations
have no place in Lojban++, for example.

3. All Lojban++ cares about is the main part of an English word. None of
the English markers for tense, person or number should be used, when
importing an English word into Lojban++. For instance, English verbs
used must be in the infinitival form; English nouns must be used in the
singular form. For instance, “run” not “runs” or “ran”; “pig” not “pigs.”

4. English adverbs are not used except in rare cases where there is no ad-
jectival form; where there is an adjectival form it is used instead – e.g.
“scary” not “scarily.”

To lapse into Lojban lingo, English words must be used in Lojban++ as
brivla. Tense, number and so forth are supposed to be added onto these brivla
using the appropriate Lojban cmavo. The Lojban++ parser will assume that
any non-Lojban word encountered, if not specifically flagged as a proper
name (by the cmavo “la”), is an English word intended to be interpreted as
a brivla. It will not do any parsing of the word to try to interpret tense,
number, adverbiality, etc.

Next, English idiomatic collocations, if used in written Lojban++, should
be used with an underscore between the component words. For example:
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New_York, run_wild, big_shot, etc. Without the underscore, the Lojban++
parser will assume that it is seeing a tanru (so that e.g. “big shot” is a type
of “shot” that is modified by “big”). In spoken Lojban, the formally correct
thing is to use the new cmavo “quay” to be discussed below; but in practice
when using Lojban++ for human-human communication this may often be
omitted.

Finally, a less formal guideline concerns the use of highly ambiguous En-
glish words, the use of obscure senses of English words, and the use of English
words in metaphorical senses. All of these should be avoided. They won’t
confuse the Lojban++ parsing process, but they will confuse the Lojban++
semantic mapping process. If a usage seems like it would confuse an AI pro-
gram without much human cultural experience, then try to avoid it. Don’t
say

you paint ti

to mean “paint” in the sense of “portray vividly”, when you could say

you cu vivid bo describe ti

The latter will tell an AI exactly what’s happening; the former may leave the
AI wondering whether what’s being depicted is an instance of description, or
an instance of painting with an actual paintbrush and oils. Similarly, to say

you kill me

when you mean

you much amuse me

is not in the Lojban++ spirit. Yes, an AI may be able to figure this out by
reference to dictionaries combined with contextual knowledge and inference,
but the point of Lojban++ is to make communication simple and transparent
so as to reduce the possibility for communication error.

E.8 Syntax-based Argument Structure Conventions for
English Words

Next, one of the subtler points of Lojban++ involves the automatic assign-
ment of Lojban argument-structures to English words. This is done via the
following rules:

1. Nouns are interpreted to have one argument, which is interpreted as a
member of the category denoted by the noun

a. la Ben human
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1. Adjectives/adverbs are taken to have two arguments: the first is the entity
modified by the adjective/adverb, the second is the extent to which the
modification holds

a. la Ben fat le slight

1. Intransitive verbs are interpreted to have at least one argument, which is
interpreted as the argument of the predicate represented by the verb

a. le cockroach die

1. Transitive verbs are interpreted to have at least two arguments, the sub-
ject and then the object

a. la Ben kill le cockroach

1. Ditransitive verbs are interpreted to have three arguments, and conven-
tions must be made for each of these cases, e.g.

1. a. give x y z may be interpreted as “x give y to z”
i. la Ben give le death le cockroach

b. take x y z may be interpreted as “x takes y from z”
i. la Ben take le life le cockroach

A rule of thumb here is that the agent comes first, the recipient comes
last, and the object comes inbetween.

E.9 Semantics-based Argument Structure Conventions
for English Words

The above syntax-based argument-structure conventions are valuable, but
not sufficiently thorough to allow for fluent Lojban++ usage. For this reason
a collection of semantics-based argument-structure conventions have been
created, based mostly on porting argument-structures from related Lojban
words to English vocabulary. The following list is the current working version,
and is likely to be extended a bit during actual usage.

1. Plant or animal (moss, cow, pig)

a. x1 is a W of species x2

2. Spatial relation (beneath, above, right, left)

a. x1 is in relation W to x2, in reference frame x3

3. Dimension-dependent spatial descriptor (narrow, deep, wide, etc.)

a. x1 is W in dimension x2, relative to standard x3
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4. Unit (foot, hour, meter, mile)

a. x1 is x2 W’s by standard x3

5. Kinship or other interpersonal relationship (mother, father, uncle, boss)

a. x1 is the W of x2

6. Thought-action (remember, think, intuit, know)

a. x1 W’s x2
b. x1 W’s x2 about x3

7. Creative product (poem, painting, book)

a. x1 is a W about plot/theme/subject/pattern x2 by author x3 for
intended audience x4

8. Physical action undertaken by one agent on another (touch, kick, kiss)

a. x1 (agent) W’s x2 with x3 [a locus on x1 or an instrument] at x4 [a
locus on x2]

9. W denotes a type of substance, e.g. mush, paste, slime

a. x1 is a W composed of x2

10. Instance of communication (ask, tell, command)

a. x1 W’s x2 with information content x3

11. Type of utterance (comment, question)

a. x1 (text) is a W about subject x2 expressed by x3 to audience x4

12. Type of movement (walking, leaping, jumping, climbing)

a. x1 (agent/object) W’s to x2 from x3 in direction x4

13. Route, path, road, trail, etc.

a. x1 is a W to x2 from x3 via/defined by points including x4 (set)

14. Nationality, culture etc.

a. x1 reflects W in aspect x2

15. Type of event involving humans or other social agents (celebration, meet-
ing, funeral)

a. x1 partakes, with purpose x2, in event x3 of type W

16. Posture or mode of physical activity of an embodied agent (stand, sit,
lie, stoop)
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a. x1 W’s on surface x2

17. Type of mental construct (idea, thought, dream, conjecture, etc.)

a. x1 is a W about x2 by mind x3

18. Type of event done by someone, potentially to someone else (accident,
disaster, injury)

a. x1 is a W done by x2 to x3

19. Comparative amount (half, third, double, triple)

a. x1 is W of x2 in quality x3

20. Relation between an agent and a statement (assert, doubt, refute, etc.)

a. x1 W’s x2

21. Spatial relationship (far, near, close)

a. x1 is W from x2 in dimension x3

22. Human emotion (happy, sad, etc.)

a. x1 is W about x2

23. A physically distinct part of some physical object, including a body part

a. x1 is a W on x2

24. Type of physical transformation (e.g. mash, pulverize, etc.)

a. x1 [force] W’s x2 into mass x3

25. Way of transmitting an object (push, throw, toss, fling)

a. x1 W’s object x2 to/at/in direction x3

26. Relative size indicator (big, small, huge)

a. x1 is W relative to x2 by standard x3

E.10 Lojban gismu of clear use within Lojban++

There are some Lojban gismu (content words) which are clearly much more
useful within Lojban++ than their English counterparts. Mostly this is be-
cause their argument structures involve more than two arguments, but oc-
casionally it is because they involve a two-argument structure that happens
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not to be well-captured by any English word (but is usually represented in
English by a more complex construct involving one or more prepositions).

A list of roughly 300 gismu currently judged to be “essential” in this sense is
at http://www.goertzel.org/papers/gismu_essential.txt, and
a list of <50 additional gismu judged potentially very useful but not quite so
essential is at urlhttp://www.goertzel.org/papers/gismu_useful.txt

E.11 Special Lojban++ cmavo

Next, there are some special cmavo (structure words) that are useful in Lo-
jban++ but not present in ordinary Lojban. A few more Lojban++ cmavo
may be added as a result of practical experience communicating using Lo-
jban++; but these are it, for now.

E.11.1 qui

Pronounced “kwee”, this is a cmavo used in Loglish to create words with
unambiguous senses, as in the example:

pig qui animal

pig qui cop

The second English word in the compound is a sense-specifier. Generally this
should only be used where the word-sense intended is not the one that would
be most obviously expected given the context.

In some rare cases one might want two modifiers, using the form

(English word) qui (English word) qui (English word)

E.11.2 it , quu

The basic idea is that there is one special referential word in Lojban++ –
“it” – which goes along with a reference-target-indicator “quu” (pronounced
“kwuhh”) which gives a qualitative indication of the referent of a given in-
stance of “it,” intended to narrow down the scope of the reference resolution
process.

For instance, you could say

la Dr. Benjamin Goertzel cu proceed le playground. It quu man cu kill le
dog. It cu eat le cat.

http://www.goertzel.org/papers/gismu_essential.txt
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In this case, “it” is defined to refer to “Dr. Benjamin Goertzel”, not to “man”
generically. The “man” qualifier following the “quu” is intended to merely
guide the listener’s mind toward the right antecedent for the pronoun. It’s
not intended to explicitly define the pronoun. So, basically

it quu male

is the rough equivalent of the English “he”, and

it quu female

is the rough equivalent of the English “she”

him/her/they

Finally, for sake of usability, it is worthwhile within Lojban++ to introduce
the following shorthands

• him → it quu male
• her → it quu female
• ver → it quu person
• they → it quu people

(Note that “him” in Lojban++ thus plays the role of both “him” and “he” in
English.)

E.11.3 quay

Pronounced “kway,” this cmavo separates parts of an English collocation in
speech, e.g.

big quay shot

It may often be omitted in informal speech; and in writing may be replaced
by an underscore (big_shot).



Appendix F
PLN and the Brain

Co-authored with Cassio Pennachin

F.1 How Might Probabilistic Logic Networks Emerge
from Neural Structures and Dynamics?

In this appendix, we digress briefly to explore how PLN constructs like in-
heritance and similarity relationships might emerge from brainlike structures
like cell assemblies and neural activation patterns. This is interesting as spec-
ulative neuroscience, and also potentially valuable in the context of hybrid
architectures, in terms of tuning the interrelationship between CogPrime ’s
Atomspace and neural net like systems such as DeSTIN. If nothing else, the
ideas of this section serve as a conceptual argument why it makes sense to
interface PLN representations and dynamics with CSDLN representations
and dynamics. While conventionally formalized and discussed using different
languages, these different approaches to knowledge and learning are actually
not so far off as is commonly believed.

We restrict ourselves here to FOPLN, which does not involve explicit vari-
ables or quantifiers, and may be described as the logic of uncertain inheritance
relationships. As in PLN higher-order logic reduces to first-order logic, this
is actually all we need to deal with. A neural implementation of higher-order
PLN follows from a neural representation of FOPLN plus a neural represen-
tation of higher-order functions such as the one suggested in Chapter 13 of
Part 1.

As described above, the semantics of the term logic relationship “A inherits
from B” or A → B, is that when B is present, A is also present. The truth
value of the relationship measures the percentage of the times that B is
present, that A is also present. “A is similar to B” or A↔ B, is a symmetrical
version, whose truth value measures the percentage of the times that either
one is present, that both are present. These are the relations we will deal
with here.

How can this be tied in with the brain? Suppose we have two assemblies A1
and A2, and these are activated in the brain when the organism is presented
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with stimuli in category C1 and C2 respectively (to take the simplest case of
concepts, i.e. perceptual categories). Then, we may say that there is a neural
inheritance A1→ A2, whose probabilistic strength is the number w so that

P (A1′s mean activation > T at time t) ∗ w

best approximates

P (A2′s mean activation > T at time t+ ε)

for an appropriate choice of ε and T. This weight w, intuitively, represents
the conditional probability P (A2 is active|A1 is active).

In a similar way, if we have two assembly activation patterns P1 and P2,
which are defined as specific types of activity patterns occurring in A1 and A2
respectively, and which correspond to categories C1 and C2 respectively, we
can define a neural inheritance P1 → P2, whose probabilistic truth value is
the number w so that P (P1 is present in A1 at time t)∗w best approximates
P (P2 is present in A2 at time t + ε), on average over various times t, and
assuming a threshold T used to determine when a pattern is present in an
assembly.

It is immediate that, if there is a virtual synapse between A1 and A2 or
P1 and P2, there will also be a neural inheritance there. Furthermore there
will be a monotone increasing algebraic relationship between the weight of
the virtual synapse and the probability attached to the neural inheritance.
Inhibitory virtual synapses will correspond to very low link probabilities;
excitatory virtual synapses will correspond to high link probabilities.

However, we can have neural inheritance without any virtual synapse. This
is a key point, as it lets us distinguish neural inheritance relationships that
are explicit (that correspond to virtual synapses) from those that are implicit
(that do not). And this leads us directly to probabilistic reasoning, which is
about transforming implicit inheritance relationships into explicit ones. The
fundamental inference rules of term logic, as described above, create new
inheritance links from old ones. The conclusions are implicit in the premises
but until the inference is done, they may not be explicitly contained in the
knowledge base of the system doing the reasoning. Probabilistic reasoning
in the brain, we suggest, is all about translating implicit neural inheritance
relationships into explicit ones.

In first-order PLN the basic forms of inference are: revision (which in
its simplest form is weighted-averaging), deduction, and inversion (which re-
verses the direction of a link, and in probabilistic term logic is essentially
Bayes rule). Let us elaborate what these mean in terms of cell assemblies.

Suppose that A1 and A2 are two assemblies, and there is a neural in-
heritance between A1 and A2. Then, there will also be a neural inheritance
between A2 and A1, with a truth value given by Bayes rule. And according
to Hebbian learning if there is a virtual synapse A1 → A2, there is likely to
grow a virtual synapse A2→ A1. And according to the approximate correla-
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tion between virtual synapse weight and neural inheritance probability, this
new virtual synapse from A2 → A1 will have a weight corresponding to a
probability approximating the one corresponding to the weight of A1→ A2.

Similarly, suppose that A1, A2 and A3 are three assemblies. Then, if we
have virtual synapses between A1 → A2 and A2 → A3, Hebbian learning
suggests that a virtual synapse will grown between A1 → A3. And what
will the probability of the neural inheritance corresponding to this virtual
synapse be? On average, it will be the probability one obtains by assuming
the probabilities associated with A1 → A2 and A2 → A3 are independent.
But, this means that on average, the probability associated with A1 → A3
will accord with the value produced by the PLN deduction formula, which
embodies precisely this independence assumption. Here, we have an addi-
tional source of error beyond what exists in the Bayes rule case; but, in the
mean, the desired correspondence does hold.

So, according to the above arguments – which admittedly have been intu-
itive rather than mathematically rigorous –it would seem that we can build
term logic inference between concepts out of Hebbian learning between neu-
rons, if we assume cell assembly based knowledge representation, via intro-
ducing the conceptual machinery of virtual synapses and neural inheritance.

F.2 Avoiding Issues with Circular Inference

When one develops the ideas from the previous section, connecting uncertain
term logic inference with neurodynamics, in more detail, only one possible
snag arises. Existing computational frameworks for uncertain term logic in-
ference utilize special mechanisms for controlling circular inference, and these
mechanisms have no plausible neurological analogues. In this section we ex-
plore this issue and argue that it’s not necessarily a big deal. In essence, our
argument is that these biologically unnatural circularity-avoidance mecha-
nisms are unnecessary in a probabilistic term logic system whose opera-
tions are guided by appropriate adaptive attention-allocation mechanisms.
It’s only when operating probabilistic term logic inference in isolation, in a
manner that’s unnatural for a resource-constrained intelligent system, that
these circular-inference issues become severe.

We note however that this conclusion seems to be specific to probabilistic
term logic, and doesn’t seem to hold for NARS term logic, in which the
circular inference problem may be more severe, and may in fact require a
trail mechanism more strongly. We have not investigated this issue carefully.

To understand the circular inference problem, look at the triangles in Fig-
ure 34.1. It’s easy to see that by performing deduction, induction and abduc-
tion in sequence, we can go around and around an inference triangle forever,
combining the links in different orders, inferring each link in the triangle from
the two others in different orders over and over again. What often happens
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when you do this in a computer program performing uncertain term logic
inference, however, is that after long enough the inference errors compound,
and the truth values descend into nonsense. The solution taken in the NARS
and PLN uncertain term logic inference engines is something called inference
trails. Basically, each inheritance link maintains a trail, which is a list of the
nodes and links used as premises in inferences determining its truth value.
And a rule is put in place that the link L should not be used to adjust the
truth value of the link M if M is in L’s trail.

Trails work fine for computer programs implementing uncertain term logic,
though managing them properly does involve various complexities. But, from
the point of view of the brain, trails seem quite unacceptable. It would seem
implausible to hypothesize that the brain somehow stores a trail along with
each virtual synapse. The brain must have some other method of avoiding
circular inferences leading to truth value noisification.

In order to explore these issues, we have run a number of experiments with
trail-free probabilistic inference. The first of these involved doing inferences on
millions of nodes and links (with nodes representing words and links derived
via word co-occurrence probabilities across a text corpus). What we found
was that, in practice, the severity of the circular-inference problem depended
on the inference control strategy. When one implemented a strategy in which
the amount of attention devoted to inference about a link L was proportional
to an estimate of the amount of information recently gained by doing inference
about L, then one did not run into particularly bad problems with circular
inference. On the other hand, if one operated with a small number of nodes
and links and repeatedly ran the same inferences over and over again on
them, one did sometimes run into problems with truth value degeneration,
in which the term logic formulas would cause link strengths to spuriously
converge to 1 or 0.

To better understand the nature of these phenomena, we ran computer
simulations of small Atomspaces involving nodes and Inheritance relations,
according to the following idea:

1. Each node is assumed to denote a certain perceptual category
2. For simplicity, we assume an environment in which the probability dis-

tribution of co-occurrences between items in the different categories is
stationary over the time period of the inference under study

3. We assume the collection of nodes and links has its probabilistic strengths
updated periodically, according to some “inference” process

4. We assume that the results of the inference process in Step 3 and the re-
sults of incorporating new data from the environment (Step 2) are merged
together ongoingly via a weighted-averaging belief-revision process

In our simulations Step 3 was carried out via executions of PLN deduction
and inversion inference rules. The results of these simulations were encour-
aging: most of the time, the strengths of the nodes and links, after a while,
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settled into a “fixed point” configuration not too distant from the actual prob-
abilistic relationships implicit in the initial data. The final configuration was
rarely equivalent to the initial configuration, but, it was usually close.

For instance one experiment involved 1000 random “inference triangles”
involving 3 links, where the nodes were defined to correspond to random
subsets of a fixed finite set (so that inheritance probabilities were defined
simply in terms of set intersection). Given the specific definition of the ran-
dom subsets, the mean strength of each of the three inheritance relationships
across all the experiments was about .3. The Euclidean distance between the
3-vector of the final (fixed point) link strengths and the 3-vector of the initial
link strengths was roughly .075. So the deviation from the true probabilities
caused by iterated inference was not very large. Qualitatively similar results
were obtained with larger networks.

The key to these experiments is the revision in Step 4: It is assumed that,
as iterated inference proceeds, information about the true probabilities is
continually merged into the results of inference. If not for this, Step 3 on its
own, repeatedly iterated, would lead to noise amplification and increasingly
meaningless results. But in a realistic inference context, one would never
simply repeat Step 3 on its own. Rather, one would carry out inference on
a node or link only when there was new information about that node or
link (directly leading to a strength update), or when some new information
about other nodes/links indirectly led to inference about that node-link. With
enough new information coming in, an inference system has no time to carry
out repeated, useless cycles of inference on the same nodes/links – there
are always more interesting things to assign resources to. And the ongoing
mixing-in of new information about the true strengths with the results of
iterated inference prevents the pathologies of circular inference, without the
need for a trail mechanism.

What we see from these various experiments is that if one uses an inference
control mechanism that avoids the repeated conduction of inference steps
in the absence of infusion of new data, issues with circular inference are
not severe, and trails are not necessary to achieve reasonable node and link
strengths via iterated inference. Circular inference can occur without great
harm, so long as one only does it when relevant new data is coming in, or
when there is evidence that it is generating information. This is not to say
that trail mechanisms are useless in computational systems – they provide
an interesting and sometimes important additional layer of protection against
circular inference pathologies. But in an inference system that is integrated
with an appropriate control mechanism they are not required. The errors
induced by circular inference, in practice, may be smaller than many other
errors involved in realistic inference. For instance, in the mapping between
the brain and uncertain term logic proposed above, we have relied upon
a fairly imprecise proportionality between virtual synapse weight and neural
inheritance. We are not attempting to argue that the brain implements precise



1044 F PLN and the Brain

probabilistic inference, but only an imprecise analogue. Circular inference
pathologies are probably not the greatest source of imprecision.

F.3 Neural Representation of Recursion and
Abstraction

The material of the previous subsection comprises a speculative but concep-
tually coherent connection between brain structures and dynamics on the one
hand, and probabilistic logic structures and dynamics on the other. However,
everything we have discussed so far deals only with first-order term logic, i.e.
the logic of inheritance relationships between terms.

Extension to handle similarity relationships, intensional inheritance and so
forth is straightforward – but what about more complex term logic constructs,
such as would conventionally be expressed using variables and quantifiers. In
this section we seek to address this shortcoming, via proposing a hypothesis
as to how probabilistic term logic in its full generality might be grounded
in neural operations. This material is even more speculative than the above
ideas, yet something of this nature is critically necessary for completing the
conceptual picture.

The handling of quantifiers, in itself, is not the hard part. We have noted
above that, in a term logic framework, if one can handle probabilistic variable-
bearing expressions and functions, then one handle quantifiers attached to the
variables therein. So the essence of the problem is how to handle variables
and functions. And we suggest that, when one investigates the issue in de-
tail, a relatively simple hypothesis emerges clearly as essentially the only
plausible explanation, if one adopts the neural assembly theory as a working
foundational assumption.

In the existing body of mathematical logic and theoretical computer sci-
ence, there are two main approaches to handling higher-order expressions:
variable-based, or combinator-based [CF58, FH98]. It seems highly implau-
sible, to us, that the human brain is implementing some sort of intricate
variable-management scheme on the neural-assembly level. Lambda-calculus
and other formal schemes for manipulating variables, appear to us to require
complexity and precision of a style that self-organizing neural networks are
ill-suited to produce via their own style of complex dynamics. Of course it
is possible to engineer neural nets that do lambda calculus (as neural nets
are Turing-complete), but this sort of neural-net structure seems unlikely
to emerge via evolution, and unlikely to get created via known epigenetic
processes.

But what about combinators? Here, it seems to us, things are a bit more
promising. Combinators are higher-order functions; functions that map func-
tions into functions; functions that map {functions that map functions into
functions} into {functions that map functions into functions}, and so forth.
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There are specific sets of combinators that are known to give rise to univer-
sal computational capability; indeed, there are many such specific sets, and
one approach to the implementation of functional programming languages is
to craft an appropriate set of combinators that combines universality with
tractability (the latter meaning, basically, that the combinators have rela-
tively simple definitions; and that pragmatically useful logic expressions tend
to have compact representations in terms of the given set of combinators).

We lack the neurodynamic knowledge to say, at this point, that any par-
ticular set of combinators seems likely to map into brain function. However,
we may still explore the fundamental neural functionalities that would be
necessary to give rise to a combinatory-logic-style foundation for abstract
neural computation. Essentially, what is needed is the capability to supply
one neural assembly as an input to another. Note that what we are talking
about here is quite different from the standard notion of chaining together
neural assemblies, so that the output of assembly A becomes the input of
assembly B. Rather, what we are talking about is that assembly A itself –
as a mapping from inputs to outputs – is fed as an input to assembly B. In
this case we may call B a higher-order neural assembly.

Of course, there are numerous possible mechanisms via which higher-order
neural assemblies could be implemented in the brain. Here we will discuss
just one. Consider a neural assembly A1 with certain input neurons, certain
output neurons, and certain internal “hidden layer” neurons. Then, suppose
there exists a “router” neural assembly X, which is at the receiving end of
connections from many neurons in A1, including input, output and hidden
neurons. Suppose X is similarly connected to many other neural assemblies:
A2, A3, ... and so forth; and suppose X contains a “control switch” input that
tells it which of these assemblies to pay attention (so, for instance, if the
control input is set to 3, then X receives information about A3). When X is
paying attention to a certain assembly, it routes the information it gets from
that assembly to its outputs. (Going further, we may even posit a complex
control switch, that accepts more involved commands; say, a command that
directs the router to a set of k of its input assemblies, and also points it to
small neural assembly implementing a combination function that tells it how
to combine these k assemblies to produce a composite.)

Finally, suppose the input neurons of assembly B are connected to the
router assembly X. Then, depending on how the router switch is set, B may
be said to receive one of the assemblies Ak as input. And, next, suppose B’s
output is directed to the control switch of the router. Then, in effect, B is
mapping assemblies to assemblies, in the manner of a higher-order function.
And of course, B itself is “just another neural assembly,” so that B itself
may be routed by the router, allowing for assemblies that map {assemblies
mapping assemblies} into assemblies, and so forth.

Where might this kind of “router” assembly exist in the brain? We don’t
know, at the moment. Quite possibly, the brain may implement higher-order
functions by some completely different mechanism. The point we want to
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make however, is that there are concrete possibilities via which the brain could
implement higher-order logic according to combinatory-logic type mecha-
nisms. Combinators might be neurally represented as neural assemblies in-
teracting with a router assembly, as hypothesized above, and in this way
the Hebbian logic mechanisms proposed in the previous sections could be
manifested more abstractly, allowing the full-scope of logical reasoning to
occur among neural assemblies, with uncertainty management mediated by
Hebbian-type synaptic modification.



Appendix G
Possible Worlds Semantics and
Experiential Semantics

Co-authored with Matthew Ikle’

G.1 Introduction

The relevance of logic to AGI is often questioned, on the grounds that logic
manipulates abstract symbols, but once you’ve figured out how to translate
concrete perception and action into abstract symbols in an appropriate way,
you’ve already solved the hard part of the AGI problem. In this view, human
intelligence does logic-like processing as a sort of epiphenomenon, on top of a
deeper and more profound layer of sub symbolic processing; and logic is more
suitable as a high-level description that roughly approximates the abstract
nature of certain thought processes, than as a method of actually realizing
these thought processes.

Our own view is that logic is a flexible tool which may be used in many
different ways. For example, there is no particular reason not to use logic
directly on sensory and actuator data, or on fairly low-level abstractions
thereof. This hasn’t been the tradition in logic or logic-based AI, but this
is a matter of culture and historical accident more than anything else. This
would give rise to difficult scalability problems, but so does the application of
recurrent neural nets or any other powerful learning approach. In CogPrime
we propose to handle the lowest level of sensory and actuator data in a
different way, using a CSDLN such as DeSTIN, but we actually believe a PLN
approach could be used in place of a system like DeSTIN, without significant
loss of efficiency, and only moderate increase in complexity. For example,
one could build a CSDLN whose internal operations were all PLN-based –
this would make the compositional spatiotemporal hierarchical structure, in
effect, into an inference control mechanism.

In this appendix we will explore this region of conceptual space via dig-
ging deeper into the semantics of PLN, looking carefully and formally at the
connection between PLN terms and relationships, and the concrete experi-
ence of an AI system acting in a world. As well as providing a more rigorous
foundation for some aspects of the PLN formalism, the underlying concep-
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tual purpose is to more fully explicate the relationship between PLN and the
world a CogPrime controlled agent lives in.

Specifically, what we treat here is the relation between experiential seman-
tics (on which PLN, and the formal model of intelligent agents presented in
Chapter 7 of Part 1, are both founded) and possible-worlds semantics (which
forms a more mathematically and conceptually natural foundation for certain
aspects of logic, including certain aspects of PLN). In “experiential seman-
tics”, the meaning of each logical statement in an agent’s memory is defined
in terms of the agent’s experiences. In “possible worlds semantics”, the mean-
ing of a statement is defined by reference to an ensemble of possible worlds
including, but not restricted to, the one the agent interpreting the statement
has experienced. In this appendix, for the first time, we formally specify the
relation between these two semantic approaches, via providing an experien-
tial grounding of possible worlds semantics. We show how this simplifies the
interpretation of several aspects of PLN, providing a common foundation
for setting various PLN system parameters that were previously viewed as
distinct.

The reader with a logic background should note that we are construing the
notion of possible worlds semantics broadly here, in the philosophical sense
[Lew86], rather than narrowly in the sense of Kripke semantics [?] and its
relatives. In fact there are interesting mathematical connections between the
present formulation and Kripke semantics and epistemic logic, but we will
leave these for later work.

We begin with indefinite probabilities recalled in Chapter 34, noting that
the second-order distribution involved therein may be interpreted using pos-
sible worlds semantics. Then we turn to uncertain quantifiers, showing that
the third-order distribution used to interpret these in [GIGH08] may be con-
sidered as a distribution over possible worlds. Finally, we consider intensional
inference, suggesting that the complexity measure involved in the definition
of PLN intension [GIGH08] may be derived from a probability measure over
possible worlds. The moral of the story is that by considering the space of
possible worlds implicit in an agent’s experience, one arrives at a simpler
unified view of various aspects of the agent’s uncertain reasoning, than if
one grounds these aspects in the agent’s experience directly. This is not an
abandonment of experiential semantics but rather an acknowledgement that
a simple variety of possible worlds semantics is derivable from experiential
semantics, and usefully deployable in the development of uncertain inference
systems for general intelligence.
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G.2 Inducing a Distribution over Predicates and
Concepts

First we introduce a little preliminary formalism. Given a distribution over
environments as defined in Chapter 7 of Part 1, and a collection of predi-
cates evaluated on subsets of environments, we will find it useful to define
distributions (induced by the distribution over environments) defining the
probabilities of these predicates.

Suppose we have a pair (F, T ) where F is a function mapping sequences of
perceptions into fuzzy truth values, and T is an integer connoting a length of
time. Then, we can define the prior probability of (F, T ) as the average degree
to which F is true, over a random interval of perceptions of length T drawn
from a random environment drawn from the distribution over environments.
More generally, if one has a pair (F, f), where f is a distribution over the
integers, one can define the prior probability of (F, f) as the weighted average
of the prior probability of (F, T ) where T is drawn from f .

While expressed in terms of predicates, the above formulation can also be
useful for dealing with concepts, e.g. by interpreting the concept cat in terms
of the predicate isCat. So we can use this formulation in inferences where
one needs a concept probability like P (cat) or a relationship probability like
P (eat(cat,mouse)).

G.3 Grounding Possible Worlds Semantics in
Experiential Semantics

Now we explain how to ground a form of possible worlds semantics in expe-
riential semantics. We explain how an agent, experiencing a single stream of
perceptions, may use this to construct an ensemble of possible worlds, which
may then be used in various sorts of inferences. This may sound conceptually
thorny, but on careful scrutiny it’s less so, and in fact is closely related to a
commonplace idea in the field of statistics: “subsampling.”

The basic idea of subsampling is that, if one has a single dataset D
which one wishes to interpret as coming from a larger population of pos-
sible datasets, and one wishes to approximately understand the distribution
of this larger population, then one can generate a set of additional datasets
via removing various portions of D. Each time one removes a certain portion
of D, one obtains another dataset, and one can then look at the distribution
of these auxiliary datasets, considering it as a model of the population D is
drawn from.

This notion ties in closely with the SRAM formal agents model of Chapter
7 of Part 1, which considers a probability distribution over a space of envi-
ronments which are themselves probability distributions. What a real agent
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has is actually a single series of remembered observations. But it can induce a
hopeful approximation of this distribution over environments by subsampling
its memory and asking: what would it imply about the world if the items in
this subsample were the only things I’d seen?

It may be conceptually useful to observe that a related notion to sub-
sampling is found in the literary methodology of science fiction. Many SF
authors have followed the methodology of starting with our everyday world,
and then changing one significant aspect, and depicting the world as they
think it might exist if this one aspect were changed (or, a similar method-
ology may be followed via changing a small number of aspects). This is a
way of generating a large variety of alternate possible worlds from the raw
material of our own world.

Applied to SRAM, the subsampling and SF analogies suggest two methods
of creating a possible world (and hence, by repetition, an ensemble of possible
worlds) from the agent’s experience. An agent’s interaction sequence with its
environment, ay<t = ay1:t−1, forms a sample from which it wishes to infer
its environment µ(yk|ay<kak). To better assess this environment, the agent
may, for example,

• create a possible world by removing a randomly selected collection of
interactions from the agent’s memory. In this case, the agent’s interaction
sequence would be of the form Ig,s,t(nt) = ay(nt) where (nt) is some
subsequence of 1: t− 1.

• create a possible world via assuming a counterfactual hypothesis (i.e. as-
signing a statement a truth value that contradicts the agent’s experience),
and using inference to construct a set of observations that is as similar to
its memory as possible, subject to the constraint of being consistent with
the hypothesis. The agent’s interaction sequence would then look like
bz1:t−1, where some collection of the bkzk differ from the corresponding
akyk.

• create a possible world by reorganizing portions of the interaction se-
quence.

• create a possible world by some combination of the above.

We denote an alteration of an interaction sequence Iag,s,t for an agent a by
Ĩag,s,t, and the set of all such altered interaction sequences for agent a by Ia.

In general, an agent’s interaction sequence will presumably be some reason-
ably likely sequence, and we would therefore be most interested in those cases
for which dI(Iag,s,t, Ĩag,s,t) is small, where dI(·, ·) is some measure of sequence
similarity, such as neighborhood correlation or PSI-BLAST. The probability
distribution ν over environments µ will then tend to give larger probabili-
ties to nearby sequences, as measured by the chosen similarity measure, than
to ones that are far away. In colloquial terms, an agent would typically be
interested in considering only minor hypothetical changes to its interaction
sequences, and would have little basis for understanding the consequences of
drastic alterations.
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Any of the above methods for altering interaction sequences would alter an
agent’s perception sequence causing changes to the fuzzy truth values mapped
by the function F . This in turn would yield new probability distributions over
the space of possible worlds, and thereby yielding altered average probability
values for the pair (F, T ). This change, constructed from the perspective of
the agent based on its experience, could then cause the agent to reassess its
action a. Broadly speaking, we call these approaches “experiential possible
worlds” or EPW.

The creation of altered interaction sequences may, under appropriate as-
sumptions, provide a basis for creating better estimates for the predicate
F than we would otherwise have from a single real-world data point. More
specifically we have the following results.

Theorem 1 Let En represent an arbitrary ensemble of n agents chosen from
A. Suppose that, on average over the set of agents a ∈ En, the set of values
F (I) for mutated interaction sequences I is normal and unbiased, so that,

E[F ] =
1

n

∑
a∈En

∑
Iag,s,t∈Ia

F (Iag,s,t)P (I
a
g,s,t).

Suppose further that these agents explore their environments by creating hy-
pothetical worlds via altered interaction sequences. Then an unbiased estimate
for E[F ] is given by

F̂ =
1

n

∑
a∈En

∑
Ĩag,s,t∈Ia

F (Ĩag,s,t)P (Ĩ
a
g,s,t)

=
1

n

∑
a∈En

∑
Ĩag,s,t∈Ia

F (Ĩag,s,t)
∑
e∈E

[P (e|Iag,s,t)P (Ĩag,s,t|e)].

Proof. That F̂ is an unbiased estimate for E[F ] follows as a direct application
of standard statistical bootstrapping theorems. See, for example, [DE96].

Theorem 2 Suppose that in addition to the above assumptions, we assume
that the predicate F is Lipschitz continuous as a function of the interaction
sequences Iag,s,t. That is,

dF

(
F (Ĩag,s,t), F (I

a
g,s,t)

)
≤ KdI(Ĩag,s,t, Iag,s,t),

for some bound K and dF (·, ·) is a distance measure in predicate space.
Then, setting both the bias correction and acceleration parameters to zero,
the bootstrap BCα confidence interval for the mean of F satisfies

F̂BCα [α] ⊂ [F̂ −Kz(α)σ̂I , F̂ +Kz(α)σ̂I ]

where σ̂I is the standard deviation for the altered interaction sequences
and, letting Φ denote the standard normal c.d.f., z(α) = Φ−1(α).
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Proof. Note that the Lipschitz condition gives

σ̂2
F =

1

n|Ia| − 1
×∑

a∈En

∑
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d2F

(
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a
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)
P (Ĩag,s,t)
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n|Ia| − 1

∑
a∈En

∑
Ĩag,s,t∈Ia

d2I(Ĩ
a
g,s,t, I

a
g,s,t)P (Ĩ

a
g,s,t)

= K2σ̂2
I .

Since the population is normal and the bias correction and acceleration pa-
rameters are both zero, the BCα bootstrap confidence interval reduces to the
standard confidence interval, and the result then follows [?].

These two theorems together imply that, on average, through subsampling
via altered interaction sequences, agents can obtain unbiased approximations
to F and, by keeping the deviations from their experienced interaction se-
quence small, the deviations of their approximations will also be small.

While the two theorems above demonstrate the power of our subsampling
approach, the Lipschitz condition in theorem 2 is a strong assumption. This
observation motivates the following modification that is more in keeping with
the flavor of PLN’s indefinite probabilities approach.

Theorem 3 Define the set

Ia;b =
{
Ĩag,s,t|d2F

(
F (Ĩag,s,t), F (I

a
g,s,t

)
= b
}
,

and assume that for every real number b the perceptions of the predicate F
satisfy

1

n

∑
a∈En

P (Ia;b) ≤ M(b)

b2
σ2
I

for some M(b) ∈ R. Further suppose that∫ 1

0

M(b) db =M2 ∈ R.

Then under the same assumptions as in Theorem 1, and again setting both
the bias correction and acceleration parameters to zero, we have

F̂BCα [α] ⊂ [F̂ −M
√
nz(α)σ̂I , F̂ +M

√
nz(α)σ̂I ]

Proof.
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σ̂2
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G.4 Reinterpreting Indefinite Probabilities

Indefinite probabilities (see Chapter 34) provide a natural fit with the ex-
periential semantics of the SRAM model, as well as with the subsampling
methodology articulated above. A truth-value for an indefinite probability
takes the form of a quadruple ([L, U ], b, k). The meaning of such a truth-
value, attached to a statement S is, roughly: There is a probability b that,
after k more observations, the truth value assigned to the statement S will
lie in the interval [L, U ]. We interpret an interval [L, U ] by assuming some
particular family of distributions (usually Beta) whose means lie in [L,U ].

To execute inferences using indefinite probabilities, we make heuristic dis-
tributional assumptions, assuming a “first order” distribution of means, with
[L,U ] as a (100 · b)% credible interval. Corresponding to each mean in this
“first-order“ distribution is a “second order” distribution, providing for an
“envelope” of distributions.

The resulting bivariate distribution can be viewed as an heuristic approxi-
mation intended to estimate unknown probability values existing in hypothet-
ical future situations. Combined with additional parameters, each indefinite
truth-value object essentially provides a compact representation of a single
second-order probability distribution with a particular, complex structure.

In the EPW context, the second-order distribution in an indefinite proba-
bility is most naturally viewed as a distribution over possible worlds; whereas,
each first-order distribution represents the distribution of values of the propo-
sition within a given possible world.
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As a specific example, consider the case of two virtual agents: one agent,
with cat-like characteristics, called “Fluffy” and the second a creature, with
dog-like characteristics, named “Muffin.” Upon a meeting of the two agents,
Fluffy might immediately consider three courses of action: Fluffy might decide
to flee as quickly as possible, might hiss and threaten Muffin, or might decide
to remain quiet and still. Fluffy might have a memory store of perception
sequences from prior encounters with agents with similar characteristics to
those of Muffin.

In this scenario, one can view the second-order distribution, as a distribu-
tion over all three courses of action that Fluffy might take. Each first-order
distribution would then represent the probability distribution of the result
from the corresponding action. By hypothetically considering all three possi-
ble courses of action and the probability distributions of the resulting action,
Fluffy can make more rational decisions even though no result is guaranteed.

G.4.1 Reinterpreting Indefinite Quantifiers

EPW also allows PLN’s universal, existential and fuzzy quantifiers to be
expressed in terms of implications on fuzzy sets. For example, if we have

ForAll $X
Implication

Evaluation F $X
Evaluation G $X

then this is equivalent to

AverageQuantifier $X
Implication

Evaluation F ∗ $X
Evaluation G∗ $X

where e.g. F ∗ is the fuzzy set of variations on F constructed by assuming
possible errors in the historical evaluations of F . This formulation yields
equivalent results to the one given in [GIGH08], but also has the property of
reducing quantifiers to FOPLN (over sets derived from special predicates).

To fully understand the equivalence of the above two expressions, first note
that in [GIGH08], we handle quantifiers by introducing third-order proba-
bilities. As discussed there, the three levels of distributions are roughly as
follows. The first- and second-order levels play the role, with some modifica-
tions, of standard indefinite probabilities. The third-order distribution then
plays the role of “perturbing” the second-order distribution. The idea is that
the second-order distribution represents the mean for the statement F (x).
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The third-order distribution then gives various values of F(x) for x, and the
first-order distribution gives the sub-distributions for each of the second-order
distributions. The final result is then found via an averaging process on all
those second-order distributions that are “almost entirely” contained in some
ForAll_proxy_interval.

Next, AverageQuantifier F ($X) is a weighted average of F ($X) over all
relevant inputs $X; and we define the fuzzy set F ∗ as the set of perturbations
of a second-order distribution of hypotheses, and G∗ as the corresponding set
of perturbed implication results. With these definitions, not only does the
above equivalence follow naturally, so do the “possible/perturbed worlds”
semantics for the ForAll quantifier. Other quantifiers, including fuzzy quan-
tifiers, can be similarly recast.

G.5 Specifying Complexity for Intensional Inference

A classical dichotomy in logic involves the distinction between extensional in-
ference (which involves sets with members) and intensional inference (which
involves entities with properties). In PLN this is handled by taking extension
as the foundation (where, in accordance with experiential semantics, sets ul-
timately boil down to sets of elementary observations), and defining intension
in terms of certain fuzzy sets involving observation-sets. This means that in
PLN intension, like higher-order inference, ultimately emerges as a subcase
of FOPLN (though a subcase with special mathematical properties and spe-
cial interest for cognitive science and AI). However, the prior formulation of
PLN intension contains a “free parameter” (a complexity measure) which is
conceptually inelegant; EPW remedies this via providing this parameter with
a foundation in possible worlds semantics.

To illustrate how, in PLN, higher-order intensional inference reduces to
first-order inferences, consider the case of intensional inheritance. IntensionalInheritance A B
measures the extensional inheritance between the set of properties or patterns
associated with A and the corresponding set associated with B. This concept
is made precise via formally defining the concept of “pattern,“ founded on the
concept of “association.” We formally define the association operator ASSOC
through:

ExtensionalEquivalence
Member $E (ExOut ASSOC $C)
ExOut

Func
List

ExtensionalInheritance $E $C
ExtensionalInheritance

NOT $E
$C
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where Func(x, y) = [x− y]+ and + denotes the positive part.
We next define a pattern in an entity A as something that is associated

with, but simpler than, A. Note that this definition presumes some measure
c() of complexity. One can then define the fuzzy-set membership function
called the “pattern-intensity," via

IN(F,G) = [c(G)− c(F )]+[P (F |G)− P (F |¬G)]+.

measuring how much G is a pattern of F . The complexity measure c has been
left unspecified in prior explications of PLN, but in the present context we
may take it as the measure over concepts implied by the measure over possible
worlds derived via subsampling or counterfactuals as described above.

G.6 Reinterpreting Implication between Inheritance
Relationships

Finally, one more place where possible worlds semantics plays a role in PLN
is with implications such as

Implication
Inheritance Ben American
Inheritance Ben obnoxious

We can interpret these by introducing predicates over possible worlds, so
that e.g.

ZInheritance_Ben_American(W )〈tv〉

denotes that tv is the truth value of Inheritance_Ben_American in world
W . A prerequisite for this, of course, is that Ben and American be defined
in a way that spans the space of possible worlds in question. In the case of
possible worlds defined by differing subsets of the same observation-set, this
is straightforward; in the case of possible worlds defined via counterfactuals
it is subtler and we will omit details here.

The above implication may then be interpreted as

AverageQuantifier $W
Implication

Evaluation ZInheritance_Ben_American $W
Evaluation ZInheritance_Ben_obnoxious $W
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The weighting over possible worlds $W may be taken as the one obtained by
the system through the subsampling or counterfactual methods as indicated
above.

G.7 Conclusion

We began with the simple observation that the mind of an intelligent agent
accumulates knowledge based on experience, yet also creates hypothetical
knowledge about “the world as it might be,” which is useful for guiding fu-
ture actions. PLN handles this dichotomy via beginning from a foundation
in experiential semantics, but then using a form of experientially-grounded
possible-worlds semantics to ground a number of particular logical constructs,
which we have reviewed here. The technical details we have provided illus-
trate the general thesis that a combination of experiential and possible-worlds
notions may be the best approach to comprehending the semantics of declar-
ative knowledge in generally intelligent agents.





Appendix H
Propositions About Environments in
Which CogPrime Components are
Useful

H.1 Propositions about MOSES

Why is MOSES a good approach to automated program learning? The con-
ceptual argument in favor of MOSES may be broken down into a series of
propositions, which are given here both in informal “slogan” form and in
semi-formalized “proposition” form.

Note that the arguments given here appear essentially applicable to other
MOSES-related algorithms such as Pleasure as well. The page however was
originally written in regard to MOSES and hasn’t been revised in the light
of the creation of Pleasure.

Slogan 1 refers to “ENF”, Elegant Normal Form, which is used by MOSES
as a standard format for program trees. This is a way that MOSES differs
from GP for example: GP does not typically normalize program trees into a
standard syntactic format, but leaves trees heterogeneous as to format.

H.1.1 Proposition: ENF Helps to Guide Syntax-Based
Program Space Search

Slogan 1
Iterative optimization is guided based on syntactic distance ==> ENF is

good
Proposition 1
On average, over a class C of fitness functions, it is better to do optimiza-

tion based on a representation in which the (average over all functions in C
of the) correlation between syntactic and semantic distance is larger. This
should hold for any optimization algorithm which makes a series of guesses,
in which the new guesses are chosen from the old ones in a way that is biased
to choose new guesses that have small syntactic distance to the old one.

1059
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Note that GA, GP, BOA, BOAP and MOSES all fall into the specified
category of optimization algorithms

It is not clear what average smoothness condition is useful here. For in-
stance, one could look at the average of d(f(x),f(y))/d(x,y) for d(x,y)<A,
where d is syntactic distance and A is chosen so that the optimization algo-
rithm is biased to choose new guesses that have syntactic distance less than
A from the old ones.

H.1.2 Demes are Useful if Syntax/Semantics
Correlations in Program Space Have a Small
Scale

This proposition refers to the strategy of using “demes” in MOSES: instead
of just evolving one population of program trees, a collection of “demes” are
evolved, each one a population of program trees that are all somewhat similar
to each other.

Slogan 2 Small-scale syntactic/semantic correlation ==> demes are good
[If the maximal syntactic/semantic correlation occurs on a small scale, then
multiple demes are useful]

Proposition 2 Let d denote syntactic distance, and d1 denote semantic
distance. Suppose that the correlation between d(x,y) and d1(x,y) is much
larger for d(x,y)<A than for A<d(x,y)<2A or A<d(x,y), as an average across
all fitness functions in class C. Suppose the number of spheres of radius R
required to cover the space of all genotypes is n(R). Then using n(R) demes
will provide significantly faster optimization than using n(2R) demes or 1
deme. Assume here the same conditions on the optimization algorithm as in
Proposition 1.

Proposition 2.1 Consider the class of fitness functions defined by

Correlation( d(x,y), d1(x,y) || d(x,y) = a ) = b

Then, across this class, there is a certain number D of demes that will
be optimal on average.... I.e. the optimal number of demes depends on the
scale-dependence of the correlation between syntactic & semantic distance....

H.1.3 Probabilistic Program Tree Modeling Helps in the
Presence of Cross-Modular Dependencies

This proposition refers to the use of BOA-type program tree modeling within
MOSES. What it states is that this sort of modeling is useful if the programs
in question have significant cross-modular dependences that are not extremely
difficult to detect.
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Slogan 3 Cross-modular dependencies ==> BOA is good [If the geno-
types possess significant internal dependencies that are not concordant with
the genotypes’ internal modular structure, then BOA-type optimization will
significantly outperform GA/GP-type optimization for deme-exemplar exten-
sion.]

Proposition 3 Consider the classification problem of distinguishing fit
genotypes from less fit genotypes, within a deme. If significantly greater clas-
sification accuracy can be obtained by classification rules containing “cross-
terms” combining genotype elements that are distant from each other within
the genotypes - and these cross-terms are not too large relative to the in-
crease in accuracy they provide - then BOA-type modeling will significantly
outperform GA/GP-type optimization.

The catch in Proposition 3 is that the BOA-type modeling must be so-
phisticated enough to recognize the specific cross-terms involved, of course.

H.1.4 Relating ENF to BOA

Now, how does BOA learning relate to ENF?
Proposition 4 ENF decreases, on average, the number and size of cross-

terms in the classification rules mentioned in Proposition 3.

H.1.5 Conclusion Regarding Speculative MOSES Theory

What we see from the above is that:

• ENF is needed in order to make the fitness landscape smoother, but can
almost never work perfectly so there will nearly always be some long-
distance dependencies left after ENF-ization
• The smoother fitness landscape enabled by ENF, enables optimization

using demes and incremental exemplar-expansion to work, assuming the
number of demes is chosen intelligently
• Within a deme, optimization via incremental exemplar growth is more

efficient using BOA than straight evolutionary methods, due to the ability
of BOA to exploit the long-distance dependencies not removed by ENF-
ization

These propositions appear to capture the basic conceptual justification for
the current MOSES methodology. Of course, proving them will be another
story, and will likely involve making the proposition statements significantly
more technical and complex.

Another interesting angle on these propositions is to view them as con-
straints on the problem type to which MOSES may be fruitfully applied.
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Obviously, no program learning algorithm can outperform random search on
random program learning problems. MOSES, like any other algorithm, needs
to be applied to problems that match its particular biases. What sorts of
problems match MOSES’s biases?

In particular, the right question to ask is: Given a particular choice regard-
ing syntactic program representation, what sorts of problems match MOSES’s
biases as induced by this choice?

If the above propositions are correct, the answer is, basically: Problems
for which semantic distance (distance in fitness) is moderately well-correlated
with syntactic distance (in the chosen representation) over a short scale but
not necessarily over a long scale, and for which a significant percentage of suc-
cessful programs have a moderate but not huge degree of internal complexity
(as measured by internal cross-module dependencies).

Implicit in this is an explanation of why MOSES, on its own, is likely not
a good approach to solving extremely large and complex problems. This is
because for an extremely large and complex problem, the degree of internal
complexity of successful programs will likely be too high for BOA modeling to
cope with. So then, in these cases MOSES will effectively operate as a multi-
start local search on normalized program trees, which is not a stupid thing,
but unlikely to be adequately effective for most large, complex problems.

We see from the above that even in the case of MOSES, which is much
simpler than OCP, formulating the appropriate theory adequately is not a
simple thing, and proving the relevant propositions may be fairly difficult.
However, we can also see from the MOSES example that the creation of a
theoretical treatment does have some potential for clarifying the nature of
the algorithm and its likely range of applicability.

H.2 Propositions About CogPrime

We present some speculations regarding the extension of the approach to
MOSES-theory presented above to handle OCP in general. This is of course
a much more complex and subtle matter, yet we suggest that in large part it
may be handled in a similar way. This way of thinking provides a different
perspective on the OCP design - one that has not yet substantially impacted
the practical aspects of the design, but may well be of use to us as we iter-
atively refine the design in the future, in the course of testing and teaching
OCP AGI systems.

As with the propositions in previous section but even more so, the details
of these heuristic propositions will likely change a fair bit when/if rigorous
proof/statement is attempted. But we are intuitively fairly confident that the
basic ideas described here will hold up to rigorous analysis.

Finally, one more caveat: the set of propositions listed here is not presented
as complete. By no means! A complete theoretical treatment of OCP, along
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these lines, would involve a more substantial list of related propositions. The
propositions given here are meant to cover a number of the most key points,
and to serve as illustrations of the sort of AGI theory we believe/hope may
be possible to do in the near and medium term future.

H.2.1 When PLN Inference Beats BOA

This proposition explains why, in some cases, it will be better to use PLN
rather than BOA within MOSES, for modeling the dependencies within pop-
ulations of program trees.

Slogan 5 Complex cross-modular dependencies which have similar nature
for similar fitness functions ==> PLN inference is better than BOA for
controlling exemplar extension

Proposition 5 Consider the classification problem of distinguishing fit
genotypes from less fit genotypes, within a deme. If

• significantly greater classification accuracy can be obtained by classifica-
tion rules containing “cross-terms” combining genotype elements that are
distant from each other within the genotypes, but
• the search space for finding these classification rules is tricky enough

that a greedy learning algorithm like decision-tree learning (which is used
within BOA) isn’t going to find the good ones
• the classification rules tend to be similar, for learning problems for which

the fitness functions are similar

Then, PLN will significantly outperform BOA for exemplar extension within
MOSES, due to its ability to take history into account.

H.2.2 Conditions for the Usefulness of Hebbian
Inference Control

Now we turn from MOSES to PLN proper. The approximate probabilistic
correctness of PLN is handled via PLN theory itself, as presented in the PLN
book. However, the trickiest part of PLN in practice is inference control, which
in the OCP design is proposed to be handled via “experiential learning.” This
proposition pertains to the conditions under which Hebbian-style, inductive
PLN inference control can be useful.

Slogan 6 If similar theorems generally have similar proofs, then inductively-
controlled PLN can work effectively

Proposition 6

• Let L0 = a simple “base level” theorem-proving framework, with fixed
control heuristics
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• For n > 0, let Ln = theorem-proving done using Ln−1, with inference
control done using data mining over a DB of inference trees, utilizing Ln−1
to find recurring patterns among these inference trees that are potentially
useful for controlling inference

Then, if T is a set of theorems so that, within T, theorems that are similar
according to “similarity provable in Ln−1 using effort E” have proofs that are
similar according to the same measure, then Ln will be effective for proving
theorems within T

H.2.3 Clustering-together of Smooth Theorems

This proposition is utilized within Theorem 8, below, which again has to do
with PLN inference control.

Slogan 7 “Smooth” theorems tend to cluster together in theorem-space
Proposition 7 Define the smoothness of a theorem as the degree to which

its proof is similar to the proofs of other theorems similar to it. Then, smooth-
ness varies smoothly in theorem-space. I.e., a smooth theorem tends to be
close-by to other smooth theorems.

H.2.4 When PLN is Useful Within MOSES

Above it was argued that PLN is useful within MOSES due to its capability
to take account of history (across multiple fitness functions). But this is not
the only reason to utilize PLN within MOSES; Propositions 6 and 7 above
give us another theoretical reason.

Proposition 8 If similar theorems of the form “Program A is likely to
have similar behavior to program B” tend to have similar proofs, and the
conditions of Slogan 6 hold for the class of programs in question, then induc-
tively controlled PLN is good (and better than BOA) for exemplar extension.
(This is basically Proposition 6 + Proposition 7)

H.2.5 When MOSES is Useful Within PLN

We have explored theoretical reasons why PLN should be useful within
MOSES, as a replacement for the BOA step used in the standalone implemen-
tation of MOSES. The next few propositions work in the opposite direction,
and explore rasons why MOSES should be useful within PLN, for the specific
problem of finding elements of a set given a qualitative (intensional) descrip-
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tion of a set. (This is not the only use of MOSES for helping PLN, but it is
a key use and a fairly simple one to address from a theoretical perspective.)

Proposition 9 In a universe of sets where intensional similarity and ex-
tensional similarity are well-correlated, the problem of finding classification
rules corresponding to a set S leads to a population of decently fit candidate
solutions with high syntactic/semantic correlation so that demes are good for
this problem.

Proposition 10: In a universe of sets satisfying Proposition 9, where
sets have properties with complex interdependencies, BOA will be useful for
exemplar extension (in the context of using demes to find classification rules
corresponding to sets).

Proposition 11: In a universe of sets satisfying Proposition 10, where the
interdependencies associated with a set S’s property-set vary “smoothly” as
S varies, working inference is better than BOA for exemplar extension.

Proposition 12: In a universe of sets satisfying Proposition 10, where the
proof of theorems of the form “Both the interdependencies of S’s properties,
and the interdependencies of T’s properties, satisfy predicate F” depends
smoothly on the theorem statement, then inductively controlled PLN will be
effective for exemplar extension.

H.2.6 On the Smoothness of Some Relevant Theorems

We have talked a bit about smooth theorems, but what sorts of theorems will
tend to be smooth? If the OCP design is to work effectively, the “relevant”
theorems must be smooth; and the following proposition gives some evidence
as to why this may be the case.

Proposition 13 In a universe of sets where intensional similarity and ex-
tensional similarity are well-correlated, probabilistic theorems of the form “A
is a probabilistic subset of B” and “A is a pattern in B” tend to be smooth....

Note that: For a set S of programs, to say “intensional similarity and
extensional similarity are well-correlated” among subsets of S, means the
same thing as saying that syntactic and semantic similarity are well-correlated
among members of S

Proposition 14 The set of motor control programs, for a set of standard
actuators like wheels, arms and legs, displays a reasonable level of correlation
between syntactic and semantic similarity

Proposition 15 The set of sentences that are legal in English displays a
high level of correlation between syntactic and semantic similarity.

(The above is what, in Chaotic Logic, I called the “principle of continuous
compositionality”, extending Frege’s Principle of Compositionality. It implies
that language is learnable via OCP-type methods.... Unlike the other Propo-
sitions formulated here, it is more likely to be addressable via statistical than
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formal mathematical means; but insofar as English syntax can be formulated
formally, it may be considered a roughly-stated mathematical proposition.)

H.2.7 Recursive Use of “MOSES+PLN” to Help With
Attention Allocation

Proposition 16 The set of propositions of the form “When thinking about
A is useful, thinking about B is often also useful” tends to be smooth -
if “thinking” consists of MOSES plus inductively controlled PLN, and the
universe of sets is such that this cognitive approach is generally a good one.

This (Prop. 16) implies that adaptive attention allocation can be use-
ful for a MOSES+PLN system, if the attention allocation itself utilizes
MOSES+PLN.

H.2.8 The Value of Conceptual Blending

Proposition 17: In a universe of sets where intensional similarity and ex-
tensional similarity are well-correlated, if two sets A and B are often useful
in proving theorems of the form “C is a (probabilistic) subset of D”, then
“blends” of A and B will often be useful for proving such theorems as well.

This is a justification of conceptual blending for concept formation.

H.2.9 A Justification of Map Formation

Proposition 18: If a collection of terms A is often used together in
MOSES+PLN, then similar collections B will often be useful as well, for
this same process ... assuming the universe of sets is so that intensional and
extensional similarity are correlated, and MOSES+PLN works well.

This is a partial justification of map formation, in that finding collections
B similar to A is achieved by encapsulating A into a node A’ and then doing
reasoning on A’.

H.3 Concluding Remarks

The above set of propositions is certainly not complete. For instance, one
might like to throw in conjunctive pattern mining as a rapid approximation
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to MOSES; and some specific justification of artificial economics as a path to
effectively utilizing MOSES/PLN for attention allocation; etc.

But, overall, it seems fair to say that the above set of propositions smells
like a possibly viable path to a theoretical justification of the OCP design.

To summarize the above ideas in a nutshell, we may say that the effective-
ness of the OCP design appears intuitively to follow from the assumptions
that:

• within the space of relevant learning problems, problems defined by sim-
ilar predicates tend to have somewhat similar solutions

• according to OCP’s knowledge representation, procedures and predicates
with very similar behaviors often have very similar internal structures,
and vice versa (and this holds to a drastically lesser degree if the “very”
is removed)

• for relevant theorems (“theorems” meaning Atoms whose truth values
need to be evaluated, or whose variables or SatisfyingSets need to be
filled in, via PLN): similar theorems tend to have similar proofs, and the
degree to which this holds varies smoothly in proof-space

• the world can be well modeled using sets for which intensional and exten-
sional similarity are well correlated: meaning that the mind can come up
with a system of “extensional categories” useful for describing the world,
and displaying characteristic patterns that are not too complex to be
recognized by the mind’s cognitive methods

To really make use of this sort of theory, of course, two things would need to
be done. For one thing, the propositions would have to be proved (which will
probably involve some serious adjustments to the proposition statements).
For another thing, some detailed argumentation would have to be done re-
garding why the “relevant problems” confronting an embodied AGI system
actually fulfill the assumptions. This might turn out to be the hard part,
because the class of “relevant problems” is not so precisely defined. For very
specific problems like - to name some examples quasi-randomly - natural
language learning, object recogntion, learning to navigate in a room with ob-
stacles, or theorem-proving within a certain defined scope, however, it may
be possible to make detailed arguments as to why the assumptions should be
fulfilled.

Recall that what makes OCP different from huge-resources AI designs like
AIXI (including AIXItl) and the Gödel Machine is that it involves a num-
ber of specialized components, each with their own domains and biases and
some with truly general potential as well, hooked together in an integrative
architecture designed to foster cross-component interaction and overall syn-
ergy and emergence. The strength and weakness of this kind of architecture
is that it is specialized to a particular class of environments. AIXItl and
the Gödel Machine can handle any type of environment roughly equally well
(which is: very, very slowly), whereas, OCP has the potential to be much
faster when it’s in environment that poses it learning problems that match
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its particular specializations. What we have done in the above series of propo-
sitions is to partially formalize the properties an environment must have to
be “OCP-friendly.” If the propositions are essentially correct, and if interest-
ing real-world environments largely satisfy their assumptions, then OCP is a
viable AGI design.
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