
Artificial Brains. An Inexpensive Method 
for Accelerating the Evolution of Neural 
Network Modules for Building Artificial 

Brains

Hugo de GARISa, Liu RUIa, Huang DIb, Hu JINGc

a Brain Builder Group, Key State Laboratory of Software Engineering, 
Wuhan University, Wuhan, Hubei Province, CHINA.

b Evolvable Hardware Group, School of Computer Science, 
China University of Geosciences, Wuhan, Hubei Province, CHINA.

c Computer Science Department, Utah State University, Logan, Utah, USA.

profhugodegaris@yahoo.com, pnicholas@vip.sina.com, 
aaron192032@gmail.com, jinghu78@gmail.com

Abstract. This chapter  shows how a “Celoxica” electronic board (containing a 
Xilinx Virtex II  FPGA chip) can be used to accelerate the evolution of neural 
network modules that are to be evolved quickly enough, so that building artificial 
brains that consist of 10,000s of interconnected modules, can be made practical. 
We hope that  this  work will  prove to  be  an important  stepping stone  towards 
making the new field of brain building both practical and cheap enough for many 
research groups to start building their own artificial brains.

Introduction

The  primary  research  goal  of  the  first  author  is  to  build  artificial  brains [1].  An 
artificial  brain  is  defined  to  be  a  collection  of  interconnected  neural  net  modules 
(10,000–50,000  of  them),  each  of  which  is  evolved  quickly  in  special  electronic 
hardware,  downloaded  into  a  PC,  and  interconnected  according  to  the  designs  of 
human BAs (brain architects). The neural signaling of the artificial brain (A-Brain) is 
performed by the PC in real time (defined to be 25Hz per neuron). Such artificial brains 
can be used for many purposes, e.g. controlling the behaviors of autonomous robots.

There is at least one major problem with the above vision, and that is the slow 
evolution time of individual neural network modules. Typically, it can take many hours 
to even half a day to evolve a neural net module on a PC. Obviously, evolving several 
tens of thousands of such modules using only a PC to build an artificial brain will not 
be practical. Before such A-Brains can be built with this approach, it will be necessary 
to find ways to accelerate the evolution of such a large number of neural net (NN) 
modules.  At the present  time, the authors are pursuing the following approach. We 
perform the NN module evolution in hardware, to achieve a speedup factor (relative to 
ordinary PC evolution speeds) of about 10-50 (the topic of this chapter).
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We use a Celoxica company’s FPGA electronic board (containing a 3 megagate 
FPGA,  i.e.  Xilinx’s  Virtex  II  chip)  to  accelerate  the  evolution  of  neural  network 
modules.  One  of  the  aims  of  this  chapter  is  to  report  on  the  measurement  of  the 
speedup factor  when using this  Celoxica  board  to  evolve  neural  network  modules, 
compared to using a PC, as performed on the same evolution task. 

The first experiment reported on in this chapter involved the evolution of a fairly 
simple neural net. This task was chosen to serve as the basis for the above comparison 
and is described in detail in section 3. The task itself was evolved 10 times and an 
average evolution time calculated. The evolutionary task used two different approaches 
and technologies, namely a) a standard genetic algorithm on a PC, and b) using the 
Celoxica board, and the high level language “Handel-C” [2] to program the evolution. 
Once the two execution time measurements were obtained, the speedup factor could be 
calculated. Final results are shown in section 7.

1. The Evolution of Neural Network Modules

This section gives a brief description of the approach we use normally to evolve our 
neural network (NN) modules, to be used as components in building artificial brains. 
We use a particular neural net model called“GenNet” [3]. A GenNet neural network 
consists of N (typically N = 12-20) fully connected artificial neurons. Each of the N2 

connections has a weight, represented as a signed binary fraction, with p (typically p = 
6-10) bits per weight. The bit string chromosome used to evolve the N2 weights will 
have a length of N2*(p+1) bits.  Each neuron “j” receives input signals from the N 
neurons (i.e. including a signal from itself). Each input signal Sij is multiplied by the 
corresponding connection weight Wij and summed. To this sum is added an external 
signal value Ej. This final sum is called the activation signal Aj to the neuron “j”.

Aj=∑
i=1

N

WijSijEj

This activation value is fed into a sigmoid function g that acts as a “squashing” 
function, limiting the output value Sj to have a maximum absolute value of 1.0

Sj=g  Aj = Aj
∣Aj∣1 .0

2. The Evolutionary Task

In order to compare the evolution times for the two different approaches (i.e. using an 
ordinary GA on a PC, and using the Celoxica board), the same fairly simple neural net 
task was evolved, namely to output a constant signal value of 0.8 over 100 clock ticks. 

A single neuron of the network was randomly chosen to be the output neuron for 
the whole network. Its  output signal S(t) was compared to a target  (desired) signal 
value for each of T (=100) clock ticks. The fitness function was defined as follows.



f = 1

∑
t=1

100

T  t −S  t  2

In our evolutionary task, the target value T(t) is constant, i.e. T(t) = 0.8 
In order to compare the evolution times of the above task,  a  concrete “cutoff” 

fitness  value  was  used.  This  was  found empirically,  by  evolving  the  standard  GA 
version to what we felt was a reasonably “saturated” fitness value. This fitness value 
was then used in the Celoxica evolution experiments. Once the evolution, as specified 
by the Handel-C program executed on the Celoxica board reached the same fitness 
value, its evolutiontime (in seconds) was recorded. The task was evolved 10 times and 
the average value calculated.

3. Our Evolutionary Approach

The approach we pursue in this chapter to accelerating the evolution time of neural 
network modules is to perform the evolution in special hardware, e.g. using a Celoxica 
board [4]. In this approach, a high level language, called Handel-C [Handel-C 2006] is 
used, whose code is hardware compiled (silicon compiled) into the FPGA (Xilinx’s 
Virtex II chip). We continue to work on this approach. In this first experiment, we have 
achieved an 8-fold speedup up compared with a standard GA algorithm on an ordinary 
PC. By using pipelining techniques and a larger FPGA, we hope to achieve a speedup 
factor  of  up  to  50  times  for  the  same  task.  (As  will  be  seen  in  our  more  recent 
experiments, by evolving a smaller neural net, we were actually able to achieve this 50-
fold speedup. See section 9).

In  order  to  calculate  the  speedup  factor  of  the  Celoxica  board  relative  to  an 
ordinary genetic algorithm on a PC, the same evolutionary task specified in section 3 
was used. The next section gives a brief description of the ordinary genetic algorithm. 
Section  6  described  briefly  the  characteristics  of  the  Celoxica  board.  Section  7 
introduces  the high level  language Handel-C,  used to  program the Celoxica board. 
Section 8 presents the result of the comparison. Section 9 presents the results of our 
more recent evolutionary experiments on smaller neural nets. Section 10 presents ideas 
for future work, and section 11 summarizes.

4. Description of the Standard Genetic Algorithm

The  standard  GA  (Genetic  Algorithm)  used  to  help  calculate  the  speed  up  factor 
consisted of the following steps.

a) Randomly generate 100 bit string chromosomes of length N2*(p+1). Over the 
years we have used values, N = 16, p = 8, so our chromosomes (bit strings) were 2304 
bits long.

b) Decode the chromosome into the N2 signed binary fraction weights, and build 
the neural network for each chromosome.

c) Perform the fitness measurements for the task concerned. For details, see the 
next section.

d) Rank the fitnesses from best to worst.



e) Throw out the inferior half of the chromosomes. Replace with the superior half.
f) Mutate all the chromosomes except the top one. No crossover was performed in 

these experiments. 
g) Go to b), until the evolution saturates at the target (desired) fitness value (of the 

elite chromosome).

5. The Celoxica Board

The  aims  of  lowering  the  price  of  high-speed  evolution,  and  achieving  higher 
performance in evolving hardware led us to choose to use FPGAs (Field Programmable 
Gate Arrays). FPGAs are specially made digital semiconductor circuits that are often 
used for prototyping. The several million logic gates in modern FPGAs (e.g. Xilinx’s 
Virtex II chip) make it is possible to have multiple copies of the same electronic sub 
circuit running simultaneously on different areas of the FPGA. This parallelism is very 
useful for a genetic algorithm. It allows the program to process the most time costly 
weight calculations in parallel, and this can speed up the overall evolution by a factor 
of tens to hundred of times. 

We chose the Celoxica FPGA board for our project. “Celoxica” is the name of a 
UK company [4].  Our Celoxica board (an RC203) cost  about  $1500.  With such a 
board, a design engineer is able to program electrical connections on site for a specific 
application, without paying thousands of dollars to have the chip manufactured in mass 
quantities. [4]. 

The RC Series Platforms of Celoxica are complete solutions for FPGA design and 
ASIC/SoC (system on a chip) verification and prototyping. The boards combine very 
high-density FPGA devices with soft-core & hard-core processors and an extensive 
array  of  peripherals.  They  provide  easy  access  to  programmable  SoC’s  from  the 
Electronic System Level (ESL) and consistently deliver fast and efficient access to very 
high-density reconfigurable silicon.

                              
Fig.1. The Celoxica Board with central FPGA

We are currently using an RC203 FPGA board in our experiment. It’s a desktop 
platform for the evaluation and development of high performance applications. The 



main FPGA chip is a Xilinx Virtex II that can be configured without using an HDL 
(Hardware Description Language). Instead it uses a much easier high-level “C-like” 
language called “Handel-C” (after Handel the composer). This language is very similar 
to ordinary C (i.e. with approximately an 80% overlap between the two languages), 
with a few extra features, particularly those involved with specifying which functions 
ought to be executed in parallel.

With several million logic gates in the Virtex FPGA chip, it is possible to have 
multiple  copies  of  the  same  electronic  (sub)  circuit  running  simultaneously.  This 
parallelism allows a genetic algorithm for example to run much faster than on a PC. A 
Celoxica board attaches to a PC, with two-way communication, so that instructions to 
the board come from the PC, and results coming from the board can be displayed on 
the PC.

At the time of writing (October 2006), experiments are continuing to determine 
how much faster the evolution of a neural net module on the Celoxica board can be, 
compared to using a software approach in a PC. The value of this speedup factor is 
critical to  this  whole  approach.  Colleagues  in  the  ECE  (Electronic  and  Computer 
Engineering) departments at our respective universities, who are experienced in using 
Celoxica boards, estimate that the speed up factors will range between 10s and 100s of 
times. If these speedup factors can be achieved, it  then becomes practical to evolve 
large numbers of neural net modules in a reasonable time, and connect them together to 
build artificial brains inside a PC.

6. The High Level Language “Handel-C”

Handel-C is Celoxica’s high-level language used to configure the Virtex-II FPGA chip 
on  the  Celoxica  board.  This  language  is  mostly  ordinary  C,  with  a  few  parallel 
programming features, e.g. the “par” statement, that takes the following general form:

par
{
    statement A;
    statement B;
    statement C;
}

The above Handel-C statement will cause all the statements (i.e. A, B, C) in the par 
block to be executed at once, by having each statement be configured, with its own 
separate  set  of  logic  gates  in  the  Virtex-II  chip  on  the  Celoxica  board.  By  using 
multiple copies of neural net modules, i.e. multiple electronic copies, each with its own 
area of programmable silicon, evolving in parallel, it is possible to speed up the overall 
evolution time, compared to ordinary software based PC evolution. In the following, 
we introduce the features of the Handle-C language.



Handel-C Programs

Handel-C uses much of the syntax of  conventional  C with the addition of  inherent 
parallelism. You can write sequential programs in Handel-C, but to gain maximum 
benefit in performance from the target hardware you must use its parallel constructs.

Handel-C provides constructs to control the flow of a program. For example, code 
can be executed conditionally depending on the value of some expression, or a block of 
code can be repeated a number of times using a loop construct.

Parallel Programs

The target of the Handel-C compiler is low-level hardware. This means that you get 
massive performance benefits by using parallelism. It is essential for writing efficient 
programs to instruct the compiler to build hardware to execute statements in parallel.

Handel-C parallelism is true parallelism, not the time-sliced parallelism familiar 
from  general-purpose  computers.  When  instructed  to  execute  two  instructions  in 
parallel, those two instructions will be executed at exactly the same instant in time by 
two separate pieces of hardware.

When a  parallel  block is  encountered,  execution flow splits  at  the start  of  the 
parallel block and each branch of the block executes simultaneously. Execution flow 
then re-joins at the end of the block when all branches have completed. Any branches 
that complete early are forced to wait for the slowest branch before continuing.

Channel Communication

Channels provide a link between parallel branches. One parallel branch outputs data 
onto the  channel  and the  other  branch reads data from the  channel.  Channels  also 
provide  synchronization  so  that  a  transmission  can  only  be  completed  when  both 
parties are ready for it. If the transmitter is not ready for the communication then the 
receiver must wait for it to become ready and vice versa. 

Scope and variable sharing

The scope of declarations is based around code blocks. A code block is denoted with 
{...} .This means that:

• Global variables must be declared outside all code blocks.
• An identifier is in scope within a code block and any sub-blocks of that block. 
• The scope of the variables is illustrated below:

int w;
void main(void)
{

int x;
{

int y;



}
{

int z;
}

}

Since parallel constructs are simply code blocks, variables can be in scope in two 
parallel branches of code. This can lead to resource conflicts if the variable is written to 
simultaneously by more than one of the branches. Handel-C states that a single variable 
must not be written to by more than one parallel branch but may be read from by 
several parallel branches.

If you wish to write to the same variable from several processes, the correct way to 
do so is by using channels that are read from in a single process. This process can use a 
“prialt”  statement  to  select  which  channel  is  ready  to  be  read  from first,  and  that 
channel is the only one that will be allowed to write to the variable.

while(1)
prialt
{
case chan1 ? y:
break;
case chan2 ? y:
break
case chan3 ? y:
break;
}

In this  case,  three separate  processes  can attempt to  change the value of  y  by 
sending  data  down  the  channels,  chan1,  chan2  and  chan3.  y  will  be  changed  by 
whichever process sends the data first.

Handel-C uses much of the syntax of conventional C with the addition of inherent 
parallelism. You can write sequential programs in Handel-C, but to gain maximum 
benefit in performance from the target hardware you must use its parallel constructs. 
These may be new to some users. If you are familiar with conventional C you will 
recognize nearly all the other features.

7. Experimental Results

Evolving Neural Network Modules on a PC and on the Celoxica Board

The aim of the experiment described in this section is to evolve a “GenNet”, i.e. a 
Genetically Programmed Neural Net that outputs a desired signal. The experiment was 
conducted both on a PC and on the Celoxica board. Based on the two evolution times 
of the GenNet using the two methods, a comparison was made to see how great a 
speed-up of the evolution can be achieved by using the Celoxica Board compared to 
using a software based evolution on the PC. The GenNet evolution program that was 
run  on  the  PC was  written  in  the  “C” language,  whereas  the  program run  on  the 
Celoxica board was written using the “Handel-C” language. 



Handel-C is a C like language that can program the hardware, whereas C language 
is used to program the PC. The gate-level netlist output of Celoxica’s “DK” (Designer 
Kit) software contains basic gates: OR, XOR, NOT and AND. The FPGA board is 
made of LookUp Tables (LUT, with 4 inputs and 1 output), flip-flops (FF) and other 
components. The output of the DK, which is the bit file, is downloaded to the board to 
configure its components. Technology mapping is the process of packing gates into 
these components.  This is  very different  from traditional  programming of  a  PC. A 
program in  a  PC is  stored  in  memory.  At  each  clock  tick  the  CPU will  fetch  an 
instruction code and execute it, then fetch another code, etc. The program on the board 
is just a set of LUTs, so the execution of the program is at electronic speeds.  

There are a few problems when coding the GenNet using Handel-C. Doing real 
number calculations is not as easy as in C. There is no variable type such as float, 
double  etc  in  Handel-C.  The  fitness  calculation,  decoding  of  the chromosome into 
weights and chromosome fitness comparison all need real number calculators. Handel-
C  does  provide  a  floating-point  library  and  a  fixed-point  library.  Float-point 
calculations will generate LUTs of great depth, which means longer propagation times, 
and slower running times. Fixed-point library calculations are preferred here because 
each real number variable will be represented as a sequence of bits of specified length. 
The first part of the bits will be interpreted as integers, and the second part will be 
interpreted as decimals. There are signed and unsigned fixed-point variables, while the 
signed  fixed-point  uses  2’s  complement  representation.  Attention must  be  paid too 
when using fixed-point library calculations. Using too many bits in each variable will 
increase the number of LUTs, while too few bits in each variable will decrease the 
precision of the calculation.

Handel-C has many features that are suitable for evolutionary computation. Firstly, 
the  variable  in  Handel-C  can  be  of  any  length.   Handel-C  also  provides  bit-wise 
operations.  Thus using Handel-C to  code chromosomes introduces  great  flexibility. 
Secondly,  the  “par” block provides  parallelism,  which reduces  the running time of 
decoding each chromosome and the fitness calculation. Thirdly, the program is a set of 
LUTs on the  board,  so the  running time is  at  electronic speeds.  Fourthly,  pipeline 
techniques can be applied to increase the throughput of some blocks of code.

The Handel-C program is tested and simulated in the PC. It is then placed and 
routed using Xilinx’s  ISE 7.1.  Our  Celoxica board is  a  Xilinx Virtex RC203.  The 
GenNet program in C was run on a PC with a 1.69 GHZ Centrino CPU, and 1 GB of 
memory.

The program was run 10 times each on the board and the PC. Evolution time of 
each test was recorded. The average evolution time on the PC is 57.4 seconds, while 
the average evolution time on Celoxica  board is  7.1  seconds.  The speedup of  the 
evolution time on the FPGA board is 8.1 times faster than on the PC. 

This is a great improvement compared with the evolution time on a PC. Although a 
great speedup is achieved, there are many possible improvements to the current method 
that  can further  increase the evolution speed on the  board.  The  experiment  on the 
current board has some limitations. If a larger and newer version of the board (e.g. the 
RC300) becomes available, results will be much better (i.e. a greater speedup becomes 
possible). 

1. The current GA code’s level of parallelism is not sufficient. Because the number 
of LUTs (the number of available gates) and Configurable Logic Blocks (CLBs) on the 
board is a limited resource (28,672 LUTs for Virtex RC203, 4 slices), the current GA 
code does not have enough parallel code blocks (e.g. using the “par” feature). Handel-
C  provides  “par”  blocks  that  can  be  used  to  express  both  coarse  and  fine-grained 
parallelism.  (For  example,  see  the  Handel-C  tutorial  on  the  Celoxica  website  [4]). 



Individual statements and functions can be run in parallel. The more “par” blocks used, 
the  more  parallelism  is  achieved.  However,  when  “par”  blocks  are  mapped  into 
hardware, their parallel execution requires more circuitry, which means more resources 
(i.e. logic gates, etc) will be consumed. The Celoxica board has a limited number of 
LUTs, so that not too many “par” blocks can be used. If too many parallel structures 
are used in the Handel-C code, the final number of LUTs will be too large to fit into the 
board (RC203) used in the experiment.

2. Decoding the chromosome into the weights, the fitness calculation and mutation 
can all  be done in parallel.  This requires many arrays to store temporary variables. 
Arrays in the Handel-C provide parallel access to all elements, which is suitable for 
“par” blocks. But too many indexed or two-dimensional arrays used will introduce the 
same problem, i.e. too many resources will be eaten up because of the multiplexing. 
Instead, we used block storage of RAM a lot  in the code to avoid the problem of 
insufficient resources on the board. With RAM, at each clock tick, only one element of 
data can be accessed, which means the code related to the RAM must be sequential. 
However this decreases the level of parallelism of the GA code.

Our original Handel-C code had many parallel blocks, to such an extent, that it 
could not fit into the current board available for our experiment. It generated 37% more 
LUTs than the maximum capacity of the current board. In order to reduce the number 
of LUTs needed, many pieces of parallel code had to be rewritten. If most of the code 
in the GA can be parallel, then definitely much faster speedups will be achieved.

3. Pipeline techniques can be applied to the GA code to increase the throughput. 
Some complex  expressions  or  calculations  in  the  current  code  can  be  broken  into 
smaller pieces and run simultaneously. Each stage in the pipeline reads the results of 
the previous stage while the new value is being written. This will result in increased 
data latency. But the downside of this approach is it results in increased flip-flop usage. 
Thus, all the above improvements are only possible when tested on a newer version or 
bigger board.

Martin performed an empirical study [5] with Genetic Programming using Handel-
C  and  an  FPGA  board  and  reported  a  speed-up  factor  of  over  400  times  when 
compared with a software implementation of the same algorithm, but the PC used was 
an  AMD  200  MHZ  CPU  and  the  problem  had  no  real-number  calculations.  The 
problem and experimental setup was quite different from our evolution of GenNets 
because all our GenNet calculations had to been done in fixed-point, which consumed a 
lot of resources, thus preventing the program from being parallelized and pipelined 
easily.

8. More Recent Work

In  an  attempt  to  increase  the  8-fold  speed-up  factor  mentioned  above,  using  the 
Celoxica board,  relative to performing the same task on a PC, we undertook some 
recent experiments in which we were less constrained to make compromises (e.g. by 
having to use less PAR statements) than we were when undertaking the experiments 
discussed in earlier sections. We were less constrained as a consequence of performing 
simpler  experiments  that  required  less  Handel-C  code,  and  less  logic  gates  on  the 
Xilinx chip on the Celoxica board. We evolved neural nets that were smaller, having 
fewer neurons, and connections, and whose evolved tasks were simpler. As a result, we 
were able to take greater advantage of the intrinsically faster evolution speeds of the 



Celoxica board, and confirmed our suspicion that approximately a 50-fold speed up 
would be possible, and indeed it was.

The first of these experiments (of 2 so far) was to evolve a fully connected neural 
network of only 3 neurons, hence 9 connections, whose binary fraction weights had 
only 4 bits to represent them (plus one bit for the sign +/- of the weight). The task was 
to output a constant “target” signal (of value corresponding to the binary fraction .1001, 
whose decimal value = 0.5625). The fitness was defined to be the sum of the squares of 
the differences between the actual output values and the target value, over 15 clock 
cycles. The population size was 20, and the number of generations was 16000. The 
evolution took 47 minutes,  36 seconds on the PC, and 51 seconds on the Celoxica 
board, a speed-up factor of about 56. Only about 7% of the logic gates on the Xilinx 
chip of the Celoxica board were used. The Genetic Algorithm took up most of this 7%.

In a similar experiment, we then tried to evolve 4-neuron modules. Most of the 
parameter values of this second experiment were the same as before. This time the PC 
evolution time was 67 minutes 20 seconds, and the Celoxica board evolution time was 
81 seconds, i.e. a speed-up factor of 50. The percentage of the Xilinx chip occupied by 
the Handel-C program was approximately 223,000/3,000,000 approx 7.4%.

These speed-up factors were encouraging. However,  we noticed something that 
dampened our enthusiasm somewhat,  and that  was the time needed to perform the 
routing of the electronic connections in the Xilinx chip of the Celoxica board. Xilinx 
provides special software to perform the routing of the electronic wiring that connects 
the logic gates on their programmable chip. We found that this routing time for our 
second experiment was about 40 minutes. 

However,  the  whole  point  of  using  the  Celoxica  board  is  to  accelerate  the 
evolution  of  individual  neural  net  modules,  so  that  it  becomes  practical  to  evolve 
10,000s of them to build artificial brains. If it takes about 1 hour (let’s say) to evolve a 
neural net module on a PC, then what is the great advantage of using a Celoxica board 
to do the same thing, if the routing time is almost as long as the PC evolution time, 
even if the actual execution time of the routed circuit performs 50 times faster?!

This  seems  like  a  crushing  objection  to  our  overall  approach,  but  there  is  a 
loophole fortunately, which is that one evolves a “generic” neural net that is then fed 
data into the circuit already routed on the Xilinx chip. In other words, the routing of the 
circuitry on the programmable chip occurs once, and is slow, but once the routing is 
done, the resulting circuit can be used many times over, in the sense that different 
neural net modules can be evolved by sending in different data to the same circuit. 
Thus one does not have to route each neural net module that is evolved in the chip. 
Sending in the data to the chip takes only seconds, compared to about 40 minutes to 
route the chip. Hence, we can take advantage of the much greater electronic speed of 
the Xilinx chip on the Celoxica board. Future work along these lines is currently being 
thought about and planned. See the next section on future ideas for further details.

9. Future Ideas

The immediate future work to be undertaken comprises two tasks. The FPGA on our 
Celoxica board has only 3 mega-gates. The Celoxica company field engineers, have 
very recently offered us to run our Handel-C code on one of their boards with a bigger 
chip (i.e. one with 6 mega-gates), so that our Handel-C code in our first experiment that 
originally had too many “par” statements can fit better into the larger chip, and hence 
run faster. This experiment is something we need to do. 



Another immediate task is to translate the Handel-C code that we have already 
written  into  a  more  pipelined  approach.  Pipelining,  a  well-known  technique  in 
computer science, requires extra silicon (extra logic gates) but is faster to operate, due 
to its  greater parallelism. We can send off  this pipelined code to Celoxica also,  or 
perhaps buy our own bigger FPGA board. This type of reasoning will remain valid as 
long as Moore’s Law remains valid. We can expect every year or so, to be able to 
evolve neural net modules faster, due to larger FPGAs.

Greater speedups will allow neural net modules to be evolved considerably faster 
compared to using software techniques on an ordinary PC, so that a rather complex 
module containing multiple tests for its evolution (e.g. a module that responds with a 
strong signal if it sees any one of the 5 letters a, b, c, d, e, but a weak signal if it sees 
any of the other 21 letters, will require 26 “tests”) that would take many hours on a PC, 
could be evolved in minutes using the Celoxica board approach.

Such speedups will revolutionize brain building. It would then become practical to 
evolve 10,000s of neural net modules in a time that would be practical within human 
patience levels. A relatively small brain building team (say of 10 people) could then 
build  an  artificial  brain  (of  10,000  modules)  in  5  months,  at  a  rate  of  10  evolved 
modules per working day per person.

If  the  total  speedup  can  be  made  closer  to  1000  rather  than  100,  then  it  is 
conceivable  that  new  multi-module  evolutionary  algorithms  could  be  created,  that 
would make use of this speedup to evolve not only the intra-module weights, but the 
inter-module connections as well.  One of  the weaknesses  with the authors’  current 
brain building approach is that the modules are evolved individually, irrespective of 
how  they  will  interact  with  other  modules  in  a  network  of  modules.  Very  rapid 
evolution  of  individual  modules  would  allow  new  approaches  to  multi-module 
evolution.

10. Summary

This chapter has presented results showing that a Celoxica FPGA board is capable of 
speeding up the evolution of neural network modules by a factor of about 10 to 50 
times, depending on the size of the neural net being evolved. In the case of the first 
experiment with a large neural net (e.g. 20 neurons), which achieved only an 8-fold 
speedup, the possibility still exists of producing a speedup of perhaps up to 50 times 
using  larger  chips  and  pipelining  techniques  -  an  essential  step  if  artificial  brains, 
comprised of 10,000s of such modules are to be evolved in a reasonable time, and then 
run in real time in interconnected form in an ordinary PC. At the present time, the 
evolution of  a  single neural network can take many hours,  a  fact  that makes brain 
building according to our PC-based approach quite impractical.

Smaller Gas

Most of the gates (flip flops) on the Xilinx chip on the Celoxica board, were taken up 
by the Genetic Algorithm. With the 3 and 4 neuron network experiments we tried, only 
about 7% of the gates were used. This is encouraging. We will try to evolve larger 
modules, i.e. with a larger number of neurons, and hence connections. The number of 
connections grows as the square of the number of neurons. There are also smaller GAs 
in  the  literature,  usually  called  “Compact  Genetic  Algorithms”  (CGAs)  that  by 
definition,  are  very  simple  and  hence  need  fewer  logic  gates  for  their  electronic 



implementation. We may be able to evolve electronically, larger modules with small 
GAs, and hence really push up the size of the modules we can evolve (with a 50-fold 
speedup).

Another factor assisting the growth in the size of modules is of course Moore’s 
Law. For example, the next generation Celoxica board, beyond the RC203 that we are 
currently  using,  has a  Xilinx FPGA chip that  contains  6  million logic gates,  i.e.  a 
doubling compared to our RC203 Celoxica board. Celoxica does indeed have a new 
board based on the new Xilinx chip“Virtex 4”. So, our next research project will be to 
see how large our neural modules can become, i.e.  just  how many fully connected 
neurons can be evolved electronically on the Celoxica board? More interestingly is the 
question, “How many more years of Moore’s Law will be needed before it will be 
possible to evolve electronically,  neural net modules of reasonable size (i.e. having 
about 12-20 neurons)? It looks as though the answer is only a few years away (or none 
at  all?).  Once  such  powerful  modules  are  readily  evolvable,  then  the  real  work of 
building  artificial  brains  can  begin.  The  underlying  technology,  i.e.  the  electronic 
evolution of large numbers of neural net modules, will make the production of 10,000s 
of evolved modules needed to build an artificial brain, practical. The real challenge 
then of designing an artificial brain can then begin, and result hopefully in the creation 
a new research field, namely “Brain Building” or “Artificial Brains”.

As mentioned at the end of section 9, one other research challenge remaining is 
how  to  design  a  “generically  evolvable”  neural  net  to  overcome the  slow  routing 
problem. For example, one evolves the generic circuit once, and then sends in different 
fitness definitions as external data from the PC to the circuit. To change the fitness 
definition, simply means changing the data that is input to the “changeless” generic 
circuit. Fleshing out the details of these initial ideas remains a future research topic.

Postscript : Answering a Reviewer

This postscript contains questions from a reviewer to an earlier version of this chapter. 
We thought some of the questions were interesting, so we include them here, with our 
answers. The questions are in italic, beginning with a Q, and our answers begin with 
the letter A.

Q : This is a very interesting chapter that presents results that seem to indicate  
that computational power is not going to be a major obstacle to creating generally  
intelligent computers in the mid-term. 

A:  We  think  computational  power  is  a  necessary  condition  at  least.  Modern 
electronics is  already capable of creating artificial  brains with tens of  thousands of 
evolved neural net modules.  Now that it is possible, the authors would like to actually 
do it.

Q: Some questions about comparisons with more conventional hardware.  A quad-
core processor on a four-processor machine could in theory give a 16x speedup over a 
single processor.  If that turns out to be approximately feasible, what will the cost-
benefit  tradeoff  be between this approach and the approach of  using conventional 
hardware?  Will the underlying FPGA speed grow as fast as processor speed? If not,  
then Moore's law could potentially obviate this approach.

A: Special hardware, such as a quad core processor and the like, are definitely 
viable alternatives to what we propose in this chapter, but are more expensive. Our 
Celoxica board costs only about $1000, so seems a cheap way to get a 50-fold speedup 
over an ordinary PC.  If the speeds of future FPGA boards do not grow faster than the 
speeds of PCs, then that would be something we would welcome. The FPGA board is 



only a tool for us to accelerate the evolution speed of the neural net modules. If a faster 
cheaper way can be found, that's fine by us.

Q:  The  authors  seem  to  suggest  that  only  real  barrier  to  achieving  general  
intelligence  is  affordable  hardware  speed.  Do  they  really  believe  that  all  the 
intellectual problems have been solved? 

A: If we appear to be suggesting that, then that is not our intention. Of course, 
affordable  hardware  speed  is  only  the  initial  and  necessary  condition  to  achieving 
general  intelligence.  Once  the  hardware  speed  is  achieved,  then  our  real  research 
challenge of designing interesting capable artificial brains can begin, with the emphasis 
on the word begin.

Q:  There  are  many  other  approaches  to  hardware  acceleration  for  neural  
systems.  Could the authors say a bit about how their approach compares?

A:  There  are  approaches  such  as  ASIC  chips  (i.e.  custom designed  chips  for 
specific tasks). Of course the great advantage of the FPGA approach is it flexibility, its 
reprogrammability. If we want to evolve a different neural net model in the FPGA, we 
can do that easily. With a non reprogrammable approach we couldn't. ASICS may be 
faster  than  FPGAs,  but  their  flexibility  far  out  ways  their  relatively  slower  speed 
relative to ASICS, we feel.

Postscript : Last Minute Results

As proof that the work of this chapter is ongoing, we report here some very recent 
results  concerning two experiments.  The first  was to see how many neurons N we 
could fit into the FPGA chip, using a more compact GA (i.e. the CGA, “Compact GA” 
mentioned in section 11 (Summary). By using fewer lines of code to specify the GA, as 
is the case in a CGA, there was a lot more room on the FPGA for more neurons N in 
the neural network. For the same experiment mentioned in section 9, using the CGA, 
we were able to place N = 28 neurons on the chip. This is far more than we need, so we 
undertook a more demanding experiment. The aim this time was to evolve (using the 
CGA mentioned above) a sine curve output for half a wavelength. The number of ticks 
of the clock used for the curve (i.e. one tick is one cycle of calculating the output signal 
for  each  neuron  in  the  network)  was  45.  The  number  of  bits  in  the  weights  was 
increased to 8 (i.e. 1 for the sign, and 7 for the weight value). The fitness definition was 
the sum of the squares of the errors between the target  sine half curve (i.e.  y(t)  = 
sin(pi*t/45)), and the actual output signals over the 45 ticks t. The number of neurons 
as 12, population size was 256, bit string chromosome length was 12*12*8 = 1152 bits. 
The  number  of  generations  used  was  128,000.  This  half  sine  curve  evolved  well, 
showing that a non trivial neural net could be evolved in the 3M gates available in the 
FPGA of the Celoxica board.  The speedup factor was about 57 times compared to 
evolving the same task on the same PC used to control the Celoxica board.

In the near future, we will evolve many other single neural network modules using 
our Celoxica board, to show that they can be evolved. The next immediate task is to 
create an approach we call “Generic Evolution”. By this we mean creating a generic 
evolvable model, that is routed once (or only a few times) in the FPGA and then used 
multiple times, by sending in data signals to the FPGA. Each data set that goes into the 
chip  is  used  to  evolve  a  neural  net  module.  This  data  contains  such  things as  the 
number  of  positive  and  negative  examples  of  training  vectors  for  the  neural  net 
evolution, and the training vectors themselves. The model expects data input to have a 
given dimensionality,  e.g.  1 dimensional  bit  strings,  or  2D pixel  grid input from a 
digital  camera,  etc.  We are currently working on this,  to overcome the problem of 



having to route the FPGA for each module evolution. Since the routing takes about 40 
minutes for a full chip, this is too slow. So by having a generic model routed once only 
in the chip, we can send it different data for different neural net module evolutions. 
Sending in data to the already routed chip takes only a few seconds. 

As a more concrete illustration of this “generic evolution” idea, we provide the 
following example. Assume we want to evolve several hundred 2D pattern recognition 
neural net modules. The pattern to be detected is “shone” onto an 8 by 8 pixel grid of 
photo-cell detectors, each of whose signal strength outputs is strong if strong light falls 
on the photo-cell, and is weak if the light falling on it is weak. These 64 light intensity 
output signals are fed into a fully connected 16 neuron neural network. Hence each 
neuron receives 4 external signals from the pixel grid. If the pattern on the grid is of the 
type that the neural net module has been evolved to detect, then the module will output 
a strong signal, otherwise a weak signal. To evolve such a detector module, we create a 
set  of  positive  examples  of  the  pattern,  e.g.  a  “vowel”  detector  (i.e.  the  letters 
A,E,I,O,U). Similarly, we create a set of negative examples (e.g. the 21 consonants). 
We then shine the 5 vowels onto the grid, say for 100 ticks each. (One tick is defined to 
be the time needed for all neurons in the module to calculate their output signals.) We 
then shine the 21 consonants onto the grid for 100 ticks each. 

The  64  (8  by  8)  pixel  values  from the  photocell  grid  are  converted  into  a  1 
dimensional (64 element) vector, by concatenating the 8 rows of the grid. There will be 
26 (5 + 21) such vectors. Thus the data to be sent to the generic circuit will take the 
following form :- (N1, i.e. the number of positive examples, N2, i.e. the number of 
negative examples, C, i.e. the number of clock ticks per example, and then the (N1 + 
N2) 64-element input vectors.

The Handel-C code is written such that it expects the above parameters to be sent 
to it once the routing of the code has been completed. One can evolve hundreds of 
different  2D pattern  detection  neural  net  modules,  in  this  way,  without  having  to 
reroute the chip for each module evolution. The various modules have generic features, 
e.g. they all use a 16 neuron neural network, with a 64 input signal. The N1 positive 
examples are input first, then the N2 negative examples. The fitness definition of the 
neural net module is also generic. The target (i.e. desired) output signal of the evolving 
neural net module is high if a positive example is input, and low if a negative example 
is input. Hence the fitness definition can be generalized, e.g. to be the inverse of the 
sum of the squares of the differences between the target signal values and the actual 
signal values for C*(N1+N2) ticks. This fitness definition will be a function of the 
various parameters (N1, N2, C, etc) that are sent in as data for each neural net module 
evolution. Hence this generic fitness definition need only be coded and compiled and 
routed once for the evolution of hundreds of 2D pattern recognition neural net modules.

If the generic fitness definition changes (e.g. by having a new neural net model, or 
different  input  vector  formats)  then  another  routing  can  be  performed,  costing  40 
minutes. But in practice, much time is saved by using this “generic evolution” approach 
that is new, and an invention of our research team. It is becoming an important theme 
in our use of the Celoxica board to accelerate the evolution of tens of thousands of 
neural net modules to build artificial brains.
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