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1 Introduction 
 
 The general problem addressed in this book is how to effectively carry out 
reasoning, knowledge discovery and querying based on huge amounts of complex 
information about real-world situations.  Specifically we conceive “real-world reasoning” 
here mainly as “massively scalable reasoning involving uncertainty, space, time, cause 
and context.”  Of course there are other important aspects to reasoning about the real 
world we live in, e.g. the hierarchical structure of much of the human world, and we will 
briefly touch on some of these here as well.  But for the purposes of this book, when we 
mention “real-world reasoning” or RWR, we’re mostly talking about uncertainty, 
spacetime, cause, context and scalability. 
 The RWR problem is critical in at least two respects: as part of the broader 
pursuit of artificial general intelligence (AGI) [Goertzel & Pennachin, 2006; Goertzel & 
Wang, 2006a; Goertzel & Bugaj, 2008; Goertzel & Hart, 2008]., and in terms of the 
practical information processing needs that have arisen in current society. 
 On the AGI side, it is obvious that every human brain ingests a huge amount of 
knowledge each waking hour, and somehow we manage to query and analyze our 
huge, dynamic internal data stores.  No AGI design can possibly succeed without some 
way to effectively carry out intelligent judgment and discovery based on these data 
stores.  AGI also has other aspects, e.g. procedure learning and goal refinement (to 
name just two), but RWR is certainly a huge part of the puzzle. 

On the practical information processing side, anyone who lives in a developed 
country these days is aware of the tremendous amount of data continually being 
gathered about all manner of aspects of the human and natural worlds.  Much of this 
data is discarded shortly after it’s gathered, but much of it is retained in various 
repositories.  However, even when the data is retained, it is rarely utilized to anywhere 
near the full extent possible, because our state-of-the-art technologies for storing, 
querying, mining and analyzing very large data stores are still very primitive and 
simplistic (not only compared to what is in principle possible, but compared to what we 
know to be possible based on contemporary mathematics and computer science).  
 In these pages we review a class of approaches to handling these RWR 
problems using uncertain, spatiotemporal, contextual and causal logic.   Uncertain logic 
is not the only possible approach to the RWR problem, but we believe it’s one very 
promising approach, and it’s our focus here.  While the first RWR-capable logic 
system has yet to be constructed, we make an argument, via detailed review of the 
literature and the state of the art and suggestion of some original ideas, that the time is 
ripe for their construction. 
 The book is intended to serve two purposes: to provide a reasonably accessible 
overview of the RWR problem and the available technologies and concepts for its 
solution; and to provide a sketch of one possible avenue toward solution. 
 Toward the “overview” goal, we review a number of concepts and technologies – 
some   recently developed, some more classical -- that address aspects of the RWR 
problem. While our treatment centers on formal logic, we also introduce material from 



other areas such as graph databases, probability theory, cognitive architecture and so 
forth as appropriate.  
 After reviewing a variety of other logical approaches, we present our own 
approach to real-world reasoning, which is based on the Probabilistic Logic Networks 
(PLN) framework [Goertzel et al, 2008]; and give some detailed suggestions regarding 
how one might address the scalable real-world inference problem effectively via 
integrating PLN with other ideas and technologies described.  Our goal in this regard is 
not to propose a particular highly-specific technical solution, but rather to describe a 
class of possible solutions that might be described as “scalable spatiotemporal 
uncertain logic systems”.  In this vein, in the later chapters we give a number of detailed 
examples showing the kinds of results one might expect to obtain by approaching a 
large knowledge store containing information about everyday human activities with the 
Probabilistic Logic Networks inference framework that we have developed in prior 
publications. 
 

The Advantages of a Logical Approach 
 
 There are many advantages to the logic-based approach relative to others, some 
of which will be alluded to as the text progresses, but perhaps the largest advantage is 
its relative representational transparency.  That is, if the knowledge stored in a 
knowledge base, and the patterns recognized in this knowledge base, are represented 
in a logical format, then it is reasonably tractable for humans to inspect this knowledge 
and these patterns.  This is a major practical advantage in terms of allowing hybridized 
human/artificial intelligence – and, given the comments made above about the 
interesting but erratic performance of AI algorithms in our domain, this seems a very 
important point. 
 Given the advantage of logic-based approaches in terms of representational 
transparency, the only reason to choose an opaque approach over a logic-based 
approach would be if the opaque approach were dramatically superior in its capabilities.  
However, this currently seems not to be the case: in fact the evidence so far seems to 
indicate that logic-based approaches are the most powerful ones in this sort of context. 
 Some theorists have argued against logic-based approaches to real-world data 
on the grounds that there are problems with “grounding” logical symbols in real-world 
data (the so-called “symbol grounding problem” [Goertzel et al., 2006a]).   However, 
these objections do not hold up to scrutiny.   It is true that logic-based approaches 
cannot function adequately for real-world applications unless the logical symbols used 
are explicitly associated with observed data-patterns, but there are well-understood 
technologies for making such associations.  Historically, many logic-based AI systems 
have been used in an “ungrounded” way, not containing components that directly 
connect the logical terms used with real-world observations – but this is a problem of 
poor system architecture, not a flaw of the logic-based approach in itself. 
 

Main High-Level Conclusions 
 



To give a small hint at what is to come, the main conclusions at the end of our 
investigation are that  
 

• the logic-based approach has the in-principle power to solve the problem of 
querying and analyzing very large scale spatiotemporal knowledge bases, in a 
manner respecting the contextual and causal knowledge contained therein 

• there is a significant amount of scientific and technological knowledge in the 
literature regarding nearly every aspect of the application of logic-based 
technology to this problem  

• the Achilles heel of current relevant logic-based technology is scalability 
• the keys to achieving scalability in this context are conceptually understood -- 

adaptive inference control and attention allocation – but have not been explored 
nearly as thoroughly as they need to be 

• it seems likely that special techniques may be useful for adaptively controlling 
real-world scalable inference as opposed to inference in other domains (e.g. 
mathematical theorem proving) 

• one viable way to achieve scalable real-world reasoning may be to use the 
Probabilistic Logic Networks framework, perhaps within an integrative AGI design 
like OpenCog which provides flexible means for adaptive inference control 

 
We thus suggest that a critical focus of research should be on the development of 
methods for exploiting the specific statistical structure of real spatiotemporal data, to 
adaptively guide logical inference methods in performing query and analytical 
processing. 
 
 
  
 



 

Summary 
 
 We now briefly review the chapters to follow, summarizing the main themes and 
ideas to be introduced. 
 

1.1.1 Part I: Representation and Reasoning 
 
 Part I of the book reviews a host of approaches described in the literature for 
representing and reasoning about real-world knowledge, including temporal, spatial, 
contextual and causal knowledge. 

Chapter Two reviews many of the varieties of formal logic that have been 
developed during the last century, with a focus on those approaches that appear most 
relevant to the large-scale information-management problem.  We begin with a basic 
review of predicate and term logic, and then move on to subtler variations such as 
modal logic (the logic of possibility) and deontic logic (the logic of obligation).  We also 
discuss the methods that logic systems use to actually draw logical conclusions based 
on the information provided to them: forward chaining, in which information items are 
combined exploratorily to come to new conclusions; and backward chaining, in which a 
question is posed to the system and it then seeks to find the answer using multiple 
logical inference steps based on the information at its disposal. 
 Chapter Three considers various methods of handling uncertainty in formal logic, 
including fuzzy sets and logic, possibility theory, probability theory, and imprecise and 
indefinite probabilities.  Uncertainty management is critical to our target application, 
because a great percentage of real-world data is uncertain, and most of the conclusions 
one can draw based on real-world data are also uncertain.  So, logic systems that only 
deal with absolute truth or falsehood are not going to be very useful for our target 
application.  But, the literature contains a huge number of different methods for dealing 
with uncertainty – and one of our conclusions is that there isn’t necessarily a single best 
approach.  Rather, a practical solution may integrate more than one approach, for 
instance using both fuzzy and probabilistic methods as appropriate.  The following 
figures from Chapter Three illustrate several of the possible methods for representing 
time within logic: 
 
 
 



 
 
 

  
 
 
  Chapter Four grapples with the various ways logicians and computer 
scientists have devised to represent time within logic.  This is a core issue for our 
current pursuit, because a large percentage of real-world knowledge involves time. The 
most standard method for handling time within logic is Allen’s interval algebra, which 
treats time-intervals rather than points as the atomic temporal entities, and enumerates 
a set of rules for combining and reasoning about time-intervals; but it suffers the deficit 
of being crisp rather than explicitly handling uncertainty.  So we review several methods 
of extending interval algebra to deal with uncertainty, including methods involving 
fuzziness, probability, and combinations of the two.   The following figure from Chapter 
Four illustrates the logical relationships between time intervals specified by Allen’s 
interval algebra: 



 
 
 

 
 
And the following figure, also from Chapter Four, is a graphical representation of some 
temporal relationships between events, using a probabilistic variation of Allen’s interval 
algebra: 
 

 
 
 Continuing the theme of its predecessor, Chapter Five deals with temporal 
inference, reviewing the multiple  methods presented in the literature for incorporating 
time into logic.  These include methods that simply treat time like any other logical 
information, and also methods that give time a special status, including reified and 
modal techniques.  We conclude that methods giving time a special status are likely to 
be dramatically more efficient, and express a particular favor for reified techniques 
compatible with Allen’s interval algebra (discussed above) and its variations.  We give 
some concrete examples of temporal inference regarding peoples’ daily activities. 
 For instance, one of the example problems we consider involves a query 
regarding “which people were in the same place as Jane last week,” and a knowledge 
base with the following information: 
 

• Susie and Jane use the same daycare center, but Jane uses it everyday, 



whereas Susie only uses it when she has important meetings (otherwise she 
works at home with her child).  

• Susie sends a message stating that Tuesday she has a big meeting with a 
potential funder for her business.   

 
Given this information, inference is needed to figure out that on Tuesday Susie is likely 
to put her child in daycare, and hence (depending on the time of the meeting!) 
potentially to be at the same place as Jane sometime on Tuesday.  To further estimate 
the probability of the two women being in the same place, one has to do inference 
based on the times Jane usually picks up and drops off her child, and the time Susie is 
likely to do so based on the time of her meeting.  We show in detail how temporal 
inference methods can be used to carry out this commonsense inference, and other 
similar examples.  
 Chapter Six builds on the treatment of time and presents an analogous 
discussion of a more complex subject, space (critical to our core theme as a substantial 
percentage of real-world knowledge involves spatial as well as temporal information).  
We review the Region Connection Calculus, which models the logic of space in terms of 
a fixed set of logical relationships between logical terms that correspond to spatial 
regions.  As this is a simple but limited technique, we then consider more complex 
approaches to representing space in logic, including directional calculus, and 
occupancy grids as utilized in robotics (which are extremely general yet also resource-
intensive, and so should only be used when simpler methods fail).  The following 
diagram, drawn from Chapter Six, depicts the relationships between various spatial 
regions and spatially distributed phenomena (NTPP stands for 
NonTangentialProperPart, and O stands for Overlapping; these are spatial-relationship 
predicates drawn from the Region Connection Calculus formalism): 
 

 
 
 Next, as well as time and space, another critical aspect of real-world reasoning is 
context.  Nearly all real-world knowledge implicitly or explicitly gains its meaning from 
the specific context in which it is understood by human knowledge producers and 
consumers to exist.  So if logical methods are to be applied effectively to real-world 
data, it is important that they explicitly represent contextuality. In Chapter Seven, we 
review a number of approaches to representing contextuality in logic, and give detailed 
examples of several.  We also consider one example of context representation that is 
particularly acutely relevant to our application area: the use of contextual logic to handle 
user modeling.  If different users of an information system have different biases and 



interests, then a logic based system can pay attention to this and give them different 
information via treating each user as a separate context and then doing contextually-
biased reasoning.    

In addition to context representation, Chapter Seven treats contextual inference, 
reviewing a number of techniques presented in the literature, and again finding favor in 
those methods that explicitly represent context as a special relationship within the base 
logic.  We give a concrete examples of contextual inference applied to practical 
problems regarding people and their interrelationships.  One example we consider 
involves the following assumptions: 
 

 Alison is an accountant who is also a musician.  Alison is emotional in the context 
of music, but not in the context of accounting.  She frequently mentions Canadian 
place names in the context of music (maybe she's a Canadian music fan), but not 
in the context of accounting.  

 Bob is in a similar situation, but he frequently mentions Canadian related stuff in 
both the music and accounting contexts.  

 Clark is also in a similar situation, but he frequently mentions Canadian related 
stuff only in the accounting context, not the music context.  

 People who have a lot to do with Canadian people, and a lot to do with money, 
have a chance of being involved in suspicious money-laundering activities.   

 
We then show how contextual inference methods can be used to estimate the 
probability that Clark may be involved with money-laundering. 
 Chapter Eight turns briefly to causal reasoning, reviewing the  multiple 
formalisms used to represent the notion of causality, and connecting causation to 
probabilistic and inductive reasoning.   
 
 
 

1.1.2 Interlude: Acquiring, Storing and Mining 
Logical Knowledge 

 
Our focus in this book is doing logical reasoning on real-world knowledge, and 

this is a large and critical topic – but, once one has a large store of real-world 
knowledge in logical format, reasoning per se is not the only thing that must be done 
with it.  The Interlude at the center of the book consists of three brief chapters which 
lightly touch three other important issues to do with large stores of logical knowledge: 
acquiring logical knowledge via transforming real-world data, storing and querying large 
volumes of logical knowledge, and mining patterns from large logical knowledge stores.  
Each of these topics could be a book in itself, and here we only roughly sketch the main 
problems involved and give some pointers into the literature. 

Chapter Nine very briefly reviews existing relevant literature, discussing the use 
of natural language processing technology to map text and voice into sets of logical 
relationships; and the use of image processing and heuristic algorithms to create logical 
relationships out of tables, graphs and diagrams.  For instance, the following diagram 



drawn from Chapter Six shows some logical relationships that current NLP technology 
can extract from the simple sentence “Gone for dinner with Bob”: 
 
 

 
 
 
 Another key question that  must be answered if logic-based methods are to be 
applied to massive real-world data stores is: how can a huge amount of logical 
knowledge be stored and manipulated?  This is not a question about logic per se, it’s a 
question about modern computer systems, database and database-like technologies, 
and so forth.  In  Chapter Ten, we review a number of current technologies, including 
relational databases, RDF triple-stores, object databases, and hypergraph and graph 
databases.  Our conclusion is that at present the latter form the best option, and we give 
some specific examples of how to translate complex logical knowledge into the specific 
format required for a graph database.   The following table, drawn from Chapter Ten, 
summarizes some of our findings in more depth: 
 



 
 
 Chapter Ten turns to one of the most important applications desirable to carry out 
on large data stores -- “data mining” (also known as “information exploitation”, “pattern 
discovery”, etc.).   Most existing datamining techniques are either specialized for 
relational databases, or don’t scale beyond small knowledge stores.  We review here 
some specific datamining algorithms in depth.  One conclusion drawn is that, for 
datamining to really be effective in this context, it will need to be hybridized with 
inference.  Datamining technology, in itself, will always find too many potentially 
interesting patterns for any human user to want to explore.  So logical inference 
technology is needed to filter the results of datamining, either via interaction with the 
datamining process, or via postprocessing. 
  

1.1.3 Part II: Real World Reasoning Using 
Probabilistic Logic Networks 

 
The second major of the book provides a detailed exploration of the applicability 

of one particular logical framework, Probabilistic Logic Networks, to real-world 
reasoning problems.   This part is different from the previous ones, in that it comprises 
primarily original work, rather than literature survey and summary. 
 Chapters Twelve and Thirteen summarize Probabilistic Logic Networks (PLN), 
the particular uncertain logic system called which several of the authors (Goertzel and 
Pennnachin and Geisweiller) and their colleagues have developed over the last  years 
(and published extensively on elsewhere).  We outline the basic mechanisms via which 



PLN deals with a variety of aspects of inference, including term and predicate logic, 
extensional and intensional inference, and contextual, causal, spatial and temporal 
inference. 
 Chapter Fourteen turns to the specific problem of inference about changes in 
large knowledge bases. We consider several concrete examples including the following 
causal inference scenario:  
 

• Before March 2007, Bob never had any Canadian friends except those who were 
also friends of his wife. 

• After March 2007, Bob started acquiring Canadian friends who were not friends 
of his wife. 

• In late 2006, Bob started collecting Pokemon cards. Most of the new Canadian 
friends Bob made between March 2007 and Late 2007 are associated with 
Pokemon cards  

• In late 2006, Bob started learning French. Most of the new Canadian friends Bob 
made between March 2007 and Late 2007 are Quebecois. 

 
We show in detail how a PLN inference engine, combining temporal inference with 
causal inference and numerous other aspects, can attempt to answer the question: 
What is the probable cause of Bob acquiring new Canadian friends who are not also 
friends of his wife? 
 Chapter Fourteen also considers spatial inference in the context of change 
analysis, giving particular attention to the incorporation of the Region Connection 
Calculus (RCC) into PLN.  It is shown how a fuzzy/probabilistic version of RCC may be 
used together with a fuzzy/probabilistic version of Allen’s interval algebra to carry out 
commonsense inferences about the causes of peoples’ activities and relationships, 
based on knowledge involving time and space.  To exemplify the practical use of these 
ideas, we extend the example of Bob and his Pokemon cards, from the previous 
chapter, to include the case where some of Bob’s friends live near Canada but not 
actually in Canada, and the inference system has to deal with the notion of “fuzzy 
Canadian-ness” as related to spatial geometry.  The following figure illustrates the fuzzy 
spatial membership function corresponding to Canada, used in the example inference: 
 



 
  
  
 Finally (before Chapter Sixteen which is a brief conclusion), Chapter Fifteen 
confronts the thorny conceptual and algorithmic issue of inference control: determining 
which inference steps to take, in which order, in order to answer a question, filter a 
datamining results list, or carry out an analysis.   Far from being “merely an efficiency 
issue,” inference control actually hits many of the deepest issues of AI, including the 
“frame problem” (briefly stated, that AI systems tend to lack tacit background knowledge 
about what questions not to bother asking because their answers are supposed to be 
obvious, or are irrelevant).  We discuss a number of specific techniques that may be 
able to achieve effective inference control in the context of inference on large stores of 
spatiotemporal logical knowledge, including techniques that hybridize logic with other AI 
methods such as activation spreading.  Here the discussion broadens from logic per se 
to the topic of “cognitive architectures” and general AI systems, the point being made 
that the integrative architectures underlying many such systems exist largely in order to 
provide effective, scalable inference control.  As an example, the OpenCog cognitive 
architecture in which the PLN inference system is embedded is briefly considered. 
 



 
 
 
 

Part I: Representation and Reasoning 
 
 



2 Knowledge Representation Using 
Formal Logic 

 
Now we begin to dig into the nitty-gritty of our subject matter.  Before discussing 
querying and analysis of complex, heterogeneous spatiotemporal and contextual 
knowledge, we must discuss representation of temporal knowledge (as well as, to a 
certain extent, spatial knowledge)… and before that, we must address knowledge 
representation in general. 
 In the course of our investigation we must work through a number of difficult 
questions regarding knowledge representation, including: 
 

• Which of the many species of uncertain logic to use as the basis for our 
knowledge representation 

• How specifically to represent temporal knowledge? 
• How specifically to represent spatial knowledge? 
• What is the best low-level (e.g. graph) representation of logical knowledge for 

efficient storage and processing? 
 
“Logic” itself is not a monolithic entity; it comes in many different flavors.  At the highest 
level, there is the dichotomy between predicate logic and term logic (and there are also 
systems that hybridize the two, e.g. [Goertzel et al., 2008; Wang, 2006a]).  There are 
also many types of logical system within each of these broad categories, some of which 
will be reviewed later on.  
 The material in this chapter becomes somewhat formal and technical, for which 
we apologize to the reader who lacks the relevant taste or experience; but which 
unfortunately seems unavoidable if we are to give a serious treatment of our topic.   The 
reader lacking appropriate expertise may either consult relevant background material 
[Copi & Cohen, 1998], or less ideally, skim this material and proceed to the later 
chapters, some of which will be quite clearly comprehensible without grasp of these 
preliminaries, some less so. 
 

1.3 Basic Concepts of Term and Predicate Logic 
Term logic, or traditional logic, was founded by Aristotle and was the dominating logical 
framework until the late nineteen century. Term logic uses subject-predicate statements 
of the form “S is P” (for instance, “Socrates is a man”). There are singular and universal 
terms (the former correspond to unique subjects). There are just four forms of 
propositions in term logic:  
 

• Universal and affirmative (e.g. "All men are mortal")  
• Particular and affirmative (e.g. "Some men are philosophers")  
• Universal and negative (e.g. "No philosophers are rich")  
• Particular and negative (e.g. "Some men are not philosophers").  

 



New conclusions are derived from premises by syllogisms. Aristotle introduced fourteen 
syllogisms, of which we will give just two here for illustrative purposes:  
 

 (Barbara) If every M is L, and if every S is M, then every S is L. (for instance, “if 
every man is mortal, and if every philosopher is a man, then every philosopher is 
mortal”) 

 (Celarent) If no M is L, and if every S is M, then no S is L. (for instance, “if no 
philosopher is rich and if every poet is a philosopher, then no poet is rich”).  

 
Syllogisms provide a method for deduction – deriving new facts from already proved 
facts.  
 In addition there are rules for induction and abduction:  
 

• (Induction) If every M is L, and if every M is S, then every S is L. (for instance, “if 
every poet is mortal, and if every poet is a philosopher, then every philosopher is 
mortal”) 

• (Abduction) If every L is M, and if every S is M, then every S is L. (for instance, “if 
every poet is mortal, and if every philosopher is mortal, then every philosopher is 
poet”) 

 
Notice that the induction and abduction rules do not neccesarily derive true statements.  
Nevertheless these are important forms of inference in the face of insufficient evidence, 
in modern AI reasoning systems as well as in classical Aristotelian term logic 
[Dimopoulos & Kakas, 1996].  Induction and abduction are omnipresent in human 
commonsense inference. 
 Put simply, induction aims at generalization.  In the above example (“if every poet 
is mortal, and if every poet is a philosopher, then every philosopher is mortal”), the first 
premise yields that all philosophers that are also poets are mortal, but then it is 
generalized to conclude that all philosophers are mortal. Yet, it is possible that there are 
some philosophers that are not poets, so potentially not mortal, so the above 
generalization rule does not neccesarily lead to true conclusions.  
 Similarly, abduction aims at explanation.  In the above example, the explanation 
for the fact that “every philosopher is mortal” may be that it is because “every 
philosopher is a poet”.  
 In the late nineteenth century, classical term logic was the subject of criticism, for 
its weak expressive power and the limited forms of reasoning it permitted.  For example, 
in classical term logic from "every car is a vehicle" one cannot infer "every owner of a 
car is an owner of a vehicle."  In that period, predicate logic was designed, and it still 
serves as a basis for most mathematical and philosophical formal reasoning.  However, 
modern theorists have extended classical term logic in various ways [Englebretsen & 
Sommers, 2000; Wang, 2006b], so that there are now term logics which equal predicate 
logic in expressive power.  There are also systems that hybridize term and predicate 
logic, such as our own Probabilistic Logic Networks framework [Goertzel et al,, 2008], 
which will be discussed below.  Advocates of term logic often argue that it more closely 
matches the patterns of human commonsense reasoning. 
 In standard predicate, or first-order logic, statements have arbitrary propositional 



form (involving conjunctions, disjunctions, negations, …) and arbitrary use of quantifiers 
(for instance, “for every man, there is a woman, such that for every man, …”).  Modern 
variants of term logic provide this same expressive flexibility. 
 Pure predicate logic is a framework in which one can describe other theories. 
This framework is defined by the set of axioms and the set of inference rules (such as “if 
P and if P yields Q, then Q”). The proofs are sequences of derivation steps based on 
these axioms and rules. For example, one can represent in predicate logic and derive 
“not every man is a philosopher if and only if there is a man such that it is not a 
philosopher”.  For first-order logic there are also inductive and abductive rules, not used 
in mathematical theorem-proving, but for uncertain reasoning, most often in AI.  First 
order logic is also used as a basis for many specific logics, including modal, deontic, 
temporal and spatial logics as will be discussed below. 
 

1.4 Review of Propositional Logic 
In order to explain predicate logic in more depth, we must begin with a simpler variant 
called “propositional logic.”  Propositional logic can express simple facts while first-order 
logic (or predicate logic) also involves quantification and more complex statements. In 
this sense, first-order logic subsumes propositional logic.  Both propositional and first-
order logic have many practical applications beyond the ones considered here, in 
describing different processes and concepts.  Most important perhaps are applications 
in computer science, ranging from chip design [Aehlig & Beckmann, 2007] to natural 
language processing [Meulen, 2001].  
 Both propositional logic and first-order logic have three important aspects:  
 

• syntax – describing well-formed formulae and their basic properties; 
• semantics – describing meaning of well-formed formulae; 
• deduction – describing systems for syntactically deriving new formulas from other 

formulas (with no respect to their meaning). 
 
We now give a brief mathematical exposition of these three aspects. 
 First, syntax. Let P be an infinite, but countable set, whose  elements will be 
called propositional letters or atomic propositions. The set of propositional formulas is 
defined by the following rules: 
 

• all elements of P are propositional formulas; 
• ⊥ and ⊤	 are propositional formulas (which as we will see below, are normally 

taken to semantically represent False and True) 
• if A is a propositional formula, then so is ¬A (which is normally taken to represent 

the negation of A) 
• if A and B are propositional formulas, then so are A∧B , A∨B , A⇒B , A⇔B 

(which are normally taken to represent And, Or, and implication and equivalence) 
• each propositional formulas is obtained by a finite number of applications of the 

above rules. 
 
Next, semantics.  A valuation v is defined as a mapping from P to the set {0,1}.  
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That is, a valuation assigns either 0 or 1 to any propositional letter.  An interpretation Iv 
is an extension of a valuation v, mapping propositional formulas to the set {0,1}, defined 
in the following way: 
 

• Iv (⊥)=0; 
• Iv (⊤)=1; 
• Iv (p)=v(p), if p belongs to P; 
• Iv (¬A)=1- Iv (A);  
• Iv (A∧B)=min(Iv (A), Iv (B)); 
• Iv (A∨B)=max(Iv (A), Iv (B)); 
• Iv (A⇒B)=max(1-Iv (A), Iv (B)); 
• Iv (A⇔B)=1, If Iv (A)= Iv(B) and Iv (A⇔B)=0 otherwise.	 	 

 
The above semantics is referred as to Tarski’s semantics (that he introduced in  the 
1930’s) [Tarski 1994].  Put simply, this allows the interpretation of propositional formulas 
like 
 

A∧(¬B∨(C ⇒ A)) 
 
as having truth values drawn from the set {0,1} (given the truth values for A, B and C), 
with 0 usually interpreted as meaning False and 1 as meaning True. 
 A formula A is satisfiable if there is a valuation v such that Iv (A)=1 (otherwise, it 
is unsatisfiable or inconsistent, aka self-contradictory).  A formula A is a tautology if for 
an arbitrary valuation v Iv (A)=1. If a formula A is a tautology, then we denote that by ⊨ 
A.  
 For example, it holds that Iv(p∨q)=1 in a valuation v such that v(p)=1, v(q)=0 -- so 
the formula p∨q is satisfiable.  On the other hand, the formula p∨¬p is tautology. 
 The problem of checking the satisfiability of a formula made of conjunctions of 
disjunctions of literals (variables or negations of variables) is decidable (there is an 
effective algorithm for solving it) and is called SAT. SAT is on of the most important NP-
complete problems. Programs for testing satisfiability are called SAT solvers. There are 
different methods for checking satisfiability of a formula: the simplest is based on truth-
tables (i.e. tabular enumeration of all possible combinations of values for the formula’s 
variables, and evaluation of the truth value of the formula for each combination). Other 
include Davis-Putnam-Logmann-Loveland (DPLL) procedure, and modern solvers –  
DPLL-based, resolution-based solvers, tableaux-based solvers etc.  Modern SAT 
solvers can decide propositional formulas with thousands variables and clauses [Lynce 
& Marques-Silva, 2002]. 
 

1.4.1 Deduction in Propositional Logic 
 
There is a number of inference systems for propositional logic. Most of them are 



actually restrictions of inference systems for first-order logic. Hilbert-style inference 
system consists of the following axiom schemes [Mendelson, 1997]: 
 
(A1) A ⇒ (B ⇒ A) 
(A2) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)) 
(A3) (¬B ⇒¬A) ⇒ ((¬B ⇒ A) ⇒ B) 
 
and the inference rule modus ponens: A, A⇒B ⊢ B.  
 A proof or a derivation in a Hilbert system is a finite sequence of formulas such 
that each element is either an axiom or follows from earlier formulas by the rule of 
inference.  A proof of a derivation from a set S of formulas is a finite sequence of 
formulas such that each term is either an axiom, or is a member of S, or follows from 
earlier formulas by  the rule of inference.  
 If there is a proof for A, then A is a theorem and we denote that by ⊢ A. For 
example, it can be proved that A ⇒ A is a theorem, as follows: 
 
1. (A ⇒ ((A ⇒ A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A))   (instance of A2) 
2. A ⇒ ((A ⇒ A) ⇒ A)       (instance of A1) 
3. (A ⇒ (A ⇒ A)) ⇒ (A ⇒ A)      (from 1 and 2, by MP) 
4. A ⇒ (A ⇒ A)        (instance of A1) 
5. A ⇒ A        (from 3 and 4, by MP) 
 
This may seem like a lot of work to prove that “A implies A”, but that’s the nature of 
formal logic systems!  Derivations are broken down into extremely small steps that are 
rigorously mathematically justified.  In human commonsense inference we tend to 
proceed in large leaps instead, at least on the conscious level – but unconsciously, our 
brains are carrying out multitudes of small steps, though the analogy between these 
small steps and the small steps in logical proofs is a subject of debate in the AI and 
cognitive science community. 
 There is a link between the semantics of propositional logic and the above 
Hilbert-style system stating that the system is sound and complete: every theorem is  
tautology, and every tautology is theorem, i.e., ⊨ A if and only if ⊢ A. 
	 While the above is a standard and workable, approach, there are also other 
inference systems for propositional logic, including the one obtained as restrictions of 
Gentzen natural deduction and sequent calculus (see the section on first-order logic). 
There are also variants for classical and for intuitionistic propositional logic: in the 
former A∨¬A is a theorem, and in the latter it is not (the above Hilbert-style system is 
classical). 
 

1.5 Review of Predicate Logic 
Standard, first-order predicate logic builds on propositional logic as defined above.  We 
will review it using the same categories of syntax, semantics and deduction. 



 Firstly, syntax. Let Σ be a finite or a countable set, its elements will be called 
function symbols. Let Π be a finite or a countable set, its elements will be called 
predicate symbols. Let arity be a function that maps elements of Σ and Π to natural 
numbers. The triple (Σ,Π,arity) is called a signature. The set of terms over a signature 
(Σ,Π,arity) and a countable set of variables V is defined in the following way:  
  

•  all elements of V are terms; 
•  if f is a function symbol and arity(f)=0, and then f is a term; 
•  if f is a function symbol and arity(f)=n, and if t1 , …, tn are terms, then f(t1 , …, tn) 

is a term.  
•  all terms are obtained by the above rules. 

 
 The set of atomic formulas over a signature (Σ,Π,arity) and a countable set of 
variables V is defined in the following way:   
 

• ⊥ and ⊤	 are atomic formulas; 
• if p is a predicate symbol and arity(p)=n, and if t1 ,  t2 , …, tn are terms, then p(t1 ,  

t2 , …, tn) is an atomic formula.  
• all atomic formulas are obtained by the above rules. 

 
 The set of formulas over a signature (Σ,Π,arity) and a countable set of variables 
V is defined in the following way:   
 

 all atomic formulas are formulas; 
 if A is a formula, then so is ¬A; 
 if A and B are formulas, then so are A∧B , A∨B , A⇒B , A⇔B; 
 if A is a formula and v is a variable, then (∀x)A and  (∃x)A are formulas; 
 all formulas are obtained by the above rules. 

 
 Next, semantics.  The meaning of a formula is defined with respect to a pair (D,I), 
where D is a non-empty set, called the domain, and I is a mapping such that: 
 

• To each function symbol of arity 0, I associates an element c from D; 
• To each function symbol of arity n>0, I associates a total function from Dn to D; 
• To each predicate symbol of arity n>0, I associates a total function from Dn to 

{0,1}. 
 
A valuation v, in this context,  is defined as a mapping from the set of variable V to the 
set D.  An interpretation Iv of  terms, with respect to a pair (D,I) and a valuation v is 
defined in the following way: 
 

• Iv(t)=v(t), if t is an element V; 
• Iv(t)=I(t), if t is a function symbol and arity(t)=0; 
• Iv(f(t1 , …, tn))= fI ( I(t1), …, I(tn))) where fI=I(f). 

 



An interpretation Iv of formulas, with respect to a pair (D,I) and a valuation v is defined in 
the following way: 
 

• Iv(⊥)=0 and Iv(⊤)=1 
• Iv(p(t1 , …, tn))= pI ( I(t1), …, I(tn))) where pI=I(p). 
• Iv (¬A)=1- Iv (A);  
• Iv (A∧B)=min(Iv (A), Iv (B)); 
• Iv (A∨B)=max(Iv (A), Iv (B)); 
• Iv (A⇒B)=max(1-Iv (A), Iv (B)); 
• Iv (A⇔B)=1, If Iv (A)= Iv(B) and Iv (A⇔B)=0 otherwise.	 	 
• Iv((∀x)A)=1, if for every valuation w that is identical to v, with a possible 

exception of x, it holds Iw(A)=1. Otherwise, Iv((∀x)A)=0;  
• Iv((∃x)A)=1, if there is a valuation w that is identical to v, with a possible 

exception of x, such that it holds Iw(A)=1. Otherwise, Iv((∃x)A)=0.  
 
 If there is a pair (D,I) and a valuation v, such that Iv(A)=1, then A is satisfiable, 
otherwise it is unsatisfiable, or inconsistent. If for a fixed pair (D,I) it holds that Iv(A)=1 
for arbitrary valuation v, then A is valid with respect to (D,I). If it holds that Iv(A)=1 for 
arbitrary pair (D,I) and for arbitrary valuation v, then A is valid and we denote that by ⊨ 
A.  
 For instance, if the domain D is the set of natural numbers and if I maps p to the 
relation ≤, then Iv((∀x)p(x,x))=1 in every valuation v, hence  the formula (∀x)p(x,x) is 
valid. 
 

1.5.1 Deduction in First-Order Logic 
 
Deduction in first-order logic is similar conceptually to its analogue in propositional logic, 
but more complex in detail due to the presence of quantified variables.  There are 
several different deductive systems available; one of the first was developed by Hilbert 
in the early 20th century and we will describe it now.  In Hilbert’s systems, formulas are 
built using only the connectives ⇒ and ¬, and the quantifiers ∀ (“for all”) and ∃ (“there 
exists”).  The system consists of the following axiom schemes: 
 
(A1) A ⇒ (B ⇒ A) 
(A2) (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)) 
(A3) (¬B ⇒¬A) ⇒ ((¬B ⇒ A) ⇒ B) 
(A4) (∀x)A ⇒ A[x → t], while the term t is free for x in A 
(A5) (∀x)(A ⇒ B) ⇒ (A ⇒ (∀x)B), while A does not involve free occurrences of x 
 
and the following inference rules: 



 
Modus ponens: A, A⇒B ⊢ B  
Gen: A  ⊢  (∀x)A 
 
 A proof or a derivation in a Hilbert system is a finite sequence of formulas such 
that each element is either an axiom or follows from earlier formulas by one of the rules 
of inference. A proof of a derivation from a set S of formulas is a finite sequence of 
formulas such that each formula is either an axiom, or is a member of S, or follows from 
earlier formulas by one of the rules of inference. If there is a proof for A, then A is a 
theorem and we denote that by ⊢ A. 
 There is a link between the semantics of first order logic and the above Hilbert-
style system stating that the system is sound and complete: every theorem is  valid 
formula, and every valid formula is theorem, i.e., ⊨ A if and only if ⊢ A. 
 In Hilbert-style systems, even for trivial statements, proofs can be non-trivial and 
rather unintuitive. However, although this kind of system is very demanding for practical 
use, it is very suitable for formal analyses of formal logic (since it has just a few axioms 
and inference rules).  On the other hand, Gentzen constructed (in the 1930’s) a “natural 
deduction” system, that better reflects usual mathematical reasoning. The price for this 
increased naturalness is a larger set of inference rules – one for eliminating and one for 
introducing each logical connective (¬, ∧, ∨, ⇒,⇔) and quantifier (∀, ∃), and one for 
eliminating the logical constant ⊥ (13 rules altogether).  On the other hand, there is just 
one axiom scheme (A∨¬A), which is not even needed if one adopts the intuitionistic 
version of Gentzen’s logic.   
 Some of the rules in Gentzen’s deductive system are: 

 
(introducing ∨)	 
 

 
(eliminating ¬)	 
 
 

(eliminating ⇒)	 
 

 
and so forth. 
 Proofs in Gentzen’s natural deduction are usually represented as trees with the 
statement to be proved in the root (at the bottom), and with axioms or assumptions in 
leaves (all these assumptions have to be eliminated along the proof). Somewhat 
different in nature from usual mathematical proofs, is the Gentzen’s sequent calculus, 
suitable for formal analyses and for automation. The elementary object in this system is 
a sequent, a construct of the form A1, A2, …, An  ⊢ B1, B2, …, Bm.   The calculus itself 
consists of the inference rules for introducing logical connectives and quantifiers on both 
sides of sequents, for instance: 

  A 
A�B 

  
     ¬A 
  � 

  
 
    A�B 
    B 
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(introducing ¬ left)	 
 
 

 
There are also structural rules for dealing with formulas within one side of a sequent, for 
instance:  
 

(weakening)	 
 
 

 There are many variations of the above inference systems, both for first order 
logic and for other theories. The above systems can also be used as inference systems 
for propositional logic – it suffices to omit all axioms and rules involving quantifiers.  
 Finally, it is worth noting that first-order logic is semi-decidable, which means that 
there can be an algorithm that can always confirm a valid formula is indeed valid (i.e, is 
a theorem), but cannot always detect that a non-valid formula is not valid. Things are 
simpler in propositional logic which is decidable, meaning that there is an algorithm 
which can always decide whether a given propositional formula is valid or not. 
 

1.5.2 First-order Theories  
Next, one can extend basic predicate logic by defining “theories” within it, which extend 
the basic axioms by adding other specialized axioms.  We will be doing a lot of this in 
the present book, in the context of specialized theories about time and space. 
 Mathematically, we say that each such theory has a certain “signature,” 
consisting of specific sets Σ and Π of function and predicate symbol extending the basic 
ones used in predicate logic.  Beside the new symbols, to create a theory one has to 
provide a list of axioms (in the described language). These axioms are then used within 
a selected deductive framework (e.g., Hilbert’s system, Gentzen’s natural deduction, 
etc.) as additional axioms of the system.   
 If a theory T is defined by a signature (Σ, Π,arity), and within a deductive system, 
then we often write T ⊢ F or ⊢T F to denote that the formula F can be derived in the 
theory T (i.e., F is a theorem of T).  
 As an example within mathematics, the branch of math called “group theory” can 
be constructed easily as an extension of predicate logic.  In this formalization,  the 
signature of theory of group consists of: 
 

• Functional symbol 0 (of arity 0); 
• Functional symbol + (of arity 2);  
• Functional symbol - (of arity 1);  
• Predicate symbol = (of arity 2),  

 
And, the axioms of the theory of groups are: 
 

  Γ � Θ,A 
 ¬A, Γ � Θ    

  
 

  Γ � Θ 
 D, Γ � Θ    

  
 



(∀x)(x = x)  
(∀x)(∀y) (x = y ⇒ -x = -y) 
(∀x1)(∀x2)(∀y1)(∀y2)(x1 = y1 ∧ x2 = y2 ⇒ x1+x2 = y1+y2) 
(∀x1)(∀x2)(∀y1)(∀y2)(x1 = y1 ∧ x2 = y2 ⇒ (x1=x2 ⇒ y1=y2)) 
(∀x)(∀y)(∀z)(x + (y + z) = (x + y) + z) 
(∀x)(x+0 = 0+x = x) 
(∀x)(x+(-x) = (-x)+x = 0) 
 
These axioms, added on to the regular axioms of predicate logic, tell you how to use the 
entities {0, + , - , =} in the manner required in group theory.  For instance, it can be 
proved that the following formula is theorem of the theory of groups: 
 

(∀x)(∀y)(∀z)(x + z = y + z ⇒ x=y) 
 
What we’ll see later on in this book are similar theories that involve, not {0, + , - , =} but 
rather entities such as time intervals, spatial regions, and relationships between them. 
 Finally, although we won’t make use of this here, it’s worth noting that, apart from 
the axiomatic approach to defining theories, theories can be also defined semantically. 
For a given signature L and a corresponding pair (D,I), a theory of a structure is the set 
of all valid sentences over L that are true in (D,I). 
 

1.5.3 Forward and Backward Chaining  
 
There are two basic search strategies for using inference rules in theorem-proving, and 
other related AI areas:  
 

• Forward chaining  
• Backward chaining  

 
Both strategies are applied to tasks of the same sort: given a set of facts (axioms) and a 
set of inference rules, the task is to check whether some given fact (formula) F can be 
derived. The difference between the two strategies is the direction of their search. 
Namely, forward chaining (also known as data-driven search) starts with the available 
facts and derive all facts that can be derived, until the given fact F is reached. On the 
other hand, backward chaining (also known as goal-driven search) starts with the given 
goal F and apply inference rules in opposite direction, producing new subgoals and 
trying to reach the facts already available.  
 Let us consider the following example. Let there be given facts: 
 

1) Derek will go out for lunch. 
2) If Alison goes out for lunch, then Bob will go out for lunch as well. 
3) If Bob goes out for lunch, then Clark will go out for lunch as well. 
4) If Derek goes out for lunch, then Ellen will go out for lunch as well. 



5) If Ellen goes out for lunch, then Clark will go out for lunch as well. 
 
and assume the (only) inference rule is modus ponens: if X and X⇒Y, then Y. The goal 
to be proved is “Clark will go out for lunch”. 
 Forward chaining will try to match any two facts with X and X⇒Y in order to apply 
modus ponens and to derive new facts. One (and the only at this step) option is to use 
the facts 1 and 4 and derive the fact “Ellen will go out for lunch”. Then, in next step, this 
new fact and the fact 5 yield “Clark will go out for lunch”, which was required. 
 Backward chaining starts from the goal – from the fact “Clark will go out for 
lunch”. If it is matched with Y in modus ponens, then the new subgoals will be X and 
X⇒Y, where X can be anything. The subgoal X⇒Y matches the fact 3, so X is matched 
with “Bob will go out for lunch”. When proving this subgoal, the fact 2 is used and a new 
subgoal “Alison will go for lunch” should be proved. However, this leads to failure. 
Another option is the following: the subgoal X⇒Y matches also the fact 5, so X is 
matched with “Ellen will go out for lunch”. When proving this subgoal, the fact 4 is used 
and a new subgoal “Derek will go out for lunch” should be proved. This is trivially true, 
by the fact 1. So, it was proved that “Clark will go out for lunch”, as required. 
 The above description of forward and backward chaining is simplified. Typical 
applications of forward and backward chaining involve different methods of directing the 
search. Namely, the main problem that both strategies face is search expense, due to 
typically huge numbers of combinatorial options that have to be considered. Neither of 
these approaches is superior to the other one, and there are domains in which one if 
more appropriate than another. There are also hybrid approaches that combine forward 
and backward search. 
 

1.5.4 Decidability and Decision Procedures  
In this section we briefly introduce a distinction that may be important in practical large-
scale logic-based systems: the distinction between proof procedures and decision 
procedures.  Put simply: 
 

• a proof procedure finds a specific series of steps for getting to a certain 
conclusion from the axioms of a logical theory 

• a decision procedure checks whether a certain conclusion can be obtained from 
the axioms of a logical theory, without necessarily directly supplying the proof 
(the series of steps) 

 
In practical cases, given the outcome of a decision procedure, plus knowledge of the 
algorithm used to carry out the decision procedure, it is in principle possible to construct 
a proof.  But this may be quite laborious.  In some situations, if one just needs to know 
whether something is true or not in a certain formal theory, it may be easier to use a 
decision procedure than to find a specific proof. 
 In the formal lingo of logic, one says a theory T is decidable if there is an 
algorithm that for any sentence F of T it can decide whether F is theorem of T or not.  
Such an  algorithm is called a decision procedure.  An example of a decision procedure 



for propositional logic is the DPLL (Davis-Putnam-Logemann-Loveland) procedure, 
which lies at the core of all modern SAT solvers.  A SAT solver is a program that checks 
if a large propositional-logic formula can possibly be satisfied by any assignment of 
values to variables or not; and doing this via a decision procedure rather than a proof 
procedure is vastly more computationally efficient.  SAT solvers are used in a huge 
variety of practical applications nowadays, including circuit analysis, natural language 
parsing, and all manner of large-scale discrete optimization problems.  If one had to 
approach these problems using direct theorem proving in propositional logic, then one 
would run into terrible combinatorial explosions and quite possibly formal logic would 
need to be set aside in favor of some different analytical approach.  
 There are many widely applied decision procedures for first-order theories, 
including decision procedures for linear arithmetic over reals (involving only addition, not 
multiplication), multiplicative arithmetic over reals (involving only multiplication, not 
addition), theory of lists, theory of arrays, etc. [Barrett, 2009]. There is a family of 
modern decision procedures for first-order theories, heavily using propositional 
reasoning and SMT (satisfiability modulo theory) techniques. Decision procedures and 
SMT solvers are widely applied in software and hardware verification.  
 Mathematically speaking, there are many important theories that are not 
decidable, such as arithmetic over natural numbers, the theory of groups, etc. Hence, 
for these theories there can be no decision procedures, only heuristics that can 
prove/disprove certain classes of formulas.  However, undecidability always involves 
infinity in some form; if one restricts attention to a finite set of data items (as is always 
the case in practical applications), then it is never an issue. 
 In practical applications, the use of decision procedures is sometimes 
unavoidable. However, developing an efficient decision procedure is not an easy task – 
it requires specific knowledge about the theory. There is no generic (decidable) method 
for constructing efficient decision procedures.  In the case of temporal and spatial logics 
such as we will discuss here, scientists have not yet created appropriate specialized 
decision procedures, but this seems a highly worthy area of investigation. 
 

1.6 Simple Examples of Formal Logical Inference 
We’ve been discussing logic in an extremely abstract and mathematical way – but our 
main goal here is real-world reasoning, not mathematical reasoning.  So before 
progressing further in the direction of elaborating abstract logic systems, we will digress 
a bit to clarify the relationship between logic and commonsense inference.  This is after 
all where logic started: formal logic originated, not as a branch of math, but from the 
motivation of formalizing everyday human thinking.  Many real world problems can be 
formulated in terms of propositional or first order logic.  It is only during the last century 
and a half that logic has become a sophisticated branch of mathematics. 
 

1.6.1 Example of Kings and Queens 
Consider the following example, from [Hayes, 1997]. The king and his family want to 
make a party for some ambassadors in their kingdom. The king, the queen, and the 
prince give their orders to the head of protocol and he has to make a final list of guests. 
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The king said that either the ambassador of Peru, or the ambassador of Qatar, or the 
ambassador of Romania should be invited. The queen said that if the ambassadors of 
Qatar and Romania are invited, then the ambassador of Peru should be invited too. The 
prince said that if the ambassador of Romania is invited, then the ambassadors of Peru 
or the ambassador of Qatar should be invited. The question is whether the head of 
protocol can obey all orders. The problem can be formulated in terms of propositional 
logic in the following way. Let us denote by p, q, r the fact that the ambassador of Peru, 
Qatar, Romania will be invited. 
 Then the orders can be formulated as follows: 
 

• King’s order:   p∨q∨r 
• Queen’s order:      (q∧r) ⇒ p 
• Prince’s order:   r ⇒ p∨q  

 
Or, equivalently:  
 

• King’s order:   p∨q∨r 
• Queen’s order:      ¬q∨¬r∨p 
• Prince’s order:   ¬r∨p∨q  

 
To solve a problem, the head of protocol has to check whether the formula  
 

(p∨q∨r)∧(¬q∨¬r∨p)∧(¬r∨p∨q) 
 
is satisfiable. He can use a SAT solver for that (and he can find that he can meet all 
orders by inviting only the ambassador of Peru).  Or, as this is a simple case, using any 
reasonable propositional logic theorem prover would also work fine. 
 

1.6.2 Example of Minesweeper 
Or consider, as an another example, the popular computer game of Minesweeper, as 
depicted in Figure 3.1: 
 

FIGURE 3.1: a screenshot of a Minesweeper GUI. 



 
 
There is a board of n x m places.  When a player selects one position on the board, the 
game is over if it contains a mine. Otherwise, the player gets the number of mines in the 
adjacent positions. Let us denote by p, q, r, s, t, u six positions in the left upper corner of 
the board:  
 
 

p q r 
s t u 

 
 
Let us suppose that we open the position p, and there is no mine. Let us also suppose 
that we got the number 1 for the position p. If we open a position q and we get the 
answer 1 again, we can safely open the positions r and u. The explanation is as follows. 
We associate a propositional variable to each position – the variable is true if there is a 
mine on the position, and the variable is false otherwise. Since there is no mine on the 



position p, it follows that: 
 

¬p 
 
Since the position p has the associated value 1, there is one mine on either q, s, or t. 
We can encode this as follows:  
 

q∨s∨t 
q ⇒ ¬s∧ ¬t 
s ⇒ ¬q ∧ ¬t 
t ⇒ ¬q ∧ ¬s 

 
Since there is no mine on the position q, it follows that: 
 

¬q 
 
Since the position q has the value 1, it means that there is one mine on either p, s, t, r, 
or u. We can encode this as follows:  
 

p∨s∨t∨r∨u 
p ⇒ ¬s∧ ¬t ∧¬r ∧¬u 
s ⇒ ¬p∧ ¬t ∧ ¬r ∧¬u 
t ⇒ ¬p∧ ¬s  ∧ ¬r ∧¬u 
r ⇒ ¬p∧ ¬s ∧ ¬t ∧¬u 
u ⇒ ¬p∧ ¬s ∧ ¬t ∧ ¬r 

 
The question whether one can safely open the position r, i.e., whether r is consistent 
with the above formulas (i.e., is it possible that there is a mine on r).  A SAT solver 
(applied to the above formulas) would easily find that such a set of formulas is not 
consistent, so there cannot be a mine on the position r (and, similarly, there cannot be a 
mine on the position u).  
 

1.6.3 Example of Socrates 
The above examples all involve propositional rather than predicate logic.  Concerning 
first-order logic, consider the following classical example.  One is given the following two 
facts:  
 

•  Socrates is a man. 
•  All men are mortal. 

 
We can encode this in first-order logic as follows:  
 



• man(Socrates) 
• (∀x)(man(x) ⇒ mortal(x)) 

 
Applying deduction allows us to conclude that, since Socrates, is a man he must be 
mortal.  For instance, a very simple proof procedure can verify that mortal(Socrates) is a 
consequence of the above facts by verifying that ¬mortal(Socrates) is inconsistent with 
the above formulas. Modal logic 
Propositional logic and first-order logic are sometimes not expressive enough for some 
sorts of common-sense reasoning. For instance, one may wish to extend them using 
so-called modal statements including qualifiers like necessary, possibly, future, past, 
etc.  For such cases, specific logics are used, such as modal and temporal logics.  
These logics are not contradictory to first-order logic, and in fact could be viewed as 
specialized theories constructed within first-order logic; but this is not always the most 
useful way to look at them.  It is often more helpful to think about them as alternative 
formalizations of logic. 
 Modal logic describes logical relations of modal notions. These notions may 
include metaphysical modalities (necessities, possibilities, etc.), epistemic modalities 
(knowledge, belief, etc.), temporal modalities (future, past, etc.), and deontic modalities 
(obligation, permission, etc.). Modal logics are widely used in philosophy, artificial 
intelligence, database theory, and game theory. Modern work on modal logics started in 
1918. with the monograph A Survey of Symbolic Logic by C. I. Lewis.  
 The main metaphysical modal notions are necessity and possibility; and the 
modal logic that describe logical relations over them is called alethic modal logic. In 
alethic modal logic, one can express a statement like “It is possible that Bob quit his 
job”. The modailities are represented by modal operators. Formulas are built using 
propositional connectives and these modal operators. The basic unary modal operators 
are usually written □ (or L) for necessarily and ◊ (or M) for possibly. These two 
operators are linked in the following way: 
 
◊p ⇔ ¬□¬p 
□p ⇔ ¬◊¬p. 
 
There is a number of modal extensions of some underlying logics, including the 
extension of first-order logic, called modal predicate logic. 
 The standard semantics of modal logics is Kripke semantics. The concept of the 
Kripke semantics of propositional modal logic includes:  
 

• A non-empty set W – a set of possible worlds;  
• A two-place relation R on elements from W–  the accessibility relation 

between worlds, which represents the possible worlds that are considered in 
a given world, i.e., if we consider a world w0, every world v such that it is in 
relation R with w0 represents a possibility that is considered at a world w0; 

• A frame – a tuple (W, R);  

Given a frame (W, R), a model M is a tuple (W, R, V) where V is a map that assigns to a 



world a valuation on propositional variables, i.e. for a given world w, V(w) is a function 
from the set of propositional variables to {0, 1}. Interpretation of a formula F with respect 
to M is defined in the following way (the fact that F is true at a world w in a model M” is 
denoted by M,w ⊨  F.): 

M,w ⊨  p iff V(w)(p)=1 (where p is a propositional variable)  
M,w ⊨  F ∧ F’ iff M,w ⊨  F  and M,w ⊨  F’.  
M,w ⊨  ¬F  iff not M,w ⊨  F   
M,w ⊨□F iff, for every world w’ such that it is in relation R with W it holds that, M,w ⊨  F. 
 
The semantics of other propositional connectives and the operator ◊ are implied by the 
above definition.  A formula is then defined to be valid in a model M if it is true at every 
possible world in M. A formula is valid if it is valid in all frames (or every model). 
 For the given semantics, there is a sound and complete inference system for 
propositional modal logic – the system K. In addition to underlying propositonal axioms 
and inference rules, there is the axiom 
 
□(F ⇒ F’) ⇒ (□F ⇒ □F’)  
 
and the rule  
 
if ⊢□F, then ⊢F 
 
There are various inference systems for propositonal modal logic obtained by adding 
extra axioms to K.  
 There are also fuzzy versions of modal logics, see for instance, [Thiele, 1993] 
and [Ying, 1988]. 

1.7 Deontic logic 
An interesting specialization of modal logic, which is potentially useful for doing logical 
inference about human behaviors and motivations, is deontic logic -- which is concerned 
with the ideal and actual behavior of social agents, and involves notions like 
permissible, impermissible, obligatory, gratuitous, optional, etc.  Deontic logic has many 
analogies with alethic modal logic.  In addition to theoretical interest, deontic logics are 
used for formalizing different real-world concepts and problems such as morality, 
normative law, legal analysis, social and business organizations and security systems, 
computer security, electronic commerce, or legal expert systems.    
 A survey of applications of deontic logic in computer science can be found in 
[Wieringa & Meyer, 1993], which supplies the following systematization of applications 
of deontic logic in computer science: 

1. Fault-tolerant computer systems.  
2. Normative user behavior.  
3. Normative behavior in or of the organization.  



(a) Policy specification.  
(b) Normative organization behavior (e.g. contracting).  

4. Normative behavior of the object system.  
(a) The specification of law.  
(b) The specification of legal thinking.  
(c) The specification of normative rules as deontic integrity constraints.  
(d) Other applications, not discussed above. 

The first formalization of deontic logic was given by  E. Mally in 1926. More details on 
deontic logic can be found in [McNamara & Prakken, 1999].  
 In the “Traditional scheme” for deontic logic, there are five normative statuses 
considered: 
 

• it is obligatory that (OB) 
• it is permissible that (PE) 
• it is impermissible that (IM) 
• it is gratuitous that (GR) 
• it is optional that (OP) 

 
The first one of the above can be used as a basis, while the remaining one can be 
defined in the following way: 
 
PEp ⇔ ¬OB¬p 
IMp ⇔ OB¬p 
GRp ⇔ ¬OBp 
OPp ⇔ (¬OBp ∧ ¬OB¬p) 

 Standard Deontic Logic (SDL) is the most studied deontic logic. It extends 
propositional logic by the (one-place) OB deontic operator. Formulas are built in the 
standard modal-logic way.  The semantics of SDL is usually given in Kripke-style. The 
inference system for SDL consists of axioms for (classical) propositional calculus and 
inference rules, the additional inference rule “if p then ⊢OBp” and the following 
axioms: 

OB(p ⇒q) ⇒ (OBp ⇒OBq) 
OBp ⇒¬OB¬p 
 
 Consider the following simple example. Let us assume that the hypotheses are: 
 
It ought to be the case that Alison does the paperwork. 
If Alison does the paperwork, then Alison leaves the office late. 
 
Let us denote Alison does the paperwork by p and Alison leaves the office late by q:   
 Then, we can prove It ought to be the case that Alison leaves the office late (i.e., 



OBq) as follows: 
 
 

(C1) OBp    (hypothesis) 

(C2) p⇒q    (hypothesis) 

(C3) OB(p ⇒q)    (deontic inference rule, from (C2)) 

(C4) OB(p ⇒q) ⇒ (OBp ⇒OBq)    (deontic axiom) 

(C5) OBp ⇒OBq    (Modus ponens, from (C3) and (C4)) 

(C6) OBq    (Modus ponens, from (C1) and (C5)) 

There is a number of variants of the SDL inference system and there are interesting 
logical and philosophical considerations for each of them. 

1.7.1 Fuzzy deontic logic 
While there is a number of approaches to fuzzy modal logic (see the next chapter for a 
recall of fuzzy logic), there is a very limited literature on fuzzy deontic logic. One version 
of fuzzy deontic logic was introduced and discussed by [Gounder & Esterline, 1998]. In 
their framework, given the statements  
 
p = Person p receives a driver’s license. 
q = Person p is 18 or older. 
r = Person p is an employee of company c. 
s = Person p is over 80 years old. 
t = Person p is under 20 years old. 
u = Company c gives its employees a bonus. 
v = The employees of company c arrive at work not more than ten minutes late. 
 
one can consider the following interesting deontic statements: 
 
OB(p ⇒ q) which implies OBp ⇒ OBq 
r ⇒ OB(¬s ∧ ¬t) 
u ⇒ OBv 
 
These statements need not be crisp, but can be in a permissible range which is given in 
the fuzzy truth value in the interval [0, 1] and one obligation may lead to another 
obligation.  
 Concerning reasoning in this theory, as said in [Gounder & Esterline, 1998], 
since fuzzy logics work with numerical measures, axiomatic systems are not 



appropriate. Instead, fuzzy versions of the semantic properties exist and can be shown 
to correspond to some of the axioms for the crisp systems in special ways that support 
dependency among assertions in a modal domain.  
 

The frame problem 
 
A final issue that must be discussed, in the context of knowledge representation using 
formal logic, is the “frame problem,” as originally recognized and named in [McCarthy & 
Hayes, 1969].  Put most simply, this is the problem of representing the effects of action 
without having to represent explicitly a large number of intuitively obvious non-effects 
(i.e., properties that are not affected by the action). The frame problem also has a wider 
epistemological importance and it considers whether it is possible, in principle, to limit 
the scope of the reasoning required to derive the consequences of an action. The name 
"frame problem" was derived from a common technique used in producing animated 
cartoons where the currently moving parts of the cartoon are superimposed on the 
"frame", which depicts the non changing background of the scene.   
 While the frame problem is a major issue for certain approaches to logic-based 
AI, we don’t see it as an objection to scalably deploying logic-based technology to draw 
inferences based on large spatiotemporal knowledge bases (nor to other scalable real-
world inference applications).  Rather, we see it as an objection to embedding logical 
inference engines in overly simplistic cognitive architectures.  We believe the frame 
problem can be bypassed via judicious inference control heuristics, including some that 
are implicit in the ideas discussed in the previous section, and some others that will be 
discussed here. 

Review of the Frame Problem 
 
To elaborate the frame problem a little more fully, suppose we have the following 
knowledge: 
 

• Alison is in her office and she wears a blue suit. 
• If Alison moves from her office, then she is in the loby. 
 

If we represent the above in classical first-order logic, using some suitable formalism for 
representing time and action (e.g., CTL logic, or an appropriate subset of PLN, both 
discussed below), we can derive that after Alison moves from her office she will be in 
the lobby.  However, we will not be able to derive that Alison’s suit is still blue. Namely, 
the knowledge given above does not rule out the possibility that the color of Alison’s suit 
changes when she moves out of her office.  A straightforward solution for this is to add 
rules that explicitly describe the non-effects of each action (e.g., “when Alison moves 
from her office, the color of her suit does not change”). Such formulae are called frame 
axioms. However, this is not a satisfactory solution. Namely, since most actions do not 
affect most properties of a situation, in a domain comprising M actions and N properties 
we will, in general, have to write out MN frame axioms which would make any reasoning 
process impractical. 



 In [Shanahan & Baars, 2005] there is a more detailed account on the frame 
problem, including a brief description of Dennett’ memorable example: 
 
…consider the challenge facing the designers of an imaginary robot whose task is to 
retrieve an object resting on a wagon in a nearby room. But the room also contains a 
bomb, which is timed to explode soon. The first version of the robot successfully works 
out that it must pull the wagon out of the room. Unfortunately, the bomb is on the 
wagon. And although the robot knows the bomb is on the wagon, it fails to notice that 
pulling the wagon out brings the bomb along too. So the designers produce a second 
version of the robot. This model works out all the consequences of its actions before 
doing anything. But the new robot gets blown up too, because it spends too long in the 
room working out what will happen when it moves the wagon. It had just finished 
deducing that pulling the wagon out of the room would not change to color of the room’s 
walls, and was embarking on a proof of the further implication that pulling the wagon out 
would cause its wheels to turn more revolutions than there were wheels on the wagon—
when the bomb exploded. So the robot builders come up with a third design. This robot 
is programmed to tell the difference between relevant and irrelevant implications. When 
working out the consequences of its actions, it considers only the relevant ones. But to 
the surprise of its designers, this version of the robot fares no better. Like its 
predecessor, it sits in the room “thinking” rather than acting. “Do something!” they yelled 
at it. “I am,” it retorted. “I’m busily ignoring some thousands of implications I have 
determined to be irrelevant. Just as soon as I find an irrelevant implication, I put it on the 
list of those I must ignore, and.” the bomb went off. 
 
 It is obvious that the human brain incorporates a solution to the frame problem 
and does not suffer from overwhelming information when deriving new conclusions. 
When we say that Alison left her office, we don’t need to state explicitly that her suit 
hasn’t change its color, that Bob’s cat hasn’t changed its sex, that the Sun continues to 
shine, etc. Such information is taken for granted by common sense. In mathematical 
logic, however, nothing is taken for granted and in classical logic it is necessary to 
represent explicitly all the things that change and all the things that do not change by 
some action.  
 

Working around the Frame Problem  
 

Perhaps the best-known attempt to work around the frame problem, within the 
scope of logic-based AI, begins from the observation that the inference process in 
classical logic is monotonic, meaning that the set of conclusion can only grow when we 
add new premises (we do not retract some conclusions if we are presented with some 
new premise).  But, it would be nicer if one could infer that Alison’s suit is, generally, of 
the same color when she leaves her office and, in addition, it would be suitable, to add 
some exceptions, stating otherwise (“If Alison spilled coffee on her suit, then she has to 
change her suit before she leave her office”).  In other words, one would like to be able 
to declare the general rule that an action can be assumed not to change a given 
property of a situation unless there is evidence to the contrary. Such reasoning is 



possible within non-monotonic logics. Despite the fact that there is also a number of 
problems with the frame problem when addressed by non-monotonic logics, it can be 
considered that they provide a satisfactory solution. In artificial intelligence, there are 
also some other approaches, that handle different incarnations of the frame problem 
with more or less success. The frame problem is still making an influence on issues in 
cognitive sciences, philosophy, psychology, etc. 
 Propositional and first-order logic as defined are monotonic. This means that the 
set of facts that can be derived from S increases when S increases. However, again, 
this is not appropriate for some sorts of common-sense reasoning. For example, if we 
are given a fact that Tweety is a bird, we by default derive the fact that Tweety flies. But, 
if we are given an additional fact that Tweety is a penguin, then we retract our 
conclusion and derive the new one – that Tweety does not fly. There is a family of logics 
following this motivation and trying to model common-sense reasoning, summarized for 
instance in [Reiter, 1980; Delgrande & Schaub, 2003] 

However, nonmonotonic logic is not the only route for circumventing the frame 
problem; for instance in our own work with PLN, we have taken a significantly different 
approach, to which we will return in the final chapter of this book. 
 



 

3 Quantifying and Managing 
Uncertainty 

 
Another major issue in formal logic systems is the quantification and incorporation of 
uncertainty.  It is of course possible to represent uncertainty using theories within first-
order logic, but many have argued that uncertainty is sufficiently basic to commonsense 
inference that it should be introduced into formal logic at a foundational level. 
 With this in mind, there are many different ways of representing uncertainty 
within logical formalisms.   Some of the leading approaches may be summarized as: 
 

• Fuzzy  
• Traditional Probabilistic 
• Imprecise / Indefinite Probabilistic 

 
We have touched some of these briefly above, but we will now review them slightly 
more systematically. 

Fuzzy logic 
Fuzzy logic [Zadeh, 1965] extends the notion of boolean truth (true vs. false), to 
encompass degrees of truth varying between 0 and 1; and generalizes the standard 
boolean operators {¬, ∧, ∨} by “fuzzified” counterparts. These generalized operators 
are usually (but not always) defined as follows: 
 
¬x = 1-x 
x∧y = min(x, y) 
x∨y = max(x, y) 
 
It appears that for various instances of commonsense reasoning, fuzzy logic is more 
immediately appropriate than boolean crisp logic; for instance the fuzzy predicate:  
 

(strong(x) ∧ healthy(x)) ∨ intelligent(x) 
 
allows one to characterize the degree to which a person is both strong and healthy, or 
intelligent; while its boolean interpretation can only draw two crude categories, which 
does not fit how one would think about the proposition with our common interpretation of 
the concepts strong, healthy and intelligent. 
 

Possibility theory 
In fuzzy logic, values associated to facts or propositions range from 0 to 1 but represent 
truth values. In possibility theory [Zadeh, 1978], on the other hand, a proposition may be 
boolean but what is considered instead is its degree of belief by an agent. That degree 



of belief is represented by two values, the necessity denoted nec(p) and the possibility 
denoted pos(p) representing the extent to which an agent considers p to be necessary 
and possible. For instance pos(earth_flat)=0.9 and nec(earth_flat)=0.2 represent 
respectively how much an agent believes the earth is possibly and necessarily flat. 
 The possibilities pos(p)=1 and pos(¬p)=1 represent a total state of ignorance 
about p, or equivalently nec(p)=0 and nec(¬p)=0. Having pos(p)=pos(¬p) does not 
contradict the principle of bivalence because this is the degree of belief of p which is 
considered not its truth. Thus possibility and necessity are not self-dual, that is it is not 
the case that pos(p)=1-pos(¬p), however there are mutually-dual as formalized by the 
following axiom: 
 

nec(p)=1-pos(¬p) 
 
Other axioms permit one to determine the possibility and necessity of a formula based 
on the possibilities and necessities of its components -- but not always. For instance  
nec(p ∧ q) equals to min(nec(p), nec(q)) like in fuzzy logic, but pos(p ∧ q) is not 
generally equal to min(pos(p), pos(q)); however one can always bound the latter value 
using necessity and possibility measures combined: 
 

min(nec(p), nec(q)) ≤ pos(p∧ q) ≤ min(pos(p), pos(q)) 
 
Finally, although fuzzy logic and possibility theory are built around two different 
semantics, if nec=pos then possibility theory amounts axiomatically to fuzzy logic (with 
the min/max interpretation for ∧/∨); and for that reason possibility logic is sometimes 
referred as an extension of fuzzy logic. 
 

Inference using Traditional Probabilities 
As probabilistic methods have become very popular in the AI field lately, there now 
exists a wide range of methods and theories regarding probabilistic inference and logic; 
we will only describe a handful of the most relevant ones here. To understand the 
following sections the reader needs to be familiar with probability theory. 

Bayesian Inference 
Methods to reason about probabilities include Bayesian inference and Bayesian 
networks, both called so because they mainly rely on Bayes' theorem, a formula from 
elementary probability theory recalled below: 
 

P(Y|X) = P(X|Y)P(Y)/P(X) 
 
Bayesian inference is a mean to infer or revise the probability of an hypothesis knowing 
a set of observations (for instance determining the probability of a disease in the 
presence of symptoms).   Bayesian networks are graphical models, formally DAGs 
(directed acyclic graphs), representing dependencies and independencies between 
random variables.   We will describe Bayesian networks in some detail here, as they will 



arise in later chapters when we discuss their applicability to mining causal relationships 
from large knowledge stores. 

Bayesian Networks 
A Bayesian network is a graphical model that represents a probabilistic joint distribution 
over a set of variables represented as nodes and direct dependences represented by 
arcs between nodes. More formally a Bayesian network is a DAG (directed acyclic 
graph), where each node contains a variable and a function representing a conditional 
probability of that variable knowing its parents, which are all variables that have an arc 
pointing to that given node. If the node has no parent then the function represents a 
marginal probability. See Figure 4.1 for an example of a Bayesian network with 4 
variables. 
 

FIGURE 4.1: a small Bayesian network. 

 
 
 Usually the probabilities, conditional and marginal, are coded into matrices. 
Figure 4.2 represents possible probabilities coded in matrices of the Bayesian network 
of Figure 4.1. They also can be coded in any other appropriate structures, like decision 
trees, decision graphs and such. 
 



FIGURE 4.2: probability matrices associated with the network nodes. 

 
 
 As mentioned above, direct dependences are represented with arcs between 
variables; additionally it is possible to assess the conditional dependence and 
independence of any group of variables by applying the notion of d-separation 
introduced by Pearl [Pearl85].  When a triplet of variables X, Y, Z are d-separated then 
we can conclude that X and Y are independent conditionally to Z ; and conversely if 
there are independent then they are d-separated (actually that equivalence between d-
separation and independence does not always hold, only when the distribution is DAG-
faithful; we won't recall what DAG-faithful is here, however one should note that most of 
practical real life distributions are DAG-faithful or close to it).  We also won't recall the 
detailed definition of d-separation here, but what is most important to note here is that 
the d-separation criterion is a graphical one. This means that one can assess the 
dependences of variables solely based on the topology of the network, which in itself is 
a useful thing. Figures 4.3 and 4.4 display two examples of d-separated variables. 
 



FIGURE 4.3: d-separation in sets of variables. 

 
 
 

FIGURE 4.4: X8 and X9 are d-separated conditionally to {X3, X4, X7} in this example. 

 
 
Given a Bayesian network one can compute the joint distribution of a set of variables 

by applying the following formula: 

 

where is the set of variables with outgoing arcs pointing to . 



 
It is worth noting that any distribution can be represented by a Bayesian network (see 
Figure 4.5 for an example of how that can be done). And there are usually many 
possible Bayesian networks to represent a given distribution, see Figure 4.6 for an 
example. 
 

FIGURE 4.5: Bayesian network so that parent(Xi)=X1,…,Xi-1 

 
 

FIGURE 4.6: two Bayesian networks representing the same distribution (bottom). 

 
 

Bayesian Causal Networks 
Next, a Bayesian causal network is a Bayesian network where the arcs represent 
causal relationships. A probability distribution alone is usually not enough to determine 
causality, for reasons we reviewed earlier. And one needs additional knowledge either 



given by an expert (stating for instance that weather may influence ice cream sales but 
not the opposite), or coming from more general assumptions, such as for instance the 
knowledge that if event A occurs before event B then A can be a cause of B but B 
cannot be a cause of A. Note however that this sort of assumption involving time must 
be used cautiously because when A occurs before B, both A and B may actually be the 
result of a common cause C; in this case, C is called a confounding variable.  Real life is 
full of confounding variables! 
 Many techniques available for Bayesian networks apply with little or no 
modification to Bayesian causal networks. For instance Bayesian inference, described 
in the next section, works exactly the same for a causal or non causal Bayesian 
network.  On the other hand, network learning techniques may diverge more 
significantly because they need to take into account additional background knowledge 
in order to decide whether or not a given causal relationship is authorized. 

Bayesian Inference 
Given a Bayesian network one can use it to perform various probabilistic inferences.   In 
this context, inference means calculating joint marginal and conditional probabilities. 
 For instance, let us consider the Bayesian causal network of Figure 4.7. 
 

FIGURE 4.7: a Bayesian causal network. 

 
Let I, P, O and R be binary random variables respectively representing Internet 
connection working, Pay-check arrived, On-line purchases and Router overloaded.  
 One may want for instance to know the probability that a particular individual is going to 
make on-line purchases knowing that his router is overloaded and he hasn't received 
his pay-check yet. That is, we want to compute the conditional probability: 
 



 
 

The basic method to compute the above is called variable elimination. That is, one 
eliminates by summation the variables which are absent of the conditional probability of 
interest, in this example the variable I. This permits one to compute any partial joint 
marginal probability and the conditional probability is obtained by normalization. 
 So in the example one needs to compute the joint marginal probabilities: 

 
 

 
 
 

And the conditional probability is obtained by normalization: 
 

 
 

Let’s first compute  
 

 

 
 
Then we compute , but since R and P are independent, according to the 
d-separation criteria, we can directly get  
 So the conditional probability of making on-line purchases is: 

 
 

 
 There exists a variety of algorithms to perform these sorts of inferences,  which 
include various optimizations, like caching and reusing intermediate results and using d-
separation criteria (as we have done in the example above) to skip unnecessary 
summations. 
 
 

Markov Logic Networks 
 Next, Markov Logic Networks [Richardson & Domingos, 2006] involve a 
combination of First Order Logic (FOL) and Markov Network. This constitutes an 
elegant way to define probability distributions over interpretations. Markov Networks are 



very similar to Bayesian Network but are represented by an undirected graph instead of 
a DAG like in Bayesian Networks.  As a Bayesian Network, a Markov Network can 
model any joint distribution; but it gives more compact models for certain classes of 
distributions. The notion of conditional independence has a simpler representation with 
Markov Networks.  However traditional Bayesian Networks can explicitly represent 
causality while Markov Networks cannot.   

In probability theory terms, the complete joint distribution of a Markov Network is 
defined by composing together a set of (not yet normalized) partial joint distributions 
over a group of variables that are all dependent on each other (i.e., a clique in the usual 
graph-theoretic terminology).  Logic-wise, what this means is that one can define a 
probability distribution over the set of interpretations (or possible worlds) given a set of 
first order logic axioms by building its corresponding Markov network. An interpretation 
is a truth table of all atoms defined in the logic (like for instance follows(Jill, 
Sebastien)=true, online(Sebastien, 11pm)=false, etc), and each atom has a 
corresponding random variable in the Markov network. Each axiom is associated with a 
clique (containing the atoms of the formula), and the function of the clique is basically 
an exponential of the number of axioms that satisfy a given interpretation. It is also 
possible to weight the axioms. 
 Once the Markov network has been built it can be used to determine the 
probability of any given interpretation, and of course the conditional or marginal 
probabilities of any combination of atoms, like 
 

P(online(Sebastien, 11pm)=false) 
 
or 
 

P(online(Jill, 11:20pm) | online(Sebastien, 11pm), follows(Jill, Sebastien)) 
 
Note that interpretations that do not actually satisfy all the axioms can have a non null 
probability as well -- but of course they'll usually have a lesser strength, due to the fact 
that they fulfill less axioms than a satisfying interpretation (although that actually 
depends on the weights of the axioms).  
 An interesting thing here is that one can define any Markov network by listing a 
set of axioms in first order logic. And most importantly one can perform probabilistic 
inferences about formulas using that Markov network, like computing the probability that 
a formula F2 is satisfiable knowing that F1 is satisfiable. 
 

Imprecise and indefinite probability 
Imprecise probability is a generic term referring to a variety of theories that extend 
probability theory when the probability measure is partially known or inadequate. The 
most common class of imprecise probabilities uses upper and lower probabilities 
[Walley, 1991]. That is, an event may be characterized by two values, its upper and 
lower probabilities, instead of one probability; and this interval is interpreted to delimit 
the means the probability distributions lying in a certain envelope, and constructed 
according to certain distributional assumptions.   



 Other theories for dealing with imprecise probability use the notion of meta-
probabilities (that is probability distributions over probabilities). There are debates 
amongst statisticians whether or not to allow meta-probabilities because that meta-level 
often cannot be subject to repetitive experiments. Therefore some prefer to consider a 
subjective interpretation of probability (as opposed to a frequentist interpretation), which 
may affect the choice of the assumptions regarding how to model imprecise probability.  
 One well developed imprecise probability theory using meta-probabilities is called 
Indefinite Probability [Goertzel et al., 2006c]; it uses  lower and upper probabilities plus 
a degree of confidence, more formally any event w has an indefinite truth value 
consisting of a quadruplet <[L, U], b, k> which roughly means that after k more 
observations there is a meta-probability b that the probability of w lies within [L, U].   
This method of quantifying probabilities is used in the Probabilistic Logic Networks 
approach to inference, which is detailed in the following chapter. 



 

Representing Temporal Knowledge 
 
We’ve discussed the basics of logical reasoning and logical knowledge representation, 
in a general way.  It’s now time to get more specific and talk about one of the 
applications of logic that’s most central to our topic: logical representation of time. 
 The natural way to present this material is to start with temporal representation 
and then move to temporal reasoning.  However, we will first make a few brief 
comments about temporal reasoning, with the goal of motivating our choices in temporal 
representations.   This should be expectable, because in large part it’s the requirements 
of reasoning that determine what kinds of knowledge representation are appropriate. 
 Temporal reasoning, broadly construed, is the process of inferring new relations 
between events localized in time based on known facts and relations about those 
events.  As such, temporal reasoning can be divided in two main branches, depending 
on how time is represented: 
 

• Quantitative: in this variant, information regarding absolute, numeric temporal 
labels - or time stamps, using a computational jargon - is important for reaching 
conclusions about events, and therefore it is used as part of the modeling. 
Quantitative temporal reasoning will work with events specified in a temporally 
hard way, such as “event A begins at 01:31 and ends at 02:03”. 

• Qualitative: this variant is not concerned at all with absolute time stamps; 
instead, only relative relations between events - such as event A happens before 
event B, event C happens during event B, and so on - are relevant for producing 
inferences on the known temporal facts. 

  
The quantitative approach is mainly applicable (and relevant) in applications where both 
accurate timing data is available and extreme time precision is necessary, such as 
reasoning about the functioning and performance of real-time systems.   On the other 
hand, the qualitative approach is more appropriate to the analysis of data arising from 
human systems, or from noisy sensors as possessed by biological organisms or 
robots), and therefore we will concentrate here mainly on the qualitative approach. 
 Within the qualitative approach, there are two main issues to be confronted:  
 

• how to represent basic units of time (how to “quantify time”) 
• how to represent relationships between basic units of time 

 
A number of different approaches exists to both of these problems, and we will now 
review these. 
 

Approaches to Quantifying Time 
Figure 5.1 presents a simple ontology of the different approaches that have been taken 
to the representation of basic time-units. 
 



FIGURE 5.1: qualitative relations between approaches for temporal representation. 

 
 
 As depicted in Figure 5.2, the essential aspect of time is its ordered nature: for 
any given two temporal units, we can judge whether one is before or after the other, or 
whether the two are simultaneous.  All methods of quantifying time incorporate this 
ordering aspect.  The simplest method of ordering time, the point, has basically no 
qualitative aspects other than ordering.  Two time-points can be compared as to their 
ordering, and there’s nothing else to do with them, except to get quantitative and 
measure the distance between two time points. 
 On the other hand, we can also consider models of the time-unit that have a 
richer set of relationships amongst them, such as intersection, adjacency and so forth.   
We call models like these “topological,” and the most common approach here is to 
represent time using intervals.  There is an argument that this is a more psychologically 
natural approach than time-points – a single, indivisible, instantaneous point being a 



kind of mathematical abstraction.   The topological relationships between time-intervals 
are most commonly treated using Allen’s interval algebra, to be discussed shortly 
below. 
 In addition to simple time intervals, there are other related approaches such as  
 

• fuzzy intervals (the areas near the edge of the interval have less membership in 
the time-unit than the ones near the center, as determined by some fuzzy 
membership function) 

• probabilistic intervals (with the meaning that each subinterval either does or 
does not belong to the event associated with the time-unit, but the subintervals 
near the edge of the interval have a smaller chance of belonging to it), which may 
take the form of treating an interval as a confidence interval, or of utilizing a 
whole probability distribution instead of an interval 

• distributional fuzzy intervals, which use a probability distribution of fuzzy sets 
(meaning that each subinterval has a certain probability distribution of 
membership degrees in the event associated with the time-unit) 

 
These various possibilities are depicted in Figures 5.2 and 5.3. 
 

FIGURE 5.2: point-like, interval and fuzzy representations of an event. 
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FIGURE 5.3: probabilistic and distributional representations of the same event. 

 

Allen’s Interval Algebra 
The most traditional and well-developed theoretical framework for systematizing the 
qualitative relationships between time-intervals is Allen’s Interval Algebra, or simply 
Interval Algebra (IA), formalized for the first time in [Allen, 1983].   IA, in its original and 
simplest form, models temporal events as intervals, that is, processes that have a 
beginning and an end in time. Based on that, thirteen temporal relations may exist 
between any given pair of events.   Figure 5.4 illustrates those relations with a simple 
bar representation for intervals: 
 

FIGURE 5.4: possible logic relations between two intervals according to Allen’s Algebra. 



 
The calculus defines possible relations between time intervals and provides a 
composition table (see the next chapter for an example of composition table) that can 
be used as a basis for reasoning about temporal descriptions of events. Time intervals 
are not necessarily represented by precise endpoints, but rather by their relationships. 
So, in this framework without metric one can express that a time interval is contained by 
another time interval etc. 
 The following table shows many of the base relations in a different notation, 
explicitly typing them in with logical constraints (X- denotes the left end of the time 
interval X and X+ denotes the right end of X):  
 
 
 
 



 

 
 
 

 
 

Relation Name Constraint 

< 
> 

X Before Y 
Y After X X+ < Y- 

m 
mi 

X Meets Y 
Y Met by X X+ = Y- 

o 
oi 

X Overlaps Y 
Y Overlaps by X 

X-<Y- ∧ X+<Y+ ∧ Y-
<X+ 

s 
si 

X Starts Y 
Y Started by X X-=Y- ∧ X+<Y+ 

d 
di 

X During Y 
Y Contains X Y-<X- ∧ X+<Y+ 

f 
fi 

X Finishes Y 
Y Finished by X X->Y- ∧ X+=Y+ 

= X Equals Y X-=Y- ∧ X+=Y+ 
 

Formally, note that the constraints in Allen's algebra are of the form  
 

I1(rel1,..., reli)I2, 
  
where I1  and I2 are time intervals, and rel1,..., reli are some of the above 13 relations, 
with the meaning that at least one of them holds. 

Consider the example, "John was not in the room when I touched the switch to 
turn on the light".  Let  
 
A be the time John was in the room,  
B be the time I touched the light switch, and  
C be the time the light was on.   
 
Then we can say  
 

A { p, m, mi, pi, } B, 
 
that is, A precedes, meets, is met by, or is preceded by B; and B { m, o } C,  that is, B 
meets or overlaps C.   
 Similarly, the sentences 
 

During lunch, Alison reads newspaper. 



Afterwards, she goes to her office. 
 
may be formalized in Allen's Interval Algebra as follows: 
 

AlisonReadsNewspaper { d, s, f } AlisonIsHavingLunch 
 
AlisonIsHavingLunch  { <, m } AlisonGoesToOffice 

 
For instance, the notation {d,s,f} refers to three relations in the above table, and 
indicates their disjunction; so it means “during or starts or finishes.” 
 It is clear that all of the above relations can be defined from the three binary 
relations <, =, and > applied to the bounds of two intervals to be located w.r.t each 
other. For instance, the assertion X overlaps Y corresponds to  
 

X-<Y- ∧ X+<Y+ ∧Y-<X+ 
 
as shown in the above table. 
 The basic relations describe relations between definite, certainly known 
intervals.  Uncertainly known intervals may be described by a set of all the basic 
relations that may apply.  We call such a set of basic relations a general Allen relation, 
or just an Allen relation.   
 There is a general relation for every combination of the thirteen basic relations:  
213 or 8192 of them.  Each of the basic relations is a relation, of course, as are all their 
combinations.  The full relation holds between two intervals about whom nothing is 
known.  The empty relation {} has no meaning in terms of relations between actual 
intervals, but is the result of some operations on interval relations.   
 The “satisfaction problem” for Allen's interval algebra is determining, for a 
particular collection of relations on indefinite intervals, whether there is any set of 
specific time values for the intervals such that all the relations in the collection are true. 
For example, a collection of relations and intervals that is not satisfiable is three 
intervals A, B, and C such that A { p } B, B { p } C, and C { p } A (each precedes the 
next, and the last precedes the first).  There are no definite intervals for which all these 
relations can hold.  The satisfaction problem is shown to be NP-complete [Vilain et al., 
1989]. However, there are subclasses of the problem that are tractable and that permit 
polynomial-time decision procedures.  
 

Allen Algebra in the Twitter Domain 
In order to better understand the practical uses of IA, we will now explain how to 

apply logical formalism to a specific domain, consisting of messages in the Twitter 
microblogging service.  We will make use of this same example domain in some other 
examples in the following, and so take this opportunity to briefly summarize the domain 
before using it to exemplify interval algebra.  

Twitter is a free web service allowing individuals to post brief public or private 
messages (“tweets”).  Each “tweet” deals with specific concepts, entities and 
sentiments, and has a specific author.  Further, there is a social network of tweet 



authors; tweets may be geographically localized via IP address; and information about 
tweets is publicly available via the Twitter software API.  See Figure 5.5 for a 
screenshot of the Twitter interface. 
 

FIGURE 5.5: a screenshot of the Twitter.com web service. 

 
 
 
 

In order to develop some of our future examples using this domain, we will need 
to introduce some special “primitive” logical term and relationship types (i.e. a 
“signature” for our theory relating Twitter entities).   The primitive terms and 
relationships we introduce are depicted in Figures 5.6 and 5.7.  
 



FIGURE 5.6: primitive terms for a logical formalism targeting the Twitter domain. 

 
 



FIGURE 5.7: logical relationships in the Twitter formalism. 

 
The commonsense semantics of these concepts and relationships should be fairly 
obvious; however, the right way to rigorously formalize some of these relationships 
(such as the spatial and temporal ones) is a complex issue, and will occupy a 
considerable percentage of this book!  

Returning to interval algebra, Figure 5.7 shows schematically an example 
sequence of Twitter entries and the events that can be inferred from them. 
 



FIGURE 5.7: Tweets as temporal events, associated with time intervals.  Note that in 
the figure, more recent events occur toward the top of the figure. 

 
 
 Referring to Figure 5.7, note that many relations between the assigned events 
can be inferred. For instance: 
 
“Peter watches debate” occurs during “Jane plays game”. 
“Jane plays game” overlaps “Bill writes report”. 
“Bill makes coffee” occurs during “Bill writes report”. 
“Peter watches debate” precedes “Bill writes report”. 
 
 Temporal relations such as those listed above can be represented in the form of 
a graph, forming a type of graph that we call a Temporal Interval Network. Those are 
methodologically interesting in the sense that they transform many problems of IA into 
graph problems.   Figure 5.8 shows the equivalent TI network for many of the relations 
between the events in Figure 5.7: 
  



FIGURE 5.8: a time interval network for the events of Figure 5.7. 

 
 

Uncertain Interval Algebra 
As noted above, IA in its original form presumes the existence of hard instants in time 
where events start and begin. However, in the real world, the actual start and end times 
of many events may be hard to define; and furthermore, in the specific case of the 
Twitter interface the imprecision of events in personal lives is taken into account by the 
use of a time scale of varying discretization (jumping from half an hour to hourly marks, 
for instance) as well as the use of words denoting imprecision (“about”). 
 In the fuzzy version of IA, relations between events are defined in terms of 
degrees of truth.  Putting it simply, the truth value of a relation is the degree of 
“existence” of that relation, varying from 0 to 1. For instance, one may estimate that 
event A precedes event B with a degree of truth of 0.7 .  From now on, we will denote 
such assignments with a functional notation - for instance A precedes B with a truth 
value becomes precedes(A,B,0.7).   
 Interestingly, the use of fuzzy logic allows the existence of multiple relations that 
are mutually exclusive in the original, rigid IA. For instance one can say that  at the 
relations precedes(A,B,0.7) and overlaps(A,B,0.3) are both valid under a fuzzy 
modeling. (The previous numeric also illustrates that the sum of the truth values of all 
relations between two events has to be 1.0, “full existence” so to speak.)  Figure 5.7 
shows another TI, this time fuzzy (with truth values attached to edges), showing some 
of those “ambiguously” modelled relations for the events of Figure 5.5.  As one can see, 
now an edge between any two events  is defined by a tuple that may be composed of 
multiple truth values for different relations. 



 
FIGURE 5.7: yet another variation of a TI network modelling imprecision. 

 

 
 
 Finally, in the probabilistic version of IA, a value represents the probability that a 
given relation between two events  is assigned. Multiple probabilistic relations between 
two events that would have only one relation in the classic version of IA are also 
possible. At first, that may sound very similar to the fuzzy version, specially under the 
numerical viewpoint. However, conceptually they are completely different. Speaking in 
terms of TI networks, in the fuzzy case a given edge can be multiple types of relations 
at the same time, in different degrees. In the probabilistic case, a given edge can have 
the possibility of being multiple relations, with different probabilities, but that is a 
modelling of uncertainty on the nature of an edge that in the real world fits into just one 
of the options. 
 One aspect of probabilistic IA that may clarify its conceptual difference relative to 
the fuzzy version is the problem of determining the most likely subnetwork. An example 
of that is illustrated in Figure 5.8, where a very small subset of events from the example 
Twitter flow is used to compose a probabilistic IA network. For sake of clarity, different 
relations (with assigned probabilities) between two events are represented by different 
edges. The dotted edges form the less likely subnetwork, while the solid edges 
represent the most likely network. In the example, that hints at the sequence of events 
that most likely happened in reality. 
 



FIGURE 5.8: finally, a probabilistic TI network modelling the same events. 

 
  
 While the possibility has not been explored in the literature, one may also 
conceive fuzzy probabilistic IA, involving intervals interpreted as confidence intervals of 
centers of fuzzy membership functions.  Various other related possibilities also exist, 
offering a great deal of modeling flexibility. 
 The problem of finding the most likely subnetwork brings to mind computational 
considerations on dealing with IA, which will be briefly examined here. As already 
mentioned (and as the most likely network example already illustrates) most if not all IA 
problems can be modelled in terms of graph problems, and finding the optimal solutions 
for many of them is combinatorially explosive,  and not viable for realistically large IA 
networks. However, the theoretical work on IA has found subsets of it that are 
computationally tractable, as well as heuristics that significantly reduce computational 
time at the cost of finding a solution that is not guaranteed to be optimal [van Beek and 
Manchak, 1997]. And much of that is just applied graph theory, since many of the 
relevant problems in IA are reducible to classical graph problems.  That is, IA networks 
(classic or otherwise) are in principle manageable by an extremely diverse plethora of 
optimization methods, as in the case of any graph problem.  
 



 

 

4 Temporal Reasoning 
 
 In principle, logical inference about propositions involving events embedded in 
time and space could be treated the same as any other kind of logical inference, but 
experience shows that this is not an optimal approach, mainly because such an 
approach leads to extreme inefficiencies of inference control.  Thus, in this section and 
the following ones we will consider specific logical formalisms recently proposed for 
reasoning about time and space. 
 A variety of logical formalisms have been proposed for reasoning about time, 
including 
 

 Standard first-order logic with temporal arguments 
 Reified temporal logic 
 Modal temporal logic 

 
(all of which we will review in detail below) and others.  A large percentage of work in 
the area of temporal logic appears to fall prey to one of the pitfalls of  
 

• Unrealistic simplicity 
• Excessive complexity 
• Computational intractability 

 
The creation of a scalable, reasonably general temporal logic remains a difficult 
research problem, and one of our tasks here is to characterize this research problem 
and explain exactly which of its aspects are most pertinent and most worth attacking at 
this juncture. 

In order to apply temporal logics such as the above to reasoning on large, 
complex real-world problems, several issues have to be addressed: 
 

• the logic should be simple – if a logic is overcomplicated, crafting a workable, 
scalable inference control strategy is very unlikely to be feasible; and integrating 
the logic with other system components like query languages and knowledge 
bases will likely be infeasible  

• the logic should not be too simple – for instance, for most serious real-world 
applications simple Prior’s logic is too simple and inadequate for applications 
such as reasoning about real-time behaviour of software. Also, a logic that 
achieves simplicity at the expense of needed expressiveness will be impractical 
because the formulas describing real algorithms will be too long and complicated 
to understand. 

• the corresponding deduction procedures should be efficient  
 
It seems feasible to construct many different approaches satisfying these criteria 



(including perhaps a PLN based approach as will be exemplified in Part II below); but 
there is not yet any approach that has been convincingly validated by practical 
applications to satisfy them. 
 

The Challenge Time Presents to Classical Logic 
The essential challenge temporality poses to classical logic is that, in the latter, formulas 
are evaluated within a single fixed world and have fixed truth value, that does not 
change over time. However, most real-world systems are dynamic.  
 Temporal statements, statements involving temporal information, may have truth 
value that changes over time. For instance, the statements “it is Monday” or  “I am at a 
meeting” have constant meaning, but their truth value can vary in time (but, of course, 
neither statement is ever true and false simultaneously; unless one is dealing with 
paraconsistent logic, which is beyond the scope of this book). Thus, “it is Monday” may 
be satisfied in some contexts, but not in others. Examples of temporal statements are 
also “I am always too busy”, “I will eventually be at my office ”, or “I will be at my office 
until John give me a phone call”. In temporal logics, evaluation takes place within a 
temporal context.  
 Temporal relationships and reasoning deal with issues like change, actions, 
causality, ontology of time, underlying logic, temporal constraints used, reasoning 
algorithms employed, etc. A change describes moving from one state or condition to 
another one. This relation is temporal (either implicit or explicit) and requires an 
appropriate representation. Representing the temporal aspect of the knowledge adds 
the time dimension to the truth of the information. A formalism for representing temporal 
information has to provide a way for establishing a link between an atemporal assertion 
and a temporal reference. There is a number of approaches for representing temporal 
relationships, each of them requiring specific forms of reasoning. Most of them are 
influenced by studies by Aristotle and the Megarian and Stoic schools in ancient 
Greece. 
 Temporal systems can be classified according to different aspects [Emerson, 
1991; Pani & Bhattacharjee, 2001]: 
 

• propositional versus first-order; 
• global versus compositional; 
• time points versus time intervals; 
• discrete versus dense time; 
• bounded versus unbounded time; 
• branching versus linear versus paralel versus circular time; 
• past versus future tense. 

 
These aspects determine expressiveness, and also computational demands. 
 In the rest of this section we review three main families of modern approaches to 
temporal representation (more details can be found, for instance, in surveys [Pani & 
Bhattacharjee, 2001]] and [Emerson, 1991]. Approaches within these families may have 
different properties according to the list of aspect given above. 



First order logic: temporal arguments approach 
The simplest approach to handling time within logic is to represent time by numerical 
values. This representation can be applied within first order logic (FOL), with reals or 
integers as the intended domain for time variables and constants. There is a number of 
efficient methods for dealing with first order statements and reasoning with them, so this 
approach starts from a well established grounds. This approach is often referred as to 
temporal arguments approach. Within FOL, we can simply express temporal facts like 
“Alison is working on the same project as Bob at time t”, for instance, in the following 
way:  
 

work_on_same_project (Alison,Bob,t) 
 
 Using sorted first order logic may be more suitable and, in this case, there is a 
distinguished sort for temporal arguments. For instance, the classical example „You can 
fool all the people some time and you can fool some people all the time, but you cannot 
fool all the people all the time“ can be represented in sorted first order logic in the 
following way: 
 
∀x:H. ∃t:T. youcanfool(x,t)  ∧ ∃x:H. ∀t:T. youcanfool(x,t)  ∧ 
¬∀x:H. ∀t:T. youcanfool(x,t), 
 
with an intended semantics that links the sort H to the set of humans and the sort T to 
the set of all time values. By this, time is given a special syntactic and semantic status, 
but can still share much of the treatment of other sorts of values. If the theory is equiped 
with axioms on ordering, one can also reason (using general first-order reasoning 
frameworks) about statemets like the following one: 
 

∃t0:T. ∀t:T. (t>t0  ⇒ f(t)). 
 
In a similar way, one can use arithmetic operators over time values. 
 Despite its simplicity, well-foundness, and developed proof theory and methods, 
this approach has severe limitations. For instance, without adding a host of specialized 
additional predicates, one cannot model aspectual distinctions between for example, 
states, events and processes, and cannot represent notions used in natural language 
like now, then, since, while, until, nor notions like a bit later and similar.  
 To get around these problems, there are different formalisms for representing 
temporal information within first order logic – a line of thinking that eventually leads back 
towards the more sophisticated approaches to time representation that we considered 
earlier. 
 For instance, Interval Temporal Logic (ITL) is a temporal logic for both 
propositional and first-order reasoning about periods of time found in descriptions of 
hardware and software systems, but also in artificial intelligence and linguistics. ITL can 
handle both sequential and parallel composition and offers powerful and extensible 
specification and proof techniques for reasoning about properties involving safety, 
liveness and projected time [Moszkowski, 1994],  It is not identical to Allen’s interval 



algebra, but has a great deal in common with the latter. 

Reified temporal logic 
Alternately, rather than the encoding of temporal information within FOL, there is a 
“reified” approach relating atemporal terms to temporal terms by specific temporal 
contexts.  In the reification approach to temporal reasoning, the truth of temporal 
assertions is considered while keeping atemporal parts of assertions unchanged within 
a specific temporal context. A good overview of reified temporal logics can be found in 
[Ma & Knight, 2001]. One of the most influential, formal approaches to reified logic was 
presented by Shoham in 1987 [Shoham, 1987]. 
 Reifying a logic means moving into a meta-language where an assertion in an 
initial language (usually FOL, but a modal logic can also be used), becomes a term in a 
new language. In this new logic, one can reason about truth values of expressions in an 
object language through use of the truth values of expressions built with the operator 
like TRUE and with temporal object as arguments. Thus,  
 

TRUE(atemporal expression, temporal qualification) 
 
represents a statement whose intended meaning is that the first argument is true 
“during” the time denoted by the temporal qualification. TRUE is not a relation in the 
logic, nor it is a modal operator, rather it is a reifying context. For instance, the sentence 
“Alison is on a meeting with Bob between 11am and 12am” can be expressed as  
 

TRUE(MEETING(Alison,Bob),(11am,12am)). 
 
The truth predicates are used to express not only the time when an expression is true 
but also the patterns of its temporal occurrence. So, in general, the pattern of temporal 
occurrence for the atemporal expression admits many interpretations other than during.  
 And this brings us back, finally to Allens’s interval algebra as discussed above, 
which naturally leads to a form of reified temporal logic.  In Allen’s variant of reified 
temporal logic [Allen, 1984], temporal incidence is expressed using the operators 
HOLDS, OCCURS, and OCCURING in order to express distinctions between states, 
events and processes. 
 Temporal reification has several advantages. On one hand, this logic gives a 
special status to time. On the other, it allows one to flexibly predicate and quantify over 
propositional terms. Therefore, it gives the expressive power to discuss relationships 
between propositional terms and temporal aspects with a high level of generality. Due to 
these qualities, the reified approach has enjoyed considerable popularity in AI.  
However, it has also been a subject of criticism and attacks. A number of authors have 
argued that reified temporal logics are unnecessarily complicated and imply a 
philosophically suspect ontology of time.  However, it seems to us that these objections 
really pertain to specific, simple versions of reified temporal logic, rather than to reified 
temporal logic in general. 
 For instance, a major problem with simple reified logics is that there is no 
straightforward way of referring to one temporally referenced object within the context of 
another temporal interval, such as “The leader of the Konrad project in 2003 left our 



company in 2006“.  Rather, in simple reified logics, all non-temporal terms have to be 
evaluated with respect to the same temporal terms, i.e., those given in the TRUE 
context. So, in a simple reified logic, the given example could be expressed in the 
following inelegant way: 
 
∀x (TRUE(project_leader(Konrad)=x,(2003,2004)) ⇒TRUE(left_job(x),(2006,2007))) 
 
In addition, in Shoham’s reified temporal logic, there are no temporal predicates, except  
≦ and =, which makes expression of some temporal phenomena awkward. 
 But in the BTK approach, presented by Bacchus et al in 1991 [Bacchus et al., 
1991], each predicate and function symbol can take any number of temporal arguments. 
For instance, the above example can be represented in a much simpler way: 
 

left_job(project_leader(2003,Konrad),2006). 
 
This is also the approach adopted in PLN, as will be discussed a little later. 
 Alternatively, Galton proposed a method of unreification based on incorporating 
tokens [Galton, 1991]. Galton's event token is basically the occurrence of some event at 
some point m in time Thus,“Alison is having a lunch at 3 00pm” is an event token. Event 
tokens act on the one hand as additional parameters to predicate and function symbols, 
while on the other they can be used in the temporal occurrence predicates.  
 

Modal temporal logic 
Modal logic, as discussed above, is a formal logic system that deals with modalities, like 
possibility and necessity. In modal logic, one can express a statement like “It is possible 
that Bob quit his job”. The modalities are represented by modal operators. The basic 
unary modal operators are usually written □ (or L) for necessarily and ◊ (or M) for 
possibly. In a classical modal logic, these two operators are linked in the following way: 
 

◊p ⇔ ¬□¬p 
□p ⇔ ¬◊¬p. 

 
 Tense logic is a kind of modal logic-based system, introduced first by Prior in 
1955 following the idea that tense is a sort of modality, to be set alongside the ordinary 
modes of necessity and possibility. Tense logic has two sets of modal operators, one for 
the past and one for the future (while ordinary modal logic has only one). In Prior's 
notation,  
 

• Pp stands for „It has at some time been the case that p" 
• Fp stands for „It will at some time be the case that p“ 
• Hp stands for „It has always been the case that p“ 
• Gp stands for „It will always be the case that p“.  

 
For instance, if p stands for “Alison’s department moves to China” and if q stands for “Alison and 
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Bob have communication problems”, then G(p ⇒ Gq) stands for “It will be the case that if 
Alison’s department moves to China, then Alison and Bob will always have 
communication problems.” Tense operators can express standard modal operators □ 
and ◊: 
 

□p can be expressed as  Pp ∨ p ∨ Fp 
◊p can be expressed as  Hp ∧ p ∧ Gp 

 
Tense logic is obtained by adding the tense operators to an an underlying logic, for 
instance propositional logic, or first-order logic. For instance, in tense logic built over 
first-order logic, the statement “A woman will be a CTO” can be represented as 
∃x(woman(x) ∧ F cto(x)). 
 The standard model-theoretic semantics of tense logic is defined with respect to 
temporal frames. A temporal frame consists of a set of times together with an ordering 
relation < on it. This defines the "flow of time" and the meaning of the tense operators. 
An interpretation of the tense-logical language assigns a truth value to each atomic 
formula at each time in the temporal frame. For instance, Pp is true at t if and only if p is 
true at some time t′ such that t′<t (the semantics of other tense operators is defined by 
analogy). A tense logic formula is valid if it is true at all times under all interpretations 
over all temporal frames. Prior developed several versions of a calculus of tenses in 
which one can derive, for instance, GP ⇔ ¬F¬P, and also (¬p ∧ ¬Fp) ⇒ ¬◊p (“what 
neither is true nor will be true is not possible”), linking standard modal operators with 
Prior tense operators in an elegant way.  
 While in typical first order representation time is absolute, in modal temporal logic 
time is relative and statements refer to the present or to other events. There are variants 
of modal temporal logic for dealing with absolute precise times. Prior’s system does not 
specify the nature of time (points or intervals), but in this approach understanding 
temporal elements as points of time is more natural.  
 Apart from tense logic, there is a whole family of other modal temporal logic 
systems. The modal µ calculus is a powerful class of temporal logics with a least fixpoint 
operator µ [Scott & De Bakker, 1969; Kozen, 1983]. It is used for describing and 
reasoning about temporal properties of labelled transition systems. The modal µ 
calculus subsumes dynamic and temporal logics like CTL and LTL.  

In linear temporal logic (LTL), time is not branching, and one can encode 
formulas about the future of paths, such as that a condition will eventually be true, that a 
condition will be true until another fact becomes true, etc. In linear temporal logic, there 
are operators for next (X), globally (G), finally (F), until (U), and release (R). For 
instance, if p stands for „There is electric power“, and q is „I work on my computer“, 
G(¬p⇒X¬q) stands for „It always hold that if there is no electric power, in the next 
moment I will not work on my computer”.  In the simplest formulation of LTL, the U 
(until) operator is used to derive all the others. 

On the other hand, computational tree logic (CTL) is a branching-time logic, 
meaning that its model of time is a tree-like structure in which the future is not 
determined; there are different paths in the future, any one of which might be an actual 



path that is realised. Some of the CTL operators are quantifiers over paths (for instance, 
Ap stands for “p has to hold on all paths starting from the current state”) and path-
specific quantifiers (for instance, Xp stands for “p has to hold at the next state”, Gp 
stands for “p has to hold on the entire subsequent path”). For example, if p mean "I give 
a presentation", in CTL one encode “I will give a presentation, whatever happens” by 
AGp.  There are also other variants of branching-time logic, such as Branching 
Temporal Logic which also generalizes LTL, and differs from CTL in subtle ways 
[Kontchakov, 2007]. 
 Modal temporal logics are, in a sense, more expressive than FOL. They are also 
suitable for their modularity. They can directly and neatly be combined with other modal 
qualifications like belief, knowledge etc. For certaing sorts of modal temporal logics 
there are efficient automated theorem provers.  
 Concerning applications, Prior used his tense logic to build theories about the 
structure and metaphysics of time, while now it has numerous other applications. The 
notational efficiency of modal temporal logics makes them very appealing for 
applications in natural language understanding, where they have been widely used. 
There are various areas of applications of temporal logic, such as, for example, 
controlling operation of a bank of identical elevators in a building [Wood, 1989]. 
However, the area where modal temporal logics probably found the widest acceptance 
and success is in computing, including the theory of programming, database 
management, program verification, and commonsense reasoning in AI. In applications 
in program verification, following the influential work of Pnueli [Pnueli, 1977], the main 
idea is to formally specify a program and to apply deduction methods for proving 
properties of the program like correctness, termination, and possibility of a deadlock. In 
describing properties to be proved, one can use modal operators, for instance, one can 
state that whenever a request is made, access to a resource is eventually granted, but it 
is never granted to two requestors simultaneously.  
 One of the very successful temporal logics used in verification is temporal logic of 
actions (TLA), developed by Leslie Lamport, which combines temporal logic with a logic 
of actions [Lamport, 1994]. It is a logic for specifying and reasoning about concurrent 
systems. Systems and their properties are represented in the same logic. Syntax and 
semantics of TLA are very simple, yet it is very powerful, both in principle and in 
practice. It has been used to study and verify cache coherence protocols, memory 
models, network protocols, database protocols, and concurrent algorithms [Batson & 
Lamport, 2003].   

Integration of deontic and temporal logic 
There are several approaches for combining deontic and temporal logic. Some of 

them are based on expressing deontic constraints in terms of temporal logic, while in 
some deontic logic is extended by temporal operators. Some of the most important 
issues in combining deontic and temporal logic are: 
 

• The temporal approaches considered are usually based on tree-structures 
representing branching time with the same past and open to the future. 

• On top of these tree-structures, temporal deontic logics typically define one 
modal necessity operator, expressing some kind of inevitability or historical 



necessity, plus deontic obligation operators. 
 
 One family of those logics expresses the modal and deontic operators in 
temporal terms, while another family introduces temporal operators that can be 
combined with the modal and deontic operators. 
 In the approach described in [Dignum & Kuiper, 1997], deontic logic is extended 
by temporal operators. This approach is used for the specification of deadlines. It uses 
deontic constraints to specify what is the agent obliged to do and temporal constraints 
since the obligation is usually to be performed before a certain deadline. The following 
example from [Dignum & Kuiper, 1997] requires both deontic and temporal reasoning. 
 

• Alison has to pay the mortgage for her house every month.  
• Alison borrowed some money from Bob, which she has to repay as soon as she 

is able to do so.  
• The roof of Alison’s house started leaking. It has to be repaired before the 

October rains start (It is now September).  
• Alison wants to go on a midweek holiday. She has an offer to rent a cottage for 

relatively little money which has to be paid within 30 days after the reservation 
has been made. 

 
Formulas in the system introduced in [Dignum & Kuiper, 1997] are propositional 
formulas built in the standard way and, in addition, formulas involving actions, the 
deontic operator OB, and a preference relation over actions called PREFER. If α is an 
action and F is a formula, then [α]F is also a formula, and its informal meaning is that 
“doing α neccessarily leads to a state where F holds”. If F is a formula, then OBF is also 
a formula, and its informal meaning is “it has to be the case that F holds”. If α1 and α2 
are actions, then PREFER(α1,α2) is also a formula and its informal meaning is that the 
action α1 is preferable to the action α2.  The formulas are built also using temporal 
operators X (unary, for next), U (binary, for until), P (unary, for held), S (binary, for held 
since), DO (unary, for an action to be performed next), DONE (unary, for an action that 
was performed last). The semantics of formulas is given in Kripke style.  
 For example, the statement “If Alison borrowed some money from Bob, she has 
to repay as soon as she is able to do so.” Is modeled by the formula: 
 
DONE(borrow(Alison,Bob)) ⇒  
∀β(true < repay(Alison,Bob) < DONE(β) ∧ PREFER(repay(Alison,Bob),β) 
 
In [Dignum & Kuiper, 1997] there is not a corresponding axiomatization and inference 
system, nor algorithms for automation of reasoning in the described logic.  
 Partly following and extending ideas from [Dignum & Kuiper, 1997], in [Broersen 
et al., 2004], deontic logic SDL is combined with temporal logic CTL and deadline 
constraints are expressed in this new logic. Automation of reasoning in this logic is not 
discussed, but there is an expectation that it can be handled by CTL theorem provers.  
 The approach described in [Cheng, 2006] starts with linear temporal logic (LTL), 
extend it to state/event LTL (SE-LTL) which takes into account both events and 
propositions, and finally, extends it to the system SED-LTL with deontic modalities. The 
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semantics of formulas is given in Kripke style, while there is no corresponding 
axiomatization or reasoning procedures. The system can be used in different computing 
scenarios involving both temporal and deontic notions. For instance, it can be used for 
expressing an access control policy in which the permissions depend on time or events. 
For instance, the following resource monitoring problem can be represented within the 
proposed logic: 
 

•  Useri has the permission to use the resource r for 5 time units continuously, and 
he must be able to access it 15 time units after asking, at the latest; 

•  Useri has always the permission to use the resource r, and he has to release it 
after 5 time units of utilization; 

•  If useri is asking for the resource and he has the permission to use it, then the 
system has the obligation to give it to him before 5 time units; 

•  If useri uses the resource without the permission, he must not ask for it during 10 
time units. 

 
 Alternately, in the approach for combining temporal and deontic modalities 
proposed in [Åqvist, 2005], the “absolute” temporal operator Rt (“it holds at the time t 
that”) is used, instead of the “relative” temporal operators X and U, which are more 
expressive. There is also a variant of the system with the temporal operator Rth (“it is 
realized at time t in history h that”).  In semantics of deontic operators, frames that are 
used are considered as (finite) two-dimensional coordinate systems, where it is possible 
to distinguish between the longitude (i.e., x-value) and the latitude (i.e., y-value) of any 
point in such a coordinate system. Times are interpreted as longitudes, and worlds, or 
histories, as latitudes. There is a corresponding, sound and complete, axiomatization 
and inference system, but automation of reasoning is not considered.  
 Despite the fact that all combinations of deontic and temporal logic have been 
constructed with applications in mind, it seems that there are still no large-scale 
applications of these techniques for real-world problems.   Hopefully this situation will 
change in the near future. 

Inference systems for temporal logic 
As noted above, there are three main approaches to temporal representation and 
reasoning.  Here we continue the discussion and give some simple examples of 
inference in each of them. 
 
We will focus here on inference systems for temporal logic, but wish to also note that 
there are decision procedures for some of the logics discussed here [Emerson, 1995].  
Recall that for a given formula F, a decision procedure only gives a yes or no answer 
whether F is valid/theorem, without providing deductive argument for that. Most decision 
procedures use model-theoretic, semantic arguments for obtaining the final result. In 
some cases, these arguments can be turned to deductive arguments, but that can be 
very expensive.  
 
 



Inference in the Simple First Order Logic Approach 
In the approach based on first order logic and expressing temporal information as first-
order formulas, giving each predicate an extra argument place that corresponds to the 
temporal dimension. For instance,  
 

work_on_same_project (Alison,Bob,2007) 
 
If the first-order signature is extended with a binary infix predicate < denoting the 
temporal ordering relation "earlier than", and a constant "now" denoting the present 
moment, then the tense operators can be simulated by means of first-order logic, in the 
following way (p(t) denotes the result of introducing an extra temporal argument place to 
the predicate in p):  
 
Pp (informally: p held at some point in past):  ∃t(t<now ∧ p(t)) 
Fp (informally: p will hold at some point):  ∃t(now<t ∧ p(t)) 
Hp (informally: p always held):    ∀t(t<now ⇒ p(t)) 
Gp (informally: p will always hold):   ∀t(now<t ⇒ p(t)) 
 
In this framework, temporal information is completely expressed by means of first order 
logic, therefore standard classical first-order inference systems can be used as a 
reasoning vehicle. For instance, let us assume  the following statements: 
 

• Year 2007 was in the past. 
• Alison and Bob worked together on the same project in 2007. 
• If Alison and Bob worked together on the same project, they will always be 

friends. 
 
One can represent these statements in the following way: 
 

• 2007<now 
• work_on_same_project (Alison,Bob,2007) 
• Pwork_on_same_project (Alison,Bob) ⇒ Gfriends(Alison,Bob) 

 
According to the above definitions, this can be rewritten as: 
 

• 2007<now 
• work_on_same_project (Alison,Bob,2007) 
• ∃t(t<now ∧ work_on_same_project (Alison,Bob,t)) ⇒ ∀t(now<t ⇒ 

friends(Alison,Bob,t)) 
 
From 2007<now and work_on_same_project (Alison,Bob,2007), it follows that 
 

2007<now ∧ work_on_same_project (Alison,Bob,2007) 
 



and further,  
 

∃t (t<now ∧ work_on_same_project (Alison,Bob,t)), 
 
which, together with the implication from above, yields  
 

∀t(now<t ⇒ friends(Alison,Bob,t)) 
 
i.e., Alison and Bob will always be friends (all three inference steps in this derivation can 
be simply justified in any reasonable inference system for classical first order logic). 
 

Reified temporal logic 

 In Allen’s variant of reified temporal logic [Allen, 1984], discussed above, 
temporal incidence is expressed using relational predicates HOLDS, OCCURS, and 
OCCURING, as for example: 

HOLDS(MEETING(Alison,Bob),(11am,12am)). 
OCCURS(DRIVES(Alison,Home,Office),(8am,8.45pm)) 
 
where terms of the form (t,t′) denote time intervals. These two predicates ensure 
distinctions between states and events.  
 Statements about states have homogeneous temporal incidence, i.e., they must 
hold over any subintervals of an interval over which they hold (e.g., the meaning of 
HOLDS(MEETING(Alison,Bob),(11am,12am)) is that Alison and Bob are at a meeting at 
any time interval between 11am and 12am).  
 On the other hand, statements about events have inhomogeneous temporal 
incidence, i.e., such a statement is not true at any subinterval of an interval of which it is 
true (e.g., if Alison drives from her home to her office 
from 8am to 8.45am, then in any subinterval of that interval, she does not drive from her 
home to her office, but between some other points). 
 These features of reified temporal logic (homogeneity of states and inhomogeneity of 
events) are ensured in inference systems by axioms such as 

∀s,i,i′(HOLDS(s,i) ∧ In(i′,i) ⇒ HOLDS(s,i′))  
∀e,i,i′(OCCURS(e,i) ∧ In(i′,i) ⇒ ¬OCCURS(e,i′)) 

where "In" denotes the proper subinterval relation. 
 Therefore, given HOLDS(MEETING(Alison,Bob),(11am,12am)), the above axiom 
(along with the underlying first-order inference system) enables deriving 
HOLDS(MEETING(Alison,Bob),(11.15am,11.20am)). Indeed: 
 
1. HOLDS(MEETING(Alison,Bob),(11am,12am))                     
(assumption) 
2. In((11.15am,11.20am),(11am,12am))          



(by means of interval arithmetic) 
3. HOLDS(MEETING(Alison,Bob),(11am,12am)) ∧ 
In((11.15am,11.20am),(11am,12am))                   
(by propositional calculus) 
4. HOLDS(MEETING(Alison,Bob),(11am,12am)) ∧ 
In((11.15am,11.20am),(11am,12am)) ⇒  
HOLDS(MEETING(Alison,Bob),(11.15am,11.20am)) 
(by homogeneity axiom and by Hilbert’s A4) 
5. HOLDS(MEETING(Alison,Bob),(11.15am,11.20am)) 
(from 3 and 4, by modus ponens) 
 

Modal temporal logic 
As discussed earlier, Arthur Prior’s Tense Logic contains, in addition to the usual truth-
functional operators, four modal operators P, F, H, G. P and F are known as the weak 
tense operators, while H and G are known as the strong tense operators. There is an 
intended correspondence between pair of these operators: 
 
Pp ≡ ¬H¬p 
Fp ≡ ¬G¬p 
 
If this correspondence is ensured, then one pair of the operators is redundant. 
 Post worked on different variants of the inference systems for Tense Logic, trying 
to build an elegant system that has as theorems all formulas that are true following his 
intended semantics. Some of those formulas are: 
 
Gp⇒Fp :   "What will always be, will be" 
Fp⇒FFp :   "If it will be the case that p, it will be — in between — that it will be“ 
¬Fp⇒F¬Fp :   "If it will never be that p then it will be that it will never be that p" 
(¬p ∧ ¬Fp) ⇒ ¬◊p :  "What neither is true nor will be true is not possible” 
Fp→□Fp :   "What will be, will necessarily be" 
  
 Of particular significance is the system of Minimal Tense Logic Kt  for classical 
propositional tense logic which consists of Hillbert’s axioms, the modus ponens 
inference rule, the following axioms: 
 
(1) p⇒HFp ("What is, has always been going to be") 
(2) p⇒GPp ("What is, will always have been") 
(3) H(p⇒q) ⇒ (Hp⇒Hq) ("Whatever always follows from what always has been, always has been") 
(4) G(p⇒q) ⇒ (Gp⇒Gq) ("Whatever always follows from what always will be, always will be") 
(5) Gp⇒ GGp 
 
and the following two rules of inference:  
 



(RH) p  ⊢ Hp 
(RG) p  ⊢  Gp 
(US) p ⊢  p[φ→ψ] 
 
The system Kt  is sound and complete, i.e., its set of theorems is the set of all valid 
tense logic formulas. In addition, it is decidable whether a tense logic formula is 
theorem. 
 Let us consider the following statements: 
 
“If our company has small administrative overhead, then it has big profit” 
“It will always be the case that our company has small administrative overhead”. 
 
From the above assumptions, one can derive the fact “It will always be the case that our 
company has big profit”. Let us denote by p “our company has small administrative 
overhead” and by q “our company has big profit”. The proof of Gq is as follows: 
 
1. p⇒q   (assumption) 
2. Gp    (assumption) 
3. G(p⇒q)       (from 1, by RG) 
4. G(p⇒q) ⇒ (Gp⇒Gq)  (instance of the axiom scheme (4)).  
5. Gp⇒Gq   (from 3 and 4, by modus ponens) 
6. Gq     (from 2 and 5, by modus ponens) 
 
The theorems of Kt are all the properties of the tense operators not relying on the 
temporal order.  

Computational Tree Logic  
Computational tree logic (CTL), briefly described earlier, has many applications in 
describing and verifying computing processes. CTL uses the following temporal 
operators:  
 

• Ap – stands for „all futures“, i.e., “p has to hold on all paths starting from the 
current state” 

• Ep – stands for „some future“, i.e., “p has to hold on some path starting from the 
current state” 

 
Temporal operators have to be followed by one of the following linear temporal 
operators:  
 

 G –always  
 F – sometime 
 X – next time  
 U – until 

 



The semantics of p U q is that p is true in all states preceding the state where q holds 
and q will eventually hold. The semantics of other operators are intuitive. The syntax of 
CTL is given as follows. There are state formulas and path formulas defined in the 
following way: 
 

• Each atomic proposition P is a state formula. 
• If p, q are state formulas, then so are p∧q, ¬p. 
• If p is a path formula, then Ep and Ap are state formulas. 
• Each state formula is also a path formula. 
• If p, q are path formulas, then so are p∧q, ¬p. 
• If p, q are path formulas, then so are Gp, Fp, Xp, pUq. 

 
The following system is a complete and sound deductive system for CTL [Emerson, 
1991]: 
 
Axiom schemes: 
 
All propositional tautologies. 
EFp ⇔ E[ true U p] 
AGp ⇔ ¬EF¬p 
AFp ⇔ A[ true U p] 
EGp ⇔ ¬AF¬p 
EX(p∨q) ⇔ EXp ∨ EXq 
AXp ⇔ ¬E¬p 
E(p U q) ⇔ q ∨ (p ∧ EXE(p U q)) 
A(p U q) ⇔ q ∨ (p ∧ AXA(p U q)) 
EXtrue ∧ AXtrue 
AG(r ⇒ (¬q ∧ (p⇒EXr))) ⇒ (r ⇒ ¬A(p U q)) 
AG(r ⇒ (¬q ∧ EXr)) ⇒ (r ⇒ ¬AFq) 
AG(r ⇒ (¬q ∧ (p⇒AXr))) ⇒ (r ⇒ ¬E(p U q)) 
AG(r ⇒ (¬q ∧ AXr)) ⇒ (r ⇒ ¬EFq) 
AG(p ⇒ q) ⇒ (EXp ⇒ EXq) 
 
Inference rules: 
 
If ⊢ p then ⊢ AGp (Generalization) 
If ⊢ p and ⊢ p⇒q then ⊢ q (Modus ponens) 
 
For example, it can be proved that ⊢ AGp yields ⊢ p, and if F1 and F2 are logically 
equivalent propositional formulas, then ⊢ AG F1⇔ AG F2  (these statements will be 



used in the example in further text).  
 
 

4.1.1 Branching Temporal Logic 
 

An interesting variant of CTL is Branching Temporal Logic [Kontchakov, 2007], 
which also extends linear temporal logic.    

In BTL, one defines a tree as a flow of time F = (W, <) containing a root point r, 
for which W = {v | r < v} ∪ {r}, and such that for every w ∈ W , the set {w | v < w} is well-
founded and (strictly) linearly ordered by <. A history in F is then defined as a maximal 
linearly <-ordered subset of W . Finally, an ω-tree is a tree of this sort in which every 
history is order isomorphic to (N,<). 
 A “branching time model” is then defined as a structure B = (F,H,pB0 ,pB1 ,...), 
where F = (W,<) is an ω-tree, H is a set of histories in F (conceived as the set of 
possible flows of time in the model), and pBi⊆ W for all i.   A logical formula is then 
evaluated relative to a pairs (h, w) consisting of an actual history h ∈ H and a time point 
w ∈ h – i.e. formulas are evaluated at time-points in the context of their histories. In 
such a pair (h, w), the temporal operators are interpreted along the actual history h as in 
the linear time framework, while the operators E and A quantify over the set of all 
histories coming through w. We say that a BT L-formula φ is satisfiable if there exists a 
branching time model B such that (B,h,w) implies φ for some history h ∈ H and some 
time point w ∈ h.  The practical upshot is similar to CTL, but the formal properties are 
subtly different. 

Examples of Temporal Inference in the Twitter Domain 
In this section we give a concrete exampleof temporal inference in our target domain.  
Specifically, we illustrate the deductive system for CTL logic on one common-sense 
example. Let us suppose we have: 
 

• Bob and Clark always have lunch together. 
• If Alison is having lunch with Bob, and Bob is having lunch with Clark, then Alison 

is having lunch with Clark. 
• In all circumstances, it is true that: if Alison has lunch with Clark, then he will not 

forget her name that day and potentially the next day Alison will have lunch with 
Clark again. 

 
And let us assume that we want to derive: 
 
If Alison has lunch with Bob, then potentially Clark will never forget her name. 
 
Let us denote   
 
Alison has lunch with Bob today by p 



Bob has lunch with Clark today by q 
Alison has lunch with Clark today by r 
Clark forgets Alison’s name today by s 
 
Then, the assumptions can be represented as: 
 

AGq 
p∧q ⇒ r 

AG(r ⇒ (¬s ∧ EXr)) 
 
And the conjecture as:  
 

p ⇒ EG¬s 
 
We will use the following metatheorem of propositional logic: if ⊢ a ⇒ b and ⊢ b ⇒ c, 
then ⊢ a ⇒ c. 
 
One proof of p ⇒ EG¬s then looks like the following: 
 
(1)   AG(r ⇒ (¬s ∧ EXr))     (hypothesis) 
(2)   AG(r ⇒ (¬s ∧ EXr)) ⇒ (r ⇒ ¬AFs)  (axiom 12) 
(3)   r ⇒ ¬AFs     (1,2,modus ponens) 
(4)   ¬AFs  ⇒¬AF¬¬s    (3, propositional logic) 
(5)   r ⇒ ¬AF¬¬s      (3,4, propositional logic) 
(6)   ¬AF¬¬s ⇒ EG¬s     (axiom 5) 
(7)   r ⇒ EG¬s      (5,6,propositional logic) 
(8)   AGq      (hypothesis) 
(9)   q       (8, theorem) 
(10) p ⇒ p ∧ q      (9, propositional logic) 
(11) p ∧ q ⇒ r     (hypothesis) 
(12) p ⇒ r      (10,11,propositional logic) 
(13) p ⇒ EG¬s     (7,12,propositional logic) 

 

 



 
 

5 Representing and Reasoning On 
Spatial Knowledge 

 
A large percentage of real-world knowledge pertains to space as well as time.  Humans 
possess a great deal of evolved and learned common sense regarding representing and 
reasoning about space, but, this is not innate to software programs so we need to 
explicitly think about how to make our software systems space-friendly.  From a logic 
point of view, space and time can in principle be treated just like any other sorts of 
relationships – but this turns out not to be an optimal point of view in terms of either 
human-friendliness or computational  efficiency of logic systems.  Rather, with space as 
with time, it is worthwhile to invest the effort to develop specialized techniques for 
handling spatial and spatiotemporal knowledge. 
 As in the case of time, we will not be able to entirely disentangle spatial 
representation from spatial reasoning; but we will endeavor to do so as much as 
possible, and in this chapter we will focus mainly on representation (introducing 
reasoning only when really needed for motivational purposes) and defer reasoning for 
later. 
 Most generally conceived, spatial reasoning [Cohn et al 2008] is the capacity to 
infer relations of direction, morphology, topology, distance, etc, about entities existing in 
a given space (typically 2D or 3D). There are many combinations of space 
representation/abstraction and inferential mechanics for dealing with spatial reasoning, 
usually focusing on different aspects of spatial representations: topology, morphology, 
direction, etc.   In this chapter, we will describe in some detail the main representatives 
among them, and also discuss ways of extending and integrating those techniques. 
 

An Example Scenario for Spatial Representation and Reasoning 
In order to provide a common ground for explaining the different methodologies used for 
logically representing spatial knowledge, we will articulate an example scenario wherein 
various sorts of spatial reasoning can be performed. 
 In order to accommodate several types of spatial reasoning tasks, the example 
presented here is composed of layered data produced by multiple sources. The use of 
such multi-layered data portrays a situation possible and maybe even frequent in a real-
world, large-scale, heterogeneous store of spatiotemporal knowledge. 
 The first layer of data is of linguistic nature - a stream of Twitter entries, from 
which semantic interpretation can extract many elements of spatial and temporal 
information, as we can see in Figure 7.1.  
 One of the spatial inferences that can be made from the Twitter stream is that the 
three characters involved - Pam, Sam and Tim - appear to be in the same city or same 
metro area, which is called simply “Metro City” by Pam. That brings the second layer of 
data, shown in Figure 7.2, which presents a more evident spatial nature: it is a simplified 
map of Metro City, showing many city features - neighborhoods, bridges, canals, rivers, 



islands -, including those mentioned in the Twitter stream.  Many of those features are 
of an imprecise nature - for instance often it is difficult to tell where a neighborhood ends 
and other one begins. 
 The stream also mentions a weather phenomenon - rain - that may affect the 
plans of the characters involved in the Twitter stream. That brings the third layer of data: 
a (admittedly simplistic) weather pattern map for Metro City, shown in Figure 7.3, 
portraying the conditions of the city at the time of the first message. Arrows in the 
picture show direction of the wind and therefore the overall tendency of the dislocation 
of the weather patterns. It is interesting to note that this third layer is intrinsically 
uncertain, as the arrows point to tendencies and weather forecast is essentially 
probabilistic. 
 Now that the common scenario is described and illustrated, the following sections 
will show how several approaches for representation oriented to spatial reasoning “see” 
that scenario, and how they may allow the inference of new information based on that 
scenario. 
 

FIGURE 7.1: a Twitter stream containing spatial and temporal assertions. 
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FIGURE 7.2: a high-level map of Metro City. 

 
 
 



 
 

FIGURE 7.3: weather patterns over Metro City. 

 
 
 

Topological Representation 
The first mode of spatial representation we will discuss here is “topological” 

representation.  To make a rather crude and concise definition, topology deals with 
connection and inclusion of regions. For instance, telling if something is an island or a 
lake inside an island is a topological problem.  
 A spatial representation and reasoning technique that deals with both connection 
and inclusion at the same time is the Region Connection Calculus (RCC) [Cohn et al., 
1997].  RCC may be interpreted as a possible extension of Allen’s Interval Algebra into 
the spatial domain.  The basic entities modeled by RCC are regions (as opposed to 
points), assumed to be embedded in the same space of some dimensionality. The basic 
relations in RCC are defined in terms of connection or inclusion between two regions of 
the analyzed space. The number of possible relations varies according to the 
“granularity” of the RCC variety being used. The “coarser” variety, RCC8, is thus called 
due to the set of just 8 primitive relations that define it. Those are illustrated in Figure 
7.4. 
 
 



Figure 7.4: connection-inclusion relations in RCC8. 

 
  
 
 A set of RCC relations stating spatial facts about a group of entities can be used 
to infer new spatial facts. For instance, if A is a non-tangential proper part of B and B is 
a non-tangential proper part of C, then A is a tangential proper part of C. If on the other 
hand A is a tangential proper part of B and B is a tangential proper part of C, then A can 
be either a non-tangential or a tangential proper part of C. Or, showing the same 
inferences predicate-wise: 
 
nonTangentialProperPart(A,B) ^ nonTangentialProperPart(B,C)	 
⇒	 
nonTangentialProperPart(B,C) 
  
tangentialProperPart(A,B) ^ tangentialProperPart(B,C)   
⇒	 
tangentialProperPart(A,C) XOR nonTangentialProperPart(A,C) 
 
 
(Please note that an exclusive or is used at the right side of the logical conditional in the 
last inference, for an entity cannot be at the same time a tangential and non-tangential 
proper part of another in the crisp formulation of RCC8.)  
 All such inferential combinations between three entities are summarized in the 
composition matrix for RCC8, shown in Table 8.1. For sake of space the usual 
abbreviations for RCC8 operations are used. A set of operations in a given cell means 
that if two entities A and B are related by the operation corresponding to the row and B 
is related to a third entity C by the operation in the column, then A and C are mapped by 
the operations in the cell.  For instance one can find the composition corresponding to 
the last inference above by checking the cell at row TPP, column TPP. The symbol “*” in 
the table denotes the “universal relation”, meaning that any RCC8 relation between A 
and C is possible in the corresponding case. 

TABLE 7.1: composition matrix for RCC8 relations. 
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 There are “finer-grained” versions of RCC like RCC15 and RCC23. Also, RCC 
can receive extensions (for instance a primitive detecting concavity) that also deal with 
morphology to some extent. Those are extensively discussed in [Cohn et al., 1997]. 
With RCC-8, though, it is already possible to see how space can be represented in 
terms of region connection in our example scenario. (And the relations in RCC15 and 
RCC23, as well as their numerous compositions, are probably overcomplex for the 
didactic examples intended here.)  
 Looking at the map in Figure 7.2, one can make the following assertions using 
the RCC8 predicates: 
 
nonTangentialProperPart(“Center Island”, “Kidney Bay”) 
externallyConnected(“Clarice Heights”, “Seaside District”) 



tangentialProperPart(“Bridge Town”, “Seaside District”) 
overlaps(“East Side”, “Clarice Heights”) 
disconnected(“West Side”, “Center Island”) 
nonTangentialProperPart(“L Park”, “Center Island”) 
externallyConnected(“East Side”, ”Snail River”) 
externallyConnected(“West Side”, ”Snail River”) 
overlaps(“Snail River”, “Kidney Bay”) 
 
 According to the rules of Region Connection Calculus, it is already possible to 
make some topological inferences about Metro City from the assertions above. For 
instance: 
 
nonTangentialProperPart(“Center Island”, “Kidney Bay”), 
nonTangentialProperPart(“L Park”, “Center Island”) →  
nonTangentialProperPart(“L Park”, “Kidney Bay”) 
 
 Inferences like the one above can be seen as the construction of new links in a 
RCC network. As often happens in reasoning, problems represented through RCC can 
also be seen as a graph - the aforementioned RCC network -, and the reasoning 
problem is accordingly reduced to a graph problem with a plethora of methodologies 
and tools for dealing with it. In order to better illustrate that, Figure 7.5 shows the 
assertions in the list above in the form of a RCC network, with the inferred relation 
nonTangentialProperPart( “L Park”, “Kidney Bay” ) represented as a dotted edge. (Due 
to space restrictions relation names are depicted in the figure as acronyms made from 
their initials, as traditionally done in RCC notation.) 



 
FIGURE 7.5: a RCC network representing some topological relations among Metro City regions. 
 

 
 
 Even in the reasonably crisp map of Metro City, it is possible to see that some of 
the classic RCC8 relations shown in Figure 7.5 are in fact ambiguous due to the 
intrinsically imprecise nature of many geographic concepts. For instance, is Bridge 
Town a tangential proper part of the Seaside District or are they externally connected or 
perhaps overlapping? Are the East and West Side really disconnected or should the Old 
Bridge be considered a connection between them? 
 That imprecision and ambiguity of some geographical features in the RCC point 
of view can be better modeled by adding fuzziness to the representation (Schockaert et 
al. 2008). In fuzzy logic, two entities can be related by multiple predicates, even ones 
that may sound mutually exclusive in classic logic. Those contradictions and ambiguities 
are conciliated by the use of truth values indicating the degree to which the relation 
applies between the two entities. In the notation used here, we define a new logic 
predicate truthValue(R(A,B),v), indicating that the (fuzzy, in this case) truth value of 
relation R(A,B) between entities A and B is v. With that in mind, many fuzzy relations 
can be outlined among the entities shown in Metro City map, as exemplified below: 
 
truthValue(overlaps("Bridge Town", "Sea Side District"),0.3) 
truthValue(externallyConnected("Bridge Town", "Sea Side District"),0.3) 
truthValue(tangentialProperPart("Bridge Town", "Sea Side District"),0.4) 
truthValue(disconnected("East Side", "West Side"),0.9) 
truthValue(externallyConnected("East Side", "West Side"),0.1) 
truthValue(disconnected("Bridge Town", "Channel Beach"),0.9) 
truthValue(externallyConnected("Bridge Town", "Channel Beach"),0.1) 
truthValue(overlaps("Channel Beach", "West Side"),0.3) 
truthValue(externallyConnected("Channel Beach", "West Side"),0.3) 
truthValue(tangentialProperPart("Channel Beach", "West Side"),0.4) 
 
As in the case of classic RCC, those relations can also be translated to a graph form. 
Figure 7.6 shows the fuzzy RCC8 network corresponding to the assertions above. The 
main difference visible between that graph and the one in Figure 7.5 is the presence of 



labels in the edges - each one is assigned to a tuple indicating the kind of relation and 
the truth value of it. (Due to space limitations, the unambiguous though highly verbose 
logic predication used in the list above is avoided.) Another difference is the presence of 
multiple edges (relations) between two nodes. As an example of a possible interesting 
subgraph that could be derived from that one, the most intense relations  (those with 
higher truth values) between all connected pairs of nodes are shown as solid edges. 
 
FIGURE 7.6: a fuzzy RCC network representing some topological relations among Metro City regions. 

 
 
 Finally, some types of spatial information are better modeled neither in crisp nor 
in fuzzy ways - they are better modeled in terms of probability. Probabilistic spatial 
relations are conceptually different from the fuzzy ones in the sense that they do not say 
that two entities have a set of relations at the same time in different degrees. Instead, a 
set of probabilistic relations between two entities assumes that the actual relation 
between the two entities is unknown/uncertain, but assigns different probabilities to the 
existing possibilities. 
 Weather forecast based on the map shown in Figure 7.4 is a perfect target for 
probabilistic modeling, as it represents intrinsically uncertain information. Here we will 
try to model through RCC an extrapolation of the weather situation on Center Island at 
the time of the last Twitter message, based on the patterns and tendencies shown in 
Figure 7.4. In order to accommodate the uncertainty inherent to such a “weather 
forecast”, we introduce a new predicate probability(R(A,B),p), indicating that a given 
spatial relation R between entities A and B has a probability p of being real. The list 
below suggests some probabilities for relations extrapolated by the forecast: 
 
probability(nonTangentialProperPart(“Center Island”, “Sunny”), 30%) 
probability(overlaps(“Center Island”, “Sunny”), 30%) 
probability(overlaps(“Center Island”, “Rain”), 30%) 
probability(overlaps(“Center Island”, “Hail”), 20%) 
probability(overlaps(“Center Island”, “Fog”), 10%) 
probability(nonTangentialProperPart(“L Park”, “Center Island”),100%) 
probability(nonTangentialProperPart(“L Park”, “Sunny"),40%) 
probability(nonTangentialProperPart(“L Park”, “Rain”),30%) 
probability(nonTangentialProperPart(“L Park”, “Hail”),20%) 
probability(nonTangentialProperPart(“L Park”, “Fog”),10%) 



 
 That list of assertions can also be represented as a RCC network, this time of 
probabilistic nature, as shown in Figure 7.7. 
 
Figure 7.7: a probabilistic RCC network representing some relations among Metro City 
regions and weather pattern zones. 

 
 
 

Directional Reasoning 
 
Although qualitative topological reasoning such as that provided by RCC can 

encompass many spatial relations between entities of many kinds, as illustrated in the 
previous section, it is by no means without limitations.   For instance, RCC is 
inadequate for representing directional assertions.  
 Directional spatial relations assume that the space is divided into a set of 
directions - or angular alignments - that are applicable to all entities. Directional 
relations are often used in everyday descriptions such as “Canada is north of the United 
States” or “the hurricane is heading Northwest” or “in order to get to the Main Plaza, turn 
right, follow two blocks and then turn left”. 
 Qualitative directional reasoning is represented in a broader way by the STAR 
Calculus [Mitra, 2004], which by its turn can be considered a generalization of Frank’s 
Cardinal Calculus [Frank, 1991]. Cardinal Calculus used a system of four or eight 
directions (as in the conventional cardinal system used in geography, although they did 
not need a direct correspondence to those), while in the STAR calculus that is 
generalized to n directions forming n sectors of equal angular amplitude across the 360 
degrees of the circle. (The mention of the circle bespeaks the fact that these forms of 
directional reasoning are primarily concerned with 2D spatial reasoning. However, it is 
not difficult to see that similar concepts can be produced in higher dimensional spaces 
with some work.) The two systems (hereinafter referenced collectively as “directional 
calculus”) have still an additional special “Null” direction meaning no direction at all, or in 
other words meaning that the two entities directionally compared are “in the same 
place”, that is, so close that any statement about directions is meaningless. 
 The basic operations of directional calculus are inversion and composition. 
Inversion allows commonsensical inferences such as 
 

direction(A, B, North) → direction(B, A, South) 



 
or “if B is North of A, then A is South of B”, in natural language. Composition on the 
other hand combines known directional relations between entities in order to infer new 
ones, such as in 
 

direction(A, B, North), direction(B, C, East) → direction(A, C, Northeast) 
 
 Indeed, similarly to the case of RCC, all possible compositions in directional 
calculus can also be mapped into a composition matrix. As an example, Table 7.2 
shows a composition table for the classic subdivision of geographic 2D space  into eight 
cardinal directions (plus the null direction), adapted from [Frank, 1991] (where other 
variations are also discussed). Indeed, the same case convention of that publication is 
used: upper case letters for “exact” directions and lower case for “Euclidean 
approximates”. (The issue of “exact” and “approximate” directions is further discussed 
below as a prologue to fuzzy and probabilistic formulations of directional calculus.) 
 

Table 7.2: composition matrix for the operations corresponding to the eight cardinal directions. 
 

 N NE E SE S SW W NW Null 
N N n ne null null null nw n N 
NE n NE ne e null null null N NE 
E ne ne E e se null null null E 
SE null e e SE se s null null SE 
S null null se se S s sw o S 
SW null null null s s SW sw w SW 
W nw null null null sw sw W w W 
NW n n null null null w w NW NW 
Null N NE E SE S SW W NW Null 

 
 

 
 

 
 
 
 Using the directional predicates defined above, we can again describe the 
example scenario in terms of a symbolic spatial reasoning representation. Here is an 
example list of predicates taking into account directly information shown in Figures 7.1 
and 7.2: 
 
direction(“Sam”, “Center Island”, Null) 
direction(“Pam”, “Bridgetown”, Null) 
direction(“Center Island”, “Bridgetown”, South) 
direction(“Sam”, “Pam”, South) 
 
 In the case of Tim’s Twitter entry, a human looking at Figure 7.2 can easily 

Nil Geisweiller� 9/16/10 6:56 PM
Comment: Is there a difference btw Null 
and null? 
 



suspect that he is somewhere in the West Side, since he apparently has to cross the 
South Bridge to reach Sam, who lives in Center Island.  An integrated spatial reasoning 
system taking into account both topological as well as directional reasoning could mount 
a graph of the connection relations in Metro City (like many of those exemplified here) 
and also reach the conclusion that Tim is likely on the West Side. (The system would of 
course have to reason on the assumption that people would choose the shortest path 
from one place to another, or make some related heuristic assumption, in order to rule 
out awkward possibilities like Tim being in the West Side, crossing Old Bridge, going 
South and then entering Center Island through South Bridge.) Therefore, we can also 
add the relations: 
 
direction(“Tim”, “West Side”, Null) 
direction(“West Side”, “Center Island”, East) 
direction(“Tim”, “Sam”, East) 
 
Using composition on the assertions above, we can make the inference 
 
direction(“Tim”, “Sam”, East), direction(“Sam”, “Pam”, South) →  
→ direction(“Tim”, “Pam”, Southeast) 
 
Again, all those facts can be represented (and reasoned upon) in the form of a graph, 
as shown in Figure 7.8. 



 
FIGURE 7.8: a directional network showing spatial relations between the entities shown in Figures 7.1 
and 7.2. 
 

 
 
 Here again the question of imprecision and uncertainty comes into play. In the 
case of topological reasoning some relations are naturally crisp (for instance, an island 
is surely a non-tangential proper part of a body of water, by definition). In the case of 
directions, on the other hand, arguably there are no crisp relations in almost all practical 
cases. For instance in the crisp example assertions above it is declared that Center 
Island is North of Bridgetown, although perhaps one could also say that it is northeast of 
Bridgetown. The very definition of  directions in directional calculus states them in terms 
of broad sectors of the circle instead of sharp lines, hinting already at a non-crisp nature 
for directions. 
 Therefore, a fuzzy modeling for directional calculus comes naturally; it is 
basically a way of telling that entity A is more in this or that direction than others, 
relatively to entity B. Following the example case, the same geographical entities in the 
example above can have directional relations re-stated in fuzzy form as suggested 
below: 
 
truthValue(direction(“Center Island”, “Bridgetown”, Southwest), 0.5) 
truthValue(direction(“Center Island”, “Bridgetown”, South), 0.5) 
truthValue(direction(“Center Island”, “West Side”, West), 0.8) 
truthValue(direction(“Center Island”, “West Side”, Southwest), 0.2) 



 
 The directional relations above, being between extensive regions, naturally look 
intrinsically fuzzy. In the case of the characters in the Twitter stream, though, we are 
talking about directional relations involving point-like entities. In that case, a probabilistic 
modeling seems to capture better the conceptual setting at play. For instance we can 
infer that Tim most likely is somewhere in the West Side, but since the West Side is 
rather extensive relatively to Sam’s location in Center Island Tim maybe West, 
Southwest or Northwest of Sam. However, we cannot say that Tim is at the same time 
West  and Southwest of Sam (as in a fuzzy statement), but we can say that Tim is West 
of Sam or Southwest of Sam with different probabilities for each alternative.  The list 
below suggests a probabilistic reformulation of the directional relations between the 
Twitter characters. 
 
probability(direction(“Sam”, “Tim”, West), 70%) 
probability(direction(“Sam”, “Tim”, Southwest), 20%) 
probability(direction(“Sam”, “Tim”, Northwest), 10%) 
probability(direction(“Sam”, “Pam”, South), 60%) 
probability(direction(“Sam”, “Pam”, Southwest), 40%) 
probability(direction(“Pam”, “Tim”, Northwest), 40%) 
probability(direction(“Pam”, “Tim”, North), 60%) 
 
 As seen in previous approaches, fuzzy and probabilistic relations can also be 
represented as networks and thus be treated by many techniques for solving graph 
problems (analogously to the use of graph theory in analyzing biological networks, see 
e.g. [Przulj, 2005], [Grindrod and Kibble, 2004]). The graph in Figure 7.9 shows at the 
same time part of the crisp, fuzzy and probabilistic directional relations mentioned 
above. (This breakdown from the traditional approach of showing just “homogeneous” 
graphs used so far is in a way a preview of the following section, where we discuss a 
modeling tool that might allow the fusion of the approaches discussed so far.) 
 
Figure 7.9: a mixed network showing probabilistic, fuzzy and crisp directional relations between the 
example entities. 

 



Occupancy Grids: Putting It All Together 
The previous sections show that available representation models for spatial reasoning 
are somewhat compartmentalized. Region Connection Calculus is appropriate for 
reasoning in topological (and even morphological) terms on entities with non-negligible 
extension. STAR calculus is interesting for dealing with directional relations between 
entities treated as dimensionless points. Both approaches are qualitative and therefore 
they do not deal explicitly with distances and measurements (although it seems 
unproblematic to add these to the reasoning framework at least in the case of the 
directional models).  A natural question is whether there is a third approach able to 
integrate most or all of the strong points of the previous approaches, perhaps with a few 
additional advantages? 
 A positive answer to this question is provided by a modeling construct originally 
developed not with reasoning explicitly in mind, but rather as a probabilistic spatial 
representation the distribution of entities in space. This is the formalism of so-called 
Occupancy Grids [Martin & Moravec, 1996]. 
 Occupancy grids (also called Evidence Grids in their more complex and generic 
forms) were developed for Mobile Robotics and to date that remain their main field of 
practical application. The initial goal was simply to represent space and obstacles on it, 
in a probabilistic way that could accommodate noisy, incomplete or ambiguous sensor 
data gathered by a robot while navigating through an unknown terrain, thus providing an 
adequate data framework for typical tasks such as obstacle avoidance and path 
planning.  However, it has been demonstrated that spatial data represented in the form 
of occupancy grids can be used to achieve topological, morphological and directional 
inferences about the work environment of a robot [Szabó 2004]. Moreover, the original 
purely probabilistic version can also incorporate fuzziness [Bloch & Saffiotti, 2003]. 
Therefore, occupancy grids (and their variations) look like the most promising 
candidates for a common framework able to bridge and integrate all the aspects of 
spatial reasoning, even though (or perhaps because) they are a paradigm shift from the 
more symbolic, higher-level representations traditionally used in reasoning. 
 The original model of occupancy grids divides space into a regular lattice of cells, 
in which each cell has an associated probability of being occupied or not. Usually the 
grid is orthogonal and the space is 2D, although versions using other grid topologies 
(e.g., hexagonal) and higher-dimensional spaces are easy to devise.  From the point of 
view of a conventional wheeled robot, “occupancy” is the presence of nondescript 
impassable solid obstacles.  In order to accommodate versatile spatial reasoning about 
multiple entities, some complexity has to be added to that basic model. For instance the 
occupancy of a grid cell should not be nondescript. Rather, it should contain the 
probabilities of presence or fuzzy presences of the entities involved in the reasoning 
problem. In order to better illustrate that, Figures 8.10 and 8.11 show fuzzy and 
probabilistic occupancy grids representing data related to the example scenario. 
 Figure 7.10 shows a spatial discretization of  Metro City land area in terms of an 
occupancy grid. Different regions of Metro City are shown in different colors.  The 
representation is fuzzy in order to capture the imprecision inherent in dividing 
neighborhoods of a city. That fuzziness is color coded, and explains  why for instance 
the East Side is green and Clarice Heights is red, but the border zone between them is 
a gradation of yellow (red plus green in the additive system), representing the variation 



from red to green and vice-versa as a given cell seems to be more part of Clarice 
Heights than the East Side, or the other way around. Color mixtures observing the same 
convention can be observed along other neighborhood boundaries of the city. 
 

Figure 7.10: a fuzzy occupancy grid representing different regions of Metro City. 

 
 
 Figure 7.11 on the other hand is a probabilistic representation of the location of 
Tim, Sam and Pam. In terms of occupancy grids, those point-like individuals actually 
become clouds of probability. That can be an uniform cloud, as in the case of Sam - 
from the Twitter stream it is impossible to tell where exactly he is  in Center Island, and 
so his probability cloud is homogeneous across the whole extension of the landmass. In 
the case of Tim, on the other hand, the grid cells of the West Side closer to the Old 
Bridge are less likely to contain him, since if Tim were in that location presumably he 
could opt to cross Old Bridge and then North Bridge instead of using South Bridge. (An 
option that would look particularly attractive if Sam lives on the North part of Center 
Island.) Finally Pam’s probability cloud coincides with the fuzzy cloud from Figure 7.10 
representing Bridgetown. 
 
Figure 7.11: a probabilistic occupancy grid showing the location clouds of Tim, Pam and Sam. 

Ben Goertzel � 9/16/10 6:56 PM
Comment: This figure got fucked and 
needs replacing 
 
 



 
 
 Both figures above point in an intuitive way to a set of methods -- often borrowed 
from digital image processing and computer vision -- that allow the “translation” of 
information in occupancy grids to more symbolic representation frameworks, such as 
RCC and directional calculus. For instance the color gradations representing 
neighborhoods in Figure 7.10 can be segmented by a plethora of techniques in order to 
determine “crisp” neighborhoods, which would be suitable for classic RCC. And the 
probability clouds in Figure 7.11 could have their centroids determined and submitted to 
a crisp directional analysis or (perhaps more interestingly) directional probabilities could 
be computed by considering all the possible pairs of cells from two different clouds, 
supplying information in a very refined way for a probabilistic directional reasoning 
process. 
 Also, throughout this analysis of spatial reasoning we have tried to show the 
equivalence between many spatial reasoning representations and graph 
representations. In the case of occupancy grids, that equivalence comes with particular 
ease, as grids in general are graphs, in the sense that they are sets of cells (which can 
be viewed as nodes) connected by a regular neighborhood topology (which can be 
represented by edges). Figure 7.12 illustrates that grid-graph equivalence. 
 

Figure 7.12: occupancy grids as graphs following a lattice topology. 



 
 
 For the purposes of this text, more specifically we are talking about grid cells that 
can be related to spatial entities being reasoned upon by sets of logic predicates, often 
of probabilistic or fuzzy nature. Here we define the construct occupies(A, cell(i,j)), 
indicating that entity A occupies the cell assigned by coordinates i,j. (Many variations of 
an orthogonal coordinate system can be used, but throughout the examples in this 
section we will assume that i, j refer to row, column, with numbering starting at 1 for 
both dimensions.) The predicate occupies is different from the RCC predicates in the 
sense that it does not inform anything about the relative sizes and states of 
superposition of A and the cell. A may be a large entity and the cell contains just a tiny 
portion of it, or A may be a point-like entity that is somewhere in the space mapped by 
the cell. For instance, the following set of predicates could be related to the cell (20,15), 
part of the blurred frontier between Bridgetown and the Seaside District in Figure 7.10: 
 
truthValue(occupies(“Bridgetown” ,cell(20,15)),0.63) 
truthValue(occupies(“Seaside District” ,cell(20,15)),0.37) 
probability(occupies(“Pam”, cell(20,15)),63%) 
 
 Of course, an occupancy grid is in a sense a “fine-grained” and regular graph, 
while in the spatial reasoning representations shown here we have “coarse-grained” 
graphs (representing higher-level entities such as whole regions and people, instead of 
individual space cells). However, in principle, topological and directional information 
about higher-level entities can be extracted from occupancy grids. Indeed, the issue of 
low-level to high-level conversion raises the awareness that, in order to be used as a 
universal framework for spatial reasoning, the operation of occupancy grids has to 
involve translations from and to other forms of spatial representation. The diagram in 
Figure 7.13 outlines some possible input and output relations between several 
techniques (not restricted to spatial reasoning) that might play a role in an spatial 
reasoning engine centered on occupancy grids. 
 
FIGURE 7.13: a diagram showing inter-relationships between different kinds of processing that may exist 
in a comprehensive spatial reasoning engine. 



 
 
 As one can see, a spatial reasoning engine created along these lines could 
potentially pass all the data flux through occupancy grids, which could be the main 
spatial data representation approach. External information sources (which can be 
anything, from raw sensory data to natural language extraction of spatial information) 
could write to the occupancy grids through the Visual Creation module. Interestingly, as 
one may note from the above discussion of mathematical morphology, many techniques 
for extracting information from occupancy grids can be borrowed from digital image 
processing and computer vision (grouped under Visual Interpretation), while techniques 
for adding information to occupancy grids can be borrowed from data visualization and 
computer graphics (grouped under Visual Creation). Data extracted from Occupancy 
Grids by Visual Representation may feed both Directional Reasoning and 
Topological/Morphological Reasoning processes, and those in turn may write their 
conclusions back to the occupancy grids through Visual Creation as well as output 
those conclusions to External Information Consumers. 
 

Handling Change 
The examples we've given using the grid-centered system proposed above, as well as 
higher-level graph representations, so far have involved static situations. (With the 
possible exception of the example involving weather, where uncertainty is implicit in the 
dynamics of the phenomena involved; but we did not focus on that aspect.)  However, in 
the greater context of this work, the spatial reasoning approach described in the 
previous section would most likely work in a dynamic environment, where data from 
multiple sources and represented in many ways would constantly update the “world 
picture” maintained by the system. Those updates could be from higher-level entities 
and cascade down to the low level of occupancy grids. Conversely, change occurring 
on the lower levels could also cascade up and rearrange the relations between higher-
level entities. This last aspect is specially interesting for detecting change between 
entities (usually high-level ones) important for the problem being handled by the system. 
 Such a bottom-up cascading event is illustrated by Figures 8.14 and 8.15. Indeed 
Figure 7.14 shows an updated weather map, representing the weather patterns over 
Metro city at the instant of the last message from Sam. (And here an occupancy grid 
representation is used instead of the “weather blobs” of Figure 7.3. Different colors are 



used to assign the prevalent weather pattern in the grid cell, and the lighter the color the 
more intense the pattern represented.) We can see from that updated map that it is 
actually raining heavily over the whole of Center Island. Therefore, the probabilistic 
RCC network shown in Figure 7.7 must be updated with the new data. The result of 
such update is shown in Figure 7.15. 
 

Figure 7.14: a Twitter stream containing spatial and temporal assertions. 

 
 
 



Figure 7.15: an updated RCC network relating weather patterns to regions and individuals. 

 
 
 Instance (c) also adds one of the Twitter characters -- Sam -- to the picture, 
putting him in Center Island and therefore also under rain.  The example network is kept 
small for didactic purposes, but considering the probabilities of Pam and Tim also being 
in the island, they could also be similarly related to present patterns. That kind of 
inference could be further used by a broader reasoning system (of which the proposed 
spatial reasoning engine would be just a component) to infer that perhaps the Twitter 
characters will make subsequent observations about rain at Sam’s place in their tweets. 
 

Spatial Logic 
 

Temporal logic is a larger field than spatial logic, but the latter also has a long 
history and a flourishing body of contemporary work. 

As an early example, consider Tarski’s 1929 work in his Geometry of Solids 
[Tarski, 1956] – this is a second-order logic system, whose variables range not over 
points, but instead over the regular closed subsets of 3D Euclidean space (those 
subsets of R3 equal to the closure of their interior).  Tarski’s language features two non-
logical predicates, corresponding to the binary relation of parthood, and the unary 
property of being spherical.  

Much more recently, Aiello, Pratt-Hartmann and Benthem have reviewed the field 
of spatial logic in a masterful way in their lengthy book [Aiello, 2007], which draws 
together research from a variety of different areas under a common spatial logic 
framework.  They conceive spatial logic broadly as “the study of the relationship 



between geometrical structures and the spatial languages which describe them,” and 
more precisely as follows: 

By a spatial logic, we understand any formal language interpreted over a class of 
structures featuring geometrical entities and relations, broadly construed. The formal 
language in question may employ any logical syntax: that of first- order logic, or some 
fragment of first-order logic, or perhaps higher-order logic. The structures over which it 
is interpreted may inhabit any class of geometrical ‘spaces’: topological spaces, affine 
spaces, metric spaces, or perhaps a single space such as the projective plane or 
Euclidean 3-space. And the non-logical primitives of the language may be interpreted as 
any geometrical properties or relations defined over the relevant domains: topological 
connectedness of regions, parallelism of lines, or perhaps equidistance of two points 
from a third. What all these logics have in common is that the operative notion of validity 
depends on the underlying geometry of the structures over which their distinctively 
spatial primitives are interpreted. Spatial logic, then, is simply the study of the family of 
spatial logics, so conceived. 

As Aiello et al note, contemporary work in spatial logic emanates mainly from three 
application domains, the first two of which are highly relevant to the present work: 

• AI, where attempts have recently been made to develop logics of qualitative 
spatial reasoning.  

• The theory of spatial databases, related e.g. to geographical information systems 

• Image processing, where it is convenient to describe objects as sets of vectors 
that can be ‘added’ (taking all linear sums) or ‘subtracted’ (taking all linear 
differences), and one may proceed to define logics involving these operations 

 

5.1.1 Extending RCC into a Topological Logic 
 
 The spatial logic  most relevant to our own work with PLN is the extension of RCC 
into a topological logic, an excellent example of which is presented in [Kontchakov, 
2010].   
 To see how the RCC8 relations give rise to a spatial logic, let r1, r2 and r3 be 
regions in R2 that are homeomorphic to the disc, and suppose that r1, r2 stand in the 
relation TPP, while r1, r3 stand in the relation NTPP.   It’s easy to see (from the visual 
natural of these relationships) that r2, r3 must stand in one of the three relations PO, 
TPP or NTPP.  In formal terms, what this means is that the RCC-8-formula 
 
TPP(r1, r2) ∧ NTPP(r1, r3)! → "PO(r2, r3) ∨ TPP(r2, r3) ∨ NTPP(r2, r3)! 
 



is valid over the spatial domain of disc-homeomorphs in the plane: all assignments of 
such regions to the variables r1, r2 and r3 make it true. Similar experimentation shows 
that, by contrast, the formula 
 
TPP(r1, r2) ∧ NTPP(r1, r3) ∧ EC(r2, r3), 
 

is unsatisfiable: no assignments of disc-homeomorphs to r1, r2 and r3 make this 
formula true.   

 A similar analysis may be done in Euclidean 3D space, and more generally.   
Suppose one has a formal language L, whose variables refer to spatial “regions” that 
are subsets of some geometric space.   Given a subset K of regions,  the notion of the 
satisfaction of an L-formula by a tuple of regions, and thus the notions of satisfiability 
and validity of an L-formula with respect to K, can be understood in the usual way.  
According to the approach of [Kontchakov, 2010], the pair (L,K) may then be called a 
spatial logic. If all the primitives of L are topological in character—as in the case of 
RCC8— then we have a topological logic.  Otherwise one might have, say, a metric 
logic.  For languages featuring negation, the notions of satisfiability and validity are dual 
in the usual sense. 

Considering RCC8 as the foundation for a logic immediately makes the 
limitations of the RCC8 relationship-set apparent.  For instance, constraints featuring 
RCC-8 predicates give us no means to combine regions into new ones.  One way to 
remedy this deficiency is to turn the set of RCC regions into a Boolean algebra with 
binary operations + and · and a unary operation −. Intuitively, we are to think of r1 + r2 
as the agglomeration of r1 and r2, r1 · r2 as the common part of r1 and r2, and −r as the 
complement of r.  Adding these operators to RCC8 yields what is known as BRCC8 
(Boolean RCC8). For instance, in BRCC8, the formula 

EC(r1 + r2, r3) ↔ "EC(r1, r3) ∨ EC(r2, r3)!, 
 
is valid, whereas the formula 
 
EC(r1, r2) ∧ EC(r1, −r2), 
 

is unsatisfiable. 

 Taking things one step further, [Kontchakov, 2010a] explores the augmentation 
of BRCC8 with additional relationships representing connectedness: the unary 
predicates c and c≤k (for k ≥ 1).   Here one may interpret c(r) as “region r is connected” 
and c≤k(r) as “region r has at most k connected components.” 



 These directions of research are highly relevant to the PLN approach that will be 
reviewed in Part II of this book, as PLN combines RCC relationships with Boolean and 
other operators in a fairly free way.   

 

5.1.2 Combining Spatial and Temporal Logic 
 

PLN also combines spatial and temporal logic freely, as we shall see in  many of 
the examples presented in Part II.   Further, it does so in a manner embracing rich time 
representations (such as intervals) and uncertainty.  However, the full formalization of 
the combination of spatial and temporal logic is still a subject of current research.  One 
classic paper in this area is titled “Spatial Logic + Temporal Logic = ?” [Kontchakov, 
2007], and discusses several ways of combining the two, focusing on combinations of 
Branching Temporal Logic with spatial logics based on the RCC.  This is a big step in 
the right direction, but doesn’t handle interval representations of time or uncertainty. 

 



 

Representing and Reasoning on 
Contextual Knowledge 

 
One of the critical issues confronted in doing logical inference on large 

spatiotemporal knowledge bases is the fact that most real-world logical relationships are 
contextual in nature.  Contextuality must be explicitly taken into account to make real-
world inference tractable.  This is one of the issues with which formal-logic-based AI has 
traditionally had the most difficulty.  In this chapter we briefly explore the notion of 
contextual inference and the key approaches that have been taken. 
 Generically speaking, cognitive processes are usually contextual in the sense 
that they depend on the environment, or context, inside which they are carried out. The 
notion of context, in different varieties, plays a crucial role in different disciplines 
including natural language semantics, linguistics, cognitive psychology, and artificial 
intelligence.  Contextual information covers both knowledge representation and 
reasoning and their interaction. 
 A completely general representation of a particular piece of commonsense 
knowledge is impossible in practice, because “common sense” by its nature is not 
general but has to do with the properties of particular classes of situations.  In this 
sense the only practical way to consider knowledge is as contextual.   John McCarthy, 
one of the founders of the AI field, discussed this topic as follows (referring to axioms 
pertaining to real-world phenomena, rather than pure  mathematics)  [McCarthy, 1987]:   
 
“Whenever we write an axiom, a critic can say that the axiom is true only in a certain 
context. With a little ingenuity the critic can usually devise a more general context in 
which the precise form of the axiom doesn't hold. Looking at human reasoning as 
reflected in language emphasizes this point. Consider axiomatizing on so as to draw 
appropriate consequences from the information expressed in the sentence, 'The book is 
on the table'. The critic may propose to haggle about the precise meaning of on, 
inventing difficulties about what can be between the book and the table, or about how 
much gravity there has to be in a spacecraft in order to use the word on and whether 
centrifugal force counts. Thus we encounter Socratic puzzles over what the concept 
means in complete generality and encounter examples that never arise in life. There 
simply isn't a most general context. Conversely, if we axiomatize at a fairly high level of 
generality, the axioms are often longer than is convenient in special situations. Thus 
humans find it useful to say, 'The book is on the table', omitting reference to time and 
precise identification of what book and what table. [. . . ] A possible way out involves 
formalizing the notion of context [. . . ]” 
 
 Another way to phrase this is to say that, generally, reasoning is local to a subset 
of all the known facts. One never consider all one knows, but rather a very small subset 
of it. This small subset, the subset that is used for reasoning about a given goal, 
determines the context of reasoning. A context encodes an individual's subjective view 
of some portion or aspect of the world. The individual's complete description of the 
world is given by the set of all the  contexts. There can be different contexts for the 



same phenomenon and they can describe it at different levels of approximation.  The 
same statement may have different truth values in different contexts. For instance, 
“Alison is my boss” can be true from John's point of view, but not from Mike's point of 
view. 
 As the above quote from McCarthy suggests, the topic of representing contextual 
information and contextual reasoning has its roots in the early years of artificial 
intelligence. Also, McCarthy’s was probably the first proposal for rigorously modeling 
humans’ common sense, the key feature for artificial intelligence.  Another important 
early use of the concept of context in artificial intelligence was [Weyhrauch, 1980], who 
proposed a mechanized formal contextual reasoning system for Advice taker, a 
hypothetical computer program, proposed by John McCarthy [McCarthy, 1958] in the 
1950’s, that was the first proposal to use formal logic to represent information in a 
computer.  
 In the late 80's, interest in related issues grew, and context became a widely 
discussed issue, with a number of different formalizations and applications in knowledge 
representation and reasoning. Since the 90’s the concept of context-awareness has 
increasingly gained importance in the area of computing and distributed systems, due to 
its promise as a solution for describing mobile computing in ever-changing 
environments. Most approaches in the literature have focused on addressing the 
modeling of context with respect to one application or an application class. While some 
models take the user’s current situation (e.g., “in a meeting”) into account, others model 
the physical environment (e.g., “in an office”); and some work in this area has taken 
steps towards a common understanding of context, with respect to location, identity, 
and time. The objective of this work overall is to develop uniform context models, 
representation and query languages, and accompanying reasoning algorithms.  
 In the remainder of this chapter, we give a brief account of some of the major 
context representation approaches discussed in the literature today, with an emphasis 
on logic-based approaches.  More details and a survey of models of context can be 
found, for instance, in [Akman & Surav, 1996] and in [Strang & Linnhoff-Popien, 2004], 
while a survey of applications of context can be found in [Brezillon, 1999].   A broad 
review of context modeling and reasoning can be found in [Bettini, 2010]. 
 

Logic-Based Context Models 
Following [Bouquet et al., 2001], logic based models of context can be divided into two 
groups: divide-and-conquer and compose-and-conquer. 

The Divide-and-conquer approach 
In this approach a context is a way of partitioning (and giving a more articulated internal 
structure to) a global theory of the world. This global theory has an internal structure, 
and this structure is articulated into a collection of contexts. Some of the main features 
of this approach are: 
 

•  the facts that are true in a given context c can be isolated and treated as a 
distinct collection of facts;  

•  there are hierarchical relations between contexts that allow reasoning to “climb" 



from a context to a more general context in which the dependence of a fact on a 
context is explicitly stated; 

•  there are non-hierarchical relations between facts of different contexts (for 
example, one would like to be able to represent the relation between facts of the 
form in_office(person;office_number) and facts of the form 
in_central_office(person) in a context that specializes the former context to one 
specific office). 

 
 The propositional logic of context (LoC) is one of the theories following this 
approach. It was first described by McCarthy, and then formalized by Buvac and Mason 
[Buvac & Mason, 1993]. Some of the most important features of LoC are:  
 

• Any formula can only be asserted in some context (there are no context 
independent formulae). The fact that a formula p is asserted in a context c is 
written as c:p.  

• Context sequences are used to represent nested contexts. Context sequences 
allow distinctions, say, between the context of meeting in the context of one 
company team and the context of meeting in the context of a company.  

• There is no outermost context. This means that one can always transcend a 
context c and move to a more general context in which facts about c can be 
asserted. 

• Statements about a context c are made through the formula ist(c; p), meaning 
that the formula p is true in the context c. 

• some relations between facts belonging to different contexts are stated through 
the lifting axioms with the general form  ist(c; p) ⇒ ist(c0; p0) 

 
For example, in the context of Alison’s office, Alison’s computer is close to Bob’s office if 
and only if, in the context of their company, Alison’s office is close to Bob’s office. 
 There is a Hilbert style axiomatization of validity for the logic of context [Buvac & 
Mason, 1993]. It ensures that all propositional tautologies are valid in every context c. 
 Next, Dinsmore’s theory of partitioned representations PR [Dinsmore, 1991] is 
similar to LoC, but in PR there is a special space, BASE, that cannot be transcended 
and can be considered as a sort of outermost context. In PR, a statement is always 
asserted in a space, while a space represents some potential reality. Each space has 
exactly one primary context. A primary context is defined as a function that maps the 
truth of a statement in one space onto the satisfaction of a (more complex) statement in 
another space. For example, the sentence “Bob is a project manager” can be asserted 
in a space S1 and “Alison believes that [S1]” can be the primary context of S1. This 
allows mapping the truth of “Bob is a project manager" onto the truth of the sentence 
“Alison believes that Bob is a project manager", which, in turn, is asserted in some other 
space. Of course, the semantics of “Bob is a project manager” would be very different in 
a space S2 whose primary context was, for instance, something like “John had a dream 
that [S2]". Dinsmore also introduces a notion of secondary context, which allows for 
lateral mappings. Intuitively, a mapping is a consequence of the semantics of the 
primary contexts involved. In other words, a secondary context opens a channel of 
communication between two spaces. 



Compose-and-conquer Approaches 
In these approaches, a context is a local theory, namely a (partial, approximate) 
representation of the world, in a network of relations with other local, domain specific 
theories. There is no global theory of the world, but only many local theories. Each local 
theory represents a viewpoint on the world and they are the building blocks of the 
individual’s knowledge. The totality of his/her knowledge is given by composing such 
local theories through a collection of rules that connect them into a (still partial) 
representation of the world. A local theory is not a partition of some global theory, but it 
represents (partial) knowledge about some portion of the world, from a given 
perspective. For example, a local theory can be a representation of physical objects in 
an office.  
 In the compose-and-conquer approach, there are no a priori relations between 
contexts. This is a major difference from divide-and-conquer theories. Namely, in divide-
and-conquer systems, global knowledge implies how contexts are related to each other. 
On the other hand, in compose-and-conquer theories, there is no predefined global 
knowledge and contexts are autonomous theories. This does not mean that there are 
no relations between contexts, but only that these relations are established on a peer-
to-peer basis. 
 One example of a compose-and-conquer approach to contextual knowledge 
representation and reasoning is Ghidini and Giunchiglia's Local Models Semantics 
[Ghidini & Giunchiglia, 2001], together with its proof-theoretical counterpart [Giunchiglia 
& Serafini, 1994]. It is based on the following two very general principles: 
 

• principle of locality: reasoning always happens in a local theory (a context); 
• principle of compatibility: there may be compatibility constraints between the 

reasoning processes that happen in different contexts. 

Compatibility constraints.  
Compatibility constraints represent relations between different contexts.   These may be 
formalized in many different ways. 
 For instance, in the logic based approach to contextual knowledge representation 
described in [Ghidini & Giunchiglia, 2001], one starts with a family of languages 
L1;…,Ln;…, where Li is the representation language of a context ci.  Each language Li 
has its set of models Mi. Every subset MTi of Mi satisfies a set of formulae, each 
corresponding to a different choice of the theory Ti associated with ci. Once the theory Ti 
associated with ci is fixed, a model belonging to MTi is called a local model of ci.   And 
then, relations between two contexts are represented by compatibility constraints, which 
state that the truth of a formula F in c1 is related to the truth of the formula F’ in c2. This 
is achieved by imposing that: sets of local models c1 and c2 of the two contexts c1 and 
c2 are such that, if the set of local models of c1 satisfies F, then the set of local models 
of c2 satisfies F’ 
 Pairs <c1; c2> satisfying the above relation are said to belong to a compatibility 
relation and define a model for the pair of contexts c1 and c2. Using the notion of 
compatibility, a wide range of relations between contexts can be formalized. For 
example, if a context c1 represents Bob's beliefs at day d, and that it contains the 
statement “I have a board meeting” and if c2 represents Bob’s beliefs at day d+1, then 



there can be a relationship between the two contexts such that the sentence “Yesterday 
I had a board meeting" is true in c2. The above relations are based on considering 
models, while there is also a deductive counterpart to imposing compatibility 
constraints. 

Other Approaches to Contextual Knowledge Representation 
Contextual knowledge representation is used in many different fields, including 
modeling psychological and cognitive processes. The most important real-world 
application of contextual knowledge representation at present is in distributed and 
mobile computing, an area that has to deal with computing devices working in changing 
contexts.  More pertinently to the present book, context based frameworks have been 
also used in knowledge and data integration – for the integration of information (or 
knowledge) coming from different sources (see, for instance, [Farquhar et al., 1995].  
 Different information sources integrated in a unique system can be thought of as 
partial views (or contexts) on a world. Available information sources are often 
distributed, redundant, partial, and autonomous. Consequently, information sources 
may adopt different conceptual schemata (including domains, relations, naming 
conventions, etc). The relations between the different domains and between the 
interpretation domains of the different databases can be established.  
 For instance the different (but related) meanings of the predicate costs(x; y) in 
database 1 and database m can be represented by using the following formula: 
 
1 : costs(x, y) ⇒ m : ∃y’ (costs(x,y’) ∧ y’ = 1.07*y) 
 
The meaning of the above relations is that if the models of database 1 satisfy the 
formula costs(x; y), then any models of the database m must satisfy the formula 
 
∃y’ (costs(x,y’) ∧ y’ = 1.07*y) 
 
which means that item x has price y’ which is obtained by adding taxes to the price y. 
 One application of these ideas is to traditional relational databases.  For 
instance, in one research project, a context-based knowledge was applied to the 
problem of specifying redundancy among different databases while maintaining an high 
degree of autonomy [Mylopoulos & Motschnig-Pitrik, 1995]. In this work, there are 
mechanisms for change propagation: i.e.,  mechanisms that establish whether the 
effects of a change operation performed in one context are visible in other contexts. 
 In another sort of application, a rich contextual knowledge representation is 
required for the maintainance of a massive knowledge base such as CYC [Lenat & 
Sierra, 1999]. The (controversial) philosophy underlying the CYC AI project is that huge, 
hand-created knowledge bases covering a wide area of (human) knowledge are 
required in order to create generally intelligent programs (the authors give an example 
of a logic-based expert system with the rule that amphibians lay eggs in water; however, 
the system cannot answer the question whether amphibians lay eggs at all, because its 
rule base is not sufficiently rich to encompass such commonsense facts). However, 
maintaining and using a huge knowledge base, brings different challenges, one of which 
is the use of contexts, as the Cyc team has observed: 



 
“… as the CYC common sense knowledge base grew ever larger, it became 
increasingly diffcult to shoehorn every fact and rule into the same at world. Finally, in 
1989, as CYC exceeded 100,000 rules in size, we found it necessary to introduce an 
explicit context mechanism. That is, we divided the KB up into a lattice of hundreds of 
contexts, placing each CYC assertion in whichever context(s) it belonged."  
 
 Contexts in CYC have a fine internal structure with a dozen mostly-independent 
dimensions along which contexts vary. Each region of this 12-dimensional space 
implicitly defines a context. The capability of importing an assertion from one context 
into another is provided by lifting assertions. They have a general form: 
 

ist(c; p) ⇒ ist(c0; p0) 
 
For instance, the fact that gold is more expensive than silver in the stock market, can be 
exported to the context of the black market by the assertion: 
 
ist(StockMarket; MoreExpensive(gold,silver)) 
⇒	 
ist(BlackMarket; MoreExpensive(gold,silver) 

Contextual Knowledge in Probabilistic Logic Networks 
PLN has a special link to handle contextual knowledge called ContextLink (or simply 
Context). For instance one can express in the context of programming a method is a 
class function by 
 
Context 
        Programming 
        Similarity 
                ClassFunction 
                Method 
 
The semantics of ContextLink is formally defined by the following equivalence: 
 
Context 
        C 
        R A B 

 
is equal to 
 
R (A AND C) (B AND C) 

 
Context can be mixed, as above, or else purely intensional or extensional.  The purely 
intensional version is defined as follows: 
 
IntensionalContext 
        C 
        R A B 



 
is equal to 
 
R (A AND_Int C) (B AND_Int C) 

 
So reasoning with context simply amounts to reasoning with non-contextual standard 
operators, in certain stereotypical patterns.  However since contexts are often used it 
may be valuable to introduce some inference “macro rules” handling context, like the 
following, used in an inference example given later on: 
 
Context C A 
Implication A B 
|- 
Context C B 

 
Informally this rule says that if A is true in the context C and A implies B then B is true in 
the context C. 
 Also, one may note that the definition involving the Context link assumes that the 
context applies on a relationship (noted R in the definition given above), nevertheless a 
truth value over a concept A can be seen as the measure of how much the universe 
inherits A, that is: 
 
A <w> 

 
is equal to 
 
Inheritance <w> 
        U 
        A 

 
where U symbolizes the universe.  Given this, we can define contextual versions of 
concepts as well as relationships. 
 

User Models as Contexts 
 
One area where contextual logic has not frequently been applied, but perhaps should 
be, is the modeling of the preferences, biases and other properties of individual users 
and user groups of information systems. (Bry and Jacquenet [Bry and Jacquenet, 2005] 
have laid out the logic for application of first-order logic to user modeling in the semantic 
web in some detail, but they do not consider contextual logic in specific.) 
 

User Modeling in Information Retrieval Systems 
 
A great deal of work has been done to date on user modeling in information retrieval 
(IR) systems.  The relevance of the output of an IR system is not absolute, but relative 



to specific users; and because of this, the lack of user modeling is one of the main 
sources of weakness of most contemporary such systems. For example, a tourist and a 
programmer may use the same word “java” to search for different information, but many 
retrieval systems would return the same results. It was observed, already in late 70s 
and early 80s, that information retrieval systems can and should be personalized for 
users by means of profiles [Rich, 1997; Myaeng et al., 1986]. Since then, a lot of efforts 
have been invested in the area of individual user modelling and individual user profiles. 
The main objective of user modeling is to extract and store information about a user, 
and to adapt the retrieval tool to the user's needs and interests in order to improve the 
relevance of the results. Such, personalized search is still considered as one of the 
major challenges in modern information retrieval. For estimating the user-specific 
relevance of documents different computing methodologies are used, ranging from 
genetic algorithms, fuzzy logics, modal logic, to classical first-order logic approaches. 
 User profiles can model different users' preferences. For example, for some 
users it is preferable to have the list of all results to the query quickly, even with a 
number of bad results. On the other hand, some users prefer to have a short list of 
results, even if producing it takes more time. Some users prefer results only in some 
specific file formats, etc. These criteria and also criteria that define quality or relevance 
for a specific user define his/her profile. Generally, a (user) profile consists of a set of 
preferences with regard to behavior of a search engine as well constraints on the results 
it presents to the user [Van Gils & Schabell, 2003]. For example, the following criteria 
may define a particular user-profile:  
 
I prefer a maximum of 25 results per page, and by selecting a relevant resource 
(clicking on the link) will open a new window. I prefer HTML and PDF formats and 
refuse the Microsoft DOC format. Furthermore, the size of the resource should not 
exceed 25Mb. 
 
Profiles can be used for post-processing the results to the query (e.g., some resources 
can be converted into a prefered format), and most interestingly, can also be used for 
guiding search.  
 An important distinction in a user modeling context is between explicit and 
implicit preferences.  Explicit preferences consist of information given by a user 
explicitly. On the other hand, implicit preferences refer to any context information 
available to the information retrieval system during a user's session. Relevance 
feedback (given by the user to the information retrieval system) is one way for providing 
more context explicitly and can be effective for improving retrieval accuracy. However, it 
is often unrealistic to motivate user to explicitly rate the results obtained. Therefore, 
implicit context information and implicit feedback is thus more interesting to exploit and 
it has been attracting more and more attention (see, for instance, [Kelly & Teevan, 
2003] for a bibliography of implicit feedback). In addition, both user’s explicit and implicit 
preferences may change over time.  
 There are different sources of implicit user preferences. For instance, the user 
often need to modify his query in a number of iterations until he is satisfied. In such 
scenario, the information to be used by the information retrieval system is not just the 
current query, but also the complete user's search history, information about which 



documents the user has chosen to view, and even for how long the user has read 
specific documents, etc. For instance, a simple user’s profile can be based on keywords 
from his queries performed or documents that he read. 
 Many approaches use user's actions and navigation through data as implicit 
feedback. For instance, some web browsers record user actions and navigation, 
including dwelling times, mouse clicks, mouse movements, scrolling and elapsed times 
and user explicit ratings of web pages. Some experimental results show that implicit 
feedback, especially the dwelling time on a page, amount of scrolling on a page, the 
combination of time and scrolling, how a user exit a result or end a search session have 
all a strong correlation with explicit relevance ratings [Claypool et al., 2001; Fox et al., 
2005]. However, there are also some experimental results showing that there is no 
general direct relationship between display time and relevance (and that the display 
time depends on the specific tasks and specific users) [Kelly & Belkin, 2004].  
 There is a range of techniques for using user’s query history in building his/her 
profile. Some web browsers use browsing history in past n days for personalized 
search. Some approaches store user’s interests and can distinguish between long term 
interests and ad hoc queries. Thank to this, modification of queries that can not 
appropriately be supported by the user profile are not applied.  
 User modeling is widely used not only in Internet browsing, but also in 
recommender systems providing advice to users about items they might wish to 
purchase or examine. Recommendations made by such systems can help users 
navigate through large information spaces of product descriptions, news articles, social 
information, or other items [Burke, 2000].  
 A general survey covering many aspects of user modeling in information retrieval 
systems can be found in [Kobsa, 2007].  Another survey of the field, including extensive 
discussion of different forms of communication with the user (querying, navigation 
through structures, and visualization) can be found in [Nurnberger & Detyniecki, 2005]. 
A survey of the field of adaptive user interfaces can be found in [Dieterich et al., 2003]. 
 

User modeling from the cognitive perspective 
 
Beyond the specific domain of information retrieval, there are several types of computer 
related models considered by cognitive psychology. Apart from the user models – the 
computer's model of the user (as described above in the context of information retrieval 
systems), there are also 
 

• mental models – user's model of the system;  
• conceptual models – models presented to the user by the system designer.  

 
 User models can be split into two major categories: empirical quantitative models 
and analytical-cognitive models [Palermiti & Polity, 1995]. 
 
Empirical quantitative models are based on users’ performances when using a given 
system. Empirically collected performance data are used for constructing abstract 
formalizations and for defining groups (e.g., skill groups such as "experts”, “beginners"). 



These user models do not express beliefs, reasoning or cognitive processes, but rather 
external performances.  
 
Analytical cognitive models attempt to construct a more qualitative behavioral 
modeling. The models aim to detect the purposes, strategies, plans or beliefs of the 
user, so that the system may issue predictions and draw conclusions. These models are 
not static but dynamic, able to evolve according to different tasks or categories of users, 
and adaptive, by using the cognitive features detected in the user behavior. Their role is 
to help the system cooperate, to indicate hypotheses, and to single out areas of interest. 
 
 User models can also be classified according to three main dimensions:  
 

• models of a single "typical" user versus collections of individual models; 
• explicit models defined by the designer versus models inferred by the computer 

on the basis of the user's behavior;  
• long term user characteristics such as areas of interest and expertise versus 

short term characteristics such as the subject of the last sentence typed. 
 

Logic based user modeling  
Instead of using approximate models and reasoning, logic based user modeling aim at 
employing formal reasoning for deducing facts about the user. This family of user 
modeling approaches is relatively small, but has a number of important ideas and 
techniques.  
 Some of the logic-based representations used in user modeling are [Kobsa, 
1993]: 
 

• PROLOG-based, which offers a comparatively rich representation language with 
built-in backward reasoning and the possibility of a smooth migration from 
knowledge representation to programming; 

• Predicate logic, which offers more expressiveness than PROLOG, as is needed 
in many application domains; 

• Languages with second-order predicates and modal logic, which allow 
representing assumptions about  beliefs and goals of different agents in the 
same representation language; 

• Connectionist networks, which have been particularly employed for classification 
tasks. 

 
An overview of different reasoning techniques used in logic-based user modeling 
systems can be also found in [Kobsa, 1993]. Typically, most logic-based systems use 
simple forward or backward reasoning (using the knowledge from the knowledge base), 
or some their combinations. 
 
 



Contextual Logic for User Modeling 
 One potentially promising avenue for applying logical methods to user 
recommendation involves deploying contextual logic, in such a fashion that each user 
connotes a distinct context for inference.  As this approach seems not to have been 
touched in the literature yet, we explore it here via a “thought experiment” style 
example. 
 Our examples concerns book recommendation systems which, when a user 
locates one book, recommend to him/her other books of potential interest. In such 
systems today, models of individual users are not necessarily built at all; instead most 
recommendations are generic – the same for all users locating a certain book.  
Typically, relationships between books, as a basis for recommendations, are inferred 
from purchases of individual users, i.e., from the database of all purchases.  For a 
certain book A, it is calculated how many users that bought the book A also purchased 
a book B, a book C, etc. Then the books (a fixed number of them – say 10) with the 
highest score are recommended to the user, as of potential interest.  This simple and 
generic model, commonly used in practice, can be refined in many ways, for instance by 
applying a specific ordering among the 10 recommended books, derived with respect to 
the specific user.  Let us consider one possible approach for this through a simple 
example.  
 Suppose there are the following books available:  
 
(A) Katya Walter  The Tao of Chaos  
(B) Katya Walter: Dream Mail: Secret Letters for Your Soul   
(C) Martin Schonberger: I Ching & the Genetic Code: The Hidden Key to Life  
 
Suppose there is also stored the relevance of these books to two areas: spiritual 
literature and popular science. These relevance data (given by weight factors from 0 to 
1) may then be taken to form two contexts: 
 

Popular science context: 
 

1. relevance(A,0.5)  
2. relevance(B,0.2)  
3. relevance(C,0.7)  

 
 
 

Spiritual literature context: 
 

1. relevance(A,0.6)  
2. relevance(B,0.8)  
3. relevance(C,0.3)  

 
 
Let there also be models of two users, Alice and Bob, and their interests, again 
described by weighting factors.   Assume these weighting factors are computed based 



on their past purchases. 
 

Alice’s model: 
 
1. interested_in(popular science,0.2) 
2. interested_in(spiritual literature,0.7)  

 
 
 

Bob’s model: 
 
1. interested_in(popular science,0.9)  
2. interested_in(spiritual literature, 0.2)  
 

 
Now, let us assume that Alice searches the book recommendation system and locates 
the book (A). The engine queries the database and finds that other users that 
purchased this book most often also purchased books (B) and (C). So, these two books 
should be recommended to Alice in some suitable ordering and the relevance of these 
books to Alice should be estimated.  
 Information from the contexts of certain areas apply to all specific users; so, in 
our example, all facts from all area contexts are also used in specific user’s contexts by, 
so-called, bridge rules: 
 
Inference rule in User N’s model: 
 

Context for the area X: relevance(Y,w1)  
interested_in(X,w2)  
relevance(Y,w3)  
relevance(Y ,max(w3,w1*w2)) 

 
The meaning of this rule is as follows: if, in the context of the area X, the relevance of 
the book Y is w1, and if w2 is the weight of the user N’s interest in X, then the relevance 
of the book Y for the user N is w1*w2. Such relevance factors can be calculated for all 
available areas, and the final relevance factor for the book Y is the maximum over all 
areas (the initial relevance factor is 0).  
 In our example, we should apply, within Alice’s model, the above rule twice for 
each of the books (B) and (C):  
 

Popular science context: relevance(B,0.2)  
interested_in(popular science,0.2)  
relevance(B,0)  
relevance(B, 0.04) 

 
Spiritual literature context: relevance(B,0.8)  
interested_in(spiritual literature,0.7)  
relevance(B, 0.04)  



relevance(B, 0.56) 
 
 

Popular science context: relevance(C,0.7)  
interested_in(popular science,0.2)  
relevance(C,0)  
relevance(C, 0.14) 

 
Spiritual literature context: relevance(C,0.3)  
interested_in(spiritual literature,0.7)  
relevance(C, 0.14)  
relevance(C, 0.21) 

 
Hence, the estimated relevance of the book (B) for Alice is 0.56, and the relevance for 
the book (C) is 0.21 and the ordering in recommendation is (B), (C). 
 We can also apply, within Bob’s model, the same rules:  
 

Popular science context: relevance(B,0.2)  
interested_in(popular science,0.9)  
relevance(B,0)  
relevance(B, 0.18) 

 
Spiritual literature context: relevance(B,0.8)  
interested_in(spiritual literature,0.2)  
relevance(B, 0.18)  
relevance(B, 0.18) 

 
 

Popular science context: relevance(C,0.7)  
interested_in(popular science,0.9)  
relevance(C,0)  
relevance(C, 0.63) 

 
Spiritual literature context: relevance(C,0.3)  
interested_in(spiritual literature,0.2)  
relevance(C, 0.63)  
relevance(C, 0.63) 

 
Hence, the estimated relevance of the book (B) for Bob is 0.18, and the relevance for 
the book (C) is 0.63 and the ordering in recommendation is (C), (B). 
 It is not hard to see how the same form of contextualization could play a role in 
other sorts of user modeling besides product purchase investigations.  For instance, 
suppose Bill and Betty are two criminal investigators, investigating a crime involving an 
individual named Giulio (A).  Suppose Giulio has connections to 
 
(B) Elias, a known drug dealer who is suspected to have sold drugs to Giulio's uncle 



 
(C) Jonas, a banker convicted of fraud, who works at the bank where Giulio used to 
work 
 
Suppose that Bill's expertise is in drug crimes, whereas Betty's expertise is in bank 
fraud.  Then, in the context of Bill's investigation, the association between A and B 
should be more prominent; whereas in the context of Betty's investigation, the 
association between A and C should be more prominent.  The structure is exactly the 
same as in the book purchasing example.  (And of course there are many subtler 
examples of how contextual reasoning could be used to aid in user modeling; we have 
just presented a simple sort of example to make the conceptual connection clear.  
 

General Considerations Regarding Contextual Inference 
 
Now we turn to issues involving the combination of contextual representation with 
logical inference systems.  The explicit incorporation of context into inference is a subtle 
matter; a number of approaches have been posited in the research literature, yet none 
have yet been battle-tested in real-world applications.  Here we will review some 
general considerations regarding contextual inference, then go into more detail 
regarding PLN-based contextual inference, and give a fairly complex, realistic example 
of the latter. 
 
 
Generally speaking, any deductive system (say, Hilbert style first-order logic, or 
temporal logic) can be used contextually, by restricting its rules to certain domains.  But 
this is different than explicitly contextual reasoning, in which a notion of context is 
incorporated in both the knowledge representation and the inference rules.  In practice, 
the way explicitly contextual reasoning systems tend to work is that inference rules are 
supplied for specific contexts, and then special rules are also applied for bridging pairs 
of contexts.   
 For example, the relationship “to be superior” can be described by the following 
(implicitly) universally quantified axioms: 
 
team_leader(x,z) ⇒ superior(x,z)  
superior(x,y) ∧ superior(y,z) ⇒ superior(x,z)  
 
The axioms can be associated by an additional parameter describing a context – for 
instance, a company or a sport club. They can then be exported, by lifting rules, to 
specific contexts: 
 
team_leader(x,z,context) ⇒ superior(x,z,context)  
superior(x,y,context) ∧ superior(y,z,context) ⇒ superior(x,z,context)  
 
or, to the following notational form: 



 
context: team_leader(x,z) ⇒ superior(x,z)  
context: superior(x,y) ∧ superior(y,z) ⇒ superior(x,z)  
 
The basic idea here, due originally to McCarthy, is to tackle the problem of generality by 
using more general axioms if the context is irrelevant, and less general axioms 
otherwise. 
 In addition to inference rules local to specific contexts, contextual inference 
systems also utilize rules that link different contexts. For instance, in the inference 
system described in [Ghidini & Giunchiglia, 2001], there are bridge rules. Bridge rules 
are rules whose premises and conclusion belong to different contexts. For instance, the 
bridge rule corresponding to the compatibility constraint  
 
if the set of local models of c1 satisfies F, then the set of local models of c2 satisfies F’ 
 
would be the following:  
 

c1 : F 
c2 : F’ 

 
 
where c1:F is the premise of the rule and c2:F’ is the conclusion. Obviously, bridge rules 
are conceptually different from local rules, rules used in individual contexts. Bridge rules 
can have different forms and can involve more than two contexts. A deduction is a tree 
of local deductions, obtained by applying only local rules, concatenated with one or 
more applications of bridge rules. In a special case when there is no relation between 
the two contexts, there are no constraints on what is true in the two contexts.  
 Using the machinery of compatibility, a wide range of relations between contexts 
can be formalized. For examples, let c1 represent the prices on the American market at 
the present moment and assume “Gold gets cheaper" is true in c1. If c2 represents the 
prices on the Asian market at the present moment, then the sentence “In America, gold 
gets cheaper" must be true in c2. This conclusion is based on the inference rule of the 
form:  
 

c1 : F 
c2 : F is true in 
c1 

 
 
 

Uncertain Contextual Inference 
Although there is very little literature in this area, there is no reason contextual 
reasoning can’t be applied in the context of uncertain  logics.   
 For instance, to “uncertainize” the example given above, the fact “Gold gets 
cheaper” could have a degree of certainty of 0.9 in the context c1 of the American 



market.  Furthermore, the relevant bridge rules could also have degrees of certainty 
associated with them.  So, for instance, there could be a bridge rule 
  

c1 : Gold gets 
cheaper 
c2 : Gold gets 
cheaper 

 
 
where c1 is the context of the American market, while c2 is the context of the Asian 
market.  This rule could have a degree of certainty, say, 0.8, indicating that it is likely 
that if gold gets cheaper on the American market, that it also gets cheaper on the Asian 
market.  So, finally, the degree of certainty that gold gets cheaper on the Asian market 
could be calculated as the product of the degree of certainty that gold gets cheaper on 
the American market (0.9) and the degree of certainty of the bridge rule (0.8), giving 
0.72.  
 On the other hand, there could be a bridge rule  
 

c1 : local currency gets 
stronger  
c2 : local currency gets 
stronger 

 
 
where c1 is the context of USA, while c2 is the context of Japan. This rule could have a 
degree of certainty, say, 0.2, indicating that it is unlikely that if US dollar gets stronger, 
then yen also gets stronger. If the degree of certainty that US dollar gets stronger is, 
say, 0.95, then the degree of certainty that yen gets stronger is 0.95*0.2=0.19. 
 

   A Detailed Example Requiring Contextual Inference 
In this section we present a simple, specific example of contextual inference, and 
explain how the ideas discussed above may be applied in this case.    In working this 
example, we will use the approach close to [Ghidini & Giunchiglia, 2001] and first order 
logic as the underlying logic, but, for the sake of simplicity, instead of first-order 
notation, we will formulate the statements in natural language form.  In a following 
section, we will run through this same example using PLN inference. 
 The basic assumptions of the inference, expressed in common informal English, 
are as follows: 
 
Alison is an accountant who is also a musician.  Alison is emotional in the context of 
music, but not in the context of accounting.  She frequently mentions Canadian place 
names in the context of music (maybe she's a Canadian music fan), but not in the 
context of accounting. Bob is in a similar situation, but he frequently mentions Canadian 
related stuff in both the music and accounting contexts. Clark is also in a similar 
situation, but he frequently mentions Canadian related stuff only in the accounting 



context, not the music context. Trivially, Canadian places are associated with Canadian 
people. People who have a lot to do with Canadian people, and a lot to do with money, 
have a chance of being involved in suspicious money-laundering activities.  Trivially, 
accounting has to do with money. 
 
 To formalize the above using contextual inference, we will consider the following 
contexts: music, accounting, to-be-involved, and Canada. We can encode all the above 
information as axioms in these contexts, while we also have to add some bridge rules 
(linking different contexts and corresponding to compatibility constraints). Each 
inference step is made in a specific context. If a person is an accountant, we can 
encode this information as being that the person is knowledgeable in the context of 
accounting. It is similar for the context of music. 
 More explicitly, the contexts under consideration are as follows: 
 

Music context: 
 
(1) Alison is knowledgeable. 
(2) Alison is emotional. 
(3) Alison frequently mentions Canadian place names. 
 
(4) Bob is knowledgeable. 
(5) Bob is emotional. 
(6) Bob frequently mentions Canadian place names. 
 
(7) Clark is knowledgeable. 
(8) Clark is emotional. 
(9) Clark does not frequently mention Canadian place names. 

 
Accounting context: 
 
(10) Alison is knowledgeable. 
(11) Alison is not emotional. 
(12) Alison does not frequently mention Canadian place names. 
 
(13) Bob is knowledgeable. 
(14) Bob is not emotional. 
(15) Bob frequently mention Canadian place names. 
 
(16) Clark is knowledgeable. 
(17) Clark is not emotional. 
(18) Clark frequently mention Canadian place names. 
 
(19) Money is important. 

 
To-be-involved context: 
 



(20) If someone is knowledgeable and X is important, then he/she 
is highly involved with X. 
(21) If someone frequently mentions place names from X, he/she 
is highly involved with these places. 
(22) If someone is highly involved with places from X, he/she is 
highly involved with anything that is associated with these places. 

 
Canada context: 
 
(23) Canadian places are associated with Canadian people 
(24) If someone is highly involved with Canadian people and with 
money, then he/she has a chance of being involved in money-
laundering. 

 
 To keep things relatively comprehensible and informal, we won’t explicitly specify 
the languages of the contexts, and we’ll assume that all relevant information can be 
expressed in any of the contexts (for instance, we assume that in the music context it 
can be expressed that someone is involved with Canadian people).   Also, we use the 
following bridge rules: 
 

To be involved : F 
Music : F  

 
Canada : F 
Music : F  

 
To be involved : F 
Accounting : F  

 
Canada : F 
Accounting : F  

 
 
In the described system, for example, one can infer that Clark has a chance of being 
involved in money-laundering (in the context of accounting). 
 The inference in the accounting context goes as follows:  
 
Step Inferred information Justification 
(C1) If someone is knowledgeable and X is 

important, then he/she is highly involved with 
X. 

bridge from (20) 

(C2) If someone is knowledgeable and money is 
important, then he/she is highly involved with 
money. 

instance of (C1) 

(C3) Clark is highly involved with money. from (16), (19), and (C2) 



(C4) If someone frequently mentions place names 
from X, he/she is highly involved with these 
places. 

bridge from (21) 

(C5) If someone frequently mentions place names 
from Canada, he/she is highly involved with 
these places. 

instance of (C4) 
 

(C6) Clark is highly involved with places from 
Canada. 

from (18) and (C5) 

(C7) If someone is highly involved with places from 
X, he/she is highly involved with anything that 
is associated with these places. 

bridge from (22) 

(C8) If someone is highly involved with places from 
Canada, he/she is highly involved with 
anything that is associated with these places. 

instance of (C7) 
 

(C9) Canadian places are associated with 
Canadian people. 

bridge from (23) 

(C10) Clark is highly involved with Canadian people. from (C6), (C9), and (C8) 
(C11) If someone is highly involved with Canadian 

people and with money, then he/she has a 
chance of being involved in money-
laundering. 

bridge from (24) 
 

(C12) Clark has a chance of being involved in 
money-laundering. 

from (C3), (C10), and 
(C11) 
 

 
 Notice that one can prove that Alice is highly involved with Canadian people in 
the context of music, but cannot prove that Alice is highly involved with Canadian 
people in the context of accounting. Hence, it cannot be proved that Alison has a 
chance of being involved in money-laundering. 
 If one use a bridge rule connecting the two contexts:  
 

music : F 
accounting : F  

 
 
for all sentences F that can be expressed in the two contexts, then one can infer that 
Alison is highly involved with Canadian people in the context of accounting, too (if all 
relevant properties can be expressed in that context). However, such a bridge rule is not 
very intuitive.  
 Notice also that, in the same manner as for Clark, one can prove that Bob is 
highly involved with Canadian people in the context of accounting, and further that Bob 
has a chance of being involved in money-laundering. One may wonder if there can be 
made a distinction between Bob and Clark. Namely, Bob is highly involved with 
Canadian people in both contexts music and accounting, while Clark is highly involved 
with Canadian people only in the context of accounting.  In addressing this there are 
several issues. First, one might eliminate the axiom (24), and instead add the following 



bridge rule: 
 

Accounting : X is involved with Canadian people and with with money 
Music : X is not involved with Canadian people  
Accounting : has a chance of being involved in money-laundering. 

 
 
Intuitively, this would eliminate the conclusion that Bob has a chance of being involved 
in money-laundering and keep the conclusion for Clark. However, it is not necessarily 
the case. Namely, in the context of music, one cannot prove that Clark is involved with 
Canadian people, but it still does not mean that one can prove that Clark is not involved 
with Canadian people. Different default logics address this issue and hence can be 
used for reasoning of the above sort.  
 Using the variants of the systems described above one can infer crisp 
conclusions as to whether Alison, Bob, or Clark have a chance of being involved in 
money-laundering or other information. However, one cannot infer information on how 
likely it is that Alison/Bob/Clark is involved in money-laundering. For such information, 
one might use some fuzzy/probabilistic logic as the underlying logic and keep the rest of 
the inference system. In such a modified system, one could end up with a conclusion 
that Clark is the most likely to be involved in money-laundering, Bob is second most 
likely, and Alison is third most likely. Also, if one would replace “accounting” with 
“marketing” in the above examples, then these degrees of suspicion should decrease, 
while if “accounting” is replaced with “narcotics”, then the degrees of suspicion should 
increase. However, these specifics will depend on the inference system in question. 
 



6 Causal Reasoning 
 

Many of the inferences one wants to draw about real-world, spatiotemporal, contextual 
knowledge involve cause and effect.  But the relation between causation and logical inference is 
subtle and storied.  As outlined above, deductive reasoning aims at deriving consequences (or 
effects, outcomes) from premises (or causes). Abductive reasoning aims at deriving possible 
causes from effects. Finally, inductive reasoning aims at deriving relationships between causes 
and effects, rules that lead from one to another. Causal reasoning is generally considered a 
form of inductive reasoning. More concretely, causal reasoning aims at an epistemological 
problem of establishing precise causal relationships between causes and effects, with focusing 
on detecting genuine, real causes for some effects, and genuine, real effects of some causes. 

Although they share a lot in their background and inferential process, causal inference and 
statistical inference are different. Statistical inference is concerned with associational inference 
and used for finding associations between exposures (causes) and outcomes, rather then for 
inferring causation relationships from observations. Causal relationship implies correlation 
between two events, but the opposite does not hold. 

The first attempts at dealing with causality date back to the old Greek philosophers, 
including Aristotle, but systematic approaches had to wait centuries to come [Danks2006]. In his 
Novum Organum (1620), Francis Bacon introduced the notions of:  
 

• The table of presence (tabula praesentiae) 
• The table of absence (tabula absentiae) 
• The table of degrees (tabula graduum) 

 
According to Bacon, the cause of a phenomenon is the set of properties that explains every 
case in each of the three tables. In the mid-nineteenth century, John Stuart Mill proposed an 
improved form of Bacon’s method.  But already by then, the limitations of such approaches were 
understood – since in the eighteenth century, David Hume noticed that causal inference, often 
intuitive and natural, cannot be formally justified using deduction. This fact is actually a general 
property of inductive reasoning.   It is not possible to justify the pattern “the future will continue 
the pattern of the past” via deductive reasoning based on observations, without falling into 
circular reasoning. One can reason “the sun will rise tomorrow morning because it rose for the 
last 100 mornings”, but this relies on the assumption “the future will continue the pattern of the 
past”, and it’s circular to say “the future will continue to obey the pattern ’the future will continue 
the pattern of the past’ because it obeyed it in the past.” 

From the twentieth century till the present, philosophers, statisticians, and computer 
scientists have developed, often building on statistics, various approaches and methods for 
representing causal structures and solving problems of causal inference. Some of them follow 
the view of the philosopher Karl Popper in which falsification of a hypothesis is more informative 
than corroboration of a hypothesis. There could be a number of cases that are consistent with a 
false hypothesis, but a single counterexample requires modifying the hypothesis. A hypothesis 
that has survived many attempts to refute it is more likely to be true than one that has been 
corroborated many times. 

Today as in the past, the problem of causal inference is a central challenge for most of 
the empirical sciences. Causal effect may be the effect of a given drug or therapy for a specific 
disease, the effect of education on employment and earnings, the effect of training courses on 
the labor market, etc. If a causal relationship is discovered and established, it may be possible 
to control future events to some extent by producing (or preventing) occurrence of certain 
outcomes. There are many real-world applications of causal reasoning, including in economics, 



law, social sciences, and human-computer interactions, but most important are perhaps those in 
various branches of medicine and health research.  

In the following text, we will briefly discuss some of the central problems in causal 
reasoning and some of the most significant approaches for modeling it. For a more 
detailed survey, see, for instance, [Kluve, 2001]. 

Correlation does not imply causation 
 

The assumption that correlation and causation are equivalent often leads to significant 
flaws in reasoning. The phrase “correlation does not imply causation” stresses this fact, 
meaning that if there is a correlation between two events, it still does not necesserily mean that 
one causes the other (although it is possible that it is the case). A prototypical example of such 
flawed reasoning, employed in medicine, is discussed in [Lawlor, 2004]. A number of studies 
showed that women who were taking combined hormone replacement therapy also had a lower-
than-average incidence of coronary heart disease. This correlation led to a widespread idea that 
hormone therapy was protective against coronary diseases. However, carefully designed 
experiments demonstrated that this was not true. The explanation was that women taking 
hormone therapy were mostly from higher socio-economic groups, with better nutritive regimes 
and, hence, with lower incidence of heart disease. Thus, lower incidence of heart disease was 
not a consequence of taking hormone therapy, but both were effects of a common cause.  

Coming to the conclusion that an event X is caused by an event Y if there is a correlation 
between the two is generally wrong, although this causation can be indeed present. Other 
potential explanations for correlation between X and Y are the following: 

 
• Y is caused by X. 
• It is both the case that X is caused by Y and Y is caused by X. 
• There is a common cause for both X and Y. 
• Correlation is present due to a pure chance, or due to reasons that are so complex 

and deep that they cannot be considered as causation between X and Y. 

Other Challenges in Causal Reasoning 
 

Causal relationships can be very complex and difficult to deal with. For instance, there are 
situations when there are several hypotheses about a causal relationship, and it is difficult to 
select the one that is most likely true. Also, one of the problems is recognizing irrelevant events 
or causes with small impact on the observed outcome. Let us consider the example, given in 
[Modern Epidemiology, 2008], that illustrates the process of understanding causality with a 
description of a child learning that moving a light switch causes the light to turn on. However, in 
wider contexts, the turning-on of the light was sometimes caused also by other subjects: 

 
• The mother who replaced the burned-out light bulb. 
• The electrician who replaced a defective circuit breaker. 
• The lineman who repaired the transformer that was disabled by lightning. 
• The social service agency that arranged to pay the electricity bill. 
• The power company, the political authority awarding the franchise, the investment 

bankers who raised the financing, the Federal Reserve that eased interest rates, the 
politician who cut taxes, and the health care providers who contributed to the child's safe 
birth and healthy development. 

 



And there are other deep issues with causal reasoning. Consider an example from [Pearl, 
2000], illustrating the problem known as Simpson’s Paradox. Suppose that a teacher discover 
that a higher proportion of his students who smoke received a final grade of A than students 
who do not smoke, as shown in Table 10.1a. Confused by the hint that smoking has a positive 
impact on grades, the teacher tries to find a rational explanation and partition the same data 
differently, looking at students with low parental income (Table 10.1b) separately from those 
with high parental income (Table 10.1c). Then,  surprisingly, he finds that the situation has been 
completely reversed: smoking has negative impact on grades in both groups.  

 
 A B %A 

smokers 5 5 50% 
non-smokers 2 3 40% 

a: Proportion of students smokers and non-smokers who received A  
 

 A B %A 
smokers 5 4 56% 

non-smokers 1 0 100% 
 

b: Low-income students 
 

 A B %A 
smokers 0 1 0% 

non-smokers 1 3 25% 
 

c: High-income students 
 

TABLE 10.1  Illustration of Simpson’s Paradox 
 

According to Pearl, Simpson’s Paradox comes from trying to understand causality solely 
through probability and statistics: “It is an embarrassing yet inescapable fact that probability 
theory, the official language of many empirical sciences, does not permit us to express 
sentences such as ’Mud does not cause rain’; all we can say is that the two events are mutually 
correlated, or dependent—meaning that if we find one, we can expect to encounter the other” 
[Pearl, 2000].  
 

Mill's Methods 
 

In his 1843 book A System of Logic: Ratiocinative and Inductive, John Stuart Mill described 
five methods for drawing conclusions about causal relationships. The account of the Mill’s 
methods given here and the running example are based on [Kemerling, 2006]. The running 
example is based on the following scenario: in a college, one day an unusual number of 
students are suffering from severe indigestion. The college nurse naturally suspects that this 
symptom results from something the students ate for lunch, and she wants  to find evidence that 
will support a conclusion that eating a certain food caused indigestion. The Mill’s methods are 
the following. 

 
• Method of Agreement: this method applies to cases in which the effect that occurred 

reveals only one prior circumstance that all of them shared. It is based on the 



expectation that similar effects are likely to arise from a similar cause. As an example, 
suppose that out of the four students with indigestion, one had pizza, coleslaw, orange 
juice, and a cookie; the second had a hot dog and french fries, coleslaw, and iced tea; 
the third ate pizza and coleslaw and drank iced tea; and the fourth ate only french fries, 
coleslaw, and chocolate cake. The nurse, by the method of agreement can conclude that 
eating coleslaw caused the indigestion.  

• Method of Difference: by this method, a comparison of a case in which the effect 
occurred and a case in which the effect did not occur, reveals that only one prior 
circumstance was present in the first case but not it the second. In such situations, it is 
supposed that, other things being equal, different effects are likely to arise from different 
causes. As an example, suppose that the two students with indigestion ate together, but 
one became ill while the other did not. The first had eaten a hot dog, french fries, 
coleslaw, chocolate cake, and iced tea, while the other had eaten a hot dog, french fries, 
chocolate cake, and iced tea. Again, the nurse concludes that the coleslaw is what made 
the first student ill.  

• Joint Method of Agreement and Difference: This method is a combination of the first 
two methods, and it assumes that genuine causes are necessary and sufficient 
conditions for their effects. Consider the following example: eight students come to the 
nurse: four of them suffered from indigestion, and with each of these four there is 
another who did not. Each pair of students had exactly the same lunch, except that 
everyone in the first group ate coleslaw and no one in the second group did. The nurse 
arrives at the same conclusion as above.  

• Method of Concomitant Variation: this method applies when evidences appear to 
show that there is a correlation between the degree to which the cause occurred and the 
degree to which the effect occurred. This conforms to our exprectations that effects are 
typically proportional to their causes. This method does not only notice occurrence or 
non-occurrence of the causal terms, but also the extent to which each of them takes 
place. As an example, suppose that there are five students with indigestion: the first ate 
no coleslaw and feels fine; the second had one bite of coleslaw and felt a little queasy; 
the third had half a dish of coleslaw and is fairly ill; the fourth ate a whole dish of 
coleslaw and is violently ill; and the fifth ate two servings of coleslaw and had to be taken 
to the hospital. The conclusion is again that coleslaw caused the indigestion.  

• Method of Residues: many elements of a complex effect are shown to result, by 
reliable causal beliefs, from several elements of a complex cause; whatever remains of 
the effect must then have been produced by whatever remains of the cause. As an 
example, suppose that the nurse, during prior investigations of student illness, has 
already established that pizza tends to produce a rash and iced tea tends to cause 
headaches. Today, a student arrives at the nurse's office complaining of headache, 
indigestion, and a rash; this student reports having eaten pizza, coleslaw, and iced tea 
for lunch. Since she can recognize most of the student's symptoms as the effects of 
known causes, the nurse concludes that the additional effect of indigestion must be 
caused by the additional circumstance of eating coleslaw. 

 
Notice that in all of the above methods, the issue of relevance is crucial. The nurse began 

with the assumption that what students had eaten for lunch was relevant to their digestive health 
in the afternoon. That is a reasonable assumption, but the real cause could have been 
something completely different, something about which the nurse never thought to ask. 
Therefore, application of Mill’s methods succeeds only if every relevant suspected cause is 
taken into account, but that is impossible to guarantee in advance. Indeed, the most difficult 
cases are those in which the real cause was excluded from the analysis as being unobserved or 
considered irrelevant. Thus, Mill's methods can't help to discover causes unless the list of all 



potential causes is already known. Problems with using Mill's methods for proving that one 
event is the cause of another, are even bigger Kemerling, 2006]. Because of their limitations, 
Mill's methods should rather be considered as a tool for confirming (and not for discovering) 
hypotheses. If there are several hypotheses about a causal relationship, then Mill’s methods 
can be helpful, since they will often enable eliminating most of the considered causes and the 
last remaining hypotheses will likely be valid.  
 

Hill’s Criteria  
Causal reasoning in different forms had been widely used in medicine in twentieth century. 

In 1965. Austin Bradford Hill made a seminal summary of criteria to be used in causal inference 
in epidemiology [Hill, 1965]. The basic underlying questions in Hill's criteria for causal inference 
are: “is the association real or artifactual?” and “is the association secondary to a ‘real’ cause?”. 
Hill’s criteria are widely recognized as a basis for inferring causality in epidemiology, but not 
only in epidemiology: 

  
1. Strength of the association – the stronger an association, the less it could reflect the 

influence of some other factor(s). This criterion includes consideration of the statistical 
precision and methodological rigor of the existing studies with respect to bias. 

2. Consistency – replication of analysis by different investigators, at different times, in 
different places, in different populations, with different methods leads to identical or 
similar findings. Namely, identical or similar findings are not likely to be all due to error or 
artifact. In addition, there should be reasonable and convincing explanation for different 
findings.  

3. Specificity of the association – the more accurately defined the disease and exposure, 
the stronger the observed relationship should be. But the fact that one agent contributes 
to multiple diseases is not evidence against its role in other diseases. 

4. Temporality – the ability to establish that the putative cause preceded in time the 
presumed effect. 

5. Biological gradient (dose-response) – strength of disease changes with changes in 
exposure. Still, there could be a “threshold effect”. 

6. Plausibility (credibility) –general knowledge and beliefs should be able to explain the 
observed causal relationship. Still, the observed relationship could be beyond the current 
knowledge.  

7. Coherence – causal interpretation should not conflict with observations and with known 
facts about the natural history of the disease. 

8. Experiment – not a guideline, but a method for testing a specific causal hypothesis. If 
available, well designed and conducted experimental studies (e.g., with controlled 
conditions and changing the exposure) provide strong evidence for or against causation. 

9. Analogy – use analogies or similarities between the observed causalities and other 
causalities. 

 
Hill himself did not intend his criteria to be used as a self-contained framework, but rather as 

guidelines: „Here there are nine different viewpoints from all of which we should study 
association before we cry causation... None of my nine viewpoints can bring indisputable 
evidence for or against the case-and-effect hypothesis and none can be required as a sine qua 
non. What they can do, with greater or lesser strength, is to help us make up our minds on the 
fundamental question - is there any other way of explaining the set of facts before us, is there 
any other answer equally, or more, likely than cause and effect“. 
 



Graphical models  
 
Next, in graphical models of causality, causal relationships are represented by causal 

graphs [Greenland,1999; Robins, 2001]. A directed acyclical graph (DAG) is causal if every 
directed edge represents the presence of an effect of the parent (causal) variable on the child 
(affected) variable. In a causal graph, a directed path represents a causal pathway, and an X-to-
Y directed edge represents a direct effect of X on Y. Absence of a directed path from X to Y in 
the graph corresponds to the causal null hypothesis that no change of the distribution of X can 
change the distribution of Y. Causal graphs provide simple visual and graph theory methods to 
check for confounding factors (common cause for two event analyzed for causal relationship) 
and other relevant properties.  

Potential-outcomes (counterfactual) models 
 

In counterfactual (or potential-outcomes) approaches to causal reasoning, statements 
about causality are considered in forms of counterfactual statements [Lewis, 2000]. Reasoning 
focuses on what would have happened if, contrary to fact, the exposure had been something 
other than what it really was. For instance, the statement that a coleslaw ate by a student 
caused his indigestion is equivalent to the statement that had not the student eaten the colesaw, 
he would not have suffered from indigestion. This approach is justified by the fact that there are 
sistematic ways for dealing with counterfactual statements. For instance, Pearl gave an 
axiomatic system with clear semantics and effective algorithms for computing counterfactuals 
[Pearl, 2000]. In his framework, for instance, one can calculate a probability that the student 
would not have indigestion had he not eaten colesaw if it is the case that the student has eaten 
colesaw and is suffering from indigestion. The potential outcomes framework has applications in 
epidemiology and medical research, economics, education, psychology; and social science 
[Gong, 2008]. Because of Donald Rubin's contributions this is sometimes referred to as the 
„Rubin Model“. 

In potential outcomes models, all possible outcomes, both observable and unobservable, 
are considered simultaneously, forming outcome vectors. The framework can briefly be 
describes as follows [Greenland, 2002]. Suppose we have a population of individual units under 
study (e.g. mice, people, counties) indexed by i = 1,…,N, a treatment or exposure with M + 1 
levels (or actions) 0, 1, ..., M, and an outcome variable of interest Y. The standard potential-
outcome model assumes that: 

 
• Each individual could have received any of the treatment levels. 
• For each individual i and treatment level j, the outcome for the individual i if the individual 

gets treatment level j is considered even if the individual does not in fact get j; this value 
is called the potential outcome.  

 
The variable Y represents a generic variable for the actual outcome under the treatment actually 
given. Then, Yi(j) will be an indicator for the outcome for individual i if that individual is given 
treatment level j. The vector [Yi(0), Yi(1), …, Yi(M)] is the potential outcome vector for the 
individual i. Notice that, in practice, for each individual only one of the potential outcomes Yi(j) is 
observable, since an individual receives only one possible treatment (and the other treatment 
states and associated potential outcomes are counterfactuals). Outcomes that are not 
observable can only be estimated. This problem, called missing data problem, is one of the 
fundamental problem of causal inference. The causal effect is defined as a quantity that 
contrasts the components of the potential outcomes vector. The choice of treatment is said to 



have had no effect on Y for individual i if Yi(j) = Yi(k) for every possible pair of treatment levels j 
and k; otherwise, treatment choice could have had an effect. Treatment choice is said to have 
had no effect on the population if it had no effect on any individual in the population.  

As an illustration, let us consider the simplest case when the treatment is binary, i.e., M 
= 1 (corresponding, for instance, to situations when there is and there is no treatment). Let Ti be 
a level of the actual treatment for the individual i. Then, the vector [Yi(0), Yi(1)] is the potential 
outcome vector for the individual i. The outcome Yi  is equal Yi(0) if Ti=0 and Yi(1) if Ti=1. This 
can be written as: 

 
Yi  = Yi(0) + Ti(Yi(1)-Yi(0)) 

 
The difference of the outcomes with and without treatment is characterized by Yi(1)-Yi(0), the 
benefit of treatment. The average treatment effect is equal to (where E denotes expected 
value): 
 

ATE= E[Y(1)-Y(0)] 
 
The average treatment on the treated individuals is equal to: 
 

ATT= E[Y(1)-Y(0) | T=1] 
 
These quantities cannot be computer because of unobserved potential outcomes. For instance, 
let the available data are given in the table given below. The observed values Yi(j) are printed in 
bold. The quantities ATE and ATT can be computed only using estimated values for Yi(j) and 
this gives ATE=2, ATT=1. Different approaches for estimating these and other unobservable 
quantities by observable quantities are discussed in [Angrist,1996]. 
 

Individual Treatment Yi(0) Yi(1) Yi(1)-Yi(0) 
1 0 3 5 2 
2 1 2 5 3 
3 1 5 4 -1 
4 0 2 7 5 
5 1 1 2 1 

 
One of the practical results of the potential-outcomes models is the identification of a sufficient 
set of variables could yield the correct causal effect between variables of interest. That 
characterization of variables, called "backdoor" criterion, helps in identifying sets of variables 
worthy of observing. 
 

Structural-equation models  
 

In structural equation approach, a network of causation is modeled by a system of 
equations and independence assumptions (see, for instance, [Greenland,2002]. Each equation 
shows how an individual response (outcome) variable changes as its direct (parent) causal 
variables change. The ‘individual’ may be any unit of interest, such as a person or aggregate. In 
the system, a variable may appear in no more than one equation as a response variable, but 
may appear in any other equation as a causal variable. A variable appearing as a response in 
the system is said to be endogenous (within the system); otherwise it is exogenous. 
Relationships between variables can be linear but can also be much more complex. Structural 



equations can be viewed as formulas for computing potential outcomes under various actions. 
For instance, equations can assert that one variable will not vary with another variable, if some 
other variables remain constant. Structural equations differ from ordinary regression equations 
(that represent only associations of actual outcomes with actual values of the covariates as one 
moves across individuals). Structural equations with unknown parameters specify the functional 
form of effects, but do not provide the exact values of effects; thus, they don't not fully quantify 
causal relations.  

Probabilistic causation 
 

If a causal relationship “A causes B” is interprered deterministically then it states that A 
must be always followed by B. “Drinking alchohol causes headache” is often true, but still not 
always, so this causal relationship could be considered invalid. Probabilistic causation tends to 
overcome simple yes or no causation and in this approach, cause only raises the probability of 
the effect (rather then implies effect), all else being equal. In other words, A probabilistically 
causes B if occurrence of A increases the probability of B [Hitchcock, 2002]. In this approach, 
causal relationships are explored by using the apparatus of the probability theory.   We will not 
elaborate on this approach here, but it will rise to significance in later chapters of the book.  
Standard Bayesian approaches to causal inference will be discussed in Chapter 13 in the 
context of pattern mining; and then the PLN approach to RWR, discussed in Part II of the book, 
will include a different variant of probabilistic causal inference in an essential role, tightly 
integrated with probabilistic approaches to other aspects of inference such as deduction, 
induction and abduction. 
 
 



Interlude:  
Acquiring, Storing and Mining Logical Knowledge 



 

7 Extracting Logical Knowledge from 
Raw Data 

 
Logical methods are extremely powerful when supplied with appropriate data, but 

this begs the question of where the data comes from.  How does data from the real 
world get into logical format in the first place?   

So far we have discussed simple toy examples, involving a small number of 
relationships; or else relationships that come from an already-formalized domain such 
as the Minesweeper game.  But the real world is large, messy and not pre-formalized.  
Our overall goal here is to discuss the application of logic-oriented methods to large, 
heterogeneous knowledge stores; so we cannot entirely bypass the critical question of 
how one would construct large, heterogeneous stores of logical information.   
Essentially the question is how to usefully translate raw data observed in the real world, 
into sets of logical expressions in appropriate formal languages.   This is not an easy 
question and there is no single answer: the answer is roughly as heterogeneous as the 
data involved. This is not our main focus here, so in this brief chapter we will merely 
overview some of the issues involved, giving a few references into some relevant 
literatures where appropriate. 
 In some cases, the transformation process is completely obvious and 
straightforward.  For instance, Figure 11.1 shows how Twitter metadata regarding a 
message can simply and immediately be transformed into formal relationships (which 
could easily be mapped from diagrammatic into logical form): 
 

FIGURE 11.1:  formal relationships extracted from Twitter metadata. 

 
 
For instance, if one has a logical term T1 corresponding to the entity bob_dobbs, and a 
logical term M1 corresponding to the message “Where r u?”, then one  may create from 
this diagram a logical predicate-argument relationships such as 
 

SentTo(M1,T1) 
 



and interpret this within many of the formal-logic systems discussed in Part I above. 
 To take a different sort of example, in the project described in [Goertzel & de 
Garis, 2008;  Goertzel 2008] an architecture is described for controlling physical or 
virtual robots using a logic-based cognitive engine.  In this case the logical relationships 
come directly from the outputs of sensors, and from the commands needed to be issued 
to actuators.  Here there are no major difficulties in representation, though there are 
significant difficulties in reasoning!  For instance, we may represent a certain perceptual 
relationship by stating that there is a logical relationship of the form 
 

tangentialProperPart(P1, P2) 
 
between polygons P1 and P2, whose coordinates are then indexed in a special data 
structure (tangentialProperPart is a spatial logical relationship to be discussed a little 
later on).  And we might represent a relationship regarding the movement of an actuator 
by 
 

moveJoint(7, 1.3, 1.4, 2) 
 
indicating the movement of joint 7 at speed 2 in the direction with theta=1.3 radians and 
phi=1.4 radians (referring to the standard spherical coordinates).  Here, as in the Twitter 
metadata example, the translation of life into logic is relatively straightforward. 
 However, in other cases – including many cases relevant to the topic of this book 
-- the transformation process involves much more difficult choices. In general, 
transforming raw data into logic is a highly nontrivial matter, which requires the best of 
current technologies; but it is certainly within the scope of the feasible rather than the 
impossible.  In practice subtle decisions must be made about how much intelligence to 
put into the transformation process, versus how much to leave to the logical-inference 
processes acting on the logical knowledge base.    
 
For example, if a software system is given the text “Dogs eat bones,” one simple 
approach at logicizing this input would be to simply turn it into a sequence of 
propositions about the individual characters of the text: essentially, propositions of the 
form “At time so-and-such, I received a text message with ‘g’ as the third character” and 
so forth.   This kind of proposition can be represented easily in formal logic, but this is 
not necessarily the most useful thing to do.   
 In the remaining sections of this chapter, we will very briefly consider two cases 
of the extraction of logical information from nonlogical sources: tabular and relational 
data, and linguistic data.  Other cases also exist, of course: for instance audio, video 
and so forth; but reviewing the literatures in all these areas would take us too far afield. 

Extracting Logical Knowledge from Tabular and Relational Data 
 

Conceptually, it seems straightforward enough to map tabular or relational data 
into logical format.  Figure 11.2 shows a simple example of a spreadsheet mapped into 
formal semantic relations: 
 



FIGURE 11.2: extracting formal semantic relations from tabular data. 

 
 
 In real life, however, this sort of mapping is extremely difficult, because of the 
problem of figuring out the semantics of the rows and columns of spreadsheets and 
databases.  The field of “table recognition” confronts this issue, and is summarized in 
[Zanibbi et al, 2003]. 
 

Extracting Logical Knowledge from Graphs, Drawings, Maps and 
Tables 

 
 A yet  more difficult issue is the extraction of formal relationships from graphs, 



engineering drawings, maps and tables that are encoded as bitmap images or vector 
drawings. The set of techniques in charge of extracting semantics out of graphical 
information is grouped under the term “Diagram Recognition” and has been given some 
attention for the past two decades. Several algorithms, techniques and toolkits have 
been developed and work well in many cases. However in general it remains a hard 
problem, probably much harder than one who is unfamiliar with the domain may realize 
at first. This is due to the variety of manners one can choose to convey information 
graphically. Sometimes to interpret correctly a diagram one even needs contextual 
information possibly scattered in the rest of the document or relying on common sense 
knowledge. 
 Various domain dependent algorithms have been formulated and applied. 
However recent work has focused on unifying these techniques into a single framework 
using formal grammars comparable in a way a compiler generates machine code out of 
a program written in some programming language [Blostein02]. Except that here the 
program is a 2D image and the machine code is a diagram model. A diagram model 
encodes the semantics of the image, for instance if the diagram is a graph, the diagram 
model may be a list of relationships, and the "compiler", or rather called diagram 
recognizer, would produce an XML file containing the list of nodes and relationships 
represented by the graph. Following that approach a diagram recognizer may carry out 
several grammar parsing and data production passes, like: 
 

1) a layout pass, that captures the spatial structure of the image and encodes it into 
a tree, like inside(circle, left_to_right("B", "o", "b")) 

2) a lexical pass, that tries to group symbols into lexical tokens, for instance "B", "o", 
"b" becomes "Bob" 

3) syntactic and semantic passes to finally generate the diagram model, for 
instance node("Bob") that expresses that the diagram is a graph with a single 
node called "Bob". 

 
Similarly regarding table recognition there exists several techniques and recent work 
has been focused on unifying them [Zanibbi et al., 2004; Zanibbi et al., 2006; Blostein et 
al., 2000].]. Again the process is divided in several passes, where each pass analyze a 
certain layer to produce more abstract knowledge for the upper layer and so on until the 
semantic model is built.  

Extracting Logical Knowledge from Natural Language Text 
 

 
Extracting logical relations from text requires multiple intermediate stages of 

Natural Language Processing, each of which is subtle and complex in itself.   
For instance, using state-of-the-art natural language technology, one can 

transform a sentence such as “The dog ate the bone” into relationships such as  
 

eat(dog, bone) 
 



which is an abstract relationship embodying the semantic meaning of the sentence.  Or, 
further, one can transform it into 
 

eat_2(dog_1, bone_1) 
 
which indicates that the sense of “eat” used in the sentence is the second one in the 
system’s reference dictionary, whereas the senses of “dog” and “bone” used are the first 
ones in the system’s reference dictionary.   But performing similar operations on more 
complex sentences pushes the boundaries of what today’s technology can do. 

One can frame this problem of “natural language information extraction” [Cowie and 
Wilks, 2000] in terms of three stages: 
 

• mapping text into a syntactic representation 
• mapping the syntactic representation into a semantic representation 
• mapping the semantic representation into a more abstract logical representation 

 
Figure 11.3 shows a relevant example of these stages, produced using the open-source 
RelEx software system created by Novamente LLC [Goertzel et al, 2006], which 
incorporates as a major subsystem the link parser [Grinberg et al., 1995] created at 
Carnegie-Mellon University.  In the figure, the input sentence is first transformed into a 
set of low-level syntactic relations between words.  Then these relations are translated 
into dependency relations such as “subj” and “obj” (representing subject and object 
relations).  Finally these dependency relations are translated into formal relationships 
that can easily be given logical interpretation.  The presence of these multiple stages 
illustrates the complexity of the natural language information extraction process. 
 The deepest problem in natural language information extraction has to do with 
the various sorts of ambiguity that exist in natural language.  Words may have multiple 
meanings; sentences may have multiple parses that all seem syntactically plausible but 
have varying semantic and pragmatic sensibleness; words may refer back to other 
words, and so forth.  Computational linguistics provides only heuristic and 
approximative techniques for handling these methods (e.g. [Jurafsky and Martin, 2008]; 
[Manning and Shutze, 1999]), so, although one may currently make software systems 
that map natural language text into sets of logical relationships, such systems cannot be 
expected to work perfectly even for simple sentences, and can provide highly erratic 
results for complex sentences. 
 
 



FIGURE 11.3: successive transformations of text into syntacic, grammatical and finally formal 
relationships (that are easily transformable to logical relationships). 

 

 

 

 

 
  

Ben Goertzel � 9/16/10 6:57 PM
Comment: Also, this example is flawed in 
that the top left parallelogram says “I’ve 
gone to eat dinner wit Bob” but the bottom 
left paralelogram says “Gone for dinner wit 
Bob.” … We need to find the original 
change detection PPT that these came 
from and adjust the figure accordingly. 



 
 

8 Scalable Spatiotemporal Logical 
Knowledge Storage 

 
Having dealt with the representation of logical knowledge of various sorts, and briefly 
discussed the problem of translating nonlogical knowledge into logical knowledge, we 
now turn to the question of how large amounts of logical knowledge can pragmatically 
be stored.  This chapter presents a brief and relatively nonmathematical interlude before 
we plunge into the more technical topics of mining patterns in logical knowledge stores, 
and carrying out inferences regarding changes and other patterns in logical knowledge 
stores. 
 Suppose that we represent temporal and spatiotemporal knowledge, 
appropriately contextualized, in one of the multiple logical formalisms briefly discussed 
above.  If we apply these formalisms to real-world situations we are going to obtain 
incredibly huge numbers of logical propositions, which presents various potential 
practical difficulties.  The mathematics is the same whether one has a dozen logical 
propositions or a trillion, but the pragmatics of information-management differs 
significantly!     

In this chapter we review the various available technologies for managing massive 
amounts of logical terms and relationships. 

 Comparison of Available Storage Technologies 
The following table summarizes the strengths and weaknesses of available data storage 
technologies from the perspective of storing and managing large amounts of logical 
information. 
 



TABLE 12.1: strengths and weaknesses of data storage technologies 

 
 First of all: representing and querying large graph data stores using traditional 
relational databases is certainly possible, but it would lead to profound scalability and 
performance problems.  Despite efforts from industry leaders in the RDBMS arena such 
as Oracle and Sybase, relational databases and graph data are a poor conceptual and 
implementation fit. 
 Graph data typically has a flexible structure where connections among similar 
objects (representing people, entities, time points, spatial locations, and so forth) are 
numerous.  And these connections are the whole point of graph data stores.  The 
natural way to map these connections among similar objects to relational databases 
requires self-joins, since the connected objects are typically stored in the same table.  
Contemporary RDBMS technology is unable to perform these self-joins through 
anything but brute force un-optimized graph traversals, which creates large bottlenecks 
both for querying at scale and writing to the database [Lightstone et al, 2007]. 
 Object-oriented databases (OODBMS) are mature technologies that provide a 
better fit for graph data, since object instances are naturally persisted as graphs.  
Objectivity (objectivity.com) and Versant (versant.com) are the industry leaders in this 
arena, and they offer enterprise-grade solutions that are highly scalable and distributed, 



and support multiple programming languages and platforms.  Their products can also 
interoperate with relational databases and support SQL queries for easier integration 
with legacy systems. 
 Despite those benefits, there is a major drawback for OODBMS in a graph 
dataset context, which is the implicit assumption of a single object model.  While this is 
adequate for large-scale object-oriented applications, graph data mining and analysis 
sometimes requires that the stored data be interpreted in different ways, especially 
when spatial and temporal dimensions are added.  There's always a 1-to-1 mapping 
between a OODBMS representation and some OO design -- but for analyzing graph 
data we often want to switch the design without changing the stored data format (which 
is expensive for a large database), because we care more about the answers we can 
get than about retrieving the original data in a way that's fully consistent with how it was 
stored. 
 Technology that's explicitly oriented towards graph data (as opposed to using 
graphs to persist object instances) has been developed over the past few years.  Neo 
(neotechnology.com) and Cogito (cogitoinc.com) have introduced commercial graph 
databases.  These new tools emphasize the ability to traverse relations and discover 
new connections.  This explicit focus makes such tools a better fit for data analysis and 
mining projects, especially ones involving probabilistic logic.  Graph databases aren't as 
mature and enterprise-ready as their OOBDMS counterparts, however. 
 Aside from these commercial products, there is a fully featured open source 
version of Neo's DB (neo4j.org); and the Hypergraph DB (HGDB) project 
(kobrix.com/hgdb.jsp), also open source, was conceived with AI and data mining 
applications in mind.  In fact HGDB goes beyond the graph database paradigm and 
constitutes a hypergraph DB, involving a basic representation that allows n-ary links and 
links pointing to links as well as nodes.   This is convenient because, as will be 
elaborated a little later, sets of logical predicates are more naturally represented as 
hypergraphs than graphs.   
 Of course, graph DBs may be used as hypergraph DBs via transforming 
hypergraphs to and from graphs; but this introduces a performance penalty for the 
translation, and also has the drawback that, after the translation, some simple 
hypergraph queries become significantly more complex graph queries.  But HGDB is 
still at the alpha stage of the development, and the potential advantages of hypergraph 
DBs over standard graph DBs are still relatively unexplored. 
 Finally, the growing interest in the semantic web has led to a number of 
commercial and open source products for storing knowledge encoded in the RDF data 
model.  These storage solutions, known as Triplestores, can scale up to billions of RDF 
triples.  The triple-based data model in RDF, however, is more limited than a free-form 
graph, which impacts scalability (as a more verbose knowledge representation is 
needed) and analysis (as algorithms have to be tailored to the more rigid RDF format, 
sometimes with a significant performance penalty). 
 Overall, our conclusion is that graph databases, whether commercial or open-
source, are the current best alternative for storing and analyzing very large graph 
datasets. 



 Transforming Logical Relationship-Sets into Graphs 
The discussion in the above section bypasses one issue: the effective representation of 
sets of logical relationships as graphs.  This is not  a problematic issue, but bears brief 
comment because, most literally interpreted, sets of logical relationships would better be 
represented as mathematical structures called “generalized hypergraphs” than as 
graphs per se.  So one encounters the problem of translating generalized hypergraphs 
into traditional graphs, using appropriate, hopefully not too complex transformation 
rules. 
 Recall that a graph, mathematically, is a set of nodes together with a set of links, 
where each link is construed as an ordered or unordered pair of nodes.  Links and 
nodes may be labeled and may have various numerical weights attached to them (such 
as fuzzy or probabilistic truth values).  A hypergraph extends this model, in that links 
may join more than two targets.  This is useful for representing logical relationships 
such as 
 

give(Jim, Bob, ball) 
 
which naturally relate three rather than two entities.   
 Of course, one can work around the need for hypergraph links via using labeled 
binary links, for example 
 

subj(give,Jim) 
obj(give,Bob) 
obj2(give,ball) 

 
which is how the RelEx NLP system (mentioned earlier) analyzes the sentence “Jim 
gives the ball to Bob” (and other dependency parsers would do it similarly).   Similarly, 
the relation 
 

eat(Ben, steak) 
 
could be represented using a ternary link, or a labeled binary link; or, as RelEx would 
have it, as a set of labeled binary links 
 

subj(eat, Ben) 
obj(eat, steak) 

 
However, attaching a broad variety of semantic labels to links is not always the desired 
strategy.  In general it is desirable to support a broad variety of representational 
mechanisms, as different approaches to logical formalization of commonsense 
information are going to choose different ways to set up relationships. 
 In any case, it is straightforward to eliminate hypergraph links via introducing a 
“phantom node” corresponding to each hypergraph link, and having the phantom node 
link binarily to the targets of the hypergraph link.  What’s required is that the links 
emanating from the phantom node be indexed with numbers or some other distinct 
markers, if the targets of the hypergraph links were so marked.  Figure 10.1 illustrates 



some examples of this, for the above examples. 
 

FIGURE 12.1: some hypergraph representations for the “Ben eats steak” example. 

 
 
 Next, what we call a “generalized hypergraph” extends the hypergraph model 
further, via allowing links to point to links, which is the most natural way to represent 
statements like “Ben believes Bob likes Jim”, e.g. 
 

believes(Ben, likes(Bob, Jim)) 
 
Alternately, a RelEx-style representation of the above would be 
 

subj(believes,Ben) 
obj(believes, likes) 

subj(likes, Bob) 
obj(likes, Jim) 

 
Mapping generalized hypergraphs into graphs is also simply accomplished using 
phantom nodes, as illustrated in Figure 10.2 
 

FIGURE 10.2: hypergraph to graph conversions for the “Ben believes Bob likes Jim” example. 



 
 
 Just to make sure the point is clear, we next give some examples involving more 
complex logical constructs such as actually arise in using PLN for carrying out 
inferences involving changes in complex knowledge bases. 
 
EvaluationLink 
      believes 
           Ben 
           Inheritance(Bob, busy) ) 

 
and 
 
IntensionalContext <.9> 
       Accounting 
       Evaluation <.01> 
               Mention 
               List 
                       Bob 
                       CanadianPlaceNames 

 
and finally one that is more complex and involves variables 
 
AverageAll $X, $Y 
       Implication <.9> 
               Evaluation <.5> 
                       Mention 
                       List 
                               $X 
                               $Y 
               IntensionalInheritance 
                       $X 
                       $Y 

 
 In summary, using this sort of mapping based on phantom nodes, one can 
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straightforwardly store logical relationships, interpreted as generalized hypergraphs, in 
graph databases.  The transformation required is fairly simple and does not require the 
same sort of inefficient manipulations as mapping logical propositions into tabular 
structures as required to store them in standard relational databases. 
 However, the subtle question in mapping hypergraphs into graphs is: which 
graph operations will have the expected results when mapped back into hypergraph 
operations.  For instance, if we map a hypergraph into a graph and then find the 
shortest path P between two nodes N and M in the graph ... is the hypergraph path 
corresponding to P the shortest path between the hypergraph nodes or links 
corresponding to N and M?  Similarly, does a minimum-cost spanning tree in the graph 
derived from a hypergraph, correspond to a minimum-cost spanning hypertree in the 
original hypergraph?   Is the set of nodes within radius R of graph node N, closely 
related to the set of hypergraph nodes/links within radius R of the hypergraph node/link 
corresponding to N?   These issues go beyond the scope of the present book, and are 
in most cases not extremely difficult to resolve, but do require real care. 
 



 

 

9 Mining Patterns from Large 
Spatiotemporal Logical Knowledge 

Stores 
 
Once one has stored a large knowledge base of logical relationships, then what?  One 
can query the knowledge base -- if one knows what one wants to ask for.  One can 
carry out reasoning toward various goals. And another important question is how to find 
“unknown unknowns” – patterns in the knowledge base that are surprising and 
interesting yet unexpected.  This quest goes by multiple names – data mining, pattern 
mining, information exploitation, and so forth.   Whatever you call it, it’s a difficult 
challenge because in any large dataset, the number of possible patterns to search 
through is mind-boggling. 
 Many different pattern mining algorithms exist, and a large subset of these are 
applicable to the case of mining patterns among logical relationships.  Here we will 
review only two classes of algorithms: frequent subgraph mining, and causal network 
inference.  These are important approaches, but are by no means the only approaches 
of interest. 
 Furthermore, as will be emphasized in later chapters, pattern mining algorithms 
in themselves are unlikely to be sufficient for the task of finding relevant and interesting 
relationships in large logical knowledge bases.  The problem is that without significant 
background knowledge, and the capability to deploy this background knowledge 
intelligently for analogical inference, it’s very hard to tell interesting patterns from 
uninteresting ones.  So, in order to really do a good job of spotting interesting patterns 
in large logical knowledge bases, it’s likely to be necessary to combine pattern mining 
algorithms with uncertain and causal inference algorithms.   
 That is, one will need to use pattern mining to produce a moderate-sized pool of 
potentially interesting patterns, and then use inference to filter this down into a smaller 
set of probably-interesting patterns.  As many pattern mining algorithms (including the 
ones considered here) an be instructed to look for new patterns “in the neighborhood” of 
a set of target patterns, the patterns identified as interesting by inference may then be 
used to seed further pattern mining.  This kind of hybridized approach has not been 
explored much if at all in the research literature, but there is little doubt it will be 
necessary as the sorts of applications envisioned in this book become realities. 
 To add to the challenges, pattern mining in extremely large bodies of knowledge 
poses particular difficulties in terms of scalability.  For instance, algorithms must cope 
with the inability to store the whole knowledge base in the memory of any one machine.   
This is an area computer science is just beginning to explore.   For instance, in the 
following section we will discuss algorithms for identifying “surprisingly frequent 
subgraphs” in large graph knowledge bases, following [Hsu et al., 2008].  The unique 
aspect of their approach is a clever mechanism for recursively decomposing a large 
graph into a large number of smaller subgraphs, recognizing patterns in the subgraphs, 
and then assembling overall graph patterns from the patterns recognized in the 



subgraphs.  This general sort of idea likely has much more general applicability. 
 Furthermore, even within the scope of what can be stored within a single 
machine, there can be sufficient data to render standard pattern mining algorithms 
inapplicable.  So as well as crafting distributed algorithms, one must devise special 
algorithms capable of handling large bodies of knowledge efficiently within a single 
machine.  We will consider one example of this below: algorithms for finding “partial 
causal networks” in large bodies of knowledge, which essentially are simplifications and 
scalings-up of better-known algorithms for finding full causal networks in smaller 
datasets. 
 

Mining Frequent Subgraphs of Very Large Graphs 
 
The staple of standard “data mining” in relational databases is a technique called 
“frequent itemset mining” or FIM [Goethals & Zaki, 2004], which seeks to find the most 
frequent combinations of data items.   There are variants of FIM which seek the most 
surprising combinations of data items; these are essentially algorithmically identical to 
FIM, with slightly different underlying mathematics [Chakrabarti et al, 1998; Gallo et al, 
2007]. 
 In the graph domain, the analogue of FIM is “frequent subgraph mining,” an area 
in which there are numerous publications and a handful of open-source software 
toolkits.  An overview of the field is given in [Ivancsy & Vajk, 2005].  These algorithms 
are directly relevant to our problem of mining patterns in large stores of logical 
knowledge, because logical predicates may be mapped into graph structures as we 
discussed in the previous chapter. 
 Two simple examples of frequent subgraphs that might be found in large graphs 
in the Twitter domain are as follows: 
 

• Women in East Anglia often send each other private messages about the band 
Coldplay 

• Young Chinese in London often express positive sentiment about the Chinese 
government on the day after the Chinese soccer team wins a game 



 
FIGURE 13.1: stages of distributed pattern mining in large graphs, in the HLW algoritm. 
Top, left: original graph. Top, right: partition into subgraphs fitting RAM of individual 
machines. Bottom, left: identification of frequent subgraphs. Bottom, right: merge of 
subgraphs embodying repeated patterns. 
 
 

 

 

 

 

 
 
 

 
 
 



 Datamining large graph bases is a challenging problem, because most of the 
highly scalable datamining algorithms available were designed to operate on tabular 
data, and perform poorly when adapted to graphs.  These adaptations often require a 
fixed graph structure, which isn't practical.  Spatiotemporal databases [Yeung and Hall, 
2007] make the problem even harder due to their continuously changing nature.  A 
datamining algorithm for a large spatiotemporal graph database must fullfil at least the 
following requirements: 
 

• Ability to handle data too voluminous to fit in RAM without severe performance 
degradation. 

• Ability to incrementally mine the database, including the ability to consider only 
new information 

• Ability to find patterns that are frequent in space (occur often across different 
locations), time (occur frequently over time) and both.  These patterns can be 
static or dynamic with regards to time and/or space. 

 
One such algorithm, that we’ve explored in detail, is due to Hsu, Lee and Wang (hence 
we nickname it HLW) and it has three phases, loosely illustrated in Figure 13.1: 
 

• Partition the graph database into units that fit into RAM. 
• Apply a standard graph datamining algorithm to each unit, generating a set of 

patterns. 
• Merge the obtained patterns from each unit, obtaining database-wide patterns. 

 
Alternative algorithms exist and others can be developed.   We don't think this particular 
algorithm is necessarily ideal, but we believe that any software system designed to 
identify patterns in a large spatiotemporal logic database needs to include an algorithm 
that fullfils the above requirements. 
 

Learning Partial Causal Networks 
Another important example of data analysis that must be performed on large 
spatiotemporal logical knowledge bases is the search for causal patterns.   Note the key 
distinction between correlation and causation, as depicted in Figures 13.2 – 13.3: put 
roughly, causation may be characterized as the combination of correlation with the 
presence of a plausible causal mechanism ... where the assessment of the plausibility 
of a causal mechanism always depends upon contextual understanding. 



 
FIGURE 13.2: correlation is not causation. 

 
 

 
FIGURE 13.3: the basics of causation. 

 
 
 Techniques for inferring networks of causal relationships from databases of 
events are well known, and are mainly based on the interpretation of a causal network 
as a Bayesian belief network with causal links [Pearl94]. 
 

FIGURE 13.4: a causal network 

 
  
Figure 13.5 shows some causal relationships in the Twitter context that may be 
represented this way: a causal relation between message contents of a given person, 
and a causal relation between message content and follower subscription. 
 
FIGURE 13.5: examples of a causal relation between message contents of a given 
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person and a causal relation between message content and follower subscription. 
 

 
 

 
 
 None of the standard Bayes net based methods scale up at all well. On the other 
hand, there are some modern variations of these methods that do deal with reasonably 
large datasets, via scaling down their ambition and searching for “partial causal 
networks” rather than complete ones.  Building a partial causal network (still capturing 
most of the causal relations) is relatively tractable even for processes involving tens of 
thousands of variables.  To apply these methods to really huge datasets, one would 
then combine them with the same sort of graph-partitioning scheme described in the 
previous section in the context of frequent itemset mining.  However, articulating the 
details of this combination would go beyond the scope of this book. 

  Scalable Techniques for Causal Network Discovery 
The leading algorithm for scalably discovering partial causal networks in massive 
datasets is Local Causal Discovery (LCD), a straightforward technique which has many 
specialized variants [Silverstein98, Mani01].   
 The basic idea underlying LCD is simple : testing Conditional Independence for 
two variables assuming one cause, instead of assuming a conjunction of causes.  
Recall that the notation X//Y|Z stands for X and Y are independent knowing Z, or more 
formally P(X|Y,Z)=P(X|Z) and P(Y|X,Z)=P(Y|Z).  In these terms, the basic idea of LCD is 
assuming X//Y|Z instead of X//Y|C where C is a set of variables. This core principle 
underlies all variations of the algorithm. This sort of algorithm can be reasonably 
efficient; but has the serious limitation that can only discover causal relations involving 
one cause at a time. 
 There are also global approaches that can handle events with multiple causes, 
via approaches such as 
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• making special causal assumptions [Cheng97] 
• pre-processing dependence over the graph (that is computing a dependency 

measure for each pair of variables) [Cheng97] 
• pre-processing the Markov Boundary (which is the minimal Markov Blanket) 

[Margaritis99] 
 
The pre-processing approach allows one to reduce the number of conditional 
independence tests because many configurations of causes are ruled out after the pre-
processing (or/and by causal assumptions).  
 A good example of a more scalable global method is [Margaritis99]. This 
approach operates by first estimating the "Markov boundary" (i.e. the minimal set of 
variables that isolates, that is makes independent, a given variable from the rest of the 
network) of each variables to limit the conditional independence search over the Markov 
boundary of a given variable. This works excellently when for instance a variable has a 
small number of direct causes.  Another, related approach is [Nielsen08], which uses 
the algorithm of the previous paragraph but in an incremental way, based on the 
assumption that the joint probability distribution is changing over time.  



 

Part II: Probabilistic Logic Networks  
for Real-World Reasoning 

 



2 Probabilistic Logic Networks 
 

The preceding portion of this book has largely constituted “literature review”; this 
final part is a little different and presents original material, designed to cover important 
areas that seem omitted by the approaches reviewed above.   

In Part II we reviewed aspects of the representation of real-world knowledge, and 
in Part II we reviewed systems for reasoning on real-world knowledge; but there are 
major gaps between the ideas presented in those two parts of the book.  Our discussion 
of representation focused heavily on fuzzy and probabilistic spatiotemporal knowledge, 
but the logical reasoning systems discussed don’t handle these sorts of uncertainty in a 
sophisticated or integral way.  We suggest that one prerequisite for effective, scalable 
RWR using a logic-based approach, is to have a logic system that incorporates 
fuzziness and probability into spatiotemporal, contextual and causal inference in a 
fundamental way.   

In the chapters in this Part of the book, we aim to show how to do this via 
creating and manipulating special logical relationship types within the Probabilistic Logic 
Networks (PLN) formalism that we have introduced in prior publications [Goertzel et al., 
2008], and developed in the context of our work on the Novamente Cognition Engine 
[Goertzel et al., 2004] and OpenCog [Goertzel & Hart, 2008] integrative AI architectures, 
and will use in some of the detailed examples in later chapters.  A complete exposition 
of PLN would be out of place here; our goal will be to explain enough of the elements 
and the notation to make the examples given in later chapters comprehensible. 

 

Motivations Underlying PLN 
 

 The guiding motivation behind the design of PLN was the desire to create an 
uncertain inference framework capable of encompassing all the sorts of inference that 
may confront a general intelligence operating in the everyday human world -- including 
reasoning based on uncertain knowledge, and/or reasoning leading to uncertain 
conclusions (whether from certain or uncertain knowledge). Among the general high-
level requirements underlying the development of PLN were the following: 
 

• To enable uncertainty-savvy versions of all known varieties of logical reasoning, 
including for instance higher-order reasoning involving quantifiers, higher-order 
functions, and so forth 

• To reduce to crisp “theorem prover” style behavior in the limiting case where 
uncertainty tends to zero 

• To encompass inductive and abductive as well as deductive reasoning 
• To agree with probability theory in those reasoning cases where probability 

theory, in its current state of development, provides solutions within reasonable 
calculational effort based on assumptions that are plausible in the context of real-
world embodied software systems 

• To gracefully incorporate heuristics not explicitly based on probability theory, in 
cases where probability theory, at its current state of development, does not 



provide adequate pragmatic solutions 
• To provide “scalable” reasoning, in the sense of being able to carry out 

inferences involving at least billions of premises.  Of course, when the number of 
premises is fewer, more intensive and accurate reasoning may be carried out. 

• To easily accept input from, and send input to, natural language processing 
software systems 

 
The practical application of PLN is still at an early stage.  Based on our evidence so far, 
however, we have found PLN to fulfill the above requirements adequately well, and our 
intuition remains that it will be found to do so in general. 
 The overall structure of PLN theory may be described as follows.  First, PLN 
involves some important choices regarding knowledge representation, which lead to 
specific “schematic forms” for logical inference rules.  The knowledge representation 
may be thought of as a definition of a set of “logical term types” and “logical relationship 
types” (some of which we will elaborate below), leading to a novel way of graphically 
modeling bodies of knowledge.  It is this graphical interpretation of PLN knowledge 
representation that led to the “network” part of the name “Probabilistic Logic Networks.”  
It is worth noting that the networks used to represent knowledge in PLN are generalized 
weighted directed hypergraphs [Bollobás, 1998], much more general for example than 
the binary directed acyclic graphs used in Bayesian network theory.   Later on we will 
review some methods for translating generalized hypergraphs into ordinary graphs, 
which can be useful for purposes of visualization, analysis and storage. 
 Next, PLN involves specific mathematical formulas for calculating the probability 
value of the conclusion of an inference rule based on the probability values of the 
premises plus (in some cases) appropriate background assumptions.  It also involves a 
particular approach to estimating the confidence values with which these probability 
values are held (weight of evidence, or second-order uncertainty).  Finally, the 
implementation of PLN in software requires important choices regarding the structural 
representation of inference rules, and also regarding “inference control” – the strategies 
required to decide what inferences to do in what order, in each particular practical 
situation. 
 Here we will not be concerned at all with PLN’s probability formulas – they are 
absolutely critical for performing practical inferences and getting useful answers, but 
here we will only be concerned with exploring the forms of various inferences, and so 
we will refer the reader to the Probabilistic Logic Networks book [Goertzel et al, 2008] 
for discussion of quantitative formulas.  In our examples here, we will omit quantitative 
truth values so as to focus on the forms of inferences.  In fact, the quantitative truth 
value associated with an inference may come out differently depending on the particular 
parameters of the truth value formulas, as clarified in the PLN book. 
 

Term and Predicate Logic in PLN 
One of the distinguishing features of PLN is the way its inference rules combine 
predicate logic and term logic.  As briefly reviewed above, predicate logic and term logic 
are two different but related forms of logic, each of which can be used both for crisp and 
uncertain logic.   



Predicate logic is the most-familiar kind, where the basic entity under consideration 
is the “predicate,” a function that maps argument variables (which are are quantified 
universally or existentially) into truth values. 

On the other hand, in term logic, which dates back at least to Aristotle and his 
notion of the syllogism, the basic element is a subject-predicate statement, denotable in 
many ways, for instance 

 
A  B 

 
where  denotes a notion of inheritance or specialization.  Logical inferences take the 
form of “syllogistic rules,” which give patterns for combining statements with matching 
terms.  (We don’t use the  notation much in PLN, because it’s not sufficiently precise 
for PLN purposes since PLN introduces many varieties of inheritance; but we will use 
the  notation in this section since here we are speaking about inheritance in term logic 
in general rather than about PLN in particular). 

Example term logic inference rules are the deduction, induction, and abduction 
rules: 

 
 

 
A  B 
B  C 
|- 
A C 
 
 
 
 
 
 
A  B 
A  C 
|- 
B  C 
 
 
 
 
 
A  C 
B  C 
|- 
A  B 
 
 
 
 
 

 
 

 
 

 
 

eduction 
 
 
 

 
 

 
 

nduction 
 
 
 

 
 

 
 

bduction 
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 These rules are simple schematically but subtler when one matches them with 
uncertain truth value formulas.  For instance, when one does so, one finds that 
deduction is infallible, in the case of absolutely certain premises, but uncertain in the 
case of probabilistic premises; while abduction and induction are always fallible, even 
given certain premises.  In fact, in PLN one derives abduction and induction from the 
combination of deduction with a simple rule called inversion 
 
A  B 
|- 
B  A 

 
whose truth value formula derives from Bayes’ rule.    

Predicate logic is generally felt to deal more easily with deduction than with 
induction, abduction and other uncertain, fallible inference rules.  On the other hand, 
term logic can deal quite elegantly and simply with all forms of inference.  Furthermore, 
as argued in [Goertzel et al., 2008] the predicate logic formulation of deduction proves 
less amenable to “probabilization” than the term logic formulation.  It is for these 
reasons, among others, that the foundation of PLN is drawn from term logic rather than 
from predicate logic.  PLN begins with a term logic foundation, then adds on elements of 
probabilistic and combinatory logic, as well as some aspects of predicate logic, to form 
a complete inference system, tailored for easy integration with software components 
embodying other (not explicitly logical) aspects of intelligence.    

Sommers and Engelbretsen [Englebretsen & Sommers, 2000] have given an 
excellent defense of the value of term logic for crisp logical inference, demonstrating 
that many pragmatic inferences are far simpler in term logic formalism than they are in 
predicate logic formalism.  On the other hand, the pioneer in the domain of uncertain 
term logic is Pei Wang [Wang, 1996], to whose NARS uncertain term logic based 
reasoning system PLN owes a considerable debt.  To frame the issue in terms of our 
above discussion of PLN’s relation to traditional probabilistic logic approaches, we may 
say we have found that many things are significantly easier in a term logic rather than 
predicate logic context, including: the formulation of appropriate heuristics to guide 
probabilistic inference in cases where adequate dependency information is not 
available, and the creation of appropriate methods to extend first-order extensional 
inference rules and formulas to handle other sorts of inference.  In these respects, the 
use of term logic in PLN is roughly a probabilization of the use of term logic in NARS; 
but of course, there are many deep conceptual and mathematical differences between 
PLN and NARS, so that the correspondence between the two theories in the end is 
more historical and theory-structural, rather than being a precise correspondence on the 
level of content. 

Knowledge Representation in PLN 
PLN knowledge representation is conveniently understood according to two 
dichotomies: extensional vs. intensional, and first-order vs. higher-order.  The former is 
a conceptual (philosophical/cognitive) distinction, between logical relationships that treat 
concepts according to their members versus those that treat concepts according to their 
properties.  In PLN extensional knowledge is treated as more basic, and intensional 
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knowledge is defined in terms of extensional knowledge via the addition of a specific 
mathematics of intension (somewhat related to information theory).  This is different 
from the standard probabilistic approach which contains no specific methods for 
handling intension, and also different from Wang’s approach in which intension and 
extension are treated as completely symmetric with neither of them being more basic or 
derivable from the other. 

The first-order versus higher-order distinction, on the other hand, is essentially a 
mathematical one.  First-order, extensional PLN is a variant of standard term logic, as 
originally introduced by Aristotle in his Logic and more recently elaborated by theorists 
such as Wang (Wang 1996) and Sommers and Engelbretsen (Sommers 2000).   First-
order PLN involves logical relationships between terms representing concepts, such as 

 
Inheritance cat animal 
 
ExtensionalInheritance Pixel_444 Contour_7565 

 
(where the notation is used that R A B denotes a logical relationship of type R between 
arguments A and B).  A typical first-order PLN inference rule is the standard term-logic 
deduction rule 
 
A  B 
B  C 
|- 
A  C 

 
which in PLN looks like 
 
ExtensionalInheritance A B 
ExtensionalInheritance B C 
|- 
ExtensionalInheritance A C 

 
As well as purely logical relationships, first-order PLN also includes a fuzzy set 
membership relationship, and specifically addresses the relationship between fuzzy set 
membership and logical inheritance, which is closely tied to the PLN concept of 
intension. 
 Higher-order PLN, on the other hand, has to do with functions and their 
arguments.  Much of higher-order PLN is structurally parallel to first-order PLN: for 
instance, implication between statements is largely parallel to inheritance between 
terms.  However, a key difference is that most of higher-order PLN involves either 
variables or higher-order functions (functions taking functions as their arguments).  So 
for instance one might have 
 
ExtensionalImplication 
 Inheritance $X cat 
 Evaluation eat ($X, mice) 

 
(using the notation that 
 



R 
 A 
 B 

 
denotes the logical relationship R applied to the arguments A and B).  Here Evaluation 
is a relationship that holds between a predicate and its argument-list; so that e.g. 
 
Evaluation eat (Sylvester, mice) 

 
means that the list (Sylvester, mice) lies within the set of ordered pairs characterizing 
the eat relationship.  The parallel of the first-order extensional deduction rule given 
above would be a rule 
 
ExtensionalImplication A B 
ExtensionalImplication B C 
|- 
ExtensionalImplication A C 

 
where the difference is that in the higher-order inference case, the tokens A, B and C 
denote either variable-bearing expressions or higher-order functions.  Some higher-
order inference rules involve universal or existential quantifiers as well. 
 While first-order PLN adheres closely to the term logic framework, higher-order 
PLN is better described as a mix of term logic, predicate logic and combinatory logic 
(though the latter aspect will not be emphasized here).  The knowledge representation 
is kept flexible as this seems to lead to the simplest and most straightforward set of 
inference rules. 

PLN Truth Values and Formulas 
Next, one of the less conventional aspects of PLN – which will not play a major role in 
this book, but still merits brief mention -- is the quantification of uncertainty using 
imprecise truth values that contain at least two components, and usually more (in 
distinction from the typical truth value used in probability theory, which is a single 
number: a probability).  PLN’s indefinite probability approach is related to earlier multi-
component truth-value approaches due to [Keynes (2007); Wang, 2006; Walley, 1991] 
and others, but is unique in its particulars. 
 The simplest kind of PLN truth value, called a SimpleTruthValue, consists of a 
pair of numbers <s,w> called a strength and a confidence.  The strength value is a 
probability; the confidence value is a measure of the amount of uncertainty attached to 
the strength value.  Confidence values are normalized into [0,1].    

For instance <.6,1>  means a probability of .6 known with absolute certainty.  
<.6,.2> means a probability of .6 known with a very low degree of certainty.  <.6,0> 
means a probability of .6 known with a zero degree of certainty, which is meaningless 
and is equivalent to <x,0> for any other probability value x. 
 Another type of truth value, more commonly used as the default within PLN, is 
the IndefiniteTruthValue. We introduce the mathematical and philosophical foundations 
of IndefiniteTruthValues in chapter 4. Essentially a hybridization of Walley’s imprecise 
probabilities and Bayesian credible intervals, indefinite probabilities quantify truth values 
in terms of four numbers <L,U,b,k>: an interval [L,U], a credibility level b, and an integer 



k called the lookahead. IndefiniteTruthValues provide a natural and general method for 
calculating the “weight-of-evidence” underlying the conclusions of uncertain inferences.   
 Beyond the SimpleTruthValues and IndefiniteTruthValues mentioned above, 
more advanced types of PLN truth value also exist, principally “distributional truth 
values” in which the strength value is replaced by a matrix approximation to an entire 
probability. Note that this then provides for three different granularities of 
approximations to an entire probability distribution. A distribution can be most simply 
approximated by a single number, a somewhat better approximation being provided by 
a probability interval, and an even better approximation given by an entire matrix. 

[Goertzel et al 2008] defines the various inference rules of PLN, and also 
associates with each of them a “strength value formula” with each of them (a formula 
determining the strength of the conclusion based on the strengths of the premises).  For 
example, the deduction rule mentioned above is associated with two strength formulas, 
one based on an independence assumption and the other based on a different “concept 
geometry” based assumption.  The independence-assumption-based deduction 
strength formula looks like 
 
B <sB> 
C <sC> 
ExtensionalInheritance A B <sAB> 
ExtensionalInheritance B C <sBC> 
|- 
ExtensionalInheritance A C <sAC> 
 
where 
 
sAC = sAB sBC  + (1-sAB) ( sC – sB sBC ) / (1- sB ) 
 
This particular rule is a straightforward consequence of elementary probability theory.   
Some of the other formulas are equally straightforward; but some are subtler and (as 
explained in detail in [Goertzel et al, 2008]) require heuristic reasoning beyond standard 
probabilistic tools like independence assumptions. 
 Since simple truth values are the simplest and least informative of our truth value 
types, they provide quick, but less accurate, assessments of the resulting strength and 
confidence values.  A valuable enterprise is extending the simple truth value formulas to 
IndefiniteTruthValues.  A careful consideration of this matter shows that indefinite truth 
values provide a natural approach to measuring weight-of-evidence. 
IndefiniteTruthValues can be thought of as approximations to entire distributions, and so 
provide an intermediate level of accuracy regarding strength and confidence.  Finally, 
PLN inference formulas may also be modified to handle entire distributional truth values.  
Distributional truth values provide more information than the other truth value types. As 
a result, they may also be used to yield even more accurate assessments of strength 
and confidence.  

Some Relevant PLN Relationship Types and Inference Rules 
In this section we briefly review the specific PLN relationship types and inference rules 
that will be used in the inference examples given in later chapters.   Contextual, spatial 



and temporal relationships will not be covered here, as these will be described later on 
in the appropriately specialized chapters. 
 As seen above the PLN formalism allows one to express relationships over 
predicates and relationships.  For this purpose it uses higher order operators 
(comparable in some ways to first order logic operators), such as Implication, 
Equivalence, AverageAll and ThereExists (there is also a ForAll operator but as it is not 
used in the inference examples we will not elaborate further on it). The semantics of 
Equivalence and Implication are easily definable using the SatisfyingSet operator that 
we define below. 

2.1.1 SatisfyingSet and Member 
 

The SatisfyingSet operator allows us to express the concept of a set whose 
members are all elements that satisfy the predicate. We also recall the Member 
relationship type that expresses how much an element belongs to a concept (with a 
truth value that is fuzzy rather than probabilistic). 
 Let's for instance consider the predicate FriendOfBob, defined by the three 
elements Jack, John and Jill as follows: 
 
Evaluation <.7> 
        FriendOfBob 
        Jack 
 
Evaluation <.6> 
        FriendOfBob 
        John 
 
Evaluation <.8> 
        FriendOfBob 
        Jill 

 
According to the definition of the SatisfyingSet operator, we would then have: 
 
Member <.7> 
        Jack 
        SatisfyingSet(FriendOfBob) 
 
Member <.6> 
        John 
        SatisfyingSet(FriendOfBob) 
 
Member <.8> 
        Jill 
        SatisfyingSet(FriendOfBob) 

 

2.1.2 Equivalence and Implication 
Now we can define Equivalence and Implication as follows: 
 
Equivalence 
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        A 
        B 

 
is equal to 
 
Similarity 
        SatisfyingSet(A) 
        SatisfyingSet(B) 

 
and 
 
Implication 
        A 
        B 

 
is equal to 
 
Inheritance 
        SatisfyingSet(A) 
        SatisfyingSet(B) 

 
We have defined the mixed versions of Equivalence and Implication. The extensional 
and intensional versions are analogously defined, we give only the definition of 
ExtensionalEquivalence: 
 
ExtensionalEquivalence 
        A 
        B 

 
is equal to 
 
ExtensionalSimilarity 
        SatisfyingSet(A) 
        SatisfyingSet(B) 

 
 

2.1.3 Quantifiers, AverageAll and ThereExists 
Quantification in uncertain logic is a somewhat subtle matter.  PLN handles it 

largely via the AverageAll construct, which is a kind of "average quantifier": the truth 
value of 
 
AverageAll $X 
        F($X) 
 
can be defined as the weighted average of the truth value of F($X), i.e. as the sum 
 
w($X) F($X) / N 
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where w($X) is defined as the truth value of $X in the system and N is the sum of all 
w($X).  (Note that this approach has been elaborated in detail only for finite domains, as 
the intended application is to the set of knowledge contained explicitly within an AI 
system.  Extension to infinite domains is thought to be possible but would require 
additional theoretical elaboration.) 
 There may be other ways to define the truth value of AverageAll, possibly more 
advantageous in various respects, but the one outlined above has the advantage of 
being rather tractable, and it is the approach taken in the current PLN software system. 
 ThereExists is an existential quantification; it is the dual of the quantifier ForAll 
and we will not recall it in detail here (see the PLN book for more information [Goertzel 
et al., 2008]). Informally let's just say that the truth value of ThereExists $X F($X) 
quantifies how much it exists an $X such that F($X) is essentially not zero, i.e. lying 
within [e,1], where e is a margin of error. 

From the detailed treatment of AverageAll and ThereExists given in [Goertzel et 
al, 2008], it follows that the truth value of ThereExists $X F($X) must be equal to or 
greater than the truth value of AverageAll $X F($X), at least assuming that e is equal or 
smaller than the truth value of AverageAll $X F($X). This will be useful in the inference 
examples given later on. 

2.1.4 Some Inheritance rules 
The following rule is also useful in examples given later on; it basically says that if all 
elements that inherit F, also inherit G, then as a consequence F inherits G: 
 
AverageAll $X 
        ExtensionImplication 
                Inheritance $X F 
                Inheritance $X G 
|- 
Inheritance F G 

 
And the rule below allows to infer an inheritance relation out of a membership relation, 
i.e. if X is a member of A then the singleton {X} inherits from  A.  This rule is called M2I 
for Member to Inheritance 
 
Member X A 
|- 
Inheritance {X} A 

 
and its truth value formula involves a significantly lower confidence for the conclusion 
than the premise, reflecting the speculative nature of the inference involved.  There also 
exists the reverse, I2M, though it is not used in our examples. 
 

2.1.5 Intensional Inheritance 
As stated earlier in the section, intensional inheritance quantifies how much the 
properties of a concept inherits from the properties of another. There is more than one 
way to technically handle intension. The way we have chosen here is by using the 
relationship ASSOC, where roughly ASSOC(C E) is seen as an approximation of 
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[P(C|E)-P(C|~E)]+, with [x]+ = max(x, 0) is the positive part of x, that is ASSOC(C E) 
measures how differentially E implies C; and we also assume that ExOut ASSOC C 
designated the fuzzy set {E|ASSOC(C E)}.  
 Using the above ideas we can define IntensionalImplication_ASSOC as follows: 
 
ExtensionalEquivalence 
        IntensionalImplication_ASSOC $X $Y 
        ExtensionalInheritance 
                ExOut ASSOC $X 
                ExOut ASSOC $Y 

 
 
 To more formally define ASSOC in PLN terms, again several ways are possible; 
here we have chosen 
 
ASSOC(C E)=ASSOC_int(C E) OR ASSOC_ext(C E) 
 
where ASSOC_int and ASSOC_ext are respectively intensional and extensional 
versions of ASSOC and OR is the fuzzy disjunction. ASSOC_int is defined below: 
 
ExtensionalEquivalence 
        Member $E (ExOut ASSOC_int $C) 
        ExOut 
                Func 
                        List 
                                IntensionalInheritance $E $C 
                                IntensionalInheritance 
                                        NOT $E 
                                        $C 

 
where Func(x, y) = [x-y]+, and $E and $C are conceptNodes.  ASSOC_ext is defined 
similarly where intensional is replaced by extensional. 
 

Applying PLN 
 
To sum up: the goal underlying the theoretical development of PLN has been the 
creation of practical software systems carrying out complex, useful inferences based on 
uncertain knowledge and drawing uncertain conclusions.  Toward that end we have 
implemented most of the PLN theory described in the PLN book, in a “PLN module” 
incorporated in the Novamente Cognition Engine (NCE), an integrative artificial 
intelligence software framework [Goertzel, 2006], and the OpenCog engine [Goertzel, 
2008; Hart and Goertzel, 2008], an open-source offshoot of the NCE.  
 By far the most difficult aspect of designing a PLN implementation is inference 
control – which is really a foundational conceptual issue rather than an implementational 
matter per se.  The PLN framework just tells you what inferences can be drawn, it 
doesn’t tell you what order to draw them in, in which contexts.  The current PLN 
implementation utilizes the standard modalities of forward-chaining and backward-
chaining inference control.  However, the vivid presence of uncertainty throughout the 
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PLN system makes these algorithms more challenging to use than in a standard crisp 
inference context.  Put simply, the search trees expand unacceptably fast, so one is 
almost immediately faced with the need to use clever, experience-based heuristics to 
perform pruning.   

The issue of inference control leads into deep issues related to automated 
reasoning and cognitive science; we briefly mention some of these issues in these 
pages, but do not fully explore, because that would lead too far afield from the focus of 
the book.  In the final chapter we visit this theme in the specific context of exploring 
exactly how commonsense knowledge about spatial and temporal events may help 
guide PLN inference to perform scalably on large stores of real-world knowledge. 

The practical application of PLN is still at an early stage; but so far, we have 
applied PLN to several areas.  We have applied it to process the output of a natural 
language processing subsystem, using it to combine together premises extracted from 
different biomedical research abstracts to form conclusions embodying medical 
knowledge not contained in any of the component abstracts [Goertzel et al, 2006].  We 
have also used PLN to learn rules controlling the behavior of a humanoid agent in a 3D 
simulation world: for instance, PLN learns to play “fetch” based on simple reinforcement 
learning stimuli [Goertzel et al, 2007].  Our current research involves extending PLN’s 
performance in both of these areas, and bringing the two areas together by using PLN 
to help the NCE and OpenCog carry out complex simulation-world tasks involving a 
combination of physical activity and linguistic communication; and, additionally, pursuing 
the sorts of inferences described in this book, applying PLN to scalable inference on 
real-world spatiotemporal knowledge stores. 
 

Deploying PLN in the OpenCog System 
 

With the above comments in mind, we here briefly describe how PLN has been 
integrated with OpenCog.  OpenCog is a complex framework with a complex underlying 
theory, and here we will only hint at some of its key aspects.  OpenCog is an open-
source software framework designed to support the construction of multiple AI systems; 
and the current main thrust of work within OpenCog is the implementation of a specific 
AGI design called OpenCogPrime (OCP), which is presented in the online wikibook 
[Goertzel & Hart, 2008].  Much of the OpenCog software code, and many of the ideas in 
the OCP design, have derived from the open-sourcing of aspects of the proprietary 
Novamente Cognition Engine, which has been described extensively in previous 
publications [Goertzel et al., 2004]. 
 The first key entity in the OpenCog software architecture is the AtomTable, which 
is a repository for weighted, labeled hypergraph nodes and hyperedges.  In the 
OpenCog implementation of PLN, the nodes and links involved in PLN are stored here.  
OpenCog also contains an object called the CogServer, which wraps up an AtomTable 
as well as (among other objects) a Scheduler that schedules a set of MindAgent objects 
that each (when allocated processor time by the Scheduler) carry out cognitive 
operations involving the AtomTable.   
 The essence of the OCP design consists of a specific set of MindAgents 
(including some carrying out various PLN inference operations) designed to work 



together in a collaborative way in order to create a system that carries out actions 
oriented toward achieving goals (where goals are represented as specific nodes in the 
AtomTable, and actions are represented as Procedure objects indexed by Atoms in the 
AtomTable, and the utility of a procedure for achieving a goal is represented by a 
certain set of probabilistic logical links in the AtomTable, etc.).   OpenCog is still at an 
experimental stage but has been used for such projects as statistical language analysis, 
probabilistic inference, and the control of virtual agents in online virtual worlds (see 
opencog.org).  We believe it could also be of significant value in the many other RWR 
applications. 



 

3 Temporal and Contextual Reasoning 
in PLN 

 
In this chapter we review the temporal and causal PLN relationship types and rules that 
are used to guide these sorts of inference in PLN, and give some simple examples to 
illustrate how they are used.  In the following chapters we will present more elaborate 
examples of spatiotemporal reasoning, using these constructs and ideas. 

Temporal relationship types 
 
First, the notation 
 
holdsThroughout 
        E 
        T 

 
means that the event E holds during T, where T is a time interval. 
 
So for example: 
 
holdsThroughout 
        Evaluation 
                Sick 
                Bob 
        [Tuesday:March:2007, Friday:March:2007] 

 
AtTime link is also frequently used instead of holdsThroughout, they are equivalent, one 
can use one or the other indifferently.  
 The time format in the examples is arbitrary and matters little, in practice it is an 
integer corresponding to the number of time units -a time unit could be 10ms for 
instance- that have passed since a referential beginning date, the zero time. 
 The relationships intiatedAt and terminatedAt represent respectively when an 
event starts and stops. So for instance the example above can be similarly expressed 
by: 
 
AND 
        initiatedAt 
                Evaluation Sick Bob 
                Tuesday:March:2007 
        terminatedAt 
                Evaluation Sick Bob 
                Friday:March:2007 

 
Sometimes, that notation is not enough to characterize the temporal aspect of an event. 
For instance one may want to express that an  event has started within an interval, or 
similarly ended within an interval. For that the temporal relationships initiatedTroughout 



and terminatedThroughout are used: 
 For instance if Bob has gotten progressively sick and healed progressively too: 
 
AND 
        initiatedThroughout 
                Evaluation Sick Bob 
                [TuesdayMorning:March:2007, WednesdayEvening:March:2007] 
        terminatedThroughout 
                Evaluation Sick Bob 
                [ThrusdayMorning:March:2007, FridayEvening:March:2007] 

 
It is possible to express other temporal relationships like OverlapTime which represents 
how much 2 time intervals overlap: 
 
OverlapTime 
        [Monday, Wednesday] 
        [Tuesday, Friday] 

 
Or During which represents how much and interval is included in another one: 
 
During 
 
        [Tuesday, Wednesday] 
        [Monday, Friday] 
 
Of course these two relationships can be considered as shorthands as they can be 
expressed using initiatedAt and terminatedAt. 
 

PLN Temporal Inference in Action 
 
Next we give a concrete example of PLN doing temporal inference, according to the 
representational mechanisms described above.   
 Suppose a user has submitted to a logical knowledge based system a query 
regarding which people were in the same place as Jane last week.  Suppose Susie and 
Jane use the same daycare center, but Jane uses it everyday, whereas Susie only uses 
it when she has important meetings (otherwise she works at home with her child).  
Suppose Susie sends a message stating that Tuesday she has a big meeting with a 
potential funder for her business.  Inference is needed to figure out that on Tuesday 
she’s likely to put her child in daycare, and hence (depending on the time of the 
meeting!) potentially to be at the same place as Jane sometime on Tuesday.  To further 
estimate the probability of the two women being in the same place, one has to do 
inference based on the times Jane usually picks up and drops off her child, and the time 
Susie is likely to do so based on the time of her meeting. 
 So: how do we use PLN to infer the truth value of the proposition that Susie was 
at the same Place as Jane last week? 
 Formally, in PLN notation our target theorem looks like: 
 
ThereExists $Place, $TimeInterval1, $TimeInterval2 



    AND 
        AtTime(AtPlace(Susie, $Place), $TimeInterval1) 
        AtTime(AtPlace(Jane, $Place), $TimeInterval2) 
        OverlapTime($TimeInterval1, $TimeInterval2) 
        During($TimeInterval1, LastWeek) 
        During($TimeInterval2, LastWeek) 

 
where atPlace is a predicate that indicates if a given person is at a given place.  
 We make the following assumptions for the purpose of the example inference: 
 
Axioms 
 
Axioms related to Jane: 
 
1) “Jane is at the daycare center everyday of the week between 7am and 7:30am and 
between 16pm and 16:30pm (when she brings and fetch her child).” 
 
1.a) 
 
AverageAll $Day 
    AND 
        IsWeekDay($Day) 
        AtTime(AtPlace(Jane, daycare), [$Day:7am, $Day:7:30am]) 

 
1.b) 
 
AverageAll $Day 
    AND 
        IsWeekDay($Day) 
        AtTime(AtPlace(Jane, daycare), [$Day:16am, $Day:16:30am]) 

 
Axioms related to Susie: 
 
2) “When Susie has an important meeting at time interval T, she will be in the daycare 
center during 30 minutes an hour before the beginning of T and after the end of T” 
 
Implication 
    AtTime(ImportantMeeting(Susie), T) 
    AND 
        AtTime 
            AtPlace(Susie, daycare) 
            [beginning(T)-1h, beginning(T)-1:30h] 
        AtTime 
            AtPlace(Susie, daycare) 
            [end(T)+1h, end(T)+1:30h] 

 
3) “Susie had an important meeting last Tuesday between 1:30pm and 3:15pm” 
 
AtTime 
    ImportantMeeting(Susie) 
    [LastTuesday:1:30pm, LastTuesday:3:15pm] 



 
Inference chain: 
 
1) “Susie was at the daycare center Tuesday between 4:15pm and 4:45pm”. Using 
axioms #2 and #3: 
 
AND 
    AtTime 
        AtPlace(Susie, daycare) 
        [LastTuesday:12:30pm, LastTuesday:1pm] 
    AtTime 
        AtPlace(Susie, daycare) 
        [LastTuesday:4:15pm, LastTuesday:4:45pm] 

 
Then using PLN inference rules to deal with AND 
 
AtTime 
    AtPlace(Susie, daycare) 
    [LastTuesday:4:15pm, LastTuesday:4:45pm] 

 
2) “Jane was at the daycare center Tuesday between 4:pm and 4:30pm”. Using axioms 
#1.b 
 
AND 
    isWeekDay(Tuesday) 
    AtTime 
        AtPlace(Jane, daycare) 
        [LastTuesday:4pm, LastTuesday:4:45pm] 

 
Then using PLN inference rules to deal with AND 
 
AtTime 
    AtPlace(Jane, daycare) 
    [LastTuesday:4pm, LastTuesday:4:45pm] 

 
3) Then we can infer an instance of the target theorem using the conclusion of inference 
step #1 and #3 + other axioms related to temporal relationships 
 
AND 
    AtTime 
        AtPlace(Susie, daycare) 
        [LastTuesday:4:15pm, LastTuesday:4:45pm] 
    AtTime 
        AtPlace(Jane, daycare) 
        [LastTuesday:4pm, LastTuesday:4:45pm] 
    OverlapTime 
        [LastTuesday:4:15pm, LastTuesday:4:45pm] 
        [LastTuesday:4pm, LastTuesday:4:45pm] 
    During 
        [LastTuesday:4:15pm, LastTuesday:4:45pm] 
        LastWeek 
    During 



        [LastTuesday:4pm, LastTuesday:4:45pm] 
        LastWeek 

 
4) And the target theorem is reached using step #3 and PLN existential quantifier 
axioms, by setting  
 
$Place=daycare 
$TimeInterval1=[LastTuesday:4:15pm, LastTuesday:4:45pm], 
$TimeInterval2=[LastTuesday:4pm, LastTuesday:4:45pm] 

 
and thus concluding 
 
ThereExists $Place, $TimeInterval1, $TimeInterval2 
    AND 
        AtTime(AtPlace(Susie, $Place), $TimeInterval1) 
        AtTime(AtPlace(Jane, $Place), $TimeInterval2) 
        OverlapTime($TimeInterval1, $TimeInterval2) 
        During($TimeInterval1, LastWeek) 

 
 

PLN Causal Relationship Types 
 
PLN represents the notion of causality with the PredictiveImplication relationship and 
some variants thereof. 
 In the inference  to be given below, we will use only 
IntensionalPredictiveImplication so we will only define that one; the other variants are 
very similar anyway. Formally IntensionalPredictiveImplication is defined as follows: 
 
IntensionalPredictiveImplication <w, T> 
        A 
        B 

 
is equal to 
 
IntensionalImplication <w> 
        A 
        AND_Seq <T> 
                A 
                B 

 
where T is a time interval representing the time between the moment A is initiated and B 
is initiated, which is what AND_Seq <T> A B formally means. 
 That is, if SS_initiatedAt(A) is the start time of A and SS_initiatedAt(B) is the 
start time of B then: 
 
AND_Seq <T> 
        A 
        B 

 



is equal to 
 
AND 
        A 
        B 
        SS_initaitedAt(B) - SS_initiatedAt(A) lies within T 
 

 
 

PLN Contextual Inference in Action 
 
Finally, in this section, we run the contextual inference example given in Chapter 10 
above using PLN rather than the more traditional contextual inference approach 
explored earlier. 
 First we enumerate the assumed axioms, describing each one in natural 
language and then formally in PLN terms: 
 
Axioms for Music Context 
 
1) In the context of music Alice frequently mentions Canadian place names 
 
IntensionalContext <.9> 
        Music 
        Evaluation <.5> 
                Mention 
                List 
                        Alice 
                        CanadianPlaceNames 

 
2) In the context of music Bob frequently mentions Canadian place names 
 
IntensionalContext <.9> 
        Music 
        Evaluation <.5> 
                Mention 
                List 
                        Bob 
                        CanadianPlaceNames 

 
3) In the context of music Clark does not frequently mention Canadian place names 
 
IntensionalContext <.9> 
        Music 
        Evaluation <.01>  
                Mention 
                List 
                        Clark 
                        CandianPlaceNames 

 
 



Axioms for Accounting Context 
 
4) In the context of accounting Alice does not frequently mention Canadian place names 
 
IntensionalContext <.9> 
        Accounting 
        Evaluation <.01> 
                Mention 
                List 
                        Alice 
                        CanadianPlaceNames 

 
5) In the context of accounting Bob frequently mentions Canadian place names 
 
IntensionalContext <.9> 
        Accounting 
        Evaluation <.01> 
                Mention 
                List 
                        Bob 
                        CanadianPlaceNames 

 
6) In the context of accounting Clark frequently mentions Canadian place names 
 
IntensionalContext <.9> 
        Accounting 
        Evaluation <.5> 
                Mention 
                List 
                        Clark 
                        CanadianPlaceNames 

 
Non-Context-Specific Axioms 
 
7) Accounting is associated with Money 
 
IntensionalInheritance <.7> 
        Accounting 
        Money 

 
8) CanadianPlaces is associated with Canada 
 
IntensionalInheritance 
        CanadianPlaceNames 
        Canada 

 
10) If someone X frequently mention Y then he/she is highly involved with Y 
 
AverageAll $X, $Y 
        Implication <.9> 
                Evaluation <.5> 
                        Mention 



                        List 
                                $X 
                                $Y 
                IntensionalInheritance 
                        $X 
                        $Y 

 
11) Canada is associated with Canadian people 
 
IntensionalInheritance <.7> 
        CanadianPeople 
        Canada 

 
 
12) Canadian people sharing properties with foreigner people and money are 
associated with money-laundering 
 
IntensionalInheritance <.8> 
        CanadianPeople AND_Int NOT_Ext(CanadianPeople) AND_Int Money 
        Money-laundering 

 
 
13) Clark is not Canadian 
 
ExtensionalInheritance <.99> 
        Clark 
        NOT_Ext(CanadianPeople) 

 
 
14) Probability of being in the context of Accounting 
 
Accounting <.5> 

 
15) Probability of being in the context of Music 
 
Music <.5> 

 
Question to answer : 
 
What is the chance of Clark being involved with Money-laundering? 
 
IntensionalInheritance <?> 
        Clark 
        Money-laundering 

 
 
 Next we show one possible inference trail via which PLN’s inference rules may 
estimate the truth value of the target logical relationship, based on the assumption of 
the above axioms.  Of course, there exist many other inference trails as well, and in 
reality an automated PLN inference system (such as the ones implemented in the NCE 



or OCP AI systems) will find many of these and produce an overall truth value formed 
by revising their various conclusions.  However, for expositional purposes, it seems 
sufficient to recount a single inference trail in detail, just show “how such inferences go.”  
The problem of inference control – i.e. of how an inference engine may be guided to 
create inferences like this in a reasonable amount of time – will be discussed in a later 
chapter. 
 
Inference trail  
 
1) Instantiate axiom #10, with $X=Clark and $Y=CanadianPlaceNames 
 
Implication <.9> 
        Evaluation <.5> 
                Mention 
                List 
                        $X 
                        $Y 
        IntensionalInheritance 
                $X 
                $Y 

 
2) Using the conclusion of step #1 and axiom #6 as premises of the macro PLN rule 
(Context C A, Implication A B ==> Context C B) 
 
IntensionalContext 
        Accounting 
        IntensionalInheritance 
                Clark 
                CanadianPlaceNames 

 
 
3) Rewrite the conclusion of step #2 under a non-contextual form 
 
IntensionalInheritance 
        Clark AND_Int Accounting 
        CanadianPlaceNames AND_Int Accounting 

 
 
4) Using axiom #7 (and applying an axiom embodying a basic congruence rule) to 
replace Accounting by Money in the conclusion of step #3 
 
IntensionalInheritance 
        Clark AND_Int Money 
        CanadianPlaceNames AND_Int Money 

 
5) like above, using axiom #8 to replace CanadianPlaceNames by Canada 
 
IntensionalInheritance 
        Clark AND_Int Money 
        Canada AND_Int Money 

 



6) like above, using axiom #11 to replace Canada by CanadianPeople 
 
IntensionalInheritance 
        Clark AND_Int Money 
        CanadianPeople AND_Int Money 

 
 
7) Using axiom #12 and some PLN rules to assess the IntensionalInheritance from the 
ExtensionalInheritance 
 
IntensionalInheritance 
        Clark 
        NOT_Ext(CanadianPeople) 

 
 
8) Using the conclusion of step #6 and step #7 
 
IntensionalInheritance 
        Clark AND_Int AND_Int Money 
        CanadianPeople AND_Int NOT_Ext(CanadianPeople) AND_Int Money 

 
 
8) Using axiom #12 with step #6 
 
IntensionalInheritance 
        Clark AND_Int Money 
        Money-laundering 

 
9) Then we remove Money from the conclusion of step #7, or that we need to compute 
the strength of Clark AND_Int Money => Clark, which can be approximated by the 
extensional case Implication Clark AND_Ext Money => Clark, based on P(A) and P(A 
AND B). 
 
IntensionalInheritance 
        Clark 
        Money-laundering 



 

4 Inferring the Causes of Observed 
Changes 

 
In this chapter we consider the specific question of how the ideas of the previous 
chapters contribute to carrying out reasoning regarding the potential causes of salient 
changes in large knowledge stores.   The following would be three sorts of examples of 
change-related inference, in the Twitter domain: 
 

• Looking for changes in a particular person’s patterns of social interaction (a 
significant new contact, a number of casual acquaintances with similar profiles, 
etc.), and potential causes of these changes 

• Looking for groups with changes in sentiment toward a certain person or 
organization (say, the Tory party), and potential causes of these changes 

• Looking for places with a significant change in their relationship to some specific 
place (say, East Anglia), and potential causes of these changes 

 
Corresonding examples on other application areas, such as robotics, are obvious to 
formulate.  In this section we give a detailed exposition of an inference regarding the 
first of these example cases.  The others would be handled similarly.   
 We will make use of the PLN logic framework here, although others could have 
been utilized as well.   In fact no existing logic framework has been fleshed out in great 
detail in the context of precisely this sort of application, so whatever logical formalism 
one chooses, in order to approach examples like this, one is going to be carrying out a 
certain amount of creative improvisation.  Due to our prior experience with PLN we felt 
most comfortable carrying out this invention in this context. 
 Specifically, we consider the following scenario : 
 

• Before March 2007, Bob never had any Canadian friends except those who were 
also friends of his wife. 

• After March 2007, Bob started acquiring Canadian friends who were not friends 
of his wife. 

• In late 2006, Bob started collecting Pokemon cards. Most of the new Canadian 
friends Bob made between March 2007 and Late 2007 are associated with 
Pokemon cards  

• In late 2006, Bob started learning French. Most of the new Canadian friends Bob 
made between March 2007 and Late 2007 are Quebecois. 

 
These are the sorts of patterns that might be identified via the pattern mining algorithms 
discussed above, for finding surprising relationships in large logical knowledge bases.   
The question we consider here is: suppose such a pattern has been identified, then how 
do we figure out what its cause might be?   We will consider two cases of the above 
scenario, one involving temporal reasoning only, and one involving both spatial and 
temporal reasoning. 
 The importance of this sort of question should be clear: it is not a matter of doing 



obscure analytical detective work, it’s a matter of figuring out whether a pattern that 
arises from a pattern-mining algorithm is actually interesting enough to merit anyone 
paying attention to it.  Pattern mining algorithms tend to find a lot of patterns, and most 
of them are pretty uninteresting.  When a pattern arises from such an algorithm, it is 
worthwhile to know whether there is an obvious cause for the pattern – and if so, 
whether the cause is the kind of cause that is interesting to the humans who are 
receiving the output of the pattern mining algorithm.  Thus, causal inference may 
actually be viewed as an integral part of the pattern mining process.  We may in fact 
posit a repeated process such as: 
 

1. Mine patterns from the knowledge base, biased by a set of concepts and 
patterns called the “focus” 

2. Perform causal inference to find a set P of patterns that are significant but  have 
no known cause, or have causes believed to be interesting to the human users 

3. If any of the patterns in P are estimated to be sufficiently interesting to any of the 
human users, report them to these human users 

4. Add these interesting patterns to the focus and return to Step 1 
 
We have already discussed the pattern-mining portion of this process; now we turn to 
the causal inference aspect. 
 

The Case of Bob and His New Friends, with Temporal Inference Only 
In this section, we will formalize the above example in PLN, and then use PLN inference 
to assess the strength of a few possible causal relationships that can explain why Bob 
has gotten new friends from Canada apart from his wife's (after March 2007). 

4.1.1 Axioms 
1) Before March 2007, Bob never had any Canadian friends except those who were 
also friends of his wife. 
 Let's first define a predicate equivalent to “Bob's Canadian friends” : 
 
AverageAll $X 
        ExtensionalEquivalence 
                Evaluation 
                        CanadianFriendOfBob 
                        $X 
                AND 
                        Evaluation 
                                FriendOf 
                                List 
                                        Bob 
                                        $X 
                        ExtensionalInheritance 
                                $X 
                                Canadian 

 
Then the axiom itself: 
 



holdsThroughout <0.99> 
        AverageAll $X <0.99> 
                AND_Ext 
                        Evaluation 
                                CanadianFriendOfBob 
                                $X 
                        Evaluation 
                                Friend 
                                List 
                                        Bob's wife 
                                        $X 
        Before_March_2007 

 
2) After March 2007, Bob started acquiring Canadian friends who were not friends of his 
wife. 
 
First let's define the following predicate equivalent to “Bob's Canadian friends who are 
not friends of his wife”: 
 
AverageAll $X 
        ExtensionalEquivalence 
                Evaluation 
                        CanadianFriendOfBobButNotHisWife 
                        $X 
                AND 
                        Evaluation 
                                CanadianFriendOfBob 
                                $X 
                        NOT Evaluation 
                                FriendOf 
                                List 
                                        $X 
                                        WifeOfBob 

 
 
Then the axiom itself: 
 
initiatedThroughout 
        Evaluation <.99> 
                NonEmpty 
                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
        Between_March_2007_And_Late_2007 

 
 
3) In late 2006, Bob started collecting Pokemon cards.  
 
Let's first define the following 0-ary predicate (we are passing over some subtlety here 
regarding defining the equivalence of a 0-ary term: but, to make a long story short, one 
can interpret an equivalence between 0-ary terms as an equivalence between 1-ary 
predicates [Goertzel et al., 2008] via considering it as a shorthand to the same 
equivalence holding over all contexts $C, where the context $C then becomes the 
argument of the predicates) 



 
ExtensionalEquivalence 
        Evaluation 
                BobCollectingPokemonCards 
        Evaluation 
                Collecting 
                List 
                        Bob 
                        PokemonCards                 

 
We may then state the axiom: 
 
initiatedAt 
        Evaluation 
                BobCollectingPokemonCards 
        Late_2006 

 
4) The process of collecting $Y shares associations with $Y itself 
 
AverageAll $X, $Y 
        ExtensionalImplication 
                Evaluation 
                        Collecting 
                        List 
                                $X 
                                $Y 
                IntensionalInheritance 
                        $Y 
                        SatisfyingSet(Collecting) 

 
5) Most of the new Canadian friends Bob made after March 2007 (who are not friends of 
his wife) are associated with Pokemon cards. 
 
Let's first define a predicate equivalent to “Bob's friends associated with Pokemon 
cards”: 
 
AverageAll $X <1> 
        ExtensionalEquivalence <1> 
                Evaluation 
                        FriendOfBobAssociatedWithPokemonCards 
                        $X 
                AND 
                        Evaluation 
                                FriendOf 
                                List 
                                        Bob 
                                        $X 
                        IntensionalInheritance 
                                $X 
                                PokemonCards 

         
And then the axiom is defined below: 
 



AverageAll $X <.7> 
        ExtensionalImplication 
                initiatedThroughout 
                        Evaluation 
                                CanadianFriendOfBob 
                                $X 
                        Between_March_2007_And_Late_2007 
                Evaluation 
                        FriendOfBobAssociatedWithPokemonCards 
                        $X 

 
6) In late 2006, Bob started learning French. 
 
Let's define the 0-ary predicate (recalling the remark made above concerning the 0-ary 
predicate BobCollectingPokemonCards) 
 
ExtensionalEquivalence 
        Evaluation 
                BobLearningFrench 
        Evaluation 
                Learning 
                List 
                        FrenchLanguage 
                        Bob 

 
So we can now define the axiom: 
 
initiatedAt 
        Evaluation 
                BobLearningFrench 
        Late_2006 

 
7) The process of learning $X shares associations with $X itself 
 
AverageAll $X, $Y 
        ExtensionalImplication 
                Evaluation 
                        Learning 
                        List 
                                $X 
                                $Y 
                IntensionalInheritance 
                        $Y 
                        SatisfyingSet(Learning) 

 
8) Most of the new Canadian friends Bob made after March 2007 (who are not friends of 
his wife) are Quebecois. 
 
Let's first define a predicate equivalent to “Bob's Quebecois friends” : 
 
AverageAll $X <1> 
        ExtensionalEquivalence <1> 
                Evaluation 



                        QuebecoisFriendOfBob 
                        $X 
                 AND 
                        Evaluation 
                                FriendOf 
                                List 
                                        Bob 
                                        $X 
                        ExtensionalInheritance 
                                $X 
                                Quebecois 

 
Now let's formulate the axiom : 
 
AverageAll $X <.7> 
        ExtensionalImplication 
                initiatedThroughout 
                        Evaluation 
                                CanadianFriendOfBobButNotHisWife 
                                $X 
                        Between_March_2007_And_Late_2007 
                Evaluation 
                        QuebecoisFriendOfBob 
                        $X 

 
9) Quebecois are Canadians 
 
AverageAll $X 
        ExtensionalImplication 
                Evaluation 
                        Quebecois 
                        $X 
                Evaluation 
                        Canadian 
                        $X 

 
10) Quebecois are associated with French language 
 
IntensionalInheritance 
        FrenchLanguage 
        SatisfyingSet(Quebecois) 

 
 

4.1.2 Inference Trails 
We now describe three PLN inference trails, aimed at evaluating the truth values of the 
following inference targets: 
 
Target theorem 1:  “Bob's Pokemon cards interest is the cause of his new Canadian 
friendships”: 
 
IntensionalPredictiveImplication <?, 3_months_to_a_year> 



        Evaluation 
                BobCollectingPokemonCards 
        Evaluation 
                NonEmpty 
                SatifsyingSet(CanadianFriendOfBobButNotHisWife) 

 
Target theorem 2: “Bob starting learning French is the cause of his new Canadian 
friendships”: 
 
IntensionalPredictiveImplication <?, 3_months_to_a_year> 
        Evaluation 
                BobLearningFrench 
        Evaluation 
                NonEmpty 
                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
Target theorem 3: “The disjunction of Bob starting learning French and collecting 
Pokemon cards is the cause of his new Canadian friendships” 
 
IntensionalPredictiveImplication <?, 3_months_to_a_year> 
        AND 
                Evaluation 
                        BobCollectingPokemonCards 
                Evaluation 
                        BobLearningFrench 
        Evaluation 
                NonEmpty 
                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

. 

4.1.2.1 An Evaluation of Theorem 1 
To illustrate one path for evaluating the truth value of Theorem 1 using PLN, we will 
begin by presenting four steps that go backward from the target theorem to the axioms. 
 
1) Target 1: “Bob starting collecting Pokemon cards is the cause of his new Canadian 
friendships” 
 
IntensionalPredicativeImplication <?, 3_months_to_a_year> 
        Evaluation 
                BobCollectingPokemonCards 
        Evaluation 
                NonEmpty 
                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
2) Using step #1 and the definition of IntensionalPredictiveImplication 
 
IntensionalImplication <?> 
        Evaluation 
                BobCollectingPokemonCards 
        AND_Seq <3_months_to_a_year> 
                Evaluation 
                        BobCollectingPokemonCards 



                Evaluation 
                        NonEmpty 
                        SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
3) Using step #2 and the definition of AND_Seq <T> 
 
IntensionalImplication <?> 
        Evaluation 
                BobCollectingPokemonCards 
        AND 
                AND 
                        Evaluation 
                                BobCollectingPokemonCards 
                        Evaluation 
                                NonEmpty 
                                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
                BobCollectingPokemonCards_BobsNewFriends_Delay is  
       between 3 months to a year time,  

 
where BobCollectingPokemonCards_BobsNewFriends_Delay is a shorthand for: 
 
SS_InitiatedAt(Evaluation(BobCollectingPokemonCards)) 
- SS_InitiatedAt(Evaluation(NonEmpty, 
SatisfyingSet(CanadianFriendOfBobButNotHisWife)) 

 
where SS_InitiatedAt(E) is the start time of event E. 
 
4) The next step proceeds using step #3 and the definition of IntensionalImplication (see 
Section 4.4)   
 
ExtensionalInheritance 
    ExOut ASSOC 
        Evaluation 
            BobCollectingPokemonCards 
    ExOut ASSOC 
        AND 
            AND 
                Evaluation 
                    BobCollectingPokemonCards 
                Evaluation 
                    NonEmpty 
                    SatisfyingSet 
                        CanadianFriendOfBobButNotHisWife 
            BobCollectingPokemonCards_BobsNewFriends_Delay is  
      between 3 months to a year time 

 
For the next steps we create 2 sub-target theorems corresponding to the 2 ExOut 
ASSOC of the step above in order to assess the ExtensionInheritance thereof. 
 
5) Let's first consider ExOut(ASSOC(Evaluation(BobCollectingPokemonCards))).  
 
In principle, at this stage, we should compute ASSOC( Evaluation( 
BobCollectingPokemonCards ) E) for all terms E in the system. However it is clear that 
what relates BobCollectingPokemonCards and his new Canadian friends in our 



example is the concept Pokemon cards (as most of them collect Pokemon cards as 
well).   (In practice this would need to be concluded by an adaptive inference control 
mechanism, to avoid untoward combinatorial explosions during the chaining process.) 
Therefore we will only consider ASSOC( Evaluation( BobCollectingPokemonCards ) 
PokemonCards ).  
 Since Evaluation(BobCollectingPokemonCards) is a relationship we convert it 
first into its concept representation, SatisfyingSet( BobCollectingPokemonCards ). 
 It is clear that ASSOC_ext(SatisfyingSet(BobCollectingPokemonCards 
PokemonCards) is null, if we assume (as is most reasonable) there is no knowledge in 
the system establishing extensional relationship between BobCollectingPokemonCards 
and PokemonCards. 
 However using an instance of axiom #4 with $X=Bob and $Y=PokemonCards we 
can calculate  
 
IntensionalInheritance 
 PokemonCards  
 SatisfyingSet(BobCollectingPokemonCards) 

 
We also need to consider  
 
IntensionalInheritance 
 NOT PokemonCards  
 SatisfyingSet(BobCollectingPokemonCards) 

 
which is trivially evaluated as null due to the lack of axioms leading to that relationship. 
 Thus, given the above, finally we can compute numerically the strength of 
ASSOC(SatisfyingSet(BobCollectingPokemonCards) PokemonCards). 
 
6) Let's consider the second relationship now: 
 
ExOut ASSOC 
    AND 
        AND 
            Evaluation 
                BobCollectingPokemonCards 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
        BobCollectingPokemonCards_BobsNewFriends_Delay is between 3 months to 
a year time 

 
Since SS_InitiatedAt(BobCollectingPokemonCards) = Late_2006, the above conjunction 
is equivalent to: 
 
ExOut ASSOC 
    AND 
         Evaluation 
             BobCollectionPokemonCards 
         initiatedThroughout 
             Evaluation 



                 NonEmpty 
                 SatisfyingSet 
                     CanadianFriendOfBobButNotHisWife 
         Between_March_2007_And_Late_2007 

 
ExOut ASSOC Evaluation(BobCollectionPokemonCards) has already been addressed, 
so let's now focus on the second term of the conjunction; that is, we are trying to assess 
the strength of: 
 
IntensionalInheritance 
    PokemonCards 
    SatisfyingSet 
        initiatedThroughout 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
            Between_March_2007_And_Late_2007 

 
We set the PLN formula above as new target goal and we will go forward with the 
inference from that point. 
 
6) Using the definition of FriendOfBobAssociatedWithPokemonCards from axiom #5 
and considering that Equivalence(A, B) is Implication(A, B) AND Implication(B, A) we 
can conclude that: 
 
AverageAll $X <.7> 
        ExtensionalImplication 
                Evaluation 
                        FriendOfBobAssociatedWithPokemonCards 
                        $X 
                AND 
                        Evaluation 
                                FriendOf 
                                List 
                                        Bob 
                                        $X 
                        IntensionalInheritance 
                                $X 
                                PokemonCards 

 
7) Using the conclusion of step #6 and standard logic rules: 
 
AverageAll $X <.7> 
        ExtensionalImplication 
                Evaluation 
                        FriendOfBobAssociatedWithPokemonCards 
                        $X 
                IntensionalInheritance 
                        $X 
                        PokemonCards 

 
8) Using the conclusion of step #7 and a PLN rule to represent Evaluation as 



membership of the satisfying set of the predicate: 
 
AverageAll $X <.7> 
    ExtensionalImplication 
        Member 
            $X 
            SatisfyingSet 
                FriendOfBobAssociatedWithPokemonCards 
        IntensionalInheritance 
            $X 
            PokemonCards 

 
9) Using the conclusion of step #8 and the M2I PLN rule (that assesses how a member 
of a set intensionally inherits from that set): 
 
AverageAll $X <.7> 
    ExtensionalImplication 
        IntensionalInheritance 
            $X 
            SatisfyingSet 
                FriendOfBobAssociatedWithPokemonCards 
        IntensionalInheritance 
            $X 
            PokemonCards 

 
10) Using step #9 and the following PLN rule: 
 
AverageAll $X 
        ExtensionImplication 
                Inheritnace $X F 
                Inheritance $X G 
|- 
Inheritance F G 

 
we can conclude: 
 
IntensionalInheritance 
        SatisfyingSet(FriendOfBobAssociatedWithPokemonCards) 
        PokemonCards 

 
11) we rewrite axiom #5 using SatisfyingSet to convert the implication into an 
inheritance: 
 
Inheritance <.7> 
        SatisfyingSet 
                initiatedThroughout 
                        CanadianFriendOfBobButNotHisWife 
                        Between_March_2007_And_Late_2007 
        SatisfyingSet 
                FriendOfBobAssociatedWithPokemonCards 

 
12) Using the conclusions of steps #11 and #10, and the PLN deduction rule we can 
conclude: 



 
Inheritance <?> 
        SatisfyingSet 
                initiatedThroughout 
                        CanadianFriendOfBobButNotHisWife 
                        Between_March_2007_And_Late_2007 
        PokemonCards 

 
13) Using the conclusion of step #12, and the PLN inversion rule we can conclude: 
 
Inheritance <?> 
        PokemonCards 
        SatisfyingSet 
                initiatedThroughout 
                        CanadianFriendOfBobButNotHisWife 
                        Between_March_2007_And_Late_2007 

 
Which allows us to calculate: 
 
ASSOC_int 
    SatisfyingSet 
        initiatedThroughout 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
            Between_March_2007_And_Late_2007 
    PokemonCards 

4.1.2.2 An Evaluation of Theorem 2 
Now we give a similar demonstration of an inference trail leading to the evaluation of the 
truth value of Theorem 2 above.  We will go backward from the target theorem to 
axioms for the next four steps. 
 
1) Target 2: “Bob starting learning French is the cause of his new Canadian 
friendships”: 
 
IntensionalPredictiveImplication <?, 3_months_to_a_year> 
        Evaluation 
                BobLearningFrench 
        Evaluation 
                NonEmpty 
                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
2) using step #1 and definition of IntensionalPredictiveImplication 
 
IntensionalImplication <?> 
        Evaluation 
                BobLearningFrench 
        AND_Seq <3_months_to_a_year> 
                Evaluation 
                        BobLearningFrench 



                Evaluation 
                        NonEmpty 
                        SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
 
3) using step #2 and the definition of AND_Seq <T> 
 
IntensionalImplication <?> 
    Evaluation 
        BobLearningFrench 
    AND 
        AND 
            Evaluation 
                BobLearningFrench 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
        BobLearningFrench_BobsNewFriends_Delay is between 3 months to a year 
time 

 
where BobLearningFrench_BobsNewFriends_Delay is a shorthand for: 
 
SS_InitiatedAt(Evaluation(BobLearningFrench)) 
- SS_InitiatedAt(Evaluation(NonEmpty, 
SatisfyingSet(CanadianFriendOfBobButNotHisWife)) 

 
Where SS_InitiatedAt(E) is the start time of event E. 
 
4) Using step #3 and the definition of IntensionalImplication we can rewrite the 
conclusion of step #3: 
 
ExtensionalInheritance 
    ExOut ASSOC 
        Evaluation 
            BobLearningFrench 
    ExOut ASSOC 
        AND 
            AND 
                Evaluation 
                    BobLearningFrench 
                Evaluation 
                    NonEmpty 
                    SatisfyingSet 
                        CanadianFriendOfBobButNotHisWife 
            BobLearningFrench_BobsNewFriends_Delay is between 3 months to a 
year time 

 
For the next steps we create 2 sub-target theorems corresponding to the 2 ExOut 
ASSOC of the step above in order to assess the ExtensionInheritance thereof. 
 
5) Let's first consider ExOut(ASSOC(Evaluation(BobLearningFrench))).   
 



As in the case of Theorem 1, in principle we should compute 
ASSOC(Evaluation(BobLearningFrench) E) for all terms E in the system. However it is 
clear that what relates BobLearningFrench and his new Canadian friends in our 
example is the French language (as it's new Canadian friends are in majority Quebecois 
whom main language is French). Therefore we will only consider 
ASSOC(Evaluation(BobLearningFrench) FrenchLanguage).  
 Since Evaluation(BobLearningFrench) is a relationship we convert it first into its 
concept representation, StatisfyingSet(BobLearningFrench). 
 It is clear that ASSOC_ext( SatisfyingSet(BobLearningFrench FrenchLanguage ) 
is null because there is no knowledge in the system establishing an extensional 
relationship between BobLearningFrench and FrenchLanguage. 
 However using an instance of axiom #7 with $X=Bob and $Y=FrenchLanguage 
we can calculate IntensionalInheritance( FrenchLanguage SatisfyingSet( 
BobLearningFrench ) ). 
 We also need to consider IntensionalInheritance(NOT FrenchLanguage 
SatisfyingSet( BobLearningFrench ) ) which is trivially evaluated as null due to the lack 
of axioms leading to that relationship. 
 Thus finally we can compute numerically the strength of ASSOC( SatisfyingSet( 
BobLearningFrench ) FrenchLanguage). 
 
6) Let's consider the second one: 
 
ExOut ASSOC 
    AND 
        AND 
            Evaluation 
                BobLearningFrench 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
        BobLearningFrench_BobsNewFriends_Delay is between 3 months to a year 
time 

 
Since SS_InitiatedAt(BobLearningFrench) = Late_2006, the above conjunction is 
equivalent to: 
 
ExOut ASSOC 
     AND 
         Evaluation 
             BobLearningFrench 
         initiatedThroughout 
             Evaluation 
                  NonEmpty 
                  SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
             Between_March_2007_And_Late_2007 

 
ExOut ASSOC Evaluation(BobLearningFrench) has already been addressed, so let's 
now focus on the second term of the conjunction, that is we are trying to assess the 
strength of: 



 
IntensionalInheritance 
    FrenchLanguage 
    SatisfyingSet 
        initiatedThroughout 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
            Between_March_2007_And_Late_2007 

 
We set the PLN formula above as new target goal and we will go forward in the 
inference this time 
 
7) Using the definition of QuebecoisFriendOfBob in axiom #8 we can directly conclude: 
 
ExtensionalInheritance 
        SatisfyingSet(QuebecoisFriendOfBob) 
        SatisfyingSet(Quebecois) 

 
8) Using the conclusion of step #7 and axiom #10, and mixed PLN abduction we can  
conclude: 
 
IntensionalInheritance 
        FrenchLanguage 
        SatisfyingSet(QuebecoisFriendOfBob) 

 
9) We rewrite axiom #8 using SatisfyingSet to convert the implication into an 
inheritance: 
 
Inheritance <.7> 
        SatisfyingSet 
                initiatedThroughout 
                        CanadianFriendOfBobButNotHisWife 
                        Between_March_2007_And_Late_2007 
        SatisfyingSet 
                QuebecoisFriendOfBob 

 
10) Using axiom #8, the conclusion of step #9, and the abduction PLN rule we can 
conclude: 
 
IntensionalInheritance 
        FrenchLanguage 
        SatisfyingSet 
                initiatedThroughout 
                        CanadianFriendOfBobButNotHisWife 
                 Between_March_2007_And_Late_2007 

 
 
11) Using the axiom #2 and the definition of the strength of 
CanadianFriendOfBobButNotHisWife as the average strength over all arguments 



considered relevant: 
 
Implication 
    initiatedThroughout 
        CanadianFriendOfBobButNotHisWife 
        Between_March_2007_And_Late_2007 
    initiatedThroughout 
        Evaluation 
            NonEmpty 
                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
        Between_march_2007_And_Late_2007 

 
12) Rewriting the conclusion of step #11 into an inheritance relation using SatisfyingSet: 
 
Inheritance 
    SatifyingSet 
        initiatedThroughout 
            CanadianFriendOfBobButNotHisWife 
            Between_March_2007_And_Late_2007 
    SatisfyingSet 
        initiatedThroughout 
            Evaluation 
                NonEmpty 
                    SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
            Between_march_2007_And_Late_2007 

 
13) Using the conclusions of steps #10 and #12 and the PLN deduction rule: 
 
IntensionInheritance 
    FrenchLanguage 
    SatisfyingSet 
        initiatedThroughout 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                     CanadianFriendOfBobButNotHisWife 
            Between_March_2007_And_Late_2007 

 
This allows us to calculate: 
 
ASSOC_int 
    SatisfyingSet 
        initiatedThroughout 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
            Between_March_2007_And_Late_2007 
        FrenchLanguage 

4.1.2.3 An Evaluation of Theorem 3 
Finally, we will not detail the inference trail of target theorem 3 because it exhibits 
nothing new; instead we will informally explain how to reuse the two previous inferences 



to derive this conclusion.  Recall from above that 
 
Target 3: “The disjunction of Bob starting collecting Pokemon cards and learning 
French is the cause of his new Canadian friendships” 
 
IntensionalPredicativeImplication <?, 3_months_to_a_year> 
    OR 
        Evaluation 
            BobCollectingPokemonCards 
        Evaluation 
            BobLearningFrench 
    Evaluation 
        NonEmpty 
        SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
Analogously to target theorems 1 and 2 we need to assess the following PLN formula 
(following the same steps backward): 
 
ExtensionalInheritance 
    ExOut ASSOC 
        OR 
            Evaluation 
                BobCollectingPokemonCards 
            Evaluation 
                BobLearningFrench 
    ExOut ASSOC 
        AND 
            AND 
                OR 
                    Evaluation 
                        BobCollectingPokemonCards 
                    Evaluation 
                        BobLearningFrench 
                Evaluation 
                    NonEmpty 
                    SatisfyingSet 
                        CanadianFriendOfBobButNotHisWife 
            BobLearningFrench_BobsNewFriends_Delay is between 3 months to a 
year time 

 
Assuming we have ExOut ASSOC Evaluation(BobCollectingPokemonCards) which is 
basically PokemonCards, and ExOut ASSOC Evaluation(BobLearningFrench) which is 
basically FrenchLanguage, it is no difficulty to conclude that: 
 
ExOut ASSOC 
    OR 
         Evaluation 
             BobCollectingPokemonCards 
         Evaluation 
             BobLearningFrench 

 
corresponds to the set {PokemonCards, FrenchLanguage} using standard PLN logical 
operator rules (it is represented a crisp set but in fact of course it is a fuzzy set). 



 Similarly the same can be concluded for 
 
ExOut ASSOC 
    AND 
        AND 
            OR 
                Evaluation 
                    BobCollectingPokemonCards 
                Evaluation 
                    BobLearningFrench 
            Evaluation 
                NonEmpty 
                SatisfyingSet 
                    CanadianFriendOfBobButNotHisWife 
        BobLearningFrench_BobsNewFriends_Delay is between 3 months to a year 
time 

 
That is, it corresponds to {PokemonCards, FrenchLanguage} (again one should 
interpret it a fuzzy set). 
 Of course it is expected that the strength of that last IntensionalInheritance is 
higher than the strength of the target theorem 1 or 2.  This is a matter of the truth value 
formulas corresponding to the inference rules in the trail, which have not been entered 
into here as we are concerned with exposition, and the forms of the inferences involved, 
rather than practical calculation. 

   Incorporating Spatial Inference into Analysis of Change 
In this section we consider a variation of the inference given above, modified to include 
spatial reasoning involving Canada and its neighbors.    This is an illustration of how 
temporal and spatial inference rules may be combined to carry out commonsense 
reasoning regarding potential causes of changes in large knowledge bases.  See Figure 
17.1 for the map used in the example. 
 

Figure 17.1: Canada and its neighbors 
 



 
 

 
 We consider a query similar to one discussed above, but slightly relaxed; instead 
of the causes of Bob's new Canadian friendships we are interested in the causes of 
Bob's new friends who are Canadian and associated with Canadian; that is more, 
formally speaking, who inherit extensionally and/or intensionally from Canadian (instead 
of only extensionally as in the previous inference). 
 So, the definition of Bob's Canadian friend in axiom #1 of the previous inference 
is replaced by: 

 
 

AverageAll $X 
    ExtensionalEquivalence 
        Evaluation 
            CanadianFriendOfBob 
                $X 
        AND 
            Evaluation 
                FriendOf 
                List 
                    Bob 
                    $X 
            Inheritance 
                $X 
                Canadian 

 
 
Then we introduce some spatial knowledge by adding the predicate near(X,Y) and a 
“curried” version of it, nearCanada(X)=near(X,Canada), represented by a fuzzy grid in 
Figure 17.2, where the level of opacity of the red color of each cell of the grid 
corresponds to the degree of its proximity to Canada. And we extract from that grid two 



regions, Canada in red and Ottawa in green as shown in Figure 17.3, to illustrate the 
use of the Region Connection Calculus (RCC) as discussed above. And finally we add 
an axiom that relates geographic proximity and intensional association. 
 

FIGURE 17.2: Fuzzy Grid of the predicate nearCanada 

 
 
 

4.1.3 New Axioms 
We can now formalize the above knowledge in PLN (one should consider it as a set of 
additional axioms, to be added to the ones from the previous example, which is why 
they are numbered from 11): 
 
11) Nome Alaska is not near Canada 
 
Let's first define the predicate nearCanada: 
 
AverageAll $X 
        ExtensionalEquivalence 
                Evaluation 
                        nearCanada 
                        $X 
                Evaluation 
                        near 
                        List 
                                $X 
                                Canada 

 



IGURE 15.3: Canada Region in red, Ottawa Region in green. 

 
 
and the axiom (according to the fuzzy grid of Figure 17.2): 
 
Evaluation <0> 
        nearCanada 
        Nome 

 
Actually in practice this knowledge would be deduced from lower-level knowledge such 
as the following: 
 
Evaluation <0> 
        occupiesRedCell 
        List 
                Nome 
                Cell(8,8) 

 
where the predicate occupiesRedCell indicates whether (or to what degree) a location 
occupies a red cell of the grid, and using the axiom: 
 
AverageAll $X, $Y, $Z 
        ExtensionalImplication 
                Evaluation 
                        occupiesRedCell 
                        List 
                                $X 
                                Cell($Y,$Z) 
                Evaluation 
                        nearCanada 
                        $X 

 



But for the sake of expositional simplicity, here we will directly use the predicate 
nearCanada. 
 
12) How near McCarthy Alaska is to Canada 
 
Evaluation <.6> 
        nearCanada 
        McCarthy 

 
13) How near Northern Maine is to Canada (the north of ME as indicated in the map 
Figure 1). 
 
Evaluation <.8> 
        nearCanada 
        NorthernMaine 

 
14) Nearby locations have intensional similarity 
 
AverageAll $X, $Y 
        ExtensionalImplication <.6> 
                Evaluation 
                        near 
                                $X 
                                $Y 
                IntensionalSimilarity 
                        $X 
                        $Y 

 
15) People of a given location intensionally inherit from that location 
 
AverageAll $X, $Y 
        ExtensionalImplication <.7> 
                Evaluation 
                        liveIn 
                        List 
                                $X 
                                $Y 
                IntensionalInheritance 
                        $X 
                        $Y 

 
16) Canadians live in Canada 
 
Evaluation 
        liveIn 
        List 
                Canadian 
                Canada 

 
17) The disjunction of NTPP (Non-Tangential Proper Part) and TPP (Tangential Proper 
Part) is transitive (from the Region Connection Calculus defined above) 
 



Let's define first PP for Proper Part 
 
AverageAll $X, $Y 
        ExtentionalEquivalence 
                Evaluation 
                        PP 
                        List 
                                $X 
                                $Y 
                OR 
                        Evaluation 
                                NTPP 
                                List 
                                        $X 
                                        $Y 
                        Evaluation 
                                TPP 
                                List 
                                        $X 
                                        $Y 

 
And then axioms stating the transitivity of PP 
 
AverageAll $X, $Y, $Z 
        ExtensionalImplication 
                AND 
                        Evaluation 
                                PP 
                                List 
                                        $X 
                                        $Y 
                        Evaluation 
                                PP 
                                List 
                                        $Y 
                                        $Z 
                Evaluation 
                        PP 
                        List 
                                $X 
  



                               $Z 

 
18) If someone lives somewhere he/she is a Proper Part of that place  
 
AverageAll $X, $Y 
        ExtensionalImplication 
                Evaluation 
                        liveIn 
                        List 
                                $X 
                                $Y 
                Evaluation 
                        PP 
                        List 
                                $X 
                                $Y 

 
19) Jack lives in McCarthy 
 
Evaluation 
        liveIn 
        List 
                Jack 
                McCarthy 

 
20) Jim lives in Nome 
 
Evaluation 
        liveIn 
        List 
                Jim 
                Nome 

 
 
21) John lives in Ottawa 
 
Evaluation 
        liveIn 
        List 
                John 
                Ottawa 

 
22) Ottawa is a proper part of Canada (as represented in Figure 3) 
 
Evaluation 
        PP 
        List 
                Ottawa 
                Canada 



 
23) Someone living in Canada is Canadian 
 
AverageAll $X 
        ExtensionalImplication 
                Evaluation 
                        liveIn 
                        List 
                                $X 
                                Canada 
                ExtensionalInheritance 
                        $X 
                        Canadian 

 
And that’s it for the axioms. The target theorems are unchanged from the prior example.  
We will not describe the entire inference here, but only the additional steps dealing with 
the spatial knowledge introduced and connecting them to the previous inference. 
 What we will show is how to infer that Jack (living in McCarthy) and John (living 
in Ottawa) inherit from Canadian, but Jim (living further away in Nome) does not. 
 

4.1.4 Evaluating the Theorems 
As previously, we now have the following 3 sub-target theorems: 
 
Inheritance <?> 
        Jack 
        Canadian 
 
Inheritance <?> 
        John 
        Canadian 
 
Inheritance <?> 
        Jim 
        Canadian 

 
We now discuss each of these, using the new spatial information available. 
 
 

4.1.4.1 Evaluation of Theorem 1 
1) Using the definition of near in axiom #1 and axiom #12 
 
Evaluation <.6> 
        near 
        List 
                McCarthy 
                Canada 

 
2) Using the conclusion of step #1 and an instantiation of axiom #14 with $X=McCarthy 
and $Y=Canada and the PLN deduction rule 



 
IntensionalSimilarity <?> 
        McCarthy 
        Canada 
 
3) Using axiom #19, an instantiation of axiom #15 with $X=Jack and $Y=McCarthy and 
the PLN deduction rule 
 
IntensionalInheritance <?> 
        Jack 
        McCarthy 

 
4) Using the definition of IntensionalSimilarity and the conclusion of step #2 
 
AND 
        IntensionalInheritance 
                McCarthy 
                Canada 
        IntensionalInheritance 
                Canada 
                McCarthy 
 
5) Using the conclusion of step #4 (stripping away the second term of the conjunction), 
the conclusion of step #3 and the PLN deduction rule 
 
IntensionalInheritance <?> 
        Jack 
        Canada 
 
6) Using axioms #16, #15 and the PLN deduction rule 
 
IntensionalInheritance <?> 
        Canadian 
        Canada 

 
7) Using the conclusions of steps #5, #6 and the PLN abduction rule 
 
IntensionalInheritance <?> 
        Jack 
        Canadian 

 
8) Using the definition of Inheritance (disjunction of Extensional and Intensional 
inheritance) 
 
Inheritance <?> 
        Jack 
        Canadian 

 
So due to the additional items of spatial knowledge we can conclude that Jack inherits 
from Canadian, therefore assuming that after March 2007 Jack is a friend of Bob and 
not a friend of his wife -- knowledge which may have an influence in the calculation of 



the axiom #2 of the inference of the previous section, even though Jack isn't in fact from 
Canada strictly speaking. Of course it is clear that Jack inherits from Canadian with a  
lower strength than a real Canadian individual because the latter extensionally inherits 
from Canadian, but nevertheless Jack’s (mixed) inheritance from Canadian has a non 
null strength.  
 A similar inference could be built for someone living in northern Maine. 
 

4.1.4.2 Evaluation of Theorem 2 
 
 
1) Using axiom #21 and an instantiation of axiom #18 with $X=John, $Y=Ottawa 
 
Evaluation 
        PP 
        List 
                John 
                Ottawa 

 
2) Using step #1, axiom #22 and the PLB deductive rule 
 
Evaluation 
        PP 
        List 
                John 
                Canada 
 
3) Using step #2, axiom #18 with $X=John, $Y=Canada 
 
Evaluation 
        liveIn 
        List 
                John 
                Canada 

 
4) Using step #3 and an instantiation of axiom #23 with $X=John 
 
ExtensionalInheritance <?> 
        John 
        Canadian 

 
5) Using the definition of Inheritance (disjunction of extensional and intensional 
inheritance) 
 
Inheritance <?> 
        John 
        Canadian 
 
So using the Region Connection Calculus within PLN, one can conclude that John is 
Canadian and assuming that John is a friend of Bob after March 2007 and not a friend 



of his wife may have a influence over the strength of axiom #2 in the initial example. 
 

4.1.4.3 Evaluation of Theorem 3 
This inference is essentially identical to the inference of Theorem 1, so we will not recall 
it.    The only difference is that the strength of (IntensionalInheritance Jim Canadian) is 
null, and since Nome is not in Canada this ExtensionalInheritance is null as well, 
therefore 
 
Inheritance <0> 
        Jim 
        Canada 



 

5 Adaptive Inference Control 
 
As the discussion in the above chapters has hopefully made clear, every one of the 
tasks involved in logic-based RWR has been carefully approached by computer 
scientists, using various formalisms and software prototypes.  We have produced more 
fully fleshed-out examples using PLN than other formalisms, because PLN is the 
inference framework we’re most familiar with and because we believe it most 
adequately integrates rich uncertainty representations with powerful inference 
mechanisms; but similar explorations could be produced using other inference 
formalisms, and of course one could also go into far greater detail than has been done 
above. 
 But there’s a catch, of course:  None of the formalisms or prototypes described in 
the literature (including PLN) comes along with fully confident theoretical or empirical 
knowledge telling one how to deal effectively with real-world-scale data stores.  This is 
not just a quantitative problem: it’s a qualitative problem.   Addressing this problem 
adequately requires the implementation and adoption of fundamentally new ideas, 
complementing existing approaches, 
 Assuming a logic-based approach, scalability of pattern mining, query processing 
and analysis boils down to efficient inference control.   Which of course, is in general 
terms a monstrously hard problem.  Making inference control generally efficient across 
all possible large knowledge stores is almost surely impossible. 
 The need for efficient inference control should be very clear via looking at the 
detailed PLN inference trails supplied above.  At each step in any one of those 
inference trails, there were many other inferences that could have been done, aside 
from the ones shown.  The question becomes how to choose these exact ones, or 
others with similar effect.  If there are 20 steps in an inference, and 100 possibilities for 
each step (actually a terrible underestimate of the real situation), then there are 10020 
possible inference trails to be theoretically considered.  If there are several thousand 
viable possibilities for each step, which is more likely the case in an inference involving 
a large knowledge store, then the number of possible inference trails becomes even 
more astronomical. Fortunately there are also many paths leading to useful conclusions, 
not just one – but even so, if you view it as a search problem, finding useful inference 
trails amidst the space of all possible ones is a lot worse than finding a few needles in a 
planet-sized haystack. 
 Even without the complications of large and uncertain knowledge stores, the 
inference trail pruning problem is a very difficult one.  This is the essential reason why 
automated theorem proving has not yet obsoleted human mathematicians.  Automated 
theorem provers, using formal logic, can carry out individual inference steps adeptly 
(and without making the “stupid mistakes” that even smart humans are sometimes 
prone to), but in most cases they are vastly inferior to humans at choosing which 
inference steps to take.  Some of the biggest successes in automated theorem proving 
have occurred in highly restricted contexts (where there aren’t that many possibilities to 
choose from) or else using a semi-automated methodology, where a human expert 
intervenes to make choices at places where the AI gets confused at the variety of 



choices and lacks the experience to make an informed decision. 
 So, clearly, in its fully general scope, the problem of inference control is 
unsolvable!  But, does that mean the whole research programme outlined in this book is 
infeasible?  No, because we don’t need to solve the general problem.  To make the 
programme described here work, the problem needs to be solved only in the context of 
commonsensical inferences involving the types of knowledge actually stored in the 
knowledge store.  And, to put the point mathematically, it’s clear that real-world 
temporal and spatiotemporal knowledge stores have special statistical properties, 
which have mostly not been carefully characterized.   So, we suggest that a key focus 
for research going forward must be the creation of inference control mechanisms that 
adaptively exploit the statistical structure of real-world temporal and spatiotemporal 
data, so as to achieve efficient inference control over large real-world knowledge stores. 
  

Specific Examples Requiring Adaptive Inference Control 
 
The above point may sound like a very abstract one, so to make it concrete, let’s 
consider a couple inference steps drawn from one of the above inference trails: the 
proof of Theorem 1 given above. 
 Quoting directly from there (but leaving out a small amount of explanatory text), 
we had the following inference step 

 
3) Using step #2 and the definition of AND_Seq <T> 
 
IntensionalImplication <?> 
        Evaluation 
                BobCollectingPokemonCards 
        AND 
                AND 
                        Evaluation 
                                BobCollectingPokemonCards 
                        Evaluation 
                                NonEmpty 
                                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
                BobCollectingPokemonCards_BobsNewFriends_Delay is  
       between 3 months to a year time,  

 
4) The next step proceeds using step #3 and the definition of IntensionalImplication.   
 Based on this we can rewrite the conclusion of step #3: 
 
ExtensionalInheritance 
        ExOut ASSOC 
                Evaluation 
                        BobCollectingPokemonCards 
        ExOut ASSOC 
                AND 
                        AND 
                                Evaluation 
                                        BobCollectingPokemonCards 
                                Evaluation 
                                        NonEmpty 
                                        SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
                        BobCollectingPokemonCards_BobsNewFriends_Delay is  
       between 3 months to a year time 

 



For the next steps we create 2 sub-target theorems corresponding to the 2 ExOut 
ASSOC of the step above in order to assess the ExtensionInheritance thereof. 

 
 The above is perfectly straightforward once you’ve decided to do it, but where 
does that decision come from?  Basically the decision in moving from Step 3 to Step 4 
in this inference is to expand the IntensionalImplication in 3 into an 
ExtensionalInheritance as shown in 4.  However, the utility of this step is obvious only in 
hindsight.  One doesn’t always want to handle an IntensionalImplication by expanding it 
into an ExtensionalInheritance.  Sometimes, for instance, one might want to try to 
produce it via deduction from other IntensionalImplication -- or via unification by binding 
values to variables in some other IntensionalImplication with a similar form and some 
overlapping terms, but a lot more free variables.  One could also try to derive it using 
Bayes rule from some other existing IntensionalImplications.  Et cetera. 
 In many contexts, expanding an IntensionalImplication into an 
ExtensionalInheritance may be viewed as a “tactic of last resort”, because it’s often 
going to devolve into a detailed analysis of many special cases.  So in many contexts 
(not necessarily all) it will be an advantageous strategy to first try to evaluate an 
IntensionalImplication via first-order-inference-style rules from other 
IntensionalImplications, or via unification from more abstract knowledge, before 
resorting to the reduction to extensionality.  But even if this strategy is followed, there’s 
the question of how much effort to expend on other methods before resorting to 
extensionality.  And this is bound to be context-dependent.  For instance, it may happen 
that in certain contexts, reasoning purely on the level of intensional relationships has 
systematically proved difficult, and reductions to extensionality have proved necessary 
very frequently; whereas in other contexts, reduction to extensionality has rarely proved 
necessary. 
 Proceeding to the next step in the above inference, and again quoting directly 
(with some explanatory text removed), we had: 
 

5) Let's first consider ExOut(ASSOC(Evaluation(BobCollectingPokemonCards))).  
 
 In principle, at this stage, we should compute ASSOC( Evaluation( 
BobCollectingPokemonCards E) ) for all terms E in the system. However it is clear 
that what relates BobCollectingPokemonCards and his new Canadian friends in our 
example is the Pokemon cards (as most of them collect Pokemon cards as well).   
(In practice this would need to be concluded by an adaptive inference control 
mechanism, to avoid untoward combinatorial explosions during the chaining 
process.) Therefore we will only consider ASSOC( Evaluation( 
BobCollectingPokemonCards PokemonCards)).  

 
 As noted there, without some kind of mechanism to restrict focus of E to 
PokemonCards, the inference process will consume an excessive amount of 
computational resources evaluating irrelevant associations.  An example of the kind of 
mechanism that can be helpful here is activation spreading (see e.g. [Collins et al, 1975; 
Anderson, 1983; Crestani, 1997; Nilsson, 1998]), which is carried out in various existing 
AI systems using a variety of mechanisms (for instance, in neural nets it uses activation 



spreading; in the NCE/OpenCog architecture it uses artificial economics methods 
(Goertzel, 2007); etc.).   Using activation spreading, if all the terms involved in Steps 1-4 
were to spread some sort of activation to the terms and relationships related to them, 
and this activation were to then further propagate to the relatives of these terms and 
relationships (and so forth) – then, quite likely, PokemonCards would get more 
activation than nearly any other category in the overall knowledge store, and would be 
nominated for investigation as indicated in the above text.   
 Note that in principle one could do the above purely by inference, without 
introducing an external mechanism such as activation spreading.  For instance, one 
could do inference on links such as (Association A B) denoting generic associative 
semantics, using probabilistic inference rules designed for such inference.  In fact the 
NCE/OpenCog design contains this possibility.  However, unless one adopts an 
extremely constrained control mechanism for this associational inference, then one is 
faced once again here with a potential combinatorial explosion problem. And if one does 
adopt an extremely restrained control mechanism here, then in effect one is basically 
using uncertain inferential algebra to carry out spreading activation (which may be a fine 
thing to do). 
 The inference proceeds: 
 
 

But, ASSOC(C E) can be approximated as ASSOC_int OR ASSOC_ext ... 
 
It is clear that ASSOC_ext(SatisfyingSet(BobCollectingPokemonCards 
PokemonCards) is null, if we assume (as is most reasonable) there is no knowledge 
in the system establishing extensional relationship between 
BobCollectingPokemonCards and PokemonCards. 
 
However using an instance of axiom #4 with $X=Bob and $Y=PokemonCards we 
can calculate  
 
IntensionalInheritance 
 PokemonCards  
 SatisfyingSet(BobCollectingPokemonCards) 

 
 
Again, while this is a simple step, there were many other options here besides using 
Axiom #4.  This is another case where some sort of activation spreading mechanism 
could help a lot, via providing a strong associative link between PokemonCards and 
BobCollectingPokemonCards.  If such an associative link exists, and there is an 
inference control heuristic biasing PLN toward building inferential links that generally 
follow the path laid down by associational links, then the above inference step would 
indeed emerge as obvious. 
 We could similarly “psychoanalyze” every step in the above inference trails, 
studying the various alternatives and how they could be explored using intelligent 
inference control heuristics.  However, we will restrict ourselves to giving two more 
examples, intended to illustrate the way in which commonsense knowledge about time 
and space is important for inference control. 



 

5.1.1 Using Commonsense Knowledge about Space in Inference Control 
 
 
As an example of using commonsense knowledge about spatial relations to control 
inference, let us first recall the following axiom from the above spatial PLN inference:      
 

18) If someone lives somewhere he/she is a Proper Part of that place  
 
AverageAll $X, $Y 
        ExtensionalImplication 
                Evaluation 
                        liveIn 
                        List 
                                $X 
                                $Y 
                Evaluation 
                        PP 
                        List 
                                $X 
                                $Y 

 
This axiom was used in the following inference step: 
 

2) Using step #1, axiom #22 and the PLN deductive rule 
 
Evaluation 
        PP 
        List 
                John 
                Canada 

 
3) Using step #2, axiom #18 with $X=John, $Y=Canada 
 
Evaluation 
        liveIn 
        List 
                John 
                Canada 

 
 The question here pertaining to inference control is: why would a PLN inference 
engine choose to make this step rather than some other one?  Obviously, not every 
proper-part relationships is going to be equally promising for hypothetical transformation 
into a live-in relationship.  The answer here however is conceptually obvious:  where 
people and places are concerned, living-in is a common variety of proper-part 
relationship.   This conceptually obvious answer may however be expressed formally in 
a number of different ways. 
 It could be expressed explicitly as an implication, e.g. 
 
 
18’) 
AverageAll $X, $Y 
        ExtensionalImplication 
  AND 



   Inheritance $X Human 
   Inheritance $Y Place 
   Evaluation 
                        PP 
                         List 
                                 $X 
                                 $Y 
                Evaluation 
                        liveIn 
                        List 
                                $X 
                                $Y 

 
In this case, this more specialized axiom 18’ could be used instead of Axiom 18.  It 
would be more likely to be chosen if there were an inference control heuristic in use 
stating that: The weight assigned to an application of the variable unification rule 
between a more general Atom A and a more specific Atom B, should be proportional to 
how surprising it is to find Atoms that bind with A as well as B does.   In this case, the 
point would be that the assignment $X=John, $Y=Canada matches 18’ surprisingly well 
(relative to most possibly assignments); and that it matches 18’ more surprisingly well 
than it matches 18. 
 However, the same effect could be achieved via an activation spreading 
mechanism.  All one needs is for associative linkages such as the following to exist: 
 

 Association John Human 
 Association Canada Place 
 Association Human liveIn 
 Association Place liveIn 

 
Of course many other variants are also possible; for instance one could have 
Inheritance relations in place of the first two Association relations in the above list; or 
one could have an association 
 

Association (Human AND Place) liveIn 
 
and so forth.   This is a simpler approach than the approach of introducing 18’ in place 
of 18, but ultimately, in this context, the two achieve the same thing. 
 One way or another, the key here is that the system has specialized knowledge 
about the connections between spatial relationships (ProperPart in this case) and 
specific content (people living in places, in this case), and that it deploys this specialized 
knowledge to guide it along the right inference trail, thus avoiding the combinatorial 
explosion of getting dragged down irrelevant trajectories. 
  
 

5.1.2 Using Commonsense Knowledge about Time in Inference Control 
 
Time plays a role quite similar to space in inference control, yet even more fundamental.  
Without inference control heuristics that specifically take into account the habitual 
connections between temporal relationships and specific content, doing scalable 



temporal reasoning is not likely to be possible. 
 Let us consider the following inference step, drawn from the foregoing: 
 

2) using step #1 and definition of IntensionalPredictiveImplication 
 
IntensionalImplication <?> 
        Evaluation 
                BobLearningFrench 
        AND_Seq <3_months_to_a_year> 
                Evaluation 
                        BobLearningFrench 
                Evaluation 
                        NonEmpty 
                        SatisfyingSet(CanadianFriendOfBobButNotHisWife) 

 
 
3) using step #2 and the definition of AND_Seq <T> 
 
IntensionalImplication <?> 
        Evaluation 
                BobLearningFrench 
        AND 
                AND 
                        Evaluation 
                                BobLearningFrench 
                        Evaluation 
                                NonEmpty 
                                SatisfyingSet(CanadianFriendOfBobButNotHisWife) 
                BobLearningFrench_BobsNewFriends_Delay is between 3 months to a year time 

 
Here,  BobLearningFrench_BobsNewFriends_Delay is a shorthand for: 
 
SS_InitiatedAt(Evaluation(BobLearningFrench)) 
- SS_InitiatedAt(Evaluation(NonEmpty, SatisfyingSet(CanadianFriendOfBobButNotHisWife)) 

 
The question here, control-wise, is why the decision would be made to expand the 
AND_Seq into a regular AND, thus splitting out the time-constraint into an explicit logical 
relationship rather than leaving it in the metadata attached to the AND_Seq.  The 
judgment call that must be made, to justify attaching a high weight to this step, regards 
the likelihood that the sequentiality is really important in the given example.  Is it the 
case that the two things just happened to occur in sequence?; or is the fact that they 
occur in sequence a critical aspect of their interrelationship?  Of course, this won’t 
generally be known except in hindsight after more of the inference has been completed, 
but one has to make a reasonable guess.  If the guess is that sequentiality is not critical, 
then the inference step taken in 3 above may likely be the right one, and should 
properly be assigned a relatively high weight in a bandit problem based inference 
control mechanism. 
 It seems the simplest heuristic that would do the trick here is the assumption that, 
if there is no special knowledge that A and B really need to be sequential, then the 
pathway of expanding (AND_Seq A B) into (AND A B) is potentially well worth exploring.  
For instance, if we have 
 
AND_Seq 
 Evaluation TurnOn (Ben, BensCar) 
 Evaluation Drive (Ben, BensCar) 



 
then there may be prior knowledge that sequence is important here, for instance 
because it may be that in general 
 
AND_Seq 
 Evaluation TurnOn ($X, Car) 
 Evaluation Drive ($X, Car) 

 
is much more frequent than 
 
AND_Seq 
 Evaluation Drive ($X, Car) 
 Evaluation TurnOn ($X, Car) 

 
So, in this case, morphing  
 
AND_Seq <T> 
 Evaluation TurnOn (Ben, BensCar) 
 Evaluation Drive (Ben, BensCar) 

 
into 
 
AND 
 AND 
   Evaluation TurnOn (Ben, BensCar) 
   Evaluation Drive (Ben, BensCar) 
 TurnOnDriveDelay lies in T 

 
would likely not be productive, unlike in the case discussed above with 
BobLearningFrench_BobsNewFriends_Delay.   
 So, here we have a case where some fairly sophisticated investigation of the 
knowledge base may be useful for adjusting the weights attached to various optional 
paths in the inference tree.  And, analogously to the spatial reasoning case, the key 
here is knowledge connecting temporal relationships with specific content (language, 
friends, turning-on, driving, etc.).  This kind of specialized knowledge embodies the 
particular statistics of real-world knowledge stores, which is fortunately not the same as 
the statistics of a random knowledge store (or else real-world inference would not be 
feasible). 
 

General Issues Raised by the Above Examples 
 

A key point we wish to emphasize is that the full, realistic problem of inference 
control is not encountered when one runs inference engines as “toy systems” or 
prototypes.  If one adds a relatively small number of knowledge into an inference 
engine, it’s not terribly hard to supply it with simple, general inference control heuristics 
allowing it to do inferences like the examples given in previous chapters.  The really 
hard part comes when you couple an inference engine with a massive knowledge store, 
because then the problem of drawing inferences becomes inextricably tangled up with 
the problem of figuring out which data items are relevant enough to be sensibly used in 
a given inference.   



 To handle the “scalable inference control problem,” we have hypothesized, will 
require a combination of specialized heuristics (such as the ones described in the 
immediately preceding sections) and the integration of inference with non-inferential 
methods such as activation spreading.  But whether or not this hypothesis is correct, 
what is plain is that any logic-based approach that is going to handle large knowledge 
stores (especially large, complex spatiotemporal knowledge stores) is going to need to 
deal with this problem somehow – and there is not much current research explicitly 
addressing this area.   
 As noted above, the idea of “exploiting the statistics implicit in real-world 
knowledge stores” arises here implicitly.  For instance, if drawing inferences that follow 
the lines of associations works effectively, this is an example of “special statistics” – in a 
general, mathematically random knowledge store, this kind of heuristic would provide 
little if any value.  And if there are certain contexts in which, systematically, reducing 
intensional relations to extensional ones is differentially  more useful than in the average 
context – again, this is an example of “special statistics” that would not likely occur in a 
random knowledge store.   To the extent that appropriate heuristics and design 
principles can be created, implicitly or explicitly representing systematic biases that tend 
to be present in real-world data, the inference control problem will be solvable. 
 

5.1.3 Inference Control and Cognitive Architectures 
 Work in the area of cognitive architecture also has some relevance here; 
architectures like SOAR [Wray & Jones, 2005] and ACT-R [Stewart & West, 2006] are 
specifically aimed at processing information in a way that avoids combinatorial 
explosions via restricting cognition’s attention to information items that are directly 
relevant to the tasks at hand.  Underlying such architectures is the idea of implicitly 
embedding assumptions about the statistical regularities of the real world in the 
cognitive architecture itself.  However, these architectures have not yet been applied in 
a really scalable way either, and nor have they been tested in combination with highly 
powerful formal inference systems.   SOAR has been used in conjunction with real-
world spatiotemporal data in some contexts, e.g. the TacAir flight simulator project 
[Jones et al., 1993], which is promising.   
 So it seems that, to some extent, the final solution to the all-important inference 
control problem may involve a fusion of ideas from the temporal, spatial and uncertain 
logic literatures with ideas from the cognitive architecture literature.  This is one way of 
describing aspects of the direction we’ve taken in our own work with the NCE and 
OpenCog; but of course it’s an idea that can be fleshed out in many different ways.  
However, the elaboration of the ways that various cognitive architectures might enable 
effective scalable inference control would lead us too far beyond the scope of this book. 
 

 Inference Control in the OpenCog Cognitive Architecture 
 

We end this chapter with some brief remarks about the specific flavor that 
adaptive inference control takes in the OpenCog cognitive architecture, within which 
PLN is currently embedded. 



 

5.1.4 Activation Spreading and Inference Control in OpenCog 
 

A number of our remarks on inference control above mentioned “activation 
spreading.”  This is a general notion with a long history in cognitive science and AI, 
which may be implemented in many different ways.  In this section we will briefly 
describe one such way, ECAN, which is implemented in the OpenCog framework and is 
currently being integrated with the PLN inference engine. 
 ECAN, or Economic Attention Networks, constitutes a novel method for 
simultaneously storing memories and allocating resources in AI systems.  It bears some 
resemblance to the spread of activation in attractor neural networks, but differs via 
explicitly differentiating two kinds of “activation” (Short Term Importance, related to 
processor allocation; and Long Term Importance, related to memory allocation), and in 
using equations that are based on ideas from economics rather than approximative 
neural modeling. 
 An ECAN is a graph, consisting of untyped nodes and links, and also links that 
may be typed either HebbianLink or InverseHebbianLink.   It is also useful sometimes to 
consider ECANs that extend the traditional graph formalism and involve links that point 
to links as well as to nodes.  The term Atom will be used to refer to nodes and links 
collectively.  Each Atom in an ECAN is weighted with two numbers, called STI (short-
term importance) and LTI (long-term importance).  Each Hebbian or InverseHebbian link 
is weighted with a probability value. 
 The equations of an ECAN explain how the STI, LTI and Hebbian probability 
values get updated over time.  The metaphor underlying these equations is the 
interpretation of STI and LTI values as (separate) artificial currencies.  The motivation 
for this metaphor has been elaborated somewhat in (Goertzel, 2007) and will not be 
recapitulated here.  The fact that STI (for instance) is a currency means that the total 
amount of STI in the system is conserved (except in unusual instances where the ECAN 
controller decides to introduce inflation or deflation and explicitly  manipulate the 
amount of currency in circulation), a fact that makes the dynamics of an ECAN 
dramatically different than that of, say, an attractor neural network (in which there is no 
law of conservation of activation).   
 Conceptually, the STI value of an Atom is interpreted to indicate the immediate 
urgency of the Atom to the ECAN at a certain point in time; whereas the LTI value of an 
Atom indicates the amount of value the ECAN perceives in the retention of the Atom in 
memory (RAM).  An ECAN will often be coupled with a Forgetting process that removes 
low-LTI Atoms from memory according to certain heuristics.   
 STI and LTI values will generally vary continuously, but the ECAN equations we 
introduce below contain the notion of an AttentionalFocus (AF), consisting of those 
Atoms in the ECAN with the highest STI value.  The AF is given its meaning by the 
existence of equations that treat Atoms with STI above a certain threshold differently. 
 Conceptually, the probability value of a HebbianLink from A to B is the odds that 
if A is in the AF, so is B; and correspondingly, the InverseHebbianLink from A to B is 
weighted with the odds that if A is in the AF, then B is not.  A critical aspect of the ECAN 
equations is that Atoms periodically spread their STI and LTI to other Atoms that 



connect to them via Hebbian and InverseHebbianLinks; this is the ECAN analogue of 
activation spreading in neural networks. 
 In an OpenCog context, ECAN consists of a set of Atom types, and then a set of 
MindAgents carrying out ECAN operations such as HebbianLinkUpdating and 
ImportanceUpdating.  OCP also requires many other MindAgents carrying out other 
cognitive processes such as probabilistic logical inference according to the PLN system 
(Goertzel et al, 2008) and evolutionary procedure learning according to the MOSES 
system (Looks, 2006).  The interoperation of the ECAN MindAgents with these other 
MindAgents is a subtle issue that will be briefly discussed in the final section of the 
chapter, but the crux is simple to understand. 
 The CogServer is understood to maintain a kind of central bank of STI and LTI 
funds.  When a non-ECAN MindAgent finds an Atom valuable, it sends that Atom a 
certain amount of Stimulus, which results in that Atom’s STI and LTI values being 
increased (via equations to be presented below, that transfer STI and LTI funds from 
the CogServer to the Atoms in question).  Then, the ECAN ImportanceUpdating 
MindAgent carries out multiple operations, including some that transfer STI and LTI 
funds from some Atoms back to the CogServer – keeping the flow of money going. 
 All this represents one among many possible ways of implementing the general 
notion of activation spreading mentioned in the above inference control examples.  A 
key point is that making activation spreading work well for inference control will likely 
require extremely tight integration between the inference engine and the association-
spreading engine; and the OpenCog approach presents one way of providing such 
integration. 
 

5.1.5 Working around the Frame Problem via Integrative AGI 
 

We noted in Chapter 3 that nonmonotonic logic is not the only route for 
circumventing the frame problem; and in fact in our own work with PLN in the NCE and 
OpenCog, we have taken a significantly different approach.   Our own approach 
involves two key ingredients: 
 

• Heavy use of activation spreading to guide inference, as illustrated in several of 
the examples given in the previous section.  This mitigates against a reasoning 
system actually spending its time doing inferences that are useless because they 
pertain to assumptions that are implicit and considered obvious.  The idea is that 
these background assumptions just don’t get stimulated with much “juice” (which 
may formally be an activation level, an importance value, or take some other 
form depending on the AI system in question; in NCE or OCP it is a 
ShortTermImportance currency value, as briefly discussed above). 

• Use of a hierarchical ontology within inference control, to provide a form of 
“default logic” that is contained in the inference control mechanism rather than, in 
nonmonotonic logic, in the logical formalism itself.  Effective use of the 
hierarchical ontology relies on the existence of a robust activation spreading 
mechanism, in a way that will be described below. 

 



 To exemplify the notion of default inheritance, consider again the case of 
penguins, which do not fly, although they are a subclass of birds, which do fly. When 
one discovers a new type of penguin, say an Emperor penguin, one reasons initially that 
they do not fly – i.e., one reasons by reference to the new type’s immediate parent in 
the ontological hierarchy, rather than its grandparent. In standard default logic 
frameworks, the notion of hierarchy is primary and default inheritance is wired in at the 
inference rule level.  But this is not the case with PLN – in PLN, correct treatment of 
default inheritance must come indirectly out of other mechanisms, this can be achieved 
in a fairly simple and natural way. 

Consider the two inferences  
 

A) 
Implication penguin fly <0> 
Implication bird penguin <.02> 
|- 
Implication bird fly 
 
B) 
Implication penguin bird <1> 
Implication bird fly <.9> 
|- 
Implication penguin fly 

 
 The correct behavior in these cases, according to the default inheritance idea is 

that, in a system that already knows at least a moderate amount about the flight 
behavior of birds and penguins, inference A should be accepted but inference B should 
not. That is, evidence about penguins should be included in determining whether birds 
can fly – even if there is already some general knowledge about the flight behavior of 
birds in the system. But evidence about birds in general should not be included in 
estimating whether penguins can fly, if there is already at least a moderate level of 
knowledge that in fact penguins are atypical birds in regard to flight. 

 But how can the choice of A over B be motivated in terms of PLN theory? The 
essence of the answer is simple: in case B the independence assumption at the heart of 
the deduction rule is a bad one. Within the scope of birds, being a penguin and being a 
flier are not at all independent. On the other hand, looking at A, we see that within the 
scope of penguins, being a bird and being a flier are independent. So the reason B is 
ruled out is that if there is even a moderate amount of knowledge about the truth-value 
of (Inheritance penguin fly), this gives a hint that applying the deduction rule’s 
independence assumption in this case is badly wrong. 

 On the other hand, what if a mistake is made and the inference B is done 
anyway? In this case the outcome could be that the system erroneously increases its 
estimate of the strength of the statement that penguins can fly. On the other hand, the 
revision rule may come to the rescue here. If the prior strength of (Inheritance penguin  
fly) is 0, and inference B yields a strength of .9 for the same proposition, then the 
special case of the revision rule that handles wildly different truth-value estimates may 
be triggered. If the 0 strength has much more confidence attached to it than the .9, then 
they won’t be merged together, because it will be assumed that the .9 is an 
observational or inference error. Either the .9 will be thrown out, or it will be provisionally 
held as an alternate, non-merged, low-confidence hypothesis, awaiting further validation 
or refutation. 



 What is more interesting, however, is to consider the implications of the default 
inference notion for inference control. It seems that the following may be a valuable 
inference control heuristic:  

 
1. Arrange terms in a hierarchy; e.g., by finding a spanning DAG of the terms in 

a knowledge base, satisfying certain criteria (e.g., maximizing total 
strength*confidence within a fixed limitation on the number of links). 

2. When reasoning about a term, first do deductive reasoning involving the 
term’s immediate parents in the hierarchy, and then ascend the hierarchy, 
looking at each hierarchical level only at terms that were not visited at lower 
hierarchical levels. 

 
This is precisely the “default reasoning” idea – but the key point is that in PLN it lives at 
the level of inference control, not inference rules or formulas. In PLN, default reasoning 
is a timesaving heuristic, not an elementary aspect of the logic itself. Rather, the 
practical viability of the default-reasoning inference-control heuristic is a consequence of 
various other elementary aspects of the logic, such as the ability to detect dependencies 
rendering the deduction rule inapplicable, and the way the revision rule deals with wildly 
disparate estimates. 
 One way to embody the above ideas in concrete AI system design is to define a 
notion of OntologicalInheritance, based on the spanning DAG mentioned above.  One 
can build a default logic based on the spanning DAG G, as follows.  Suppose X lies 
below A in the DAG G.  And, suppose that, for predicate F, we have 
 

F(A) <t> 
 
meaning that F applies to A with truth value t.   Then, we may say that “If ~F(X) is not 
known, then F(X)”.   In other words, we may assume by default that X possesses the 
properties of the terms above it in the hierarchy D.  More formally, we might propose a 
“default inference rule” such as: 
 
Implication 
 AND 
  OntologicalInheritance X A  
  Evaluation F A 
  NOT 
   Known( NOT (Evaluation F X ) ) 
 Evaluation F X 

 
There is no reason that a rule like this can’t be implemented within PLN.  Note that 
implementing this rule within PLN gives you something nice, which is that all the 
relationships involved (OntologicalInheritance, Known, NOT, etc.) may be 
probabilistically quantified, so that the outcome of the inference rule may be 
probabilistically quantified.  The “Known” predicate is basically the K predicate from 
standard epistemic logic (commonly denoted Ka, where a is the reasoning system itself 
in this case) [Fagin et al, 2003; Rescher, 2005]. 
 The hierarchy G needs to be periodically rebuilt as it is based on abstracting a 
DAG from a graph of probabilistic logical relations.  And, the results of the above default 
inference rule may be probabilistic and may be merged with the results of other 



inference rules. 
 The results from using this rule, in principle, should not be so different from if the 
rule were not present.  However, the use of an ontological hierarchy in this way leads to 
a completely different dynamics of inference control, which in practice will lead to 
different results. 
 And, note finally that for this sort of ontological approach can also be used in the 
context of activation spreading. In this case, it may take the form (for example) of 
ontology-based pruning of Assocation relationships. The Association between pigeon 
and flyer may be pruned because it is essentially redundant with a set of two 
Association relationships that are implicit in the hierarchy: 
 
Association pigeon bird 
Association pigeon flyer 

 
Using an ontology-pruned set of Association links to guide inference that is partially 
based on ontology-driven default inference rules, provides an alternative approach to 
solving the frame problem, that doesn’t require introducing a notion of hierarchy into the 
underlying logic. 
 In this section we have already, perhaps, ventured too far from the focus of this 
book, which is logic, into the domain of integrative cognitive architecture.  But we have 
done so with a purpose – to illustrate our belief that, in fact, the most likely route to 
effective control of RWR lies in integrative cognitive architecture, i.e. in mixing up 
reasoning with other cognitive processes that are not explicitly inferential.  This may be 
done in different ways within different cognitive architectures, and is in our view an 
extremely important subject of research in the quest for effective RWR for both AGI and 
near-term application purposes. 
 



 

6 Conclusion 
 

As emphasized from the start, the main purpose of this book has been to serve as a 
sort of “thought experiment.”  We began with a very general problem of “querying, 
mining and analyzing huge real-world knowledge stores” – i.e., Real-World Reasoning.  
We then made the choice to characterize this problem in terms of formal logic, and in 
this context considered its various aspects: 
 

• How to represent real-world knowledge in logical form? 
• How to pragmatically translate knowledge from other formats into logical form? 
• How to store, retrieve and manipulate large amounts of logical knowledge? 
• How should software applications query large logical knowledge stores? 
• How to best manage the uncertainty that is rampant in real-world knowledge and 

conclusions? 
• How to represent and reason about time, space and context within an uncertain 

logic based system? 
• How to mine patterns from large logical knowledge stores, and how and why to 

interface pattern-mining algorithms with inference algorithms 
• How to control and direct inference algorithms so as to make them scalable to 

large knowledge stores? 
 
For each of these questions, we have surveyed the available literature, and in some 
cases introduced our own ideas when the literature appeared insufficient.    
 As we have not (yet) actually constructed a scalable, uncertain logic-based 
system for querying, mining and analyzing large stores of real-world knowledge, we 
cannot claim any definitiveness for the original ideas we’ve introduced here, following 
our extensive literature review.  But we do believe we have demonstrated, at least, that 
this is an extremely promising area for future investigation.  Having pursued the RWR 
thought-experiment as far as we have done in these pages, we have little doubt that the 
construction of scalable uncertain logic based systems would constitute a viable 
approach to the problem of querying, mining and analyzing changes and other relevant 
patterns in large real-world knowledge stores.  
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