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Abstract

The term ”higher level learning” may be used to refer to learning how to learn, learning how to learn
how to learn, etc. If an agent is good at ordinary everyday learning, but also at learning about which
learning strategies are most amenable to higher-level learning, and does both in a way that is amenable to
higher level learning.— then it may be said to possess self~adaptable learning. Goals and environments
in which higher-level learning is a good strategy for intelligence, may be called adaptationally hier-
archical — a property that everyday human environments are postulated to possess. These notions are
carefully articulated and formalized; and a concept of cognitive continuity is also introduced, which
is argued to militate in favor of self-adaptability in a learning system.

1 Introduction

Gregory Bateson, in Mind and Nature [Bat80], articulated the appealing idea that human-level intelligence
involves multiple levels of learning, which he characterized as

e learning
e learning how to learn (aka second-order learning)
e learning how to learn how to learn (aka third-order learning)

He also conjectured that human beings very rarely proceed past third-order learning.

A related idea that has achieved some currency in cognitive science and Al lately is the concept of
”metacognition” — thinking about thinking [MS94, Shi00]. Metacognition has been proposed as a critical
aspect of human-level thinking. Batesonian second-order learning would be a prime example of metacogni-
tion.

The concept of "metalearning” in machine learning is closely related — this comprises, for instance,
learning which machine learning algorithms or parameters or features are most likely to be appropriate for
various specific types of learning problems [BGCSVO08]. So one can transfer knowledge about ” what works for
what sort of problem” from old problems to new ones, thus enabling more rapid learning for new problems,
avoiding "reinventing the wheel.” Metalearning as commonly conceived is an instance of Batesonian second-
order learning; and one could use the term ”"metametalearning” to refer to Batesonian third-order learning,
etc.

Taking a cue from these ideas, it’s interesting to think about the prerequisites enabling higher order
learning.

Starting at the lowest level, some modes of acting are more amenable to learning than others. For
instance, if an agent keeps repetitively doing the same things over and over again, that agent’s opportunities
for learning are going to be rather limited. Whereas if the agent tries a diverse variety of things, the
opportunities for learning will be much greater. Trying a variety of things doesn’t guarantee learning, but
it sets the stage for learning, more so than trying a narrow scope of things.

Similarly, some modes of learning are more amenable to learning how to learn than others. This is
commonsense among folks involved with using metalearning for supervised categorization or other practical



machine learning applications. Suppose you have two different machine learning algorithms A and B, and
they both solve individual problems with equal accuracy, but A has simpler dependencies on its parameters
than B does. Then, A is more amenable to metalearning. Doing metalearning with B may still be possible,
but may require more processing power or memory, or a smarter learning algorithm at the meta level.

You could argue that, in this case, A is simply doing better learning than B, because it is simpler, and
according Occam’s razor, a simple solution is better. But there are a lot of ways of measuring simplicity,
and B might be more favorable than A according to some of them. What I'm pointing out here, though,
is a specific way of measuring simplicity of learning algorithms, which correlates well with ”amenability to
metalearning.”

And what about on the higher levels? Similarly, an algorithm with simpler parameter dependencies, used
for second-order learning, will be more amenable to third-order learning.

But one can go deeper than this. These observations view the matter from the outside, from the point of
view of an algorithm designer, choosing one or another learning algorithm to utilize for first, second or third
level learning. But, what if we look at the same issues from the inside, from the point of view of an agent
that is learning in the world and trying to adapt itself to become smarter and smarter (as part of achieving
its basic goals).

In this case, it seems clear that one of the agent’s goals should be to learn (on every level) in a way that
is amenable to higher-level learning.

But of course, it’s not going to be obvious which learning strategies are most amenable to higher-level
learning.

So what needs to be done is to learn about which learning strategies are most amenable to higher-level
learning, in a way that is amenable to higher level learning.

If an agent is good at ordinary everyday learning, but also at learning about which learning strategies
are most amenable to higher-level learning, and does both in a way that is amenable to higher level
learning.— then it may be said to possess self-adaptable learning.

2 Adaptationally Hierarchical Environments

One may wonder whether it’s really worth separating out ”self-adaptable learning” as a separate concept
from, simply, learning. From a practical standpoint, in terms of studying human intelligence and designing
artificial intelligence, it does seem a worthwhile distinction. But it’s worth reflecting on why. Bateson’s basic
observation, in articulating the levels of learning, was that in practical situations, the breakdown of learning
into multiple levels appears to be a valuable heuristic. But why is this? It seems to be a property of the
specific goals and environments that humans (and our Al systems) operate in. Perhaps this property would
be shared by any intelligent agents in the physical universe, but it’s less clear that the property must in
principle be shared by any computationally possible agents in any possible computable environments with
any computable goals.

We may define a set of goals (in a set of environments) as adaptationally hierarchical if, given a fixed
set of computational resources, the most intelligent agents relative to those goals and that environment, are
ones that carry out a lot of self-adaptable learning. This is different from simply saying an environment has
a compositionally hierarchical structure, with entities built from entities built from entities — although, quite
clearly, there are linkages between the two types of hierarchy.

A nontrivial hypothesis is that the environments humans, and reasonably near-term AGI systems, are
going to have to deal with, are fairly strongly adaptationally hierarchical. This hypothesis may be considered
alongside related hypotheses in [Goe09] regarding the Embodied Communication Prior and the Naturalness of
Knowledge Categories. Adaptational hierarchy, ECP and NKC are all examples of general abstract properties
of goals and environments, which appear to strongly bias the set of agents that display efficient pragmatic
general intelligence (see [Goel0] for a formal definition of this) with respect to those goals and environments.

3 Formalizing Self-Adaptable Learning

We now give a mathematical expression to the above informal notion of self-adaptable learning.



Where @ is a learning strategy (e.g. a learning algorithm with certain parameters) capable solving
learning problems in class C, let

o L(®,C) denote the effectiveness of ® at solving learning problems in C'

e A(®,C) denote the "amenability to higher level learning” of the strategy ® in the context of the
problem-class C'

o L(®,C4) and A(P,C4) denote the learning capability and ”amenability to higher level learning” of
the strategy ® in the context of that subclass C'4 of the problem-class C' that relates to amenability
to higher-level learning

Then what is needed is to find a strategy ® for learning A in the contexts C relevant to the agent — that is
both effective at learning, and also amenable to higher-order learning. I.e., we need a strategy ®, so that

o L(®,C)
o A
o L(®,Cy)
o A(®,C4)

are all reasonably large.

Of course, if L(®,C) were high enough, the agent wouldn’t need to worry about these other quantities!
You don’t need meta-learning if your learning algorithm is good enough. But in reality, it seems this isn’t
always a practical strategy. As noted above, this appears to be a consequence of the particular sorts of
learning problems C' provided by practical situations, in combination with the realities of real-world resource
limitations.

Now, if we understood A, we could find such an ® by applying our knowledge of A. And if we had such
an ¢, we could use it to understand A.... This is either a vicious, or virtuous, cycle for the intelligent agent,
depending on how smart the agent is. If the agent figures out enough about ® and A, then it can use this
cycle to learn more and more about both — and get smarter and smarter generically. On the other hand, if
it’s too dim-witted to get an initial clue about ® and A, then it will flail around, perhaps able to carry out
various isolated acts of learning, but unable to

Let q(w,x,y,2) : R* — R be monotone increasing in all its arguments; then we may use

Q((I)7 C) = Q(L((I)7 C)v A((I)7 C)v L((I)v CA)v A((I)v CA))

as a composite measure of quality, combining learning capability and amenability to higher-level learning. A
simple example would be a weighted sum. This seems sensibly referred to as the degree of self~adaptable
intelligence possessed by the learning strategy ®. A learning strategy with high ) may be said to constitute
self — adaptablelearning.

An agent doesn’t need to find the absolute maximum of Q(®,C), to achieve a high level of intelligence.
What it needs is to find a way to make this quantity reasonably large.

Given a strategy ® with ¢p = Q(®, C), one can identify the amount of resources Rg required to apply @
to find some ®; so that gs, > kqa, where k > 1. It’s interesting to chart the likely trajectory of Rs as an
agent develops over time. On average, it would seem that, for fixed k,

1. Rg should be quite large when ¢¢ is small, as the system is not very smart at self-improvement, and
needs to do a lot of work to figure out small tricks for self-improvement

2. Rg should decrease as go begins to increase, as the system gets smarter about self-improvement
3. Rg should be fairly low when the system is in a phase of rapid increase in its self-improvement capability

4. Rs may increase again once the system gets near the global maximum g that is possible given its
fixed architecture or computational resources ... or if it gets stuck in a local maximum



5. Rg is large again when the system is (loosely speaking) as good at self-improvement as it’s going to
get

Given a maximization problem W, a current best solution Xy, and a learning strategy ® deployed using
computational resources R, we may write ®(¥, X;) to denote the probability distribution over possible
solutions —i.e. the distribution giving the probability that applying ® to ¥, given resources R and current best
solution Xy, produces X as the best approximation to the maximizer of ¥. Then, the solution-distribution
resulting from application of ® to the maximization problem ¥ (x) = Q(x*, C) [using the wild-card x to denote
the variable being varied to achieve the maximum)], given that ® itself is currently the best known solution
to the problem, would be denoted

2(Q(x,C),®)

If one replaces the single ® and xzy with probability distributions, then one still gets a probability distri-
bution for an answer. So, one may talk about an iteration

(I)n = (I)n—l(Q(*a C)? Qn—l)

potentially ultimately converging toward a fixed point so that

O* =" (Q(x,C), ")

Supposing such a fixed point is found, which constitutes a fairly narrowly-concentrated probability distri-
bution in the space of learning strategies. Then, at this fixed point, one has a strategy where using this
strategy as a starting point for thinking about how to find a good strategy for self-improvement, doesn’t lead
to any improvement. This could be a dead-end arrived at due to stupidity or unfortunate cognitive choices,
or it could be an apex of perfection in the art of self-adaptable intelligence.

4 Self-Adaptable Learning and Cognitive Continuity

We have formalized the notion of self-adaptable learning, but in itself, that doesn’t tell us much about how
to achieve it.

My view is that there is no simple trick providing the sole key to real-world self-adaptable learning. The
human brain is complex for good reason — achieving a reasonable level of self-adaptable learning in a complex
environment given severely limited computing resources, requires a complex architecture that to some extent
mirrors the complexity of the environment and the agent’s goals within it.

But nevertheless, some general principles may be discoverable. Here I'll suggest one that seems promising
based on prior work in metalearning.

So far one of the most powerful approaches in metalearning for categorization problems, has been the
humble "nearest neighbor” approach. Basically, in this approach, when one confronts a new learning problem,
one asks what methods have worked for previous similar learning problems, and tries similar methods.

In the present context, suppose that Q(®,C) does not vary too sensitively, on average, when one varies
® and C. We may call this property of ® cognitive continuity. To formalize this, of course, one needs a
metric on the spaces that ® and C' live in. For instance, if ® is represented as a program in some language,
one may achieve this via a metric on program space. If C is a set of goals, these may be represented as
mathematical functions (from time-series of observations into real numbers) and may then be metrized by
any of the standard metrics on program space.

Once one finds a reasonably good ®( that also has cognitive continuity — it follows that there are likely
to be other similar ® that are also reasonably good. And if the world turns out to be a little different than
one thought (i.e. the C' one was assuming turns out to be slightly unrealistic), then ®y will probably still be
pretty good on the new improved estimate of C'. All this makes meta-learning much easier, i.e. it improves
amenability to adaptation.

On the other hand, one doesn’t want Q(®, C) to be constant either — one wants to be able to vary ® and
get better results.



For instance, consider the case where the behavior of ® depends on a body of knowledge that the agent
has gathered about the world, which is viewable as ”biasing” learning in a certain way. Then cognitive
continuity means that minor changes to this body of knowledge are only likely to cause modest changes to
the learning capability.

With this in mind, I suggest that one way to help oneself along the path toward self-adaptable learning,
is to choose learning strategies ® so that the variation of Q(®,C) near ® is reasonably but not exorbitantly
variant. The quality near ® should vary, but reasonably continuously.

One could formalize this by formalizing the ”reasonableness of variability” of ® as V(®,C), and then
looking at

Q(®,C) = q(L(®,C), A(®,C), L(®,Ca), A(®,Ca), V(2,C))

(with the weighting function ¢ extended to another argument).
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