
Artificial Brains. An Inexpensive Method
for Accelerating the Evolution of Neural
Network Modules for Building Artificial

Brains

Hugo de GARISa, Liu RUIa, Huang DIb, Hu JINGc

a Brain Builder Group, Key State Laboratory of Software Engineering,
Wuhan University, Wuhan, Hubei Province, CHINA.

b Evolvable Hardware Group, School of Computer Science,
China University of Geosciences, Wuhan, Hubei Province, CHINA.

c Computer Science Department, Utah State University, Logan, Utah, USA.

profhugodegaris@yahoo.com, pnicholas@vip.sina.com,
aaron192032@gmail.com, jinghu78@gmail.com

Abstract. This chapter shows how a “Celoxica” electronic board (containing a
Xilinx Virtex II FPGA chip) can be used to accelerate the evolution of neural
network modules that are to be evolved quickly enough, so that building artificial
brains that consist of 10,000s of interconnected modules, can be made practical.
We hope that this work will prove to be an important stepping stone towards
making the new field of brain building both practical and cheap enough for many
research groups to start building their own artificial brains.

Introduction

The primary research goal of the first author is to build artificial brains [1]. An
artificial brain is defined to be a collection of interconnected neural net modules
(10,000–50,000 of them), each of which is evolved quickly in special electronic
hardware, downloaded into a PC, and interconnected according to the designs of
human BAs (brain architects). The neural signaling of the artificial brain (A-Brain) is
performed by the PC in real time (defined to be 25Hz per neuron). Such artificial brains
can be used for many purposes, e.g. controlling the behaviors of autonomous robots.

There is at least one major problem with the above vision, and that is the slow
evolution time of individual neural network modules. Typically, it can take many hours
to even half a day to evolve a neural net module on a PC. Obviously, evolving several
tens of thousands of such modules using only a PC to build an artificial brain will not
be practical. Before such A-Brains can be built with this approach, it will be necessary
to find ways to accelerate the evolution of such a large number of neural net (NN)
modules. At the present time, the authors are pursuing the following approach. We
perform the NN module evolution in hardware, to achieve a speedup factor (relative to
ordinary PC evolution speeds) of about 10-50 (the topic of this chapter).

mailto:jinghu78@gmail.com
mailto:aaron192032@gmail.com
mailto:pnicholas@vip.sina.com
mailto:profhugodegaris@yahoo.com

We use a Celoxica company’s FPGA electronic board (containing a 3 megagate
FPGA, i.e. Xilinx’s Virtex II chip) to accelerate the evolution of neural network
modules. One of the aims of this chapter is to report on the measurement of the
speedup factor when using this Celoxica board to evolve neural network modules,
compared to using a PC, as performed on the same evolution task.

The first experiment reported on in this chapter involved the evolution of a fairly
simple neural net. This task was chosen to serve as the basis for the above comparison
and is described in detail in section 3. The task itself was evolved 10 times and an
average evolution time calculated. The evolutionary task used two different approaches
and technologies, namely a) a standard genetic algorithm on a PC, and b) using the
Celoxica board, and the high level language “Handel-C” [2] to program the evolution.
Once the two execution time measurements were obtained, the speedup factor could be
calculated. Final results are shown in section 7.

1. The Evolution of Neural Network Modules

This section gives a brief description of the approach we use normally to evolve our
neural network (NN) modules, to be used as components in building artificial brains.
We use a particular neural net model called“GenNet” [3]. A GenNet neural network
consists of N (typically N = 12-20) fully connected artificial neurons. Each of the N2

connections has a weight, represented as a signed binary fraction, with p (typically p =
6-10) bits per weight. The bit string chromosome used to evolve the N2 weights will
have a length of N2*(p+1) bits. Each neuron “j” receives input signals from the N
neurons (i.e. including a signal from itself). Each input signal Sij is multiplied by the
corresponding connection weight Wij and summed. To this sum is added an external
signal value Ej. This final sum is called the activation signal Aj to the neuron “j”.

Aj=∑
i=1

N

WijSijEj

This activation value is fed into a sigmoid function g that acts as a “squashing”
function, limiting the output value Sj to have a maximum absolute value of 1.0

Sj=g Aj = Aj
∣Aj∣1 .0

2. The Evolutionary Task

In order to compare the evolution times for the two different approaches (i.e. using an
ordinary GA on a PC, and using the Celoxica board), the same fairly simple neural net
task was evolved, namely to output a constant signal value of 0.8 over 100 clock ticks.

A single neuron of the network was randomly chosen to be the output neuron for
the whole network. Its output signal S(t) was compared to a target (desired) signal
value for each of T (=100) clock ticks. The fitness function was defined as follows.

f = 1

∑
t=1

100

T t −S t 2

In our evolutionary task, the target value T(t) is constant, i.e. T(t) = 0.8
In order to compare the evolution times of the above task, a concrete “cutoff”

fitness value was used. This was found empirically, by evolving the standard GA
version to what we felt was a reasonably “saturated” fitness value. This fitness value
was then used in the Celoxica evolution experiments. Once the evolution, as specified
by the Handel-C program executed on the Celoxica board reached the same fitness
value, its evolutiontime (in seconds) was recorded. The task was evolved 10 times and
the average value calculated.

3. Our Evolutionary Approach

The approach we pursue in this chapter to accelerating the evolution time of neural
network modules is to perform the evolution in special hardware, e.g. using a Celoxica
board [4]. In this approach, a high level language, called Handel-C [Handel-C 2006] is
used, whose code is hardware compiled (silicon compiled) into the FPGA (Xilinx’s
Virtex II chip). We continue to work on this approach. In this first experiment, we have
achieved an 8-fold speedup up compared with a standard GA algorithm on an ordinary
PC. By using pipelining techniques and a larger FPGA, we hope to achieve a speedup
factor of up to 50 times for the same task. (As will be seen in our more recent
experiments, by evolving a smaller neural net, we were actually able to achieve this 50-
fold speedup. See section 9).

In order to calculate the speedup factor of the Celoxica board relative to an
ordinary genetic algorithm on a PC, the same evolutionary task specified in section 3
was used. The next section gives a brief description of the ordinary genetic algorithm.
Section 6 described briefly the characteristics of the Celoxica board. Section 7
introduces the high level language Handel-C, used to program the Celoxica board.
Section 8 presents the result of the comparison. Section 9 presents the results of our
more recent evolutionary experiments on smaller neural nets. Section 10 presents ideas
for future work, and section 11 summarizes.

4. Description of the Standard Genetic Algorithm

The standard GA (Genetic Algorithm) used to help calculate the speed up factor
consisted of the following steps.

a) Randomly generate 100 bit string chromosomes of length N2*(p+1). Over the
years we have used values, N = 16, p = 8, so our chromosomes (bit strings) were 2304
bits long.

b) Decode the chromosome into the N2 signed binary fraction weights, and build
the neural network for each chromosome.

c) Perform the fitness measurements for the task concerned. For details, see the
next section.

d) Rank the fitnesses from best to worst.

e) Throw out the inferior half of the chromosomes. Replace with the superior half.
f) Mutate all the chromosomes except the top one. No crossover was performed in

these experiments.
g) Go to b), until the evolution saturates at the target (desired) fitness value (of the

elite chromosome).

5. The Celoxica Board

The aims of lowering the price of high-speed evolution, and achieving higher
performance in evolving hardware led us to choose to use FPGAs (Field Programmable
Gate Arrays). FPGAs are specially made digital semiconductor circuits that are often
used for prototyping. The several million logic gates in modern FPGAs (e.g. Xilinx’s
Virtex II chip) make it is possible to have multiple copies of the same electronic sub
circuit running simultaneously on different areas of the FPGA. This parallelism is very
useful for a genetic algorithm. It allows the program to process the most time costly
weight calculations in parallel, and this can speed up the overall evolution by a factor
of tens to hundred of times.

We chose the Celoxica FPGA board for our project. “Celoxica” is the name of a
UK company [4]. Our Celoxica board (an RC203) cost about $1500. With such a
board, a design engineer is able to program electrical connections on site for a specific
application, without paying thousands of dollars to have the chip manufactured in mass
quantities. [4].

The RC Series Platforms of Celoxica are complete solutions for FPGA design and
ASIC/SoC (system on a chip) verification and prototyping. The boards combine very
high-density FPGA devices with soft-core & hard-core processors and an extensive
array of peripherals. They provide easy access to programmable SoC’s from the
Electronic System Level (ESL) and consistently deliver fast and efficient access to very
high-density reconfigurable silicon.

Fig.1. The Celoxica Board with central FPGA

We are currently using an RC203 FPGA board in our experiment. It’s a desktop
platform for the evaluation and development of high performance applications. The

main FPGA chip is a Xilinx Virtex II that can be configured without using an HDL
(Hardware Description Language). Instead it uses a much easier high-level “C-like”
language called “Handel-C” (after Handel the composer). This language is very similar
to ordinary C (i.e. with approximately an 80% overlap between the two languages),
with a few extra features, particularly those involved with specifying which functions
ought to be executed in parallel.

With several million logic gates in the Virtex FPGA chip, it is possible to have
multiple copies of the same electronic (sub) circuit running simultaneously. This
parallelism allows a genetic algorithm for example to run much faster than on a PC. A
Celoxica board attaches to a PC, with two-way communication, so that instructions to
the board come from the PC, and results coming from the board can be displayed on
the PC.

At the time of writing (October 2006), experiments are continuing to determine
how much faster the evolution of a neural net module on the Celoxica board can be,
compared to using a software approach in a PC. The value of this speedup factor is
critical to this whole approach. Colleagues in the ECE (Electronic and Computer
Engineering) departments at our respective universities, who are experienced in using
Celoxica boards, estimate that the speed up factors will range between 10s and 100s of
times. If these speedup factors can be achieved, it then becomes practical to evolve
large numbers of neural net modules in a reasonable time, and connect them together to
build artificial brains inside a PC.

6. The High Level Language “Handel-C”

Handel-C is Celoxica’s high-level language used to configure the Virtex-II FPGA chip
on the Celoxica board. This language is mostly ordinary C, with a few parallel
programming features, e.g. the “par” statement, that takes the following general form:

par
{
 statement A;
 statement B;
 statement C;
}

The above Handel-C statement will cause all the statements (i.e. A, B, C) in the par
block to be executed at once, by having each statement be configured, with its own
separate set of logic gates in the Virtex-II chip on the Celoxica board. By using
multiple copies of neural net modules, i.e. multiple electronic copies, each with its own
area of programmable silicon, evolving in parallel, it is possible to speed up the overall
evolution time, compared to ordinary software based PC evolution. In the following,
we introduce the features of the Handle-C language.

Handel-C Programs

Handel-C uses much of the syntax of conventional C with the addition of inherent
parallelism. You can write sequential programs in Handel-C, but to gain maximum
benefit in performance from the target hardware you must use its parallel constructs.

Handel-C provides constructs to control the flow of a program. For example, code
can be executed conditionally depending on the value of some expression, or a block of
code can be repeated a number of times using a loop construct.

Parallel Programs

The target of the Handel-C compiler is low-level hardware. This means that you get
massive performance benefits by using parallelism. It is essential for writing efficient
programs to instruct the compiler to build hardware to execute statements in parallel.

Handel-C parallelism is true parallelism, not the time-sliced parallelism familiar
from general-purpose computers. When instructed to execute two instructions in
parallel, those two instructions will be executed at exactly the same instant in time by
two separate pieces of hardware.

When a parallel block is encountered, execution flow splits at the start of the
parallel block and each branch of the block executes simultaneously. Execution flow
then re-joins at the end of the block when all branches have completed. Any branches
that complete early are forced to wait for the slowest branch before continuing.

Channel Communication

Channels provide a link between parallel branches. One parallel branch outputs data
onto the channel and the other branch reads data from the channel. Channels also
provide synchronization so that a transmission can only be completed when both
parties are ready for it. If the transmitter is not ready for the communication then the
receiver must wait for it to become ready and vice versa.

Scope and variable sharing

The scope of declarations is based around code blocks. A code block is denoted with
{...} .This means that:

• Global variables must be declared outside all code blocks.
• An identifier is in scope within a code block and any sub-blocks of that block.
• The scope of the variables is illustrated below:

int w;
void main(void)
{

int x;
{

int y;

}
{

int z;
}

}

Since parallel constructs are simply code blocks, variables can be in scope in two
parallel branches of code. This can lead to resource conflicts if the variable is written to
simultaneously by more than one of the branches. Handel-C states that a single variable
must not be written to by more than one parallel branch but may be read from by
several parallel branches.

If you wish to write to the same variable from several processes, the correct way to
do so is by using channels that are read from in a single process. This process can use a
“prialt” statement to select which channel is ready to be read from first, and that
channel is the only one that will be allowed to write to the variable.

while(1)
prialt
{
case chan1 ? y:
break;
case chan2 ? y:
break
case chan3 ? y:
break;
}

In this case, three separate processes can attempt to change the value of y by
sending data down the channels, chan1, chan2 and chan3. y will be changed by
whichever process sends the data first.

Handel-C uses much of the syntax of conventional C with the addition of inherent
parallelism. You can write sequential programs in Handel-C, but to gain maximum
benefit in performance from the target hardware you must use its parallel constructs.
These may be new to some users. If you are familiar with conventional C you will
recognize nearly all the other features.

7. Experimental Results

Evolving Neural Network Modules on a PC and on the Celoxica Board

The aim of the experiment described in this section is to evolve a “GenNet”, i.e. a
Genetically Programmed Neural Net that outputs a desired signal. The experiment was
conducted both on a PC and on the Celoxica board. Based on the two evolution times
of the GenNet using the two methods, a comparison was made to see how great a
speed-up of the evolution can be achieved by using the Celoxica Board compared to
using a software based evolution on the PC. The GenNet evolution program that was
run on the PC was written in the “C” language, whereas the program run on the
Celoxica board was written using the “Handel-C” language.

Handel-C is a C like language that can program the hardware, whereas C language
is used to program the PC. The gate-level netlist output of Celoxica’s “DK” (Designer
Kit) software contains basic gates: OR, XOR, NOT and AND. The FPGA board is
made of LookUp Tables (LUT, with 4 inputs and 1 output), flip-flops (FF) and other
components. The output of the DK, which is the bit file, is downloaded to the board to
configure its components. Technology mapping is the process of packing gates into
these components. This is very different from traditional programming of a PC. A
program in a PC is stored in memory. At each clock tick the CPU will fetch an
instruction code and execute it, then fetch another code, etc. The program on the board
is just a set of LUTs, so the execution of the program is at electronic speeds.

There are a few problems when coding the GenNet using Handel-C. Doing real
number calculations is not as easy as in C. There is no variable type such as float,
double etc in Handel-C. The fitness calculation, decoding of the chromosome into
weights and chromosome fitness comparison all need real number calculators. Handel-
C does provide a floating-point library and a fixed-point library. Float-point
calculations will generate LUTs of great depth, which means longer propagation times,
and slower running times. Fixed-point library calculations are preferred here because
each real number variable will be represented as a sequence of bits of specified length.
The first part of the bits will be interpreted as integers, and the second part will be
interpreted as decimals. There are signed and unsigned fixed-point variables, while the
signed fixed-point uses 2’s complement representation. Attention must be paid too
when using fixed-point library calculations. Using too many bits in each variable will
increase the number of LUTs, while too few bits in each variable will decrease the
precision of the calculation.

Handel-C has many features that are suitable for evolutionary computation. Firstly,
the variable in Handel-C can be of any length. Handel-C also provides bit-wise
operations. Thus using Handel-C to code chromosomes introduces great flexibility.
Secondly, the “par” block provides parallelism, which reduces the running time of
decoding each chromosome and the fitness calculation. Thirdly, the program is a set of
LUTs on the board, so the running time is at electronic speeds. Fourthly, pipeline
techniques can be applied to increase the throughput of some blocks of code.

The Handel-C program is tested and simulated in the PC. It is then placed and
routed using Xilinx’s ISE 7.1. Our Celoxica board is a Xilinx Virtex RC203. The
GenNet program in C was run on a PC with a 1.69 GHZ Centrino CPU, and 1 GB of
memory.

The program was run 10 times each on the board and the PC. Evolution time of
each test was recorded. The average evolution time on the PC is 57.4 seconds, while
the average evolution time on Celoxica board is 7.1 seconds. The speedup of the
evolution time on the FPGA board is 8.1 times faster than on the PC.

This is a great improvement compared with the evolution time on a PC. Although a
great speedup is achieved, there are many possible improvements to the current method
that can further increase the evolution speed on the board. The experiment on the
current board has some limitations. If a larger and newer version of the board (e.g. the
RC300) becomes available, results will be much better (i.e. a greater speedup becomes
possible).

1. The current GA code’s level of parallelism is not sufficient. Because the number
of LUTs (the number of available gates) and Configurable Logic Blocks (CLBs) on the
board is a limited resource (28,672 LUTs for Virtex RC203, 4 slices), the current GA
code does not have enough parallel code blocks (e.g. using the “par” feature). Handel-
C provides “par” blocks that can be used to express both coarse and fine-grained
parallelism. (For example, see the Handel-C tutorial on the Celoxica website [4]).

Individual statements and functions can be run in parallel. The more “par” blocks used,
the more parallelism is achieved. However, when “par” blocks are mapped into
hardware, their parallel execution requires more circuitry, which means more resources
(i.e. logic gates, etc) will be consumed. The Celoxica board has a limited number of
LUTs, so that not too many “par” blocks can be used. If too many parallel structures
are used in the Handel-C code, the final number of LUTs will be too large to fit into the
board (RC203) used in the experiment.

2. Decoding the chromosome into the weights, the fitness calculation and mutation
can all be done in parallel. This requires many arrays to store temporary variables.
Arrays in the Handel-C provide parallel access to all elements, which is suitable for
“par” blocks. But too many indexed or two-dimensional arrays used will introduce the
same problem, i.e. too many resources will be eaten up because of the multiplexing.
Instead, we used block storage of RAM a lot in the code to avoid the problem of
insufficient resources on the board. With RAM, at each clock tick, only one element of
data can be accessed, which means the code related to the RAM must be sequential.
However this decreases the level of parallelism of the GA code.

Our original Handel-C code had many parallel blocks, to such an extent, that it
could not fit into the current board available for our experiment. It generated 37% more
LUTs than the maximum capacity of the current board. In order to reduce the number
of LUTs needed, many pieces of parallel code had to be rewritten. If most of the code
in the GA can be parallel, then definitely much faster speedups will be achieved.

3. Pipeline techniques can be applied to the GA code to increase the throughput.
Some complex expressions or calculations in the current code can be broken into
smaller pieces and run simultaneously. Each stage in the pipeline reads the results of
the previous stage while the new value is being written. This will result in increased
data latency. But the downside of this approach is it results in increased flip-flop usage.
Thus, all the above improvements are only possible when tested on a newer version or
bigger board.

Martin performed an empirical study [5] with Genetic Programming using Handel-
C and an FPGA board and reported a speed-up factor of over 400 times when
compared with a software implementation of the same algorithm, but the PC used was
an AMD 200 MHZ CPU and the problem had no real-number calculations. The
problem and experimental setup was quite different from our evolution of GenNets
because all our GenNet calculations had to been done in fixed-point, which consumed a
lot of resources, thus preventing the program from being parallelized and pipelined
easily.

8. More Recent Work

In an attempt to increase the 8-fold speed-up factor mentioned above, using the
Celoxica board, relative to performing the same task on a PC, we undertook some
recent experiments in which we were less constrained to make compromises (e.g. by
having to use less PAR statements) than we were when undertaking the experiments
discussed in earlier sections. We were less constrained as a consequence of performing
simpler experiments that required less Handel-C code, and less logic gates on the
Xilinx chip on the Celoxica board. We evolved neural nets that were smaller, having
fewer neurons, and connections, and whose evolved tasks were simpler. As a result, we
were able to take greater advantage of the intrinsically faster evolution speeds of the

Celoxica board, and confirmed our suspicion that approximately a 50-fold speed up
would be possible, and indeed it was.

The first of these experiments (of 2 so far) was to evolve a fully connected neural
network of only 3 neurons, hence 9 connections, whose binary fraction weights had
only 4 bits to represent them (plus one bit for the sign +/- of the weight). The task was
to output a constant “target” signal (of value corresponding to the binary fraction .1001,
whose decimal value = 0.5625). The fitness was defined to be the sum of the squares of
the differences between the actual output values and the target value, over 15 clock
cycles. The population size was 20, and the number of generations was 16000. The
evolution took 47 minutes, 36 seconds on the PC, and 51 seconds on the Celoxica
board, a speed-up factor of about 56. Only about 7% of the logic gates on the Xilinx
chip of the Celoxica board were used. The Genetic Algorithm took up most of this 7%.

In a similar experiment, we then tried to evolve 4-neuron modules. Most of the
parameter values of this second experiment were the same as before. This time the PC
evolution time was 67 minutes 20 seconds, and the Celoxica board evolution time was
81 seconds, i.e. a speed-up factor of 50. The percentage of the Xilinx chip occupied by
the Handel-C program was approximately 223,000/3,000,000 approx 7.4%.

These speed-up factors were encouraging. However, we noticed something that
dampened our enthusiasm somewhat, and that was the time needed to perform the
routing of the electronic connections in the Xilinx chip of the Celoxica board. Xilinx
provides special software to perform the routing of the electronic wiring that connects
the logic gates on their programmable chip. We found that this routing time for our
second experiment was about 40 minutes.

However, the whole point of using the Celoxica board is to accelerate the
evolution of individual neural net modules, so that it becomes practical to evolve
10,000s of them to build artificial brains. If it takes about 1 hour (let’s say) to evolve a
neural net module on a PC, then what is the great advantage of using a Celoxica board
to do the same thing, if the routing time is almost as long as the PC evolution time,
even if the actual execution time of the routed circuit performs 50 times faster?!

This seems like a crushing objection to our overall approach, but there is a
loophole fortunately, which is that one evolves a “generic” neural net that is then fed
data into the circuit already routed on the Xilinx chip. In other words, the routing of the
circuitry on the programmable chip occurs once, and is slow, but once the routing is
done, the resulting circuit can be used many times over, in the sense that different
neural net modules can be evolved by sending in different data to the same circuit.
Thus one does not have to route each neural net module that is evolved in the chip.
Sending in the data to the chip takes only seconds, compared to about 40 minutes to
route the chip. Hence, we can take advantage of the much greater electronic speed of
the Xilinx chip on the Celoxica board. Future work along these lines is currently being
thought about and planned. See the next section on future ideas for further details.

9. Future Ideas

The immediate future work to be undertaken comprises two tasks. The FPGA on our
Celoxica board has only 3 mega-gates. The Celoxica company field engineers, have
very recently offered us to run our Handel-C code on one of their boards with a bigger
chip (i.e. one with 6 mega-gates), so that our Handel-C code in our first experiment that
originally had too many “par” statements can fit better into the larger chip, and hence
run faster. This experiment is something we need to do.

Another immediate task is to translate the Handel-C code that we have already
written into a more pipelined approach. Pipelining, a well-known technique in
computer science, requires extra silicon (extra logic gates) but is faster to operate, due
to its greater parallelism. We can send off this pipelined code to Celoxica also, or
perhaps buy our own bigger FPGA board. This type of reasoning will remain valid as
long as Moore’s Law remains valid. We can expect every year or so, to be able to
evolve neural net modules faster, due to larger FPGAs.

Greater speedups will allow neural net modules to be evolved considerably faster
compared to using software techniques on an ordinary PC, so that a rather complex
module containing multiple tests for its evolution (e.g. a module that responds with a
strong signal if it sees any one of the 5 letters a, b, c, d, e, but a weak signal if it sees
any of the other 21 letters, will require 26 “tests”) that would take many hours on a PC,
could be evolved in minutes using the Celoxica board approach.

Such speedups will revolutionize brain building. It would then become practical to
evolve 10,000s of neural net modules in a time that would be practical within human
patience levels. A relatively small brain building team (say of 10 people) could then
build an artificial brain (of 10,000 modules) in 5 months, at a rate of 10 evolved
modules per working day per person.

If the total speedup can be made closer to 1000 rather than 100, then it is
conceivable that new multi-module evolutionary algorithms could be created, that
would make use of this speedup to evolve not only the intra-module weights, but the
inter-module connections as well. One of the weaknesses with the authors’ current
brain building approach is that the modules are evolved individually, irrespective of
how they will interact with other modules in a network of modules. Very rapid
evolution of individual modules would allow new approaches to multi-module
evolution.

10. Summary

This chapter has presented results showing that a Celoxica FPGA board is capable of
speeding up the evolution of neural network modules by a factor of about 10 to 50
times, depending on the size of the neural net being evolved. In the case of the first
experiment with a large neural net (e.g. 20 neurons), which achieved only an 8-fold
speedup, the possibility still exists of producing a speedup of perhaps up to 50 times
using larger chips and pipelining techniques - an essential step if artificial brains,
comprised of 10,000s of such modules are to be evolved in a reasonable time, and then
run in real time in interconnected form in an ordinary PC. At the present time, the
evolution of a single neural network can take many hours, a fact that makes brain
building according to our PC-based approach quite impractical.

Smaller Gas

Most of the gates (flip flops) on the Xilinx chip on the Celoxica board, were taken up
by the Genetic Algorithm. With the 3 and 4 neuron network experiments we tried, only
about 7% of the gates were used. This is encouraging. We will try to evolve larger
modules, i.e. with a larger number of neurons, and hence connections. The number of
connections grows as the square of the number of neurons. There are also smaller GAs
in the literature, usually called “Compact Genetic Algorithms” (CGAs) that by
definition, are very simple and hence need fewer logic gates for their electronic

implementation. We may be able to evolve electronically, larger modules with small
GAs, and hence really push up the size of the modules we can evolve (with a 50-fold
speedup).

Another factor assisting the growth in the size of modules is of course Moore’s
Law. For example, the next generation Celoxica board, beyond the RC203 that we are
currently using, has a Xilinx FPGA chip that contains 6 million logic gates, i.e. a
doubling compared to our RC203 Celoxica board. Celoxica does indeed have a new
board based on the new Xilinx chip“Virtex 4”. So, our next research project will be to
see how large our neural modules can become, i.e. just how many fully connected
neurons can be evolved electronically on the Celoxica board? More interestingly is the
question, “How many more years of Moore’s Law will be needed before it will be
possible to evolve electronically, neural net modules of reasonable size (i.e. having
about 12-20 neurons)? It looks as though the answer is only a few years away (or none
at all?). Once such powerful modules are readily evolvable, then the real work of
building artificial brains can begin. The underlying technology, i.e. the electronic
evolution of large numbers of neural net modules, will make the production of 10,000s
of evolved modules needed to build an artificial brain, practical. The real challenge
then of designing an artificial brain can then begin, and result hopefully in the creation
a new research field, namely “Brain Building” or “Artificial Brains”.

As mentioned at the end of section 9, one other research challenge remaining is
how to design a “generically evolvable” neural net to overcome the slow routing
problem. For example, one evolves the generic circuit once, and then sends in different
fitness definitions as external data from the PC to the circuit. To change the fitness
definition, simply means changing the data that is input to the “changeless” generic
circuit. Fleshing out the details of these initial ideas remains a future research topic.

Postscript : Answering a Reviewer

This postscript contains questions from a reviewer to an earlier version of this chapter.
We thought some of the questions were interesting, so we include them here, with our
answers. The questions are in italic, beginning with a Q, and our answers begin with
the letter A.

Q : This is a very interesting chapter that presents results that seem to indicate
that computational power is not going to be a major obstacle to creating generally
intelligent computers in the mid-term.

A: We think computational power is a necessary condition at least. Modern
electronics is already capable of creating artificial brains with tens of thousands of
evolved neural net modules. Now that it is possible, the authors would like to actually
do it.

Q: Some questions about comparisons with more conventional hardware. A quad-
core processor on a four-processor machine could in theory give a 16x speedup over a
single processor. If that turns out to be approximately feasible, what will the cost-
benefit tradeoff be between this approach and the approach of using conventional
hardware? Will the underlying FPGA speed grow as fast as processor speed? If not,
then Moore's law could potentially obviate this approach.

A: Special hardware, such as a quad core processor and the like, are definitely
viable alternatives to what we propose in this chapter, but are more expensive. Our
Celoxica board costs only about $1000, so seems a cheap way to get a 50-fold speedup
over an ordinary PC. If the speeds of future FPGA boards do not grow faster than the
speeds of PCs, then that would be something we would welcome. The FPGA board is

only a tool for us to accelerate the evolution speed of the neural net modules. If a faster
cheaper way can be found, that's fine by us.

Q: The authors seem to suggest that only real barrier to achieving general
intelligence is affordable hardware speed. Do they really believe that all the
intellectual problems have been solved?

A: If we appear to be suggesting that, then that is not our intention. Of course,
affordable hardware speed is only the initial and necessary condition to achieving
general intelligence. Once the hardware speed is achieved, then our real research
challenge of designing interesting capable artificial brains can begin, with the emphasis
on the word begin.

Q: There are many other approaches to hardware acceleration for neural
systems. Could the authors say a bit about how their approach compares?

A: There are approaches such as ASIC chips (i.e. custom designed chips for
specific tasks). Of course the great advantage of the FPGA approach is it flexibility, its
reprogrammability. If we want to evolve a different neural net model in the FPGA, we
can do that easily. With a non reprogrammable approach we couldn't. ASICS may be
faster than FPGAs, but their flexibility far out ways their relatively slower speed
relative to ASICS, we feel.

Postscript : Last Minute Results

As proof that the work of this chapter is ongoing, we report here some very recent
results concerning two experiments. The first was to see how many neurons N we
could fit into the FPGA chip, using a more compact GA (i.e. the CGA, “Compact GA”
mentioned in section 11 (Summary). By using fewer lines of code to specify the GA, as
is the case in a CGA, there was a lot more room on the FPGA for more neurons N in
the neural network. For the same experiment mentioned in section 9, using the CGA,
we were able to place N = 28 neurons on the chip. This is far more than we need, so we
undertook a more demanding experiment. The aim this time was to evolve (using the
CGA mentioned above) a sine curve output for half a wavelength. The number of ticks
of the clock used for the curve (i.e. one tick is one cycle of calculating the output signal
for each neuron in the network) was 45. The number of bits in the weights was
increased to 8 (i.e. 1 for the sign, and 7 for the weight value). The fitness definition was
the sum of the squares of the errors between the target sine half curve (i.e. y(t) =
sin(pi*t/45)), and the actual output signals over the 45 ticks t. The number of neurons
as 12, population size was 256, bit string chromosome length was 12*12*8 = 1152 bits.
The number of generations used was 128,000. This half sine curve evolved well,
showing that a non trivial neural net could be evolved in the 3M gates available in the
FPGA of the Celoxica board. The speedup factor was about 57 times compared to
evolving the same task on the same PC used to control the Celoxica board.

In the near future, we will evolve many other single neural network modules using
our Celoxica board, to show that they can be evolved. The next immediate task is to
create an approach we call “Generic Evolution”. By this we mean creating a generic
evolvable model, that is routed once (or only a few times) in the FPGA and then used
multiple times, by sending in data signals to the FPGA. Each data set that goes into the
chip is used to evolve a neural net module. This data contains such things as the
number of positive and negative examples of training vectors for the neural net
evolution, and the training vectors themselves. The model expects data input to have a
given dimensionality, e.g. 1 dimensional bit strings, or 2D pixel grid input from a
digital camera, etc. We are currently working on this, to overcome the problem of

having to route the FPGA for each module evolution. Since the routing takes about 40
minutes for a full chip, this is too slow. So by having a generic model routed once only
in the chip, we can send it different data for different neural net module evolutions.
Sending in data to the already routed chip takes only a few seconds.

As a more concrete illustration of this “generic evolution” idea, we provide the
following example. Assume we want to evolve several hundred 2D pattern recognition
neural net modules. The pattern to be detected is “shone” onto an 8 by 8 pixel grid of
photo-cell detectors, each of whose signal strength outputs is strong if strong light falls
on the photo-cell, and is weak if the light falling on it is weak. These 64 light intensity
output signals are fed into a fully connected 16 neuron neural network. Hence each
neuron receives 4 external signals from the pixel grid. If the pattern on the grid is of the
type that the neural net module has been evolved to detect, then the module will output
a strong signal, otherwise a weak signal. To evolve such a detector module, we create a
set of positive examples of the pattern, e.g. a “vowel” detector (i.e. the letters
A,E,I,O,U). Similarly, we create a set of negative examples (e.g. the 21 consonants).
We then shine the 5 vowels onto the grid, say for 100 ticks each. (One tick is defined to
be the time needed for all neurons in the module to calculate their output signals.) We
then shine the 21 consonants onto the grid for 100 ticks each.

The 64 (8 by 8) pixel values from the photocell grid are converted into a 1
dimensional (64 element) vector, by concatenating the 8 rows of the grid. There will be
26 (5 + 21) such vectors. Thus the data to be sent to the generic circuit will take the
following form :- (N1, i.e. the number of positive examples, N2, i.e. the number of
negative examples, C, i.e. the number of clock ticks per example, and then the (N1 +
N2) 64-element input vectors.

The Handel-C code is written such that it expects the above parameters to be sent
to it once the routing of the code has been completed. One can evolve hundreds of
different 2D pattern detection neural net modules, in this way, without having to
reroute the chip for each module evolution. The various modules have generic features,
e.g. they all use a 16 neuron neural network, with a 64 input signal. The N1 positive
examples are input first, then the N2 negative examples. The fitness definition of the
neural net module is also generic. The target (i.e. desired) output signal of the evolving
neural net module is high if a positive example is input, and low if a negative example
is input. Hence the fitness definition can be generalized, e.g. to be the inverse of the
sum of the squares of the differences between the target signal values and the actual
signal values for C*(N1+N2) ticks. This fitness definition will be a function of the
various parameters (N1, N2, C, etc) that are sent in as data for each neural net module
evolution. Hence this generic fitness definition need only be coded and compiled and
routed once for the evolution of hundreds of 2D pattern recognition neural net modules.

If the generic fitness definition changes (e.g. by having a new neural net model, or
different input vector formats) then another routing can be performed, costing 40
minutes. But in practice, much time is saved by using this “generic evolution” approach
that is new, and an invention of our research team. It is becoming an important theme
in our use of the Celoxica board to accelerate the evolution of tens of thousands of
neural net modules to build artificial brains.

References

[1] Hugo de Garis, Michael Korkin, THE CAM-BRAIN MACHINE (CBM) An FPGA Based Hardware Tool
which Evolves a 1000 Neuron Net Circuit Module in Seconds and Updates a 75 Million Neuron
Artificial Brain for Real Time Robot Control, Neurocomputing journal, Elsevier, Vol. 42, Issue 1-4,

February, 2002. Special issue on Evolutionary Neural Systems, guest editor: Prof. Hugo de Garis.
Downloadable at http://www.iss.whu.edu.cn/degaris/papers

[2] www.celoxica.com
[3] See http://www.iss.whu.edu.cn/degaris/coursestaught.htm Click on the CS7910 course.
[4] www.celoxica.com
[5] Peter N. Martin, Genetic Programming in Hardware, PhD thesis, University of Essex, 2003,

http://homepage.ntlworld.com/petemartin/HardwareGeneticProgramming.pdf

http://homepage.ntlworld.com/petemartin/HardwareGeneticProgramming.pdf
http://www.celoxica.com/
http://www.celoxica.com/
http://www.iss.whu.edu.cn/degaris/papers

	1. The Evolution of Neural Network Modules
	2. The Evolutionary Task
	3. Our Evolutionary Approach
	4. Description of the Standard Genetic Algorithm
	5. The Celoxica Board
	6. The High Level Language “Handel-C”
	7. Experimental Results
	8. More Recent Work
	9. Future Ideas
	10. Summary

