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Abstract. A program evolution component is proposed for integrative artificial 
general intelligence. The system’s deployment is intended to be comparable, on 
Marr’s  level  of  computational  theory,  to  evolutionary  mechanisms  in  human 
thought.  The  challenges  of  program  evolution  are  described,  along  with  the 
requirements  for  a  program  evolution  system  to  be  competent  -  solving  hard 
problems quickly, accurately, and reliably. Meta-optimizing semantic evolutionary 
search (MOSES) is proposed to fulfill these requirements.

1. Background and Motivation

“At  every  step  the  design  logic  of  brains  is  a  Darwinian  logic:  overproduction,  variation,  competition, 
selection … it  should not  come as a surprise that  this same logic is also the basis  for the normal 
millisecond-by-millisecond  information  processing  that  continues  to  adapt  neural  software  to  the 
world.” Terrence Deacon [1]

In David Marr’s seminal decomposition, any information-processing system may be 
understood at three nearly independent levels: (1) computational theory, a description 
of the problems the system attempts to solve; (2) representations and algorithms; and 
(3)  implementation,  the  physical  instantiation  of  the  system’s  representations  and 
algorithms [2]. What might the subsystems of human cognition look like on the level of 
computational theory?1

I  propose that  evolutionary learning be considered as one of these subsystems. 
Major  subfields  of  both  cognitive  science  and AI are  concerned  with  evolutionary 
learning  processes.  One motivator  for  this  concern  is  an  attempt  in  both  fields  to 
augment  purely  local  techniques  such  as  Hebbian  (associative)  learning  with  more 
global  methods,  which  try  to  make  large  leaps  to  find  answers  far  removed from 
existing knowledge. This is a form of evolutionary learning [4], which Edelman [5] has 
presented as “Neural Darwinism”, and Calvin and Bickerton [6, 7] as the notion of 
mind as a “Darwin Machine”.

It is known that the immune system adapts via a form of evolutionary learning, and 
Edelman [5]  has  proposed  that  the  brain does  so  as  well,  evolving new “neuronal 
maps”, patterns of neural connection and activity spanning numerous neuronal clusters 
that are highly “fit” in the sense of contributing usefully to system goals. Edelman and 

1 Parts  of  this  section  are  adapted  from [3],  which  elaborates  on  the  utility  of  emulating  human 
cognition on the level of computational theory.
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his  colleagues  have  run  computer  simulations  showing  that  Hebbian-like  neuronal 
dynamics, if properly tuned, can give rise to evolution-like dynamics on the neuronal 
map level (“neuronal group selection”).

Recently  Deacon [1]  has  articulated ways  in  which,  during neurodevelopment, 
difference  computations  compete  with  each  other  (e.g.,  to  determine  which  brain 
regions  are  responsible  for  motor  control).  More  generally,  he  posits  a  kind  of 
continuous flux as control shifts between competing brain regions,  again,  based on 
high-level “cognitive demand” [1, p. 457]. Similarly, Calvin and Bickerton [6, 7] have 
given  plausible  neural  mechanisms  (“Darwin  Machines”)  for  synthesizing  short 
“programs”.  These  programs  are  for  tasks  such  as  rock  throwing  and  sentence 
generation, which are represented as coherent firing patterns in the cerebral cortex. A 
population of such patterns, competing for neurocomputational territory, replicates with 
variations,  under  selection  pressure  to  conform  to  background  knowledge  and 
constraints. 

In summary, a system is needed that can recombine existing solutions in a non-
local  synthetic  fashion,  learning  nested  and  sequential  structures,  and  incorporate 
background knowledge (e.g. previously learned routines). I propose a particular kind of 
program evolution to satisfy these goals.

1.1. Evolutionary Learning

There  is  a  long  history  in  AI  of  applying  evolution-derived  methods  to  practical 
problem-solving; the original genetic algorithm [4], initially a theoretical model, has 
been  adapted successfully  to  a  wide  variety  of  applications  [8].  The  methodology, 
similar to the Darwin Machines mentioned above, is applied as follows: (1) generate a 
random  population  of  solutions  to  a  problem;  (2)  evaluate  the  solutions  in  the 
population using a predefined scoring function; (3) select solutions from the population 
proportionate to their scores, and recombine/mutate them to generate a new population; 
(4) go to step 2. Holland's paradigm has been adapted from the case of fixed-length 
strings to the evolution of variable-sized and shaped trees (typically  Lisp symbolic 
expressions), which in principle can represent arbitrary computer programs [9, 10]. 

Recently,  replacements-for/extensions-of  the  genetic  algorithm  have  been 
developed  (for  fixed-length  strings)  which  may  be  described  as  estimation-of-
distribution algorithms (see [11] for an overview). These methods, which outperform 
genetic  algorithms  and  related  techniques  across  a  range  of  problems,  maintain 
centralized  probabilistic  models  of  the  population  learned  with  sophisticated 
datamining techniques. One of the most powerful of these methods is the  Bayesian 
optimization algorithm (BOA) [12].

The basic steps of the BOA are: (1) generate a random population of solutions to a 
problem;  (2)  evaluate  the  solutions  in  the  population  using  a  predefined  scoring 
function; (3) from the promising solutions in the population, learn a generative model; 
(4) create new solutions using the model, and merge them into the existing population; 
(4) go to step 2. The neurological implausibility of this sort of algorithm is readily 
apparent – yet recall that we are attempting to emulate human cognition on the level of 
computational theory, not implementation, or even representations and algorithms.

Figure 1: The structure of OneMax, a paradigmatic separable optimization problem.



Figure 2: The structure of hierarchical if-and-only-if [16], a paradigmatic nearly decomposable optimization 
problem.

                                                          

Figure 3: The structure of an intractable optimization problem, such as a uniform random scoring function, 
where changing the assignment of any variable results in a chaotic change in the overall score.

Fundamentally,  the  BOA  and  its  ilk  (the  competent adaptive  optimization 
algorithms)  differ  from  classic  selectorecombinative  search  by  attempting  to 
dynamically learn a problem decomposition, in terms of the variables that have been 
pre-specified. The BOA represents this decomposition as a Bayesian network (directed 
acyclic graph with the variables as nodes, and an edge from x to y indicating that y is 
probabilistically dependent on x). An extension, the hierarchical Bayesian optimization 
algorithm (hBOA) [12],  uses a Bayesian network with local  structure [13] to more 
accurately represent hierarchical dependency relationships. The BOA and hBOA are 
scalable and robust to noise across the range of nearly decomposable functions [12, 
13].  They  are  also  effective,  empirically,  on  real-world  problems  with  unknown 
decompositions, which may or may not be effectively representable by the algorithms; 
robust,  high-quality  results  have been obtained for Ising spin glasses and MaxSAT 
[14], as well as a real-world telecommunication problem [15].

1.2.Representation-Building

“A representation is a formal system making explicit certain entities or types of information, together with a 
specification of how the system does this.” David Marr [2]

 



In an ideally encoded optimization problem, all prespecified variables would exhibit 
complete separability, and could be optimized independently (Figure 1). Problems with 
hierarchical dependency structure (Figure 2) cannot be encoded this way, but are still 
tractable by dynamically learning the problem decomposition (as the BOA and hBOA 
do).  For  complex  problems  with  interacting  subcomponents,  finding  an  accurate 
problem decomposition is often tantamount to finding a solution. In an idealized run of 
a competent optimization algorithm, the problem decomposition evolves along with the 
set  of  solutions  being  considered,  with  parallel  convergence  to  the  correct 
decomposition and the global solution optima. However, this is certainly contingent on 
the existence of some compact2 and reasonably correct decomposition in the space (of 
decompositions, not solutions) being searched.

Difficulty arises when no such decomposition exists (Figure 3), or when a more 
effective decomposition exists that cannot be formulated as a probabilistic model over 
representational  parameters.  Accordingly,  one  may  extend  current  approaches  via 
either: (1) a more general modeling language for expressing problem decompositions; 
or  (2)  additional  mechanisms that  modify  the  representations  on  which  modeling 
operates (introducing additional inductive bias). I focus here on the latter – the former 
would  appear  to  require  qualitatively  more  computational  capacity  than  will  be 
available in the near future. If one ignores this constraint, such a “universal” approach 
to general problem-solving is indeed possible [17, 18].

I  refer  to  these  additional  mechanisms  as  representation-building  because  they 
serve the same purpose as the pre-representational mechanisms employed (typically by 
humans) in setting up an optimization problem – to present an optimization algorithm 
with the salient parameters needed to build effective problem decompositions and vary 
solutions along meaningful dimensions.

A secondary source of human effort in encoding problems to be solved is crafting 
an effective scoring function. The primary focus of this paper is issues surrounding the 
representation of solutions, rather than how solutions are scored, which may be more 
fruitfully addressed, I believe, in the context of integrative systems (cf. [19]).

1.3.Program Learning

An optimization problem may be defined as follows: a solution space  S is specified, 
together  with  some  scoring  function  on  solutions,  where  “solving  the  problem” 
corresponds to discovering a solution in  S with a sufficiently high score. Let's define 
program  learning  as  follows:  given  a  program  space  P,  a  behavior  space  B,  an 
execution function  exec  :  P → B, and a scoring function on  behaviors, “solving the 
problem” corresponds to discovering a program p in P whose corresponding behavior, 
exec(p), has a sufficiently high score.

This extended formalism can of course be entirely vacuous – the behavior space 
could be identical to the program space, and the execution function simply identity, 
allowing any optimization problem to be cast as a problem of program learning. The 
utility of this specification arises when we make interesting assumptions regarding the 
program and behavior spaces, and the execution and scoring functions (the additional 
inductive bias mentioned above):

2 The decomposition must be compact because in practice only a fairly small sampling of solutions may be 
evaluated  (relative  to  the  size  of  the  total  space)  at  a  time,  and  the  search  mechanism for  exploring 
decomposition-space is greedy and local.  This is in also accordance with the general  notion of learning 
corresponding to compression [17].



• Open-endedness – P has a natural “program size” measure – programs may 
be  enumerated from smallest  to  largest,  and there  is  no  obvious problem-
independent upper bound on program size.

• Over-representation – exec often maps many programs to the same behavior.
• Compositional  hierarchy –  programs  themselves  have  an  intrinsic 

hierarchical organization, and may contain subprograms which are themselves 
members of P or some related program space. This provides a natural family 
of distance measures on programs, in terms of the the number and type of 
compositions / decompositions needed to transform one program into another 
(i.e., edit distance).

• Chaotic Execution – very similar programs (as conceptualized in the previous 
item) may have very different behaviors.

Precise  mathematical  definitions  could  be  given for  all  of  these  properties  but 
would provide little insight – it  is more instructive to simply note their ubiquity in 
symbolic representations; human programming languages (LISP, C, etc.), Boolean and 
real-valued formulae, pattern-matching systems, automata, and many more. The crux 
of  this  line  of  thought  is  that  the  combination  of  these  four  factors  conspires  to 
scramble scoring functions – even if the mapping from behaviors to scores is separable 
or nearly decomposable, the complex3 program space and chaotic execution function 
will often quickly lead to intractability as problem size grows. These properties are not 
superficial  inconveniences  that  can  be  circumvented  by  some  particularly  clever 
encoding. On the contrary, they are the essential characteristics that give programs the 
power  to  compress  knowledge  and  generalize  correctly,  in  contrast  to  flat,  inert 
representations such as lookup tables (see Baum [20] for a full treatment of this line of 
argument).

The consequences of this particular kind of complexity, together with the fact that 
most  program spaces  of  interest  are combinatorially  very  large,  might  lead  one  to 
believe that competent program evolution is impossible. Not so: program learning tasks 
of interest have a compact structure4 – they are not “needle in haystack” problems or 
uncorrelated fitness landscapes, although they can certainly be encoded as such. The 
most  one  can  definitively  state  is  that  algorithm  foo,  methodology  bar,  or 
representation baz is unsuitable for expressing and exploiting the regularities that occur 
across interesting program spaces. Some of these regularities are as follows:

• Simplicity  prior  –  our  prior  assigns  greater  probability  mass  to  smaller 
programs.

• Simplicity preference – given two programs mapping to the same behavior, 
we  prefer  the  smaller  program  (this  can  be  seen  as  a  secondary  scoring 
function).

• Behavioral decomposability – the mapping between behaviors and scores is 
separable or nearly decomposable. Relatedly, scores are more than scalars – 
there is a partial ordering corresponding to behavioral dominance, where one 
behavior  dominates  another  if  it  exhibits  a  strict  superset  of  the  latter's 
desideratum, according to the scoring function.5 This partial order will never 
contradict the total ordering of scalar scores. 

3 Here “complex” means open-ended, over-representing, and hierarchical.
4 Otherwise, humans could not write programs significantly more compact than lookup tables. 
5 For example, in supervised classification one rule dominates another if it correctly classifies all of the 

items that second rule classifies correctly, as well as some which the second rule gets wrong. 



• White box execution – the mechanism of program execution is known a priori, 
and remains constant across many problems.

How  these  regularities  may  be  exploited  via  representation-building,  in 
conjunction  with  the  probabilistic  modeling  that  takes  place  in  a  competent 
optimization  algorithm such  as  the  BOA or  hBOA,  will  be  discussed  in  the  next 
section.  Another  fundamental  regularity  of  great  interest  for  artificial  general 
intelligence, but beyond the scope of this paper, is patterns across related problems that 
may be solvable with similar programs (e.g., involving common modules).

2. Competent Program Evolution

In this section I present  meta-optimizing semantic  evolutionary search (MOSES), a 
system for competent  program evolution. Based on the viewpoint  developed in  the 
previous section, MOSES is designed around the central and unprecedented capability 
of competent optimization algorithms such as the hBOA, to generate new solutions that 
simultaneously  combine  sets  of  promising  assignments  from  previous  solutions 
according  to  a  dynamically  learned  problem  decomposition.  The  novel  aspects  of 
MOSES described herein are built around this core to exploit the unique properties of 
program learning problems. This facilitates effective problem decomposition (and thus 
competent optimization).

  
Figure 4: Three simple program trees encoding real-valued expressions, with identical structures and node-
by-node semantics (left), and the corresponding behavioral pattern (right); the horizontal axes correspond to 
variation of arguments (x, y, and/or z), with the vertical axis showing the corresponding variation of output. 

2.1.Statics 

The basic goal of MOSES is to exploit the regularities in program spaces outlined in 
the  previous  section,  most  critically  behavioral  decomposability and  white  box 
execution,  to  dynamically  construct  representations  that  limit  and  transform  the 
program  space  being  searched  into  a  relevant  subspace  with  a  compact  problem 
decomposition. These representations will evolve as the search progresses.



2.1.1.An Example 

Let's start with an easy example. What knobs (meaningful parameters to vary) exist for 
the family of programs depicted in Figure 4 on the left? We can assume, in accordance 
with  the  principle  of  white  box  execution,  that  all  symbols  have  their  standard 
mathematical interpretations, and that x, y, and z are real-valued variables.

In  this  case,  all  three  programs  correspond  to  variations  on  the  behavior 
represented graphically on the right in the figure. Based on the principle of behavioral 
decomposability,  good  knobs  should  express  plausible  evolutionary  variation  and 
recombination  of  features  in  behavior  space,  regardless  of  the  nature  of  the 
corresponding changes in program space. It's worth repeating once more that this goal 
cannot  be  meaningfully  addressed  on  a  syntactic  level  -  it  requires  us  to  leverage 
background knowledge of  what  the  symbols  in  our  vocabulary  (cos, +, 0.35,  etc.) 
actually mean.

A good set of knobs will also be orthogonal. Since we are searching through the 
space of combinations of knob settings (not a single change at a time, but a set of 
changes), any knob whose effects are equivalent to another knob or combination of 
knobs is undesirable.6 Correspondingly, our set of knobs should span all of the given 
programs (i.e., be able to represent them as various knob settings).

A small  basis for these programs could be the 3-dimensional  parameter space, 
x 1∈{x , z ,0}  (left argument of the root node), x 2∈{y , x }  (argument of cos), and 

x 3∈[0 .3,0 . 4 ]  (multiplier for the cos-expression). However, this is a very limiting 
view, and overly tied to  the particulars of  how these three programs happen to be 
encoded. Considering the space behaviorally (right of Figure 4), a number of additional 
knobs can be imagined which might be turned in meaningful ways, such as:

1.  numerical  constants  modifying  the  phase/frequency  of  the  cosine 
expression, 

2. considering some weighted average of x and y instead of one or the other,
3. multiplying the entire expression by a constant, 
4. adjusting the relative weightings of the two arguments to +.

2.1.2. Syntax and Semantics 

This kind of representation-building calls for a correspondence between syntactic and 
semantic variation. The properties of program spaces that make this difficult are over-
representation and chaotic execution, which lead to non-orthogonality, oversampling of 
distant behaviors, and  undersampling of nearby behaviors, all of which can directly 
impede effective program evolution.

 Non-orthogonality is caused by over-representation. For example, based on the 
properties of commutativity and associativity, a1a2. ..an  may be expressed in 
exponentially  many different  ways,  if  + is  treated  as  a  non-commutative  and non-
associative  binary  operator.  Similarly,  operations  such  as  addition  of  zero  and 
multiplication  by  one  have  no  effect,  the  successive  addition  of  two  constants  is 
equivalent to the addition of their sum, etc. These effects are not quirks of real-valued 
expressions; similar redundancies appear in Boolean formulae (x AND x ↔ x), list 

6 First because this will increase the number of samples needed to effectively model the structure of knob-
space, and second because this modeling will typically be quadratic with the number of knobs, at least for the 
BOA or hBOA [12, 13]. 



manipulation (cdr(cons(x, L)) ↔ L), and conditionals (if x then y else z ↔ if NOT x  
then z else y).

Without the ability to exploit these identities, we are forced to work in a greatly 
expanded space which represents equivalent expression in many different ways, and 
will therefore be very far from orthogonality. Completely eliminating redundancy is 
infeasible,  and typically  at  least  NP-hard (in  the domain of Boolean formulae it  is 
reducible to the satisfiability problem, for instance), but one can go quite far with a 
heuristic approach.

 Oversampling of distant behaviors is caused directly by chaotic execution, as 
well  as a  somewhat subtle  effect  of  over-representation,  which can lead to simpler 
programs being heavily oversampled. Simplicity is defined relative to a given program 
space in terms of minimal length, the number of symbols in the shortest program that 
produces the same behavior.

 Undersampling of  nearby behaviors is  the  flip  side  of  the  oversampling of 
distant behaviors. As we have seen, syntactically diverse programs can have the same 
behavior; this can be attributed to redundancy, as well as non-redundant programs that 
simply compute the same result  by different  means.  For example,  3*x can also be 
computed  as  x+x+x;  the  first  version  uses  less  symbols,  but  neither  contains  any 
obvious “bloat” such as addition of zero or multiplication by one. Note however that 
the nearby behavior of  3.1*x,  is syntactically close to the former, and relatively far 
from the latter. The converse is the case for the behavior of  2*x+y. In a sense, these 
two expressions can be said to exemplify differing organizational principles, or points 
of view, on the underlying function.

Differing  organizational  principles  lead  to  different  biases  in  sampling  nearby 
behaviors.  A  superior  organizational  principle  (one  leading  to  higher-scoring 
syntactically  nearby  programs  for  a  particular  problem)  might  be  considered  a 
metaptation (adaptation at  the second tier),  in  the terminology of King [21].  Since 
equivalent  programs organized  according  to  different  principles  will  have  identical 
scores,  some  methodology  beyond  selection  for  high  scores  must  be  employed  to 
search for  good organizational  principles.  Thus,  the resolution of  undersampling of 
nearby behaviors revolves around the management of  neutrality in search, a complex 
topic beyond the scope of this paper.

These  three  properties  of  program  spaces  greatly  affect  the  performance  of 
evolutionary methods based solely on syntactic variation and recombination operators, 
such as local  search or  genetic  programming.  In  fact,  when quantified in  terms of 
various  fitness-distance  correlation  measures,  they  can  be  effective  predictors  of 
algorithm  performance,  although  they  are  of  course  not  the  whole  story  [22].  A 
semantic  search  procedure  will  address  these  concerns  in  terms  of  the  underlying 
behavioral effects of and interactions between a language's basic operators; the general 
scheme for doing so in MOSES is the topic of the next subsection.

2.2. Neighborhoods and Normal Forms 

The procedure MOSES uses to construct a set of knobs for a given program (or family 
of  structurally  related  programs)  is  based  on  three  conceptual  steps:  reduction  to 
normal form, neighborhood enumeration, and neighborhood reduction.

 Reduction to normal form - in this step, redundancy is heuristically eliminated 
by  reducing  programs  to  a  normal  form.  Typically,  this  will  be  via  the  iterative 
application of a series of local rewrite rules (e.g., ∀ x , x0 x ), until the target 
program no  longer  changes.  Note  that  the  well-known conjunctive  and  disjunctive 



normal  forms for  Boolean formulae  are generally  unsuitable  for  this  purpose;  they 
destroy  the  hierarchical  structure  of  formulae,  and  dramatically  limit  the  range  of 
behaviors (in this case Boolean functions) that can be expressed compactly. Rather, 
hierarchical normal forms for programs are required.

 Neighborhood enumeration - in this step, a set of possible atomic perturbations 
is generated for all programs under consideration (the overall perturbation set will be 
the union of these). The goal is to heuristically generate new programs that correspond 
to behaviorally nearby variations on the source program, in such a way that arbitrary 
sets  of  perturbations  may  be  composed combinatorially  to  generate  novel  valid 
programs.

 Neighborhood reduction - in this step, redundant perturbations are heuristically 
culled to reach a more orthogonal set. A straightforward way to do this is to exploit the 
reduction to normal form outlined above; if multiple knobs lead to the same normal 
forms program, only one of them is actually needed. Additionally, note that the number 
of symbols in the normal form of a program can be used as a heuristic approximation 
for its minimal length - if the reduction to normal form of the program resulting from 
twiddling some knob significantly decreases its size, it can be assumed to be a source 
of oversampling, and hence eliminated from consideration. A slightly smaller program 
is typically a  meaningful  change to make, but a  large reduction in complexity will 
rarely be useful (and if so, can be accomplished through a combination of knobs that 
individually produce small changes).

At the end of this process, we will be left with a set of knobs defining a subspace 
of  programs centered around a particular region in program space and heuristically 
centered around the corresponding region in behavior space as well. This is part of the 
meta aspect of MOSES, which seeks not to evaluate variations on existing programs 
itself, but to construct parameterized program subspaces (representations) containing 
meaningful  variations,  guided by background knowledge.  These representations  are 
used as search spaces within which an optimization algorithm can be applied.

2.3. Dynamics

As described above, the representation-building component of MOSES constructs a 
parameterized representation of a particular region of program space, centered around a 
single program of family of closely related programs. This is consonant with the line of 
thought developed above, that a representation constructed across an arbitrary region of 
program space (e.g.,  all  programs containing less  than  n symbols),  or  spanning an 
arbitrary  collection  of  unrelated  programs,  is  unlikely  to  produce  a  meaningful 
parameterization (i.e., one leading to a compact problem decomposition).

A  sample  of  programs  within  a  region  derived  from  representation-building 
together with the corresponding set of knobs will be referred to herein as a deme;7 a set 
of demes (together spanning an arbitrary area within program space in a patchwork 
fashion)  will  be  referred  to  as  a  metapopulation.8 MOSES  operates  on  a 
metapopulation,  adaptively creating,  removing,  and allocating optimization effort  to 
various demes. Deme management is the second fundamental meta aspect of MOSES, 
after (and above) representation-building; it essentially corresponds to the problem of 
effectively  allocating  computational  resources  to  competing  regions,  and  hence  to 
competing programmatic organizational- representational schemes.

7 A term borrowed from biology, referring to a somewhat isolated local population of a species. 
8 Another term borrowed from biology, referring to a group of somewhat separate populations (the demes) 

that nonetheless interact. 



2.4. Algorithmic Sketch 

The  salient  aspects  of  programs  and  program  learning  lead  to  requirements  for 
competent  program  evolution  that  can  be  addressed  via  a  representation-building 
process such as the one shown above, combined with effective deme management. The 
following sketch of MOSES presents a simple control flow that dynamically integrates 
these processes into an overall program evolution procedure:

1.  Construct  an initial  set  of  knobs based on some prior  (e.g.,  based on an empty 
program) and use it to generate an initial random sampling of programs. Add this deme 
to the metapopulation.

2. Select a deme from the metapopulation and update its sample, as follows:  
a) Select  some promising programs from the  deme's  existing  sample  to  use  for 

modeling, according to the scoring function.
b) Considering the promising programs as  collections  of knob settings,  generate 

new collections  of  knob settings  by  applying  some  (competent)  optimization 
algorithm. 

c) Convert the new collections of knob settings into their corresponding programs, 
reduce the programs to normal form, evaluate their scores, and integrate them 
into the deme's sample, replacing less promising programs.

3. For each new program that meets the criterion for creating a new deme, if any:
a) Construct  a  new set of knobs (via  representation-building) to define a region 

centered around the program (the deme’s exemplar), and use it to generate a new 
random sampling of programs, producing a new deme.

b) Integrate  the  new  deme  into  the  metapopulation,  possibly  displacing  less 
promising demes.

4. Repeat from step 2. 

                                          
Figure 5:  The top-level architectural components of MOSES, with directed edges indicating the flow of 
information and program control.
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Figure 6: The top half of the Santa Fe trail. The ant’s starting position and orientation is denoted by the →, 
and pieces of food by #s. The complete trail may be found in [10, p. 55].

The criterion for  creating a new deme is  behavioral  non-dominance (programs 
which are not dominated by the exemplars of any existing demes are used as exemplars 
to create new demes), which can be defined in a domain-specific fashion. As a default, 
the  scoring  function  may  be  used  to  induce  dominance,  in  which  case  the  set  of 
exemplar programs for demes corresponds to the set of top-scoring programs.

2.5.Architecture 

The  preceding  algorithmic  sketch  of  MOSES  leads  to  the  top-level  architecture 
depicted in Figure 5. Of the four top-level components, only the scoring function is 
problem-specific.  The  representation-building  process  is  domain-specific,  while  the 
random sampling methodology and optimization algorithm are domain-general. There 
is of course the possibility of improving performance by incorporating domain and/or 
problem-specific bias into random sampling and optimization as well.

2.6. MOSES in Action 

Let’s go through all of the steps that are needed to apply MOSES to a small problem, 
the  artificial  ant  on  the  Santa  Fe  trail  [10],  and  describe  the  search  process.  The 
artificial ant domain is a two-dimensional grid landscape where each cell may or may 
not contain a piece of food. The artificial ant has a location (a cell) and orientation 
(facing up, down, left, or right), and navigates the landscape via a primitive sensor, 
which  detects  whether  or  not  there  is  food  in  the  cell  that  the  ant  is  facing,  and 
primitive  actuators  move (take  a  single  step  forward),  right  (rotate  90  degrees 
clockwise), and left (rotate 90 degrees counter-clockwise). The Santa Fe trail problem 
is a particular 32 x 32 toroidal grid with food scattered on it (Figure 6), and a fitness 
function counting the number of unique pieces of food the ant eats (by entering the cell 
containing  the  food)  within  600  steps  (movement  and  90  degree  rotations  are 
considered single steps).

Programs are composed of the primitive actions taking no arguments, a conditional 
(if-food-ahead),9 which takes two arguments and evaluates one or the other based on 
whether  or  not  there  is  food  ahead,  and  progn,  which  takes  a  variable  number  of 

9 This formulation is equivalent to using a general three-argument if-then-else statement with a predicate as 
the first argument, as there is only a single predicate (food-ahead) for the ant problem.



arguments and sequentially evaluates all of them from left to right. To score a program, 
it is evaluated continuously until 600 time steps have passed, or all of the food is eaten 
(whichever  comes first).  Thus for  example,  the program  if-food-ahead(m, r) moves 
forward as long as there is food ahead of it, at which point it rotates clockwise until 
food is again spotted. It’s can successfully navigate the first two turns of the Santa Fe 
trail, but cannot cross “gaps” in the trail, giving it a final score of 11.

The first step in applying MOSES is to decide what our reduction rules should 
look like. This program space has several clear sources of redundancy leading to over-
representation that we can eliminate, leading to the following reduction rules:

1. Any sequence of rotations may be reduced to either a left rotation, a right rotation, or 
a reversal, for example:

progn(left, left, left) 
reduces to
right 

2. Any if-food-ahead statement which is the child of an if-food-ahead statement may be 
eliminated, as one of its branches is clearly irrelevant, for example:

if-food-ahead(m, if-food-ahead(l, r))
reduces to
if-food-ahead(m, r) 

3. Any progn statement which is the child of a progn statement may be eliminated and 
replaced by its children, for example:

progn(progn(left, move), move) 
reduces to
progn(left, move, move)

The representation language for the ant problem is simple enough that these are the 
only three rules needed – in principle there could be many more. The first rule may be 
seen as a consequence of general domain-knowledge pertaining to rotation. The second 
and third rules are fully general simplification rules based on the semantics of if-then-
else statements and associative functions (such as progn), respectively.

These rules allow us to naturally parameterize a knob space corresponding to a 
given program (note that the arguments to the progn and if-food-ahead functions will 
be recursively reduced and parameterized according to the same procedure). Rotations 
will  correspond to  knobs  with  four  possibilities  (left,  right,  reversal,  no  rotation). 
Movement  commands  will  correspond  to  knobs  with  two  possibilities  (move,  no 
movement). There is also the possibility of introducing a new command in between, 
before, or after,  existing commands. Some convention (a “canonical form”) for our 
space is needed to determine how the knobs for new commands will be introduced. A 
representation consists of a rotation knob, followed by a conditional knob, followed by 
a movement knob, followed by a rotation knob, etc.10 

The structure of the space (how large and what shape) and default knob values will 
be determined by the “exemplar” program used to construct it. The default values are 
used to bias the initial sampling to focus around the exemplar: all of the n neighbors of 
the  exemplar  are  first  added  to  the  sample,  followed  by  a  random selection  of  n 
programs at a distance of two from the exemplar,  n  programs at a distance of three, 
etc.,  until  the entire sample is filled. Note that  the hBOA can of course effectively 
recombine this sample to generate novel programs at any distance from the exemplar. 

10 That there be some fixed ordering on the knobs is important, so that two rotation knobs are not placed 
next to each other (as this would introduce redundancy). Based on some preliminary test, the precise ordering 
chosen (rotation, conditional, movement) does not appear to be critical.



The empty program progn (which can be used as the initial exemplar for MOSES), for 
example, leads to the following prototype subspace:

progn(
rotate? [default no rotation],

          if-food-ahead(
progn(

rotate? [default no rotation],
move? [default no movement]),

progn(
rotate? [default no rotation],
move? [default no movement])),

move? [default no movement])

Technique Computational 
Effort

Genetic 
Programming [10]

450,000 
evaluations

Evolutionary 
Programming [24]

136,000 
evaluations

MOSES 23,000 
evaluations

Figure 7: On the left, histogram of the number of global optima found after a given number of 
program evaluations for 100 runs of MOSES on the artificial ant problem (each run is counted once 
for the first global optimum reached). On the right, computational effort required to find an optimal 
solution for various techniques with p=.99 (for MOSES p=1, since an optimal solution was found in 
all runs). 

There are six parameters here, three which are quaternary, and three which are 
binary. So the program progn(left,if-food-ahead(move, left)) would be encoded in the 
space as [left, no rotation, move, left, no movement, no movement], with knobs ordered 
according  to  a  pre-order  left-to-right  traversal  of  the  program’s  parse  tree  (this  is 
merely for exposition; the ordering of the parameters has no effect on MOSES). For an 



exemplar program already containing an  if-food-ahead statement, nested conditionals 
would be considered.

A space with six parameters in it is small enough that MOSES can reliably find the 
optimum (the  program  progn(right,  if-food-ahead(progn(),left),  move)),  with  a  very 
small population. After no further improvements have been made in the search for a 
specified number of generations (calculated based on the size of the space based on a 
model derived from [23] that  is  general  to the hBOA, and not at  all  tuned for  the 
artificial  ant  problem),  a  new  representation  is  constructed  centered  around  this 
program.11 Additional knobs are introduced “in between” all existing ones (e.g., an  
optional  move in  between  the  first  rotation  and the first  conditional),  and possible 
nested conditionals are considered (a nested conditional occurring in a sequence after 
some other action has been taken is not redundant). The resulting space has 39 knobs, 
still quite tractable for hBOA, which typically finds a global optimum within a few 
generations.  If  the optimum were not  to be found, MOSES would construct a new 
(possibly larger or smaller) representation, centered around the best program that was 
found, and the process would repeat.

The  artificial  ant  problem  is  well-studied,  with  published  benchmark  results 
available for genetic programming [10] as well  as evolutionary programming based 
solely  on  mutation  [24]  (i.e.,  a  form of  population-based  stochastic  hill  climbing). 
Furthermore, an extensive analysis of the search space has been carried out by Langdon 
and Poli [25], with the authors concluding:

• The problem is “deceptive at all levels”, meaning that the partial solutions that 
must be recombined to solve the problem to optimality have lower average 
fitness than the partial solutions that lead to inferior local optima.

• The  search  space  contains  many  symmetries  (e.g.,  between  left  and  right 
rotations), 

• There is an unusually high density of global optima in the space (relative to 
other common test problems); even though current evolutionary methods can 
solve the problem, they are not significantly more effective (in terms of the 
number of program evaluations require) than random sample.

• “If real program spaces have the above characteristics (we expect them to do 
so but be still worse) then it is important to be able to demonstrate scalable 
techniques on such problem spaces”.

A review of scalability results for MOSES across a range of problems is beyond 
the scope of this paper (see [26]), but results for the artificial ant problem may be given 
briefly to indicate the magnitude of improvement that may be experienced. Koza [10] 
reports on a set of 148 runs of genetic programming with a population size of 500 
which had a 16% success rate after 51 generations when the runs were terminated (a 
total  of  25,500  program evaluations  per  run).  The  minimal  “computational  effort” 
needed to achieve success with 99% probability was attained by processing through 
generation  14  was  450,000  (based  on  parallel  independent  runs).  Chellapilla  [24] 
reports 47 out of 50 successful runs with a minimal computational effort (again, for 
success with 99% probability) of 136,000 for his stochastic hill climbing method.

One  hundred  runs  of  MOSES were  executed.  Beyond  the  domain  knowledge 
embodied in the reduction and knob construction procedure, the only parameter that 
needed to  be  set  was  the  population  scaling  factor,  which  was set  to  30 (MOSES 

11 MOSES reduces the exemplar program to normal form before constructing the representation; in this 
particular case however, no transformations are needed. Similarly, in general neighborhood reduction would 
be  used  to  eliminate  any  extraneous  knobs  (based  on  domain-specific  heuristics).  For  the  ant  domain 
however no such reductions are necessary.



automatically adjusts to generate a larger population as the size of the representation 
grows, with the base case determined by this factor). Based on these “factory” settings, 
MOSES found optimal solutions on every run out of 100 trials, within a maximum of 
23,000 program evaluations (the computational effort figure corresponding to 100% 
success). The average number of program evaluation required was 6952, with 95% 
confidence intervals of ±856 evaluations. 

Why does MOSES outperform other techniques? One factor to consider first is that 
the language programs are evolved in is slightly more expressive than that used for the 
other  techniques;  specifically,  a  progn  is  allowed to  have  no children (if  all  of  its 
possible  children  are  “turned  off”),  leading  to  the  possibility  of  if-food-ahead 
statements which do nothing if food is present (or not present). Indeed, many of the 
smallest solutions found by MOSES exploit this feature. This can be tested by inserting 
a “do nothing” operation into the terminal set for genetic programming (for example). 
Indeed, this reduces the computational effort to 272,000; an interesting effect, but still 
over an order of magnitude short of the results obtained with MOSES (the success rate 
after 50 generations is still only 20%). 

Another possibility is that the reductions in the search space via simplification of 
programs  alone  are  responsible.  However,  the  results  past  attempts  at  introducing 
program simplification into genetic programming systems [27, 28] have been mixed; 
although the system may be sped up (because programs are smaller), there have been 
no dramatic improvement in results noted. To be fair, these results have been primarily 
focused on the symbolic  regression domain;  I  am not aware of  any results  for  the 
artificial ant problem.

The final contributor to consider is the sampling mechanism (knowledge-driven 
knob-creation followed by probabilistic model-building). We can test to what extent 
model-building contributes  to  the  bottom line  by simply disabling it  and assuming 
probabilistic independence between all knobs. The result here is of interest because 
model-building can be quite expensive (O(n2N) per generation, where n is the problem 
size and N is the population size12). In 50 independent runs of MOSES without model-
building, a global optimum was still discovered in all runs. However, the variance in 
the  number  of  evaluations  required  was  much  higher  (in  two  cases  over  100,000 
evaluations  were  needed).  The  new  average  was  26,355  evaluations  to  reach  an 
optimum (about 3.5 times more than required with model-building). The contribution 
of model-building to the performance of MOSES is expected to be even greater for 
more difficult problems. 

Applying MOSES without model-building (i.e., a model assuming no interactions 
between variables) is a way to test the combination of representation-building with an 
approach  resembling  the  probabilistic  incremental  program  learning  (PIPE)  [29] 
algorithm,  which  learns  programs  based  on  a  probabilistic  model  without  any 
interactions.  PIPE  has  no  been  shown  to  provide  results  competitive  with  genetic 
programming on a number of problems (regression, agent control, etc.).

It  is  additionally  possible  to  look  inside  the  models  that  the  hBOA constructs 
(based on the empirical statistics of successful programs) to see what sorts of linkages 
between knobs are being learned.13 For the 6-knob model given above for instance an 
analysis the linkages learned shows that the three most common pairwise dependencies 
uncovered, occurring in over  90% of the models across  100 runs,  are between the 
rotation knobs. No other individual dependencies occurred in more than 32% of the 

12 The fact that reduction to normal tends to reduce the problem size is another synergy between it and the 
application of probabilistic model-building.

13 There is in fact even more information available in the hBOA models concerning hierarchy and direction 
of dependence, but this is difficult to analyze.



models. This preliminary finding is quite significant given Landgon and Poli’s findings 
on symmetry, and their observation [25] that “[t]hese symmetries lead to essentially the 
same solutions appearing to be the opposite of each other. E.g. either a pair of Right or 
pair of Left terminals at a particular location may be important.”

In summary, all of the components of MOSES appear to mesh together to provide 
superior performance, although further experimentation and analysis across a range of 
problems is clearly needed.

2.7.Discussion 

The overall MOSES design as described herein is unique. However, it is instructive at 
this  point  to  compare  its  two  primary  facets  (representation-building  and  deme 
management) to related work in evolutionary computation.

Rosca's  adaptive  representation architecture  [30]  is  an  approach  to  program 
evolution  which  also  alternates  between  separate  representation-building  and 
optimization stages. It is based on Koza's genetic programming [10], and modifies the 
representation based on a syntactic analysis driven by the scoring function, as well as a 
modularity bias. The representation-building that takes place consists of introducing 
new compound operators, and hence modifying the implicit distance function in tree-
space. This modification is uniform, in the sense that the new operators can be placed 
in any context, without regard for semantics.

In contrast to Rosca's work and other approaches to representation-building such 
as Koza's  automatically  defined functions [31],  MOSES explicitly  addresses on the 
underlying (semantic) structure of program space independently of the search for any 
kind of modularity or problem decomposition. This preliminary stage critically changes 
neighborhood  structures  (syntactic  similarity)  and  other  aggregate  properties  of 
programs.

Regarding deme management, the embedding of an evolutionary algorithm within 
a superordinate procedure maintaining a metapopulation is most commonly associated 
with  “island  model”  architectures  [8].  One of  the  motivations  articulated for  using 
island models has been to allow distinct islands to (usually implicitly) explore different 
regions of the search space, as MOSES does explicitly. MOSES can thus be seen as a 
very  particular  kind  of  island  model  architecture,  where  programs  never  migrate 
between islands (demes),  and islands are created and destroyed dynamically  as the 
search progresses.

In MOSES, optimization does not operate directly on program space, but rather on 
a  subspace  defined  by  the  representation-building  process.  This  subspace  may  be 
considered as  being defined by a sort  of  template assigning values  to some of  the 
underlying dimensions (e.g., it restricts the size and shape of any resulting trees). The 
messy  genetic  algorithm  [32],  an  early  competent  optimization  algorithm,  uses  a 
similar mechanism - a common “competitive template” is used to evaluate candidate 
solutions  to  the  optimization  problem which are  themselves  underspecified.  Search 
consequently  centers  on the template(s),  much as search in  MOSES centers on the 
programs used to create new demes (and thereby new representations). The issue of 
deme management can thus be seen as analogous to the issue of template selection in 
the messy genetic algorithm.



3. Summary and Conclusions

Competent evolutionary optimization algorithms are a pivotal development, allowing 
encoded problems with compact decompositions to be tractably solved according to 
normative principles. We are still faced with the problem of representation-building – 
casting a problem in terms of knobs that can be twiddled to solve it. Hopefully, the 
chosen encoding will allow for a compact problem decomposition. Program learning 
problems  in  particular  rarely  possess  compact  decompositions,  due  to  particular 
features generally present in program spaces (and in the mapping between programs 
and  behaviors).  This  often  leads  to  intractable  problem  formulations,  even  if  the 
mapping  between  behaviors  and  scores  has  an  intrinsic  separable  or  nearly 
decomposable structure. As a consequence, practitioners must often resort to manually 
carrying out the analogue of representation-building, on a problem-specific basis.

Working under the thesis that the properties of programs and program spaces can  
be leveraged as inductive bias to reduce the burden of manual representation-building,  
leading  to  competent  program  evolution,  I  have  developed  the  MOSES  system. 
Experimental  results  and  theoretical  analyses  have  been  carried  out  to  substantiate 
many of the claims made in this paper regarding the properties of program spaces and 
how to transform them via representation-building, which will be presented in [26], 
along with results and analyses of MOSES itself; order-of-magnitude reductions in the 
number of scoring function evaluations needed to find an optimal solution have already 
been achieved relative to genetic programming [10], on a number of benchmarks, in 
addition  to  the  ant  results  presented  herein.  Future  work  will  focus  on  advanced 
problem  domains  (higher-order  functions,  list  manipulation,  recursion,  etc.),  more 
adaptive representation-building for better scalability, exploiting additional inductive 
bias in the behavioral space, and, most importantly in the long-term, integration with 
other AI components.
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