
Program Evolution for General Intelligence

Moshe LOOKS (moshe@metacog.org)
Washington University in St. Louis,
Department of Computer Science

and
Science Applications International Corporation (SAIC),

Integrated Intelligence Solutions Operation
and

Novamente LLC

Abstract. A program evolution component is proposed for integrative artificial
general intelligence. The system’s deployment is intended to be comparable, on
Marr’s level of computational theory, to evolutionary mechanisms in human
thought. The challenges of program evolution are described, along with the
requirements for a program evolution system to be competent - solving hard
problems quickly, accurately, and reliably. Meta-optimizing semantic evolutionary
search (MOSES) is proposed to fulfill these requirements.

1. Background and Motivation

“At every step the design logic of brains is a Darwinian logic: overproduction, variation, competition,
selection … it should not come as a surprise that this same logic is also the basis for the normal
millisecond-by-millisecond information processing that continues to adapt neural software to the
world.” Terrence Deacon [1]

In David Marr’s seminal decomposition, any information-processing system may be
understood at three nearly independent levels: (1) computational theory, a description
of the problems the system attempts to solve; (2) representations and algorithms; and
(3) implementation, the physical instantiation of the system’s representations and
algorithms [2]. What might the subsystems of human cognition look like on the level of
computational theory?1

I propose that evolutionary learning be considered as one of these subsystems.
Major subfields of both cognitive science and AI are concerned with evolutionary
learning processes. One motivator for this concern is an attempt in both fields to
augment purely local techniques such as Hebbian (associative) learning with more
global methods, which try to make large leaps to find answers far removed from
existing knowledge. This is a form of evolutionary learning [4], which Edelman [5] has
presented as “Neural Darwinism”, and Calvin and Bickerton [6, 7] as the notion of
mind as a “Darwin Machine”.

It is known that the immune system adapts via a form of evolutionary learning, and
Edelman [5] has proposed that the brain does so as well, evolving new “neuronal
maps”, patterns of neural connection and activity spanning numerous neuronal clusters
that are highly “fit” in the sense of contributing usefully to system goals. Edelman and

1 Parts of this section are adapted from [3], which elaborates on the utility of emulating human
cognition on the level of computational theory.

mailto:moshe@metacog.org

his colleagues have run computer simulations showing that Hebbian-like neuronal
dynamics, if properly tuned, can give rise to evolution-like dynamics on the neuronal
map level (“neuronal group selection”).

Recently Deacon [1] has articulated ways in which, during neurodevelopment,
difference computations compete with each other (e.g., to determine which brain
regions are responsible for motor control). More generally, he posits a kind of
continuous flux as control shifts between competing brain regions, again, based on
high-level “cognitive demand” [1, p. 457]. Similarly, Calvin and Bickerton [6, 7] have
given plausible neural mechanisms (“Darwin Machines”) for synthesizing short
“programs”. These programs are for tasks such as rock throwing and sentence
generation, which are represented as coherent firing patterns in the cerebral cortex. A
population of such patterns, competing for neurocomputational territory, replicates with
variations, under selection pressure to conform to background knowledge and
constraints.

In summary, a system is needed that can recombine existing solutions in a non-
local synthetic fashion, learning nested and sequential structures, and incorporate
background knowledge (e.g. previously learned routines). I propose a particular kind of
program evolution to satisfy these goals.

1.1. Evolutionary Learning

There is a long history in AI of applying evolution-derived methods to practical
problem-solving; the original genetic algorithm [4], initially a theoretical model, has
been adapted successfully to a wide variety of applications [8]. The methodology,
similar to the Darwin Machines mentioned above, is applied as follows: (1) generate a
random population of solutions to a problem; (2) evaluate the solutions in the
population using a predefined scoring function; (3) select solutions from the population
proportionate to their scores, and recombine/mutate them to generate a new population;
(4) go to step 2. Holland's paradigm has been adapted from the case of fixed-length
strings to the evolution of variable-sized and shaped trees (typically Lisp symbolic
expressions), which in principle can represent arbitrary computer programs [9, 10].

Recently, replacements-for/extensions-of the genetic algorithm have been
developed (for fixed-length strings) which may be described as estimation-of-
distribution algorithms (see [11] for an overview). These methods, which outperform
genetic algorithms and related techniques across a range of problems, maintain
centralized probabilistic models of the population learned with sophisticated
datamining techniques. One of the most powerful of these methods is the Bayesian
optimization algorithm (BOA) [12].

The basic steps of the BOA are: (1) generate a random population of solutions to a
problem; (2) evaluate the solutions in the population using a predefined scoring
function; (3) from the promising solutions in the population, learn a generative model;
(4) create new solutions using the model, and merge them into the existing population;
(4) go to step 2. The neurological implausibility of this sort of algorithm is readily
apparent – yet recall that we are attempting to emulate human cognition on the level of
computational theory, not implementation, or even representations and algorithms.

Figure 1: The structure of OneMax, a paradigmatic separable optimization problem.

Figure 2: The structure of hierarchical if-and-only-if [16], a paradigmatic nearly decomposable optimization
problem.

Figure 3: The structure of an intractable optimization problem, such as a uniform random scoring function,
where changing the assignment of any variable results in a chaotic change in the overall score.

Fundamentally, the BOA and its ilk (the competent adaptive optimization
algorithms) differ from classic selectorecombinative search by attempting to
dynamically learn a problem decomposition, in terms of the variables that have been
pre-specified. The BOA represents this decomposition as a Bayesian network (directed
acyclic graph with the variables as nodes, and an edge from x to y indicating that y is
probabilistically dependent on x). An extension, the hierarchical Bayesian optimization
algorithm (hBOA) [12], uses a Bayesian network with local structure [13] to more
accurately represent hierarchical dependency relationships. The BOA and hBOA are
scalable and robust to noise across the range of nearly decomposable functions [12,
13]. They are also effective, empirically, on real-world problems with unknown
decompositions, which may or may not be effectively representable by the algorithms;
robust, high-quality results have been obtained for Ising spin glasses and MaxSAT
[14], as well as a real-world telecommunication problem [15].

1.2.Representation-Building

“A representation is a formal system making explicit certain entities or types of information, together with a
specification of how the system does this.” David Marr [2]

In an ideally encoded optimization problem, all prespecified variables would exhibit
complete separability, and could be optimized independently (Figure 1). Problems with
hierarchical dependency structure (Figure 2) cannot be encoded this way, but are still
tractable by dynamically learning the problem decomposition (as the BOA and hBOA
do). For complex problems with interacting subcomponents, finding an accurate
problem decomposition is often tantamount to finding a solution. In an idealized run of
a competent optimization algorithm, the problem decomposition evolves along with the
set of solutions being considered, with parallel convergence to the correct
decomposition and the global solution optima. However, this is certainly contingent on
the existence of some compact2 and reasonably correct decomposition in the space (of
decompositions, not solutions) being searched.

Difficulty arises when no such decomposition exists (Figure 3), or when a more
effective decomposition exists that cannot be formulated as a probabilistic model over
representational parameters. Accordingly, one may extend current approaches via
either: (1) a more general modeling language for expressing problem decompositions;
or (2) additional mechanisms that modify the representations on which modeling
operates (introducing additional inductive bias). I focus here on the latter – the former
would appear to require qualitatively more computational capacity than will be
available in the near future. If one ignores this constraint, such a “universal” approach
to general problem-solving is indeed possible [17, 18].

I refer to these additional mechanisms as representation-building because they
serve the same purpose as the pre-representational mechanisms employed (typically by
humans) in setting up an optimization problem – to present an optimization algorithm
with the salient parameters needed to build effective problem decompositions and vary
solutions along meaningful dimensions.

A secondary source of human effort in encoding problems to be solved is crafting
an effective scoring function. The primary focus of this paper is issues surrounding the
representation of solutions, rather than how solutions are scored, which may be more
fruitfully addressed, I believe, in the context of integrative systems (cf. [19]).

1.3.Program Learning

An optimization problem may be defined as follows: a solution space S is specified,
together with some scoring function on solutions, where “solving the problem”
corresponds to discovering a solution in S with a sufficiently high score. Let's define
program learning as follows: given a program space P, a behavior space B, an
execution function exec : P → B, and a scoring function on behaviors, “solving the
problem” corresponds to discovering a program p in P whose corresponding behavior,
exec(p), has a sufficiently high score.

This extended formalism can of course be entirely vacuous – the behavior space
could be identical to the program space, and the execution function simply identity,
allowing any optimization problem to be cast as a problem of program learning. The
utility of this specification arises when we make interesting assumptions regarding the
program and behavior spaces, and the execution and scoring functions (the additional
inductive bias mentioned above):

2 The decomposition must be compact because in practice only a fairly small sampling of solutions may be
evaluated (relative to the size of the total space) at a time, and the search mechanism for exploring
decomposition-space is greedy and local. This is in also accordance with the general notion of learning
corresponding to compression [17].

• Open-endedness – P has a natural “program size” measure – programs may
be enumerated from smallest to largest, and there is no obvious problem-
independent upper bound on program size.

• Over-representation – exec often maps many programs to the same behavior.
• Compositional hierarchy – programs themselves have an intrinsic

hierarchical organization, and may contain subprograms which are themselves
members of P or some related program space. This provides a natural family
of distance measures on programs, in terms of the the number and type of
compositions / decompositions needed to transform one program into another
(i.e., edit distance).

• Chaotic Execution – very similar programs (as conceptualized in the previous
item) may have very different behaviors.

Precise mathematical definitions could be given for all of these properties but
would provide little insight – it is more instructive to simply note their ubiquity in
symbolic representations; human programming languages (LISP, C, etc.), Boolean and
real-valued formulae, pattern-matching systems, automata, and many more. The crux
of this line of thought is that the combination of these four factors conspires to
scramble scoring functions – even if the mapping from behaviors to scores is separable
or nearly decomposable, the complex3 program space and chaotic execution function
will often quickly lead to intractability as problem size grows. These properties are not
superficial inconveniences that can be circumvented by some particularly clever
encoding. On the contrary, they are the essential characteristics that give programs the
power to compress knowledge and generalize correctly, in contrast to flat, inert
representations such as lookup tables (see Baum [20] for a full treatment of this line of
argument).

The consequences of this particular kind of complexity, together with the fact that
most program spaces of interest are combinatorially very large, might lead one to
believe that competent program evolution is impossible. Not so: program learning tasks
of interest have a compact structure4 – they are not “needle in haystack” problems or
uncorrelated fitness landscapes, although they can certainly be encoded as such. The
most one can definitively state is that algorithm foo, methodology bar, or
representation baz is unsuitable for expressing and exploiting the regularities that occur
across interesting program spaces. Some of these regularities are as follows:

• Simplicity prior – our prior assigns greater probability mass to smaller
programs.

• Simplicity preference – given two programs mapping to the same behavior,
we prefer the smaller program (this can be seen as a secondary scoring
function).

• Behavioral decomposability – the mapping between behaviors and scores is
separable or nearly decomposable. Relatedly, scores are more than scalars –
there is a partial ordering corresponding to behavioral dominance, where one
behavior dominates another if it exhibits a strict superset of the latter's
desideratum, according to the scoring function.5 This partial order will never
contradict the total ordering of scalar scores.

3 Here “complex” means open-ended, over-representing, and hierarchical.
4 Otherwise, humans could not write programs significantly more compact than lookup tables.
5 For example, in supervised classification one rule dominates another if it correctly classifies all of the

items that second rule classifies correctly, as well as some which the second rule gets wrong.

• White box execution – the mechanism of program execution is known a priori,
and remains constant across many problems.

How these regularities may be exploited via representation-building, in
conjunction with the probabilistic modeling that takes place in a competent
optimization algorithm such as the BOA or hBOA, will be discussed in the next
section. Another fundamental regularity of great interest for artificial general
intelligence, but beyond the scope of this paper, is patterns across related problems that
may be solvable with similar programs (e.g., involving common modules).

2. Competent Program Evolution

In this section I present meta-optimizing semantic evolutionary search (MOSES), a
system for competent program evolution. Based on the viewpoint developed in the
previous section, MOSES is designed around the central and unprecedented capability
of competent optimization algorithms such as the hBOA, to generate new solutions that
simultaneously combine sets of promising assignments from previous solutions
according to a dynamically learned problem decomposition. The novel aspects of
MOSES described herein are built around this core to exploit the unique properties of
program learning problems. This facilitates effective problem decomposition (and thus
competent optimization).

Figure 4: Three simple program trees encoding real-valued expressions, with identical structures and node-
by-node semantics (left), and the corresponding behavioral pattern (right); the horizontal axes correspond to
variation of arguments (x, y, and/or z), with the vertical axis showing the corresponding variation of output.

2.1.Statics

The basic goal of MOSES is to exploit the regularities in program spaces outlined in
the previous section, most critically behavioral decomposability and white box
execution, to dynamically construct representations that limit and transform the
program space being searched into a relevant subspace with a compact problem
decomposition. These representations will evolve as the search progresses.

2.1.1.An Example

Let's start with an easy example. What knobs (meaningful parameters to vary) exist for
the family of programs depicted in Figure 4 on the left? We can assume, in accordance
with the principle of white box execution, that all symbols have their standard
mathematical interpretations, and that x, y, and z are real-valued variables.

In this case, all three programs correspond to variations on the behavior
represented graphically on the right in the figure. Based on the principle of behavioral
decomposability, good knobs should express plausible evolutionary variation and
recombination of features in behavior space, regardless of the nature of the
corresponding changes in program space. It's worth repeating once more that this goal
cannot be meaningfully addressed on a syntactic level - it requires us to leverage
background knowledge of what the symbols in our vocabulary (cos, +, 0.35, etc.)
actually mean.

A good set of knobs will also be orthogonal. Since we are searching through the
space of combinations of knob settings (not a single change at a time, but a set of
changes), any knob whose effects are equivalent to another knob or combination of
knobs is undesirable.6 Correspondingly, our set of knobs should span all of the given
programs (i.e., be able to represent them as various knob settings).

A small basis for these programs could be the 3-dimensional parameter space,
x 1∈{x , z ,0} (left argument of the root node), x 2∈{y , x } (argument of cos), and

x 3∈[0 .3,0 . 4] (multiplier for the cos-expression). However, this is a very limiting
view, and overly tied to the particulars of how these three programs happen to be
encoded. Considering the space behaviorally (right of Figure 4), a number of additional
knobs can be imagined which might be turned in meaningful ways, such as:

1. numerical constants modifying the phase/frequency of the cosine
expression,

2. considering some weighted average of x and y instead of one or the other,
3. multiplying the entire expression by a constant,
4. adjusting the relative weightings of the two arguments to +.

2.1.2. Syntax and Semantics

This kind of representation-building calls for a correspondence between syntactic and
semantic variation. The properties of program spaces that make this difficult are over-
representation and chaotic execution, which lead to non-orthogonality, oversampling of
distant behaviors, and undersampling of nearby behaviors, all of which can directly
impede effective program evolution.

 Non-orthogonality is caused by over-representation. For example, based on the
properties of commutativity and associativity, a1a2. ..an may be expressed in
exponentially many different ways, if + is treated as a non-commutative and non-
associative binary operator. Similarly, operations such as addition of zero and
multiplication by one have no effect, the successive addition of two constants is
equivalent to the addition of their sum, etc. These effects are not quirks of real-valued
expressions; similar redundancies appear in Boolean formulae (x AND x ↔ x), list

6 First because this will increase the number of samples needed to effectively model the structure of knob-
space, and second because this modeling will typically be quadratic with the number of knobs, at least for the
BOA or hBOA [12, 13].

manipulation (cdr(cons(x, L)) ↔ L), and conditionals (if x then y else z ↔ if NOT x
then z else y).

Without the ability to exploit these identities, we are forced to work in a greatly
expanded space which represents equivalent expression in many different ways, and
will therefore be very far from orthogonality. Completely eliminating redundancy is
infeasible, and typically at least NP-hard (in the domain of Boolean formulae it is
reducible to the satisfiability problem, for instance), but one can go quite far with a
heuristic approach.

 Oversampling of distant behaviors is caused directly by chaotic execution, as
well as a somewhat subtle effect of over-representation, which can lead to simpler
programs being heavily oversampled. Simplicity is defined relative to a given program
space in terms of minimal length, the number of symbols in the shortest program that
produces the same behavior.

 Undersampling of nearby behaviors is the flip side of the oversampling of
distant behaviors. As we have seen, syntactically diverse programs can have the same
behavior; this can be attributed to redundancy, as well as non-redundant programs that
simply compute the same result by different means. For example, 3*x can also be
computed as x+x+x; the first version uses less symbols, but neither contains any
obvious “bloat” such as addition of zero or multiplication by one. Note however that
the nearby behavior of 3.1*x, is syntactically close to the former, and relatively far
from the latter. The converse is the case for the behavior of 2*x+y. In a sense, these
two expressions can be said to exemplify differing organizational principles, or points
of view, on the underlying function.

Differing organizational principles lead to different biases in sampling nearby
behaviors. A superior organizational principle (one leading to higher-scoring
syntactically nearby programs for a particular problem) might be considered a
metaptation (adaptation at the second tier), in the terminology of King [21]. Since
equivalent programs organized according to different principles will have identical
scores, some methodology beyond selection for high scores must be employed to
search for good organizational principles. Thus, the resolution of undersampling of
nearby behaviors revolves around the management of neutrality in search, a complex
topic beyond the scope of this paper.

These three properties of program spaces greatly affect the performance of
evolutionary methods based solely on syntactic variation and recombination operators,
such as local search or genetic programming. In fact, when quantified in terms of
various fitness-distance correlation measures, they can be effective predictors of
algorithm performance, although they are of course not the whole story [22]. A
semantic search procedure will address these concerns in terms of the underlying
behavioral effects of and interactions between a language's basic operators; the general
scheme for doing so in MOSES is the topic of the next subsection.

2.2. Neighborhoods and Normal Forms

The procedure MOSES uses to construct a set of knobs for a given program (or family
of structurally related programs) is based on three conceptual steps: reduction to
normal form, neighborhood enumeration, and neighborhood reduction.

 Reduction to normal form - in this step, redundancy is heuristically eliminated
by reducing programs to a normal form. Typically, this will be via the iterative
application of a series of local rewrite rules (e.g., ∀ x , x0 x), until the target
program no longer changes. Note that the well-known conjunctive and disjunctive

normal forms for Boolean formulae are generally unsuitable for this purpose; they
destroy the hierarchical structure of formulae, and dramatically limit the range of
behaviors (in this case Boolean functions) that can be expressed compactly. Rather,
hierarchical normal forms for programs are required.

 Neighborhood enumeration - in this step, a set of possible atomic perturbations
is generated for all programs under consideration (the overall perturbation set will be
the union of these). The goal is to heuristically generate new programs that correspond
to behaviorally nearby variations on the source program, in such a way that arbitrary
sets of perturbations may be composed combinatorially to generate novel valid
programs.

 Neighborhood reduction - in this step, redundant perturbations are heuristically
culled to reach a more orthogonal set. A straightforward way to do this is to exploit the
reduction to normal form outlined above; if multiple knobs lead to the same normal
forms program, only one of them is actually needed. Additionally, note that the number
of symbols in the normal form of a program can be used as a heuristic approximation
for its minimal length - if the reduction to normal form of the program resulting from
twiddling some knob significantly decreases its size, it can be assumed to be a source
of oversampling, and hence eliminated from consideration. A slightly smaller program
is typically a meaningful change to make, but a large reduction in complexity will
rarely be useful (and if so, can be accomplished through a combination of knobs that
individually produce small changes).

At the end of this process, we will be left with a set of knobs defining a subspace
of programs centered around a particular region in program space and heuristically
centered around the corresponding region in behavior space as well. This is part of the
meta aspect of MOSES, which seeks not to evaluate variations on existing programs
itself, but to construct parameterized program subspaces (representations) containing
meaningful variations, guided by background knowledge. These representations are
used as search spaces within which an optimization algorithm can be applied.

2.3. Dynamics

As described above, the representation-building component of MOSES constructs a
parameterized representation of a particular region of program space, centered around a
single program of family of closely related programs. This is consonant with the line of
thought developed above, that a representation constructed across an arbitrary region of
program space (e.g., all programs containing less than n symbols), or spanning an
arbitrary collection of unrelated programs, is unlikely to produce a meaningful
parameterization (i.e., one leading to a compact problem decomposition).

A sample of programs within a region derived from representation-building
together with the corresponding set of knobs will be referred to herein as a deme;7 a set
of demes (together spanning an arbitrary area within program space in a patchwork
fashion) will be referred to as a metapopulation.8 MOSES operates on a
metapopulation, adaptively creating, removing, and allocating optimization effort to
various demes. Deme management is the second fundamental meta aspect of MOSES,
after (and above) representation-building; it essentially corresponds to the problem of
effectively allocating computational resources to competing regions, and hence to
competing programmatic organizational- representational schemes.

7 A term borrowed from biology, referring to a somewhat isolated local population of a species.
8 Another term borrowed from biology, referring to a group of somewhat separate populations (the demes)

that nonetheless interact.

2.4. Algorithmic Sketch

The salient aspects of programs and program learning lead to requirements for
competent program evolution that can be addressed via a representation-building
process such as the one shown above, combined with effective deme management. The
following sketch of MOSES presents a simple control flow that dynamically integrates
these processes into an overall program evolution procedure:

1. Construct an initial set of knobs based on some prior (e.g., based on an empty
program) and use it to generate an initial random sampling of programs. Add this deme
to the metapopulation.

2. Select a deme from the metapopulation and update its sample, as follows:
a) Select some promising programs from the deme's existing sample to use for

modeling, according to the scoring function.
b) Considering the promising programs as collections of knob settings, generate

new collections of knob settings by applying some (competent) optimization
algorithm.

c) Convert the new collections of knob settings into their corresponding programs,
reduce the programs to normal form, evaluate their scores, and integrate them
into the deme's sample, replacing less promising programs.

3. For each new program that meets the criterion for creating a new deme, if any:
a) Construct a new set of knobs (via representation-building) to define a region

centered around the program (the deme’s exemplar), and use it to generate a new
random sampling of programs, producing a new deme.

b) Integrate the new deme into the metapopulation, possibly displacing less
promising demes.

4. Repeat from step 2.

Figure 5: The top-level architectural components of MOSES, with directed edges indicating the flow of
information and program control.

 →###

 #
 # ###
 # # #
 # # #
 #### ##### ##
 # #
 # #
 # #
 # # #
 #
 #
 # #
 # #
 # # ###
 # #

Figure 6: The top half of the Santa Fe trail. The ant’s starting position and orientation is denoted by the →,
and pieces of food by #s. The complete trail may be found in [10, p. 55].

The criterion for creating a new deme is behavioral non-dominance (programs
which are not dominated by the exemplars of any existing demes are used as exemplars
to create new demes), which can be defined in a domain-specific fashion. As a default,
the scoring function may be used to induce dominance, in which case the set of
exemplar programs for demes corresponds to the set of top-scoring programs.

2.5.Architecture

The preceding algorithmic sketch of MOSES leads to the top-level architecture
depicted in Figure 5. Of the four top-level components, only the scoring function is
problem-specific. The representation-building process is domain-specific, while the
random sampling methodology and optimization algorithm are domain-general. There
is of course the possibility of improving performance by incorporating domain and/or
problem-specific bias into random sampling and optimization as well.

2.6. MOSES in Action

Let’s go through all of the steps that are needed to apply MOSES to a small problem,
the artificial ant on the Santa Fe trail [10], and describe the search process. The
artificial ant domain is a two-dimensional grid landscape where each cell may or may
not contain a piece of food. The artificial ant has a location (a cell) and orientation
(facing up, down, left, or right), and navigates the landscape via a primitive sensor,
which detects whether or not there is food in the cell that the ant is facing, and
primitive actuators move (take a single step forward), right (rotate 90 degrees
clockwise), and left (rotate 90 degrees counter-clockwise). The Santa Fe trail problem
is a particular 32 x 32 toroidal grid with food scattered on it (Figure 6), and a fitness
function counting the number of unique pieces of food the ant eats (by entering the cell
containing the food) within 600 steps (movement and 90 degree rotations are
considered single steps).

Programs are composed of the primitive actions taking no arguments, a conditional
(if-food-ahead),9 which takes two arguments and evaluates one or the other based on
whether or not there is food ahead, and progn, which takes a variable number of

9 This formulation is equivalent to using a general three-argument if-then-else statement with a predicate as
the first argument, as there is only a single predicate (food-ahead) for the ant problem.

arguments and sequentially evaluates all of them from left to right. To score a program,
it is evaluated continuously until 600 time steps have passed, or all of the food is eaten
(whichever comes first). Thus for example, the program if-food-ahead(m, r) moves
forward as long as there is food ahead of it, at which point it rotates clockwise until
food is again spotted. It’s can successfully navigate the first two turns of the Santa Fe
trail, but cannot cross “gaps” in the trail, giving it a final score of 11.

The first step in applying MOSES is to decide what our reduction rules should
look like. This program space has several clear sources of redundancy leading to over-
representation that we can eliminate, leading to the following reduction rules:

1. Any sequence of rotations may be reduced to either a left rotation, a right rotation, or
a reversal, for example:

progn(left, left, left)
reduces to
right

2. Any if-food-ahead statement which is the child of an if-food-ahead statement may be
eliminated, as one of its branches is clearly irrelevant, for example:

if-food-ahead(m, if-food-ahead(l, r))
reduces to
if-food-ahead(m, r)

3. Any progn statement which is the child of a progn statement may be eliminated and
replaced by its children, for example:

progn(progn(left, move), move)
reduces to
progn(left, move, move)

The representation language for the ant problem is simple enough that these are the
only three rules needed – in principle there could be many more. The first rule may be
seen as a consequence of general domain-knowledge pertaining to rotation. The second
and third rules are fully general simplification rules based on the semantics of if-then-
else statements and associative functions (such as progn), respectively.

These rules allow us to naturally parameterize a knob space corresponding to a
given program (note that the arguments to the progn and if-food-ahead functions will
be recursively reduced and parameterized according to the same procedure). Rotations
will correspond to knobs with four possibilities (left, right, reversal, no rotation).
Movement commands will correspond to knobs with two possibilities (move, no
movement). There is also the possibility of introducing a new command in between,
before, or after, existing commands. Some convention (a “canonical form”) for our
space is needed to determine how the knobs for new commands will be introduced. A
representation consists of a rotation knob, followed by a conditional knob, followed by
a movement knob, followed by a rotation knob, etc.10

The structure of the space (how large and what shape) and default knob values will
be determined by the “exemplar” program used to construct it. The default values are
used to bias the initial sampling to focus around the exemplar: all of the n neighbors of
the exemplar are first added to the sample, followed by a random selection of n
programs at a distance of two from the exemplar, n programs at a distance of three,
etc., until the entire sample is filled. Note that the hBOA can of course effectively
recombine this sample to generate novel programs at any distance from the exemplar.

10 That there be some fixed ordering on the knobs is important, so that two rotation knobs are not placed
next to each other (as this would introduce redundancy). Based on some preliminary test, the precise ordering
chosen (rotation, conditional, movement) does not appear to be critical.

The empty program progn (which can be used as the initial exemplar for MOSES), for
example, leads to the following prototype subspace:

progn(
rotate? [default no rotation],

 if-food-ahead(
progn(

rotate? [default no rotation],
move? [default no movement]),

progn(
rotate? [default no rotation],
move? [default no movement])),

move? [default no movement])

Technique Computational
Effort

Genetic
Programming [10]

450,000
evaluations

Evolutionary
Programming [24]

136,000
evaluations

MOSES 23,000
evaluations

Figure 7: On the left, histogram of the number of global optima found after a given number of
program evaluations for 100 runs of MOSES on the artificial ant problem (each run is counted once
for the first global optimum reached). On the right, computational effort required to find an optimal
solution for various techniques with p=.99 (for MOSES p=1, since an optimal solution was found in
all runs).

There are six parameters here, three which are quaternary, and three which are
binary. So the program progn(left,if-food-ahead(move, left)) would be encoded in the
space as [left, no rotation, move, left, no movement, no movement], with knobs ordered
according to a pre-order left-to-right traversal of the program’s parse tree (this is
merely for exposition; the ordering of the parameters has no effect on MOSES). For an

exemplar program already containing an if-food-ahead statement, nested conditionals
would be considered.

A space with six parameters in it is small enough that MOSES can reliably find the
optimum (the program progn(right, if-food-ahead(progn(),left), move)), with a very
small population. After no further improvements have been made in the search for a
specified number of generations (calculated based on the size of the space based on a
model derived from [23] that is general to the hBOA, and not at all tuned for the
artificial ant problem), a new representation is constructed centered around this
program.11 Additional knobs are introduced “in between” all existing ones (e.g., an
optional move in between the first rotation and the first conditional), and possible
nested conditionals are considered (a nested conditional occurring in a sequence after
some other action has been taken is not redundant). The resulting space has 39 knobs,
still quite tractable for hBOA, which typically finds a global optimum within a few
generations. If the optimum were not to be found, MOSES would construct a new
(possibly larger or smaller) representation, centered around the best program that was
found, and the process would repeat.

The artificial ant problem is well-studied, with published benchmark results
available for genetic programming [10] as well as evolutionary programming based
solely on mutation [24] (i.e., a form of population-based stochastic hill climbing).
Furthermore, an extensive analysis of the search space has been carried out by Langdon
and Poli [25], with the authors concluding:

• The problem is “deceptive at all levels”, meaning that the partial solutions that
must be recombined to solve the problem to optimality have lower average
fitness than the partial solutions that lead to inferior local optima.

• The search space contains many symmetries (e.g., between left and right
rotations),

• There is an unusually high density of global optima in the space (relative to
other common test problems); even though current evolutionary methods can
solve the problem, they are not significantly more effective (in terms of the
number of program evaluations require) than random sample.

• “If real program spaces have the above characteristics (we expect them to do
so but be still worse) then it is important to be able to demonstrate scalable
techniques on such problem spaces”.

A review of scalability results for MOSES across a range of problems is beyond
the scope of this paper (see [26]), but results for the artificial ant problem may be given
briefly to indicate the magnitude of improvement that may be experienced. Koza [10]
reports on a set of 148 runs of genetic programming with a population size of 500
which had a 16% success rate after 51 generations when the runs were terminated (a
total of 25,500 program evaluations per run). The minimal “computational effort”
needed to achieve success with 99% probability was attained by processing through
generation 14 was 450,000 (based on parallel independent runs). Chellapilla [24]
reports 47 out of 50 successful runs with a minimal computational effort (again, for
success with 99% probability) of 136,000 for his stochastic hill climbing method.

One hundred runs of MOSES were executed. Beyond the domain knowledge
embodied in the reduction and knob construction procedure, the only parameter that
needed to be set was the population scaling factor, which was set to 30 (MOSES

11 MOSES reduces the exemplar program to normal form before constructing the representation; in this
particular case however, no transformations are needed. Similarly, in general neighborhood reduction would
be used to eliminate any extraneous knobs (based on domain-specific heuristics). For the ant domain
however no such reductions are necessary.

automatically adjusts to generate a larger population as the size of the representation
grows, with the base case determined by this factor). Based on these “factory” settings,
MOSES found optimal solutions on every run out of 100 trials, within a maximum of
23,000 program evaluations (the computational effort figure corresponding to 100%
success). The average number of program evaluation required was 6952, with 95%
confidence intervals of ±856 evaluations.

Why does MOSES outperform other techniques? One factor to consider first is that
the language programs are evolved in is slightly more expressive than that used for the
other techniques; specifically, a progn is allowed to have no children (if all of its
possible children are “turned off”), leading to the possibility of if-food-ahead
statements which do nothing if food is present (or not present). Indeed, many of the
smallest solutions found by MOSES exploit this feature. This can be tested by inserting
a “do nothing” operation into the terminal set for genetic programming (for example).
Indeed, this reduces the computational effort to 272,000; an interesting effect, but still
over an order of magnitude short of the results obtained with MOSES (the success rate
after 50 generations is still only 20%).

Another possibility is that the reductions in the search space via simplification of
programs alone are responsible. However, the results past attempts at introducing
program simplification into genetic programming systems [27, 28] have been mixed;
although the system may be sped up (because programs are smaller), there have been
no dramatic improvement in results noted. To be fair, these results have been primarily
focused on the symbolic regression domain; I am not aware of any results for the
artificial ant problem.

The final contributor to consider is the sampling mechanism (knowledge-driven
knob-creation followed by probabilistic model-building). We can test to what extent
model-building contributes to the bottom line by simply disabling it and assuming
probabilistic independence between all knobs. The result here is of interest because
model-building can be quite expensive (O(n2N) per generation, where n is the problem
size and N is the population size12). In 50 independent runs of MOSES without model-
building, a global optimum was still discovered in all runs. However, the variance in
the number of evaluations required was much higher (in two cases over 100,000
evaluations were needed). The new average was 26,355 evaluations to reach an
optimum (about 3.5 times more than required with model-building). The contribution
of model-building to the performance of MOSES is expected to be even greater for
more difficult problems.

Applying MOSES without model-building (i.e., a model assuming no interactions
between variables) is a way to test the combination of representation-building with an
approach resembling the probabilistic incremental program learning (PIPE) [29]
algorithm, which learns programs based on a probabilistic model without any
interactions. PIPE has no been shown to provide results competitive with genetic
programming on a number of problems (regression, agent control, etc.).

It is additionally possible to look inside the models that the hBOA constructs
(based on the empirical statistics of successful programs) to see what sorts of linkages
between knobs are being learned.13 For the 6-knob model given above for instance an
analysis the linkages learned shows that the three most common pairwise dependencies
uncovered, occurring in over 90% of the models across 100 runs, are between the
rotation knobs. No other individual dependencies occurred in more than 32% of the

12 The fact that reduction to normal tends to reduce the problem size is another synergy between it and the
application of probabilistic model-building.

13 There is in fact even more information available in the hBOA models concerning hierarchy and direction
of dependence, but this is difficult to analyze.

models. This preliminary finding is quite significant given Landgon and Poli’s findings
on symmetry, and their observation [25] that “[t]hese symmetries lead to essentially the
same solutions appearing to be the opposite of each other. E.g. either a pair of Right or
pair of Left terminals at a particular location may be important.”

In summary, all of the components of MOSES appear to mesh together to provide
superior performance, although further experimentation and analysis across a range of
problems is clearly needed.

2.7.Discussion

The overall MOSES design as described herein is unique. However, it is instructive at
this point to compare its two primary facets (representation-building and deme
management) to related work in evolutionary computation.

Rosca's adaptive representation architecture [30] is an approach to program
evolution which also alternates between separate representation-building and
optimization stages. It is based on Koza's genetic programming [10], and modifies the
representation based on a syntactic analysis driven by the scoring function, as well as a
modularity bias. The representation-building that takes place consists of introducing
new compound operators, and hence modifying the implicit distance function in tree-
space. This modification is uniform, in the sense that the new operators can be placed
in any context, without regard for semantics.

In contrast to Rosca's work and other approaches to representation-building such
as Koza's automatically defined functions [31], MOSES explicitly addresses on the
underlying (semantic) structure of program space independently of the search for any
kind of modularity or problem decomposition. This preliminary stage critically changes
neighborhood structures (syntactic similarity) and other aggregate properties of
programs.

Regarding deme management, the embedding of an evolutionary algorithm within
a superordinate procedure maintaining a metapopulation is most commonly associated
with “island model” architectures [8]. One of the motivations articulated for using
island models has been to allow distinct islands to (usually implicitly) explore different
regions of the search space, as MOSES does explicitly. MOSES can thus be seen as a
very particular kind of island model architecture, where programs never migrate
between islands (demes), and islands are created and destroyed dynamically as the
search progresses.

In MOSES, optimization does not operate directly on program space, but rather on
a subspace defined by the representation-building process. This subspace may be
considered as being defined by a sort of template assigning values to some of the
underlying dimensions (e.g., it restricts the size and shape of any resulting trees). The
messy genetic algorithm [32], an early competent optimization algorithm, uses a
similar mechanism - a common “competitive template” is used to evaluate candidate
solutions to the optimization problem which are themselves underspecified. Search
consequently centers on the template(s), much as search in MOSES centers on the
programs used to create new demes (and thereby new representations). The issue of
deme management can thus be seen as analogous to the issue of template selection in
the messy genetic algorithm.

3. Summary and Conclusions

Competent evolutionary optimization algorithms are a pivotal development, allowing
encoded problems with compact decompositions to be tractably solved according to
normative principles. We are still faced with the problem of representation-building –
casting a problem in terms of knobs that can be twiddled to solve it. Hopefully, the
chosen encoding will allow for a compact problem decomposition. Program learning
problems in particular rarely possess compact decompositions, due to particular
features generally present in program spaces (and in the mapping between programs
and behaviors). This often leads to intractable problem formulations, even if the
mapping between behaviors and scores has an intrinsic separable or nearly
decomposable structure. As a consequence, practitioners must often resort to manually
carrying out the analogue of representation-building, on a problem-specific basis.

Working under the thesis that the properties of programs and program spaces can
be leveraged as inductive bias to reduce the burden of manual representation-building,
leading to competent program evolution, I have developed the MOSES system.
Experimental results and theoretical analyses have been carried out to substantiate
many of the claims made in this paper regarding the properties of program spaces and
how to transform them via representation-building, which will be presented in [26],
along with results and analyses of MOSES itself; order-of-magnitude reductions in the
number of scoring function evaluations needed to find an optimal solution have already
been achieved relative to genetic programming [10], on a number of benchmarks, in
addition to the ant results presented herein. Future work will focus on advanced
problem domains (higher-order functions, list manipulation, recursion, etc.), more
adaptive representation-building for better scalability, exploiting additional inductive
bias in the behavioral space, and, most importantly in the long-term, integration with
other AI components.

Acknowledgements

Thanks to Ben Goertzel for many suggestions and discussions which have been
instrumental in developing the ideas presented in this paper. Thanks to the anonymous
reviewer for constructive suggestions that have hopefully made this a more cogent and
comprehensible paper than it would have been otherwise.

References

[1] T. Deacon. The Symbolic Species. Norton, 1997.
[2] D. Marr. Vision: a computational investigation into the human representation and processing of visual

information. W. H. Freeman, 1982.
[3] M. Looks and B. Goertzel. Mixing cognitive science concepts with computer science algorithms and data

structures: An integrative approach to strong AI. In AAAI Spring Symposium Series, 2006.
[4] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
[5] G. M. Edelman. Neural Darwinism: The Theory of Neuronal Group Selection. Basic Books, 1988.
[6] W. H. Calvin. The brain as a Darwin machine. Nature, 1987.
[7] W. H. Calvin and D. Bickerton. Lingua ex Machina. MIT Press, 2000.
[8] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,

1989.
[9] N. Cramer. A representation for the adaptive generation of simple sequential programs. In International

Conference on Genetic Algorithms and their Applications, 1985.

[10] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, 1992.

[11] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications, 2002.

[12] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Linkage problem, distribution estimation, and Bayesian
networks. Evolutionary Computation, 2002.

[13] M. Pelikan and D. E. Goldberg. A hierarchy machine: Learning to optimize from nature and humans.
Complexity, 2003.

[14] M. Pelikan and D. E. Goldberg. Hierarchical BOA solves Ising spin glasses and MAXSAT. Technical
report, University of Illinois at Urbana-Champaign, 2003.

[15] F. Rothlaud, D. E. Goldberg, and A. Heinzl. Bad codings and the utility of well-designed genetic
algorithms. Technical report, University of Illinois at Urbana-Champaign, 2000.

[16] R. A. Watson, G. S. Hornby, and J. B. Pollack. Modeling building-block interdependency. In Parallel
Problem Solving from Nature, 1998.

[17] M. Hutter. Universal algorithmic intelligence: A mathematical top-down approach. In B. Goertzel and
C. Pennachin, editors, Artificial General Intelligence. Springer-Verlag, 2005.

[18] J. Schmidhuber. Gödel machines: Fully self-referential optimal universal self-improvers. In B. Goertzel
and C. Pennachin, editors, Artificial General Intelligence. Springer-Verlag, 2005.

[19] M. Looks, B. Goertzel, and C. Pennachin. Novamente: An integrative architecture for artificial general
intelligence. In AAAI Fall Symposium Series, 2004.

[20] E. B. Baum. What is Thought? MIT Press, 2004.
[21] D.G. King. Metaptation: the product of selection at the second tier. Evolutionary Theory, 1985.
[22] M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A study of fitness distance correlation as a

difficulty measure in genetic programming. Evolutionary Computation, 2005.
[23] M. Pelikan and T. Lin. Parameter-less hierarchical BOA. In Genetic and Evolutionary Computation

Conference, 2004.
[24] K. Chellapilla. Evolving computer programs without subtree crossover. IEEE Transactions on

Evolutionary Computation, 1997.
[25] W. B. Langdon and R. Poli. Why ants are hard. In Genetic Programming, 1998.
[26] M. Looks. Competent Program Evolution. PhD thesis, Washington University in St. Louis, 2006

(forthcoming).
[27] A. Ekárt. Shorter Fitness Preserving Genetic Programming. In Artificial Evolution, 2000.
[28] P. Wong and M. Zhang. Algebraic Simplification of GP Programs During Evolution. In Genetic and

Evolutionary Computation Conference, 2006.
[29] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolutionary

Computation, 1997.
[30] J. Rosca. Hierarchical Learning with Procedural Abstraction Mechanisms. PhD thesis, University of

Rochester, 1997.
[31] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, 1994.
[32] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis, and first results.

Complex Systems, 1989.

	1.Background and Motivation
	1.1. Evolutionary Learning
	1.2.Representation-Building
	1.3.Program Learning

	2.Competent Program Evolution
	2.1.Statics
	2.1.1.An Example
	2.1.2. Syntax and Semantics

	2.2. Neighborhoods and Normal Forms
	2.3. Dynamics
	2.4. Algorithmic Sketch
	2.5.Architecture
	2.6. MOSES in Action
	2.7.Discussion

	3.Summary and Conclusions

