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Abstract. The creation of robust mechanisms for uncertain inference is central to the development of Artificial General Intelligence systems. While 
probability theory provides a principled foundation for uncertain inference, the mathematics of probability theory has not yet been developed to 
the point  where it  is possible to  handle every aspect of  the uncertain  inference process  in practical  situations using rigorous probabilistic  
calculations. Due to  the  need to  operate  within  realistic  computational  resources,  probability  theory presently  requires  augmentation with 
heuristics in order to be pragmatic for general intelligence (as well as for other purposes such as large-scale data analysis).

The authors have been involved with the creation of a novel, general framework for pragmatic probabilistic inference in an AGI context, 
called Probabilistic Logic Networks (PLN). PLN integrates probability theory with a variety of heuristic inference mechanisms; it encompasses a 
rich set of first-order and higher-order inference rules, and it is highly flexible and adaptive, and easily configurable. This paper describes a 
single, critical aspect of the PLN framework, which has to with the quantification of uncertainty. In short, it addresses the question: What should 
an uncertain truth value be, so that a general intelligence may use it for pragmatic reasoning?

We propose a new approach to quantifying uncertainty via a hybridization of Walley’s theory of imprecise probabilities and Bayesian 
credible intervals. This “indefinite probability” approach provides a general method for calculating the “weight-of-evidence” underlying the 
conclusions of uncertain inferences. Moreover, both Walley’s imprecise beta-binomial model and standard Bayesian inference can be viewed 
mathematically as special cases of the more general indefinite probability model. Via exemplifying the use of indefinite probabilities in a variety 
of PLN inference rules (including exact and heuristic ones), we argue that this mode of quantifying uncertainty may be adequate to serve as an 
ingredient of powerful artificial general intelligence.

Introduction

As part  of  our  ongoing work on the Novamente artificial  general  intelligence (AGI) system, we have 
developed a logical inference system called Probabilistic Logic Networks (PLN), designed to handle the 
various forms of uncertain inference that may confront a general intelligence -- including reasoning based 
on  uncertain  knowledge,  and/or  reasoning  leading  to  uncertain  conclusions  (whether  from  certain  or 
uncertain knowledge). Among the general  high-level requirements underlying the development of PLN 
have been the following:

• To enable uncertainty-savvy versions of all known varieties of logical reasoning, including for 
1 The authors would like to thank Pei Wang for his very detailed and insightful comments on an earlier 
draft, which resulted in significant improvements to the paper.



instance higher-order reasoning involving quantifiers, higher-order functions, and so forth.

• To reduce to crisp “theorem prover” style behavior in the limiting case where uncertainty tends to 
zero.

• To encompass inductive and abductive as well as deductive reasoning.

• To agree with probability theory in those reasoning cases where probability theory, in its current 
state  of  development,  provides  solutions  within  reasonable  calculational  effort  based  on 
assumptions that are plausible in the context of real-world data.

• To gracefully incorporate heuristics not explicitly based on probability theory,  in cases where 
probability  theory,  at  its  current  state  of  development,  does  not  provide  adequate  pragmatic 
solutions.

• To provide “scalable” reasoning, in the sense of being able to carry out inferences involving at 
least billions of premises.  Of course, when the number of premises is fewer, more intensive and 
accurate reasoning may be carried out.

• To easily accept input from, and send input to, natural language processing software systems.

PLN implements a wide array of first-order and higher-order inference rules including (but not limited 
to) deduction, Bayes’ Rule, unification, intensional and extensional inference, belief revision, induction, 
and abduction. Each rule comes with uncertain truth-value formulas,  calculating the truth-value of the 
conclusion from the truth-values of the premises. Inference is controlled by highly flexible forward and 
backward chaining processes able to take feedback from external processes and thus behave adaptively.

The development of PLN has taken place under the assumption that probability theory is the “right” 
way to model uncertainty (more on this later). However, the mathematics of probability theory (and its 
interconnection with other aspects of mathematics) has not yet been developed to the point where it is 
feasible  to  use fully  rigorous,  explicitly  probabilistic  methods to  handle every aspect  of  the  uncertain 
inference process.

One of the major issues with probability theory as standardly utilized involves the very quantification 
of the uncertainty associated with statements that serve as premises or conclusions of inference. Using a 
single  number  to  quantify  the  uncertainty  of  a  statement  is  often  not  sufficient,  a  point  made  very 
eloquently by Wang ([1]), who argues in detail that the standard Bayesian approach does not offer any 
generally  viable  way  to  assess  or  reason  about  the  “second-order  uncertainty”  involved  in  a  given 
probability  assignment.  Probability  theory  provides  richer  mechanisms  than  this:  one  may  assign  a 
probability distribution to a statement, instead of a single probability value. But what if one doesn’t have 
the data to fill in a probability distribution in detail? What is the (probabilistically) best approach to take in 
the case where a single number is not enough but the available data doesn’t provide detailed distributional 
information?  Current  probability  theory  does  not  address  this  issue  adequately.  Yet  this  is  a  critical 
question if  one wants to apply probability theory in a general intelligence context. In short, one needs 
methods of quantifying uncertainty at an intermediate level of detail between single probability numbers 
and fully known probability distributions. This is what we mean by the question: What should an uncertain 
truth-value be, so that a general intelligence may use it for pragmatic reasoning?

1. From Imprecise Probabilities to Indefinite Probabilities

2.

Walley’s  ([2])  theory  of  imprecise  probabilities  seeks  to  address  this  issue,  via  defining  interval 



probabilities,  with interpretations in  terms of  families of  probability  distributions.  The idea of  interval 
probabilities was originally introduced by Keynes ([3]), but Walley’s version is more rigorous, grounded in 
the theory of envelopes of probability distributions. Walley’s intervals, so-called “imprecise probabilities,” 
are  satisfyingly  natural  and  consistent  in  the  way  they  handle  uncertain  and  incomplete  information. 
However,  in spite  of a  fair  amount  of  attention over the years,  this line of  research has not  yet  been 
developed to the point of yielding robustly applicable mathematics.

Using a parametrized envelope of  (beta-distribution)  priors  rather  than assuming a single  prior  as 
would be typical in the Bayesian approach, Walley ([2], [4]) concludes that it is plausible to represent 

probabilities as intervals of the form [ mnk , mknk ] . In this formula, n represents the total number of 

observations, m represents the number of positive observations, and k is a parameter that Walley calls s and 
derives as a parameter of the beta distribution. Walley calls this parameter the learning parameter, while we 
will refer to it as the skepticism parameter. Note that the width of the interval of probabilities is inversely 
related to the number of observations n, so that the more evidence one has, the narrower the interval. The 
parameter k determines how rapidly this narrowing occurs. An interval of this sort is what Walley calls an 
“imprecise probability.”

Walley’s approach comes along with a host of elegant mathematics including a Generalized Bayes’ 
Theorem. However it is not the only approach to interval probabilities. For instance, one alternative is 
Weichselberger’s ([5]) axiomatic approach, which works with sets of probabilities of the form [L,U] and 
implies that Walley’s generalization of Bayes’ rule is not the correct one.

One practical issue with using interval probabilities like Walley’s or Weichselberger’s in the context of 
probabilistic inference rules (such as those used in PLN) is the pessimism implicit in interval arithmetic. If 
one takes traditional probabilistic calculations and simplistically replaces the probabilities with intervals, 
then one finds that the intervals rapidly expand to [0,1]. This fact simply reflects the fact that the intervals 
represent  “worst  case”  bounds.  This  same  problem also  affects  Walley’s  and  Weichselberger’s  more 
sophisticated  approaches,  and other  approaches  in  the  imprecise  probabilities  literature.  The  indefinite 
probabilities  approach  presented  here  circumvents  these  practical  problems  via  utilizing  interval 
probabilities that have a different sort  of semantics – closely related to,  but not the same as,  those of 
Walley’s interval probabilities.

Indefinite  probabilities,  as  we  consider  them  here,  are  represented  by  quadruples  of  the  form 
([L,U],b,k) – thus, they contain two additional numbers beyond the [L,U] interval truth values proposed by 
Keynes, and one number beyond the ([L,U],k) formalism proposed by Walley. The semantics involved in 
assigning such a truth value to a statement S is, roughly, “I assign a probability of b to the hypothesis that, 
after I have observed k more pieces of evidence, the truth value I assign to S will lie in the interval [L,U].” 
In the practical examples presented here we will hold k constant and thus will deal with truth value triples 
([L,U],b).

The inclusion of the value b, which defines the credibility level according to which [L,U] is a credible 
interval (for hypothesized future assignments of the probability of S, after observing k more pieces of 
evidence),  is  what  allows  our  intervals  to  generally  remain narrower  than those  produced  by  existing 
imprecise probability approaches. If b=1, then our approach essentially reduces to imprecise probabilities, 
and in pragmatic inference contexts tends to produce intervals [L,U] that approach [0,1]. The use of b<1 
allows the inferential production of narrower intervals, which are more useful in a real-world inference 
context.

In  practice,  to  execute  inferences  using  indefinite  probabilities,  we  make  heuristic  distributional 
assumptions, assuming a “second order” distribution which has [L,U] as a (100*b)% credible interval, and 
then  “first  order”  distributions  whose  means  are  drawn  from  the  second-order  distribution.  These 
distributions are to be viewed as heuristic approximations intended to estimate unknown probability values 
existing  in  hypothetical  future  situations.  The  utility  of  the  indefinite  probability  approach  may  be 
dependent  on  the  appropriateness  of  the  particular  distributional  assumptions  to  the  given  application 
situation. But in practice we have found that a handful of distributional forms seem to suffice to cover 
common-sense inferences (beta and bimodal forms seem good enough for nearly all cases; and here we will 



only give examples covering the beta distribution case).

Because the semantics of indefinite probabilities is different from that of ordinary probabilities, or 
imprecise probabilities, or for example NARS truth values, it is not possible to say objectively that any one 
of these approaches is “better” than the other one, as a mathematical formalism. Each approach is better 
than the others at mathematically embodying its own conceptual assumptions. From an AGI perspective, 
the value of an approach to quantifying uncertainty lies in its usefulness when integrated with a pragmatic 
probabilistic  reasoning engine.  The bulk of  this paper  will  be concerned with showing how indefinite 
probabilities  behave  when  incorporated  in  the  logical  reasoning  rules  utilized  in  the  PLN  inference 
framework, a component of the Novamente AI Engine. While complicated and dependent on many factors, 
this is nevertheless the sort of evaluation that we consider most meaningful.

Section 2 deals with the conceptual foundations of indefinite probabilities, clarifying their semantics in 
the  context  of  Bayesian  and  frequentist  philosophies  of  probability.  Section  3  outlines  the  pragmatic 
computational method we use for doing probabilistic and heuristic inference using indefinite probabilities. 
Section 4 presents a number of specific examples involving using indefinite probabilities within single 
inference steps within the PLN inference framework.

3. The Semantics of Uncertainty

4.

The main goal of this paper is to present indefinite probabilities as a pragmatic tool for uncertain inference, 
oriented toward utilization in AGI systems. Before getting practical, however, we will pause in this section 
to discuss the conceptual, semantic foundations of the “indefinite probability” notion. In the course of 
developing  the  indefinite  probabilities  approach,  we  found  that  the  thorniest  aspects  lay  not  in  the 
mathematics or software implementation, but rather in the conceptual interpretation of the truth values and 
their roles in inference.

In  the  philosophy  of  probability,  there  are  two  main  approaches  to  interpreting  the  meaning  of 
probability values, commonly labeled frequentist and Bayesian ([6]). There are many shades of meaning to 
each interpretation, but the essential difference is easy to understand. The frequentist approach holds that a 
probability should be interpreted as the limit of the relative frequency of an event-category, calculated over 
a series of events as the length of the series tends to infinity. The subjectivist or Bayesian approach holds 
that a probability should be interpreted as the degree of belief in a statement, held by some observer; or in 
other words, as an estimate of how strongly an observer believes the evidence available to him supports the 
statement in question. Early proponents of the subjectivist view were Ramsey ([7]) and de Finetti ([8]), 
who argued that for an individual to display self-consistent betting behavior they would need to assess 
degrees of  belief  according to the laws of probability  theory.  More recently Cox’s Theorem ([9])  and 
related mathematics ([10]) have come into prominence as providing a rigorous foundation for subjectivist 
probability.  Roughly speaking,  this  mathematical  work shows that  if  the observer  assessing subjective 
probabilities is to be logically consistent, then their plausibility estimates must obey the standard rules of 
probability. 

From a philosophy-of-AI point of view, neither the frequentist nor the subjectivist interpretations, as 
commonly presented, is fully satisfactory. However, for reasons to be briefly explained here, we find the 
subjectivist interpretation more acceptable, and will consider indefinite probabilities within a subjectivist 
context,  utilizing  relative  frequency  calculations  for  pragmatic  purposes  but  giving  them an  explicitly 
subjectivist rather than frequentist interpretation.

The frequentist interpretation is conceptually problematic in that it assigns probabilities only in terms 
of limits of sequences, not in terms of finite amounts of data. Furthermore, it has well-known difficulties 
with  the  assignment  of  probabilities  to  unique  events  that  are  not  readily  thought  of  as  elements  of 
ensembles.  For instance,  what was the probability,  in  1999,  of  the  statement S  holding that  “A great 



depression will  be brought about by the Y2K problem”? Yes,  this probability can be cast  in terms of 
relative frequencies in various ways. For instance, one can define it as a relative frequency across a set of 
hypothetical “possible worlds”: across all possible worlds similar to our own, in how many of them did the 
Y2K problem bring about a great depression? But it’s not particularly natural to assume that this is what an 
intelligence must do in order to assign a probability to S. It would be absurd to claim that, in order to assign 
a probability to S, an intelligence must explicitly reason in terms of an ensemble of possible worlds. Rather, 
the claim must be that whatever reasoning a mind does to evaluate the probability of S may be implicitly 
interpreted  in  terms  of  possible  worlds.  This  is  not  completely  senseless,  but  is  a  bit  of  an  irritating 
conceptual stretch.

The subjectivist  approach,  on the  other  hand,  is  normally conceptually  founded either  on rational 
betting behaviors or on Cox’s Theorem and its generalizations, both of which are somewhat idealistic.

No intelligent agent operating within a plausible amount of resources can embody fully self-consistent 
betting behavior in complex situations. The irrationality of human betting behavior is well known; to an 
extent this is due to emotional reasons, but there are also practical limitations on the complexity of the 
situation in which any finite mind can figure out the correct betting strategy.

And similarly, it is too much to expect any severely resource-constrained intelligence to be fully self-
consistent in the sense that the assumptions of Cox’s theorem require. In order to use Cox’s Theorem to 
justify the use of probability theory by practical  intelligences,  it  seems to us,  one would need to take 
another step beyond Cox, and argue that if an AI system is going to have a “mostly sensible” measure of 
plausibility (i.e. if its deviation from Cox’s axioms are not too great), then its intrinsic plausibility measure 
must be similar to probability. We consider this to be a viable line of argument, but will pursue this point in 
another paper – to enlarge on such matters here would take us too far afield.

Walley’s  approach  to  representing  uncertainty  is  based  explicitly  on  a  Bayesian,  subjectivist 
interpretation; though whether his mathematics has an alternate frequentist interpretation is something he 
has not explored, to our knowledge. Similarly, our approach here is to take a subjectivist perspective on the 
foundational semantics of indefinite probabilities (although we don’t consider this critical to our approach; 
quite  likely  it  could  be  given  a  frequentist  interpretation  as  well.)  Within  our  basic  subjectivist 
interpretation,  however,  we will  frequently  utilize relative frequency calculations  when convenient  for 
pragmatic reasoning. This is conceptually consistent because within the subjectivist perspective, there is 
still a role for relative frequency calculations, so long as they are properly interpreted.

Specifically,  when  handling  a  conditional  probability  P(A|B),  it  may  be  the  case  that  there  is  a 
decomposition B=B1+...+Bn so that the Bi are mutually exclusive and equiprobable, and each of P(A|Bi) is 
either 0 or 1. In this case the laws of probability tell us P(A|B) = P(A|B1) P(B1| B) + ... + P(A|Bn) P(Bn|B) = 
(P(A|B1) + ... + P(A|Bn))/n, which is exactly a relative frequency. So, in the case of statements that are 
decomposable in this sense, the Bayesian interpretation implies a relative frequency based interpretation 
(but not a “frequentist” interpretation in the classical sense).  For decomposable statements,  plausibility 
values may be regarded as the means of probability distributions, where the distributions may be derived 
via subsampling (sampling subsets C of  {B1,...,Bn}, calculating P(A|C) for  each subset,  and taking the 
distribution of  these values; as in the statistical  technique known as bootstrapping).  In the case of  the 
“Y2K” statement and other similar statements regarding unique instances, one option is to think about 
decomposability across possible worlds, which is conceptually controversial.

4.1.Indefinite Probability

4.2.

We concur with the subjectivist maxim that a probability can usefully be interpreted as an estimate of the 
plausibility of a statement, made by some observer. However, we suggest introducing into this notion a 
more  careful  consideration  of  the  role  of  evidence  in  the  assessment  of  plausibility.  We  introduce  a 
distinction that we feel is critical, between



• the ordinary (or  “definite”)  plausibility of  a  statement,  interpreted as  the degree to which the 
evidence already (directly or indirectly) collected by a particular observer supports the statement.

• the “indefinite plausibility” of a statement, interpreted as the degree to which the observer believes 
that the overall body of evidence potentially available to him supports the statement.
•

The  indefinite  plausibility  is  related  to  the  ordinary  plausibility,  but  also  takes  into  account  the 
potentially limited nature of the store of evidence collected by the observer at a given point in time. While 
the ordinary plausibility is effectively represented as a single number, the indefinite plausibility is more 
usefully  represented  in  a  more  complex  form.  We suggest  to  represent  an  indefinite  plausibility  as  a 
quadruple  ([L,U],b,k),  which when attached  to  a  statement  S  has  the  semantics  “I  assign  an  ordinary 
plausibility of b to the statement that ‘Once k more items of evidence are collected, the ordinary plausibility 
of the statement S will lie in the interval [L,U]’”. Note that indefinite plausibility is thus defined as “second 
order plausibility” – a plausibility of a plausibility.

As we shall see in later sections of the paper, for most computational purposes it seems acceptable to 
leave the parameter k in the background, assuming it is the same for both the premises and the conclusion 
of an inference. So in the following we will mainly speak of indefinite probabilities as ([L,U],b) triples, for 
sake of simplicity. The possibility does exist, however, that in future work, inference algorithms will be 
designed that utilize k explicitly.

Now, suppose we buy the Bayesian argument that ordinary plausibility is best represented in terms of 
probability.  Then  it  follows  that  indefinite  plausibility  is  best  represented  in  terms  of  second-order 
probability, i.e. as “I assign probability b to the statement that ‘Once k more items of evidence have been 
collected, the probability of the truth of S based on this evidence will lie in the interval [L,U]’”.

4.2.1.An Interpretation in Term of Betting Behavior

4.2.2.

To justify the above definition of indefinite probability more formally, one approach is to revert to betting 
arguments  of  the  type  made by  de  Finetti  in  his  work  on  the  foundations  of  probability.  As  will  be 
expounded below, for computational purposes, we have taken a pragmatic frequentist approach, based on 
underlying distributional assumptions. However, for purposes of conceptual clarity, a more subjectivist de 
Finetti  style  justification is  nevertheless of  interest.  So, in this subsection, we will  describe a “betting 
scenario” that leads naturally to a definition of indefinite probabilities.

Suppose we have a category C of discrete events, e.g. a set of tosses of a certain coin which has heads on 
one side and tails on the other.

Next, suppose we have a predicate S, which is either True or False (boolean values)
for each event within the above event-category. C. For example, if C is a set of tosses
of a certain coin, then S could be the event "Heads". S is a function from events into
Boolean values.

If we have an agent A, and the agent A has observed the evaluation of S on n different
events, then we will say that n is the amount of evidence that A has observed
regarding S; or we will say that A has made n observations regarding S.

Now consider a situation with three agents: the House, the Gambler, and the Meta-gambler.

As the name indicates, the House is going to run a gambling operation, involving 
generating repeated events in category C, and proposing bets regarding the outcome 
of future events in C.

More interestingly, House is also going to propose bets to the Meta-gambler, regarding
the behavior of the Gambler.



Specifically, suppose the House behaves as follows.

After the Gambler makes n observations regarding S, House offers Gambler the opportunity to make 
what we'll call a "de Finetti" type bet regarding the outcome of the next observation of S.That is, House 
offers Gambler the opportunity:

"You must set the price of a promise to pay $1 if the next observation of S comes out 
True, and $0 if there it does not. You must commit that I will be able to choose either to buy such a promise from you at the price you 

have set, or require you to buy such a promise from me. In other words: you set the odds, but I decide which side of the bet will 
be yours."

Assuming the Gambler does not want to lose money, the price Gambler sets in such a bet, is the 
"operational subjective probability" that Gambler assigns that the next observation of S will come out True.

As an aside, House might also offer Gambler the opportunity to bet on sequences of observations, e.g. 
it  might  offer  similar  "de  Finetti"  price-setting  opportunities  regarding  predicates  like  "The  next  5 
observations of S made will be in the ordered pattern (True, True, True, False, True).” In this case, things 
become interesting  if  we suppose  Gambler  thinks  that:  For  each  sequence  Z  of  {True,  False}  values 
emerging from repeated observation of S,  any permutation of  Z has the same (operational  subjective) 
probability  as  Z. Then,  Gambler  thinks  that  the  series  of  observations  of  S  is  "exchangeable",  which 
means intuitively that S's subjective probability estimates are really estimates of the "underlying probability 
of S being true on a random occasion." Various mathematical conclusions follow from the assumption that 
Gambler  does  not  want  to  lose money,  combined  with  the  assumption  that  Gambler  believes  in 
exchangeability.

Next, let's bring Meta-gambler into the picture. Suppose that House, Gambler and Meta-gambler have 
all  together been watching n observations of S. Now, House is going to offer Meta-gambler a special 
opportunity. Namely, he is going to bring Meta-gambler into the back room for a period of time. During 
this period of time, House and Gambler will be partaking in a gambling process involving the predicate S.

Specifically,  while  Meta-gambler  is  in  the  back  room,  House  is  going  to  show  Gambler  k  new 
observations of S. Then, after the k'th observation, House is going to come drag Meta-gambler out of the 
back room, away from the pleasures of the flesh and back to the place where gambling on S occurs.

House then offers Gambler the opportunity to set the price of yet another de-Finetti
style bet on yet another observation of S.

Before Gambler gets to set his price, though, Meta-gambler is going to be given the opportunity of placing 
a bet regarding what price Gambler is going to set.

Specifically, House is going to allow Meta-gambler to set the price of a de Finetti style bet on a proposition 
of Meta-gambler's choice, of the form:

Q = "Gambler is going to bet an amount p that lies in the interval [L,U]"

For instance Meta-gambler might propose

"Let Q be the proposition that Gambler is going to bet an amount lying in [.4, .6] on this next observation of S.  I'll set at 30 cents the 
price of a promise defined as follows: To pay $1 if Q comes out True, and $0 if it does not.  I will commit that you will be able 
to choose either to buy  such a promise from me at this price, or require me to buy such a promise from you."

I.e., Meta-Gambler sets the price corresponding to Q, but House gets to determine which side of the bet to 
take.

Let us denote the price set by Meta-gambler as b; and let us assume that Meta-gambler does not want to 
lose money.

Then, b is Meta-gambler's subjective probability assigned to the statement that:



"Gambler's subjective probability for the next observation of S being True lies in [L,U]."

But, recall from earlier that the indefinite probability

<L,U,b,k> 
attached to S means that: 

"The estimated odds are b that after k more observations of S, the estimated probability of S will lie in [L,U]" 

or in other words

"[L,U] is a b-level credible interval for the estimated probability of S after k more observations."

In the context of an AI system reasoning using indefinite probabilities, there is no explicit separation 
between the Gambler and the Meta-gambler; the same AI system makes both levels of estimate. But this is 
of course not problematic, so long as the two components 

(first-order probability estimation and b-estimation) are carried out separately.

One might  argue  that  this  formalization  in  terms  of  betting  behavior  doesn't  really  add  anything 
practical to the indefinite probabilities framework as already formulated. At minimum, however, it does 
make  the  relationship  between  indefinite  probabilities  and  the  classical  subjective  interpretation  of 
probabilities quite clear.

4.2.3.A Pragmatic Frequentist Interpretation

4.2.4.

Next,  it  is  not  hard to  see  how the above-presented interpretation of  an indefinite  plausibility  can be 
provided with an alternate justification in relative frequency terms, in the case where one has a statement S 
that  is  decomposable in  the sense described above.  Suppose that,  based on a certain finite  amount of 
evidence about the frequency of a statement S, one wants to guess what one’s frequency estimate will be 
once one has seen a lot more evidence. This guessing process will result in a probability distribution across 
frequency estimates – which may itself be interpreted as a frequency via a “possible worlds” interpretation. 
One may think about “the frequency, averaged across all possible worlds, that we live in a world in which 
the observed frequency of S after k more observations will lie in interval I.”  So, then, one may interpret 
([L,U],b, N) as meaning “b is the frequency of possible worlds in which the observed frequency of S, after 
I’ve gathered k more pieces of evidence, will lie in the interval [L,U].”

This interpretation is not as conceptually compelling as the betting-based interpretation given above – 
because bets are real things, whereas these fictitious possible worlds are a bit slipperier. However, we make 
use  of  this  frequency-based  interpretation  of  indefinite  probabilities  in  the  practical  computational 
implementation  of  indefinite  probability  presented  in  the  following  sections  --  without,  of  course, 
sacrificing  the  general  Bayesian  interpretation  of  the  indefinite  probability  approach.  In  the  end,  we 
consider  the  various  interpretations  of  probability  to  be  in  the  main  complementary  rather  than 
contradictory, providing different perspectives on the same very useful mathematics.

Moving on, then: To adopt a pragmatic frequency-based interpretation of the second-order plausibility 
in the definition of indefinite plausibility, we interpret “I assign probability b to the statement that ‘Once k 
more items of evidence are collected, the probability of the truth of S based on this evidence will lie in the 
interval [L,U]’” to mean “b is the frequency, across all possible worlds in which I have gathered k  more 
items of evidence about S, of worlds in which the statement ‘the estimated probability of S lies in the 
interval  [L,U]’  is  true  ”.  This  frequency-based  interpretation  allows  us  to  talk  about  a  probability 
distribution consisting of probabilities assigned to values of ‘the estimated probability of S’, evaluated 
across various possible worlds. This probability distribution is what, in the later sections of the paper, we 
call the “second-order distribution.” For calculational purposes, we assume a particular distributional form 
for this second-order distribution.



Next, for the purpose of computational implementation, we make the heuristic assumption that the 
statement S under consideration is decomposable, so that in each possible world, “the estimated probability 
of S” may be interpreted as the mean of a probability distribution. For calculational purposes, in our current 
implementation we assume a particular distributional form for these probability distributions, which we 
refer to as “the first-order distributions.”

The adoption of a frequency-based interpretation for the second-order plausibility seems hard to avoid 
if one wants to do practical calculations using the indefinite probabilities approach. On the other hand, the 
adoption of a frequency-based interpretation for the first-order plausibilities is an avoidable convenience, 
which is appropriate only in some situations. We will discuss below how the process of reasoning using 
indefinite  probabilities  can  be  simplified,  at  the  cost  of  decreased  robustness,  in  cases  where 
decomposability of the first order probabilities is not a plausible assumption.

So, to summarize, in order to make the indefinite probabilities approach computationally tractable, we 
begin by restricting attention to some particular family D of probability distributions. Then, we interpret an 
interval probability attached to a statement as an assertion that: “There is probability b that the subjective 
probability  of  the  statement,  after  I  have made k more  observations,  will  appear  to  be drawn from a 
distribution with a mean in this interval.”

Then, finally, given this semantics and a logical inference rule, one can ask questions such as: “If each 
of the premises of my inference corresponds to some interval, so that there is probability b that after k more 
observations the distribution governing the premise will appear to have a mean in that interval; then, what 
is an interval so that b of the family of distributions of the conclusion have means lying in that interval?”2 

We may then give this final interval the interpretation that, after k more observations, there is a probability 
b that the conclusion of the inference will appear to lie in this final interval. (Note that, as mentioned above, 
the parameter k essentially “cancels out” during inference, so that one doesn’t need to explicitly account for 
it during most inference operations, so long as one is willing to assume it is the same in the premises and 
the conclusion.)

.
In  essence,  this  strategy  merges  the  idea  of  imprecise  probabilities  with  the  Bayesian concept  of 

credible intervals; thus the name “indefinite probabilities” (“definite” having the meaning of “precise,” but 
also the meaning of “contained within specific boundaries” – Walley’s probabilities are contained within 
specific boundaries, whereas ours are not).

5. Varieties of Uncertain Truth Value

6.

We  have  discussed  above  the  semantic  foundations  of  truth  values  of  the  form  ([L,U],b,k).  Before 
proceeding further to discuss inference with these objects, it is worth pausing to note that, within the PLN 
inference framework, this is one of several forms of truth value object utilized. In general, the forms of 
truth value objects currently utilized in PLN are: 

• IndefiniteTruthValues (as already discussed)
• SimpleTruthValues (to be described below)
• DistributionalTruthValues  (which,  in  their  most  general  form,  involve  maintaining  a  whole 

probability distribution of possible probability distributions attached to a statement)

SimpleTruthValues take two, equivalent forms: 
2 In fact,  this is a  minor oversimplification, because the credibility value  b may be different  for each premise and for the 

conclusion.



•
•
• (s,w),  where  s is  the  mean strength,  the  best  single-number  probability  assignable  to  the 

statement; w is the “weight of evidence”, a number in [0,1] that tells you, qualitatively, how 
much you should believe the strength estimate

• (s,n), where s is the mean strength; n is the “count”, a number > 0 telling you, qualitatively, 
the total amount of evidence that was evaluated in order to assess s

Borrowing  from  Pei  Wang’s  NARS  system  ([11],  [12]), the  weight-of-evidence  and  count  in 

SimpleTruthValues  are  related  via w= n
nk1

,  where  k1 is  the  system-wide  skepticism  parameter. 

Weight-of  evidence  is  essentially  a  normalized  version  of  the  count.  Similarly,  n  and  [L,U]  may  be 
interrelated by a heuristic formula,  n = k1 (1-W)/W where W=U-L is the width of the credible interval. 
More  rigorous  formulas  interrelating  n  and  ([L,U],b,k)  may  be  formulated  if  one  makes  specific 
distributional assumptions (e.g. assuming an underlying Bernoulli process), but these lead to qualitatively 
similar results to the above heuristic formula, and will be discussed in a later publication.

Note also that if [L,U] is of the form [m/(n+k1), (m+k1)/(n+1k)], then k1 is interpretable as the number 
of hypothetical additional pieces of evidence being considered to obtain the mean-estimates in [L,U]. That 
is, in this case the parameter k1 associated with the ([L,U],b) truth value may be interpreted as equal to the 
parameter k used in the definition of indefinite truth values.

As hinted above, however, the above descriptions mask the complexity of the actual truth-value objects 
(except in the SimpleTruthValue case, which actually is simple). In the indefinite probabilities approach, in 
practice, each IndefiniteTruthValue object is also endowed with three additional parameters:

• an  indicator  of  whether  [L,U]  should  be  considered  as  a   symmetric  or  asymmetric  credible 
interval.

• a family of “second-order” distributions, used to govern the second-order plausibilities described 
above.

•
• a family of “first-order” distributions, used to govern the first-order plausibilities described above

•

Combined with these additional parameters,  each truth-value object essentially provides a compact 
representation of a single second-order probability distribution with a particular, complex structure.

7. Inference Using Indefinite Probabilities

8.

8.1.

We now describe the general  process according to which a PLN inference formula is  evaluated using 
indefinite probabilities.  This process contains three basic  steps.  We will  first  present  these steps in an 
abstract way; and then, in the following section, exemplify them in the context of specific probabilistic 



inference formulas corresponding to inference rules like term logic and modus ponens deduction, Bayes’ 
Rule, and so forth. 

In general,  the process is  the same for any inference formula that can be thought of as taking in 
premises labeled with probabilities, and outputting a conclusion labeled with a probability. The examples 
given here will pertain to single inference steps, but the same process may be applied holistically to a series 
of inference steps, or most generally an “inference tree” of inference steps, each building on conclusions of 
prior steps. 

Step One in the indefinite probabilistic inference process is as follows. Given intervals, [L i ,U i ] , of 

mean  premise  probabilities,  we  first  find  a  distribution  from  the  “second-order  distribution  family” 

supported  on  [L1i ,U1i ]É [Li ,U i ] ,  so  that  these  means  have  [L i ,U i ]  as  (100 bi)%  credible 

intervals. The intervals  [L1i ,U1i ]  are either of the form [ mnk , mknk ] , when the “interval-type” 

parameter associated with the premise is asymmetric; or are such that both of the intervals [L1i , L i ]  and 

[U i ,U1i ]  each have probability mass bi /2, when interval-type is symmetric. 

Next, in Step Two, we use Monte-Carlo methods on the set of premise truth-values to generate final 
distribution(s)  of  probabilities  as  follows.  For  each  premise,  we  randomly  select  n1 values  from  the 
(“second-order”) distribution found in step 1. These n1 values provide the values for the means for our first-
order distributions. For each of our  n1 first-order distributions, we select  n2 values to represent the first-
order distribution. We apply the applicable inference rule (or tree of inference rules) to each of the n2 values 
for each first-order distribution to generate the final distribution of first-order distributions of probabilities. 

We calculate the mean of each distribution and then – in Step Three of the overall process -- find a (100

bi)% credible interval, [L f ,U f ] , for this distribution of means.

When desired,  we can easily translate our final  interval  of probabilities,  [L f ,U f ] ,  into a final, 

 s f , n f , b f   triple of strength, count, and credibility levels, as outlined above.

Getting back to the “Bayesianism versus frequentism” issues raised in the previous section, if  one 
wished  to  avoid  the  heuristic  assumption  of  decomposability  regarding  the  first-order  plausibilities 
involved in the premises, one would replace the first-order distributions assumed in Step Two with Dirac 
delta  functions,  meaning  that  no  variation  around  the  mean  of  each  premise  plausibility  would  be 
incorporated. This would also yield a generally acceptable approach, but would result in overall narrower 
conclusion probability intervals, and we believe would in most cases represent a step away from realism 
and robustness.

8.1.1.The Procedure in More Detail

We now run through the above three steps in more mathematical detail.



In Step One of the above procedure, we assume that the mean strength values follow some given initial 

probability distribution g i  s   with support on the interval [L1i ,U1i ] . If the interval-type is specified as 

asymmetric, we perform a search until we find values k2 so that ∫Li
U i g i s  ds=b , where Li=

mi
n ik2

 

and U i=
mik2
nik2

. If the interval-type is symmetric, we first ensure, via parameters, that each first-order 

distribution is symmetric about its mean si, set Li=s i−d , U i=s id  and perform a search for d to 

ensure that ∫Li
U i g i s  ds=b . In either case, each of the intervals [L i ,U i ]  will be a (100 b)% credible 

interval for the distribution

 

gi s( ) .

We note that we may be able to obtain the appropriate credible intervals for the distributions

 

gi s( )  only 
for certain values of b. For this reason, we say that a value b is truth-value-consistent whenever it is feasible 

to find (100 b)% credible intervals of the appropriate type.

In Step Two of the above procedure, we create a family of distributions, drawn from a pre-specified set 

of distributional forms, and with means in the intervals [L i ,U i ] . We next apply Monte Carlo search to 

form a set of randomly chosen “premise probability tuples”. Each tuple is formed via selecting, for each 
premise of the inference rule, a series of points drawn at random from randomly chosen distributions in the 
family. For each randomly chosen premise probability tuple, the inference rule is executed. And then, in 
Step Three, to get a probability value s f  for the conclusion, we take the mean of this distribution. Also, 

we take a credible interval from this final distribution, using a pre-specified credibility level b f , to obtain 

an interval for the conclusion [L f ,U f ] .

When the interval-type parameter is set to asymmetric, to find the final count value  n f , note that 
m=ns. Then, since the skepticism parameter  k1 is a system parameter, we need only solve the following 
equation for the count n f :

∫ n f s f
n fk1

n f s fk1

n
f
k1

g f  s ds=b

Set of premise TruthSet of premise Truth
ValuesValues

([L,U],b)([L,U],b)

One to One
Correspondence

Inference Rule
or

Inference Rule Tree

Set of strengths, counts,Set of strengths, counts,
and credibility levelsand credibility levels

(s,n,b)(s,n,b)

Conclusion Truth ValuesConclusion Truth Values
([L,U],b)([L,U],b)

Set of strengths, counts,Set of strengths, counts,
and credibility levelsand credibility levels

(s,n,b)(s,n,b)

Diagram 1

One to One
Correspondence



For symmetric interval-types, we use the heuristic n = c(1-W)/W where W, the interval width, is W=Uf  

- Lf.

9. A Few Detailed Examples

10.

In this section we report some example results obtained from applying the indefinite probabilities approach 
in the context of simple inference rules, using both symmetric and asymmetric interval-types.

Comparisons of results on various inference rules indicated considerably superior results in all cases 
when using the symmetric intervals. As a result, we will report results for five inference rules using the 
symmetric rules; while we will report the results using the asymmetric approach for only one example 
(term logic deduction).

10.1.

10.2.A Detailed Bet-Binominal Example for Bayes’ Rule

First we will treat Bayes’ Rule, a paradigm example of an uncertain inference rule -- which however is 
somewhat unrepresentative of inference rules utilized in PLN, due to its non-heuristic, exactly probabilistic 
nature.

The beta-binomial model is commonly used in Bayesian inference, partially due to the conjugacy of 
the beta and binomial distributions. In the context  of Bayes’ rule,  Walley develops an imprecise beta-
binomial model (IBB) as a special case of an imprecise Dirichlet model (IDM). We illustrate our indefinite 
probabilities approach as applied to Bayes’ rule, under the same assumptions as these other approaches.

We treat here the standard form for Bayes’ rule: P A∣B = P  A  P B∣A 
P B 

.

We consider the following simple example problem. Suppose we have 100 gerbils of unknown color; 
10 gerbils of known color, 5 of which are blue; and 100 rats of known color, 10 of which are blue. We wish 
to estimate the probability of a randomly chosen blue rodent being a gerbil.

The first step, in our approach, is to obtain initial probability intervals. We obtain the following sets of 
initial  probabilities  shown in Tables  1-3,  corresponding  to  credibility  levels  b of  0.95,  and 0.982593, 
respectively.

Table 1. Intervals for Crediblity Level 0.90

EVENT [L, U]  [L1, U1]



G [10
21
,
12
21 ] =[.476190, 

0.571429]

[0.419724, 0.627895]

R [ 8
21
,
12
21 ]  =[0.380952, 

0.571429]

 [0.26802, 0.684361]

B|G [0.3, 0.7]  [0.0628418, 0.937158]

B|R [0.06, 0.14]  [0.0125683, 0.187432]

Table 2. Intervals for Crediblity Level 0.95

EVENT [L, U]  [L1, U1]

G [10
21
,
12
21 ] =[.476190, 

0.571429]

[0.434369, 0.61325]

R [ 8
21
,
12
21 ]  =[0.380952, 

0.571429]

 [0.29731, 0.655071]

B|G [0.3, 0.7]  [0.124352, 0.875649]

B|R [0.06, 0.14]  [0.0248703, 0.17513]

We  begin  our  Monte  Carlo  step  by  generating n1  random  strength  values,  chosen  from  Beta 

distributions proportional to x ks−1 1− x k  1−s −1  with mean values of s=11
21

 for P(G); s=10
21

 for 

P(R);  s=1
2

 for P B∣G  ; and s= 1
10

 for  P B∣R  , and with support on [L1, U1]. Each of these 

strength values then serve, in turn, as parameters of standard Beta distributions. We generate a random 
sample of n2  points from each of these standard Beta distributions.

We next apply Bayes’ Theorem to each of of the n1n2  quadruples of points, generating n1  sets of 
sampled distributions. Averaging across each distribution then gives a distribution of final mean strength 
values. Finally, we transform our final distribution of mean strength values back to (s, n, b) triples.

10.2.1.Experimental Results

10.2.2.

Results of our Bayes’ Rule experiments are summarized in Tables 3-6.



Table 3. Final Probability Intervals for P(G|B) using initial b-values of 0.90

CREDIBILITY LEVEL INTERVAL

0.90 [0.715577, 0.911182]

0.95 [0.686269, 0.924651]

Table 4. Final Average Strength and Count Values using initial b-values of 0.90

CREDIBILITY LEVEL STRENGTH COUNT via 
n=k(1-w)/w

0.90 0.832429 41.1234

0.95 0.832429 31.9495

Table 5. Final Probability Intervals for P(G|B) using initial b-values of 0.95

CREDIBILITY LEVEL INTERVAL

0.90 [0.754499, 0.896276]

0.95 [0.744368, 0.907436]

Table 6. Final Average Strength and Count Values using initial b-values of 0.95

CREDIBILITY LEVEL STRENGTH COUNT

0.90 0.835557 60.5334

0.95 0.835557 51.3239

10.2.3.

10.2.4.Comparison to Standard Approaches

It  is  not  hard to  see,  using the above simple test  example as  a  guide,  that  our  indefinite  probabilities 
approach generalizes both classical Bayesian inference and Walley’s IBB model. First note that single 
distributions  can  be  modeled  as  envelopes  of  distributions  with  parameters  chosen  from  uniform 
distributions. If we model P(B) as a uniform distribution; P(A) as a single beta distribution and P B∣A   
as a single binomial distribution, then our method reduces to usual Bayesian inference. If, on the other 
hand, we model P(B) as a uniform distribution; P(A) as an envelope of beta distributions; and P B∣A   
as an envelope of binomial distributions, then our envelope-approach reduces to Walley’s IBB model. Our 



envelope-based thus approach allows us to model  P(B) by any given family of distributions, rather than 
restricting us to a uniform distribution. This allows for more flexibility in accounting for known, as well as 
unknown, quantities.

To  get  a  quantitative  comparison  of  our  approach  with  these  others,  we  modeled  the  above test 
example using standard Bayesian inference as well as Walley’s IBB model. To carry out standard Bayesian 
analysis,  we note that  given that  there are 100 gerbils  whose blueness has not been observed, we are 
dealing with 2100  “possible worlds” (i.e. possible assignments of blue/non-blue to each gerbil). Each of 
these possible worlds has 110 gerbils in it, at least 5 of which are blue, and at least 5 of which are non-blue.

For each possible world w, we can calculate the probability that drawing 10 gerbils from the population 
of 110 existing in world W yields an observation of 5 blue gerbils and 5 non-blue gerbils. This probability 
may be written P D∣H  , where  D is the observed data (5 blue and 5 non-blue gerbils) and  H is the 
hypothesis (the possible world W).

Applying Bayes’ rule, we have  P H∣D = P D∣H P H 
P D 

. Assuming that  P H   is constant 

across all possible worlds, we find that P H∣D  is proportional to  P D∣H  . Given this distribution 
for the possible values of the number of blue gerbils, one then obtains a distribution of possible values 
P gerbil∣blue  ,  and  calculates  a  credible  interval.  The  results  of  this  Bayesian  approach  are 

summarized in Table 7.

Table 7. Final Probability Intervals for P(G|B)

CREDIBILITY LEVEL INTERVAL

0.90 [0.8245614035, 0.8630136986]

0.95 [0.8214285714, 0.8648648649]

We  also  applied  Walley’s  IBB  model  to  our  example,  obtaining  (with  k=10)  the  interval 

[2323
2886

,
2453
2886 ] , or approximately [0.43007, 0.88465]. In comparison, the hybrid method succeeds at 

maintaining narrower intervals, albeit at some loss of credibility.

With a k-value of 1, on the other hand, Walley’s approach yields an interval of [0.727811, 0.804734]. 
This interval may seem surprising since it does not include the average given by Bayes’ theorem. However, 
it is sensible given the logic of Walley’s approach. In this approach, we assume no prior knowledge of P(G) 
and we have 10 new data points in support of the proposition that P G∣B   is 55/65. So we assume beta 
distribution priors with s=0 and s=1 for the "endpoints" of P(G) and use n=10 and p=11/13 for the binomial 
distribution for P G∣B  .

The density function thus has the form:

f  x =
xks 1−x k 1−s  xnp 1− x n 1−p 

∫0

1
xks 1− x k  1− s 

xnp 1−x n 1−p 
dx

Now for s=1 and value of the learning parameter k=1, the system with no prior knowledge starts with 
the  interval  [1/3,2/3].  With  only  10  data  points  in  support  of  p=11/13  and  prior  assumption  of  no 
knowledge or prior p=1/2, Walley’s method is (correctly according to its own logic) reluctant to move 
quickly in support of p=11/13, without making larger intervals via larger k-values. 



10.3.

10.4.A Detailed Beta-Binominal Example for Deduction

Next we consider another inference rule, term logic deduction, which is more interesting than Bayes’ Rule 
in  that  it  combines  probability  theory  with  an  heuristic  independence  assumption.  The  independence-
assumption-based PLN deduction rule, as derived in ([13]), has the following form, for “consistent” sets A, 
B, and C3: 

sAC=s AB sBC
1−sAB   sC−sB sBC 

1−sB
where

sAC=P C∣A = P AÇC 
P A 

assuming  the  given  data sAB=P B∣A  ,  sBC=P C∣B  ,  sA=P A  ,  sB=P B  ,  and 

sC=P C  . 

Our example for the deduction rule will consist of the following premise truth-values. In the table, we 
provide the values for [L, U], and b, as well as the values corresponding to the mean s and count n.

Table 8. Premise Truth-Values Used for Deduction with Symmetric Intervals

Premise s [L,U] [L1, U1]

A 11/23 [10/23, 12/23]≈[0.434783, 0.521739] [0.383226, 0.573295]

B 0.45 [0.44, 0.46] [0.428142, 0.471858]

AB 0.413043 [0.313043, 0.513043] [0.194464, 0.631623]

BC 8/15 [7/15, 9/15] ≈ [0.466666, 0.6] [0.387614, 0.679053]

We now vary the premise truth-value for variable C, keeping the mean sC constant, in order to study 
changes in the conclusion count as the premise width [L,U] varies. In the table below,  b = 0.9 for both 
premise and conclusion, and  sC  = 0.59. The final count  nAC is found via the heuristic formula  nAC = k(1-
W)/W. 

Table 9. Deduction Rule Results Using Symmetic Intervals

Premise C Conclusion AC

[L,U] [L1, U1] sAC [L,U] nAC

3 Consistency here is defined in terms of a set of inequalities interrelating the premise probabilities, which are equivalent to the 
requirement that the conclusion according to the formula given here must lie in the interval [0,1].



[0.44, 0.74] [0.262131, 0.917869] 0.575514 [0.434879, 0.68669] 24.0004

[0.49, 0.69] [0.371421, 0.808579] 0.571527 [0.478815, 0.650717] 48.1727

[0.54, 0.64] [0.48071, 0.69929] 0.571989 [0.52381, 0.612715] 102.478

[0.58, 0.60] [0.568142, 0.611858] 0.571885 [0.4125, 0.6756] 197.892

For comparison of using symmetric intervals versus asymmetric, we also tried identical premises for 
the means using the asymmetric interval approach. In so doing, the premise intervals [L, U] and [L1, U1] 
are different as shown in the table below, using b = 0.9 as before

Table 10. Premise Truth-Values Used for Deduction with Asymmetric Intervals

Premise s [L,U] [L1, U1]

A 11/23 [0.44, 0.52] [0.403229, 0.560114]

B 0.45 [0.44, 0.462222] [0.42818, 0.476669]

AB 0.413043 [0.38, 0.46] [0.3412, 0.515136]

BC 8/15 [0.48, 0.58] [0.416848, 0.635258]

Table 11. Deduction Rule Results Using Symmetic Intervals

Premise C Conclusion AC

[L,U] [L1, U1] sAC [L,U] nAC

[0.40, 0.722034] [0.177061, 0.876957] 0.576418 [0.448325, 0.670547] 35

[0.45, 0.687288] [0.28573, 0.801442] 0.577455 [0.461964, 0.661964] 40

[0.50, 0.652543] [0.394397, 0.725928] 0.572711 [0.498333, 0.628203] 67

[0.55, 0.617796] [0.526655, 0.600729] 0.568787 [0.4125, 0.6756] 125

10.4.1.Modus Ponens

Another important inference rule is Modus Ponens, which is the form of deduction standard in predicate 
logic rather than term logic.  Term logic deduction as described above is  preferable from an uncertain 
inference  perspective,  because  it  generally  supports  more  certain  conclusions.  However,  the  indefinite 
probabilities approach can also handle Modus Ponens, it simply tends to assign conclusions fairly wide 
interval truth-values.

The general form of Modus Ponens is:

A

A  B
| -
B



To derive an inference formula for this rule, we reason as follows.  Given that we know P(A) and P(B | 
A), we know nothing about P(B | ¬A). Hence P(B) lies in the interval [Q,R] = [ P(A and B), 1- (P(A) - P(A 
and B)) ] = [ P(B|A) P(A), 1 - P(A) + P(B|A)P(A) ].

For the Modus Ponens experiment reported here we used the following premises: For A, we used 

 [ L ,U ] , b =[10
23
,
12
23 ] ,0.9  ; and for A  B, we used ([L,U],b)=([0.313043,0.513043],0.9). We 

proceed as usual, choosing distributions of distributions for both P(A) and P(B | A). Combining these we 
find a distribution of distributions [Q,R] as defined above. Once again, by calculating means, we end up 
with a distribution of [Q,R] intervals. Finally, we find an interval [L,U] that contains (100⋅b)% of the final 
[Q,R] intervals. In our example, our final [L,U] interval at the b = 0.9 level is  [0.181154, 0.736029].

10.5.Conjunction

10.6.

Next, the AND rule in PLN uses a very simple heuristic probabilistic logic formula:

 P(A AND B)=P(A)P(B)

To  exemplify  this,  we  describe  an  experiment  consisting  of  assuming  a  truth-value  of 
([L,U],b)=([0.4,0.5],0.9) for A and a truth-value of ([L,U],b)=([0.2,0.3],0.9).

The conclusion truth-value for P(A AND B) then becomes. ([L,U],b)=([0,794882,0.123946],0.9)

10.7.Revision

The final inference rule we study in this paper, the “revision” rule, is used to combine different estimates of 
the truth-value of the same statement. Very sophisticated approaches to belief revision are possible within 
the indefinite probabilities approach; for instance we are currently exploring the possibility of integrating 
entropy optimization heuristics as described in ([14]) into PLN for this purpose ([15]). At present, however, 
we are using a relatively simple heuristic approach for revising truth-values. This approach seems to be 
effective in practice, although it lacks the theoretical motivation of the entropy minimization approach.

Suppose D1 is the second-order distribution for premise 1 and D2 is the second-order distribution for 
D2. Suppose further that n1 is the count for premise 1 and n2 is the count for premise 2. Let w1 = n1/(n1+n2) 
and w2  = n2/(n1+n2) and then form the conclusion distribution D = w1 D1 + w2D2. We then generate our 
[L,U],b truth-value as usual.

As an example, consider the revision of the following two truth-values ([0.1, 0.2], 0.9) and ([0.3, 0.7], 
0.9). Estimating the counts using n = k1(1-W)/W gives count values of 90 and 15 respectively. Fusing the 
two truth-values yields ([0.19136, 0.222344], 0.9) with a resulting count value of 79.1315.

11. Conclusions

Using credible intervals of probability distribution envelopes to model second-order plausibiltiies, we have 
generalized both Walley’s imprecise probabilities model and the standard Bayesian model into a novel 
“indefinite  probabilities”  approach.  On Bayes’  rule,  the  results  obtained  via  this  method fall  squarely 



between standard  Bayesian  models  and  Walley’s  interval  model,  providing  more  general  results  than 
Bayesian inference, while avoiding the quick degeneration to worst-case bounds inherent with imprecise 
probabilities. On more heuristic PLN inference rules, the indefinite probability approach gives plausible 
results for all cases attempted, as exemplified by the handful of examples presented in detail here.

Comparing the merits of the indefinite probability approach with those of other approaches such as 
Walley’s imprecise probabilities,  the standard Bayesian approach, or NARS is difficult,  for conceptual 
rather than practical or mathematical reasons. Each of these approaches proceeds from subtly different 
theoretical  assumptions.  To  a  great  extent,  each  one  is  the  correct  approach  according  to  its  own 
assumptions; and the question then becomes which assumptions are most useful in the context of pragmatic 
uncertain inferences. In other words: the ultimate justification of a method of quantifying uncertainty, from 
an AGI or narrow-AI perspective, lies in the quality of the inferential conclusions that can be obtained 
using it in practice.

However,  the drawing of such conclusions is  not  a matter of  uncertainty quantification alone – it 
requires an inference engine (such as PLN), embedded in a systematic framework for feeding appropriate 
data and problems to the inference engine (such as the Novamente AI Engine). And so, the assessment of 
indefinite probabilities from this perspective goes far beyond the scope of this paper. What we have done 
here is to present some initial, suggestive evidence that the indefinite probabilities approach may be useful 
for artificial general intelligence systems – firstly because it rests on a sound conceptual and semantic 
foundation;  and  secondly  because  when  applied  in  the  context  of  a  variety  of  PLN  inference  rules 
(representing  modes  of  inference  hypothesized  to  be  central  to  AGI),  it  consistently  gives  intuitively 
plausible results, rather than giving results that intuitively seem too indefinite (like the intervals obtained 
from Walley’s approach, which too rapidly approach [0,1] after inference), or giving results that fail to 
account fully for premise uncertainty (which is the main issue with the standard, Bayesian or frequentist, 
first-order-probability approach).
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