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more --   

Jeff was one of the most brilliant, fascinating, multidimensional and fully alive 

human beings any of us will ever know.  He was killed in his sleep by a sudden, 

freak meningitis infection in 2002, while still young and in perfect health, and 

while in the early stages of co-developing the approach to probabilistic reasoning 

described in this book.  
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death are somewhat radical and we can’t be sure he would have approved them.  

Instead we included him as co-author on the two chapters to whose material he di-

rectly contributed.  But nonetheless, there are many ways in which the overall 

PLN theory presented here – with its combination of innovation, formality and 

practicality -- embodies Jeff’s “spirit” as an intellect and as a human being.  Jeff, 

we miss you in so many ways!  
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Chapter 1: Introduction 

Abstract   In this chapter we provide an overview of probabilistic logic networks 

(PLN), including our motivations for developing PLN and the guiding principles 

underlying PLN. We discuss foundational choices we made, introduce PLN 

knowledge representation, and briefly introduce inference rules and truth-values. 

We also place PLN in context with other approaches to uncertain inference. 

1.1 Motivations 

This book presents Probabilistic Logic Networks (PLN), a systematic and 

pragmatic framework for computationally carrying out uncertain reasoning – rea-

soning about uncertain data, and/or reasoning involving uncertain conclusions. We 

begin with a few comments about why we believe this is such an interesting and 

important domain of investigation. 

First of all, we hold to a philosophical perspective in which “reasoning” – 

properly understood – plays a central role in cognitive activity. We realize that 

other perspectives exist; in particular, logical reasoning is sometimes construed as 

a special kind of cognition that humans carry out only occasionally, as a deviation 

from their usual (intuitive, emotional, pragmatic, sensorimotor, etc.) modes of 

thought. However, we consider this alternative view to be valid only according to 

a very limited definition of “logic.” Construed properly, we suggest, logical 

reasoning may be understood as the basic framework underlying all forms of 

cognition, including those conventionally thought of as illogical and irrational. 

The key to this kind of extended understanding of logic, we argue, is the 

formulation of an appropriately general theory of uncertain reasoning – where 

what is meant by the latter phrase is: reasoning based on uncertain knowledge, 

and/or reasoning leading to uncertain conclusions (whether from certain or 

uncertain knowledge). Moving from certain to uncertain reasoning opens up a 

Pandora’s box of possibilities, including the ability to encompass within logic 

things such as induction, abduction, analogy and speculation, and reasoning about 

time and causality.   

While not necessarily pertinent to the technical details of PLN, it is perhaps 

worth noting that the authors’ main focus in exploring uncertain inference has 

been its pertinence to our broader work on artificial general intelligence (AGI).  

As elaborated in (Goertzel and Pennachin 2007; Goertzel and Wang 2007;  Wang 

et al 2008), AGI refers to the construction of intelligent systems that can carry out 

a variety of complex goals in complex environments, based on a rich contextual 

understanding of themselves, their tasks and their environments.  AGI was the 
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original motivating goal of theAI research field, but at the moment it is one among 

multiple streams of AI research, living alongside other subfields focused on more 

narrow and specialized problem-solving.  One viable approach to achieving pow-

erful AGI, we believe, is to create integrative software systems with uncertain in-

ference at their core. Specifically, PLN has been developed within the context of a 

larger artificial intelligence project, the Novamente Cognition Engine or NCE 

(Goertzel 2006), which seeks to achieve general forms of cognition by integrating 

PLN with several other processes.  Recently, the NCE has spawned an open-

source sister project called OpenCog, as well (Hart and Goertzel 2008).  In the fi-

nal two chapters we will briefly discuss the implementation of PLN within the 

NCE, and give a few relevant details of the NCE architecture. However, the vast 

majority of the discussion of PLN here is independent of the utilization of PLN as 

a component of the NCE. PLN stands as a conceptual and mathematical construct 

in its own right, with potential usefulness in a wide variety of AI and AGI applica-

tions. 

We also feel that the mathematical and conceptual aspects of PLN have the po-

tential to be useful outside the AI context, both as purely mathematical content 

and as guidance for understanding the nature of probabilistic inference in humans 

and other natural intelligences. These aspects are not emphasized here but we may 

address them more thoroughly in future works. 

Of course, there is nothing new about the idea that uncertain inference is 

broadly important and relevant to AI and other domains. Over the past few dec-

ades a number of lines of research have been pursued, aimed at formalizing uncer-

tain inference in a manner capable of application across the broad scope of varie-

ties of cognition. PLN incorporates ideas derived from many of these other lines 

of inquiry, including standard ones like Bayesian probability theory (Jaynes, 

2003), fuzzy logic (Zadeh 1989), and less standard ones like the theory of impre-

cise probabilities (Walley 1991), term logic (Sommers and Englebretsen 2000), 

Pei Wang’s Non-Axiomatic Reasoning System (NARS) (Wang 1996), and algo-

rithmic information theory (Chaitin 1987). For various reasons, which will come 

out as the book proceeds, we have found each of these prior attempts (and other 

ones, from which we have not seen fit to appropriate ideas, some of which we will 

mention below) unsatisfactory as a holistic approach to uncertain inference or as a 

guide to the creation of an uncertain inference component for use in integrative 

AGI systems.  

Among the general high-level requirements underlying the development of 

PLN have been the following: 

 

• To enable uncertainty-savvy versions of all known varieties of logical 

reasoning; including, for instance, higher-order reasoning involving 

quantifiers, higher-order functions, and so forth. 

• To reduce to crisp “theorem prover” style behavior in the limiting case 

where uncertainty tends to zero. 

• To encompass inductive and abductive as well as deductive reasoning. 
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• To agree with probability theory in those reasoning cases where prob-

ability theory, in its current state of development, provides solutions 

within reasonable calculational effort based on assumptions that are 

plausible in the context of real-world embodied software systems. 

• To gracefully incorporate heuristics not explicitly based on probability 

theory, in cases where probability theory, at its current state of 

development, does not provide adequate pragmatic solutions. 

• To provide “scalable” reasoning, in the sense of being able to carry 

out inferences involving at least billions of premises. Of course, when 

the number of premises is fewer, more intensive and accurate reason-

ing may be carried out. 

• To easily accept input from, and send input to, natural language 

processing software systems. 

 

The practical application of PLN is still at an early stage. Based on our evi-

dence so far, however, we have found PLN to fulfill the above requirements ade-

quately well, and our intuition remains that it will be found to do so in general. We 

stress, however, that PLN is an evolving framework, consisting of a conceptual 

core fleshed out by a heterogeneous combination of components. As PLN applica-

tions continue to be developed, it seems likely that various PLN components will 

be further refined and perhaps some of them replaced entirely. We have found the 

current component parts of PLN acceptable for our work so far, but we have also 

frequently been aware of more sophisticated alternative approaches to various sub-

problems (some drawn from the literature, and some our own inventions), and 

have avoided pursuing many of such due to a desire for initial simplicity. 

The overall structure of PLN theory is relatively simple, and may be described 

as follows. First, PLN involves some important choices regarding knowledge rep-

resentation, which lead to specific “schematic forms” for logical inference rules. 

The knowledge representation may be thought of as a definition of a set of “logi-

cal term types” and “logical relationship types,” leading to a novel way of graphi-

cally modeling bodies of knowledge. It is this graphical interpretation of PLN 

knowledge representation that led to the “network” part of the name “Probabilistic 

Logic Networks.” It is worth noting that the networks used to recognize knowl-

edge in PLN are weighted directed hypergraphs (Bollobas 1998) much more gen-

eral than, for example, the binary directed acyclic graphs used in Bayesian net-

work theory (Pearl 1988). 

Next, PLN involves specific mathematical formulas for calculating the prob-

ability value of the conclusion of an inference rule based on the probability values 

of the premises plus (in some cases) appropriate background assumptions. It also 

involves a particular approach to estimating the confidence values with which 

these probability values are held (weight of evidence, or second-order uncer-

tainty). Finally, the implementation of PLN in software requires important choices 

regarding the structural representation of inference rules, and also regarding “in-

ference control” – the strategies required to decide what inferences to do in what 

order, in each particular practical situation. 
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1.1.1  Why Probability Theory? 

In the next few sections of this Introduction we review the conceptual founda-

tions of PLN in a little more detail, beginning with the question: Why choose 

probability theory as a foundation for the “uncertain” part of uncertain inference? 

We note that while probability theory is the foundation of PLN, not all aspects 

of PLN are based strictly on probability theory. The mathematics of probability 

theory (and its interconnection with other aspects of mathematics) has not yet been 

developed to the point where it is feasible to use explicitly probabilistic methods 

to handle every aspect of the uncertain inference process. Some researchers have 

reacted to this situation by disregarding probability theory altogether and introduc-

ing different conceptual foundations for uncertain inference, such as Dempster-

Shafer theory (Dempster 1968; Shafer 1976), Pei Wang’s Non-Axiomatic Reason-

ing System (Wang 1996), possibility theory (Zadeh 1978) and fuzzy set theory 

(Zadeh 1965). Others have reacted by working within a rigidly probabilistic 

framework, but limiting the scope of their work fairly severely based on the limi-

tations of the available probabilistic mathematics, avoiding venturing into the 

more ambiguous domain of creating heuristics oriented toward making probabilis-

tic inference more scalable and pragmatically applicable (this, for instance, is how 

we would characterize the mainstream work in probabilistic logic as summarized 

in Hailperin 1996; more comments on this below). Finally, a third reaction – and 

the one PLN embodies – is to create reasoning systems based on a probabilistic 

foundation and then layer non-probabilistic ideas on top of this foundation when 

this is the most convenient way to arrive at useful practical results.  

Our faith in probability theory as the ultimately “right” way to quantify uncer-

tainty lies not only in the demonstrated practical applications of probability theory 

to date, but also in Cox’s (1961) axiomatic development of probability theory and 

ensuing refinements (Hardy 2002), and associated mathematical arguments due to 

de Finetti (1937) and others. These theorists have shown that if one makes some 

very basic assumptions about the nature of uncertainty quantification, the rules of 

elementary probability theory emerge as if by magic. In this section we briefly re-

view these ideas, as they form a key part of the conceptual foundation of the PLN 

framework. 

Cox’s original demonstration involved describing a number of properties that 

should commonsensically hold for any quantification of the “plausibility” of a 

proposition, and then showing that these properties imply that plausibility must be 

a scaled version of conventional probability. The properties he specified are, in 

particular1, 

                                                             
1 The following list of properties is paraphrased from the Wikipedia entry for 

“Cox’s Theorem.” 
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1. The plausibility of a proposition determines the plausibility of the 

proposition’s negation; either decreases as the other increases. Because 

“a double negative is an affirmative,” this becomes a functional equation  

! 

f f x( )( ) = x  

saying that the function f that maps the probability of a proposition to the 

probability of the proposition’s negation is an involution; i.e., it is its own 

inverse.  

2. The plausibility of the conjunction [A & B] of two propositions A, B, 

depends only on the plausibility of B and that of A given that B is true. 

(From this Cox eventually infers that multiplication of probabilities is 

associative, and then that it may as well be ordinary multiplication of real 

numbers.) Because of the associative nature of the “and” operation in 

propositional logic, this becomes a functional equation saying that the 

function g such that  

! 

P A and B( ) = g P A( ),P B A( )( )  

 

is an associative binary operation. All strictly increasing associative 

binary operations on the real numbers are isomorphic to multiplication of 

numbers in the interval [0, 1]. This function therefore may be taken to be 

multiplication.  

3. Suppose [A & B] is equivalent to [C & D]. If we acquire new information 

A and then acquire further new information B, and update all probabilities 

each time, the updated probabilities will be the same as if we had first 

acquired new information C and then acquired further new information 

D. In view of the fact that multiplication of probabilities can be taken to 

be ordinary multiplication of real numbers, this becomes a functional 

equation 

! 

yf
f z( )
y

" 

# 
$ 

% 

& 
' = zf

f y( )
z

" 

# 
$ 

% 

& 
'  

 

where f is as above.  

 

Cox’s theorem states, in essence, that any measure of plausibility that possesses 

the above three properties must be a rescaling of standard probability.  

While it is impressive that so much (the machinery of probability theory) can 

be derived from so little (Cox’s very commonsensical assumptions), 
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mathematician Michael Hardy (2002) has expressed the opinion that in fact Cox’s 

axioms are too strong, and has provided significantly weaker conditions that lead 

to the same end result as Cox’s three properties. Hardy’s conditions are more 

abstract and difficult to state without introducing a lot of mathematical 

mechanism, but essentially he studies mappings from propositions into ordered 

“plausibility” values, and he shows that if any such mapping obeys the properties 

of 

 

1. If x implies y then f(x) < f(y) 

2. If f(x) < f(y) then f(¬x) > f(¬y), where ¬ represents “not” 

3. If f(x|z) <= f(y|z) and f(x|¬z) <= f(y|¬z) then f(x) < f(y) 

4. For all x, y either f(x) ! f(y) or f(y) ! f(x) 

 

then it maps propositions into scaled probability values. Note that this property list 

mixes up absolute probabilities f() with conditional probabilities f(|), but this is not 

a problem because Hardy considers f(x) as equivalent to f(x|U) where U is the 

assumed universe of discourse. 

Hardy expresses regret that his fourth property is required; however, Youssef’s 

(1994) work related to Cox’s axioms suggests that it is probably there in his 

mathematics for a very good conceptual reason. Youssef has shown that it is fea-

sible to drop Cox’s assumption that uncertainty must be quantified using real 

numbers, but retain Cox’s other assumptions. He shows it is possible, consistent 

with Cox’s other assumptions, to quantify uncertainty using “numbers” drawn 

from the complex, quaternion, or octonion number fields. Further, he argues that 

complex-valued “probabilities” are the right way to model quantum-level phe-

nomena that have not been collapsed (decohered) into classical phenomena. We 

believe his line of argument is correct and quite possibly profound, yet it does not 

seem to cast doubt on the position of standard real-valued probability theory as the 

correct mathematics for reasoning about ordinary, decohered physical systems. If 

one wishes to reason about the uncertainty existing in pure, pre-decoherence quan-

tum systems or other exotic states of being, then arguably these probability theo-

ries defined over different base fields than the real numbers may be applicable. 

Next, while we are avid probabilists, we must distinguish ourselves from the 

most ardent advocates of the “Bayesian” approach to probabilistic inference. We 

understand the weakness of the traditional approach to statistics with its reliance 

on often unmotivated assumptions regarding the functional forms of probability 

distributions. On the other hand, we don’t feel that the solution is to replace these 

assumptions with other, often unmotivated assumptions about prior probability 

distributions. Bayes’ rule is an important part of probability theory, but the way 

that the Bayesian-statistical approach applies it is not always the most useful way. 

A major example of the shortcomings of the standard Bayesian approach lies in 

the domain of confidence assessment, an important aspect of PLN already men-

tioned above. As Wang (2001) has argued in detail, the standard Bayesian ap-

proach does not offer any generally viable way to assess or reason about the “sec-

ond-order uncertainty” involved in a given uncertainty value. Walley (1991) 
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sought to redress this problem via a subtler approach that avoids assuming a single 

prior distribution, and makes a weaker assumption involving drawing a prior from 

a parametrized family of possible prior distributions; others have followed up his 

work in interesting ways (Weichselberger 2003), but this line of research has not 

yet been developed to the point of yielding robustly applicable mathematics. 

Within PLN, we introduce a spectrum of approaches to confidence assessment 

ranging from indefinite probabilities (essentially a hybridization of Walley’s im-

precise probabilities with Bayesian credible intervals) to frankly non-probabilistic 

heuristics inspired partly by Wang’s work. By utilizing this wide range of ap-

proaches, PLN can more gracefully assess confidence in diverse settings, provid-

ing pragmatic solutions where the Walley-type approach (in spite of its purer 

probabilism) currently fails.  

Though Cox’s theorem and related results argue convincingly that probability 

theory is the correct approach to reasoning under uncertainty, the particular ways 

of applying probability theory that have emerged in the contemporary scientific 

community (such as the “Bayesian approach”) all rely on specific assumptions be-

yond those embodied in the axioms of probability theory. Some of these assump-

tions are explicit mathematical ones, and others are implicit assumptions about 

how to proceed in setting up a given problem in probabilistic terms; for instance, 

how to translate an intuitive understanding and/or a collection of quantitative data 

into mathematical probabilistic form.  

1.2 PLN in the Context of Traditional Approaches to 

Probabilistic Logic 

So, supposing one buys the notion that logic, adequately broadly construed, is 

essential (perhaps even central) to cognition; that appropriate integration of uncer-

tainty into logic is an important aspect of construing logic in an adequately broad 

way; and also that probability theory is the correct foundation for treatment of un-

certainty, what then? There is already a fairly well fleshed-out theory of probabil-

istic logic, so why does one need a substantial body of new theory such as Prob-

abilistic Logic Networks? 

The problem is that the traditional theories in the area of probabilistic logic 

don’t directly provide a set of tools one can use to structure a broadly-applicable, 

powerful software system for probabilistic inferencing. They provide a number of 

interesting and important theorems and ideas, but are not sufficiently pragmatic in 

orientation, and also fail to cover some cognitively key aspects of uncertain infer-

ence such as intensional inference. 

Halpern’s (2003) book provides a clearly written, reasonably thorough over-

view of recent theories in probabilistic logic. The early chapters of Hailperin 

(1996) gives some complementary historical and theoretical background. Along-

side other approaches such as possibility theory, Halpern gives an excellent sum-
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mary of what in PLN terms would be called “first-order extensional probabilistic 

logic” – the interpretation and manipulation of simple logic formulas involving 

absolute and conditional probabilities among sets. Shortcomings of this work from 

a pragmatic AI perspective include: 

 

• No guidance is provided as to which heuristic independence assumptions 

are most cognitively natural to introduce in order to deal with (the usual) 

situations where adequate data regarding dependencies is unavailable. 

Rather, exact probabilistic logic formulas are introduced, into which one 

can, if one wishes, articulate independence assumptions and then derive 

their consequences. 

• Adequate methods for handling “second order uncertainty” are not pre-

sented, but this is critical for dealing with real-world inference situations 

where available data is incomplete and/or erroneous. Hailperin (1996) 

deals with this by looking at interval probabilities, but this turns out to 

rarely be useful in practice because the intervals corresponding to infer-

ence results are generally far too wide. Walley’s (1991) imprecise prob-

abilities are more powerful but have a similar weakness, and we will dis-

cuss them in more detail in Chapter 4; they also have not been integrated 

into any sort of powerful, general, probabilistic logic framework, though 

integrating them into PLN if one wished to do so would not be problem-

atic, as will become clear. 

• Various sorts of truth-values are considered, including single values, in-

tervals, and whole probability distributions, but the problem of finding 

the right way to summarize a probability distribution for logical inference 

without utilizing too much memory or sacrificing too much information 

has not been adequately resolved (and this is what we have tried to re-

solve with the “indefinite probabilities” utilized in PLN). 

• The general probabilistic handling of intensional, temporal, and causal 

inference is not addressed. Of course, these topics are handled in various 

specialized theories; e.g., Pearl’s causal networks (2000), but there is no 

general theory of probabilistic intensional, temporal, or causal logic; yet 

the majority of commonsense logical inference involves these types of 

reasoning. 

• The existing approaches to intermixing probabilistic truth-values with ex-

istential and universal quantification are conceptually flawed and often 

do not yield pragmatically useful results. 

 

All in all, in terms of Halpern’s general formalism for what we call first-order 

extensional logic, what PLN constitutes is  

 

• A specific compacted representation of sets of probability distributions 

(the indefinite truth-value) 

• A specific way of deploying heuristic independence assumptions; e.g., 

within the PLN deduction and revision rules 
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• A way of counting the amount of evidence used in an inference (which is 

used in the revision rule, which itself uses amount of evidence together 

with heuristic independence assumptions) 

 

But much of the value of PLN lies in the ease with which it extends beyond 

first-order extensional logic. Due to the nature of the conceptual and mathematical 

formalism involved, the same essential inference rules and formulas used for first-

order extensional logic are extended far more broadly, to deal with intensional, 

temporal, and causal logic, and to deal with abstract higher-order inference involv-

ing complex predicates, higher-order functions, and universal, existential, and 

fuzzy quantifiers. 

1.2.1  Why Term Logic? 

One of the major ways in which PLN differs from traditional approaches to 

probabilistic logic (and one of the secrets of PLN’s power) is its reliance on a 

formulation of logic called “term logic.” The use of term logic is essential, for in-

stance, to PLN’s introduction of cognitively natural independence assumptions 

and to PLN’s easy extension of first-order extensional inference rules to more 

general and abstract domains. 

Predicate logic and term logic are two different but related forms of logic, each 

of which can be used both for crisp and uncertain logic. Predicate logic is the most 

familiar kind, where the basic entity under consideration is the “predicate,” a func-

tion that maps argument variables into Boolean truth-values. The argument vari-

ables are quantified universally or existentially. 

On the other hand, in term logic, which dates back at least to Aristotle and his 

notion of the syllogism, the basic element is a subject-Predicate statement, deno-

table 

 

A ! B 

 

where ! denotes a notion of inheritance or specialization. Logical inferences take 

the form of “syllogistic rules,” which give patterns for combining statements with 

matching terms. (We don’t use the ! notation much in PLN, because it’s not suf-

ficiently precise for PLN purposes, since PLN introduces many varieties of inheri-

tance; but we will use the ! notation in this section because here we are speaking 

about inheritance in term logic in general rather than about PLN in particular.) 

Examples are the deduction, induction, and abduction rules: 
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A ! B 

B ! C 

|- 

A! C 

 
 
 
 
 
 
 
 
A ! B 

A ! C 

|- 

B ! C 

 
 
 
 
 
 
 
A ! C 

B ! C 

|- 

A ! B 

 

 

 

 

 

 

 

 

When we get to defining the truth-value formulas corresponding to these infer-

ence rules, we will observe that deduction is infallible in the case of absolutely 

certain premises, but uncertain in the case of probabilistic premises; while abduc-

tion and induction are always fallible, even given certain premises. In fact we will 

derive abduction and induction from the combination of deduction with a simple 

rule called inversion 

 

A 

B 

C 

Deduction 

A 

B 

C 

Induction 

A 

B 

C 

Abduction 
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A ! B 

|- 

B ! A 

 

whose truth-value formula derives from Bayes rule.  

Predicate logic has proved to deal more easily with deduction than with induc-

tion, abduction, and other uncertain, fallible inference rules. On the other hand, 

term logic can deal quite elegantly and simply with all forms of inference. Fur-

thermore, the predicate logic formulation of deduction proves less amenable to 

“probabilization” than the term logic formulation. It is for these reasons, among 

others, that the foundation of PLN is drawn from term logic rather than from pre-

dicate logic. PLN begins with a term logic foundation, and then adds on elements 

of probabilistic and combinatory logic, as well as some aspects of predicate logic, 

to form a complete inference system, tailored for easy integration with software 

components embodying other (not explicitly logical) aspects of intelligence.  

Sommers and Engelbretsen (2000) have given an excellent defense of the value 

of term logic for crisp logical inference, demonstrating that many pragmatic infer-

ences are far simpler in term logic formalism than they are in predicate logic for-

malism. On the other hand, the pioneer in the domain of uncertain term logic is 

Pei Wang (Wang 1996), to whose NARS uncertain term logic based reasoning 

system PLN owes a considerable debt. To frame the issue in terms of our above 

discussion of PLN’s relation to traditional probabilistic logic approaches, we may 

say we have found that the formulation of appropriate heuristics to guide probabil-

istic inference in cases where adequate dependency information is not available, 

and appropriate methods to extend first-order extensional inference rules and for-

mulas to handle other sorts of inference, are both significantly easier in a term 

logic rather than predicate logic context. In these respects, the use of term logic in 

PLN is roughly a probabilization of the use of term logic in NARS; but of course, 

there are many deep conceptual and mathematical differences between PLN and 

NARS, so that the correspondence between the two theories in the end is more 

historical and theory-structural, rather than a precise correspondence on the level 

of content. 

1.3 PLN Knowledge Representation and Inference Rules 

In the next few sections of this Introduction, we review the main topics cov-

ered in the book, giving an assemblage of hints as to the material to come. First, 

Chapter 2 describes the knowledge representation underlying PLN, without yet 

saying anything specific about the management of numbers quantifying uncertain-

ties. A few tricky issues occur here, meriting conceptual discussion. Even though 

PLN knowledge representation is not to do with uncertain inference per se, we 

have found that without getting the knowledge representation right, it is very diffi-

cult to define uncertain inference rules in an intuitive way. The biggest influence 
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on PLN’s knowledge representation has been Wang’s NARS framework, but there 

are also some significant deviations from Wang’s approach. 

PLN knowledge representation is conveniently understood according to two 

dichotomies: extensional vs. intensional, and first-order vs. higher-order. The for-

mer is a conceptual (philosophical/cognitive) distinction between logical relation-

ships that treat concepts according to their members versus those that treat con-

cepts according to their properties. In PLN extensional knowledge is treated as 

more basic, and intensional knowledge is defined in terms of extensional knowl-

edge via the addition of a specific mathematics of intension (somewhat related to 

information theory). This is different from the standard probabilistic approach, 

which contains no specific methods for handling intension and also differs from, 

e.g., Wang’s approach in which intension and extension are treated as completely 

symmetric, with neither of them being more basic or derivable from the other. 

The first-order versus higher-order distinction, on the other hand, is essentially 

a mathematical one. First-order, extensional PLN is a variant of standard term 

logic, as originally introduced by Aristotle in his Logic and recently elaborated by 

theorists such as Wang (1996) and Sommers and Engelbretsen (2000). First-order 

PLN involves logical relationships between terms representing concepts, such as 

 

Inheritance cat animal 

 

ExtensionalInheritance Pixel_444 Contour_7565 

 

(where the notation is used that R A B denotes a logical relationship of type R be-

tween arguments A and B). A typical first-order PLN inference rule is the standard 

term-logic deduction rule 

 

A ! B 

B ! C 

|- 

A ! C 

 

which in PLN looks like 

 

ExtensionalInheritance A B 

ExtensionalInheritance B C 

|- 

ExtensionalInheritance A C 

 

As well as purely logical relationships, first-order PLN also includes a fuzzy set 

membership relationship, and specifically addresses the relationship between 

fuzzy set membership and logical inheritance, which is closely tied to the PLN 

concept of intension.  In the following text we will sometimes use the acronym 

FOI to refer to PLN First Order Inference. 
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Higher-order PLN, on the other hand (sometimes called HOI, for Higher Order 

Inference), has to do with functions and their arguments. Much of higher-order 

PLN is structurally parallel to first-order PLN; for instance, implication between 

statements is largely parallel to inheritance between terms. However, a key differ-

ence is that most of higher-order PLN involves either variables or higher-order 

functions (functions taking functions as their arguments). So for instance one 

might have 

 

ExtensionalImplication 

 Inheritance $X cat 

 Evaluation eat ($X, mice) 

 

(using the notation that 

 

R 

 A 

 B 

 

denotes the logical relationship R applied to the arguments A and B). Here 

Evaluation is a relationship that holds between a predicate and its argument-list, so 

that, e.g., 

 

Evaluation eat (Sylvester, mice) 

 

means that the list (Sylvester, mice) lies within the set of ordered pairs characteriz-

ing the eat relationship. The parallel of the first-order extensional deduction rule 

given above would be a rule 

 

ExtensionalImplication A B 

ExtensionalImplication B C 

|- 

ExtensionalImplication A C 

 

where the difference is that in the higher-order inference case the tokens A, B, and 

C denote either variable-bearing expressions or higher-order functions. Some 

higher-order inference rules involve universal or existential quantifiers as well. 

While first-order PLN adheres closely to the term logic framework, higher-

order PLN is better described as a mix of term logic, predicate logic, and combina-

tory logic. The knowledge representation is kept flexible, as this seems to lead to 

the simplest and most straightforward set of inference rules. 



Probabilistic Logic Networks                                                                                   14 

 

1.4 Truth-value Formulas 

We have cited above the conceptual reasons why we have made PLN a prob-

abilistic inference framework, rather than using one of the other approaches to un-

certainty quantification available in the literature. However, though we believe in 

the value of probabilities we do not believe that the conventional way of using 

probabilities to represent the truth-values of propositions is adequate for pragmatic 

computational purposes. One of the less conventional aspects of PLN is the quan-

tification of uncertainty using truth-values that contain at least two components, 

and usually more (in distinction from the typical truth-value used in probability 

theory, which is a single number: a probability). Our approach here is related to 

earlier multi-component truth-value approaches due to Keynes (2004), Wang 

(2006), Walley (1991), and others, but is unique in its particulars. 

The simplest kind of PLN truth-value, called a SimpleTruthValue, consists of a 

pair of numbers <s,w> called a strength and a confidence. The strength value is a 

probability; the confidence value is a measure of the amount of certainty attached 

to the strength value. Confidence values are normalized into [0,1].  

For instance <.6,1> means a probability of .6 known with absolute certainty. 

<.6,.2> means a probability of .6 known with a very low degree of certainty. 

<.6,0> means a probability of .6 known with a zero degree of certainty, which 

indicates a meaningless strength value, and is equivalent to <x,0> for any other 

probability value x. 

Another type of truth-value, more commonly used as the default within PLN, is 

the IndefiniteTruthValue. We introduce the mathematical and philosophical foun-

dations of IndefiniteTruthValues in Chapter 4. Essentially a hybridization of 

Walley’s imprecise probabilities and Bayesian credible intervals, indefinite prob-

abilities quantify truth-values in terms of four numbers <L, U, b, k>: an interval 

[L,U], a credibility level b, and an integer k called the “lookahead.” Indefi-

niteTruthValues provide a natural and general method for calculating the “weight-

of-evidence” underlying the conclusions of uncertain inferences. We ardently be-

lieve that this approach to uncertainty quantification may be adequate to serve as 

an ingredient of powerful artificial general intelligence. 

Beyond the SimpleTruthValues and IndefiniteTruthValues mentioned above, 

more advanced types of PLN truth-value also exist, principally “distributional 

truth-values” in which the strength value is replaced by a matrix approximation to 

an entire probability. Note that this, then, provides for three different granularities 

of approximations to an entire probability distribution. A distribution can be most 

simply approximated by a single number, somewhat better approximated by a 

probability interval, and even better approximated by an entire matrix. 

Chapter 5 takes the various inference rules defined in Chapter 2, and associates 

a “strength value formula” with each of them (a formula determining the strength 

of the conclusion based on the strengths of the premises). For example, the deduc-

tion rule mentioned above is associated with two strength formulas, one based on 

an independence assumption and the other based on a different “concept geome-
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try” based assumption. The independence-assumption-based deduction strength 

formula looks like 

 

B <sB> 

C <sC> 

ExtensionalInheritance A B <sAB> 

ExtensionalInheritance B C <sBC> 

|- 

ExtensionalInheritance A C <sAC> 

sAC = sAB sBC  + (1-sAB) ( sC – sB sBC ) / (1- sB ) 

 

This particular rule is a straightforward consequence of elementary probability 

theory. Some of the other formulas are equally straightforward, but some are sub-

tler and require heuristic reasoning beyond standard probabilistic tools like inde-

pendence assumptions. Since simple truth-values are the simplest and least infor-

mative of our truth-value types; they provide quick, but less accurate, assessments 

of the resulting strength and confidence values. 

We reconsider these strength formulas again in Chapter 6, extending the rules 

to IndefiniteTruthValues. We also illustrate in detail how indefinite truth-values 

provide a natural approach to measuring weight-of-evidence. IndefiniteTruthVal-

ues can be thought of as approximations to entire distributions, and so provide an 

intermediate level of accuracy of strength and confidence. 

As shown in Chapter 7, PLN inference formulas may also be modified to han-

dle entire distributional truth-values. Distributional truth-values provide more in-

formation than the other truth-value types. As a result, they may also be used to 

yield even more accurate assessments of strength and confidence.  

The sensitivity to error of several inference rule formulas for various parameter 

values is explored in Chapter 8. There we provide a fairly detailed mathematical 

and graphical examination of error magnification. We also study the possibility of 

deterministic chaos arising from PLN inference. 

We introduce higher-order inference (HOI) in Chapter 10, where we describe 

the basic HOI rules and strength formulas for both simple truth-values and indefi-

nite truth-values. We consider both crisp and fuzzy quantifiers, using indefinite 

probabilities, in Chapter 11; treat intensional inference in Chapter 12; and infer-

ence control in Chapter 13. Finally, we tackle the topics of temporal and causal 

inference in Chapter 14. 

1.5 Implementing and Applying PLN 

The goal underlying the theoretical development of PLN has been the creation 

of practical software systems carrying out complex, useful inferences based on 

uncertain knowledge and drawing uncertain conclusions. Toward that end we have 

implemented most of the PLN theory described in this book as will briefly be de-
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scribed in Chapter 13, and used this implementation to carry out simple inference 

experiments involving integration with external software components such as a 

natural language comprehension engine and a 3D simulation world. 

Chapter 14 reviews some extensions made to basic PLN in the context of these 

practical applications, which enable PLN to handle reasoning about temporal and 

causal implications. Causal inference in particular turns out to be conceptually in-

teresting, and the approach we have conceived relates causality and intension in a 

satisfying way. 

By far the most difficult aspect of designing a PLN implementation is inference 

control, which we discuss in Chapter 13. This is really a foundational conceptual 

issue rather than an implementational matter per se. The PLN framework just tells 

you what inferences can be drawn; it doesn’t tell you what order to draw them in, 

in which contexts. Our PLN implementation utilizes the standard modalities of 

forward-chaining and backward-chaining inference control. However, the vivid 

presence of uncertainty throughout the PLN system makes these algorithms more 

challenging to use than in a standard crisp inference context. Put simply, the 

search trees expand unacceptably fast, so one is almost immediately faced with the 

need to use clever, experience-based heuristics to perform pruning.  

The issue of inference control leads into deep cognitive science issues that we 

briefly mention here but do not fully explore, because that would lead too far 

afield from the focus of the book, which is PLN in itself. One key conceptual 

point that we seek to communicate, however, is that uncertain inference rules and 

formulas, on their own, do not compose a comprehensive approach to artificial in-

telligence. To achieve the latter, sophisticated inference control is also required, 

and controlling uncertain inference is difficult – in practice, we have found, re-

quiring ideas that go beyond the domain of uncertain inference itself. In principle, 

one could take a purely probability-theoretic approach to inference control – 

choosing inference steps based on the ones that are most likely to yield successful 

conclusions based on probabilistic integration of all the available evidence. How-

ever, in practice this does not seem feasible given the current state of development 

of applied probability theory. Instead, in our work with PLN so far, we have taken 

a heuristic and integrative approach, using other non-explicitly-probabilistic algo-

rithms to help prune the search trees implicit in PLN inference control. 

As for applications, we have applied PLN to the output of a natural language 

processing subsystem, using it to combine premises extracted from different bio-

medical research abstracts to form conclusions embodying medical knowledge not 

contained in any of the component abstracts. We have also used PLN to learn 

rules controlling the behavior of a humanoid agent in a 3D simulation world; for 

instance, PLN learns to play “fetch” based on simple reinforcement learning stim-

uli.  

Our current research involves extending PLN’s performance in both these ar-

eas, and bringing the two areas together by using PLN to help the Novamente 

Cognition Engine carry out complex simulation-world tasks involving a combina-

tion of physical activity and linguistic communication. Quite probably this 

ongoing research will involve various improvements to be made to the PLN 

framework itself. Our goal in articulating PLN has not been to present an ultimate 
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itself. Our goal in articulating PLN has not been to present an ultimate and final 

approach to uncertain inference, but rather to present a workable approach that is 

suitable for carrying out uncertain inference comprehensively and reasonably well 

in practical contexts. As probability theory and allied branches of mathematics de-

velop, and as more experience is gained applying PLN in practical contexts, we 

expect the theory to evolve and improve. 

1.6 Relationship of PLN to Other Approaches to Uncertain 

Inference 

Finally, having sketched the broad contours of PLN theory and related it to 

more traditional approaches to probabilistic logic, we now briefly discuss the rela-

tionship between PLN and other approaches to logical inference. First, the debt of 

PLN to various standard frameworks for crisp logical inference is clear. PLN’s 

knowledge representation, as will be made clear in Chapter 2, is an opportunisti-

cally assembled amalgam of formalisms chosen from term logic, predicate logic 

and combinatory logic. Rather than seeking a pure and minimal formalism, we 

have thought more like programming language designers and sought a logical 

formalism that allows maximally compact and comprehensible representation of a 

wide variety of useful logical structures. 

Regarding uncertainty, as noted above, as well as explicit approaches to the 

problem of unifying probability and logic the scientific literature contains a num-

ber of other relevant ideas, including different ways to quantify uncertainty and to 

manipulate uncertainty once quantified. There are non-probabilistic methods like 

fuzzy logic, possibility theory, and NARS. And there is a variety of probabilistic 

approaches to knowledge representation and reasoning that fall short of being full-

on “probabilistic logics,” including the currently popular Bayes nets, which will 

be discussed in more depth below, and Walley’s theory of imprecise probabilities 

(Walley 1991), which has led to a significant literature (ISIPTA 2001, 2003, 2005, 

2007), and has had a significant inspirational value in the design of PLN’s ap-

proach to confidence estimation, as will be reviewed in detail in Chapters 4, 6, and 

10.  

Overall, regarding the representation of uncertainty, PLN owes the most to Pei 

Wang’s NARS approach and Walley’s theory of imprecise probabilities. Fuzzy set 

theory ideas are also utilized in the specific context of the PLN Member relation-

ship. However, we have not found any of these prior approaches to uncertainty 

quantification to be fully adequate, and so the PLN approach draws from them 

ample inspiration but not very many mathematical details. 

We now review the relationship of PLN to a few specific approaches to uncer-

tainty quantification and probabilistic inference in a little more detail. In all cases 

the comments given here are high-level and preliminary, and the ideas discussed 
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will be much clearer to the reader after they have read the later chapters of this 

book and understand PLN more fully. 

1.6.1  PLN and Fuzzy Set Theory 

Fuzzy set theory has proved a pragmatically useful approach to quantifying 

many kinds of relationships (Zadeh 1965, 1978), but we believe that its utility is 

fundamentally limited. Ultimately, we suggest, the fuzzy set membership degree is 

not a way of quantifying uncertainty – it is quantifying something else: it is quan-

tifying partial membership. Fuzzy set membership is used in PLN as the semantics 

of the truth-values of special logical relationship types called Member relation-

ships. These fuzzy Member relationships may be used within PLN inference, but 

they are not considered the same as logical relationships such as Inheritance or 

Similarity relationships whose truth-values quantify degrees of uncertainty.  

Some (though nowhere near all) of the fuzzy set literature appears to us to be 

semantically confused regarding the difference between uncertainty and partial 

membership. In PLN we clearly distinguish between 

 

• Jim belongs to degree .6 to the fuzzy set of tall people. (MemberLink 

semantics) 

• Jim shares .6 of the properties shared by people belonging to the set 

of tall people (where the different properties may be weighted). (In-

tensionalInheritanceLink semantics) 

• Jim has a .6 chance of being judged as belonging to the set of tall 

people, once more information about Jim is obtained (where this 

may be weighted as to the degree of membership that is expected to 

be estimated once the additional information is obtained). (Inten-

sionalInheritanceLink, aka Subset Link, semantics) 

• Jim has an overall .6 amount of tallness, defined as a weighted aver-

age of extensional and intensional information. (Inheritance Link 

semantics) 

 

We suggest that the fuzzy, MemberLink semantics is not that often useful, but do 

recognize there are cases where it is valuable; e.g., if one wishes to declare that a 

stepparent and stepchild are family members with fuzzy degree .8 rather than 1.  

In terms of the above discussion of the foundations of probability theory we 

note that partial membership assignments need not obey Cox’s axioms and need 

not be probabilities – which is fine, as they are doing something different, but also 

limits the facility with which they can be manipulated.  In PLN, intensional prob-

abilities are used for many of the purposes commonly associated with fuzzy mem-

bership values, and this has the advantage of keeping more things within a prob-

abilistic framework. 
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1.6.2  PLN and NARS 

Pei Wang’s NARS approach has already been discussed above and will pop up 

again here and there throughout the text; furthermore, Appendix A1 presents a 

comparison of some of the first-order PLN truth-value formulas with correspond-

ing NARS formulas. As already noted, there is a long historical relationship be-

tween PLN and NARS; PLN began as part of a collaboration with NARS’s creator 

Pei Wang as an attempt to create a probabilistic analogue to NARS. PLN long ago 

diverged from its roots in NARS and has grown in a very different direction, but 

there remain many similarities. Beneath all the detailed similarities and differ-

ences, however, there is a deep and significant difference between the two, which 

is semantic: PLN’s semantics is probabilistic, whereas NARS’s semantics is inten-

tionally and definitively not.  

PLN and NARS have a similar division into first-order versus higher-order in-

ference, and have first-order components that are strictly based on term logic. 

However, PLN’s higher-order inference introduces predicate and combinatory 

logic ideas, whereas NARS’s higher-order inference is also purely term logic 

based. Both PLN and NARS include induction, deduction, and abduction in their 

first-order components, with identical graphical structures; in PLN, however, in-

duction and abduction are derived from deduction via Bayes rule, whereas in 

NARS they have their own completely independent truth-value functions. Both 

PLN and NARS utilize multi-component truth-values, but the semantics of each 

component is subtly different, as will be reviewed in appropriate points in the text 

to follow. 

1.6.3  PLN and Bayes Nets 

Bayes nets are perhaps the most popular contemporary approach to uncertain 

inference. Because of this, we here offer a few more detailed comments on the 

general relationship between PLN and Bayes nets. Of course, the actual relation-

ship is somewhat subtle and will be clear to the reader only after completing the 

exposition of PLN. 

Traditional Bayesian nets assume a tree structure for events, which is unrealis-

tic in general, but in recent years there has been a batch of work on “loopy Baye-

sian networks” in which standard Bayesian net information propagation is applied 

to potentially cyclic graphs of conditional probability. Some interesting alterna-

tives to the loopy Bayesian approach have also been proposed, including one that 

uses a more advanced optimization algorithm within the Bayesian net framework. 

Bayes nets don’t really contain anything comparable to the generality of PLN 

higher-order inference. However, in the grand scheme of things, first-order PLN is 

not all that tremendously different from loopy Bayesian nets and related schemes. 

In both cases one is dealing with graphs whose relationships denote conditional 
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probabilities, and in both cases one is using a kind of iterative relaxation method 

to arrive at a meaningful overall network state. 

If one took a forest of loopy Bayes nets with imprecise probabilities, and then 

added some formalism to interface it with fuzzy, predicate, and combinatory logic, 

then one might wind up with something reasonably similar to PLN. We have not 

taken such an approach but have rather followed the path that seemed to us more 

natural, which was to explicitly shape a probabilistic inference framework based 

on the requirements that we found important for our work on integrative AI. 

There are many ways of embodying probability theory in a set of data struc-

tures and algorithms. Bayes nets are just one approach. PLN is another approach 

and has been designed for a different purpose: to allow basic probabilistic infer-

ence to interact with other kinds of inference such as intensional inference, fuzzy 

inference, and higher-order inference using quantifiers, variables, and combina-

tors. We have found that for the purpose of interfacing basic probabilistic infer-

ence with these other sorts of inference, the PLN approach is a lot more conven-

ient than Bayes nets or other more conventional approaches. 

Another key conceptual difference has to do with a PLN parameter called the 

“context.” In terms of probability theory, one can think of a context as a universe 

of discourse. Rather than attempting to determine a (possibly non-existent) univer-

sal probability distribution that has desired properties within each local domain, 

PLN creates local probability distributions based on local contexts. The context 

parameter can be set to Universal (everything the system has ever seen), Local 

(only the information directly involved in a given inference), or many levels in be-

tween. 

Yet another major conceptual difference is that PLN handles multivariable 

truth-values. Its minimal truth-value object has two components: strength and 

weight of evidence. Alternatively, it can use probability distributions (or discrete 

approximations thereof) as truth-values. This makes a large difference in the han-

dling of various realistic inference situations. For instance, the treatment of 

“weight of evidence” in PLN is not a purely mathematical issue, but reflects a ba-

sic conceptual issue, which is that (unlike most probabilistic methods) PLN does 

not assume that all probabilities are estimated from the same sample space. It 

makes this assumption provisionally in some cases, but it doesn’t make it axio-

matically and comprehensively. 

With the context set to Universal, and with attention restricted to the strength 

component of truth-values, what we have in PLN-FOI is – speaking conceptually 

rather than mathematically – a different way of doing the same thing that loopy 

Bayes networks (BN) and its competitors are trying to do. PLN, loopy BN, and 

other related methods are all viewable as optimization algorithms trying to relax 

into a condition giving the “correct probability distribution,” and at some risk of 

settling into local optima instead. But the ability to use more flexible truth-values, 

and to use local contexts as appropriate, makes a very substantial difference in 

practice. This is the kind of difference that becomes extremely apparent when one 

seeks to integrate probabilistic inference with other cognitive processes. And it’s 

the kind of difference that is important when trying to extend one’s reasoning sys-
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tem from simple inferences to extremely general higher-order inference – an ex-

tension that has succeeded within PLN, but has not been successfully carried out 

within these other frameworks. 

1.7 Toward Pragmatic Probabilistic Inference 

Perhaps the best way to sum up the differences between PLN and prior ap-

proaches to (crisp or uncertain) inference is to refer back to the list of require-

ments given toward the start of this Introduction. These requirements are basically 

oriented toward the need for an approach to uncertain inference that is adequate to 

serve as the core of a general-purpose cognition process – an approach that can 

handle any kind of inference effectively, efficiently, and in an uncertainty-savvy 

way. 

Existing approaches to crisp inference are not satisfactory for the purposes of 

general, pragmatic, real-world cognition, because they don’t handle uncertainty ef-

ficiently and gracefully. Of course, one can represent uncertainties in predicate 

logic – one can represent anything in predicate logic – but representing them in a 

way that leads to usefully rapid and convenient inference incorporating uncertain-

ties intelligently is another matter. 

On the other hand, prior approaches to uncertain inference have universally 

failed the test of comprehensiveness. Some approaches, such as Bayes nets and 

fuzzy set theory, are good at what they do but carry out only very limited func-

tions compared to what is necessary to fulfill the inference needs of a general-

purpose cognitive engine. Others, such as imprecise probability theory, are elegant 

and rigorous but are so complex that the mathematics needed to apply them in 

practical situations has not yet been resolved.  Others, such as NARS and Demp-

ster-Shafer theory, appear to us to have fundamental conceptual flaws in spite of 

their interesting properties. And still others, such as traditional probabilistic logic 

as summarized by Halpern and Hailperin, fail to provide techniques able to deal 

with the scale, incompleteness, and erroneousness typifying real-world inference 

situations. 

In sum, we do not propose PLN as an ultimate and perfect uncertain inference 

framework, only as an adequate one – but we do suggest that, in its adequacy, 

PLN distinguishes itself from the alternatives currently available. As noted above, 

we suspect that the particulars of the PLN framework will evolve considerably as 

PLN is utilized for more and more pragmatic inference tasks, both on its own and 

within integrative AI systems. 
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Chapter 2: Knowledge Representation 

Abstract   In chapter 2, we review the basic formalism of PLN knowledge repre-

sentation in a way that is relatively independent of the particularities of PLN truth-

value manipulation. Much of this material has nothing explicitly to do with prob-

ability theory or uncertainty management; it merely describes a set of conventions 

for representing logical knowledge. However, we also define some of the elements 

of PLN truth-value calculation here, insofar as is necessary to define the essential 

meanings of some of the basic PLN constructs. 

2.1 Basic Terminology and Notation 

The basic players in PLN knowledge representation are entities called terms 

and relationships (atomic formulae). The term Atom will refer to any element of 

the set containing both terms and relationships.  The hierarchy of PLN Atoms be-

gins with a finite set S of elementary terms. (In an AI context, these may be taken 

as referring to atomic perceptions or actions, and mathematical structures.) The set 

of ordered and unordered subsets of S is then constructed, and its elements are also 

considered as terms. Relationships are then defined as tuples of terms, and higher-

order relationships are defined as predicates or functions acting on terms or rela-

tionships.  

Atoms are associated with various data items, including 

• Labels indicating type; e.g., a term may be a Concept term or a Number term; a 

relationship may be an Inheritance relationship or a Member relationship 

• Packages of numbers representing “truth-value” (more on that later) 

• In some cases, Atom-type-specific data (e.g., Number terms are associated with 

numbers; Word terms are associated with character strings) 

We will sometimes refer to uncertain truth-values here in a completely abstract 

way, via notation such as <t>. However, we will also use some specific truth-

value types in a concrete way:  

• “strength” truth-values, which consist of single numbers; e.g., <s> or <.8>. 

Usually strength values denote probabilities but this is not always the case. The 

letter s will be habitually used to denote strength values. 

• SimpleTruthValues, which consist of pairs of numbers. These pairs come in 

two forms:  

o the default, <s,w>, where s is a strength and w is a “weight of 

evidence” – the latter being a number in [0,1] that tells you, 
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qualitatively, how much you should believe the strength esti-

mate. The letter w will habitually be used to denote weight of 

evidence values. 

o <s,N>, where N is a “count” – a positive number telling you, 

qualitatively, the total amount of evidence that was evaluated in 

order to assess s. There is a heuristic formula interrelating w and 

N, w=N/(N+k) where k is an adjustable parameter. The letter N 

will habitually be used to denote count.  If the count version 

rather than the weight of evidence version is being used, this 

will be explicitly indicated, as the former version is the default. 

• IndefiniteTruthValues, which quantify truth-values in terms of four numbers 

<[L,U],b,k>, an interval [L,U], a credibility level b, and an integer k called the 

lookahead. While the semantics of IndefiniteTruthValues are fairly complex, 

roughly speaking they quantify the idea that after k more observations there is a 

probability b that the conclusion of the inference will appear to lie in the final 

interval [L,U]. The value of the integer k will often be considered a system-

wide constant. In this case, IndefiniteTruthValues will be characterized more 

simply via the three numbers <[L,U], b>. 

 

• DistributionalTruthValues, which are discretized approximations to entire 

probability distributions. When using DistributionalTruthValues, PLN deduc-

tion reduces simply to matrix multiplication, and PLN inversion reduces to ma-

trix inversion.1  

The semantics of these truth-values will be reviewed in more depth in later 

chapters, but the basic gist may be intuitable from the above brief comments.  

PLN inference rules are associated with particular types of terms and relation-

ships; for example, the deduction rule mentioned in the Introduction is associated 

with ExtensionalInheritance and Inheritance relationships. At the highest level we 

may divide the set of PLN relationships into the following categories, each of 

which corresponds to a set of different particular relationship types:  

• Fuzzy membership (the Member relationship) 

• First-order logical relationships 

• Higher-order logical relationships 

• Containers (lists and sets) 

• Function execution (the ExecutionOutput relationship) 

To denote a relationship of type R, between Atoms A and B, with truth-value t, 

we write 

R A B <t> 

If A and B have long names, we may use the alternate notation 

                                                             
1 We have so far developed two flavors of DistributionalTruthValues, namely 

StepFunctionTruthValues and PolynomialTruthValues. 
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R <t> 

 A 

 B 

which lends itself to visually comprehensible nesting; e.g., 

R <t> 

 A 

 R1 

  C 

  D 

Similarly, to denote a term A with truth-value t, we write 

A <t>  

For example, to say that A inherits from B with probability .8, we write 

Inheritance A B <.8> 

To say that A inherits from B with IndefiniteTruthValue represented by <[.8,.9], 

.95>, we write 

Inheritance A B <[.8,.9],.95> 

(roughly, as noted above, the [.8, .9] interval represents an interval probability and 

the .95 represents a credibility level).  

We will also sometimes use object-field notation for truth-value elements, 

obtaining, for example, the strength value object associated with an Atom  

(Inheritance A B).strength = [.8,.9] 

 

or the entire truth-value, using .tv 

(Inheritance A B).tv = <[.8,.9], .9, 20>. 

Finally, we will sometimes use a semi-natural-language notation, which will be in-

troduced a little later on, when we first get into constructs of sufficient complexity 

to require such a notation. 

2.2 Context 

PLN TruthValues are defined relative to a Context. The default Context is the 

entire universe, but this is not usually a very useful Context to consider. For in-

stance, many terms may be thought of as denoting categories; in this case, the 

strength of a term in a Context denotes the probability that an arbitrary entity in 

the Context is a member of the category denoted by the term.  
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Contextual relationships are denoted by Context relationships, introduced in 

Chapter 10 The semantics of 

Context 

C 

R A B <t> 

is simply 

R (A AND C) (B AND C) <t> 

Most of the discussion in following chapters will be carried out without explicit 

discussion of the role of context, and yet due to the above equivalence the conclu-

sions will be usable in the context of contextual inference. 

2.3 Fuzzy Set Membership 

As a necessary preliminary for discussing the PLN logical relationships, we 

now turn to the Member relationship. The relationship 

Member A B <t> 

spans two terms where the target B cannot be an atomic term or a relationship, but 

must be a term denoting a set (be it a set of atomic terms, a set of composite terms, 

a set of relationships, etc.). In essence, the Member relationship of PLN is the fa-

miliar “fuzzy set membership” (Zadeh 1989). For instance, we may say 

Member Ben Goertzel_family <1> 

Member Tochtli Goertzel_family <.5> 

(Tochtli is the dog of a Goertzel family member.) When a Member relationship 

has a value between 0 and 1, as in the latter example, it is interpreted as a fuzzy 

value rather than a probabilistic value.  PLN is compatible with many different al-

gebras for combining fuzzy truth-values, including the standard min and max op-

erators according to which if 

Member Ben A <r> 

Member Ben B <s> 

then 

Member Ben (A OR B) <max(r,s)> 

Member Ben (A AND B) <min(r,s)> 

When to use fuzzy set membership versus probabilistic inheritance is a some-

what subtle issue that will be discussed later on. For instance, the fuzzy set com-

munity is fond of constructs such as 

Member Ben tall <.75> 
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which indicates that Ben is somewhat tall. But, while this is a correct PLN con-

struct, it is also interesting in PLN to say 

IntensionalInheritance Ben tall <.75> 

which states that (roughly speaking) Ben shares .75 of the characteristic properties 

of tall things. This representation allows some useful inferences that the Member 

relationship does not; for instance, inheritance relationships are probabilistically 

transitive whereas Member relationships come without any comparably useful un-

certain transitivity algebra. (As a parenthetical note, both of these are actually bad 

examples; they should really be 

Context 

 People 

 Member Ben tall <.75> 

Context 

 People 

 IntensionalInheritance Ben tall <.75> 

because Ben’s .75 tallness, however you define it, is not meaningful in compari-

son to the standard of the universe, but only in comparison to the standard of hu-

mans.) 

We extend this notion of fuzzy set membership to other truth-value types as 

well. For instance, using IndefiniteTruthValues 

MemberLink Astro Jetson_family <[.8,1],.95,2> 

would mean that after 2 more observations of Astro the assessed fuzzy member-

ship value for 

MemberLink Astro Jetson_family 

would lie within [.8,1] with confidence .95. 

2.4 First-Order Logical Relationships 

In this section, we begin our review of the PLN first-order logical relationship 

types, which are the following: 

• Relationships representing first-order conditional probabilities:  

o Subset (extensional) 

o Inheritance (mixed)  

o IntensionalInheritance (intensional) 

• Relationships representing symmetrized first-order conditional probabilities:  

o ExtensionalSimilarity (extensional) 

o Similarity (mixed) 

o IntensionalSimilarity (intensional)  
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• Relationships representing higher-order conditional probabilities:  

o ExtensionalImplication 

o Implication (mixed) 

o IntensionalImplication 

• Relationships representing symmetrized higher-order conditional probabilities:  

o ExtensionalEquivalence 

o Equivalence (mixed) 

o IntensionalInheritance 

The semantics of the higher-order logical relationships will be described 

briefly in Section 2.6 of this chapter and in more depth later on. The truth-value 

formulas for inference on these higher-order relationships are the same as those 

for the corresponding first-order relationships. PLN-HOI (higher-order inference) 

also involves a number of other relationships, such as Boolean operators (AND, 

OR and NOT), the SatisfyingSet operator, and an infinite spectrum of quantifiers 

spanning the range from ForAll to ThereExists. 

2.4.1  The Semantics of Inheritance 

We now explain in detail the semantics of the key PLN relationship type, In-

heritance. Since inheritance in PLN represents the synthesis of extensional and in-

tensional information, we will begin by considering extensional and intensional 

inheritance in their pure forms. 

2.4.1.1 Subset Relationships 

Firstly, a Subset relationship represents a probabilistic subset relationship; i.e., 

purely extensional inheritance. If we have 

Subset A B <s> 

(where s, a strength value, is a single number in [0,1]) where A and B are two 

terms denoting sets, this means 

P(B|A) = s 

or more precisely 

P(x in B | x in A) = s 

If “in” is defined in terms of crisp Member relationships (with strength in each 

case either 0 or 1) this means 

P( Member x B <1> | Member x A <1>) = s 
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On the other hand, if “in” is defined in terms of fuzzy Member relationships then 

one must define s as 

! 

s =

f Member x B( ).strength, Member x A( ).strength( )
x

"

Member x A( ).strength
x

"
 

where f(x,y) denotes the fuzzy set intersection function. Two options in this regard 

are 

f(x,y) = min(x,y) 

f(x,y) = x*y 

In our current practical work with PLN we’re using the min function.  

As before, we treat other truth-value types in an analogous manner. For exam-

ple, we interpret 

Subset A B <[L,U] 0.9, 20> 

as P(x in B| x in A)![ L, U] with confidence 0.9 after 20 more observations, where 

“in” is defined in terms of either crisp or fuzzy Member relationships as above. 

2.4.1.2 Intensional Inheritance 

The Subset relationship is what we call an extensional relationship – it relates 

two sets according to their members. PLN also deals with intensional relationships 

– relationships that relate sets according to the patterns that are associated with 

them. The mathematics of intensionality will be given in a later chapter, but here 

we will review the conceptual fundamentals. 

First, we review the general notions of intension and extension. These have 

been defined in various ways by various logical philosophers, but the essential 

concepts are simple. The distinction is very similar to that between a word’s deno-

tation and its connotation. For instance, consider the concept “bachelor.” The ex-

tension of “bachelor” is typically taken to be all and only the bachelors in the 

world (a very large set). In practical terms, it means all bachelors that are known 

to a given reasoning system, or specifically hypothesized by that system. On the 

other hand, the intension of “bachelor” is the set of properties of “bachelor,” in-

cluding principally the property of being a man, and the property of being unmar-

ried.  

Some theorists would have it that the intension of “bachelor” consists solely of 

these two properties, which are “necessary and sufficient conditions” for bache-

lorhood; PLN’s notion of intension is more flexible, and it may include necessary 

and sufficient conditions but also other properties, such as the fact that most 

bachelors have legs, that they frequently eat in restaurants, etc. These other prop-

erties allow us to understand how the concept of “bachelor” might be stretched in 



30                        Chapter 2: Knowledge Representation 

some contexts; for instance, if one read the sentence “Jane Smith was more of a 

bachelor than any of the men in her apartment building,” one could make a lot 

more sense of it using the concept “bachelors’” full PLN intension than one could 

make using only the necessary-and-sufficient-condition intension. 

The essential idea underlying PLN’s treatment of intension is to associate both 

fish and whale with sets of properties, which are formalized as sets of patterns – 

fishPAT and whalePAT, the sets of patterns associated with fish and whales. We then 

interpret 

IntensionalInheritance whale fish <.7> 

as 

Subset whalePAT fishPAT <.7> 

We then define Inheritance proper as the disjunction of intensional and exten-

sional (subset) inheritance; i.e., 

Inheritance A B <tv> 

is defined as 

OR <tv> 

 Subset A B 

 IntensionalInheritance A B 

The nature of reasoning on Inheritance and IntensionalInheritance relationships 

will be reviewed in Chapter 12; prior to that we will use Subset and related exten-

sional relationships in most of our examples. 

Why do we think intensional relationships are worth introducing into PLN? 

This is a cognitive science rather than a mathematical question. We hypothesize 

that most human inference is done not using subset relationships, but rather using 

composite Inheritance relationships.  

And, consistent with this claim, we suggest that in most cases the natural lan-

guage relation “is a” should be interpreted as an Inheritance relation between indi-

viduals and sets of individuals, or between sets of individuals – not as a Subset re-

lationship. For instance,  

“Stripedog is a cat” 

as conventionally interpreted is a combination extensional/intensional statement, 

as is 

“Cats are animals.” 

This statement means not only that examples of cats are examples of animals, but 

also that patterns in cats tend to be patterns in animals. 

The idea that inheritance and implication in human language and cognition mix 

up intension and extension is not an original one – for example, it has been argued 

for extensively and convincingly by Pei Wang in his writings on NARS. However, 

embodying this conceptual insight Wang has outlined a different mathematics that 
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we find awkward because it manages uncertainty in a non-probabilistic way. His 

approach seems to us to contradict the common sense embodied in Cox’s axioms, 

and also to lead to counterintuitive results in many practical cases. On the other 

hand, our approach is consistent with probability theory but introduces measures 

of association and pattern-intensity as additional concepts, and integrates them 

into the overall probabilistic framework of PLN. 

Philosophically, one may ask why a pattern-based approach to intensional 

inference makes sense. Why, in accordance with Cox’s axioms, isn’t 

straightforward probability theory enough? The problem is – to wax semi-poetic 

for a moment –  that the universe we live in is a special place, and accurately 

reasoning about it requires making special assumptions that are very difficult and 

computationally expensive to explicitly encode into probability theory. One 

special aspect of our world is what Charles Peirce referred to as “the tendency to 

take habits” (Peirce,1931-1958): the fact that “patterns tend to spread”; i.e., if two 

things are somehow related to each other, the odds are that there are a bunch of 

other patterns relating the two things. To encode this tendency observed by Peirce 

in probabilistic reasoning one must calculate P(A|B) in each case based on looking 

at the number of other conditional probabilities that are related to it via various 

patterns. But this is exactly what intensional inference, as defined in PLN, does. 

This philosophical explanation may seem somewhat abstruse – until one realizes 

how closely it ties in with human commonsense inference and with the notion of 

inheritance as utilized in natural language. Much more is said on this topic in 

Goertzel (2006). 

2.4.1.3 Symmetric Logical Relationships 

Inheritance is an asymmetric relationship; one may also define a corresponding 

symmetric relationship. Specifically one may conceptualize three such relation-

ships, corresponding to Subset, IntensionalInheritance, and Inheritance: 

ExtensionalSimilarity A B <tv> 

tv.s = purely extensional estimate of 

P(x !B & x ! A | x ! A OR x !B) 

IntensionalSimilarity A B <tv> 

tv.s = purely intensional estimate of 

P(x !B & x ! A | x ! A OR x !B) 

Similarity A B <tv> 

tv.s = intensional/extensional estimate of 

P(x !B & x ! A | x ! A OR x !B) 

In each of these conceptual formulas, ! denotes respectively for each case 

SubSet, IntensionalInheritance and (mixed) Inheritance 
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Elementary probability theory allows us to create truth-value formulas for these 

symmetric logical relationships from the truth-value formulas for the correspond-

ing asymmetric ones. Therefore we will not say much about these symmetric rela-

tionships in this book; yet in practical commonsense reasoning they are very 

common. 

2.5 Term Truth-Values 

We have discussed the truth-values of first-order logical relationships. Now we 

turn to a related topic, the truth-values of PLN terms. Compared to relationship 

truth-values, term truth-values are mathematically simpler but conceptually no less 

subtle. 

Most simply, the truth-value of an entity A may be interpreted as the truth-

value of a certain Subset relationship: 

A <tv> 

means 

Subset Universe A <tv> 

That is, the A.tv denotes the percentage of the “universe” that falls into category A. 

This is simple enough mathematically, but the question is: what is this “uni-

verse”? It doesn’t have to be the actual physical universe, it can actually be any 

set, considered as the “universal set” (in the sense of probability theory) for a col-

lection of inferences. In effect, then, what we’ve called the Universe is really a 

kind of “implicit context.” This interpretation will become clear in Section 2.2 and 

Chapter 10 when we explicitly discuss contextual inference.  

Sometimes one specifically wants to do inference within a narrow local con-

text. Other times, one wants to do inference relative to the universe as a whole, 

and it’s in this case that things get tricky. In fact, this is one of the main issues that 

caused Pei Wang, the creator of the non-probabilistic NARS system that partially 

inspired PLN, to declare probability theory an unsound foundation for modeling 

human inference or designing computational inference systems. His NARS infer-

ence framework is not probability-theory based and hence does not require the 

positing of a universal set U. 

Our attitude is not to abandon probability theory because of its U-dependence, 

but rather to explicitly acknowledge that probabilistic inference is context-

dependent, and to acknowledge that context selection for inference is an important 

aspect of cognition. When a mind wants to apply probabilistic reasoning, nothing 

tells it a priori how to set this particular parameter (the size of the universal set, 

|U|), which makes a big difference in the results that reasoning gives. Rather, we 

believe, the context for an inference must generally be determined by non-

inferential cognitive processes, aided by appropriate inference rules. 
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There are two extreme cases: Universal and Local context. In the Universal 

case, pragmatically speaking, the set U is set equal to everything the system has 

ever seen or heard of.  (This may of course be construed in various different ways 

in practical AI systems.)  In the Local case, the set U is set equal to the union of 

the premises involved in a given inference, with nothing else acknowledged at all. 

According to the algebra of the PLN deduction rule, as will be elaborated below, 

local contexts tend to support more speculative inferences, whereas in the Univer-

sal context only the best supported of inferences come out with nontrivial strength.  

In some cases, the context for one probabilistic inference may be figured out 

by another, separate, probabilistic inference process. This can’t be a universal so-

lution to the problem, however, because it would lead to an infinite regress. Ulti-

mately one has to bottom out the regress, either by assuming a universal set U is 

given a priori via “hard wiring” (perhaps a hard-wired function that sets U adap-

tively based on experience) or by positing that U is determined by non-inferential 

processes. 

If one wants to choose a single all-purpose U, one has to err on the side of in-

clusiveness. For instance, |U| can be set to the sum of the counts of all Atoms in 

the system. Or it can be set to a multiple of this, to account for the fact that the 

system cannot afford to explicitly represent all the entities it knows indirectly to 

exist. 

It is not always optimal to choose a universal and maximal context size, how-

ever. Sometimes one wants to carry out inference that is specifically restricted to a 

certain context, and in that case choosing a smaller U is necessary in order to get 

useful results. For instance, if one is in the USA and is reasoning about the price 

of furniture, one may wish to reason only in the context of the USA, ignoring all 

information about the rest of the world.  

Later on we will describe the best approach we have conceived for defining U 

in practice, which is based on an equation called the “optimal universe size for-

mula.” This approach assumes that one has defined a set of terms that one wants to 

consider as a context (e.g., the set of terms pertaining to events or entities in the 

USA, or properties of the USA). One also must assume that for some terms A, B 

and C in this context-set, one has information about the triple-intersections 

P(A! B! C). Given these assumptions, a formula may be derived that yields the 

U-value that is optimal, in the sense of giving the minimum error for PLN deduc-

tion in that context. Note that some arbitrariness is still left here; one must some-

where obtain the context definition; e.g., decide that it’s intelligent to define U 

relative to the United States of America, or relative to the entire system’s entire 

experience, etc.  

This formula for deriving the value of U is based on values called “count val-

ues”, representing numbers of observations underlying truth value estimates, and 

closely related to the confidence components of truth values.  This means that the 

challenge of defining U ultimately bottoms out in the problem of count/confidence 

updating. In an integrative AI architecture, for example, two sorts of processes 

may be used for updating the confidence components of Atoms’ TruthValues. In-

ference can be used to modify count values as well as strength values, which cov-
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ers the case where entities are inferred to exist rather than observed to exist. And 

in an architecture incorporating natural language processing, one can utilize “se-

mantic mapping schemata,” which translate perceived linguistic utterances into 

sets of Atoms, and which may explicitly update the confidence components of 

truth values.  To take a crude example, if a sentence says “I am very sure cats are 

only slightly friendly”, this translates into a truth value with a low strength and 

high confidence attached to the Atoms representing the statement “cats are 

friendly.”  An important question there is: What process learns these cognitive 

schemata carrying out semantic mapping? If they are learned by probabilistic in-

ference, then they must be learned within some universal set U. The pragmatic an-

swer we have settled on in our own work is that inference applied to schema learn-

ing basically occurs using a local context, in which the schema known to the 

system are assumed to be all there are. Some of these schemata learned with a lo-

cal context are then used to manipulate the count variables of other Atoms, thus 

creating a larger context for other applications of inference within the system. 

In our practical applications of PLN, we have found it is not that often that the 

most universal U known to the system is used. More often than not, inference in-

volves some relatively localized context. For example, if the system is reasoning 

about objects on Earth it should use a U relativized to Earth’s surface, rather than 

using the U it has inferred for the entire physical universe. P(air) is very small in 

the context of the whole physical universe, but much larger in the context of the 

Earth. Every time the inference system is invoked it must assume a certain context 

size |U|, and there are no rigid mathematical rules for doing this. Rather, this pa-

rameter-setting task is a job for cognitive schema, which are learned by a host of 

processes in conjunction, including inference conducted with respect to the im-

plicit local context generically associated with schema learning. 

2.6 Higher-Order Logical Relationships 

The first-order logical relationships reviewed above are all relationships be-

tween basic terms. But the same sorts of probabilistic logical relationships may be 

seen to hold between more complex expressions involving variables (or variable-

equivalent constructs like SatisfyingSets). ExtensionalImplication, for example, is 

a standard logical implication between predicates. In PLN-HOI we have the notion 

of a predicate similar to standard predicate logic as a function that maps argu-

ments into truth-values. We have an Evaluation relationship so that, e.g., for the 

predicate isMale,  

Evaluation isMale Ben_Goertzel <1> 

Evaluation isMale Izabela_Goertzel <0> 

Evaluation isMale Hermaphroditus <0.5> 

So if we have the relationship 
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ExtensionalImplication isMale hasPenis <.99> 

this means 

isMale($X) implies hasPenis($X) <.99> 

or in other words 

ExtensionalImplication <.99> 

 Evaluation isMale $X 

 Evaluation hasPenis $X 

or  

P( Evaluation hasPenis $X | Evaluation isMale $X) = 

.99 

Note that we have introduced a new notational convention here: the names of 

variables that are arguments of Predicates are preceded by the $ sign. This conven-

tion will be used throughout the book. 

Regarding the treatment of the non-crisp truth-values of the Evaluation rela-

tionships, the same considerations apply here as with Subset and Member relation-

ships. Essentially we are doing fuzzy set theory here and may use the min(,) func-

tion between the Evaluation relationship strengths. As this example indicates, the 

semantics of higher-order PLN relationships thus basically boils down to the se-

mantics of first-order PLN relationships. To make this observation formal we must 

introduce the SatisfyingSet operator. 

We define the SatisfyingSet of a Predicate as follows: the SatisfyingSet of a 

Predicate is the set whose members are the elements that satisfy the Predicate. 

Formally, that is: 

S = SatisfyingSet P 

means  

( Member $X S ).tv = ( Evaluation P $X).tv 

In PLN, generally speaking, one must consider not only Predicates that are explic-

itly embodied in Predicate objects, but also Predicates defined implicitly by rela-

tionship types; e.g., predicates like 

P($x) = Inheritance $x A 

This means that relationships between relationships may be considered as a spe-

cial case of relationships between predicates. 

In any case, given an individual Predicate h we can construct SatisfyingSet(h), 

and we can create an average over a whole set of Predicates h, 

B ! SatisfyingSet(h) ! A ! SatisfyingSet(h) 
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Thus, information about h(x) for various x !B and x ! A and various 

Predicates h can be used to estimate the strengths of subset relationships between 

sets.  

Also note that in dealing with SatisfyingSets we will often have use for the 

Predicate NonEmpty, which returns 1 if its argument is nonempty and 0 if its ar-

gument is the empty set. For instance, 

Evaluation NonEmpty (SatisfyingSet (eats_bugs)) <1> 

means that indeed, there is somebody or something out there who eats bugs. 

The main point of SatisfyingSets is that we can use them to map from higher-

order into first-order. A SatisfyingSet maps Evaluation relationships into Member 

relationships, and hence has the side effect of mapping higher-order relations into 

ordinary first-order relations between sets. In other words, by introducing this one 

higher-order relationship (SatisfyingSet) as a primitive we can automatically get 

all other higher-order relationships as consequences. So using SatisfyingSets we 

don’t need to introduce special higher-order relationships into PLN at all. How-

ever, it turns out to be convenient to introduce them anyway, even though they are 

“just” shorthand for expressions using SatisfyingSets and first-order logical rela-

tionships. 

To understand the reduction of higher-order relations to first-order relations us-

ing SatisfyingSets, let R1 and R2 denote two (potentially different) relationship 

types and let X denote an Atom-valued variable, potentially restricted to some 

subclass of Atoms such as a particular term or relationship type. For example, we 

may construct the following higher-order relationship types: 

 

ExtensionalImplication 

 R1 A X 

 R2 B X 

equals 

Subset 

 SatisfyingSet(R1 A X) 

 SatisfyingSet(R2 B X) 

 

Implication 

 R1 A X 

 R2 B X 

equals 

Inheritance 

SatisfyingSet(R1 A X) 

 SatisfyingSet(R2 B X) 

 

ExtensionalEquivalence 

 R1 A X 
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 R2 B X 

equals 

ExtensionalSimilarity 

 SatisfyingSet(R1 A X) 

 SatisfyingSet(R2 B X) 

Equivalence 

 R1 A X 

 R2 B X 

equals 

Similarity 

SatisfyingSet(R1 A X) 

 SatisfyingSet(R2 B X) 

 

Higher-order purely intensional symmetric and asymmetric logical relation-

ships are omitted in the table, but may be defined analogously. 

To illustrate how these higher-order relations work, consider an example 

higher-order relationship, expressed in first-order logic notation as 

! X (Member Ben X) ! (Inheritance scientists X) 

This comes out in PLN notation as:  

ExtensionalImplication 

Member Ben X 

Inheritance scientists X 

(“if Ben is a member of the group X, then X must contain scientists”), or equiva-

lently 

Subset 

SatisfyingSet (Member Ben)  

SatisfyingSet (Inheritance scientists)  

(“the set of groups X that satisfies the constraint ‘MemberRelationship Ben X’ is a 

subset of the set of groups X that satisfies the constraint ‘Inheritance scientists 

X.’”) 

While the above examples have concerned single-variable relationships, the 

same concepts and formalism work for the multiple-variable case, via the mecha-

nism of using a single list-valued variable to contain a list of component variables.  

2.7 N-ary Logical Relationships 

The next representational issue we will address here has to do with relation-

ships that have more than one argument. We don’t just want to be able to say that 
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cat inherits from animal, we want to be able to say that cats eat mice, that flies 

give diseases to people, and so forth. We want to express complex n-ary relations, 

and then reason on them.  

In PLN there are two ways to express an n-ary relation: using list relationships, 

and using higher-order functions. Each has its strengths and weaknesses, so the 

two are used in parallel. For instance, the list approach is often more natural for 

inferences using n-ary relationships between simple terms, whereas the higher-

order function approach is often more natural for many aspects of inference in-

volving complex Predicates.  

2.7.1  The List/Set Approach  

The List approach to representing n-ary relations is very simple. An n-ary rela-

tion f with the arguments x1, …, xn is represented as a Predicate, where 

Evaluation f (x1, …, xn) 

So for instance, the relationship “Ben kicks Ken” becomes roughly 

Evaluation kicks (Ben, Ken) 

This doesn’t take the temporal aspect of the statement into account, but we will 

ignore that for the moment (the issue will be taken up later on). 

In some cases one has a relationship that is symmetric with respect to its argu-

ments. One way to represent this is to use a Set object for arguments. For instance, 

to say “A fuses with B” we may say 

Evaluation fuse {A, B} 

where {A, B} is a Set. This kind of representation is particularly useful when one 

is dealing with a relationship with a large number of arguments, as often occurs 

with the processing of perceptual data. 

2.7.2  Curried Functions 

Another way to represent n-ary functions – in the spirit of Haskell rather 

than LISP – is using function currying. For example, a different representation of 

“Ben kicks Ken” is 

Evaluation (kick Ben) Ken 

where in this case the interpretation is that (kick Ben) is a function that outputs a 

Predicate function that tells whether its argument is kicked by Ben or not. Strictly, 

of course, the kick in this example is not the same as the kick in the argument list 

example; a more correct notation would be, for instance, 
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Evaluation kick_List (Ben, Ken) 

Evaluation (kick_curry Ben) Ken 

In a practical PLN system these two functions will have to be represented by 

different predicates, with the equivalence relation 

Equivalence 

Evaluation (kick_curry $x) $y  

Evaluation kick_List ($x, $y) 

and/or one or more of the listification relations 

kick_List = listify kick_curry 

kick_curry = unlistify kick_List 

stored in the system to allow conversion back and forth.  

Another representation is then 

Evaluation (kick_curry_2 Ken) Ben 

which corresponds intuitively to the passive voice “Ken was kicked by Ben.” We 

then have the conceptual equivalences 

kick_curry = “kicks” 

kick_curry_2 = “is kicked by” 

Note that the relation between kick_curry and kick_curry_2 is trivially repre-

sentable using the C combinator (note that in this book we use the notational 

convention that combinators are underlined) by 

kick_curry = C kick_curry_2 

Mathematical properties of Predicates are easily expressed in this notation. For 

instance, to say that the Predicate fuse is symmetric we need only use the higher-

order relationship 

EquivalenceRelationship 

fuse 

 C fuse 

or we could simply say 

Inheritance fuse symmetric 

where the Predicate symmetric is defined by 

ExtensionalEquivalence 

 Evaluation symmetric $X 

 Equivalence 

  $X 

  C $X 
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Chapter 3: Experiential Semantics 

Abstract   Chapter 3 is a brief chapter in which we discuss the conceptual inter-

pretation of the terms used in PLN, according to the scheme we have deployed 

when utilizing PLN to carry out inferences regarding the experience of an embod-

ied agent in a simulated world. This is what we call “experiential semantics.”  The 

PLN mathematics may also be applied using different semantic assumptions, for 

instance in a logical theorem-proving context. But the development of PLN has 

been carried out primarily in the context of experiential semantics, and that will be 

our focus here. 

3.1 Introduction 

Most of the material in this book is mathematical and formal rather than phi-

losophical in nature. Ultimately, however, the mathematics of uncertain logic is 

only useful when incorporated into a practical context involving non-logical as 

well as logical aspects; and the integration of logic with non-logic necessarily re-

quires the conceptual interpretation of logical entities.  

The basic idea of experiential semantics is that the interpretation of PLN terms 

and relationships should almost always be made in terms of the observations made 

by a specific system in interacting with the world. (Some of these observations 

may, of course, be observations of the system itself.)   The numerous examples 

given in later (and prior) sections regarding “individuals” such as people, cats and 

so forth, can’t really be properly interpreted without attention to this fact, and in 

particular to the experiential semantics of individuals to be presented here. What 

makes PLN’s experience-based semantics subtle, however, is that there are many 

PLN terms and relationships that don’t refer directly to anything in the world the 

PLN reasoning system is observing. But even for the most abstract relationships 

and concepts expressed in PLN, the semantics must ultimately be grounded in ob-

servations.  
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3.2 Semantics of Observations 

In experiential semantics, we are considering PLN as a reasoning system in-

tended for usage by an embodied AI agent: one with perceptions and actions as 

well as cognitions. The first step toward concretizing this perspective is to define 

what we mean by observations.  

While PLN is mostly about statements with probabilistic truth values, at the 

most basic semantic level it begins with Boolean truth-valued statements. We call 

these basic Boolean truth-valued statements “elementary observations.”   Elemen-

tary observations may be positive or negative. A positive observation is one that 

occurred; a negative observation is one that did not occur. Elementary observa-

tions have the property of unity: each positive elementary observation occurs 

once. This occurrence may be effectively instantaneous or it may be spread over a 

long period of time. But each elementary observation occurs once and is associ-

ated with one particular set of time-points. 

In the experiential-semantics approach, PLN’s probabilistic statements may all 

ultimately be interpreted as statements about sets of elementary observations. In 

set-theoretic language, these elementary observations are “atoms” and PLN Con-

cept terms are sets built up from these “atoms.”  However we won’t use that ter-

minology much here, since in PLN the term Atom is used to refer to any PLN 

term or relationship. Instead, we will call these “elementary terms.”  In an experi-

ential-semantics approach to PLN, these are the basic terms out of which the other 

PLN terms and relationships are built.  

For example, in the context of an AI system with a camera eye sensor, an ele-

mentary observation might be the observation A defined by 

 

A = "the color of the pixel at location (100, 105) is 

 blue at time 2:13:22PM on Tuesday January 6, 

2004."   

Each elementary observation may be said to contain a certain number of bits of 

information; for instance, an observation of a color pixel contains more bits of in-

formation than an observation of a black-and-white pixel. 

3.2.1  Inference on Elementary Observations 

Having defined elementary observations, one may wish to draw implication re-

lationships between them. For instance, if we define the elementary observations 
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B = "blue was observed by me at time 2:13:22PM on 

 Tuesday January 6, 2004"  

C = "blue was observed by me on Tuesday January 6, 

 2004" 

 

then we may observe that 

 

A implies B 

B implies C 

A implies C 

 

However, the semantics of this sort of implication is somewhat subtle. Since 

each elementary observation occurs only once, there is no statistical basis on 

which to create implications between them. To interpret implications between 

elementary observations, one has to look across multiple “possible universes,” and 

observe that for instance, in any possible universe in which A holds, C also holds. 

This is a valid form of implication, but it’s a subtle one and occurs as a later de-

velopment in PLN semantics, rather than at a foundational level. 

3.2.2  Inference on Sets of Elementary Observations 

Next, sets of elementary observations may be formed and their unions and in-

tersections may be found, and on this basis probabilistic logical relationships be-

tween these sets may be constructed. For instance, if 

 

X = the set of all observations of dark blue 

Y = the set of all observations of blue 

 

then it’s easy to assign values to P(X|Y) and P(Y|X) based on experience. 

 

P(X|Y) = the percentage of observations of blue that 

are also observations of dark blue 

P(Y|X) = 1, because all observations of dark blue are 

observations of blue 

 

Probabilistic inference on sets of observations becomes interesting because, in 

real-world intelligence, each reasoning system collects far more observations than 

it can retain or efficiently access. Thus it may retain the fact that  

 

P(dark blue | blue) = .3 
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without retaining the specific examples on which this observation is founded. The 

existence of “ungrounded” probabilistic relationships such as this leads to the need 

for probabilistic inference using methods like the PLN rules. 

In this context we may introduce the notion of “intension,” considered broadly 

as “the set of attributes possessed by a term.”   This is usually discussed in con-

trast to “extension,” which is considered as the elements in the set denoted by a 

term. In the absence of ungrounded probabilities, inference on sets of observations 

can be purely extensional. However, if a reasoning system has lost information 

about the elements of a set of observations, but still knows other sets the set be-

longs to, or various conditional probabilities relating the set to other sets, then it 

may reason about the set using this indirect information rather than the (forgotten) 

members of the set – and this reasoning may be considered “intensional.”  This is 

a relatively simple case of intensionality, as compared to intensionality among in-

dividuals and sets thereof, which will be discussed below. 

3.3 Semantics of Individuals  

While the basic semantics of PLN is founded on observations, most of the con-

crete PLN examples we will give in these pages involve individual entities (peo-

ple, animals, countries, and so forth) rather than directly involving observations. 

The focus on individuals in this text reflects the level at which linguistic discourse 

generally operates, and shouldn’t be taken as a reflection of the level of applicabil-

ity of PLN: PLN is as applicable to perception-and-action-level elementary obser-

vations as it is to abstract inferences about individuals and categories of individu-

als. However, reasoning about individuals is obviously a very important aspect of 

commonsense reasoning; and so, in this section, we give an explicit treatment of 

the semantics of individuals. Reasoning regarding individuals is a somewhat sub-

tler issue than reasoning regarding observations, because the notion of an “indi-

vidual” is not really a fundamental concept in mathematical logic.  

Conventional approaches to formalizing commonsense inference tend to con-

fuse things by taking individuals as logical atoms. In fact, in the human mind or 

the mind of any AI system with a genuine comprehension of the world, individu-

als are complex cognitive constructs. Observations are much more naturally taken 

as logical atoms, from a mathematical and philosophical and cognitive-science 

point of view. However, from a practical commonsense reasoning point of view, if 

one takes elementary observations as logical atoms, then inference regarding indi-

viduals can easily become horribly complex, because the representation of a 

pragmatically interesting individual in terms of elementary observations is gener-

ally extremely complex. PLN works around this problem by synthesizing individ-

ual-level and observation-level inference in a way that allows individual-level in-

ference to occur based implicitly on observation-level semantics. This is a subtle 

point that is easy to miss when looking at practical PLN inference examples, in 

which individual- and observation-level semantics are freely intermixed in a con-
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sistent way. This free intermixture is only possible because the conceptual founda-

tions of PLN have been set up in a proper way. 

Let’s consider an example of an individual: the orange cat named Stripedog1 

who is sitting near me (Ben Goertzel) as I write these words. What is Stripedog? 

In PLN terms, Stripedog is first of all a complex predicate formed from elemen-

tary observations. Given a set of elementary observations, my mind can evaluate 

whether this set of observations is indicative of Stripedog’s presence or not. It 

does so by evaluating a certain predicate whose input argument is a set of elemen-

tary observations and whose output is a truth value indicating the “degree of 

Stripedogness” of the observation set. 

At this point we may introduce the notion of the “usefulness” of an argument 

for a predicate, which will be important later on. If a predicate P is applied to an 

observation set S, and an observation O lies in S, then we say that O is important 

for (P, S) if removing O from S would alter the strength of the truth value of P as 

applied to S. Otherwise O is unimportant for (P, S). We will say that an observa-

tion set S is an identifier for P if one of two conditions holds: 

 

Positive identifier: S contains no elements that are unimportant for (P, S), or 

Negative identifier: P applied to S gives a value of 0 

 

Of course, in addition to the observational model of Stripedog mentioned 

above, I also have an abstract model of Stripedog in my mind. According to this 

abstract model, Stripedog is a certain pattern of arrangement of molecules. The in-

dividual molecules arranged in the Stripedogish pattern are constantly disappear-

ing and being replaced, but the overall pattern of arrangement is retained. This ab-

stract model of Stripedog exists in my mind because I have an abstract model of 

the everyday physical world in my mind, and I have some (largely ungrounded) 

implications that tell me that when a Stripedoggish elementary observation set is 

presented to me, this implies that a Stripedoggish pattern of arrangement of mole-

cules is existent in the physical world that I hypothesize to be around me. 

The Stripedog-recognizing predicate, call it FStripedog, has a SatisfyingSet that 

we may denote simply as stripedog, defined by 

 

ExtensionalEquivalence 

Member $X stripedog 

 AND 

Evaluation FStripedog $X 

  Evaluation isIdentifier ($X, FStripedog) 

 

The predicate isIdentifier(S,P) returns True if and only if the set S is an identifier 

for the predicate P, in the sense defined above. 

                                                             
1 In case you’re curious, “Stripedog” is a colloquialism for “badger” -- a word 

that Ben Goertzel’s son Zebulon discovered in the Redwall books by Brian 

Jacques, and decided was an excellent name for a cute little orange kitten-cat. 
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This set, stripedog, is the set of all observation sets that are identifiers for the 

individual cat named Stripedog, with a fuzzy truth value function defined by the 

extent to which an observation set is identified as being an observation of Stripe-

dog. 

3.3.1  Properties of Individuals 

Now, there may be many predicates that imply and/or are implied by FStripedog to 

various degrees. For instance there’s a predicate Fliving_being that says true whenever 

a living being is observed; clearly 

 

Implication FStripedog Fliving_being 

 

holds with a strength near 1 (a strength 1 so far, based on direct observation, since 

Stripedog has not yet been seen dead; but a strength <1 based on inference since 

it’s inferred that it’s not impossible, though unlikely, to see him dead). And,  

 

Implication FStripedog Forange<.8,.99> 

 

holds as well – the .8 being because when Stripedog is seen at night, he doesn’t 

look particularly orange. 

Those predicates that are probabilistically implied by the Stripedog-defining 

predicate are what we call properties of Stripedog.  

Note that if 

 

Implication F G 

 

holds, then 

 

Inheritance (SatisfyingSet F) (SatisfyingSet G) 

 

holds. So properties of Stripedog correspond to observation sets that include ob-

servations of Stripedog plus other, non-Stripedoggish observations. 

3.4 Experiential Semantics and Term Probabilities 

Another conceptual issue that arises in PLN related to experiential semantics is 

the use of term probabilities. It is reasonable to doubt whether a construct such as 

P(cat) or P(Stripedog) makes any common sense – as opposed to conditional 

probabilities denoting the probabilities of these entities in some particular con-

texts. In fact we believe there is a strong cognitive reason for a commonsense rea-
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soning engine to use default term probabilities, and one that ties in with experien-

tial semantics and merits explicit articulation. 

The key point is that the default probability of a term represents the probability 

relative to the context of the entire universe as intellectually understood by the 

reasoning system. This would be nebulous to define and of extremely limited util-

ity. Rather, a term probability should represent the probability of the class denoted 

by the term relative to the organism’s (direct and indirect) experience.  

An analogy to everyday human experience may be worthwhile. Outside of 

formal contexts like science and mathematics, human organisms carry out com-

monsense reasoning within the default context of their everyday embodied life. So 

for instance in our everyday thinking we assume as a default that cats are more 

common than three-eared wombats. Though we can override this if the specific 

context calls for it. 

So, we conjecture, the term probability of “cat” in a typical human mind is 

shorthand for “the term probability of cat in the default context of my everyday 

life” – but it is not represented anything like this; rather, the “everyday life” con-

text is left implicit. 

Formalistically, we could summarize the above discussion by saying that: The 

default term probability of X is the weighted average of the probability of X 

across all contexts C, where each context C is weighted by its importance to the 

organism. 

In this sense, default term probabilities become more heuristic than context-

specific probabilities. And they also require concepts outside PLN for their defini-

tion, relying on the embedding of PLN in some broader embodied cognition 

framework such as the NCE. 

The conceptual reason why this kind of default node probability is useful is that 

doing all reasoning contextually is expensive, as there are so many contexts. So as 

an approximation, assuming a default experiential context is very useful. But the 

subtlety is that for an organism that can read, speak, listen, and so forth, the “eve-

ryday experiential context” needs to go beyond what is directly experienced with 

the senses. 

3.5 Conclusion 

In this brief chapter, beginning with elementary observations, we have built up 

to individuals and their properties. The semantic, conceptual notions presented 

here need not be invoked explicitly when reviewing the bulk of the material in this 

book, which concerns the mathematics of uncertain truth value estimation in PLN. 

However, when interpreting examples involving terms with names like “Ben” and 

“cat”, it is important to remember that in the context of the reasoning carried out 

by an embodied agent, such terms are not elementary indecomposables but rather 

complex constructs built up in a subtle way from a large body of elementary ob-

servations. 
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Chapter 4: Indefinite Truth Values 

Abstract In this chapter we develop a new approach to quantifying uncertainty via 

a hybridization of Walley’s theory of imprecise probabilities and Bayesian credi-

ble intervals. This “indefinite probability” approach provides a general method for 

calculating the “weight-of-evidence” underlying the conclusions of uncertain in-

ferences. Moreover, both Walley’s imprecise beta-binomial model and standard 

Bayesian inference can be viewed mathematically as special cases of the more 

general indefinite probability model.  

4.1 Introduction 

One of the major issues with probability theory as standardly utilized involves 

the very quantification of the uncertainty associated with statements that serve as 

premises or conclusions of inference. Using a single number to quantify the uncer-

tainty of a statement is often not sufficient, a point made very eloquently by Wang 

(Wang 2004), who argues in detail that the standard Bayesian approach does not 

offer any generally viable way to assess or reason about the “second-order uncer-

tainty” involved in a given probability assignment. Probability theory provides 

richer mechanisms than this: one may assign a probability distribution to a state-

ment, instead of a single probability value. But what if one doesn’t have the data 

to fill in a probability distribution in detail? What is the (probabilistically) best ap-

proach to take in the case where a single number is not enough but the available 

data doesn’t provide detailed distributional information? Current probability the-

ory does not address this issue adequately. Yet this is a critical question if one 

wants to apply probability theory in a general intelligence context. In short, one 

needs methods of quantifying uncertainty at an intermediate level of detail be-

tween single probability numbers and fully known probability distributions. This 

is what we mean by the question: What should an uncertain truth-value be, so that 

a general intelligence may use it for pragmatic reasoning? 

4.2 From Imprecise Probabilities to Indefinite Probabilities 

Walley’s (Walley 1991) theory of imprecise probabilities seeks to address this 

issue, via defining interval probabilities, with interpretations in terms of families 

of probability distributions. The idea of interval probabilities was originally intro-
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duced by Keynes (Keynes 1921, 2004), but Walley’s version is more rigorous, 

grounded in the theory of envelopes of probability distributions. Walley’s inter-

vals, so-called “imprecise probabilities,” are satisfyingly natural and consistent in 

the way they handle uncertain and incomplete information. However, in spite of a 

fair amount of attention over the years, this line of research has not yet been de-

veloped to the point of yielding robustly applicable mathematics. 

Using a parametrized envelope of (beta-distribution) priors rather than assum-

ing a single prior as would be typical in the Bayesian approach, Walley (Walley 

1991, 1996) concludes that it is plausible to represent probabilities as intervals of 

the form 

! 
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n + k
,
m + k

n + k

" 

# $ 
% 

& ' 
. In this formula n represents the total number of observa-

tions, m represents the number of positive observations, and k is a parameter that 

Walley calls s and derives as a parameter of the beta distribution. Walley calls this 

parameter the learning parameter, while we will refer to it as the lookahead pa-

rameter. Note that the width of the interval of probabilities is inversely related to 

the number of observations n, so that the more evidence one has, the narrower the 

interval. The parameter k determines how rapidly this narrowing occurs. An inter-

val of this sort is what Walley calls an “imprecise probability.” 

Walley’s approach comes along with a host of elegant mathematics including a 

Generalized Bayes’ Theorem. However it is not the only approach to interval 

probabilities. For instance, one alternative is Weichselberger’s (Weichselberger, 

2003) axiomatic approach, which works with sets of probabilities of the form [L, 

U] and implies that Walley’s generalization of Bayes’ rule is not the correct one. 

One practical issue with using interval probabilities like Walley’s or Weichsel-

berger’s in the context of probabilistic inference rules (such as those used in PLN) 

is the pessimism implicit in interval arithmetic. If one takes traditional probabilis-

tic calculations and simplistically replaces the probabilities with intervals, then 

one finds that the intervals rapidly expand to [0, 1]. This fact simply reflects the 

fact that the intervals represent “worst case” bounds. This same problem also af-

fects Walley’s and Weichselberger’s more sophisticated approaches, and other ap-

proaches in the imprecise probabilities literature. The indefinite probabilities ap-

proach presented here circumvents these practical problems by utilizing interval 

probabilities that have a different sort of semantics – closely related to, but not the 

same as, those of Walley’s interval probabilities. 

Indefinite probabilities, as we consider them here, are represented by quadru-

ples of the form <(L, U], b, k>– thus, they contain two additional numbers beyond 

the [L, U] interval truth values proposed by Keynes, and one number beyond the 

<(L, U], k> formalism proposed by Walley. The semantics involved in assigning 

such a truth value to a statement S is, roughly, “I assign a probability of b to the 

hypothesis that, after I have observed k more pieces of evidence, the truth value I 

assign to S will lie in the interval [L, U].” In the practical examples presented here 

we will hold k constant and thus will deal with truth value triples <(L, U], b>. 

The inclusion of the value b, which defines the credibility level according to 

which [L, U] is a credible interval (for hypothesized future assignments of the 
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probability of S, after observing k more pieces of evidence), is what allows our in-

tervals to generally remain narrower than those produced by existing imprecise 

probability approaches. If b=1, then our approach essentially reduces to imprecise 

probabilities, and in pragmatic inference contexts tends to produce intervals [L, U] 

that approach [0, 1]. The use of b<1 allows the inferential production of narrower 

intervals, which are more useful in a real-world inference context. 

In practice, to execute inferences using indefinite probabilities we make heuris-

tic distributional assumptions, assuming a “second-order” distribution which has 

[L, U] as a (100*b)% credible interval, and then “first-order” distributions whose 

means are drawn from the second-order distribution. These distributions are to be 

viewed as heuristic approximations intended to estimate unknown probability val-

ues existing in hypothetical future situations. The utility of the indefinite probabil-

ity approach may be dependent on the appropriateness of the particular distribu-

tional assumptions to the given application situation. But in practice we have 

found that a handful of distributional forms seem to suffice to cover commonsense 

inferences (beta and bimodal forms seem good enough for nearly all cases; and 

here we will give only examples covering the beta distribution case). 

Because the semantics of indefinite probabilities is different from that of ordi-

nary probabilities, or imprecise probabilities, or for example NARS truth values, it 

is not possible to say objectively that any one of these approaches is “better” than 

the other one, as a mathematical formalism. Each approach is better than the oth-

ers at mathematically embodying its own conceptual assumptions. From an AGI 

perspective, the value of an approach to quantifying uncertainty lies in its useful-

ness when integrated with a pragmatic probabilistic reasoning engine. While com-

plicated and dependent on many factors, this is nevertheless the sort of evaluation 

that we consider most meaningful. 

Section 4.3 deals with the conceptual foundations of indefinite probabilities, 

clarifying their semantics in the context of Bayesian and frequentist philosophies 

of probability. Section 4.4 outlines the pragmatic computational method we use 

for doing probabilistic and heuristic inference using indefinite probabilities. 

4.3 The Semantics of Uncertainty 

The main goal of this chapter is to present indefinite probabilities as a prag-

matic tool for uncertain inference, oriented toward utilization in AGI systems. 

Before getting practical, however, we will pause in this section to discuss the con-

ceptual, semantic foundations of the “indefinite probability” notion. In the course 

of developing the indefinite probabilities approach, we found that the thorniest as-

pects lay not in the mathematics or software implementation, but rather in the con-

ceptual interpretation of the truth values and their roles in inference. 

In the philosophy of probability, there are two main approaches to interpreting 

the meaning of probability values, commonly labeled frequentist and Bayesian 

(Stanford Encyclopedia of Philosophy 2003). There are many shades of meaning 
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to each interpretation, but the essential difference is easy to understand. The fre-

quentist approach holds that a probability should be interpreted as the limit of the 

relative frequency of an event-category, calculated over a series of events as the 

length of the series tends to infinity. The subjectivist or Bayesian approach holds 

that a probability should be interpreted as the degree of belief in a statement, held 

by some observer; or in other words, as an estimate of how strongly an observer 

believes the evidence available to him supports the statement in question. Early 

proponents of the subjectivist view were Ramsey (Ramsey 1931) and de Finetti 

(de Finetti 1974-75), who argued that for an individual to display self-consistent 

betting behavior they would need to assess degrees of belief according to the laws 

of probability theory. More recently Cox’s theorem (Cox 1946) and related 

mathematics (Hardy 2002) have come into prominence as providing a rigorous 

foundation for subjectivist probability. Roughly speaking, this mathematical work 

shows that if the observer assessing subjective probabilities is to be logically con-

sistent, then their plausibility estimates must obey the standard rules of probabil-

ity.  

From a philosophy-of-AI point of view, neither the frequentist nor the subjec-

tivist interpretations, as commonly presented, is fully satisfactory. However, for 

reasons to be briefly explained here, we find the subjectivist interpretation more 

acceptable, and will consider indefinite probabilities within a subjectivist context, 

utilizing relative frequency calculations for pragmatic purposes but giving them an 

explicitly subjectivist rather than frequentist interpretation. 

The frequentist interpretation is conceptually problematic in that it assigns 

probabilities only in terms of limits of sequences, not in terms of finite amounts of 

data. Furthermore, it has well-known difficulties with the assignment of probabili-

ties to unique events that are not readily thought of as elements of ensembles. For 

instance, what was the probability, in 1999, of the statement S holding that “A 

great depression will be brought about by the Y2K problem”? Yes, this probability 

can be cast in terms of relative frequencies in various ways. For instance, one can 

define it as a relative frequency across a set of hypothetical “possible worlds”: 

across all possible worlds similar to our own, in how many of them did the Y2K 

problem bring about a great depression? But it’s not particularly natural to assume 

that this is what an intelligence must do in order to assign a probability to S. It 

would be absurd to claim that, in order to assign a probability to S, an intelligence 

must explicitly reason in terms of an ensemble of possible worlds. Rather, the 

claim must be that whatever reasoning a mind does to evaluate the probability of S 

may be implicitly interpreted in terms of possible worlds. This is not completely 

senseless, but is a bit of an irritating conceptual stretch. 

The subjectivist approach, on the other hand, is normally conceptually founded 

either on rational betting behaviors or on Cox’s theorem and its generalizations, 

both of which are somewhat idealistic. 

No intelligent agent operating within a plausible amount of resources can em-

body fully self-consistent betting behavior in complex situations. The irrationality 

of human betting behavior is well known; to an extent this is due to emotional rea-
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sons, but there are also practical limitations on the complexity of the situation in 

which any finite mind can figure out the correct betting strategy. 

And similarly, it is too much to expect any severely resource-constrained intel-

ligence to be fully self-consistent in the sense that the assumptions of Cox’s theo-

rem require. In order to use Cox’s theorem to justify the use of probability theory 

by practical intelligences, it seems to us, one would need to take another step be-

yond Cox, and argue that if an AI system is going to have a “mostly sensible” 

measure of plausibility (i.e., if its deviation from Cox’s axioms are not too great), 

then its intrinsic plausibility measure must be similar to probability. We consider 

this to be a viable line of argument, but will pursue this point in another paper – to 

enlarge on such matters here would take us too far afield. 

Walley’s approach to representing uncertainty is based explicitly on a Baye-

sian, subjectivist interpretation; though whether his mathematics has an alternate 

frequentist interpretation is something he has not explored, to our knowledge. 

Similarly, our approach here is to take a subjectivist perspective on the founda-

tional semantics of indefinite probabilities (although we don’t consider this critical 

to our approach; quite likely it could be given a frequentist interpretation as well). 

Within our basic subjectivist interpretation, however, we will frequently utilize 

relative frequency calculations when convenient for pragmatic reasoning. This is 

conceptually consistent because within the subjectivist perspective there is still a 

role for relative frequency calculations, so long as they are properly interpreted. 

Specifically, when handling a conditional probability P(A|B), it may be the case 

that there is a decomposition B=B1+...+Bn so that the Bi are mutually exclusive and 

equiprobable, and each of P(A|Bi) is either 0 or 1. In this case the laws of probabil-

ity tell us P(A|B) = P(A|B1) P(B1| B) + ... + P(A|Bn) P(Bn|B) = (P(A|B1) + ... + 

P(A|Bn))/n, which is exactly a relative frequency. So, in the case of statements that 

are decomposable in this sense, the Bayesian interpretation implies a relative fre-

quency based interpretation (but not a “frequentist” interpretation in the classical 

sense). For decomposable statements, plausibility values may be regarded as the 

means of probability distributions, where the distributions may be derived via sub-

sampling (sampling subsets C of {B1,...,Bn}, calculating P(A|C) for each subset, 

and taking the distribution of these values; as in the statistical technique known as 

bootstrapping). In the case of the “Y2K” statement and other similar statements 

regarding unique instances, one option is to think about decomposability across 

possible worlds, which is conceptually controversial. 

4.4 Indefinite Probability 

We concur with the subjectivist maxim that a probability can usefully be inter-

preted as an estimate of the plausibility of a statement, made by some observer. 

However, we suggest introducing into this notion a more careful consideration of 

the role of evidence in the assessment of plausibility. We introduce a distinction 

that we feel is critical, between 
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• the ordinary (or “definite”) plausibility of a statement, interpreted as the degree 

to which the evidence already (directly or indirectly) collected by a particular 

observer supports the statement. 

• the “indefinite plausibility” of a statement, interpreted as the degree to which 

the observer believes that the overall body of evidence potentially available to 

him supports the statement. 

The indefinite plausibility is related to the ordinary plausibility, but also takes 

into account the potentially limited nature of the store of evidence collected by the 

observer at a given point in time. While the ordinary plausibility is effectively rep-

resented as a single number, the indefinite plausibility is more usefully represented 

in a more complex form. We suggest to represent an indefinite plausibility as a 

quadruple <(L, U], b, k>, which when attached to a statement S has the semantics 

“I assign an ordinary plausibility of b to the statement that ‘Once k more items of 

evidence are collected, the ordinary plausibility of the statement S will lie in the 

interval [L, U]’.” Note that indefinite plausibility is thus defined as “second-order 

plausibility” – a plausibility of a plausibility. 

As we shall see in later sections of the paper, for most computational purposes 

it seems acceptable to leave the parameter k in the background, assuming it is the 

same for both the premises and the conclusion of an inference. So in the following 

we will speak mainly of indefinite probabilities as <(L, U], b> triples, for sake of 

simplicity. The possibility does exist, however, that in future work inference algo-

rithms will be designed that utilize k explicitly. 

Now, suppose we buy the Bayesian argument that ordinary plausibility is best 

represented in terms of probability. Then it follows that indefinite plausibility is 

best represented in terms of second-order probability; i.e., as “I assign probability 

b to the statement that ‘Once k more items of evidence have been collected, the 

probability of the truth of S based on this evidence will lie in the interval [L, U]’.” 

4.4.1  An Interpretation in Terms of Betting Behavior 

To justify the above definition of indefinite probability more formally, one ap-

proach is to revert to betting arguments of the type made by de Finetti in his work 

on the foundations of probability. As will be expounded below, for computational 

purposes we have taken a pragmatic frequentist approach based on underlying dis-

tributional assumptions. However, for purposes of conceptual clarity, a more sub-

jectivist de Finetti style justification is nevertheless of interest. So, in this subsec-

tion we will describe a “betting scenario” that leads naturally to a definition of 

indefinite probabilities. 

Suppose we have a category C of discrete events; e.g., a set of tosses of a cer-

tain coin, which has heads on one side and tails on the other. Next, suppose we 

have a predicate S, which is either True or False (Boolean values) for each event 

within the above event-category C. For example, if C is a set of tosses of a certain 
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coin, then S could be the event “Heads.” S is a function from events into Boolean 

values. 

If we have an agent A, and the agent A has observed the evaluation of S on n 

different events, then we will say that n is the amount of evidence that A has ob-

served regarding S; or we will say that A has made n observations regarding S. 

Now consider a situation with three agents: the House, the Gambler, and the 

Meta-gambler. As the name indicates, House is going to run a gambling operation, 

involving generating repeated events in category C, and proposing bets regarding 

the outcome of future events in C. 

More interestingly, House is also going to propose bets to Meta-gambler re-

garding the behavior of Gambler. 

Specifically, suppose House behaves as follows. 

After Gambler makes n observations regarding S, House offers Gambler the 

opportunity to make what we‘ll call a “de Finetti” type bet regarding the outcome 

of the next observation of S. That is, House offers Gambler the opportunity: 

You must set the price of a promise to pay $1 if the next observation of S comes out True, 
and $0 if it does not. You must commit that I will be able to choose to either buy such a 

promise from you at the price you have set, or to require you to buy such a promise from 

me. In other words: you set the odds, but I decide which side of the bet will be yours. 

Assuming Gambler does not want to lose money, the price Gambler sets in such a 

bet is the “operational subjective probability” that Gambler assigns that the next 

observation of S will come out True. 

As an aside, House might also offer Gambler the opportunity to bet on se-

quences of observations; e.g., it might offer similar “de Finetti” price-setting op-

portunities regarding predicates like “The next 5 observations of S made will be in 

the ordered pattern (True, True, True, False, True).” In this case, things become 

interesting if we suppose Gambler thinks that: For each sequence Z of {True, 

False} values emerging from repeated observation of S, any permutation of Z has 

the same (operational subjective) probability as Z. Then, Gambler thinks that the 

series of observations of S is “exchangeable,” which means intuitively that S’s 

subjective probability estimates are really estimates of the “underlying probability 

of S being true on a random occasion.” Various mathematical conclusions follow 

from the assumption that Gambler does not want to lose money, combined with 

the assumption that Gambler believes in exchangeability. 

Next, let’s bring Meta-gambler into the picture. Suppose that House, Gambler 

and Meta-gambler have all together been watching n observations of S. Now, 

House is going to offer Meta-gambler a special opportunity. Namely, he is going 

to bring Meta-gambler into the back room for a period of time. During this period 

of time, House and Gambler will be partaking in a gambling process involving the 

predicate S. 

Specifically, while Meta-gambler is in the back room, House is going to show 

Gambler k new observations of S. Then, after the k’th observation, House is going 

to come drag Meta-gambler out of the back room, away from the pleasures of the 

flesh and back to the place where gambling on S occurs. 
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House then offers Gambler the opportunity to set the price of yet another de 

Finetti style bet on yet another observation of S. Before Gambler gets to set his 

price, though, Meta-gambler is going to be given the opportunity of placing a bet 

regarding what price Gambler is going to set. Specifically, House is going to allow 

Meta-gambler to set the price of a de Finetti style bet on a proposition of Meta-

gambler’s choice, of the form: 

Q = “Gambler is going to bet an amount p that lies in the interval [L, U]” 

For instance Meta-gambler might propose 

Let Q be the proposition that Gambler is going to bet an amount lying in [.4, .6] on this 
next observation of S. I’ll set at 30 cents the price of a promise defined as follows: To pay 

$1 if Q comes out True, and $0 if it does not. I will commit that you will be able to choose 

either to buy such a promise from me at this price, or to require me to buy such a promise 
from you. 

I.e., Meta-Gambler sets the price corresponding to Q, but House gets to determine 

which side of the bet to take. Let us denote the price set by Meta-gambler as b; 

and let us assume that Meta-gambler does not want to lose money. Then, b is 

Meta-gambler’s subjective probability assigned to the statement that: 

“Gambler’s subjective probability for the next observation of S being True lies in [L, U].” 

But, recall from earlier that the indefinite probability <[L, U], b, k> attached to S 

means that:  

“The estimated odds are b that after k more observations of S, the estimated probability of S 

will lie in [L, U].”  

or in other words 

“[L, U] is a b-level credible interval for the estimated probability of S after k more 

observations.” 

In the context of an AI system reasoning using indefinite probabilities, there is 

no explicit separation between the Gambler and the Meta-gambler; the same AI 

system makes both levels of estimate. But this is of course not problematic, so 

long as the two components (first-order probability estimation and b-estimation) 

are carried out separately. 

One might argue that this formalization in terms of betting behavior doesn’t 

really add anything practical to the indefinite probabilities framework as already 

formulated. At minimum, however, it does make the relationship between indefi-

nite probabilities and the classical subjective interpretation of probabilities quite 

clear. 

4.4.2  A Pragmatic Frequentist Interpretation 

Next, it is not hard to see how the above-presented interpretation of an indefinite 

plausibility can be provided with an alternate justification in relative frequency 
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terms, in the case where one has a statement S that is decomposable in the sense 

described above. Suppose that, based on a certain finite amount of evidence about 

the frequency of a statement S, one wants to guess what one’s frequency estimate 

will be once one has seen a lot more evidence. This guessing process will result in 

a probability distribution across frequency estimates – which may itself be inter-

preted as a frequency via a “possible worlds” interpretation. One may think about 

“the frequency, averaged across all possible worlds, that we live in a world in 

which the observed frequency of S after k more observations will lie in interval I.” 

So, then, one may interpret <[L, U], b, N> as meaning “b is the frequency of pos-

sible worlds in which the observed frequency of S, after I’ve gathered k more 

pieces of evidence, will lie in the interval [L, U].” 

This interpretation is not as conceptually compelling as the betting-based inter-

pretation given above – because bets are real things, whereas these fictitious pos-

sible worlds are a bit slipperier. However, we make use of this frequency-based 

interpretation of indefinite probabilities in the practical computational implemen-

tation of indefinite probability presented in the following sections – without, of 

course, sacrificing the general Bayesian interpretation of the indefinite probability 

approach. In the end, we consider the various interpretations of probability to be in 

the main complementary rather than contradictory, providing different perspec-

tives on the same very useful mathematics. 

Moving on, then: To adopt a pragmatic frequency-based interpretation of the 

second-order plausibility in the definition of indefinite plausibility, we interpret “I 

assign probability b to the statement that ‘Once k more items of evidence are col-

lected, the probability of the truth of S based on this evidence will lie in the inter-

val [L, U]’” to mean “b is the frequency, across all possible worlds in which I have 

gathered k more items of evidence about S, of worlds in which the statement ‘the 

estimated probability of S lies in the interval [L, U]’ is true.” This frequency-based 

interpretation allows us to talk about a probability distribution consisting of prob-

abilities assigned to values of ‘the estimated probability of S,’ evaluated across 

various possible worlds. This probability distribution is what, in the later sections 

of the paper, we call the “second-order distribution.” For calculational purposes, 

we assume a particular distributional form for this second-order distribution. 

Next, for the purpose of computational implementation, we make the heuristic 

assumption that the statement S under consideration is decomposable, so that in 

each possible world, “the estimated probability of S” may be interpreted as the 

mean of a probability distribution. For calculational purposes, in our current im-

plementation we assume a particular distributional form for these probability dis-

tributions, which we refer to as “the first-order distributions.” 

The adoption of a frequency-based interpretation for the second-order plausibil-

ity seems hard to avoid if one wants to do practical calculations using the indefi-

nite probabilities approach. On the other hand, the adoption of a frequency-based 

interpretation for the first-order plausibilities is an avoidable convenience, which 

is appropriate only in some situations. We will discuss below how the process of 

reasoning using indefinite probabilities can be simplified, at the cost of decreased 
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robustness, in cases where decomposability of the first order probabilities is not a 

plausible assumption. 

So, to summarize, in order to make the indefinite probabilities approach com-

putationally tractable, we begin by restricting attention to some particular family 

D of probability distributions. Then, we interpret an interval probability attached 

to a statement as an assertion that: “There is probability b that the subjective 

probability of the statement, after I have made k more observations, will appear to 

be drawn from a distribution with a mean in this interval.” 

Then, finally, given this semantics and a logical inference rule, one can ask 

questions such as: “If each of the premises of my inference corresponds to some 

interval, so that there is probability b that after k more observations the distribu-

tion governing the premise will appear to have a mean in that interval, then what is 

an interval so that b of the family of distributions of the conclusion have means ly-

ing in that interval?” We may then give this final interval the interpretation that, 

after k more observations, there is a probability b that the conclusion of the infer-

ence will appear to lie in this final interval. (Note that, as mentioned above, the pa-

rameter k essentially “cancels out” during inference, so that one doesn’t need to 

explicitly account for it during most inference operations, so long as one is willing 

to assume it is the same in the premises and the conclusion.) 

In essence, this strategy merges the idea of imprecise probabilities with the 

Bayesian concept of credible intervals; thus the name “indefinite probabilities” 

(“definite” having the meaning of “precise,” but also the meaning of “contained 

within specific boundaries” – Walley’s probabilities are contained within specific 

boundaries, whereas ours are not). 

As hinted above, however, the above descriptions mask the complexity of the 

actual truth-value objects. In the indefinite probabilities approach, in practice, 

each IndefiniteTruthValue object is also endowed with three additional parame-

ters: 

• An indicator of whether [L, U] should be considered as a symmetric or asym-

metric credible interval. 

• A family of “second-order” distributions, used to govern the second-order plau-

sibilities described above. 

• A family of “first-order” distributions, used to govern the first-order plausibil-

ities described above. 

Combined with these additional parameters, each truth-value object essentially 

provides a compact representation of a single second-order probability distribution 

with a particular, complex structure. 

4.5 Truth-Value Conversions 

In our current implementation, we usually use <[L, U], b, k> IndefiniteTruth-

Values for inference. For other purposes however, it is necessary to convert these 
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truth values into SimpleTruthValues, in either (s,w) or (s,n) form. We now derive 

a conversion formula for translating indefinite truth values into simple truth val-

ues. In order to carry out the derivation additional assumptions must be made, 

which is why the formula derived here must be considered “heuristic” from the 

point of view of applications. When the underlying distributional assumptions ap-

ply, the formula is exact, but these assumptions may not always be realistic.  

4.5.1  Calculation of Approximate Conversion Formulas 

To derive conversion formulas we assume that the distributions underlying the 

means within the [L, U] intervals of the indefinite truth values are beta distribu-

tions. Due to the conjugacy of the beta and binomial distributions, this means we 

can model these means as corresponding to Bernoulli trials.  

In order to derive approximate formulas, we first consider the problem “back-

wards”: Given b, n, and k, how can we derive [L, U] from an assumption of an 

underlying Bernoulli process with unknown probability p? We then reverse the 

process to obtain an approach for deriving n given b, k and [L, U]. 

Theorem: Suppose there were x successes in the first n trials of a binomial 

process with an unknown fixed probability p for success. Suppose further that the 

prior probability density f(p=a) is uniform. Then the probability that there will be 

(x+X) successes in the first (n+k) trials is given by  
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 (3) 

The theorem gives a distribution based on n, k and x; and then, applying b, we 

can find a symmetric credible interval [L, U] about s=x/n based on this distribu-

tion.  

Due to small deviations arising from integer approximations, given L, U, b and 

k, the reverse process is somewhat trickier. We now outline two approximate in-

verse procedures. We first exhibit a heuristic algorithmic approach. From the re-

sults of this heuristic approach we then develop an approximate inverse function. 

4.5.1.1 Heuristic Algorithmic Approach 
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3. Form the function v(n)=d[<[L1, U1], b1>, <[L, U], b>], where d[a,b] is 

the standard Euclidean distance from a to b. 

4. Find the value of n that minimizes the function v(n). 

Aside from small deviations arising from integer approximations, n depends in-

versely on the width U-L of the interval [L, U]. To find the n-value in step 4 we 

initially perform a search by setting n=2
j
 for a sequence of j values, until we ob-

tain a b value that indicates we have surpassed the correct n value. We then per-

form a binary search between this maximum value N and N/2. We thus guarantee 

that the actual algorithm is of order O(log n). 

4.5.1.2 Approximate Inverse Function Approach 

As an alternate and faster approach to finding n, we develop a function of L, 

U, k, and b that provides a reasonable approximation for n. We begin by plotting 

the cumulative probabilities given by equation (3) for various values of n, by fol-

lowing the first two steps of the heuristic approach above. Aside from small devia-

tions caused by the discrete nature of the cumulative distribution functions, each 

graph can be approximately modeled by a function of the form 
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For simplicity, we model the dependence of the coefficients 

! 

A  and

! 

B upon 

the values of L, U, and k, linearly. From the data we gathered this appears to be a 

reasonable assumption, though we have not yet derived an analysis of the error of 

these approximations. We will use the notation 
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Finding the values of the coefficients Aij and B yields the following values:  

 

! 

A
111

= -0.00875486  

! 

A
112

= -2.35064019  
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A
121

= 0.002463011 
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A
122

= -0.220372781 
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A
211

= 0.010727656  
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A
212

= 2.803020516  
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A
221

= -0.003647227  

! 

A
222

= 0.437068392   

! 

B
111

= 0.003032946  

! 

B
112

= -0.399778839  

! 

B
121

= -0.004302594  

! 

B
122

= 0.930153781 

! 

B
211

= 0.002803518  

! 

B
212

= -0.593689012  

! 

B
221

= -0.000265616  

! 

B
222

= -0.071902027   

 

Observing that the dependence upon k is relatively negligible compared to the de-

pendence upon L, U, and b, we can alternatively eliminate the k-dependence and 

use instead fixed values for A11=-2.922447948, A12=-0.072074201, 

A21=3.422902859, A22=0.252879708, B11=-0.261903438, B12=0.716893418, 

B21=-0.39831749, and B22=-0.107482534. 

4.5.2  Further Development of Indefinite Probabilities 

In this chapter we have presented the basic idea of indefinite truth values. The 

purpose of the indefinite truth value idea, of course, lies in its utilization in infer-

ence, which is left for later chapters. But our hope is that in this chapter we have 

conveyed the essential semantics of indefinite probabilities, which is utilized, 

along the mathematics, in the integration of indefinite probabilities with inference 

rules. Some of the inferential applications of indefinite probabilities we encounter 

in later chapters will be fairly straightforward, such as their propagation through 

deductive and Bayesian inference. Others will be subtler, such as their application 

in the context of intensional or quantifier inference. In all cases, however, we have 

found the indefinite probability notion useful as a summary measure of truth value 

in a pragmatic inference context. In some cases, of course, a summary approxima-

tion won’t do and one actually needs to retain one or more full probability distri-

butions rather than just a few numbers giving a rough indication. But in reality one 

can’t always use a full representation of this nature due to restrictions on data, 

memory, and processing power; and thus we have placed indefinite probabilities 

in a central role within PLN. As compared with simpler summary truth values 

such as single probability numbers or (probability, weight of evidence) pairs, they 

seem to provide a better compromise between compactness and accuracy. 
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Chapter 5: First-Order Extensional 

Inference — Rules and Strength Formulas 

Abstract   In this chapter we launch into the “meat” of PLN: the specific PLN in-

ference rules, and the corresponding truth-value formulas used to determine the 

strength of the conclusion of an inference rule from the strengths of the premises. 

Inference rules and corresponding truth-value strength formulas comprise a large 

topic; in this chapter we deal with a particular sub-case of the problem: first-order 

extensional inference. 

5.1 Introduction 

Recall that first-order inference refers to inference on relationships between 

terms (rather than on predicates, or relationships between relationships), and that 

extensional inference refers to inference that treats terms as denoting sets with 

members (as opposed to intensional inference, which treats terms as denoting enti-

ties with properties). These first-order extensional rules and truth-value formulas 

turn out to be the core PLN rules truth-value formulas, in the sense that most of 

the rules and formulas for handling higher-order and/or intensional inference 

and/or weight of evidence are derived as re-interpretations of the first-order exten-

sional rules and associated strength formulas. Higher-order inference, intensional 

inference, and weight of evidence formulas are handled separately in later chap-

ters. 

5.2 Independence-Assumption-Based PLN Deduction 

In this section we present one version of the PLN strength formula for first-

order extensional deduction (abbreviated to “deduction” in the remainder of the 

chapter). First we give some conceptual discussion related to this inference for-

mula; then we provide the algebraic formula. The formula itself is quite simple; 

however it is important to fully understand the concepts underlying it, because it 

embodies simplifying assumptions that introduce errors in some cases. We will 

also be reviewing an alternate strength formula for first-order extensional deduc-

tion, in a later section of this chapter, which mitigates these errors in certain 

circumstances. 
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Conceptually, the situation handled by the first-order extensional deduction 

formula is depicted in the following Venn diagram: 

 

 

First-order extensional deduction, as well as the related inference forms we call 

induction and abduction in PLN, may be cast in the form: Given information about 

the size of some regions in the Venn diagram, make guesses about the size of 

other regions. 

5.2.1  Conceptual Underpinnings of PLN Deduction 

In this subsection, as a preliminary to presenting the PLN inference formulas in 

detail, we will discuss the concepts underlying PLN in a more abstract way, using 

simple inference examples to demonstrate what it is we really mean by “probabil-

istic deduction.” This conceptual view is not needed for the actual calculations in-

volved in PLN, but it’s essential to understanding the semantics underlying these 

calculations, and is also used in the proof of the PLN deduction formula. 

Let’s consider some simple examples regarding Subset relationships. Suppos-

ing, in the above diagram, we know 

Subset A B <.5> 

Subset B C <.5> 

What conclusions can we draw from these two relationships? What we want is to 

derive a relation of the form 

Subset A C <tv> 

from the two given premises. When we do this however, we are necessarily doing 

probabilistic, estimative inference, not direct truth-value evaluation. 

To see why, suppose B is a set with two elements; e.g., 

B = {x1,x2} 

so that 

Member x1 B <1> 

Member x2 B <1> 
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Let’s consider two of the many possible cases that might underlie the above Sub-

set relationships: 

 

 

Case 1 (A!B and B!C are identical) 

 

 

 

 

 

 

A = C = {x1, x3} 

B = {x1,x2} 

In this case, direct truth-value evaluation yields 

Subset A C <1> 

 

Case 2 (A!B and B!C are disjoint) 

 

 

 

 

 

 

 

 

 

 

A = {x1, x3} 

B = {x1, x2} 

C = {x2, x4} 

In this case, direct truth-value evaluation yields 

Subset A C <0> 
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The problem is that, just given the two premises 

Subset A B <.5> 

Subset B C <.5> 

we don’t know which of the two above cases holds – or if in fact it’s a completely 

different situation underlying the Subset relationships. Different possible situa-

tions, underlying the same pair of Subset relationships, may result in completely 

different truth-values <tv> for the conclusion 

Subset A C <tv> 

So no exact computation of the truth-value of the conclusion is possible. In-

stead, all that’s possible is an estimate of the truth-value of the latter, obtained by 

averaging over possible situations consistent with the two given premises. The 

PLN deduction strength formula to be given below is merely an efficient way of 

carrying out this averaging, in an approximate way. 

We will derive theorems giving compact formulas for the expected (average) 

truth-values to be obtained as the answer to the above deduction problem. We ap-

proach this averaging process in two ways. First, we derive inference formulas for 

an “independence-based PLN,” in which we average over all possible sets satisfy-

ing given premises. Later, we introduce a more general and more realistic “con-

cept-geometry” approach. In the concept-geometry approach, we restrict attention 

to only those sets having particular shapes. The idea here is that concepts tend to 

be better approximated by these shapes than by random sets.  

One important point regarding PLN inference is that the evidence sets used to 

compute the truth-values of two premises need not be overlapping. We can freely 

combine two relationships that were derived based on different sets of observa-

tions. This is important because many real-world cases fit this description. For in-

stance, when a person reasons 

Inheritance gulls birds 

Inheritance birds fly 

|- 

Inheritance gulls fly 

it may well be the case that the two premises were formed based on different sets 

of evidence. The gulls that were observed to be birds may well be different from 

the birds that were observed to fly. 

A simple example of non-overlapping evidence, related to our above Subset 

example with the sets A, B, and C, is: 

Case 3 (non-overlapping evidence sets) 

 

A = {x1, x4, x7, x8} 

B = {x1, x2, x3, x4, x5, x6} 

C = {x2, x3, x4} 

 

In this case, direct truth-value evaluation yields 
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Subset A C <.25> 

Now, suppose that truth-value estimates for the two relations 

 

Subset A B <.5> 

Subset B C <.5> 

 

were obtained as follows: 

Subset A B <.5> 

was derived by observing only {x1, x7}, whereas 

Subset B C <.5> 

was derived by observing only {x2, x6} 

 

In Case 3, the two premise Subsets were derived based on completely different 

sets of evidence. But the inference rules don’t care; they can make their estimates 

anyway. We will present this “not caring” in a formal way a little later when we 

discuss the weight of evidence rules for first-order inference. 

Now let’s step through the basic logic by which PLN deals with these examples 

of inference involving Subsets, with all their concomitant subcases. Basically, as 

noted above, what PLN does is to estimate the outcome of an average over all pos-

sible cases. The PLN formulas carry out this estimation in a generally plausible 

way, based on the information available. 

More formally, what does this mean? First we’ll present a slight simplification, 

then un-simplify it in two stages. In addition to these simplifications, we will also 

assume a strength-only representation of truth-values, deferring consideration of 

more complex truth-value types until later. 

In the simplified version what PLN says in this example is, basically: Let’s as-

sume a universe U that is a finite size Usize. Let V denote the set of all triples of 

sets {A, B, C} in this universe, such that 

Subset A B <.5> 

Subset B C <.5> 

holds. For each triple in V, we can compute the value s so that 

Subset A C <s> 

The average of all these strength-estimates is the estimated truth-value strength 

of the Subset. Note that this average includes cases where A!B and B!C have no 

overlap at all, cases where A!B and B!C are identical, cases where A and C are 

identical – all possible cases given the assumed finite universe U and the con-

straints posed by the premise Subsets. If the two premise Subsets are drawn from 

different evidence sets, this doesn’t matter – the degree of evidence-set overlap is 
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just one among many unknown properties of the evidence sets underlying the 

premise truth-values. 

Now, how is this picture a simplification? The first way is that we haven’t in-

troduced all the potentially available information. We may have knowledge about 

the truth-values of A, B, and C, as well as about the truth-values of the Subset rela-

tionships. In fact, this is the usual case. Suppose that sA, sB, and sC are the strengths 

of the truth-values of the Atoms A, B, and C. In that case, we can redefine the set 

V specified above; we can define it as the set of all triples of sets {A, B, C} so that 

|A| = sA Usize 

|B| = sB Usize 

|C| = sC Usize 

Subset A B <.5> 

Subset B C <.5> 

hold. Here Usize is the “universe size,” the size of the total space of entities under 

consideration. We can then compute the truth-value of  

Subset A C <tv> 

as the average of the estimates obtained for all triples in V.  

Next, the other way in which the above picture is a simplification is that it as-

sumes the strength values of the premises (and the strength values of the Atoms A, 

B, and C) are exactly known. In fact, these will usually be estimated values; and if 

we’re using indefinite truth-values, distributional truth-values, or confidence-

bearing truth-values, knowledge about the “estimation error” may be available. In 

these cases, we are not simply forming a set V as above. Instead, we are looking at 

a probability distribution V over all triples {A, B, C} where A, B, and C are subsets 

of U, and the quantities 

|A| (determined from sA = A.TruthValue.strength) 

|B| (determined from sB = B.TruthValue.strength) 

|C| (determined from sC = C.TruthValue.strength) 

(Subset A B).TruthValue.strength 

(Subset B C).TruthValue.strength 

are drawn from the probability distributions specified by the given truth-values. 

We will deal with this uncertainty below by doing a sensitivity analysis of the 

PLN inference formulas, estimating for each formula the error that may ensue 

from uncertain inputs, and discounting the weight of evidence associated with the 

conclusion based on this estimated error. 

Finally, one technical point that comes up in PLN is that the quantitative results 

of truth-value estimates depend on the finite universe size Usize that is assumed. 

This parameter is also called the “context size.” Basically, the smaller Usize is, the 

more speculative the inferences are. In the example given above, the minimum us-

able Usize is Usize = |U| = |A| + |B| + |C|. This parameter setting is good if one 

wants to do speculative inductive or abductive inference. If one wants to minimize 

error, at cost of also minimizing creativity, one should set Usize as large as possi-
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ble. Using the PLN formulas, there is no additional computational cost in assum-

ing a large Usize; the choice of a Usize value can be based purely on the desired 

inferential adventurousness. The semantics of the universal set will be discussed 

further in a later subsection. 

5.2.2  The Independence-Assumption-Based Deduction Rule 

Now we proceed to give a heuristic derivation of one of the two truth-value 

strength formulas commonly associated with the PLN deduction rule. In this infer-

ence rule, we want to compute the “strength” sAC of the relationship 

Subset A C <sAC> 

which we interpret as  

! 

s
AC

= P C A( ) =
P A"C( )
P A( )

 

given the data: 

! 

s
AB

= P B A( )

s
BC

= P C B( )
s
A

= P A( )

s
B

= P B( )

s
C

= P C( )

 

Essentially, that means we want to guess the size of the Venn diagram region 

A! C given information about the sizes of the other regions A, B, C, A! B, 

B! C.  

As illustrated in the above example, in the following discussion we will some-

times use the notation: 

• sij’s are strengths of Subset relationships (e.g., Subset i j <sij >) 

• si’s are strengths of terms (i.e., i <si >) 

This notation is handy for the presentation of algebraic relationships involving 

Atom strengths, a situation that often arises with PLN. We will also use Nij and Ni 

to denote relationship and term “counts” respectively, and dij and dj to denote rela-

tionship and term “weights of evidence.”  
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Whenever the set of values 

! 

s
A
,  s

B
,  s

C
,  s

AB
,  s

BC
 { } is consistent (i.e., when it 

corresponds to some possible sets A, B, and C) then the PLN deduction strength 

formula becomes  

! 

s
AC

= s
AB
s
BC

+
1" s

AB( ) sC " sBsBC( )
1" s

B

 (2.1) 

Here we will give a relatively simple heuristic proof of this formula, and then 

(more tediously) a fully rigorous demonstration. 

As we shall see a little later, formulas for inductive and abductive reasoning in-

volve similar problems, where one is given some conditional and absolute prob-

abilities and needs to derive other, indirectly related ones. For induction, one starts 

with sBA, sBC, sA, sB, sC and wishes to derive sAC. For abduction, one starts with sAB, 

sCB, sA, sB, sC and wants to derive sAC. The inference formulas involving similarity 

relations may be similarly formulated. 

5.2.2.1 Heuristic Derivation of the Independence-Assumption-Based 

Deduction Rule 

The heuristic derivation that we’ll give here relies on a heuristic independence 

assumption. The rigorous derivation given afterward replaces the appeal to an in-

dependence assumption with an averaging over all possible worlds consistent with 

the constraints given in the premises. But of course, even the rigorous proof em-

bodies some a priori assumptions. It assumes that the only constraints are the ones 

implicitly posed by the truth-values of the premise terms and relationships, and 

that every possible world consistent with these truth-values is equally likely. If 

there is knowledge of probabilistic dependency, this constitutes a bias on the space 

of possible worlds, which renders the assumption of unbiased independence inva-

lid. Knowledge of dependency can be taken into account by modifying the infer-

ence formula, in a way that will be discussed below. The danger is where there is a 

dependency that is unknown; in this case the results of inference will not be accu-

rate, an unavoidable problem. 

Assume we’re given P(A), P(B), P(C), P(B|A), P(C|B), defined relative to some 

universal set U. We want to derive P(C|A); i.e., the formula for P(C|A) = sAC, 

which was cited above. We begin the derivation by observing that 

! 

P C A( ) =
P C" A( )
P A( )

. 

Because P(A) is assumed given, we may focus on finding P(C!A) in terms of the 

other given quantities. 
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We know 

! 

P C" A( ) = P B( )P C" A( )B( ) + P U # B( )P C" A( )U # B( ). 

This follows because in general 

! 

P B( )P X B( ) + P U " B( )P XU " B( )

=
P B( )P X# B( )

P B( )
+
P U " B( )P X# U " B( )( )

P U " B( )

= P X# B( ) + P X# U " B( )( )

= P X# B( ) + P X( ) " P X# B( )[ ] = P X( ).

 

So we can say, for instance, 

! 

P C" A( )B( ) =
P C" A" B( )

P B( )

=
P C" B( )" A" B( )( )

P B( )

=
C" B( )" A" B( )

B
.

 

Now, we can’t go further than this without making an independence assumption. 

But if we assume C and A are independent (in both B and U-B), we can simplify 

these terms. 

To introduce the independence assumption heuristically, we will introduce a 

“bag full of balls” problem. Consider a bag with N balls in it, b black ones and w 

white ones. We are going to pick n balls out of it, one after another, and we want 

to know the chance p(k) that k of them are black. The solution to this problem is 

known to be the hypergeometric distribution. Specifically,  

( )
b N b N

p k
k n k n

!" #" # " #
= $ %$ % $ %!& '& ' & '

. 

The mean of this distribution is: 
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! 

mean =
bn

N
. 

How does this bag full of balls relate to our situation? We may say: 

• Let our bag be the set B, so N=|B|.  

• Let the black balls in the bag correspond to the elements of the set A!B, so that 

b=|A!B|  

• The white balls then correspond to elements of B-A.  

• The n balls we are picking are the elements of the set C!B, so n=|C!B|.  

This probabilistic “bag full of balls” model embodies the assumption that A and C 

are totally independent and uncorrelated, so that once B and A are fixed, the 

chance of a particular subset of size |C!B| lying in A!B is the same as the chance 

of that element of C lying in a randomly chosen set of size |A!B|. 

This yields the formula: 

! 

bn

N
=
A" B C" B

B
 

which is an estimate of the size  

! 

C" B( )" A" B( ) . 

So if we assume that A and C are independent inside B, we can say 

! 

P C" A( )B( ) =
C" B( )" A" B( )

B

=
A" B C" B

B
2

= P AB( )P C B( ).
 

Similarly, for the second term, by simply replacing B with U-B and then doing 

some algebra, we find 
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! 

P C" A( ) U # B( )( ) = P A U # B( )( )P C U # B( )( )

=
A" U # B( ) C" U # B( )

U # B
2

=
P A( ) # P A" B( )[ ] P C( ) # P A" B( )[ ]

1# P B( )[ ]
2

.

 

So altogether, we find 

! 

P C" A( ) = P B( )P C" A( )B( ) + P U # B( )P C" A( ) U # B( )( )

= P B( )P AB( )P C B( ) +
1# P B( )[ ] P A( ) # P A" B( )[ ] P C( ) # P C" B( )[ ]

1# P B( )[ ]
2

 

and hence 

! 

P C A( ) =
P C" A( )
P A( )

=
P AB( )P C B( )P B( )

P A( )
+
1# P A" B( )[ ] P C( ) # P C" B( )[ ]

1# P B( )

= P B A( )P C B( ) +
1# P B A( )[ ] P C( ) # P C" B( )[ ]

1# P B( )

= P B A( )P C B( ) +
1# P B A( )[ ] P C( ) # P B( )P C B( )[ ]

1# P B( )
.

 

Note that in the above we have used Bayes’ rule to convert 

! 

P AB( ) =
P B A( )P A( )

P B( )
. 

We now have the PLN deduction formula expressed in terms of conditional and 

absolute probabilities. In terms of our above-introduced notation for term and rela-

tionship strengths, we may translate this into: 
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! 

s
AC

= s
AB
s
BC

+
1" s

AB( ) sC " sCsBC( )
1" s

B

 

which is the formula mentioned above. 

5.2.2.2 PLN Deduction and Second-Order Probability 

We now give a formal proof of the independence-assumption-based PLN de-

duction formula. While the proof involves a lot of technical details that aren’t 

conceptually critical, there is one aspect of the proof that sheds some light on the 

more philosophical aspects of PLN theory: this is its use of second-order prob-

abilities. 

We first define what it means for a set of probabilities to be consistent with 

each other. Note that, given specific values for sA = P(A) and sB = P(B), not all 

values in the interval [0,1] for sAB = P(B|A) necessarily make sense. For example, 

if 

! 

P A( ) = 0.6 = P B( ) , then the minimum value for P(A!B) = 0.2 so that the 

minimum value for P(B|A) is 0.2/0.6 = 1/3. 

Definition: We say that the ordered triple ( )
ABBA
sss ,,  of probability values 

! 

s
A

= P A( ) , 

! 

s
B

= P B( ) , and 

! 

s
AB

= P B A( ) is consistent if the probabilities 

satisfy the following condition: 

!!
"

#
$$
%

&
''!!

"

#
$$
%

& (+

A

B

AB

A

BA

s

s
s

s

ss
,1min

1
,0max . 

Definition: The ordered triple of subsets (A, B, C) for which the ordered tri-

ples ( )
ABBA
sss ,,  and

! 

s
B
,s
C
,s
BC( )  are both consistent, we shall call fully con-

sistent subset-triples. 

We will prove: 

Theorem 1 (PLN Deduction Formula)  

Let U denote a set with |U| elements. Let Sub(m) denote the set of subsets of U 

containing m elements. Let (A, B, C) be a fully consistent subset-triple. Further 

suppose that each of the values sA, sB, sC,sAB, and sBC divides evenly into |U|. Next, 

define 

! 

f x( ) = P P C A( ) = x A " Sub U sA( ),B " Sub U sB( ),C " Sub U sC( ),P B A( ) = sAB ,P C B( ) = sBC[ ]  

Then, where E() denotes the expected value (mean), we have 
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! 

E f x( )[ ] = sAC = sABsBC +
1" sAB( ) sC " sBsBC( )

1" sB
. 

This theorem looks at the space of all finite universal sets U (all “sample 

spaces”), and with each U it looks at all possible ways of selecting subsets A, B, 

and C out of U. It assumes that this size of U is given, and that certain absolute 

and conditional probabilities regarding A, B, and C are given. Namely, it assumes 

that P(A), P(B), P(C), P(B|A) and P(C|B) are given, but not P(C|A). For each U, it 

then looks at the average over all A, B, and C satisfying the given probabilities, 

and asks: If we average across all the pertinent (A, B, C) triples, what will P(C|A) 

come out to, on average? Clearly, P(C|A) may come out differently for different 

sets A, B, and C satisfying the assumed probabilities. But some values are more 

likely than others, and we’re looking for the mean of the distribution of P(C|A) 

values over the space of acceptable (A, B, C) triples. This is a bit different from 

the usual elementary-probability theorems in that it’s a second-order probability: 

we’re not looking at the probability of an event, but rather the mean of a probabil-

ity over a certain set of sample spaces (sample spaces satisfying the initially given 

probabilistic relationships).  

In spite of the abstractness induced by the use of second-order probabilities, the 

proof is not particularly difficult. Essentially, after one sets up the average over 

pertinent sample spaces and does some algebra, one arrives at the same sort of hy-

pergeometric distribution problem that was used in the heuristic derivation in the 

main text. The difference, however, is that in this proof there is no ad-hoc 

independence assumption; rather, the independence comes out of the averaging 

process automatically because on average, approximate probabilistic independ-

ence between terms is the rule, not the exception. 

Proof of Theorem 1 (PLN Deduction Formula): 

The way the theorem is stated, we start with a set U of |U| elements, and we 

look at the set of all subset-triples {A, B, C} fulfilling the given constraints. That 

is, we are looking at subset-triples (A,B,C) for which the Predicate constr defined 

by 

! 

constr A,B,C( ) = A " Sub U s
A( ) AND B " Sub U s

B( ) AND C " Sub U s
C( )

AND P B A( ) = s
AB

 AND P C B( ) = s
BC

  

evaluates to True. 

Over this set of subset-triples, we’re computing the average of P(C|A). That is, 

we’re computing 
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! 

E f x( )[ ] =
1

M
P C A( )

A ,B ,C( ) : constr A ,B ,C( )
"  

where M denotes the number of triples (A,B,C) so that constr(A,B,C). 

Following the lines of our heuristic derivation of the formula, we may split this 

into two sums as follows: 

! 

E f x( )[ ] =
1

M

P C" A( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

#

=
1

M

P C" A( )B( )P B( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

# +
P C" A( ) U $ B( )( )P U $ B( )

P A( )A ,B ,C( ) : constr A ,B ,C( )
#

% 

& 

' 
' 

( 

) 

* 
* 
.

 

After going this far, the heuristic derivation then used probabilistic independence 

to split up P((C!A)|B) and P(C!A)|(U-B) into two simpler terms apiece. Follow-

ing that, the rest of the heuristic derivation was a series of straightforward alge-

braic substitutions. Our task here will be to more rigorously justify the use of the 

independence assumption. Here we will not make an independence assumption; 

rather, the independence will be implicit in the algebra of the summations that are 

“summations over all possible sets consistent with the given constraints.” We will 

use formal methods analogous to the heuristic independence assumption, to reduce 

these sums into simple formulas consistent with the heuristic derivation.  

We will discuss only the first sum here; the other one follows similarly by sub-

stituting U-B for B. For the first sum we need to justify the following series of 

steps: 

! 

1

M

P C" A( )B( )P B( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

#

=
1

M

P C" A" B( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

#

=
1

M

P C" B( )" A" B( )( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

#

=
1

M

P C" B( )P A" B( )
P B( )P A( )A ,B ,C( ) : constr A ,B ,C( )

#

=
1

M

P C B( )P AB( )P B( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

#

 

The final step is the elegant one. It follows because, over the space of all triples 

(A,B,C) so that constr(A,B,C) holds, the quantities P(C|B) and P(B|A) are constant 
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by assumption. So they may be taken out of the summation, which has exactly M 

terms. 

The difficult step to justify is the third one, where we transform 

! 

P C" B( )" A" B( )( )  into 

! 

P C" B( )P A" B( )
P B( )

. This is where the algebra of the 

summations is used to give the effect of an independence assumption. 

To justify this third transformation, it suffices to show that 

! 

P C" B( )" A" B( )( ) #
P C" B( )P A" B( )

P B( )
P A( )A ,B ,C( ) : constr A ,B ,C( )

$ = 0 . 

We will do this by rewriting the sum as 

! 

P C" B( )" A" B( )( ) #
P C" B( )P A" B( )

P B( )
P A( )

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

A ,C( ) : constr A ,B ,C( )
*

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

B+Sub U sB( )
* = 0

. 

Note that the term P(A) is constant for all (A,B,C) satisfying constr(A,B,C), so it 

may be taken out of the summation and effectively removed from consideration, 

yielding 

! 

P C" B( )" A" B( )( ) #
P C" B( )P A" B( )

P B( )

$ 

% 
& 

' 

( 
) 

A ,C( ) : constr A ,B ,C( )
*
$ 

% 
& 
& 

' 

( 
) 
) B+Sub U sB( )

* = 0 . 

We will show that this is true by showing that the inner summation itself is always 

zero; i.e., that for a fixed B, 

! 

P C" B( )" A" B( )( ) #
P C" B( )P A" B( )

P B( )

$ 

% 
& 

' 

( 
) 

A ,C( ) : constr A ,B ,C( )
* = 0 (2.2) 

In order to demonstrate Equation 2.2, we will now recast the indices of summa-

tion in a different-looking but equivalent form, changing the constraint to one that 

makes more sense in the context of a fixed B.  

Given a fixed B, let’s say that a pair of sets (A1, C1) is B-relevant iff it satisfies 

the relationships 

A1=A!B 

C1=C!B 
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for some triple (A,B,C) satisfying constr(A,B,C).  

We now observe that the pair (A1,C1) is B-relevant if it satisfies the constraint 

predicate 

! 

constr1 A1,C1;B( ) = A1" B AND C1" B AND A1 = A s
AB

 AND C1 = B s
BC

 

The constraint for |C1| comes from the term in the former constraint constr stating 

! 

P C B( ) = s
BC

 

For, we may reason 

! 

P C B( ) =
P C" B( )
P B( )

=
P C1( )
P B( )

= s
BC

 

! 

P C1( ) = P B( )sBC  

! 

C1 = B s
BC

 

Similarly, to get the constraint for |A1|, we observe that  

! 

P B A( ) =
P A" B( )
P A( )

=
P A1( )
P A( )

= s
AB

 

so that 

! 

A1 = A s
AB

. 

Given a fixed B, and a specific B-relevant pair (A1,C1), let EQ(A1, C1;B) de-

note the set of pairs (A,C) for which constr(A,B,C) and 

! 

A1= A" B

C1= C" B
 

Now we will recast Equation 2.2 above in terms of A1 and C1. Equation 2.2 is 

equivalent to 

 

! 

P A1"C1( ) #
P A1( )P C1( )

P B( )

$ 

% 
& 

' 

( 
) 

A ,C( )*EQ A1,C1;B( )
+

A1,C1( ) : constr1 A1,C1;B( )
+ = 0 . 
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Because the inner sum is the same for each pair (A,C)! EQ(A1,C1;B), and 

because 

! 

K " EQ A1,C1( )  is the same for each B-relevant pair (A1,C1), we can 

rewrite this as 

! 

K P A1"C1( ) #
P A1( )P C1( )

P B( )

$ 

% 
& 

' 

( 
) 

$ 

% 
& 
& 

' 

( 
) 
) A1,C1( ) : constr1 A1,C1;B( )

* = 0  

or just 

! 

P A1"C1( ) #
P A1( )P C1( )

P B( )

$ 

% 
& 

' 

( 
) 

A1,C1( ) : constr1 A1,C1;B( )
* = 0.  (2.3) 

We now have a somewhat simpler mathematics problem. We have a finite set 

B, with two subsets A1 and C1 of known sizes. Other than their sizes, nothing 

about A1 and C1 is known. We need to sum a certain quantity 

! 

Q " P A1#C1( ) $
P A1( )P C1( )

P B( )
 

over all possibilities for A1 and C1 with the given fixed sizes. We want to show 

this sum comes out to zero. This is equivalent to showing that the average of Q is 

zero, over all A1 and C1 with the given fixed sizes.  

Now, the second term of Q is constant with respect to averaging over pairs 

(A1,C1), because 

! 

P A1( )P C1( )
P B( )

=
A1C1

B U
 

which is independent of what the sets A1 and C1 are, assuming they have fixed 

sizes. So the average of the second term is simply 

! 

A1C1

B U
. We will rewrite Equa-

tion 2.3 as  

! 

L "
1

M1

1

M2
P A1#C1( )

C1: constr1 A1,C1;B( )
$

% 

& ' 
( 

) * A1+B : A1= A s
AB

$ =
A1C1

B U

 (2.4) 

where  
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• M1 is the number of A1’s that serve as part of a B-relevant pair (A1,C1) with 

any C1; i.e., the number of terms in the outer sum; 

• M2 is the number of C1’s that serve as part of a B-relevant pair (A1,C1) for 

some specific A1; i.e., the number of terms in the inner sum. 

Note that M2 is independent of the particular set A1 under consideration; and that 

M = M1 M2. 

To show (2.4), it suffices to show that for a fixed A1, 

! 

1

M2
P A1"C1( )

C1: constr1 A1,C1;B( )
# =

A1C1

B U
 (2.5) 

To see why this suffices observe that, by the definition in (2.4), if (2.5) held, we’d 

have 

! 

L "
1

M1

A1C1

B U

# 

$ 
% 

& 

' 
( 

A1)B : A1= A s
AB

* . 

But the expression inside the sum is constant for all A1 being summed over 

(because they all have 

! 

A1 = A s
AB

), and the number of terms in the sum is M1, 

so that on the assumption of (2.4) we obtain the result 

! 

L "
A1C1

B U
. 

which is what (2.3) states. 

So, our task now is to show (2.5). Toward this end we will use an equivalent 

form of (2.4); namely 

! 

1

M2
A1"C1 =

A1C1

BC1: constr1 A1,C1;B( )
#  (2.6) 

(the equivalence follows from P(A1!C1) = |A1!C1|/|U|). To show (2.6) we can 

use some standard probability theory, similar to the independence-assumption-

based step in the heuristic derivation. We will model the left-hand side of (2.6) as 

a “bag full of balls” problem. Consider a bag with I balls in it, I black ones and w 

white ones. We are going to pick n balls out of it, one after another, and we want 

to know the chance p(k) that k of them are black. The solution to this problem is 

known to be the hypergeometric distribution, as given above, with mean bn/N. 

How does this bag full of balls relate to (2.6)? Simply: 
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• Let our bag be the set B, so N=|B|.  

• Let the black balls in the bag correspond to the elements of the set A1, so that 

b=|A1|  

• The white balls then correspond to B minus the elements in A1.  

• The n balls we are picking are the elements of the set C1, so n=|C1|.  

This yields the formula: 

! 

bn

N
=
A1C1

B
. 

What the mean of the hypergeometric distribution gives us is the average of 

! 

A1"C1  over all I1 with the given size constraint, for a fixed A1 with the given 

size constraint.  

But what Equation 5 states is precisely that this mean is equal to 

! 

A1C1

B
. So, 

going back to the start of the proof, we have successfully shown that 

! 

P C" A( )B( )
P B( )

= P C B( )
A ,B ,C( ) :constr A ,B ,C( )

# P B A( ) . 

It follows similarly that 

( )( )( )
( )

( )( )
( ) ( )

( )( )ABUPBUCP
BP

BUACP

CBAconstrCBA
!!=

!"
# ,,:,,

. 

The algebraic transformations made in the heuristic derivation then show that 

! 

E f x( )[ ] =
1

M
P C A( )

A ,B ,C{ } : constr A ,B ,C( )
"

= P C B( )P B A( ) +
P C U # B( )( )P U # B( ) A( )

P U # B( )

 

! 

= P B A( )P C B( ) +
1" P B A( )( ) P C( ) " P B( )P C B( )( )

1" P B( )
 

which, after a change from P to s notation, is precisely the formula given in the 

theorem. Thus the proof is complete. QED 
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Next, to shed some light on the behavior of this formula, we now supply 

graphical plots for several different input values. These plots were produced in the 

Maple software package. Each plot will be preceded by the Maple code used to 

generate it. To make the Maple code clearer we will set Maple inputs in bold text; 

e.g., 

diff(dedAC(rB,rC,sAB,sBC),rC); 

and Maple outputs through displayed text such as 

 

Recall that in order to apply the deduction rule, the triple

! 

A,B,C( )  of subsets 

of a given universal set must be fully consistent. In Maple, this consistency condi-

tion takes the form 

consistency:= (sA, sB, sC, sAB, sBC) -> (Heaviside(sAB-max(((sA+sB-

1)/sA),0))-Heaviside(sAB-min(1,(sB/sA))))*(Heaviside(sBC-max(((sB+sC-

1)/sB),0))-Heaviside(sBC-min(1,(sC/sB)))); 

where Heaviside(x) is the Heaviside unit step function defined by 

Heaviside(x)=

!
"
#

$

<

0 if,1

0 if,0

x

x
 

The deduction strength formula then becomes 

dedAC := (sA, sB, sC, sAB, sBC) -> sAB * sBC + (1- sAB)*(sC-sB*sBC)/(1-

sB)* consistency(sA,sB,sC,sAB,sBC); 

 

The result of this treatment of the consistency condition is that when the consis-

tency condition indicates inconsistency, the result of the inference comes out as 

zero.  Graphically, this means that the graphs look flat (0 on the z-axis) in certain 

regions – these are regions where the premises are inconsistent.  

We now supply a sampling of graphs for the deduction strength formula for 

several representative values for 

! 

s
A
,s
B
,s
C
,s
AB
,s
BC

 ( ) . Note here that the discon-

tinuities come from enforcing the consistency conditions. 
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plot3d(dedAC(0.1,0.1,0.4,sAB,sBC),sAB=0..1,sBC=0..1,numpoints=400, 

resolution = 400, axes=BOXED, labels=[sAB,sBC,dedAC]); 

 
plot3d(dedAC(0.1,0.1,0.8,sAB,sBC),sAB=0..1,sBC=0..1,numpoints=400, 

resolution = 400, axes=BOXED, labels=[sAB,sBC,dedAC]); 

 



Probabilistic Logic Networks                                                                               84 

plot3d(dedAC(0.1,0.1,.95,sAB,sBC),sAB=0..1,sBC=0..1,numpoints=800, reso-

lution = 400, axes=BOXED, labels=[sAB,sBC,dedAC]); 

 
 

 

plot3d(dedAC(0.1,0.2,0.1,sAB,sBC),sAB=0..1,sBC=0..1,numpoints=800, 

resolution = 400, axes=BOXED, labels=[sAB,sBC,dedAC]); 
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plot3d(dedAC(0.1,0.6,0.5,sAB,sBC),sAB=0..1,sBC=0..1,numpoints=800,axe

s=BOXED, labels=[sAB,sBC,dedAC]); 

  
 

 

plot3d(dedAC(0.1,0.9,0.4,sAB,sBC),sAB=0..1,sBC=0..1,numpoints=800,lab

els=[sAB,sBC,sAC],axes=BOXED); 
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5.2.2.3 Deduction Accounting for Known Dependencies 

Next, we present a minor variant of the above deduction strength formula. The 

heuristic inference formula derivation given earlier relies on an independence as-

sumption, and the more rigorous derivation given just above assumes something 

similar, namely that all possible worlds consistent with the input strength values 

are equally likely. This is arguably the best possible assumption to make, in the 

case where no relevant evidence is available. But what about the case where addi-

tional relevant evidence is available? 

A couple of workarounds are possible here. The concept geometry approach 

proposed in a later section presents a solution to one aspect of this problem – the 

fact that in some cases the independence assumption is systematically biased in a 

certain direction, relative to reality. But that doesn’t address the (quite common) 

case where, for a particular relationship of interest, some partial dependency in-

formation is available.  

For instance, what if one wishes to reason 

Subset A B 

Subset B C 

|- 

Subset A C 

and one knows that A!B and C!B are not independent. Perhaps there exist con-

junctions corresponding to these two compounds (these will be introduced more 

rigorously later on, but the basic idea should be clear), and perhaps there is an 

Equivalence or ExtensionalEquivalence relationship between these two Predicates, 

such as 

ExtensionalEquivalence <.6> 

 AND A B 

 AND C B 

indicating a significant known dependency between the two conjuncts. In this case 

the deduction formula, as presented above, is not going to give accurate results. 

But one can easily create alternate PLN formulas that will do the trick. 

In the heuristic deduction formula derivation given above, the key step was where 

an independence assumption was used to split up the right-hand side of 

! 

P C" A( )B( ) =
P C" B( )" A" B( )( )

P B( )
. 

In the case where ( A AND B AND C) <.6> is known, however, one doesn’t need 

to use the independence assumption at all. Instead one can simply substitute the 

value .6 for the expression 

! 

P C" B( )" A" B( )( ) , obtaining the deduction 

formula 
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! 

.6

P B( )P A( )
+
1" P B A( )( ) P C( ) " P B( )P C B( )( )

1" P B( )
. 

If we also had the knowledge 

(A AND C AND (NOT B) ) <.3> 

then we could simplify things yet further and use the formula 

! 

.6

P B( )P A( )
+

.3

1" P B( )( )P A( )
. 

The principle illustrated in these examples may be used more generally. If one 

is given explicit dependency information, then one can incorporate it in PLN via 

appropriately simplified inference formulae. As will be clear when we discuss al-

ternate inference rules below, the same idea works for induction and abduction, as 

well as deduction. 

5.3 The Optimal Universe Size Formula 

Now we return to the question of the universe-size parameter U. It turns out 

that if one has information about a significant number of “triple intersection prob-

abilities” in a context, one can calculate an “optimal universe size” for PLN de-

duction in that context. 

The deduction rule estimates 

! 

P C A( ) = P B A( )P C B( ) + P ¬B A( )P C¬B( )  

where nA = |A|, nAC = |A !C|, etc., this means 

! 

n
AC

n
A

=
n
AB
n
BC

n
A
n
B

+
n
A ,¬BnB ,¬C

n
A
n¬B

 

The second term can be expanded 

! 

n
A ,¬Bn¬B ,C

n
A
n¬B

=
n
A
" n

AB( ) nC " nBC( )
n
A
n
U
" n

B( )
 

where nU is the size of the universe. 
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On the other hand, with triple intersections, one can calculate 

! 

n
AC

= n
ABC

+ n
A ,¬B ,C . 

It’s interesting to compare this with the formula 

! 

n
AC

=
n
AB
n
BC

n
B

+
n
A
" n

AB( ) nC " nBC( )
n
U
" n

B

 

derived from multiplying the deduction rule by nA. Clearly the k’th term of each 

formula matches up to the k’th term of the other formula, conceptually. 

Setting the second terms of the two equations equal to each other yields a for-

mula for nU, the universe size. We obtain 

! 

n
A ,¬B ,C =

n
A
" n

AB( ) nC " nBC( )
n
U
" n

B

n
AC
" n

ABC( ) =
n
A
" n

AB( ) nC " nBC( )
n
U
" n

B

n
U

= n
B

+
n
A
" n

AB( ) nC " nBC( )
n
AC
" n

ABC( )

   

For example, suppose nA=nB=nC=100, nAC = nAB = nBC = 20, nABC = 10 

Then, 

! 

n
U

=100 +
80 " 80

10
= 740 

is the correct universe size. 

The interesting thing about this formula is that none of the terms on the right 

side demand knowledge of the universe size – they’re just counts, not probabili-

ties. But the formula tells you the universe size that will cause the independence 

assumption in the second term of the deduction formula to come out exactly cor-

rectly! 

Now, what use is this in practice? Suppose we know triple counts nABC for 

many triples (A,B,C), in a given context. Then we can take the correct universe 

sizes corresponding to these known triples and average them together, obtaining a 

good estimate of the correct universe size for the context as a whole.  

We have tested this formula in several contexts. For instance, we analyzed a 

large corpus of newspaper articles and defined P(W), where W is a word, as the 

percentage of sentences in the corpus that the word W occurs in at least once. The 
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Subset relationship strength from W to V is then defined as the probability that, if 

V occurs in a sentence, so does W; and the triple probability P(W & V & X) is de-

fined as the percentage of sentences in which all three words occur. On this sort of 

data the universe size formula works quite well in practice. For instance, when the 

correct universe size – the number of sentences in the corpus – was around 

650,000, the value predicted by the formula, based on just a few hundred triples, 

was off by less than 20,000. Naturally the accuracy can be increased by estimating 

more and more triples. 

If one uses a concept geometry approach to modify the deduction rule, as will 

be discussed later, then the universe size calculation needs to be modified slightly, 

with a result that the optimal universe size increases. 

5.4 Inversion, Induction, and Abduction 

“Induction” and “abduction” are complex concepts that have been given vari-

ous meanings by various different thinkers. In PLN we assign them meanings very 

close to their meanings in the NARS inference framework. Induction and abduc-

tion thus defined certainly do not encompass all aspects of induction and abduc-

tion as discussed in the philosophy and logic literature. However, from the fact 

that a certain aspect of commonsense induction or abduction is not encompassed 

completely by PLN induction or abduction, it should not be assumed that PLN it-

self cannot encompass this aspect. The matter is subtler than that.  

For instance, consider abductive inference as commonly discussed in the con-

text of scientific discovery: the conception of a theory encompassing a set of ob-

servations, or a set of more specialized theories. In a PLN-based reasoning system, 

we suggest, the process of scientific abduction would have to incorporate PLN ab-

duction along with a lot of other PLN inference processes. Scientific abduction 

would be achieved by means of a non-inferential (or at least, not entirely inferen-

tial) process of hypothesis generation, combined with an inferential approach to 

hypothesis validation. The hypothesis validation aspect would not use the abduc-

tion rule alone: executing any complex real-world inference using PLN always in-

volves the combination of a large number of different rules. 

Given the above deduction formula, the definition of induction and abduction 

as defined in PLN is a simple matter. Each definition involves a combination of 

the deduction rule with a single use of the “inversion formula,” which is simply 

Bayes’ rule. 

Inversion consists of the inference problem: Given P(A), P(B), and P(A|B), 

find P(B|A). The solution to this is: 
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! 

P B A( ) =
P AB( )P A( )

P B( )

s
AB

=
s
BA
s
A

s
B

 

which is a simple case of Bayes rule. 

Induction consists of the inference problem: Given P(A), P(B), P(C), P(A|B) 

and P(C|B), find P(C|A) . Applying inversion within the deduction formula, we 

obtain for this case: 

! 

P C A( ) =
P AB( )P C B( )P B( )

P A( )
+ 1"

P AB( )P B( )
P A( )

# 

$ 
% 
% 

& 

' 
( 
( 

P C( ) " P B( )P C B( )
1" P B( )

# 

$ 
% 
% 

& 

' 
( 
( 
 

or 

! 

s
AC

=
s
BA
s
BC
s
B

s
A

+ 1"
s
BA
s
B

s
A

# 

$ 
% 

& 

' 
( 
s
C
" s

B
s
BC

1" s
B

# 

$ 
% 

& 

' 
(  

In Maple notation, the induction formula 

indAC := (sA, sB, sC, sBA, sBC) -> sBA * sBC * sB / sA + (1 - sBA * sB / 

sA) *(sC - sB * sBC)/(1-sB)*(Heaviside(sBA-max(((sA+sB-1)/sB),0))-

Heaviside(sBA-min(1,(sA/sB))))*(Heaviside(sBC-max(((sB+sC-1)/sB),0))-

Heaviside(sBC-min(1,(sC/sB)))); 

is depicted for selected input values in the following figures: 
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plot3d(indAC(0.1,0.1,0.1,sBA,sBC),sBA=0..1,sBC=0..1,numpoints=800, 

resolution = 400, labels=[sBA,sBC,indAC],axes=BOXED); 

 
 

plot3d(indAC(0.4,0.1,0.1,sBA,sBC),sBA=0..1,sBC=0..1,numpoints=800, 

resolution = 400, labels=[sBA,sBC,indAC],axes=BOXED); 
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Next, abduction consists of the inference problem: Given P(A), P(B), P(C), 

P(B|A) and P(B|C), find P(C|A). In this case we need to turn P(B|C) into P(C|B), 

using inversion. We then obtain: 

! 

P C A( ) =
P B A( )P BC( )P C( )

P B( )
+
P C( ) 1" P B A( )[ ] 1" P BC( )[ ]

1" P B( )
 

or  

! 

s
AC

=
s
AB
s
CB
s
C

s
B

+
s
C
(1" s

AB
)(1" s

CB
)

1" s
B

 

In Maple notation, the formula for abduction is given by 

abdAC:=(sA,sB,sC,sAB,sCB)->(sAB*sCB*sC/sB+(1-sAB)*(1-sCB)*sC/(1-

sB))*(Heaviside(sAB-max(((sA+sB-1)/sA),0))-Heaviside(sAB-

min(1,(sB/sA))))*(Heaviside(sCB-max(((sB+sC-1)/sC),0))-Heaviside(sCB-

min(1,(sB/sC)))); 

We display here plots for two sets of representative inputs: 

plot3d(abdAC(.1, .1, .1, sAB, sCB), sAB = 0 .. 1, sCB = 0 .. 1, numpoints = 800, 

resolution = 400, labels = [sAB, sCB, sAC], axes = BOXED); 
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plot3d(abdAC(0.1,0.9,0.4,sAB,sCB),sAB=0..1,sCB=0..1,numpoints=800,labels

=[sBA,sBC,sCA],axes=BOXED); 

 

5.5 Similarity 

Next we show how inference rules involving Similarity and associated sym-

metric logical relationships can be derived from the PLN rules for asymmetric 

logical relationships. The main rule here is one called “transitive similarity,” 

which is stated as follows: 

Transitive Similarity 

Let simAB, simBC, and simAC represent the strengths of the Similarity relation-

ships between A and B, between B and C, and between A and C, respectively. 

Given simAB, simBC, sA, sB, and sC, the transitive similarity formula for calculating 

simAC then takes the form: 
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! 

sim
AC

=
1

1

deduction T
1
,T
2( )

+
1

deduction T
3
,T
4( )
"1

 

where 

! 

T
1

=

1+
s
B

s
A

" 

# 
$ 

% 

& 
' simAB

1+ sim
AB

T
2

=

1+
s
C

s
B

" 

# 
$ 

% 

& 
' simBC

1+ sim
BC

T
3

=

1+
s
B

s
C

" 

# 
$ 

% 

& 
' simBC

1+ sim
BC

T
4

=

1+
s
A

s
B

" 

# 
$ 

% 

& 
' simAB

1+ sim
AB

 

and deduction(T1,T2) and deduction(T3,T4) are calculated using the independence-

based deduction formula. That is, for example, 

! 

deduction(T
1
,T
2
) = T

1
T
2

+ (1"T
1
)(s

C
" s

B
T
2
) /(1" s

B
)  

The proof of the transitive similarity formula, to be given just below, contains 

the information needed to formulate several other rules for manipulating Similar-

ity relationships, as well:  

2inh2sim 

Given sAC and sCA, estimate simAC: 

! 

sim
AC

=
1

1

s
AC

+
1

s
CA

"1
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inh2sim 

Given sAC , sA and sC, estimate simAC: 

! 

sim
AC

=
1

1+
s
A

s
C

" 

# 
$ 

% 

& 
' 

s
AC

(1

 

sim2inh 

Given simAB, sA and sB, estimate sAB 

! 

s
AB

=

1+
s
B

s
A

" 

# 
$ 

% 

& 
' simAB

1+ sim
AB

 

Proof of the Transitive Similarity Inference Formula 

Assume one is given P(A), P(B), P(C), and 

! 

sim
AB

=
A" B

A# B
=
P A" B( )
P A# B( )

sim
BC

=
C" B

C# B
=
P C" B( )
P C# B( )

 

and one wishes to derive  

! 

sim
AC

=
A"C

A#C
=
P A"C( )
P A#C( )

 

We may write 
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! 

sim
AC

=
P A"C( )
P A#C( )

=
P A"C( )

P A( ) + P C( ) $ P A"C( )

1

sim
AC

=
P A( ) + P C( ) $ P A"C( )

P A"C( )

P A( )
P A"C( )

+
P C( )

P A"C( )
$
P A"C( )
P A"C( )

=
1

P C A( )
+

1

P AC( )
$1

 

So it suffices to estimate P(C|A) and P(A|C) from the given information. (The two 

cases are symmetrical, so solving one gives on the solution to the other via a sim-

ple substitution.) 

Let’s work on P(C|A) = P(C!A)/P(A). To derive this, it suffices to estimate 

P(B|A) and P(C|B) from the given information, and then apply the deduction rule. 

To estimate P(B|A), look at 

! 

P B A( ) =
A" B

A
= sim

AB

A# B

A
 

We thus need to estimate |A"B|/|A|, which can be done by 

! 

A" B

A
=
A + B # A$ B

A
=1+

B

A
# P B A( ) . 

We have the equation 

! 

P B A( ) = sim
AB
1+

B

A
" P B A( )

# 

$ 
% 

& 

' 
( 

P B A( ) 1+ sim
AB( ) = sim

AB
1+

B

A

# 

$ 
% 

& 

' 
( 

s
AB

= P B A( ) =

sim
AB
1+

B

A

# 

$ 
% 

& 

' 
( 

1+ sim
AB( )

.

 

A similar calculation gives us 
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! 

s
BC

= P C B( ) =

sim
BC
1+

C

B

" 

# 
$ 

% 

& 
' 

1+ sim
BC( )

 

with the deduction rule giving us a final answer via 

! 

s
AC

  =  s
AB

 s
BC

  +  (1- s
AB

) ( s
C
 -  s

B
 s

BC
 ) / (1-  s

B
 ) . 

Similarly, we may derive P(A|C) from 

! 

s
CA

  =  s
CB

 s
BA

  +  (1- s
CB

) ( s
A
 -  s

B
 s

BA
 ) / (1-  s

B
 )  

where 

! 

s
CB

= P BC( ) =

1+
B

C

" 

# 
$ 

% 

& 
' simBC

1+ sim
BC

 

! 

s
BA

= P AB( ) =

1+
A

B

" 

# 
$ 

% 

& 
' simAB

1+ sim
AB

. 

We thus obtain 

! 

sim
AC

=
1

1

s
AC

+
1

s
CA

"1

. 

5.5.1  Graphical Depiction of Similarity Inference Formulas 

Next we give a visual depiction of the transitive similarity inference, and re-

lated, formulas. The required formulas are: 

2inh2sim := (sAC,sCA) -> 1/( 1/sAC + 1/sCA - 1);  
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sim2inh := (sA,sB,simAB) -> (1 + sB/sA) * simAB / (1 + simAB) 

*(Heaviside(simAB-max(((sA+sB-1)),0))-Heaviside(simAB-

min(sA/sB,(sB/sA)))); 

 

inh2sim := (sAC,sCA) -> 1/( 1/sAC + 1/sCA - 1); 

 

simAC := (sA, sB, sC, simAB, simBC) -> inh2sim( sim2inh(sB,sC,simBC), 

sim2inh(sA,sB,simAB)); 

where, as before, multiplication by the term 

Heaviside(simBC-max(((sB+sC-1)),0))-Heaviside(simBC-

min(sB/sC,(sC/sB))) 

represents a consistency condition on the three inputs sB, sC, and simBC. 

The transitive similarity rule then looks like: 

 

plot3d(simAC(.2, .2, .2, simAB, simBC), simAB = 0 .. 1, simBC = 0 .. 1, axes = 

BOXED, labels =[simAB, simBC, simAC],numpoints=400, resolution=400);!

!
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plot3d(simAC(.6, .2, .2, simAB, simBC), simAB = 0 .. 1, simBC = 0 .. 1, axes 

= BOXED, labels =[simAB, simBC, simAC],numpoints=400, resolution=400); 

!

 

plot3d(simAC(.8, .1, .1, simAB, simBC), simAB = 0 .. 1, simBC = 0 .. 1, axes 

= BOXED, labels =[simAB, simBC, simAC],numpoints=400, resolution=400);!
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Next, a graphical depiction of the sim2inh rule is as follows: 

plot3d(sim2inh(.2,sC,simBC),sC=0..1, simBC=0..1,axes=BOXED, num-

points=800, resolution =800); 

 
 

plot3d(sim2inh(.5,sC,simBC),sC=0.. 1,simBC=0.. 1, axes=BOXED, num-

points=800, resolution=800); 
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A visualization of the inverse, inh2sim rule is: 

plot3d(inh2sim(sAC,sCA), sAC=0.01 ..1, sCA=0 ..1, axes=boxed); !

 

5.6 PLN Deduction via Concept Geometry 

Now we return to the foundational issues raised in the derivation of the deduc-

tion formula above. Recall that the derivation of the deduction formula involved 

an independence assumption, which was motivated conceptually in terms of the 

process of “averaging over all possible worlds.” The question that naturally arises 

is: how realistic is this process? The somewhat subtle answer is that the averaging-

over-possible-worlds process seems the best approach (though certainly not per-

fectly accurate) in the case of deduction of sAC with no prior knowledge of sAC, but 

can be modified to good effect in the case where there is incomplete prior knowl-

edge regarding the truth-value sAC. In the case where there is incomplete prior 

knowledge of sAC, the deduction formula may usefully be revised to take this 

knowledge into account.  

The key observation here regards systematic violations of the independence as-

sumption that occur due to the fact that most sets we reason on are “cohesive” – 

they consist of a collection of entities that are all fairly closely related to one an-

other. 
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On average, over all sets {A, C}, one will find P(A!C) = P(A) P(C). However, 

if one has prior knowledge that 

• P(A!C) > 0 

• A and C are “cohesive” sets 

then one knows that, almost surely, P(A!C) >P(A) P(C). 

A cohesive set S, within a universe U, is defined as a set whose elements have 

an average similarity significantly greater than the average similarity of randomly 

chosen pairs of elements from U. Furthermore, if A and C are cohesive, then the 

expected size of P(A!C) - P(A) P(C) increases as one’s estimate of P(A!C) in-

creases, although not linearly. 

The reason for this is not hard to see. Suppose we have a single entity x which 

is an element of A, and it’s been found to be an element of C as well. (The exis-

tence of this single element is known, because P(A! C)>0.) Then, suppose we’re 

given another entity y, which we’re told is an element of A. Treating y independ-

ently of x, we would conclude that the probability of y being an element of C is 

P(C|A). But in reality y is not independent of x, because A and C are not sets con-

sisting of elements randomly distributed throughout the universe. Rather, A is as-

sumed cohesive, so the elements of A are likely to cluster together in the abstract 

space of possible entities; and C is assumed cohesive as well. Therefore, 

! 

P y " C y " A AND x " A AND x " C( ) > P y " C( )  

In the context of the PLN deduction rule proof, our A and C are replaced by 

A1= A!B and C1 = C! B, but the basic argument remains the same. Note that if A 

and B are cohesive, then A! B and A!¬B are also cohesive. 

It’s interesting to investigate exactly what the assumption of cohesion does to 

the deduction formula. Let us return to the heuristic derivation, in which we ob-

served 

! 

P C A( ) =
P C" A( )
P A( )

P C" A( ) = P C" B( )" A" B( )( ) + P C"¬B( )" A"¬B( )( )

 

If A!B, C!B, A!¬B and C !¬B are all cohesive, then we conclude that, on aver-

age, if  

! 

P C" B( )" A" B( )( ) > 0  

then 

! 

P C" B( )" A" B( )( ) > P C" B( )P A" B( )  
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and, on average, if 

! 

P C"¬B( )" A"¬B( )( ) > 0  

then 

! 

P C"¬B( )" A"¬B( )( ) > P C"¬B( )P A"¬B( )  

If there is prior knowledge that P(A!B!C)>0 and/or P(A!¬B!C)>0, then this 

can be used to predict that one or both of the terms of the deduction formula will 

be an underestimate. 

On the other hand, what if there’s prior knowledge about sAC? If sAC >0 and A, 

B, and C are cohesive, this means that at least one of P(A!B!C)>0 or 

P(A!¬B!C)>0 holds. And in most cases, unless B has a very special relationship 

with A and C or else sAC is very small, both P(A!B!C)>0 and P(A!¬B!C)>0 

will hold. So given prior knowledge that sAC >0, we can generally assume that the 

deduction formula will be an underestimate. 

In terms of the formal statement of the deduction formula, this implies that if 

we have prior knowledge that sAC>0, then most of the time we’ll have 

! 

E f x( )[ ] > sABsBC +
1" sAB( ) sC " sBsBC( )

1" sB
 

That is, it implies that the deduction formula, when applied to cohesive sets given 

prior knowledge that the value to be deduced is nonzero, will systematically un-

derestimate strengths. Of course, this argument is just heuristic; to make it rigor-

ous one would have to show that, given A, B, and C cohesive, the intersections 

used in this proof tend to display the probabilistic dependencies assumed. But 

these heuristic arguments seem very plausible, and they lead us to the following 

observation: 

Observation: The Independence-Assumption-Based Deduction Formula Is 

Violated by the Assumption of Probabilistic Cohesion 

Let U denote a set with |U| elements. Let Sub(m) denote the set of subsets of U 

containing m elements. Let sA, sB, sC, sAB and sBC be numbers in [0,1], all of which 

divide evenly into |U|. Let S be a set of cohesive subsets of U. Let 

! 

f x( ) = P P C A( ) = x

A " S# Sub U sA( ),B " S# Sub U sB( ),

C " S# Sub U sC( ),P B A( ) = sAB ,

P C B( ) = sBC ,P C A( ) > 0

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
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Then, where E() denotes the expected value (mean), 

! 

E f x( )[ ] > sABsBC +
1" sAB( ) sC " sBsBC( )

1" sB
. 

This observation is borne out by our practical experience applying PLN, both to 

simulated mathematical datasets and to real-world data.  

So independence-assumption-based PLN deduction is flawed – what do we do 

about it? There is no simple and complete solution to the problem, but we have 

devised a heuristic approach that seems to be effective. We call this approach 

“concept geometry,” and it’s based on replacing the independence assumption in 

the above deduction rule with a different assumption regarding the “shapes” of the 

Nodes used in deduction. For starters we have worked with the heuristic assump-

tion of “spherical” Nodes, which has led to some interesting and valuable correc-

tions to the independence-assumption-based deduction formula. But the concept 

geometry approach is more general and can work with basically any assumptions 

about the “shapes” of Nodes, including assumptions according to which these 

“shapes” vary based on context. 

5.6.1  Probabilistic Deduction Based on Concept Geometry 

The concept-geometry approach begins with a familiar set-up:  

! 

P C A( ) =
P A"C( )
P A( )

P A"C( ) = P A"C" B( ) + P A"C"¬B( )

 

From this point on we proceed a little differently than in ordinary PLN deduc-

tion. If it is already believed that P(A!C!B) > 0, then one uses  

! 

P A"C" B( ) = f A" B,C" B( )  

where f is a function to be defined below.  Otherwise, one uses  

! 

P A"C" B( ) = P A" B( )P C B( )  

If it is already believed that P(A!C!¬B) >0, then one uses  

! 

P A"C"¬B( ) = f A"¬B,C"¬B( )  
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Otherwise, one uses  

! 

P A"C"¬B( ) = P A"¬B( )P C¬B( )  

One then computes P(C|A) from P(A|B), P(C|B), P(A|¬B), P(C|¬B) 

These may be computed from the premise links using  

! 

P AB( ) =
P B A( )P A( )

P B( )

P A¬B( )P ¬B( ) + P AB( )P B( ) = P A( )

 

so  

! 

P A¬B( ) =
P A( ) " P AB( )P B( )[ ]

P ¬B( )
=
P A( ) 1" P B A( )[ ]

1" P B( )

P C¬B( ) =
P C( ) " P C B( )P B( )[ ]

1" P B( )

 

The function f(x,y) is estimated using a collection of model sets, according to the 

formula  

f(x,y) = expected (probability) measure of the inter-

section of a model set with measure x and a model set 

with measure y, assuming that the two model sets have 

nonzero intersection. 

The following theorem allows us to calculate f(x, y) in some cases of interest. 

Specifically, suppose the model sets are “k-spheres” on the surface of a (k+1)-

sphere. A special case of this is where the model sets are intervals on the boundary 

of the unit circle. Let V(d) denote the volume of the k-sphere with diameter d, as-

suming a measure in which the volume of the whole surface of the (k+1)-sphere is 

1. Given a measure x, let diam(x) denote the diameter of the k-sphere with meas-

ure x. 

Theorem 3: For model sets defined as k-spheres on the surface of a (k+1)-

sphere, we have  

! 

f x,y( ) =
xy

V diam x( ) + diam y( )( )
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Proof:  

 Let r = diam(x), q = diam(y); equivalently x = V(r), y = V(q). The idea is 

that the expected volume  f(x,y) can be expressed as  

! 

P X " z # r, Y " z # q X "Y # r + q( )  

Here X, Y are the centers of the spheres, z is a point belonging to the intersec-

tion of the spheres, and ||V|| is the norm of vector V. We assume X, Y, z are chosen 

uniformly. The first two inequalities express the condition that z belongs to the in-

tersection of spheres, the third inequality expresses the condition that these two 

spheres have a non-empty intersection. Using the definition of conditional prob-

ability, we have 

! 

P X " z # r, Y " z # q, X "Y # q + r( )
P X "Y # q + r( )

=
P X " z # r, Y " z # q( )

P X "Y # q + r( )
=
V r( )V q( )
V q + r( )

. 

QED 

As a special case, for intervals on a circle with circumference 1 we get  

! 

f x,y( ) =
xy

min 1, x + y( )
 

Note here a reasonably close parallel to the NARS deduction formula  

! 

xy

x + y " xy
 

For circles on the sphere, we obtain 

! 

f x,y( ) =
xy

min 1, x + y " 2xy + 2 xy 1" x( ) 1" y( )( )
 

For the sake of concreteness, in the rest of this section we’ll discuss mostly the 

interval formula, but in practice it is important to tune the dimensionality parame-

ter to the specific domain or data source at hand, in order to minimize inference 

error. Potentially, if one has a number of different formulas from spheres in differ-

ent spaces, and has some triple-intersection information from a dataset, then one 

can survey the various lookup tables and find the one most closely matching the 

dataset. To perform deduction based on these ideas, we need a way to estimate the 

odds that P(A!B!C)>0. Most simply we could estimate this assuming knowledge 
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that P(A!C) > 0, P(B!C) > 0, P(A!B) > 0 (and assuming we know that A, B, and 

C are cohesive sets). 

More sophisticatedly, we could use knowledge of the values of these binary in-

tersection probabilities (and we will do so in the following, in a heuristic way). 

Let’s use G(A,B,C) to denote our estimate of the odds that P(A!B!C) > 0. In that 

case, if we model sets as intervals on the perimeter of the unit circle as suggested 

above, we have  

! 

P A" B"C( ) = 1#G A,B,C( )[ ]P A" B( )P C B( ) +G A,B,C( )P A" B( )P C B( )max 1,
1

P AB( ) + P C B( )

$ 

% 
& & 

' 

( 
) ) 

= P A" B( )P C B( ) 1+G A,B,C( ) #1+max 1,
1

P AB( ) + P C B( )

$ 

% 
& & 

' 

( 
) ) 

$ 

% 
& 
& 

' 

( 
) 
) 

* 

+ 

, 
, 

- 

. 

/ 
/ 

= P A" B( )P C B( ) 1+G A,B,C( )max 0,#1+
1

P AB( ) + P C B( )

$ 

% 
& & 

' 

( 
) ) 

* 

+ 
, 
, 

- 

. 
/ 
/ 

= P B A( )P C B( )P A( ) 1+G A,B,C( )max 0,#1+
1

P AB( ) + P C B( )

$ 

% 
& & 

' 

( 
) ) 

* 

+ 
, 
, 

- 

. 
/ 
/ 

  

So for the overall deduction rule we have  

! 

P C A( ) = P B A( )P C B( ) 1+G A,B,C( )max 0,"1+
1

P AB( ) + P C B( )

# 

$ 
% % 

& 

' 
( ( 

) 

* 
+ 
+ 

, 

- 
. 
. 

+ P ¬B A( )P C¬B( ) 1+G A,¬B,C( )max 0,"1+
1

P A¬B( ) + P C¬B( )

# 

$ 
% % 

& 

' 
( ( 

) 

* 
+ 
+ 

, 

- 
. 
. 

 

 

Now, to complete the picture, all we need is a formula for G(A,B,C). One heuristic 

is to set G(A,B,C) = 1 if sAB, sBC and sAC are all positive, and 0 otherwise, but obvi-

ously this is somewhat crude. One way to derive a heuristic for G(A,B,C) is to as-

sume that A, B, and C are 1-D intervals on the perimeter of the unit circle. In this 

case, as we’ll show momentarily, we arrive at the formula 

( ) ( ) ( )( ) ( )CBAPBAPBAPCBAG subsumesym ,,,1,,, sumeint_no_subesym_subsum_ !+=  

where the terms are defined as 

! 

Psym_subsume A,B( ) =
P A( ) " P B( )
P A( ) + P B( )

Pint_no_subsume A,B,C( )

=1"min 1+ P B( ) " P A# B( ) " P C( ),P A( ) + P B( ) " P A# B( )[ ] +max P B( ),1" P C( )[ ]
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This is a fairly crude estimate, in that it uses knowledge of P(A!B) and ignores 

knowledge of the other two binary intersections. A better estimate could be de-

rived making use of the other two binary intersections as well; this estimate was 

chosen purely for simplicity of calculation. Also, one could make similar esti-

mates using only P(B!C) and only P(A!C), and average these estimates together. 

5.6.2  Calculation of a Heuristic Formula for G(A,B,C) 

Here we will derive the above-mentioned heuristic formula for G(A,B,C), de-

fined as the odds that P(A!B!C) > 0. We do this by assuming that the sets A, B, 

and C are intervals on the boundary of the unit circle. Assume a measure that as-

signs the entire perimeter of the unit circle measure 1. Consider B as an interval 

extending from the top of the circle to the right. Next, consider A. If A totally sub-

sumes B then obviously from P(B!C) >0 we know P(A!B!C)>0. The probabil-

ity that A totally subsumes B is 0 if P(A) < P(B). Otherwise, if we assume only the 

knowledge that P(A!B)>0, the odds of A totally subsuming B is 

! 

P A( ) " P B( )
P A( ) + P B( )

. 

If we assume knowledge of the value of P(A!B), then a different and more com-

plex formula would ensue. Overall we can estimate the probability that A totally 

subsumes B is 

! 

P
subsume

A,B( ) =min 0,
P A( ) " P B( )
P A( ) + P B( )

# 

$ 
% 

& 

' 
(  

Symmetrically, the probability that B totally subsumes A is 

! 

P
subsume

B,A( )  and 

we may define  

! 

Psym_subsume A,B( ) = Psubsume A,B( ) + Psubsume B,A( ) =
P A( ) " P B( )
P A( ) + P B( )

 

Suppose A does not totally subsume B, or vice versa? Without loss of general-

ity we may assume that A overlaps only the right endpoint of B. Then let’s com-

pute the probability that C does not intersect A!B. For this to happen, the first 

(counting clockwise) endpoint of C [call this endpoint x] must occur in the portion 

of A that comes after B, a region with length P(A)-P(A!B). 

In order for C to intersect B but not A!B, we must have  

! 

1< x + P C( ) <1+ P B( ) " P A# B( ) 
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i.e., 

! 

1" P C( ) < x <1+ P B( ) " P A# B( ) " P C( )  

But by construction we have the constraint  

! 

P B( ) < x < P A( ) + P B( ) " P A# B( )  

So x can be anywhere in the interval  

! 

max P B( ),1" P C( )( ), min 1+ P B( ) " P A# B( ) " P C( ), P A( ) + P B( ) " P A# B( )( )[ ]  

So, the probability that C intersects A!B, given that neither A nor B totally 

subsumes each other, is  

! 

P
int_no_subsume

A,B,C( )

=1"min 1+ P B( ) " P A# B( ) " P C( ), P A( ) + P B( ) " P A# B( )[ ] +max P B( ),1" P C( )[ ]
 

Our overall estimate is then 

! 

G A,B,C( ) = Psym_subsume A,B( ) + 1" Psym_subsume A,B( )( )Pint_no_subsume A,B,C( )  

5.7 Modus Ponens and Related Argument Forms 

Next, we describe some simple heuristics via which PLN can handle certain in-

ference forms that are common in classical logic, yet not particularly natural from 

a probabilistic inference perspective. We begin with the classic “modus ponens” 

(MP) inference formula, which looks like: 

If P, then Q. 

P. 

Therefore, Q.  

This is closely related to two other classic inference formulas: “modus tollens” 

(MT; proof by contrapositive): 

If P, then Q. 

Q is false. 

Therefore, P is false.  

and “disjunctive syllogism” (DS): 

Either P or Q. 
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Not P. 

Therefore, Q.  

Of course, MT is immediately transformable into MP via 

If ¬Q, then ¬P  

¬Q  

Therefore, ¬P  

and DS is immediately transformable into MP via 

If ¬P then Q. 

¬P. 

Therefore, Q. 

We will also discuss a symmetrized version of modus ponens, of the form 

If and only if P, then Q. 

P. 

Therefore, Q. 

All these forms of inference are trivial when uncertainty is ignored, but become 

somewhat irritating when uncertainty is included. Term logic, in which the basic 

inference step is deduction from two inheritance relationships, plays much more 

nicely with uncertainty. However, it is still possible to handle MP and associated 

inferences within a probabilistic term logic framework, at the cost of introducing a 

simple but highly error-prone heuristic. 

5.7.1  Modus Ponens 

In PLN terms, what MP looks like is the inference problem 

Inheritance A B <sAB> 

A <sA> 

|- 

B <?> 

This is naturally approached in a PLN-deduction-ish way via 

! 

P B( ) = P B A( )P(A) + P B¬A( )P ¬A( )  

But given the evidence provided, we can’t estimate all these terms, so we have no 

choice but to estimate P(B|¬A) in some very crude manner. One approach is to set 

P(B|¬A)  equal to some “default term probability” parameter; call it c. Then we 

obtain the rule 
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! 

s
B

= s
AB
s
A

+ c 1" s
A( )  

For instance suppose we know 

Inheritance smelly poisonous <.8> 

smelly <.7> 

Then in the proposed heuristic approach, we’re estimating 

P(poisonous) = .8*.7 + c*.3 

where say c = .02 is a default term probability 

Note that while this is a very bad estimate, it is clearly better than just setting  

P(poisonous) = .02 

or 

P(poisonous) = .8*.7 

which seem to be the only ready alternatives. 

It’s worth noting that the approach to MP proposed here is conceptually differ-

ent from the one taken in NARS, wherein (where A and B are statements) 

Implication A B <sAB> 

A <sA> 

is rewritten as 

Implication A B <sAB> 

Implication K A <sA> 

where K is a “universal statement,” and then handled by ordinary NARS deduc-

tion. This kind of approach doesn’t seem to work for PLN. The NARS and PLN 

rules for MP have a similar character, in that they both consist of a correction to 

the product sA sAB. But in NARS it’s the same sort of correction as is used for ordi-

nary deduction, whereas in PLN it’s a slightly different sort of correction. 

5.7.2  Symmetric Modus Ponens 

Now we turn to a related inference case, the symmetric modus ponens; i.e., 

SimilarityRelationship A B <simAB> 

A <sA> 

|- 

B <?> 



Probabilistic Logic Networks                                                                               112 

There is an additional subtlety here, as compared to standard MP, because to con-

vert the similarity into an inheritance you have to assume some value for P(B). If 

we take the above heuristic MP formula for sB and combine it with the sim2inh 

rule 

Given simAB, sA and sB, estimate sAB : 

sAB = (1 + sB/sA) * simAB /( 1 + simAB ) 

then we obtain 

 

! 

s
B

= s
A
1+

s
B

s
A

" 

# 
$ 

% 

& 
' 
sim

AB

1+ sim
AB

+ c 1( s
A( )  

which (after a small amount of algebra) yields the heuristic formula 

! 

s
B

= s
A
sim

AB
+ c 1" s

A( ) 1+ sim
AB( )  

For example (to anticipate our later discussion of PLN-HOI), this is the rule 

we’ll need to use for the higher-order inference 

Equivalence <.8> 

Evaluation friendOf ($X,$Y)  

Evaluation friendOf ($Y,$X)  

Evaluation friendOf(Ben, Saddam) <.6> 

|- 

Evaluation friendOf(Saddam, Ben) <?> 

Given these numbers the answer comes out to .48 + .72*c. If we set c = .02 then 

we have .49 as an overall estimate. 

5.8 Converting Between Inheritance and Member Relationship 

Next we discuss conversion rules between Subset and Member relationships. 

The heuristic member-to-inheritance inference rule lets you reason, e.g., 

Member Ben Americans <tv1> 

|- 

Inheritance {Ben} Americans <tv2> 

where {Ben} is the term with 

Member Ben {Ben} 

and no other members. 

This conversion maps fuzzy truth-values into probabilistic truth-values. While 
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the precise form of the member-to-inheritance rule depends upon the form of the 

truth-value being used, all forms follow the same fundamental idea: they all keep 
the mean strength constant and decrease the confidence in the result. For indefinite 
truth-values we accomplish this decrease in confidence by increasing the interval 

width by a constant multiplicative factor. The heuristic inheritance-to-member in-

ference rule goes in the opposite direction and also keeps the strength constant and 

decreases confidence in a similar manner. 

The semantics of these rules is a bit tricky – in essence, they are approximately 

correct only for terms that represent cohesive concepts; i.e., for sets whose mem-

bers share a lot of properties. They are badly wrong for Atoms representing ran-

dom sets. They are also bad for sets like “Things owned by Izabela” which are 

heterogeneous collections, not sharing so many common properties. This issue is a 

subtle one and relates to the notion of concept geometry, to be discussed in a later 

section. 

5.9 Term Probability Inference 

The inference formulas given above all deal with inference on relationships, 

but they involve term probabilities as well as relationship probabilities. What 

about inference on term probabilities? Some kinds of Term-based inference re-

quire higher-order reasoning rules. For instance, if a PLN based reasoning system 

knows sman = swoman = .5, and it knows that  

Inheritance human ( man OR woman) <.9999> 

then it should be able to infer that shuman should not be .001. In fact it may well 

come to the wrong conclusion, that shuman = .5, unless it is given additional infor-

mation such as  

man AND woman <.00001> 

in which case after applying some logical transformation rules it can come to the 

correct conclusion that shuman = .9999 . This will become clearer when we discuss 

higher-order inference in the following chapter. 

But it is valuable to explicitly encode term probability inference beyond that 

which comes indirectly via HOI. For instance, suppose the system knows that 

Inheritance cat animal 

and it sees evidence of a cat in its perceptual reality, thus increasing its probability 

estimate scat. Then, it should be able to adjust its probability estimate of sanimal indi-

rectly as well, by inference. The rule here is a very simple one – just a rearrange-

ment of Bayes’ rule in a different order than is used for inversion. From 
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! 

P B( ) =
P B A( )P A( )
P AB( )

 

one derives the formula 

! 

s
B

=
s
A
s
AB

s
BA

 

or in other words 

A <sA> 

Inheritance A B <sAB> 

|- 

B <sB> 

This brings us to a point to be addressed a few sections down: how to deal with 

circular inference. We will introduce a mechanism called an “inference trail,” 

which consists in essence of a series of Atoms, so that the truth-value of each one 

is considered as partially determined by the truth-values of its predecessors in the 

series. If one is using trails, then term probability inference must be included in in-

ference trails just as relationship probability inference is, so that, after inferring 

sanimal from scat and scat,animal, one does not then turn around and infer scat, animal from 

sanimal and scat. 

In general, various mechanisms to be introduced in the following sections and 

discussed primarily in the context of relationship strengths may be assumed to ap-

ply in the context of term strengths as well. For example, the revision rule dis-

cussed in the following section works on term truth-values just as on relationship 

truth-values, and distributional truth-values as discussed in Chapter 7 carry over 

naturally as well. 

5.10  Revision 

In this section we introduce another important PLN inference rule: the “revi-

sion” rule, used to combine different estimates of the truth-value of the same 

Atom. In general, truth-value estimates to be merged via revision may come from 

three different sources: 

• External sources, which may provide different estimates of the truth-value of 

the same Atom (e.g., the New York Times says a certain politician is very 

trustworthy, but the Wall Street Journal says he is only moderately trustworthy) 

• Various cognitive processes, inside an integrative AI system, provide different 

estimates of the truth-value of the same Atom 
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• Different pathways of reasoning, taken internally by PLN, which may provide 

different estimates of the truth-value of the same Atom 

Generally speaking, it is the latter source which provides the greatest number of 

truth-value estimates, and which makes the revision formula an extremely critical 

part of PLN. 

Pei Wang, in (Wang, 1993), has given an excellent review of prior approaches 

to belief revision – including probabilistic approaches – and we mostly agree with 

his assessments of their shortcomings. His own approach to revision involves 

weighted averaging using a variable called “confidence,” which is quite similar to 

PLN’s “weight of evidence” – and although we don’t think it’s ideal (otherwise 

the detailed developments of this section wouldn’t be necessary), we do find his 

approach basically sensible, unlike most of the approaches in the literature. The 

key point that Wang saw but most other belief revision theorists did not is that, in 

order to do revision sensibly, truth-values need at least two components, such as 

exist in NARS and in PLN but not in most uncertain inference frameworks. 

5.10.1 Revision and Time 

Before proceeding with the mathematics, it’s worth mentioning one conceptual 

issue that arises in the context of revision: the nonstationary nature of knowledge. 

If different estimates of the truth-value of an Atom were obtained at different 

times, they may have different degrees of validity on this account. Generally 

speaking, more weight needs to be given to the relationship pertaining to more re-

cent evidence – but there will of course be many exceptions to this rule.  

In an integrative AI context, one approach to this problem is to push it out of 

the domain of logic and into the domain of general cognition. The treatment of re-

vision in PLN reflects our feeling that this is likely the best approach. We assume, 

in the PLN revision rule, that all information fed into the reasoning system has al-

ready been adapted for current relevance by other mental processes. In this case all 

information can be used with equal value. In an integrative AI system that incor-

porates PLN, there should generally be separate, noninferential processes that deal 

with temporal discounting of information. These processes should work, roughly 

speaking, by discounting the count of Atoms’ truth-values based on estimated ob-

soleteness, so that older estimates of the same Atom’s truth-value will, all else be-

ing equal, come to have lower counts. According to the revision formulas to be 

given below, estimates with lower counts will tend to be counted less in the revi-

sion process. 

However, because in any complex AI system, many cognitive processes are 

highly nondeterministic, it cannot be known for sure that temporal updating has 

been done successfully on two potential premises for revision. Hence, if the prem-

ises are sufficiently important and their truth-values are sufficiently different, it 

may be appropriate to specifically request a temporal updating of the premises, 
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and carry through with the revision only after this has taken place. This strategy 

can also be used with other inference rules as well: requesting an update of the 

premises before deduction, induction, or abduction takes place. 

 5.10.2  A Heuristic Revision Rule for Simple Truth-values 

In this section we give a simple, heuristic revision rule for simple truth-values 

consisting of (strength, weight of evidence) pairs. In the following chapter we pre-

sent a subtler approach involving indefinite probabilities; and in following subsec-

tions of this section we present some subtler approaches involving simple truth-

values. All in all, belief revision is a very deep area of study, and the PLN frame-

work supports multiple approaches with differing strengths and weaknesses. 

Suppose s1 is the strength value for premise 1 and s2 is the strength value for 

premise 2. Suppose further that n1 is the count for premise 1 and n2 is the count for 

premise 2. Let w1 = n1/(n1+n2) and w2 = n2/(n1+n2) and then form the conclusion 

strength value s = w1 s1 + w2s2.  

In other words, a first approximation at a reasonable revision truth-value 

formula is simply a weighted average. We may also heuristically form a count rule 

such as n = n1 + n2 – c min(n1, n2), where the parameter c indicates an assumption 

about the level of interdependency between the bases of information 

corresponding to the two premises. The value c=1 denotes the assumption that the 

two sets of evidence are completely redundant; the value c=0 denotes the 

assumption that the two sets of evidence are totally distinct. Intermediate values 

denote intermediate assumptions. 

5.10.3  A Revision Rule for Simple Truth-values Assuming 

Extensive Prior Knowledge 

In this and the next few subsections, we dig more deeply into the logic and 

arithmetic of revision with simple truth-values. This material is not currently 

utilized in our practical PLN implementation, nor has it been fully integrated with 

the indefinite probabilities approach. However, we feel it is conceptually valuable, 

and represents an important direction for future research. 

To illustrate conceptually the nature of the revision process, we consider here 

the simple case of an extensional inheritance relation 

 

L = Subset A B 

Suppose we have two different estimates of this relationship’s strength, as 

above. We consider first the case where the weight of evidence is equal for the 
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two different estimates, and then take a look at the role of weight of evidence in 

revision. 

Suppose that the two different estimates were obtained by looking at different 

subsets of A and B. Specifically, suppose that the first estimate was made by look-

ing at elements of the set C, whereas the second estimate was made by looking at 

elements of the set D. 

Then we have 

 

! 

s
1

=
A" B"C

A"C
 

! 

s
2

=
A" B"D

A"D
 

By revising the two strengths, we aim to get something like 

 

! 

s
3

* =
A" B" C#D( )
A" C#D( )

 

which is the inheritance value computed in the combined domain C!D. 

Now, there is no way to exactly compute s3* from s1 and s2, but we can com-

pute some approximation s3 ! s3*. Let’s write 

 

! 

s
1

=
x
1

y
1

 

! 

s
2

=
x
2

y
2

 

If we assume that C and D are independent in both A and A"B, then after a bit of 

algebra we can obtain the heuristic revision rule: 

 

! 

s
3

=

x
1

+ x
2
"
x
1
x
2

u

y
1

+ y
2
"
y
1
y
2

u

 

 

The derivation goes as follows. Firstly, we have 
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! 

A" B" C#D( ) = A" B"C + A" B"D $ A" B"C"D  

! 

A" C#D( ) = A"C + A"D $ A"C"D  

We thus have 

 

! 

s
3

*
=
x
1
+ x

2
" A# B#C#D

y
1
+ y

2
" A#C#D

 

 

And we now have an opportunity to make an independence assumption. If we 

assume that C and D are independent within A, then we have 

 

! 

A"C"D

U
=

A"C

U

# 

$ 
% 

& 

' 
( 
A"D

U

# 

$ 
% 

& 

' 
(  

 

(where U is the universal set) and thus 

 

! 

A"C"D =
A"C A"D

U
=
y
1
y
2

u
 

(where u = |U|). Similarly if we assume that C and D are independent within 

! 

A" B, we have 

 

! 

A" B"C"D =
A" B"C A" B"D

U
=
x
1
x
2

u
 

which yields the revision rule stated above: 

 

! 

s
3

=

x
1

+ x
2
"
x
1
x
2

u

y
1

+ y
2
"
y
1
y
2

u

 

 

As with the deduction rule, if the system has knowledge about the intersections 

! 

A"C"D  or 

! 

A" B"C"D , then it doesn’t need to use the independence 

assumptions; it can substitute its actual knowledge.  

Now, one apparent problem with this rule is that it doesn’t actually take the 

form  
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! 

s
3

= f s
1
,s
2( ) 

It requires a little extra information. For instance suppose we know the strength of  

 

Subset A C <sAC> 

Then we know 

! 

y
1

= A"C = sACP A( )u

x
1

= s
1
y
1

 

so we can compute the needed quantities (x1, y1) from the given strength s1 plus 

the extra relationship strength sAC. 

5.10.4  A Revision Rule for Simple Truth-values Assuming 

Extensive Prior Knowledge 

But – following up the example of the previous subsection – what do we do in 

the case where we don’t have any extra information, just the premise strengths s1 

and s2? Suppose we assume y1=y2=q, for simplicity, assuming no knowledge about 

either. Then s1=x1/q, s2 = x2/q , and we can derive a meaningful heuristic revision 

formula. In this case the  

 

! 

s
3

=

x
1

+ x
2
"
x
1
x
2

u

y
1

+ y
2
"
y
1
y
2

u

 

given above specializes to 

 

! 

s
3

=

s
1
q + s

2
q "

s
1
s
2
qq

u

q + q "
qq

u

=

s
1
+ s

2
"
s
1
s
2
q

u

2 "
q

u

 

 

which can be more simply written (setting c=q/u) 

 

! 

s
3

=
s
1

+ s
2
" s

1
s
2
c

2 " c
 

Here c is a critical parameter, and as the derivation shows, intuitively 
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• c = 1 means that both premises were based on the whole universe 

(which is generally implausible, because if this were the case they 

should have yielded identical strengths) 

• c = .5 means that the two premises were each based on half of the uni-

verse 

• c = 0 means that the premises were each based on negligibly small 

percentages of the universe 

 

Different c values may be useful in different domains, and it may be possible in 

some domains to tune the c value to give optimal results. Concretely, if c = 0, then 

we have 

 

! 

s
3

=
s
1
+ s

2

2
 

i.e., the arithmetic average. We have derived the intuitively obvious “averaging” 

heuristic for revision, based on particular assumptions about the evidence sets un-

der analysis. 

But suppose we decide c=.5, to take another extreme. Then we have 

 

! 

s
3

=
2

3
s
1
+ s

2
" .5s

1
s
2( ) 

Suppose s1 = s2 = .1, then the average formula gives s3=.1, but this alternate for-

mula gives 

 

! 

s
3

=
2

3
0.1+ 0.1" 0.5 # 0.1# 0.1( ) = 0.13 

which is higher than the average! 

So what we find is that the averaging revision formula effectively corresponds 

to the assumption of an infinite universe size. With a smaller universe, one obtains 

revisions that are higher than the averaging formula would yield. Now, for this to 

be a significant effect in the course of a single revision one has to assume the uni-

verse is very small indeed. But iteratively, over the course of many revisions, it’s 

possible for the effect of a large but non-infinite universe to have a significant im-

pact. 

In fact, as it turns out, some tuning of c is nearly always necessary – because, 

using the above heuristic formula, with c nonzero, one obtains a situation in which 

revision gradually increases relationship strengths. Applied iteratively for long 

enough, this may result in relationship strengths slowly drifting up to 1. And this 

may occur even when not correct – because of the independence assumption em-
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bodied in the (s1 s2) term of the rule. So if c is to be set greater than zero, it must 

be dynamically adapted in such a way as to yield “plausible” results, a notion 

which is highly domain-dependent. 

5.10.5  Incorporating Weight of Evidence into Revision of Simple 

Truth-values  

Next, one can modify these rules to take weight of evidence into account. If we 

define 
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v
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d
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+ d
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v
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= 2 " v
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then some algebra yields 
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which yields the corresponding heuristic formula 
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s
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=
v
1
s
1
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2
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s
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The algebra underlying this involved going back to the original derivation of 

the revision rule, above. Where we said 

 

! 

A" B" C#D( ) = A" B"C + A" B"D $ A" B"C"D  

! 

A" C#D( ) = A"C + A"D $ A"C"D  

we now instead have to say  

 

! 

A" B" C#D( ) = v
1
A" B"C + v

2
A" B"D $ A" B"C"D  
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! 

A" C#D( ) = v
1
A"C + v

2
A"D $ A"C"D  

where 

! 

v
1

=
2d

1

d
1
+ d

2

v
2

= 2 " v
1

 

which is equivalent to the formulas given above. 

5.10.6  Truth-value Arithmetic 

As a kind of footnote to the discussion of revision, it is interesting to observe 

that one may define a kind of arithmetic on PLN two-component truth-values, in 

which averaging revision plays the role of the addition on strengths, whereas sim-

ple summation plays the role of revision on counts. We have not found practical 

use for this arithmetic yet, but such uses may emerge as PLN theory develops fur-

ther. 

The first step toward formulating this sort of truth-value arithmetic is to 

slightly extend the range of the set of count values. Simple two-component PLN 

truth-values, defined above, are values lying in [0,1]! [0, !]. However, we can 

think of them as lying in [0,1]! [-!, !], if we generalize the interpretation of 

“evidence” a little bit, and introduce the notion of negative total evidence.  

Negative total evidence is not so counterintuitive, if one thinks about it the 

right way. One can find out that a piece of evidence one previously received and 

accepted was actually fallacious. Suppose that a proposition P in the knowledge 

base of a system S has the truth-value (1,10). Then, for the system’s truth-value 

for P to be adjusted to (.5,2) later on, it will have to encounter 9 pieces of negative 

evidence and 1 piece of positive evidence. That is, all 10 of the pre-July-19 obser-

vations must be proved fraudulent, and one new observation must be made (and 

this new observation must be negative evidence). So, we may say (anticipating the 

truth-value arithmetic to be introduced below): 

 

! 

1,10( ) + 1, " 9( ) + 0,1( ) = 0.5, 2( ) 
 

Now, suppose we have two truth-values T and S. We then define 

 

! 

T + S =W W
"1
T( ) +W "1

S( )( ) 
 

where the function W is a nonlinear mapping from the real plane into the region 

[0,1] !  [-!, !].  
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Similarly, where c is a real number, we define the scalar multiple of a truth-

value T by 

 

! 

c *T =W W
"1
c( )*W "1

T( )( ) 
 

It is easy to verify that the standard vector space axioms (Poole, 2006) hold for 

these addition and scalar multiplication operations.  

 

A vector space over the field F is a set V together with two binary operations, 

 

• vector addition: V × V → V denoted v + w, where v, w ∈ V, and 

• scalar multiplication: F × V → V denoted a v, where a ∈ F and v ∈ V, 

 

satisfying the axioms below. Four require vector addition to be an Abelian group, 

and two are distributive laws. 

 

1. Vector addition is associative: For all u, v, w ∈ V, we have u + (v + w) = 

(u + v) + w. 

2. Vector addition is commutative: For all v, w ∈ V, we have v + w = w + v. 

3. Vector addition has an identity element: There exists an element 0 ∈ V, 

called the zero vector, such that v + 0 = v for all v ∈ V. 

4. Vector addition has an inverse element: For all v ∈ V, there exists an ele-

ment w ∈ V, called the additive inverse of v, such that v + w = 0. 

5. Distributivity holds for scalar multiplication over vector addition: For all 

a ∈ F and v, w ∈ V, we have a (v + w) = a v + a w. 

6. Distributivity holds for scalar multiplication over field addition: For all a, 

b ∈ F and v ∈ V, we have (a + b) v = a v + b v. 

7. Scalar multiplication is compatible with multiplication in the field of sca-

lars: For all a, b ∈ F and v ∈ V, we have a (b v) = (ab) v. 

8. Scalar multiplication has an identity element: For all v ∈ V, we have 1 v 

= v, where 1 denotes the multiplicative identity in F. 

  

The zero of the truth-value + operator is W(0); the unit of the truth-value * op-

erator is W(1). Note that axioms 4 and 6, which deal with closure, hold only be-

cause we have decided to admit negative amounts of total evidence.  

The next question is, what is a natural nonlinear mapping function W to use 

here? What we would like to have is 
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In other words, we want 
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This is achieved by defining 
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Now, finally getting back to the main point, the relationship between truth-

value addition as just defined and PLN revision is not hard to see. We now lapse 

into standard PLN notation, with s for strength and N for count. Where si = N+
i/Ni, 

we have 
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where 
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This is just the standard PLN revision rule: weighted averaging based on count. 

So we see that our truth-value addition rule is nothing but revision! 
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On the other hand, our scalar multiplication rule boils down to 
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In other words, our scalar multiplication leaves strength untouched and multi-

plies only the total evidence count. This scalar multiplication goes naturally with 

revision-as-addition, and yields a two-dimensional vector space structure on truth-

values. 

5.11  Inference Trails 

One issue that arises immediately when one implements a practical PLN sys-

tem is the problem of circular inference (and, you may recall that this problem was 

briefly noted above in the context of term probability inference). For example, 

suppose one has 

P(American) = <[0.05, 0.15], 0.9, 10> 

P(silly) = <[0.3, 0.5], 0.9, 10> 

P(human) = <[0.4, 0.6], 0.9, 10> 

Then one can reason 

Subset American human <[0.7, 0.9], 0.9, 10> 

Subset human silly <[0.4, 0.45], 0.9, 10> 

|- 

Subset American silly <[0.370563, 0.455378], 0.9, 10> 

but then one can reason 

Subset human silly <[0.4, 0.45], 0.9, 10> 

|- 

Subset silly human <[0.377984, 0.595297], 0.9, 10> 

and 

Subset American silly <[0.370563, 0.455378], 0.9, 10> 

Subset silly human <[0.377984, 0.595297], 0.9, 10> 
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|- 

Subset American human <[0.408808, 0.578298], 0.9, 10> 

which upon revision with the prior value for (Subset American human) yields 

Subset American human <[0.578047, 0.705526], 0.9, 10> 

Repeating this iteration multiple times, one obtains a sequence 

Subset American human <[0.42278, 0.550354], 0.9, 10> 

Subset American human <[0.435878, 0.563317], 0.9, 10> 

Subset American human <[0.429098, 0.555749], 0.9, 10> 

.. 

This is circular inference: one is repeatedly drawing a conclusion from some 

premises, and then using the conclusion to revise the premises. The situation gets 

even worse if one includes term probability inference in the picture. Iterated infer-

ence involves multiple evidence-counting, and so the resulting truth values be-

come meaningless. Note, however, that due to the nature of indefinite probabili-

ties, the generation of meaningless truth values appears to be bounded, so after a 

few iterations no additional meaningless values are generated. 

One way to deal with this problem is to introduce a mechanism called “infer-

ence trails,” borrowed from NARS. This is not the only approach, and in a later 

chapter we will discuss an alternative strategy which we call “trail free inference.” 

But in the present section we will restrict ourselves to the trail-based approach, 

which is what is utilized in our current primary PLN software implementation. In 

the trail-based approach, one attaches to an Atom a nonquantitative object called 

the “inference trail” (or simply the “trail”), defined as a partial list of the terms and 

relationships that have been used to influence the Atom’s truth-value. For the trail 

mechanism to work properly, each Atom whose truth-value is directly influenced 

by inference must maintain a trail object. Atoms newly formed in an AI system 

via external input or via noninferential concept creation have empty trails. Atoms 

formed via inference have nonempty trails. 

The rule for trail updating is simple: In each inference step, the trail of conclu-

sion is appended with the trails of the premises, as well as the premises them-

selves. The intersection of the trails of two atoms A and B is then a measure of the 

extent to which A and B are based on overlapping evidence. If this intersection is 

zero, then this suggests that A and B are independent. If the intersection is 

nonzero, then using A and B together as premises in an inference step involves 

“circular inference.” 

As well as avoiding circular inference, the trail mechanism has the function of 

preventing a false increase of “weight of evidence” based on revising (merging) 

atoms whose truth-values were derived based on overlapping evidence. It can also 

be used for a couple of auxiliary purposes, such as providing information when the 

system needs to explain how it arrived at a given conclusion, and testing and de-

bugging of inference systems. 



127       Chapter 5: First Order Extensional Inference   

The use of inference trails means that the choice of which inference to do is 

quite a serious one: each inference trajectory that is followed potentially rules out 

a bunch of other trajectories, some of which may be better! This leads to subtle is-

sues relating to inference control, some of which will be addressed in later chap-

ters – but which will not be dealt with fully in these pages because they go too far 

beyond logic per se. 

In practice, it is not feasible to maintain infinitely long trails, so a trail length is 

fixed (say, 10 or 20). This means that in seeking to avoid circular inference and re-

lated ills, a reasoning system like PLN can’t use precise independence informa-

tion, but only rough approximations. Pei Wang has formulated a nice aphorism in 

this regard: “When circular inference takes place and the circle is large enough, 

it’s called coherence.” In other words, some large-circle circularity is inevitable in 

any mind, and does introduce some error, but there is no way to avoid it without 

introducing impossible computational resource requirements or else imposing 

overly draconian restrictions on which inferences can occur. Hence, the presence 

of undocumented interdependencies between different truth-value assessments 

throughout an intelligent system’s memory is unavoidable. The undocumented na-

ture of these dependencies is a shortcoming that prevents total rationality from oc-

curring, but qualitatively, what it does is to infuse the set of relationships and 

terms in the memory with a kind of “conceptual coherence” in which each one has 

been analyzed in terms of the cooperative interactions of a large number of others. 

5.12  The Rule of Choice  

When the revision rule is asked to merge two different truth-value estimates, 

sometimes its best course may be to refuse. This may occur for two reasons: 

1. Conflicting evidence: the two estimates both have reasonably high weight of 

evidence, but have very different strengths. 

2. Circular inference violations: the rule is being asked to merge a truth-value 

T1 with another truth-value T2 that was derived in part based on T1. 

The name “Rule of Choice” refers to a collection of heuristics used to handle 

these cases where revision is not the best option. There is not really one particular 

inference rule here, but rather a collection of heuristics each useful in different 

cases. In the case of conflicting evidence, there is one recourse not available in the 

circular inference case: creating a distributional truth-value. This is not always the 

best approach; its appropriateness depends on the likely reason for the existence of 

the conflicting evidence. If the reason is that the different sources observed differ-

ent examples of the relationship, then a distributional truth-value is likely the right 

solution. If the reason is that the different sources simply have different opinions, 

but one and only one will ultimately be correct, then a distributional truth-value is 

likely not the right solution.  
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For instance, suppose we have two human Mars explorers reporting on whether 

or not Martians are midgets. If one explorer says that Martians are definitely 

midgets and another explorer says that Martians are definitely not midgets, then 

the relevant question becomes whether these explorers observed the same Mar-

tians or not. If they observed different Martians, then revision may be applied, but 

to preserve information it may also be useful to create a distributional truth-value 

indicating that midget-ness among Martians possesses a bimodal distribution (with 

some total midgets, the ones observed by the first explorer; and with some total 

non-midgets, the ones observed by the second explorer). On the other hand, if the 

two explorers saw the same Martians, then we may not want to just revise their es-

timates into a single number (say, a .5 strength of midget-ness for Martians); and 

if we do, we want to substantially decrease the weight of evidence associated with 

this revised strength value. Nor, in this case, do we want to create a bimodal truth-

value: because the most likely case is that the Martians either are or are not midg-

ets, but one of the explorers was mistaken. 

On the other hand, one option that holds in both the conflicting evidence and 

circular inference cases is for the inference system to keep several versions of a 

given Atom around – distinct only in that their truth-values were created via dif-

ferent methods (they came from different sources, or they were inferentially pro-

duced according to overlapping and difficult-to-revise inference trails). This solu-

tion may be achieved knowledge-representation-wise by marking the different 

versions of an Atom as Hypothetical (see the following chapter for a treatment of 

Hypothetical relationships), using a special species of Hypothetical relationship 

that allows complete pass-through of truth-values into regular PLN inference. 

Next we describe several approaches that are specifically applicable to the case 

where the Rule of Choice is used to avoid circular inference (i.e., where it is used 

to mediate trail conflicts). First, an accurate but terribly time-consuming approach 

is to take all the elements from the trails of the two relationships 

Rel S P <t1>  

Rel S P <t2>  

merge them together into an atom set S, and then do a number of inference steps 

intercombining the elements of S, aimed at getting a new truth-value t so that 

Rel S P <t>  

This very expensive approach can only be taken when the relationship involved is 

very, very important. Alternately, suppose that 

T = (Rel S P ).Trail <t1> MINUS (Rel S P).Trail <t2>  

Then we can define 

Rel S P <t3>  

as the result of doing inference from the premises 

Rel S P <t2> 
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T 

and we can merge 

Rel S P <t1>  

Rel S P <t3>  

using ordinary revision. This of course is also costly and only applicable in cases 

where the inference in question merits a fairly extreme allocation of computational 

resources. 

Finally, a reasonable alternative in any Rule of Choice situation (be it conflict-

ing evidence or circular inference related), in the case where limited resources are 

available, is to simply do revision as usual, but set the degrees of freedom of the 

conclusion equal to the maximum of the degrees of freedom of the premises, 

rather than the sum. This prevents the degrees of freedom from spuriously increas-

ing as a result of false addition of overlapping evidence, but also avoids outright 

throwing-out of information. A reasonable approach is to use this crude alternative 

as a default, and revert to the other options on rare occasions when the importance 

of the inference involved merits such extensive attention allocation. 
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Chapter 6: First-Order Extensional 

Inference with Indefinite Truth-Values 

Abstract   In this chapter we exemplify the use of indefinite probabilities in a va-

riety of PLN inference rules (including exact and heuristic ones).  

6.1 Inference Using Indefinite Probabilities 

In this chapter we show how the inference rules described above can be applied 

when truth-values are quantified as indefinite probabilities, rather than as individ-

ual probabilities or (probability, weight of evidence) pairs. We outline a general 

three-step process according to which a PLN inference formula, defined initially 

in terms of individual probabilities, may be evaluated using indefinite probabili-

ties.  We will first present these three steps in an abstract way; and then, in the fol-

lowing section, exemplify them in the context of specific probabilistic inference 

formulas corresponding to inference rules like term logic and modus ponens de-

duction, Bayes’ rule, and so forth.  

In general, the process is the same for any inference formula that can be 

thought of as taking in premises labeled with probabilities, and outputting a con-

clusion labeled with a probability. The examples given here will pertain to single 

inference steps, but the same process may be applied holistically to a series of in-

ference steps, or most generally an “inference tree/DAG” of inference steps, each 

building on conclusions of prior steps.  

Step One in the indefinite probabilistic inference process is as follows. Given 

intervals 

! 

L
i
,U

i[ ] of mean premise probabilities, we first find a distribution from the 

“second-order distribution family” supported on

! 

L1
i
,U1

i[ ]" L
i
,U

i[ ], so that these 

means have 

! 

L
i
,U

i[ ] as (100!bi)% credible intervals. The intervals 

! 

L1
i
,U1

i[ ]  either 

are of the form 

! 

m

n + k
,
m + k

n + k

" 

# $ 
% 

& ' 
, when the “interval-type” parameter associated with 

the premise is asymmetric, or are such that both of the intervals 

! 

L1
i
,L

i[ ] and 

! 

U
i
,U1

i[ ] each have probability mass bi /2, when interval-type is symmetric.  

Next, in Step Two, we use Monte Carlo methods on the set of premise truth-

values to generate final distribution(s) of probabilities as follows. For each prem-

ise we randomly select n1 values from the (“second-order”) distribution found in 

Step One. These n1 values provide the values for the means for our first-order dis-

tributions. For each of our n1 first-order distributions, we select n2 values to repre-

sent the first-order distribution. We apply the applicable inference rule (or tree of 
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inference rules) to each of the n2 values for each first-order distribution to generate 

the final distribution of first-order distributions of probabilities. We calculate the 

mean of each distribution and then – in Step Three of the overall process – find a 

(100!bi)% credible interval, 

! 

Lf ,Uf[ ], for this distribution of means. 

When desired, we can easily translate our final interval of probabilities, 

! 

Lf ,Uf[ ], into a final, 

! 

sf ,n f ,bf( ) triple of strength, count, and credibility levels, 

as outlined above. 

Getting back to the “Bayesianism versus frequentism” issues raised in Chapter 

4, if one wished to avoid the heuristic assumption of decomposability regarding 

the first-order plausibilities involved in the premises, one would replace the first-

order distributions assumed in Step Two with Dirac delta functions, meaning that 

no variation around the mean of each premise plausibility would be incorporated. 

This would also yield a generally acceptable approach, but would result in overall 

narrower conclusion probability intervals, and we believe would in most cases 

represent a step away from realism and robustness. 

6.1.1  The Procedure in More Detail 

We now run through the above three steps in more mathematical detail. 

In Step One of the above procedure, we assume that the mean strength values 

follow some given initial probability distribution

! 

gi s( )  with support on the 

interval

! 

L1
i
,U1

i[ ] . If the interval-type is specified as asymmetric, we perform a 

search until we find values k2 so that 

! 

gi s( )ds = b
Li

Ui

" , where 

! 

L
i
=

m
i

n
i
+ k2

 and 

! 

U
i
=
m

i
+ k2

n
i
+ k2

. If the interval-type is symmetric, we first ensure, via parameters, 

that each first-order distribution is symmetric about its mean si, by setting 

! 

L
i
= s

i
" d , 

! 

U
i
= s

i
+ d  and performing a search for d to ensure that 

! 

gi s( )ds = b
Li

Ui

" . In either case, each of the intervals 

! 

L
i
,U

i[ ]  will be a (100!b)% 

credible interval for the distribution

! 

gi s( ) . 

We note that we may be able to obtain the appropriate credible intervals for the 

distributions

! 

gi s( )  only for certain values of b. For this reason, we say that a value 

b is truth-value-consistent whenever it is feasible to find (100!b)% credible inter-

vals of the appropriate type. 

In Step Two of the above procedure, we create a family of distributions, drawn 

from a pre-specified set of distributional forms, and with means in the intervals 

! 

L
i
,U

i[ ]. We next apply Monte Carlo search to form a set of randomly chosen 

“premise probability tuples”. Each tuple is formed via selecting, for each premise 

of the inference rule, a series of points drawn at random from randomly chosen 
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distributions in the family. For each randomly chosen premise probability tuple, 

the inference rule is executed. And then, in Step Three, to get a probability value 

! 

sf  for the conclusion, we take the mean of this distribution. Also, we take a 

credible interval from this final distribution, using a pre-specified credibility level 

! 

bf , to obtain an interval for the conclusion 

! 

Lf ,Uf[ ] . 

6.2 A Few Detailed Examples  

In this section we report some example results obtained from applying the in-

definite probabilities approach in the context of simple inference rules, using both 

symmetric and asymmetric interval-types. 

Comparisons of results on various inference rules indicated considerably supe-

rior results in all cases when using the symmetric intervals. As a result, we will 

report results for five inference rules using the symmetric rules; while we will re-

port the results using the asymmetric approach for only one example (term logic 

deduction). 

6.2.1  A Detailed Beta-Binominal Example for Bayes’ Rule 

First we will treat Bayes’ rule, a paradigm example of an uncertain inference 

rule -- which however is somewhat unrepresentative of inference rules utilized in 

PLN, due to its non-heuristic, exactly probabilistic nature. 

The beta-binomial model is commonly used in Bayesian inference, partially 

due to the conjugacy of the beta and binomial distributions. In the context of 

Bayes’ rule, Walley develops an imprecise beta-binomial model (IBB) as a special 

case of an imprecise Dirichlet model (IDM). We illustrate our indefinite probabili-

ties approach as applied to Bayes’ rule, under the same assumptions as these other 

approaches. We treat here the standard form for Bayes’ rule: 

! 

P AB( ) =
P A( )P B A( )

P B( )
. 

Consider the following simple example problem. Suppose we have 100 gerbils 

of unknown color; 10 gerbils of known color, 5 of which are blue; and 100 rats of 

known color, 10 of which are blue. We wish to estimate the probability of a ran-

domly chosen blue rodent being a gerbil. 

The first step in our approach is to obtain initial probability intervals. We ob-

tain the following sets of initial probabilities shown in Tables 1 and 2, correspond-

ing to credibility levels b of 0.95 and 0.982593, respectively. 
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Table 1. Intervals for credibility level 0.90 

EVENT [L,U]  [L1, U1] 

G 

! 

10

21
,
12

21

" 

# $ 
% 

& ' 
=[.476190, 0.571429] [0.419724, 0.627895] 

R 

! 

8

21
,
12

21

" 

# $ 
% 

& ' 
 =[0.380952, 0.571429]  [0.26802, 0.684361] 

B|G [0.3, 0.7]  [0.0628418, 0.937158] 

B|R [0.06, 0.14]  [0.0125683, 0.187432] 

 

Table 2. Intervals for credibility level 0.95 

EVENT [L, U]  [L1, U1] 

G 

! 

10

21
,
12

21

" 

# $ 
% 

& ' 
=[.476190, 0.571429]  

[0.434369, 0.61325] 

R 

! 

8

21
,
12

21

" 

# $ 
% 

& ' 
 =[0.380952, 0.571429]  [0.29731, 0.655071] 

B|G [0.3, 0.7]  [0.124352, 0.875649] 

B|R [0.06, 0.14]  [0.0248703, 0.17513] 

 

We begin our Monte Carlo step by generating

! 

n
1
 random strength values, cho-

sen from Beta distributions proportional to

! 

x
ks"1
1" x( )

k 1"s( )"1
 with mean values of 

! 

s =
11

21

 for P(G); 

! 

s =
10

21

 for P(R); 

! 

s =
1

2

 for

! 

P BG( ) ; and 

! 

s =
1

10

 for 

! 

P BR( ) , and 

with support on [L1, U1]. Each of these strength values then serves, in turn, as pa-

rameters of standard Beta distributions. We generate a random sample of 

! 

n
2
 

points from each of these standard Beta distributions. 

We next apply Bayes’ theorem to each of the 

! 

n
1
n
2
 quadruples of points, gen-

erating 

! 

n
1
 sets of sampled distributions. Averaging across each distribution then 

gives a distribution of final mean strength values. Finally, we transform our final 

distribution of mean strength values back to (s, n, b) triples. 
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6.2.1.1 Experimental Results 

Results of our Bayes’ rule experiments are summarized in Tables 3 and 4. 

 

Table 3. Final probability intervals and strength values for P(G|B) using initial b-values of 

0.90 

CREDIBILITY LEVEL INTERVAL 

0.90 [0.715577, 0.911182] 

0.95 [0.686269, 0.924651] 

 

Table 4. Final probability intervals and strength values for P(G|B) using initial b-values of 

0.95 

CREDIBILITY LEVEL INTERVAL 

0.90 [0.754499, 0.896276] 

0.95 [0.744368, 0.907436] 

6.2.1.2 Comparisons to Standard Approaches 

It is not hard to see, using the above simple test example as a guide, that our in-

definite probabilities approach generalizes both classical Bayesian inference and 

Walley’s IBB model. First note that single distributions can be modeled as enve-

lopes of distributions with parameters chosen from uniform distributions. If we 

model P(B) as a uniform distribution; P(A) as a single beta distribution and 

! 

P B A( )  as a single binomial distribution, then our method reduces to usual Baye-

sian inference. If, on the other hand, we model P(B) as a uniform distribution; 

P(A) as an envelope of beta distributions; and 

! 

P B A( )  as an envelope of binomial 

distributions, then our envelope approach reduces to Walley’s IBB model. Our 

envelope-based approach thus allows us to model P(B) by any given family of dis-

tributions, rather than restricting us to a uniform distribution. This allows for more 

flexibility in accounting for known, as well as unknown, quantities. 

To get a quantitative comparison of our approach with these others, we mod-

eled the above test example using standard Bayesian inference as well as Walley’s 

IBB model. To carry out standard Bayesian analysis, we note that given that there 

are 100 gerbils whose blueness has not been observed, we are dealing with 

! 

2
100
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“possible worlds” (i.e., possible assignments of blue/non-blue to each gerbil). 

Each of these possible worlds has 110 gerbils in it, at least 5 of which are blue, 

and at least 5 of which are non-blue. 

For each possible world w, we can calculate the probability that drawing 10 

gerbils from the population of 110 existing in world W yields an observation of 5 

blue gerbils and 5 non-blue gerbils. This probability may be written

! 

P DH( ) , 

where D is the observed data (5 blue and 5 non-blue gerbils) and H is the hypothe-

sis (the possible world W). 

Applying Bayes’ rule, we have 

! 

P H D( ) =
P DH( )P H( )

P D( )
. Assuming that 

! 

P H( )  

is constant across all possible worlds, we find that

! 

P H D( )  is proportional 

to

! 

P DH( ). Given this distribution for the possible values of the number of blue 

gerbils, one then obtains a distribution of possible values 

! 

P gerbilblue( ) and 

calculates a credible interval. The results of this Bayesian approach are summa-

rized in Table 5 

 

Table 5. Final Probability Intervals for P(G|B) 

CREDIBILITY LEVEL INTERVAL 

0.90 [0.8245614035, 0.8630136986] 

0.95 [0.8214285714, 0.8648648649] 

 

We also applied Walley’s IBB model to our example, obtaining (with k=10) the 

interval 

! 

2323

2886
,
2453

2886

" 

# $ 
% 

& ' 
, or approximately [0.43007, 0.88465]. In comparison, the 

hybrid method succeeds at maintaining narrower intervals, albeit at some loss of 

credibility. 

With a k-value of 1, on the other hand, Walley’s approach yields an interval of 

[0.727811, 0.804734]. This interval may seem surprising because it does not in-

clude the average given by Bayes’ theorem. However, it is sensible given the logic 

of Walley’s approach. In this approach, we assume no prior knowledge of P(G) 

and we have 10 new data points in support of the proposition that 

! 

P GB( )  is 

55/65. So we assume beta distribution priors with s=0 and s=1 for the “endpoints” 

of P(G) and use n=10 and p=11/13 for the binomial distribution for 

! 

P GB( ) . 

The density function thus has the form 

! 

f x( ) =
x
ks
1" x( )

k 1"s( )
x
np
1" x( )

n 1" p( )

x
ks
1" x( )

k 1"s( )
x
np
1" x( )

n 1" p( )
dx

0

1

#
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Now for s=1 and the value of the learning parameter k=1, the system with no 

prior knowledge starts with the interval [1/3, 2/3]. With only 10 data points in sup-

port of p=11/13 and prior assumption of no knowledge or prior p=1/2, Walley’s 

method is (correctly according to its own logic) reluctant to move quickly in sup-

port of p=11/13, without making larger intervals via larger k-values. 

6.2.2  A Detailed Beta-Binominal Example for Deduction  

Next we consider another inference rule, term logic deduction, which is more in-

teresting than Bayes’ rule in that it combines probability theory with a heuristic 

independence assumption. The independence-assumption-based PLN deduction 

rule, as derived in Chapter 5, has the following form for “consistent” sets A, B, 

and C:  

! 

s
AC

= s
AB
s
BC

+
1" s

AB( ) sC " sBsBC( )
1" s

B  

where 

! 

s
AC

= P C A( ) =
P A"C( )
P A( )  

assuming the given data 

! 

s
AB

= P B A( ), 

! 

s
BC

= P C B( ) , 

! 

s
A

= P A( ) , 

! 

s
B

= P B( ), 

and 

! 

s
C

= P C( ) .  

Our example for the deduction rule will consist of the following premise truth-

values. In Table 6, we provide the values for [L,U], and b, as well as the values 

corresponding to the mean s and count n. In the following sets of examples we as-

sumed k=10 throughout. 

 

Table 6. Premise truth-values used for deduction with symmetric intervals 

Premise s [L,U] [L1, U1] 

A 11/23 [10/23, 12/23]![0.434783, 0.521739] [0.383226, 0.573295] 

B 0.45 [0.44, 0.46] [0.428142, 0.471858] 

AB 0.413043 [0.313043, 0.513043] [0.194464, 0.631623] 

BC 8/15 [7/15, 9/15] ! [0.466666, 0.6] [0.387614, 0.679053] 
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We now vary the premise truth-value for variable C, keeping the mean sC con-

stant, in order to study changes in the conclusion count as the premise width [L,U] 

varies. In Table 7, b = 0.9 for both premise and conclusion, and sC = 0.59. The fi-

nal count nAC is found via the inverse Bernoulli function approach of Chapter 4. 

 

Table 7. Deduction rule results using symmetric intervals 

Premise C Conclusion AC 

[L,U] [L1, U1] sAC [L,U] nAC 

[0.44, 0.74] [0.26213, 0.91787] 0.575514 [0.434879, 0.68669] 11.6881 

[0.49, 0.69] [0.37142, 0.80858] 0.571527 [0.47882, 0.65072] 18.8859 

[0.54, 0.64] [0.48071, 0.69929] 0.571989 [0.52381, 0.612715] 42.9506 

[0.58, 0.60] [0.56814, 0.61186] 0.571885 [0.4125, 0.6756] 10.9609 

 

For comparison of using symmetric intervals versus asymmetric, we also tried 

identical premises for the means using the asymmetric interval approach. In so do-

ing, the premise intervals [L, U] and [L1, U1] are different as shown in Tables 8 

and 9, using b = 0.9 as before. 

 

Table 8. Premise truth-values used for deduction with asymmetric intervals 

Premise s [L,U] [L1, U1] 

A 11/23 [0.44, 0.52] [0.403229, 0.560114] 

B 0.45 [0.44, 0.462222] [0.42818, 0.476669] 

AB 0.413043 [0.38, 0.46] [0.3412, 0.515136] 

BC 8/15 [0.48, 0.58] [0.416848, 0.635258] 

 

Table 9. Deduction rule results using symmetric intervals 

Premise C Conclusion AC 

[L,U] [L1, U1] sAC [L,U] nAC 

[0.40, 0.722034] [0.177061, 0.876957] 0.576418 [0.448325, 0.670547] 13.683 

[0.45, 0.687288] [0.28573, 0.801442] 0.577455 [0.461964, 0.661964] 15.630 

[0.50, 0.652543] [0.394397, 0.725928] 0.572711 [0.498333, 0.628203] 26.604 

[0.55, 0.617796] [0.526655, 0.600729] 0.568787 [0.4125, 0.6756] 10.961 
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6.2.3  Modus Ponens 

Another important inference rule is modus ponens, which is the form of deduc-

tion standard in predicate logic rather than term logic. Term logic deduction as de-

scribed above is preferable from an uncertain inference perspective, because it 

generally supports more certain conclusions. However, the indefinite probabilities 

approach can also handle modus ponens; it simply tends to assign conclusions 

fairly wide interval truth-values. 

The general form of modus ponens is 

A 

A ! B 

|- 

B 

To derive an inference formula for this rule, we reason as follows. Given that 

we know P(A) and P(B|A), we know nothing about P(B|¬A). Hence P(B) lies in 

the interval  

! 

Q,R[ ] = P A and B( ),1" P A( ) " P A and B( )( )[ ]
= P B A( )P A( ),1" P A( ) + P B A( )P A( )[ ].

 

For the modus ponens experiment reported here we used the following prem-

ises: For A we used 

! 

L,U[ ],b =
10

23
,
12

23

" 

# $ 
% 

& ' 
,0.9

; and for A ! B we used 

<[L,U],b>=<[0.313043,0.513043],0.9>. We proceed as usual, choosing distribu-

tions of distributions for both P(A) and P(B|A). Combining these we find a distri-

bution of distributions [Q,R] as defined above. Once again, by calculating means, 

we end up with a distribution of [Q,R] intervals. Finally, we find an interval [L,U] 

that contains (100!b)% of the final [Q,R] intervals. In our example, our final [L,U] 

interval at the b = 0.9 level is [0.181154, 0.736029]. 

6.2.4 Conjunction 

Next, the AND rule in PLN uses a very simple heuristic probabilistic logic 

formula:

! 

P A AND B( ) = P A( )P B( ) . To exemplify this, we describe an ex-

periment consisting of assuming a truth-value of <[L, U], b>=<[0.4, 0.5], 0.9> for 

A and a truth-value of <[L, U], b>=<[0.2, 0.3], 0.9> for B. 

The conclusion truth-value for P(A AND B) then becomes 

<[L,U],b>=<[0,794882, 0.123946], 0.9>. 
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6.2.5  Revision 

Very sophisticated approaches to belief revision are possible within the indefi-

nite probabilities approach; for instance, we are currently exploring the possibility 

of integrating entropy optimization heuristics as described in (Kern-Isberner, , 

2004) into PLN for this purpose (Goertzel, 2008). At present, however, we treat 

revision with indefinite truth-values in a manner analogous to the way we treat 

them with simple truth-values. This approach seems to be effective in practice, al-

though it lacks the theoretical motivation of the entropy minimization approach. 

Suppose D1 is the second-order distribution for premise 1 and D2 is the sec-

ond-order distribution for D2. Suppose further that n1 is the count for premise 1 

and n2 is the count for premise 2. Let w1 = n1/(n1+n2) and w2 = n2/(n1+n2), and then 

form the conclusion distribution D = w1 D1 + w2D2. We then generate our 

<[L,U],b,k> truth-value as usual. 

As an example, consider the revision of the following two truth-values  

<[0.1, 0.2], 0.9, 20> and <[0.3, 0.7], 0.9, 20>. Calculating the counts using the 

inverse function discussed in Chapter 4 gives count values of 56.6558 and 6.48493 

respectively. Fusing the two truth-values yields <[0.13614, 0.233208], 0.9, 20> 

with a resulting count value of 52.6705. 

The inclusion of indefinite probabilities into the PLN framework allows for the 

creation of a logical inference system that provides more general results than Bay-

esian inference, while avoiding the quick degeneration to worst-case bounds in-

herent with imprecise probabilities. On more heuristic PLN inference rules, the 

indefinite probability approach gives plausible results for all cases attempted, as 

exemplified by the handful of examples presented in detail here. 

What we have done in this chapter is present evidence that the indefinite prob-

abilities approach may be useful for artificial general intelligence systems – first 

because it rests on a sound conceptual and semantic foundation; and second be-

cause when applied in the context of a variety of PLN inference rules (represent-

ing modes of inference hypothesized to be central to AGI), it consistently gives in-

tuitively plausible results, rather than giving results that intuitively seem too 

indefinite (like the intervals obtained from Walley’s approach, which too rapidly 

approach [0,1] after inference), or giving results that fail to account fully for prem-

ise uncertainty (which is the main issue with the standard Bayesian or frequentist 

first-order-probability approach). 
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Chapter 7: First-Order Extensional 

Inference with Distributional Truth-Values 

Abstract   In this chapter we extend some of the ideas of the previous chapters to 

deal with a different kind of truth-value, the “distributional truth-value,” in which 

the single strength value is replaced with a whole probability distribution. We 

show is that if discretized, step-function distributional truth-values are used, then 

PLN deduction reduces simply to matrix multiplication, and PLN inversion re-

duces to matrix inversion. 

7.1 Introduction 

The strength formulas discussed above have concerned SimpleTruthValues and 

IndefiniteTruthValues. However, the PLN framework as a whole is flexible 

regarding truth-values and supports a variety of different truth-value objects. In 

this chapter we extend some of the ideas of the previous sections to deal with a 

different kind of truth-value, the “distributional truth-value,” in which the single 

strength value is replaced with a whole probability distribution. In brief, what we 

show is that if discretized, step-function distributional truth-values are used, then 

PLN deduction reduces simply to matrix multiplication, and PLN inversion re-

duces to matrix inversion.  

Other extensions beyond this are of course possible. For instance, one could ex-

tend the ideas in this chapter to a SecondOrderDistributionalTruthValue, consist-

ing of a completely-specified second-order probability distribution (as opposed to 

an indefinite probability, which is a sketchily specified, compacted second-order 

probability distribution). But these and additional extensions will be left for later 

work. 

Before launching into mathematics, we will review the conceptual basis for 

“distributional truth-values” by elaborating an example. Given a “man” Atom and 

a “human” Atom, suppose we’ve observed 100 humans and 50 of them are men. 

Then, according to the SimpleTruthValue approach, we may say 

 

Subset man human < 1> 

Subset human man <.5> 
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What this says is: All observed examples of “man” are also examples of “human”; 

half of the examples of “human” are also examples of “man.”  

The limitations of this simple approach to truth-value become clear when one 

contrasts the latter of the two relationships with the relation 

 

Subset human ugly <.5> 

 

Suppose that from listening to people talk about various other people, an AI sys-

tem has gathered data indicating that roughly 50% of humans are ugly (in terms of 

being called ugly by a majority of humans talking about them). The difference be-

tween this observation and the observation that 50% of humans are men is obvi-

ous: 

 

• In the case of man-ness, nearly 50% of humans totally have it, and 

nearly 50% of humans totally don’t have it; intermediate cases are 

very rare 

• In the case of ugliness, it’s not the case that nearly 50% of humans are 

not at all ugly whereas nearly 50% are totally ugly. Rather there is a 

spectrum of cases, ranging from no ugliness to absolute ugliness, with 

the majority of people close to the middle (just barely uglier than av-

erage, or just barely less ugly than average). 

 

In the language of statistics, man-ness has a bimodal distribution, whereas ug-

liness has a unimodal distribution. Taking this difference in underlying distribu-

tion into account, one can do more refined inferences. 

Example of Unimodal Distribution  

Example of Bimodal Distribution
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From examples like this, one arrives at the idea of “distributional truth-values” 

– TruthValue objects that contain not only a strength value (reflecting the mean of 

a truth-value distribution) but a better approximation to an entire probability dis-

tribution reflecting the truth-value of an entity. We have experimented with both 

StepFunctionTruthValue and PolynomialTruthValue objects, two specific imple-

mentations of the notion of distributional truth-values. 

The “distributions” involved are functions 

! 

f : 0,1[ ]
2
" 0,1[ ] , where for ex-

ample, if 

 

Subset A C <f,w>  

then 

 

! 

f x,y( ) = t 

means 

 

! 

P Member Q C < y > Member Q C < x >( ) = t, 

and w represents the weight-of-evidence. 

In practice, one cannot look at the full space of distributions f, but must choose 

some finite-dimensional subspace; and as noted above, we have explored two pos-

sibilities: polynomials and step functions. Polynomials are more elegant and in 

principle may lead to more efficient computational algorithms, but the inference 

formulas are easier to work out for step functions, and the implementation com-

plexity is also less for them, so after some preliminary work with polynomials we 

decided to focus on step function distributional approximations.  

7.2 Deduction and Inversion Using Distributional Truth-Values 

Now we give some mathematics regarding PLN inference with distributional 

truth-values, assuming discretized, step-function distributional truth-values. The 

mathematical framework used here is as follows. Consider three Terms, A, B and 

C, with Term probability distributions denoted by vectors 

! 

p
A

, 

! 

p
B

, 

! 

p
C

 where, 

e.g., 

 

  

! 

p
A = p

1

A
, p

2

A
,K, pn

A( )
pi
A = P Ai( )

 

 

The event Ai is defined as 
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! 

t
i,A

< P A( ) " ti+1,A  
 

where 
  

! 

t
1,A

= 0, t
2,A
,K ,t

n,A=1( )  is a (not necessarily equispaced) partition of the 

unit interval.  

It may often be useful to set the partition points so that  

 

! 

P
i

A
"

1

n #1
 

 

for all i. Note that, if one follows this methodology, the partition points will gen-

erally be unequal for the different Terms in the system. This is not problematic for 

any of the inference mathematics we will use here. In fact, as we’ll see, deduction 

works perfectly well even if the number of partition points is different for different 

Terms. However, inversion becomes problematic if different Terms have different 

numbers of partition points; so it’s best to assume that n is a constant across all 

Terms. 

Next, define the conditional probability 

! 

P C A( )  by the matrix 

! 

P
AC

, where  

 

! 

Pi, j
AC = P C j Ai( ) 

 

So long as A and C have the same number of partition points, this will be a square 

matrix. 

Given this set-up, the deduction rule is obtained as follows.  

 

Theorem.  Assume Ai and Cj are independent in Bk for all i, j, k. Then 

! 

P
AC

= P
AB
P
BC

. 

Proof.   

The theorem follows from the key equation 

 

! 

P C j Ai( ) = P C j Bk( )P Bk Ai( )
k=1

n

"  

 

which we formally demonstrate in a moment. This equation, after a change of no-

tation, is 

  

! 

Pi, j
AC

= Pi,k
AB
Pk, j
BC

k=1

n

"  

 

which according to the definition of matrix multiplication means 
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! 

P
AC

= P
AB
P
BC

 
 

Now, the key equation is demonstrated as follows. We know 

 

! 

P C j Ai( ) = P C j " Bk( ) Ai( ) =

P C j " Bk " Ai( )
k=1

n

#

P Ai( )k=1

n

#  

 

Assuming Cj and Ai are independent in Bk , we have 

 

! 

P C j Ai( ) = P C j Bk( )
P Ai" Bk( )
P Ai( )

= P C j Bk( )
k=1

n

#
k=1

n

# P Bk Ai( ) 

 

The critical step in here is the independence assumption 

 

! 

P C j " Bk " Ai( ) = P C j Bk( )P Ai" Bk( ) 
 

To see why this is true, observe that the assumption “Ai and Cj are independent in 

Bk” implies 

! 

C j " Bk " Ai = P C j Bk( ) Ai" Bk . 

 

Dividing both sides by N, the size of the implicit universal set, yields the desired 

equation, completing the proof. QED 

 

Next, the inversion rule is obtained from the equation 

 

! 

P
B

= P
AB
P
A
 

 

(which is obvious, without any independence assumptions), which implies 

 

! 

P
A = P

AB( )
"1

P
B
 

 

Thus, if a relationship (SubsetRelationship A B) has distributional TruthValue 

PAB, it follows that the relationship (SubsetRelationship B A) should have distribu-

tional TruthValue (PAB)-1. In other words, PLN inversion is matrix inversion.  

Note that no term probabilities are used in any of these formulas. However, 

term probabilities can be derived from the distributional TruthValues. Specifi-

cally, the term probability for A is the expected value of the distributional truth-

value for A. 
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Also, note that the inversion formula has error magnification problems due to 

the fact that the matrix inversion formula involves division by a determinant. And, 

in the unlikely case where the determinant of PAB is zero, the inversion formula 

fails, though one may use matrix pseudoinverses (Weisstein, 2008) and probably 

still obtain meaningful results. 

Continuous versions of the equations may also be derived, by shrinking the 

partition in the above formulas.  

7.3 Relationship between SimpleTruthValue and 

DistributionalTruthValue Inference Formulas 

In the case where n=2, one can obtain something quite similar (but not identi-

cal) to the SimpleTruthValue formulas by setting the partition interval t1,A for the 

Term A so that 

 

! 

mean P A( )( ) = P t
1,A

< P A( ) " t2,A =1( ) 
 

and doing something similar for the Terms B and C. In this case one has, e.g., 

 

! 

P A( ) = P A( ),1" P A( )( ) . 

 

Regardless of how one sets the t1 values, one can obtain fairly simple formulas 

for the 2-partition-interval case. One has, e.g., 

 

! 

P
AB =

P B
1
A
1( ) P B

1
A
2( )

P B
2
A
1( ) P B

2
A
2( )

" 

# 

$ 
$ 

% 

& 

' 
' 
 

 

or equivalently 

 

! 

P
AB =

P B
1
A
1( ) P B

1
A
2( )

1" P B
1
A
1( ) 1" P B

1
A
2( )

# 

$ 

% 
% 

& 

' 

( 
( 
 

 

And for the inversion formula, one has 

 

! 

Det P
AB( ) = P B

1
A
1( ) " P B

1
A
1( )P B

1
A
2( ) " P B

1
A
2( ) + P B

1
A
2( )P B

1
A
1( )

= P B
1
A
1( ) " P B

1
A
2( )
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so that inversion is only degenerate when 

! 

P t
1,B

< P B( )( )  is independent of 

whether “

! 

t
1,A

< P A( )” is true or not. The inversion formula is then given by 

 

! 

P B
1
A
1( ) " P B

1
A
2( )[ ] PAB( )

"1
=
1" P B

1
A
2( ) " P B

1
A
2( )

"1+ P B
1
A
1( ) P B

1
A
1( )

# 

$ 

% 
% 

& 

' 

( 
( 
 

 

Note that here, as in general, 

 

! 

P
AB( )

"1

# P
BA
 

 

even though both 

 

! 

P
A = P

AB( )
"1

P
B

P
A = PBA

P
B

 

 

hold. This is not surprising, as many different 2D matrices map a particular 1D 

subspace of vectors into another particular 1D subspace (the subspace here being 

the set of all 2D vectors whose components sum to 1). 

The term most analogous to ordinary PLN-FOI inversion is  

 

! 

P B
1( ) = P

AB( )
"1

11P A
1( ) + P

AB( )
"1

12P A
2( )

=
1" P B

1
A
2( )( )P A

1( ) " P B
1
A
2( )P A

1( )

P B
1
A
1( ) " P B

1
A
2( )

 

 

Note that we are inverting the overall PAB matrix without inverting the individ-

ual entries; i.e., because 

! 

P
AB( )

"1

# P
BA

 we do not get from this an estimate of 

! 

P A
1
B
1( ) . 

The term of the deduction formula that is most analogous to PLN-FOI deduc-

tion is given by 

 

! 

P
11

AC = P P C( ) > t
1,C
P A( ) > t

1,A( )
= P C

1
B
1( )P B

1
A
1( ) + P C

1
B
2( )P B

2
A
1( )
  

 

which is similar, but not equal, to the FOI formula 

 

! 

s
AC

= P C B( )P B A( ) + P C¬B( )P ¬B A( ). 
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Chapter 8: Error Magnification in Inference 

Formulas 

Abstract   In this chapter, we mathematically explore the sensitivity of PLN 

strength formulas to errors in their inputs. 

8.1: Introduction 

One interesting question to explore, regarding the PLN strength formulas, is 

the sensitivity of the formulas to errors in their inputs. After all, in reality the 

“true” probabilities sA, sB, sC, sAB, sBC are never going to be known exactly. In prac-

tical applications, one is nearly always dealing with estimates, not exactly known 

values. An inference formula that is wonderful when given exact information, but 

reacts severely to small errors in its inputs, is not going to be very useful in such 

applications.  

This issue is dealt with to a large extent via the weight of evidence formulas 

presented in Chapters 4 and 5. In cases where an inference formula is applied with 

premises for which it has high error sensitivity, the weight of evidence of the con-

clusion will generally suffer as a consequence. However, it is interesting from a 

theoretic standpoint to understand when this is going to occur – when error sensi-

tivity is going to cause inferences to result in low-evidence conclusions. Toward 

that end, in this chapter we use the standard tools of multivariable calculus to 

study the sensitivity of the inference formulas with respect to input errors.  

The main conceptual result of these calculations is that without careful infer-

ence control, a series of probabilistic inferences may easily lead to chaotic trajec-

tories, in which the strengths of conclusions reflect magnifications of random er-

rors rather than meaningful information. On the other hand, careful inference 

control can avoid this chaotic regime and keep the system in a productive mode. 

The first, obvious observation to make regarding inferential error sensitivity in 

PLN is that if the errors in the inputs to the formulas are small enough the error in 

the output will also be small. That is, the inference formulas are continuous based 

on their premise truth values. In the case of deduction, for example, this conclu-

sion is summarized by the following theorem: 

 

Theorem (PLN Deduction Formula Sensitivity) 

Let U denote a set with |U| elements. Let Sub(m) denote the set of subsets of U 

containing m elements. Let !  indicate an approximate inequality. Assume 

! 

s
B
"1, and 

! 

" s 
A
# s

A
, 

! 

" s 
B
# s

B
, 

! 

" s 
C
# s

C
,

! 

" s 
AB
# s

AB
, 

! 

" s 
BC
# s

BC
, and let 
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! 

f x( ) = P P C A( ) = x
A " Sub U # s A( ), B " Sub U # s B( ),C " Sub U # s C( ),

P B A( ) = # s AB ,P C B( ) = # s BC

$ 

% 

& 
& 

' 

( 

) 
) 

* 

+ 

, 
, 

- 

. 

/ 
/ 

. 

Then, where E() denotes the expected value (mean), we have 

 

! 

E f x( )[ ] " sAC = sABsBC + (1# sAB )(sC # sBsBC ) /(1# sB )  

 

More formally: 

! 

"#> 0, $% > 0  so that 

! 

P A( ) " sA <# , 

! 

P B( ) " sB <# , 

! 

P C( ) " sC <# , 

! 

P B A( ) " sAB <# , and 

! 

P C B( ) " sBC <#  implies 

! 

E f x( ) " sAC[ ] < #  where sAC is defined by the above formula. The proof of 

this theorem is obvious and is omitted. 

The situation with abduction is fairly similar to that with deduction, except that 

there is an additional restriction: sB cannot equal 0 or 1. This is achievable by ap-

propriate adjustment of the count N of the universe. 

On the other hand, a glance back at the induction formula will show that the 

situation is a little different there. For induction, to avoid sensitive dependence on 

input values we need sB to be bounded away from 1, and we also need sA to be 

bounded away from 0. If sB is near 1 or sA is near 0, induction should not be car-

ried out, because the results can’t be trusted. And, unlike in the deduction case, 

this problem can’t always be avoided by a careful choice of universe size. The 

problem is that if one increases the universe size to make sB smaller, one also 

makes sA smaller, which may bring it too close to zero. If the term B is a lot more 

frequent than the term A, then there is no way to do inductive inference meaning-

fully, unless one is sure that all one’s premise truth-values are known very close to 

exactly. 

One interesting consequence of this fact is that, in the case of induction, there 

is no way to set the universe size globally that will make all inductions in the sys-

tem even minimally reliable. To get reliable inductions, one has to let the universe 

size vary across different inferences. So, if one wants to use the inductive infer-

ence rule (a very valuable heuristic), one has to give up the idea of a single global 

“space of events” serving as an implicit universe for all inferences in the system. 

One has to consider inferences as contextual. 

These observations about the singularities of the inference formulas, however, 

are only the most simplistic way of studying the formulas’ error-sensitivity. A 

deeper view is obtained by looking at the partial derivatives of the inference for-

mulas, which are shown below. 

These calculations – to be discussed in more detail below – reveal that the de-

gree of error-sensitivity is highly dependent on the particular input values. For in-

stance, consider the deduction formula. For the input values sBC = .5, sC=sB = .25, 

we have 
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! 

"s
AC

"s
AB

=
1

3
 

 

which means that the deduction formula decreases rather than increases errors in 

its input sAB value. On the other hand, if sBC = 1, sC=.25, sB = .5, then we have 

 

! 

"s
AC

"s
AB

=1.5  

which means that errors in the input sAB value are increased by a factor of 1.5. 

To really understand error magnification in PLN, one has to look at the norm 

of the gradient vectors of the inference rules, as will be discussed in the following 

section. These analyses basically confirm what the above partial-derivative exam-

ples suggest: depending on the input values, sometimes an inference rule will 

magnify error, and sometimes it will decrease error (and sometimes it’ll leave the 

error constant). 

If errors are magnified in the course of an inference, then we’re essentially los-

ing precision in the course of the inference – we’re losing information. Let’s say 

we have a set of strength values that are known to 10 bits of precision apiece. If 

we do a series of inference steps, each one of which magnifies error by a factor of 

2, then after 10 steps of inference we’ll be dealing with totally meaningless con-

clusions. We will have “chaos” in the series of strengths associated with the trail 

of inferences, in the sense that the strength values observed will draw on later and 

later bits of the initial probabilities. In a practical computational context there are 

only a few significant bits and the rest is roundoff error, which means that in some 

cases, after enough inference steps have passed, the strength values could come to 

consist of nothing but roundoff error. Fortunately, this potentially very serious 

problem can be managed via careful attention to weight of evidence.  

In this chapter we will focus on the SimpleTruthValue case, but the issue of er-

ror magnification and inferential chaos arises equally severely in other cases. In 

the DistributionalTruthValue case, error magnification will often result in prob-

ability distribution function (PDF) truth-values that are relatively uniformly dis-

tributed across the interval.  

8.2: Gradient Norms and Error Magnification 

Our assessment of the error magnification properties of PLN rules relies on 

computations of the norms of the gradient vectors of the rules. The concepts of er-

ror magnification and chaos in a discrete dynamical systems context are covered 

well in Devaney’s book (Devaney, 1989.) 
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8.2.1  Basic Mathematics of Gradient Norms 

All the PLN strength formulas are of the form 

 

! 

v = f w( )  

where  

 

• w lies in n-dimensional space (4-dimensional for deduction, 3-

dimensional for inversion) 

• v lies in 1-dimensional space 

 

Let’s ask what happens if w is perturbed by a small error e, so that we’re look-

ing at 

 

( ) ( )ewfwfv +== ''  

 

We can write 

 

( ) ( )( )( )( ) ( )2' eOewfgradwfv +•+=  

 

where ( ) nffffgrad +++= L
21

, and 

i

i
x

f
f

!

!
= . 

Since we have 

 

( )( )( )( ) ewfgradvv •!"'  

 

it follows that 

 

( )( )( ) !cos'' wwwfgradvv "#"  

 

and on average 

 

( )( )( ) '
2

' wwwfgradvv !"!
#

. 

 

As a result, if we want the amount of error to decrease from one step to the 

next, we’d like to have 

 

( )( )( ) 1<wfgrad  
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and if we want the amount of error to decrease on average we definitely need 

 

( )( )( )
2

!
<wfgrad , 

 

(though having only this is chancy, because one could always find that the upper 

bound of the inequality was realized for a long enough time to cause real trouble). 

8.2.2  Inference Formula Gradient Norms 

The following section presents algebraic calculations and graphical depictions 

of the gradient norms for the deduction, inversion, sim2inh and inh2sim formulas. 

As the illustrations given here show, the gradient norms behave rather differently 

for the different rules. 

For deduction the norm of the gradient is often, but by no means always, less 

than 1. For some parameter values it’s usually greater than 1; for others it’s nearly 

always less. The algebraic formula involved is complex, but one clear fact is that 

when sB is close to 1, “good” gradient norms are relatively rare. A big universe 

size seems to push the rule toward stability. 

We need to be more careful with the inversion rule. As sA gets close to zero, 

the gradient norms increase toward infinity, due to division by sA. As sA ap-

proaches 1 another problem occurs in that the region of consistent inputs becomes 

very small. For values of sA that are between these two extremes, on the other 

hand, sizable regions for sB and sAB exist for which the gradient norm is “good.” 

For inh2sim, the gradient norm maxes out around 1.4. The problem area occurs 

when both premises, sAC and sCA, are very close to 1; that is, when A and C almost 

entirely overlap. It would be a shame to avoid doing inh2sim in these cases, which 

suggests that a more subtle control strategy than “avoid all error magnification” is 

called for (a topic we’ll return to below). 

For sim2inh, the gradient norm can get quite large (20 or so). This tends to oc-

cur when sB is large, and sC and simBC are both small. If we take sB very small, then 

the gradient norm tends to be bounded above by 1. Here, a large universe size 

makes this rule dampen rather than magnify error. 

8.2.3  Visual Depiction of PLN Formula Derivatives 

Now we report some Maple work deriving and displaying the gradient norms 

of the PLN inference formulas. The partial derivatives of the PLN deduction for-

mula are computed as: 
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diff(dedAC(sA,sB,sC,sAB,sBC),sA); 

0 

diff(dedAC(sA,sB,sC,sAB,sBC),sB); 

! 

"
1" sAB( )sBC
1" sB

+
1" sAB( ) sC " sBsBC( )

1" sB( )
2

 

diff(dedAC(sA,sB,sC,sAB,sBC),sC); 

! 

1" sAB

1" sB
 

diff(dedAC(sA,sB,sC,sAB,sBC),sAB); 

! 

sBC "
sC " sBsBC

1" sB
 

diff(dedAC(sA,sB,sC,sAB,sBC),sBC); 

! 

sAB "
1" sAB( )sB
1" sB

 

8.2.3.1 Depictions of the Gradient Norm of the Deduction Formula 

The norm of the gradient vector of the PLN deduction formula is thus 

dedAC_grad_norm := (sA,sB,sC,sAB,sBC) -> ( ( -(1-sAB)*sBC/(1-sB)+(1-

sAB)*(sC-sB*sBC)/(1-sB)^2)^2 +  ( (1-sAB)/(1-sB))^2 + ( sBC-(sC-

sB*sBC)/(1-sB))^2 + (sAB-(1-sAB)*sB/(1-sB) )^ 2 ) ^ (1/2) *(Heaviside(sAB-

max(((sA+sB-1)/sA),0))-Heaviside(sAB-min(1,(sB/sA))))*(Heaviside(sBC-

max(((sB+sC-1)/sB),0))-Heaviside(sBC-min(1,(sC/sB))));  
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! 

dedAC _ grad _ norm := sA,sB,sC,sAB,sBC( )" #
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Finally, we are ready to show graphs of the deduction formula. We display two 

sets of graphs: 

plot3d(dedAC_grad_norm(.1,.1,.1, sAB, sBC), sAB=0..1, sBC=0..1, la-

bels=[sAB,sBC,ded], numpoints=800, axes=BOXED); 

is the graph of the norm of the gradient vector, while 

 

dedAC_grad_norm_only01 := (sA, sB, sC, sAB, sBC) -> piecewise 

(dedAC_grad_norm (sA, sB, sC, sAB, sBC) < 0, 0, dedAC_grad_norm(sA, sB, 

sC, sAB,sBC) < 1, dedAC_grad_norm(sA, sB, sC, sAB, sBC), 0); 

 

is a filtered version of the graph, showing only those values of the norm that are 

less than or equal to 1. 

 

plot3d(dedAC_grad_norm(.1,.1,.1, sAB, sBC), sAB=0..1, sBC=0..1, la-

bels=[sAB,sBC,ded], numpoints=800, resolution = 400, axes=BOXED); 
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plot3d(dedAC_grad_norm_only01(.1,.1,.1,sAB,sBC),sAB=0..1,sBC=0..1,la

bels=[sAB,sBC,ded],numpoints=800,axes=BOXED); 

 

plot3d( dedAC_grad_norm(.1,.4, .7,sAB, sBC), sAB=0 ..1, sBC=0..1, 

axes=BOXED); 
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plot3d(dedAC_grad_norm_only01(.1,.4,.7,sAB,sBC),sAB=0..1,sBC=0..1,la

bels=[sAB,sBC,dedAC],numpoints=800,axes=BOXED); 

 
plot3d( dedAC_grad_norm(.4,.1,.9,sAB,sBC), sAB=0 ..1, sBC=0..1, 

axes=BOXED); 
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plot3d(dedAC_grad_norm_only01(.4,.1,.9,sAB,sBC),sAB=0..1,sBC=0..1,la

bels=[sAB,sBC,ded],numpoints=1000,axes=BOXED); 

 

8.2.3.2 Depictions of the Gradient Norm of the Inversion Formula  

Now we give similar figures for the inversion formula. These are simpler be-

cause the inversion formula has fewer input variables. Recall that the inversion 

formula looks like 

invAB := (sA,sB, sAB) -> sAB * sB / sA*(Heaviside(sAB-max(((sA+sB-

1)/sA),0))-Heaviside(sAB-min(1,(sB/sA))));  

We may thus compute the partial derivatives and norm-gradient as 

diff(invAB(sA,sB,sAB),sA); 

! 

"
sABsB

sA
2

 

diff(invAB(sA,sB,sAB),sB); 

! 

sAB

sA
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diff(invAB(sA,sB,sAB),sAB); 

! 

sB

sA
 

invAB_nd := (sA,sB, sAB) -> ( ( sAB/sA)^2 + ( -sAB*sB/sA^2)^2 + ( sB/sA) 

^2)^(1/2)*(Heaviside(sAB-max(((sA+sB-1)/sA),0))-Heaviside(sAB-

min(1,(sB/sA)))); 

! 

invAB_ nd := (sA,sB,sAB)"
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The following function returns the inversion derivative norm only in cases where 

it’s in [0,1] (where we have error decrease rather than increase), and returns 0 oth-

erwise:  

invAB_nd_only01:=(sA,sB,sAB)->piecewise(invAB_nd(sA,sB,sAB)<0, 

0,invAB_nd(sA,sB,sAB)<1,invAB_nd(sA,sB,sAB),0); 

 

Now we give plots of inversion over all inputs, for various values of the input 

variable sA. 
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plot3d( invAB_nd(.01,sB,sAB), sB=0 ..1, sAB=0..1, axes=BOXED, num-

points=1000, resolution = 400, labels=[sB,sAB,invAB_nd]); 

 
plot3d( invAB_nd(.1,sB,sAB), sB=0 ..1, sAB=0..1, axes=BOXED, num-

points=800, resolution=400, labels=[sB,sAB,invAB_nd]); 
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plot3d( invAB_nd_only01(.1,sB,sAB), sB=0.01 ..1, sAB=0..1, axes=BOXED, 

numpoints=1000, resolution=400, labels=[sB,sAB,invAB_nd]); 

 
plot3d( invAB_nd(.5,sB,sAB), sB=0 ..1, sAB=0..1, axes=BOXED, num-

points=800, resolution = 400, labels=[sB,sAB,invAB_nd]); 
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plot3d( invAB_nd_only01(.5,sB,sAB), sB=0 ..1, sAB=0..1, axes=BOXED, 

numpoints=1000, resolution = 400, labels=[sB,sAB,invAB_nd]); 

 

 
plot3d( invAB_nd(.9,sB,sAB), sB=0 ..1, sAB=0..1, axes=BOXED, num-

points=1000, resolution = 400, labels=[sB,sAB,invAB_nd]); 
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plot3d( invAB_nd_only01(.9,sB,sAB), sB=0 ..1, sAB=0..1, axes=BOXED, 

numpoints=1000, resolution = 400, labels=[sB,sAB,invAB_nd]); 

 

8.2.3.3 Depictions of the Gradient Norms of the Similarity-Inheritance 

Conversion Formulas 

Finally, in this subsection we give a similar treatment for the sim2inh conver-

sion formula. Here we have 

 

sim2inh := (sA,sB,simAB) -> (1 + sB/sA) * simAB / (1 + simAB) 

*(Heaviside(simAB-max(((sA+sB-1)),0))-Heaviside(simAB-min(sA/sB, 

(sB/sA)))); 

 

inh2sim := (sAC,sCA) -> 1/( 1/sAC + 1/sCA - 1); 

from which we calculate the derivatives 

diff(inh2sim(sAC,sCA),sAC); 

! 
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diff(inh2sim(sAC,sCA),sCA); 

! 
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inh2sim_nd := (sAC,sCA) -> ( (1/((1/sAC+1/sCA-1)^2*sAC^2))^2 + 

(1/((1/sAC+1/sCA-1)^2*sCA^2))^2 )^(1/2); 

! 
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diff( sim2inh(sA,sB,simAB), sA);  

! 

"
sBsimAB

sA
2
1+ simAB( )

 

diff( sim2inh(sA,sB,simAB), sB); 

! 

simAB

sA 1+ simAB( )
 

diff( sim2inh(sB,sC,simBC), simBC); 

! 

1+
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sim2inh_nd := (sB,sC,simBC) -> ( (simAB/(1+simBC))^2 + 

(sB/sC^2*simBC/(1+simBC))^2 + ((1+sB/sC)/(1+simBC)-

(1+sB/sC)*simBC/(1+simBC)^2)^2 )^(1/2) *(Heaviside(simBC-max(((sB+sC-

1)),0))-Heaviside(simBC-min(sB/sC,(sC/sB)))); 
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! 
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We then produce the following diagrams: 

plot3d( inh2sim_nd(sAC, sCA), sAC=0..1, sCA=0..1, axes=BOXED); 
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plot3d( sim2inh_nd(.1, sB, simAB), sB=0..1, simAB=0..1, resolution=400, 

axes=BOXED); 

 

plot3d(sim2inh_nd(0.01, sB, simAB), sB = 0 .. 1, simAB = 0 .. 1, resolution 

= 800, numpoints = 800, axes = BOXED); 
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plot3d( sim2inh_nd(.4, sB, simAB), sB=0..1, simAB=0..1, resolution=800, 

axes=BOXED); 

 

plot3d( sim2inh_nd(.9, sB, simAB), sB=0..1, simAB=0..1, axes=BOXED, 

resolution=800); 
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8.2.4  Depictions of the Gradient Norms of the Deduction 

Formulas Incorporating Dependency Information 

Now we repeat the above exercise for the deduction variants that incorporate 

dependency information. The deduction formula using dependency information 

with a known value for ( ) ( )( )BA!!!= BCPintABC  is:  

 

dedAC_dep1 := (sA, sB, sC, sAB, sBC, intABC) -> intABC / sA  + (1- 

sAB)*(sC-sB * sBC)/(1-sB); 

The corresponding formula using dependency information with known 

( ) ( )( )''PintAnBC BABC !!!=  becomes:  

dedAC_dep2 := (sA,sB,sC,sAB,sBC,intAnBC) -> (sAB * sBC + intAnBC / 

sA); 

Similarly, the formula using dependency information in both arguments is 

dedAC_dep12 := (sA, intABC,intAnBC) -> intABC / sA  + intAnBC / sA ; 

 

For each of these formulas there are consistency constraints similar to those 

given earlier. Now we need to include an additional constraint on the intABC 

and/or the intAnBC variables. For dependency with a known value for intABC, 

for example, consistency implies the following constraint: 

 

consistency:= (sA, sB, sC, sAB, sBC,intABC) -> (Heaviside(sAB-

max(((sA+sB-1)/sA),0))-Heaviside(sAB-min(1,(sB/sA))))*(Heaviside(sBC-

max(((sB+sC-1)/sB),0))-Heaviside(sBC-min(1,(sC/sB))))*(Heaviside(intABC-

max(sA+sB+sC-2,0))-Heaviside(intABC-min(sA,sB,sC))); 

 

We wish to determine the behavior of the gradient norms of these formulas. As 

before, we first calculate the partial derivatives for each formula. The partial de-

rivatives of the PLN deduction formula with dependency information in the first 

argument are 

diff(dedAC_dep1(sA,sB,sC,sAB,sBC,intABC),sA); 

! 

"
int ABC

sA
2

 

diff(dedAC_dep1(sA,sB,sC,sAB,sBC,intABC),sB); 
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! 

"
1" sAB( ) sBC
1" sB

+
1" sAB( ) sC " sB sBC( )

1" sB( )
2

 

diff(dedAC_dep1(sA,sB,sC,sAB,sBC,intABC),sC);  

! 

1" sAB

1" sB
 

diff(dedAC_dep1(sA,sB,sC,sAB,sBC,intABC),sAB); 

 

! 

"
sC " sB sBC

1" sB
 

 

diff(dedAC_dep1(sA,sB,sC,sAB,sBC,intABC),sBC); 

 

! 

"
1" sAB( )sB
1" sB

 

 

diff(dedAC_dep1(sA,sB,sC,sAB,sBC,intABC),intABC); 

 

! 

1

sA
 

The norm of the gradient vector of the PLN deduction formula with depend-

ency in the first argument is then: 

dedAC_nd_dep1 := (sA, sB,sC,sAB,sBC,intABC)->(((1-sAB)/(1-

sB))^2+(1/sA)^2+(-(sC-sB*sBC)/(1-sB))^2+(-(1-sAB)*sB/(1-sB))^2+(-

intABC/sA^2)^2+(-(1-sAB)*sBC/(1-sB)+(1-sAB)*(sC-sB*sBC)/(1-

sB)^2)^2)^(1/2);  

! 
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Similarly, the partial derivatives of the PLN deduction formulas with depend-

ency information in the second argument are: 
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diff(dedAC_dep2(sA,sB,sC,sAB,sBC,intAnBC),sA);  

! 

"
intABC

sA
2

 

diff(dedAC_dep2(sA,sB,sC,sAB,sBC,intAnBC),sB); 

0 

diff(dedAC_dep2(sA,sB,sC,sAB,sBC,intAnBC),sC); 

 

0 

 

diff(dedAC_dep2(sA,sB,sC,sAB,sBC,intAnBC),sAB); 

! 

sBC  

diff(dedAC_dep2(sA,sB,sC,sAB,sBC,intAnBC),sBC); 

! 

sAB 

diff(dedAC_dep2(sA,sB,sC,sAB,sBC,intAnBC),intAnBC); 

 

! 

1

sA
 

The norm of the gradient vector of the PLN deduction formula with depend-

ency in the second argument then becomes:  

dedAC_dep2_nd:=(sA,sB,sC,sAB,sBC,intAnBC) -> ((intAnBC/sA^2)^2 + 

(sBC)^2 +(sAB)^2+(1/sA)^2)^(1/2); 

! 

dedAC _ dep2_ nd := sA,sB,sC,sAB,sBC,intAnBC( )"
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+ sBC2 + sAB2 +
1
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2

 

 

Last, we calculate the norm of the gradient vector for the PLN deduction for-

mula knowing the values for both intABC and intAnBC. The partial derivatives 

for this case are found using the following calculations. 

 

diff(dedAC_dep12(sA,sB,sC, intABC,intAnBC),sA); 
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! 

"
intABC
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2

"
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diff(dedAC_dep12(sA,sB,sC,intABC,intAnBC),sB);  

 

0 

 

diff(dedAC_dep12(sA,sB,sC,intABC,intAnBC),sC); 

 

0 

 

diff(dedAC_dep12(sA,sB,sC,intABC,intAnBC),intABC); 

 

! 

1

sA
 

 

diff(dedAC_dep12(sA,sB,sC,intABC,intAnBC),intAnBC); 

 

! 

1

sA
 

 

Hence the norm of the gradient vector for PLN deduction when both intABC 

and intAnBC are known is: 

 

dedAC_dep12_nd:=(sA,sB,sC,intABC,intAnBC)->((-intABC/sA^2-

intAnBC/sA^2)^2+(1/sA)^2+(1/sA)^2)^(1/2); 
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We now give graphical depictions of the gradient norms for the inference for-

mulas that incorporate dependency. We first exhibit several representative samples 

when intABC is known. 
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plot3d(dedAC_nd_dep1(.1,.1,.5,.9,sBC,intABC)*consistency(.1,.1,.5,.9,sBC,

intABC), sBC=0.. 1,intABC=0.. 1, axes=BOXED, la-

bels=[sBC,intABC,dedAC_1_nd], numpoints=2000, resolution=800); 

 
plot3d(dedAC_nd_dep1(.5,.5,.1,.5,sBC,intABC)*consistency(.5,.5,.1,.5,sBC,

intABC), sBC=0.. 1,intABC=0.. 1, axes=BOXED, la-

bels=[sBC,intABC,dedAC_1_nd], numpoints=1000, resolution=800);  
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plot3d(dedAC_nd_dep1(.9,.5,.9,.5,sBC,intABC)*consistency(.9,.5,.5,.5,sBC,

intABC),  sBC=0.. 1,intABC=0.. 1, axes=BOXED, la-

bels=[sBC,intABC,dedAC_1_nd], numpoints=2000, resolution=800);  

 
 

The next few graphs are representative of the deduction rule with a known 

value for intAnBC. 

 

plot3d(dedAC_dep2_nd(.1,.1,.1,.5,sBC,intAnBC)*consistency(.1,.1,.1,.5,sB

C,intAnBC), sBC=0.. 1,intAnBC=0.. 1, axes=BOXED, la-

bels=[sBC,intAnBC,dedAC_2_nd], numpoints=800); 
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plot3d(dedAC_dep2_nd(.5,.5,.9,.5,sBC,intAnBC)*consistency(.5,.5,.9,.5,sB

C,intAnBC), sBC=0.. 1,intAnBC=0.. 1, axes=BOXED, la-

bels=[sBC,intAnBC,dedAC_2_nd], numpoints=2000, resolution=800); 

 

plot3d(dedAC_dep2_nd(.9,.1,.9,.1,sBC,intAnBC)*consistency(.9,.1,.9,.1,sB

C,intAnBC), sBC=0.. 1,intAnBC=0.. 1, axes=BOXED, la-

bels=[sBC,intAnBC,dedAC_2_nd], numpoints=2000, resolution=800); 
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Finally we present a small sample of the graphs for deduction when both 

intABC and intAnBC are known. 

plot3d( dedAC_dep12_nd(.1,.5,.9,intABC,intAnBC)*consistency(.1,.5,.9, 

.5,intABC, intAnBC), intABC=0.. 1, intAnBC=0.. 1, axes=BOXED, labels = 

[intABC, intAnBC, dedAC_12_nd], numpoints=2000, resolution=800); 

 

plot3d( dedAC_dep12_nd(.5,.5,.9,intABC,intAnBC) * consistency(.5,.5,.9, 

.5,intABC, intAnBC), intABC=0.. 1, intAnBC=0.. 1, axes=BOXED, labels = 

[intABC, intAnBC, dedAC_12_nd], numpoints=2000, resolution=800);  
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8.3 Formal Chaos in PLN 

The above gradient norm results imply, among other things, the possibility of 

deterministic chaos associated with PLN. To see this, let’s begin by constructing 

an artificially simple PLN-based reasoning dynamic.  

Suppose one has a set of J entities, divided into M categories (represented by 

M Concept terms). Suppose one builds the M(M-1) possible (probabilistically 

weighted) Subsets between these M ConceptTerms. Assume each of the Subsets 

maintains an arbitrarily long inference trail, and assume the Subsets are ordered 

overall (e.g., in an array). This ordering naturally defines an ordering on the set of 

pairs of Subsets as well. Let V denote the set of ConceptTerms and Subsets thus 

constructed.  

Then one can define a deterministic dynamic on this space V, as follows: 

 

1) Choose the first pair of Subsets that can be 

combined (using deduction, induction, or ab-

duction) without violating the inference trail 

constraints.  

2) Do the inference on the pair of Subsets. 

3) Use the revision rule to merge the resulting 

new Subset in with the existing Subset that 

shares source and target with the newly cre-

ated Subset. 

 

The dynamics, in this scheme, depend on the ordering. But it is clear that there 

will be some orderings that result in a long series of error-magnifying inferences. 

For these orderings one will have genuinely chaotic trajectories, in the sense of 

exponential sensitivity to initial conditions. If the initial conditions are given to B 

bits of precision, it will take roughly 

! 

logB

log z
 steps for the inferred values to lose 

all meaning, where z is the average factor of error magnification.  

This dynamic does not meet all definitions of mathematical chaos, because 

eventually it stops: eventually there will be no more pairs of relationships to com-

bine without violating the trail constraints. But the time it will run is hyperexpo-

nential in the number of initial categories, so for all intents and purposes it be-

haves chaotically. 

The big unknown quantity in this example deterministic inferential dynamic, 

however, is the percentage of chaotic trajectories for a given set of initial catego-

ries. How many orderings give you chaos? Most of them? Only a rare few? Half? 

The mathematics of dynamical systems theory doesn’t give us any easy answers, 

although the question is certainly mathematically explorable with sufficient time 

and effort. 

In the inference control mechanism we use in the current implementation of 

PLN, we use a different method for picking which pair of relationships to combine 
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at a given step, but the ultimate effect is the same as in this toy deterministic infer-

ential dynamic. We have a stochastic system, but we may then have stochastic 

chaos. The question is still how common the chaotic trajectories will be. 

8.3.1  Staying on the Correct Side of the Edge of Chaos 

We can see a very real meaning to the “Edge of Chaos” concept here (Langton 

1991; Packard 1988). Doing reasoning in the error-magnification domain gives 

rise to chaotic dynamics, which is bad in this context because it replaces our 

strength values with bogus random bits. But we want to get as close to the error-

magnification domain as possible – and dip into it as often as possible without de-

stroying the quality of our overall inferences – so that we can do reasoning in as 

broadly inclusive a manner as possible. 

Looking at the problem very directly, it would seem there are four basic 

approaches one might take to controlling error magnification: 

 

Safe approach 

Check, at each inference step, whether it’s an error-

magnifying step or not. If it’s an error-magnifying 

step, don’t do it. 

 

Reckless approach 

Just do all inference steps regardless of their error 

magnification properties. 

 

Cautious approach 

Check, at each inference step, whether it’s an error-

magnifying step or not. If the gradient-norm is greater 

than some threshold T (say, T=2 or T=1.5), then don’t 

do it. The threshold may possibly be set differently 

for the different inference rules (some reasons to do 

this will be mentioned below). 

 

Adaptive approach 

Check, at each inference step, whether it’s an error-

magnifying step or not. If it’s an error-magnifying 

step, decide to do it based on a calculation. Each 

logical Atom must keep a number D defined by 
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Initially, D = 1 

At each inference step involving premises P1,…,Pn, 

set  

Dnew = D * (norm of the gradient of the pertinent in-

ference rule evaluated at (P1 … Pn) ) 

 

In the adaptive approach, the decision of whether to 

do an inference step or not is guided by whether it can 

be done while keeping D below 1 or not.  

 

The reckless approach is not really viable. It might work acceptably in a deduc-

tion-only scenario, but it would clearly lead to very bad problems with inversion, 

where the derivative can be huge. We could lose three or four bits of precision in 

the truth-value in one inference step. The adaptive approach, on the other hand, is 

very simple code-wise, and in a way is simpler than the cautious approach, be-

cause it involves no parameters.  

In practice, in our current implementation of PLN we have not adopted any of 

these approaches because we have subsumed the issue of avoiding error magnifi-

cation into the larger problem of weight-of-evidence estimation. The adaptive ap-

proach to avoiding error magnification winds up occurring as a consequence of an 

adaptive approach to weight-of-evidence-based inference control. 

Conceptually speaking, we have reached the conclusion that speculative rea-

soning, unless carefully controlled, or interwoven with larger amounts of non-

speculative reasoning, can lead to significant error magnification. Sometimes a 

cognitive system will want to do speculative error-magnifying reasoning in spite 

of this fact. But in these cases it is critical to use appropriately adaptive inference 

control. Otherwise, iterated speculative inference may lead to nonsense conclu-

sions after a long enough chain of inferences – and sometimes after very short 

ones, particularly where inversion is involved. 
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Chapter 9: Large-Scale Inference Strategies 

Abstract   In chapter 9, we consider special inference approaches useful for infer-

ence on large bodies of knowledge. 

9.1 Introduction 

 The inference rules presented in the previous chapters follow a common for-

mat: given a small number of premises (usually but not always two), derive a cer-

tain conclusion. This is the standard way logical reasoning is described, yet it is 

not the only way for logical reasoning to be carried out in real inference systems. 

Another equally important application of logical inference is to derive conclusions 

integrating large bodies of information. In these cases the standard logical rules 

are still applicable, but thinking about reasoning in terms of the step-by-step in-

cremental application of standard logical rules is not necessarily the best approach. 

If one considers “large-scale inference” (or alternatively, “holistic inference”) as a 

domain unto itself, one quickly arrives at the conclusion that there are different 

control strategies and even in a sense different inference rules appropriate for this 

situation. This chapter presents four such specialized approaches to large-scale in-

ference:  

 

• Batch inference, which is an alternative to the Rule of Choice usable 

when one has to make a large number of coordinated choices based on 

the same set of data 

• Multideduction, which is an alternative to iterated deduction and revi-

sion that is appropriate when one has to do a series of deductions and 

revision based on the same large body of data 

• Use of Bayesian networks to augment and accelerate PLN inference 

• Trail-free inference, the most radical alternative approach considered 

here, in which trails are omitted and inference is considered as a non-

linear multivariable optimization problem 

 

No doubt there are other viable approaches besides these ones. In a larger 

sense, the point of this chapter is to indicate the diversity of approaches to deriv-
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ing conclusions from probabilistic premises, beyond traditional incremental logi-

cal theorem proving type approaches. 

9.2 Batch Inference 

In this section we return to the theme of handling circular inference. The Rule 

of Choice options mentioned in Chapter 5 are relatively simple and have served us 

adequately in experiments with PLN. However, such an approach is clearly not 

optimal in general – it’s basically a “greedy” strategy that seeks good inference 

trajectories via local optimizations rather than by globally searching for good in-

ference trajectories. In a large-scale inference context, it is possible to work 

around this problem by carrying out a large number of inference steps en masse, 

and coordinating these steps intelligently.   

This kind of “batch” oriented approach to Rule of Choice type operations is 

probably not suitable for real-time reasoning or for cognitive processes in which 

reasoning is intricately interlaced with other cognitive processes. What it’s good 

for is efficiently carrying out a large amount of reasoning on a relatively static 

body of information. The underlying motivation is the fact that, in many cases, it 

is feasible for a reasoning system to operate by extracting a large set of logical re-

lationships from its memory, doing a lot of inferences on them at once, and then 

saving the results.  

The method described in this section, “batch reasoning graph inference” 

(BRGI), tries to generate the maximum amount of information from a set of infer-

ences on a body of data S, by generating an optimal set of inference trails for in-

ferences from S. This process minimizes the use of the Rule of Choice. The BRGI 

process carries out choices similar to what the Rule of Choice does in searching 

for the optimal tree, but in a significantly more efficient way due to its more 

global scope. In a sense, it makes a lot of “Rule of Choice” type choices all at 

once, explicitly seeking a globally valuable combination of choices.  

9.2.1 Batch Reasoning Graphs 

Suppose we have a collection S = {S1, …, Sn} of terms or logical relationships, 

drawn from a reasoning system’s memory at a single point in time. Define a 

“batch reasoning graph” (brg) over S as a DAG (directed acyclic graph) con-

structed as follows: 

 

• The leaf terms are elements of S. 

• All non-leaf terms have two children.  

• Each non-leaf term is labeled with a logical conclusion, which is de-

rived from its children using one of the PLN inference rules. 
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In such a graph, each term represents a relationship that is derived directly from 

its children, and is derived indirectly from its grandchildren and more distant 

progeny.  

When a brg term A is entered into the memory as a relationship, it should be 

given a trail consisting of its progeny in the tree. If we wish to conserve memory, 

we may form a smaller trail considering only progeny down to some particular 

depth. 

For two terms A and B, if there is no path through the brg from A to B (follow-

ing the arrows of the graph), then A and B may be considered “roughly independ-

ent,” and can be used together in inferences. Otherwise, A and B are based on the 

same information and shouldn’t be used together in inference without invocation 

of the Rule of Choice. 

From any given set S it is possible to construct a huge variety of possible batch 

reasoning graphs. The batch reasoning process proposed here defines a quality 

measure, and then runs a search process aimed at finding the highest-quality brg. 

Many search processes are possible, of course. One option is to use evolutionary 

programming; crossing over and mutating DAGs is slightly tricky, but not as 

problematic as crossing over and mutating cyclic graphs. Another option is to use 

a greedy search algorithm, analogously to what is often done in Bayes net learning 

(Heckerman 1996). 

What is the quality measure? The appropriate measure seems to be a simple 

one. First, we must define the expectation of an inference. Suppose we have an in-

ference whose conclusion is an Atom of type L, and whose truth-value involves 

(s,d) = (strength, weight of evidence). This expectation of this inference is 

 

! 

d * p s, L( ) 

where 

! 

p s, L( )  is the probability that a randomly chosen Atom of type L, drawn 

from the knowledge-store of the system doing the inference, has strength s. A 

crude approximation to this, which we have frequently used in the past, is 

 

! 

d * s" 0.5  

So, suppose one creates a brg involving N inferences. Then one may calculate 

T, the total expectation of the set of inferences embodied in the brg. The ratio T/N 

is a measure of the average information per relationship in the brg. A decent qual-

ity measure, then, is 

 

! 

c " N + 1# c( )
T

N
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This means that we want to do a lot of inferences, but we want these inferences to 

be high quality. 

This concept, as specifically described above, is directly applicable both to FOI 

and to all parts of HOI except those that involve Predicates. In order to apply it to 

HOI on Predicates, the definition of a brg has to be extended somewhat. One has 

to allow special brg terms that include logical operators: AND, OR, or NOT. A 

NOT term has one input; AND and OR terms may be implemented with two in-

puts, or with k inputs. In assessing the quality of a brg, and counting the expecta-

tions of the terms, one skips over the relationships going into these logical opera-

tor terms; the value delivered by the operator terms is implicit in the expectations 

of the relationships coming out of them (i.e., the inferences that are made from 

them). 

9.2.2 Example of Alternate Batch Reasoning Graphs  

To make these ideas more concrete, let us consider some simple examples. 

Suppose the system contains the relations 

 
Inheritance A B 

Inheritance B C 

Inheritance C A 

with strengths derived, not through reasoning, but through direct examination of 

data.  

These examples may lead to either of the following graphs (trees), where Inh is 

short for Inheritance:  
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1) 

 

 

 

 

 

 

2) 

 

 

 

 

 

 

 

 

 

 

 

In Graph 1 (Inh B C) is used to derive (Inh A C), whereas in Graph 2 (Inh A C) 

is used to derive (Inh B C). So once you’ve done the reasoning recorded in Graph 

2, you cannot use (Inh B C) to increase your degree of belief in (Inh A C), so you 

cannot use the reasoning recorded in Graph 1. And once you’ve done the reason-

ing recorded in Graph 1, you cannot use (Inh A C) to increase your degree of be-

lief in (Inh B C), so you cannot do the reasoning involved in Graph 2. 

Which of these is a better graph, 1 or 2? This depends on the truth-values of the 

relationships at the terms of the brg. If (Inh C A) has a much higher empirically 

derived strength than (Inh B C), then it may make sense to construct the inference 

given in graph 2; this may produce a higher-total-average-expectation group of re-

lationships. 

For a slightly more complex example, consider the following two graphs: 

Inh A C 

Inh A B Inh B C 

(deduction) 

Inh B C 

Inh A B Inh A C 

(induction) 

Inh C A 

(inversion) 
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1) 

 

 

 

 

 

 

 

 

 

 

2)      

 

 

 

 

 

 

 

 

 

 

 

In Case 1, the inference 

 
Inh A D 

Inh A B 

|- 

Sim B D 

 

cannot be drawn, because (Inh A B) is in the trail of (Inh A D). 

In Case 2, on the other hand, the inference 

 
Inh A C 

Inh A B 

|- 

Sim B C 

 

cannot be drawn because (Inh A B) is in the trail of (Inh A C). 

So the above trees can be expanded into directed acyclic graphs of the form 

 

 

Inh A C 

Inh A D Inh D C 

Inh A B Inh B D 

Inh A D 

Inh A C Inh C D 

Inh A B Inh B C 
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1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which is a better path for reasoning to follow? This depends on the truth-

values of the relationships involved. In particular, suppose that  

 
(Inheritance B D).TruthValue.expectation =  

(Inheritance B C).TruthValue.expectation 

 

prior to any of these reasoning steps being carried out. Then the quality of 1 versus 

2 depends on the relative magnitudes of 

 
(Inheritance D C).TruthValue.expectation 

 

and 

 
(Inheritance C D).TruthValue.expectation 

Inh A C 

Inh A D Inh D C 

Inh A B Inh B D 

Inh B C 

Inh A D 

Inh A C Inh C D 

Inh A B Inh B C 

Inh B D 
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9.2.3 Discussion 

In doing inference based on a large body of relationships, the sort of decision 

seen in the above simple examples comes up over and over again, and multiple 

decisions are relationshipped together, providing an optimization problem. This 

sort of optimization problem can be solved dynamically and adaptively inside an 

inference system by the standard incremental inference control mechanisms and 

the Rule of Choice, but it can be done more efficiently by considering it as a 

“batch inference optimization process” as proposed here.  

What one loses in the batch reasoning approach is the involvement of non-

inferential dynamics in guiding the inference process, and the ability to carry out a 

small number of highly important inferences rapidly based on a pool of back-

ground knowledge. Thus, this is not suitable as a general purpose inference sys-

tem’s only inference control strategy, but it is a valuable inference control strategy 

to have, as one among a suite of inference control strategies.  

Most particularly, the strength of batch inference lies in drawing a lot of rela-

tively shallow inferences based on a large body of fairly confident knowledge. 

Where there is primarily highly uncertain knowledge, noninferential methods will 

be so essential for guiding inference that batch reasoning will be inappropriate. 

Similarly, in cases like mathematical theorem-proving where the need is for long 

chains of inference (“deep inferences”), noninferential guidance of the reasoning 

process is also key, and batch inference is not going to be as useful. Batch infer-

ence can still be used in these cases, and it may well generate useful information, 

but it will definitely not be able to do the whole job. 

9.3 Multideduction 

Next, we present a complementary approach to large-scale inference that is 

more radical than batch inference in that it proposes not just a special approach to 

inference control oriented toward large-scale inference, but a special way of calcu-

lating truth-values under the assumption that there is a large amount of evidence to 

be integrated simultaneously. We introduce a kind of amalgamated inference rule 

called “multideduction,” which carries out deduction and revision all at once 

across a large body of relationships, and as a consequence avoids a lot of the com-

pounding of errors that occurs as a result of doing repeated deductions and revi-

sions. 

In brief, what multideduction does is to perform the inference 
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in a single step. 

 

 

 

 

 

 

 

 

 

 

 

This is a change from the standard approach, in which one does such inference for 

each node Bi separately, using the deduction rule, and then merges these results 

using the revision rule.  

Multideduction, as described here, incorporates the same independence as-

sumptions about each of the nodes, Bi, used in the standard deduction formula, and 

uses some approximation to do its “revision”; but we believe these approximations 

are less erroneous than the ones used in the standard “repeated pair-wise deduction 

and revision” approach. Instead, multideduction is equivalent to “repeated pair-

wise deduction and revision” where revision is done using a more sophisticated 

revision rule customized for revision of two deductive conclusions (a rule that in-

volves subtracting off for overlap among the nodes of the two deductions). There 

is also a variant of multideduction that is based on the concept geometry based de-

duction formula rather than the independence assumption based deduction for-

mula; this variant is not explicitly described here but can be easily obtained as a 

modification of the independence based multideduction formulation. 

Multideduction works naturally with an inference control strategy in which one 

takes the following steps in each “inference cycle”: 

 

• Do node probability inference on all sufficiently important nodes. 

• Do inversion on all sufficiently important relationships. 

• For all sufficiently important relationships (InheritanceRelationship A 

C), calculate sAC from all B-nodes for which sAB and sBC are available. 

 

The gauging of importance is beyond the scope of this section (and is not 

purely a PLN matter, but gets into non-inferential issues regarding the framework 

into which PLN is integrated). 

9.3.1 The Inclusion-Exclusion Approximation Factor 

The inclusion-exclusion formula from standard combinatorics can be written as 

A 

B1 

Multideduction 

B2 

… 

Bk 

C 
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" 
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( ) P Si* S j( ) + error = term1+term2 +error
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n
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We may estimate the expected error of using only the first two terms via a formula 

 

! 

mean error( ) = "
term1

n
,
term2

n
2

# 

$ 
% 

& 

' 
(  

 

where ! is an “inclusion-exclusion approximation factor.” Points on the graph of ! 

may be computed using a simulation of random sets or random rectangles, or they 

may be computed in a domain-specific manner (using example sets Si of interest). 

The values for ! may be pre-computed and stored in a table. More sophisticatedly, 

it seems one might also be able to make a formula 

 

! 

mean error( ) = " P Si( ), P Si# S j( )( )  

 

by doing some complicated summation mathematics; or use a combination of 

summation mathematics with the simulation-estimation approach. Generally, the 

idea is that we have no choice but to use the first two terms of the inclusion-

exclusion formula as an approximation, because we lack the information about 

higher-order intersections that the other terms require and because the other terms 

are too numerous for pragmatic computation; but we can make a reasonable effort 

to estimate the error that this assumption typically incurs in a given domain. So we 

will use the formula 

 

  

! 

P U
i=1

n

Si
" 

# 
$ 

% 

& 
' = P Si( )

i=1

n

( ) P Si* S j( ) + +
i, j=1

n

(  

 

where the ! will be written without arguments, for compactness, but is intended to 

be interpreted in accordance with the above comments. Note that this is an addi-

tive “fudge factor” and that it must be used with a “stupidity check” that avoids 

assigning 

  

! 

U
i=1

n

S
i

 a value greater than 1. 

9.3.2 Multideduction Strength Formula 

We now move on to the actual multideduction formula. We assume we have 

two nodes A and C, and a set of nodes {Bi} for which we know sA, sC sBi, sABi, sBiC, 

and sBiBj. We wish to derive the value sAC. 
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We write 

  

! 

B = U
i=1

n

B
i
  

We will calculate the deduction truth-value via the formula 

! 

P C A( ) =
P A"C( )
P A( )

=
P A"C" B( ) + P A"C"¬B( )

P A( )

=
P A"C" B( )

P A( )
+

+P A"C"¬B( )
P A( )

 

 

The key calculation is  
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[now we assume A and C are independent in the Bi and the Bi !  Bj] 
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[now we introduce the heuristic approximation 

 

! 

P A" Bi" B j( ) = P Bi" B j( ) wABiB j
P A Bi( ) + 1# wABiB j

( )P AB j( )( )  

 

where 

! 

wABiB j
=

dBiA

dBi A + dB jA

 

 

(the d’s are “weights of evidence” of the indicated relationships) and a similar ap-

proximation for P(A!  Bj ! Bi ). 
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Dividing both sides by P(A) and simplifying a little yields 
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which should look immediately intuitively sensible. We have the sum of all the 

deduction first-terms for all the Bi, minus the sum of some terms proportional to 

the intersections between the Bi. 

The second term in the multideduction rule may be calculated similarly; we 

have 
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and hence the calculation is the same as for the first term, but with ¬Bi substituted 

for Bi everywhere. Hence we have 
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to obtain the final multideduction formula: 
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which may be evaluated using the originally given probabilities using the substitu-

tions 
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The weights 
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where NU is the universe size, and calculate the weight of evidence d¬BiA from the 

count N¬BiA ; and do similarly for d¬BjA. 

Looking at this formula as a whole, what we have is the sum of the individual 

deductive conclusions, minus estimates of the overlap between the terms. Note 

how different this is from the standard deduction-plus-revision approach, which 

averages the individual deductive conclusions. Here the (weighted) averaging ap-

proximation is done inside the second term where the overlaps of A and C indi-

vidually inside each Bi! Bj and ¬Bi! ¬Bj are estimated. Multideduction is similar 

to deduction-plus-revision where revision is done using an overlap-savvy form of 

the revision rule. 

One could extend this formula in a obvious way to make use of triple-

intersection information P(Bi! Bj ! Bk). This could be useful in cases where a 

significant amount of such information is available. However, the number of Bi 

nodes, n, must be quite small for this to be tractable because the third term of the 

inclusion-exclusion formula has !!
"

#
$$
%

&

3

n
terms. 

9.3.3 Example Application of Multideduction 

In this section we present an example application where multideduction adds 

significant value. The example is drawn from a software system that utilizes the 

NCE for controlling virtual animals in the Second Life virtual world. As described 

in (Goertzel 2008), that system as a whole has numerous aspects and is focused on 

learning of novel behaviors. The aspect we will discuss here, however, has to do 

with the generation of spontaneous behaviors and the modification of logical 

predicates representing animals’ emotions. 

The full rule-base used to guide spontaneous behaviors and emotions in this 

application is too large to present here, but we will give a few evocative examples.  

We begin with a few comments on rule notation. Firstly, the notation ==> in a rule 

indicates a PredictiveImplicationRelationship. Rules are assumed to have truth-

value strengths drawn from a discrete set of values 

 
0 

VERY LOW 

LOW 

MIDDLE 

HIGH 

VERY HIGH 

1 

 

In the following list, all rules should be assumed to have a truth-value of HIGH 

unless something else is explicitly indicated.  
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For clarity, in the following list of rules we’ve used suffixes to depict certain 

types of entities: P for personality traits, E for emotions, C for contexts, and S for 

schemata (the latter being the lingo for “executable procedures” within the NCE). 

In the case of schemata an additional shorthanding is in place; e.g., barkS is used 

as shorthand for (Execution bark) where bark is a SchemaNode. Also, the notation 

TEBlah($X) is shorthand for  

 
ThereExists $X 

 Evaluation Blah $X 

 

i.e., an existential quantification relationship, such as will be discussed in Chapter 

11. 

Example rules from the rule-base are as follows: 

 

angerToward($X) ==> angry 

loveToward($X) ==> love 

hateToward($X) ==> hate 

fearToward($X) ==> fear 

TEgratitudeToward($X) ==> gratitude 

angerToward($X) ==> ¬friend($X) <LOW> 

TE(near($X) & novelty($X)) ==> novelty 

TEloveToward($X) & sleepy ==> gotoS($X) 

TE(loveToward($X) & near($X)) & sleepy ==> sleepS 

gratitudeToward($X) ==> lick($X) 

atHomeC & sleepyB ==> Ex sleepS <.7> 

gotoS($X) ==> near($X) <.6> 

gotoS($X) ==> near($X) <.6> 

AggressivenessP & angryE & barkS => happyE 

AggressivenessP & angryE & barkS ==> proudE 

AggressivenessP & angerToward($X) ==> barkAtS($X) <VERY HIGH> 

AggressivenessP & angerToward($X) ==> barkAtS($X) <VERY HIGH> 

AggressivenessP & angerToward($X) ==> nipS($X) <MIDDLE> 

AggressivenessP & near($X) & ¬friend($X) ==> angerToward($X) 

AggressivenessP & near($X) & enemy($X) ==>  

    angerToward($X) <VERY HIGH> 

AggressivenessP & near_my_food($X) & ¬friend($X) ==>  

    angryToward($X) <VERY LOW> 

AggressivenessP & near_my_food($X) ==> angryToward($X)  

AggressivenessP & angerToward($X) & ¬friend($X) ==> hate($X) 

AggressivenessP & OtherOrientationP & ownerNear($X) & enemy($X) 

     ==> angerToward($X) 

AggressivenessP & near($X) & enemy($X) & homeC ==> angerToward($X) 

AggressivenessP & ¬happyE & ¬angryE ==> boredE 

AggressivenessP & jealousE ==> angryE 

AggressivenessP & boredE ==> angryE <LOW> 
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Spontaneous activity of a virtual animal, governed by the above equations, is 

determined based on the modeling of habitual activity, such as the carrying out of 

actions that the pet has previously carried out in similar contexts. For each schema 

S, there is a certain number of implications pointing into (Ex S), and each of these 

implications leads to a certain value for the truth-value of (Ex S). These values 

may be merged together using (some version of) the revision rule. 

However, a complication arises here, which is the appearance of emotion val-

ues like happyE on the rhs of some implications, and on the lhs of some others. 

This requires some simple backward chaining inference in order to evaluate some 

of the (Ex S) relationships (note that the details of the PLN backward chaining 

methodology will be described in Chapter 13). And this is an example where 

multideduction may be extremely valuable. Essentially, what we are doing here is 

carrying out revision of a potentially large set of deductive conclusions. We saw in 

our original discussion of revision for simple truth-values that in the case of revi-

sion of deductive conclusions, the standard revision formula can be improved 

upon considerably. Multideduction provides an even more sophisticated approach, 

which can naturally be extended to handle indefinite probabilities. Using multide-

duction to estimate the truth-value of (Ex S) for each schema S provides signifi-

cantly reduced error as compared to the multiple-deductions-followed-by-revision 

methodology. 

A similar approach applies to the generation of goal-driven activity based on 

rules such as the above. As an example, suppose we have a goal G that involves a 

single emotion/mood E, such as excitement. Then there are two steps: 

 

1. Make a list of schemata S whose execution is known to fairly directly af-

fect E. 

2. For these schemata, estimate the probability of achievement of G if S 

were activated in the current context. 

 

For Step 1 we can look for 

 

• Schemata on the lhs of implications with E on the rhs 

• One more level: schemata on the lhs of implications with X on the rhs, so 

that X is on the lhs of some implication with E on the rhs 

 

In the case of a large and complex rule-base, Step 2 may be prohibitively slow 

without some sort of batch-inference based approach. But for moderate-sized rule-

bases, a simple approach is unproblematic. However, there is the same problem as 

there is in the case of spontaneous activity: a lot of deductions followed by revi-

sions, which produce considerable error that may be removed by taking a multide-

duction approach. 
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9.4 Using Bayes Nets to Augment PLN Inference 

Pursuing further the example of the previous section, we now explain how 

Bayes nets techniques may be used, much in the manner of batch inference, to ac-

celerate inference based on a knowledge base that is relatively static over time.  

Keeping the example rule-base from the previous section in mind, suppose we 

have a target predicate P, and have a set S of implications I(k) of the form 

 
A(k, 1) & A(k, 2) & ... & A(k, n(k)) ==> P <s_k> 

 

where each A(k, i) is some predicate (e.g., an emotion, personality trait, or con-

text), and obviously A(k, j)=A(m, i) sometimes. Then this set may be used to 

spawn a Bayes net that may be used to infer the truth-value of  

 
A(k+1, 1) & A(k+1, 2) & ... & A(k+1, n(k+1)) ==> P 

 

The methodology for learning the Bayes net is as follows: 

 

1. The set of implications I(k) is transformed into a data table D. 

2. This data table is used to generate a Bayes net, using standard 

Bayes net structure and parameter learning methods 

 

Once the Bayes net has been learned, then the standard Bayes net belief propaga-

tion method can be used to perform the needed inference. 

The weakness of this approach is that Bayes net structure learning is a slow 

process that must be re-done whenever the relevant set S of implications changes 

considerably. However, once the Bayes net is in place, then the inference step may 

be done very rapidly. 

The only nonstandard step here is the production of the data table D from the 

set S of implications. This is to be done as follows:  

 

• The first column header of D corresponds to the target predicate P. The 

subsequent column headers of D correspond to the set of unique predi-

cates found on the left-hand side of the predicates I(k) in S.  

• The truth-value strengths sk are discretized into a small number d of val-

ues, say 11 values. So, each sk is replaced with a value sdk, which is of the 

form r/(d-1) for r = 0,...,(d-1). 

• Then, each implication I(k) is used to generate d rows of the data table D.  

! In sdk * d of these rows the first (P) column has a 1; in 

the remaining (1- sdk)*d rows it has a 0. 

! In the other columns a 0 value is placed except for 

those columns corresponding to the predicates that ap-

pear as A(k, i) on the left-hand side of I(k). 
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So if, for instance, we have 200 implications in S, involving 30 predicates, and a 

discretization of strength values into 10 values, then we have a binary data table 

with 31 columns and 2000 rows. This data table may then be fed into a standard 

Bayes net learning algorithm. 

Finally, what do we do if we have an implication of the form 

 
(A(k, 1) || A(k, 2))& ... & A(k, n(k)) ==> P <s_k> 

 

with a disjunction in it? In general, we could have any Boolean combination on 

the left-hand side.  

If there’s just a single disjunction as in the above example, it can be tractably 

handled by merely doubling the number of data rows created for the implication, 

relative to what would be done if there were no disjunction. But more broadly, if 

we have a general Boolean formula, we need to take a different sort of approach. 

It seems we can unproblematically create rows for the data table by, in the crea-

tion of each row, making a random choice for each disjunction. It might be better 

(but is not initially necessary) to put the formulas in a nice normal form such as 

Holman’s ENF (Holman 1990; Looks 2006) before doing this. 

9.5 Trail-Free Inference via Function Optimization or 

Experience-Driven Self-Organization 

(Co-authored with Cassio Pennachin) 

 

Finally, this section suggests a yet more radical approach to the problem of do-

ing inference on a large number of logical relationships, with minimal error yet 

reasonably rapidly. The approach suggested is not trivial to implement, and has 

not yet been experimented with except in very simple cases, but we are convinced 

of its long-term potential. We will focus here on the simple experiments we’ve 

carried out, then at the end talk a little about generalization of the ideas. 

In the experiments we conducted, we dealt only with Inheritance relationships 

joining ordinary, first-order terms. Also, we considered for simplicity Atoms la-

beled with simple (strength, weight of evidence) = (s, w) truth-values. The only in-

ference rules we considered were deduction, revision, and inversion. For revision 

we used an iterated revision rule called “revision-collapse,” which acts on an 

Atom and collapses the multiple versions of the Atom into a single Atom (using 

the revision TV formula). 

Define a selection operator as a function that maps a list of Atoms into a proper 

subset of that list; e.g., “select all relationships,” “select all relationships that have 

multiple versions.” Define an inference protocol as a function that maps a list of 

Atoms into another one, defined as a combination of selection operators and infer-

ence rules. An inference protocol is a special case of an inference control strategy 
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– the specialization consisting in the fact that in a protocol there is no adaptiveness 

wherein the conclusion of one inference affects the choice of what inferences are 

done next. A real-world inference engine needs a sophisticated inference control 

strategy – a topic that will be raised in Chapter 13. But for the simple experiments 

described here, a basic and rigid inference protocol was sufficient. There is a 

“global revision” inference protocol that is defined as: Select all Atoms with mul-

tiple versions, and apply revision-collapse to them. 

The standard (forward chaining) FOI inference protocol without node probabil-

ity inference (SP) is defined as follows: 

 

• Select all InhRelationships, and apply inversion to them. 

• Do global revision. 

• Select all InhRelationship pairs of the form (A --> B, B --> C), and apply 

deduction to them. 

• Do global revision. 

 

The standard protocol with node probability inference (SPN) is defined by add-

ing the two steps at the end: 

 

• Do node probability inference. 

• Do global revision. 

 

One may generate a vector of TVs corresponding to a set of Atoms. Using (s, w) 

truth-values, this becomes an n-dimensional vector of pairs of floats. 

Taking the protocol SP as an example, given an Atom-set AS(0) we may define 

 
AS(n+1) = SP( AS(n) ) 

 

as the Atom-set resulting from applying the protocol SP to the Atom-set AS(n). 

This series of Atom-sets implies a series of TV-vectors 

 
V(n) = v(AS(n)) 

 

where v is the mapping taking Atom-sets into TV-vectors. 

Potentially the series of AS’s may converge, yielding a fixed point 

 
AS* = SP(AS*) 

 

In this case we may say that the corresponding TV-vector V* represents a TV as-

signment that is consistent according to the inference protocol SP (or, SP-

consistent). A problem, however, is that V* need not be the closest SP-consistent 

TV-vector to the original TV vector V(0). 

Similarly, we may define an e-consistent (e-SP-consistent) Atom-set as one for 

which 
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! 

v AS( ) " v* SP AS( )( ) < e  

 

The degree of SP-inconsistency of AS may be defined as the minimum e for 

which the above inequality holds. If AS’s degree of SP-inconsistency is 0, then 

AS is SP-consistent.  

If the series AS(n) converges to a fixed point, then for any e there is some N so 

that for n>N, AS(n) is e-consistent. However, these e-consistent Atom-sets along 

this series need not be the closest ones to AS(0). 

What is the most sensible way to compute the distance between two TV-

vectors (and, by extension, between two Atom-sets)?  One approach is as follows. 

Assume we have 

 

  

! 

V1= s11, c11( ), s12, c12( ),K , s1n, c1n( )( )

V2 = s21, c21( ), s22, c22( ),K , s2n, c2n( )( )
 

 

Then we may define 

 

! 

d V1,V2( ) = c1i*c2i* s1i " s2i[ ]
i

#  

 

This is a 1-norm of the difference between the strength components of V1 and V2, 

but with each term weighted by the confidences of the components being differ-

enced. One approach to inference, then, is to explicitly search for an Atom-set 

whose SP-consistent (or e-SP-consistent) TV-vector is maximally close to AS(0).  

This might in a sense seem less natural than doing iterated inference as in the 

series AS(n) described above. However, the iterated inference series involves a 

compounding of errors (the errors being innate in the independence assumptions 

of the deduction and revision TV formulas), which can lead to a final attractor 

quite distant from the initial condition in some cases. One way to avoid this is to 

introduce inference trails – a strategy which effectively stops the iteration after a 

finite number of steps by using a self-halting inference protocol that incorporates 

trails, and is hence more complex than SP or SPN described above. Another ap-

proach is the one suggested here: use an optimization algorithm to find a conclu-

sion TV-vector satisfying specified criteria. 

There are several possible ways to formalize the optimization problem. Define 

x to be a semi-minimum of a function F if there is some neighborhood N about x 

so that for all y in N, 

! 

F y( ) " F x( ) ; or an e-semi-minimum if 

! 

F y( ) " F x( ) # e . 

Then we may, for instance, look for: 

 

• The AS that is a semi-minimum of SP-inconsistency that is closest to 

AS(0) 
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• For fixed e, the AS that is an e-semi-minimum of SP-inconsistency that is 

closest to AS(0) 

• The AS that minimizes a weighted combination of inconsistency and dis-

tance from AS(0) 

• The AS that minimizes a weighted combination of {the smallest e for 

which AS is an e-semi-minimum of SP-inconsistency} and distance from 

AS(0) 

 

Let us call this approach to the dynamics of inference optimization-based infer-

ence (OBI). 

One obvious weakness of the OBI approach is its computational cost. How-

ever, the severity of this problem really depends on the nature of the minimization 

algorithm used. One possibility is to use a highly scalable optimization approach 

such as stochastic local search, and apply it to a fairly large Atom-set as a whole. 

This may be viable if the Atom-set in question is relatively static. 

However, another interesting question is what happens if one takes a large 

Atom-set and applies OBI to various subsets of it. These subsets may overlap, 

with the results of different OBI runs on different overlapping subsets mediated 

via revision. This approach may be relatively computationally tractable because 

the cost of carrying out OBI on small Atom-sets may not be so great. 

For instance, one experiment we carried out using this set-up involved 1000 

random “inference triangles” involving 3 relationships, where the nodes were de-

fined to correspond to random subsets of a fixed finite set (so that inheritance 

probabilities were defined simply in terms of set intersection). Given the specific 

definition of the random subsets, the mean strength of each of the three inheritance 

relationships across all the experiments was about .3. The Euclidean distance be-

tween the 3-vector of the final (fixed point) relationship strengths and the 3-vector 

of the initial relationship strengths was roughly .075. So the deviation from the 

true probabilities caused by iterated inference was not very large. Qualitatively 

similar results were obtained with larger networks. Furthermore, if one couples 

together a number of inference triangles as described in the above paragraph, re-

vising together the results that different triangles imply for each shared relation-

ship, then one obtains similar results but with lower correlations – but still correla-

tions significantly above chance.  

9.5.1  Approximating OBI via Experience-Driven Self-

Organization 

The same thing that OBI accomplishes using an optimization algorithm may 

be achieved in a more “organic” way via iterated trail-free inference in an experi-

ential system coupled to an environment. Harking back to the “experiential seman-

tics” ideas of Chapter 3, one way to think about OBI is as follows. Considering the 
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test case studies above, of simple terms interrelationshiped by Inheritance rela-

tionships, we may imagine a set of such terms and relationships dynamically up-

dated according to the following idea: 

 

1. Each term is assumed to denote a certain perceptual category. 

2. For simplicity, we assume an environment in which the probability dis-

tribution of co-occurrences between items in the different categories is 

stationary over the time period of the inference under study. 

3. We assume the collection of terms and relationships has its probabilistic 

strengths updated periodically, according to some “inference” process.  

4. We assume that the results of the inference process in Step 3 and the re-

sults of incorporating new data from the environment (Step 2) are merged 

together ongoingly via a weighted-averaging belief-revision process. 

 

This kind of process will have qualitatively the same outcome as OBI. It will 

result in the network drifting into an “attractor basin” that is roughly probabilisti-

cally consistent, and is also pretty close to the data coming in from the environ-

ment. 

The key thing in this picture is the revision in Step 4: It is assumed that, as iter-

ated inference proceeds, information about the true probabilities is continually 

merged into the results of inference. If not for this, Step 3 on its own, repeatedly 

iterated, would lead to noise amplification and increasingly meaningless results. 

But in a realistic inference context, one would never simply repeat Step 3 on its 

own. Rather, one would carry out inference on a term or relationship only when 

there was new information about that term or relationship (directly leading to a 

strength update), or when some new information about other terms/relationships 

indirectly led to inference about that term-relationship. With enough new informa-

tion coming in, an inference system has no time to carry out repeated, useless cy-

cles of inference on the same terms/relationships – there are always more interest-

ing things to assign resources to. And the ongoing mixing-in of new information 

about the true strengths with the results of iterated inference prevents the patholo-

gies of circular inference, without the need for a trail mechanism. 

The conclusion pointed to by this line of thinking is that if one uses an infer-

ence control mechanism that avoids the repeated conduction of inference steps in 

the absence of infusion of new data, issues with circular inference are not neces-

sarily going to be severe, and trails may not be necessary to achieve reasonable 

term and relationship strengths via iterated inference. Potentially, circular infer-

ence can occur without great harm so long as one only does it when relevant new 

data is coming in, or when there is evidence that it is generating information. This 

is not to say that trail mechanisms are useless in computational systems – they 

provide an interesting and sometimes important additional layer of protection 

against circular inference pathologies. But in an inference system that is integrated 

with an appropriate control mechanism they are not necessarily required. The er-

rors induced by circular inference, in practice, may be smaller than many other er-

rors involved in realistic inference. 
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Chapter 10: Higher-Order Extensional 

Inference 

Abstract   In this chapter we significantly extend the scope of PLN by explain-

ing how it applies to what we call “higher-order inference” (HOI) – by which we 

mean, essentially, inference using variables and/or using relationships among rela-

tionships. One aspect of HOI is inference using quantifiers, which is deferred to 

the following chapter because in the PLN approach it involves its own distinct set 

of ideas. 

10.1 Introduction 

The term “higher-order” is somewhat overloaded in mathematics and computer 

science; the sense in which we use it here is similar to how the term is used in 

NARS and in functional programming, but different from how it is traditionally 

used in predicate logic. In the theory of functional programming, a “higher order 

function” refers to a mathematical function whose arguments are themselves func-

tions. Our use of the term here is in this spirit. PLN-HOI involves a diverse as-

semblage of phenomena, but the essential thing that distinguishes HOI from FOI 

is a focus on relationships between relationships rather than relationships between 

simple terms. As an example of relationships between relationships, much of 

PLN-HOI deals with relationships between logical predicates, where the latter 

may be most simply understood as functions that take variables as arguments 

(though there is also an alternative interpretation of predicates using combinatory 

logic, in which predicates are higher-order functions and there are no variables. 

Here we will generally adopt the variable-based approach, though the concepts 

presented also apply in the combinatory-based approach). Logical relationships 

between predicates (variable-bearing or no) are then an example of relationships 

among relationships. 

In the context of PLN-HOI, the boundary between term logic and predicate 

logic becomes somewhat blurry and the approach taken is best described as an 

amalgam. Logical predicates are used centrally and extensively, which is obvi-

ously reminiscent of predicate logic. On the other hand, the basic term logic infer-

ence rules (such as Aristotelian deduction) also play a central role and are ex-

tended to handle Implication relationships between predicates rather than 

Inheritance relationships between simple terms. This synthetic approach has been 

arrived at primarily for practical reasons; sticking with pure predicate or term 

logic (or pure combinatory logic, or any other available “pure” approach) ap-

peared to introduce unnatural complexity into some intuitively simple inferences. 
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In the present approach, inferences that appear intuitively simple tend to come out 

formally simple (which is one of the qualitative design guidelines underlying PLN 

as a whole).  

PLN-HOI, like PLN-FOI but more so, is a set of special cases. There are many 

HOI inference rules. However, there are not as many new truth-value formulas as 

in FOI, though there are some. The PLN approach is to reduce higher-order infer-

ences to first-order inferences wherever possible, via mapping predicates into their 

SatisfyingSets. This allows the theory of probabilistic first-order inference to natu-

rally play the role of a theory of probabilistic higher-order inference as well. 

We will begin here by giving some basic PLN rules for dealing with relation-

ships between predicates and between first-order relationships. Then as the chap-

ter develops we will broach more advanced topics, such as Boolean operators, 

variable instantiation, and combinatory logic based higher-order functions. The 

following chapter continues the story by extending HOI to handle universal, exis-

tential, and fuzzy quantifiers. 

10.2 PLN-HOI Objects 

Before getting started with higher-order inference proper, we briefly review 

some of the knowledge representation that will be used in the HOI rules. Most of 

this material was presented earlier in the chapter on knowledge representation and 

is briefly repeated here with a slightly different slant. 

A Predicate, in PLN, is a special kind of term that embodies a function map-

ping Atoms into truth-values. The truth-value of a predicate is similar to the term 

probability of an ordinary “elementary” term. It can be estimated using term prob-

ability inference, or evaluated directly. When evaluated directly it is calculated by 

averaging the truth-value of the predicate over all arguments. In practice, this av-

erage may be estimated by using all known Evaluation relationships in the reason-

ing system’s memory regarding this predicate. In cases where lots of effort is 

available and there aren’t enough Evaluation relationships, then a random sam-

pling of possible inputs can be done. 

All the inference rules for predicates work the same way for multi-argument 

predicates as for single-argument predicates. This is because a multi-argument 

predicate may be treated as a single-argument predicate whose argument is a list 

(multi-argument predicates may also be handled via currying, but discussion of 

this will be deferred till a later subsection). Let, for instance, (Ben, Ken) denote 

the list alternatively denoted 

 
List Ben Ken 

Then (using the inference rule for combining Evaluation and Implication rela-

tionships, to be given below) we may say things like 

 



203 Chapter 10: Higher-Order Extensional Inference 

Evaluation kiss (Ben, Ken) 

Implication kiss marry 

|- 
Evaluation marry (Ben, Ken) 

an inference that goes just the same as if the argument of kiss were an elementary 

term rather than a list. 

We will also make use of relationships involving variables along with, or in-

stead of, constant terms, for instance 

 
Evaluation do (Ben, $X) 

 

Such relationships may be implicitly considered as predicates, and are treated 

symmetrically with other predicates in all PLN rules. The above example may be 

treated as a predicate with a single variable, represented by the notation $X. This 

is a predicate that evaluates, for each argument $X, the degree to which it’s true 

that Ben does X. 

Next, as well as predicates we will also make some use of objects called Sche-

mata, which are terms that embody functions mapping Atoms into things other 

than TruthValue objects. Schemata come along with their own relationship types, 

Execution and ExecutionOutput (ExOut for short), which have the semantics that 

if a Schema F embodies a function f so that 

 

! 

f x( ) = y 

 

then 

 
ExOut f x = y 

Execution f x y 

 

In short, ExOut denotes function application, whereas Execution records the out-

put of a function application. 

We have introduced a few additional relationship types to make HOI simpler – 

some of these mentioned above. There is 

 
SatisfyingSet 

 

which relates a predicate to the set of elements that satisfy it; e.g., 

 
SatisfyingSet isAnUglyPerson UglyPeople 

 

Then there’s 

 
Quantifier 
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with subclasses  
 

ForAll 

 

ThereExists 

 

e.g., to express  

 
“There is some woman whom every man loves” 

 

one can write 

 
ThereExists $X: 

AND 

 Inheritance $X woman 

 ForAll $Y: 

  Implication 

   Inheritance $Y man 

   Evaluation loves ($Y,$X) 

 

Finally, there’s 

 
BooleanRelationship 

 

with subclasses  
 

AND, OR and NOT 

 

which also has some other more specialized subclasses to be introduced later. We 

have just used AND, for instance, in the above example. The most straightforward 

use of the Boolean relationships is to join relationships or predicates, but there are 

also special variants of the Boolean relationships that exist specifically to join 

terms. 

10.2.1 An NL-like Notation for PLN Relationships 

To make the text output of our current PLN implementation easier to under-

stand, we have created a simple pseudo-NL syntax for describing PLN relation-

ships. While not syntactically correct English in most cases, we have found this 

syntax generally much easier to read than formal notation. This notation will be 

used in some of the following examples. The following table illustrates the NL-

like syntax (which we will use in examples for the remainder of this section): 
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Formal representation 

NL-like 

representation 

Inheritance  

  Concept mushroom  

  Concept fungus 

Mushroom is 

fungus 

Implication  

  Predicate isMushroom 

  Predicate isFungus 

If isMushroom 

then isFungus 

ListRelationship 

  Concept yeast 

  Concept mushroom 

  Concept mold 

(yeast, mushroom, 

mold) 

Evaluation  

  Predicate friendOf 

  List 

    Concept kenji 

    Concept lucio   

FriendOf(kenji,lu

cio) 

And 

  Concept yeast 

  Concept mushroom 

  Concept mold 

And(yeast, 

mushroom, mold) 

Not 

  Concept yeast 

Not yeast 

ExOut 

  Schema friendOf 

  Concept lucio 

The result of 

applying friendOf 

to lucio 
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10.3 Where HOI parallels FOI 

The simplest kind of HOI is the kind that exactly mirrors FOI, the only differ-

ence being a substitution of predicates for simple terms and a substitution of 

higher-order relationship types for their corresponding first-order relationship 

types. An example of this kind of inference is the following deduction involving 

the predicates is_Brazilian and eats_rump_roast: 

 
Implication is_Brazilian is_ugly 

Implication is_ugly eats_rump_roast 

|- 

Implication is_Brazilan eats_rump_roast 

 

Similar things may be done with Equivalence relationships. This kind of HOI 

follows the FOI rules, where Implication behaves like Inheritance, Equivalence 

behaves like Similarity, and so forth. Further examples will be omitted here due to 

their obviousness, but many examples of such inference will occur in the sample 

inference trajectories given in Chapter 14 when we discuss application of the cur-

rent PLN implementation to making a virtual agent learn to play fetch,. 

10.4 Statements as Arguments 

Next we discuss a case that lies at the border between first-order and higher-

order inference. Some commonsense relationships, such as “know” and “say,” 

take statements as arguments. Some commonsense concepts, such as “fact” and 

“sentence,” take statements as instances. Because the embedded statements in 

these examples are treated just like ordinary terms, the PLN FOI rules treat them 

as other terms, though from a semantic point of view the inference is higher-order.  

For example, “Ben believes that the Earth is flat” can be represented as  

 

Evaluation  

believe  

( Ben ,  (Inheritance Earth flat_thing))  

 

“The Earth is flat is a ridiculous idea” then becomes 

 
Inheritance <tv1> 

Inheritance Earth flat_thing 

ridiculous_idea  

 

By induction, from this statement and Ben’s belief in the flatness of the Earth, 
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one may conclude 

 
Inheritance <tv2> 

SatisfyingSet (believe_curry Ben)  

ridiculous_idea  

 

and thus 

 
Evaluation <tv3> 

believe_curry Ben 

ridiculous_idea 

 

which becomes 

  
believe Ben ridiculous_idea <tv3> 
 

i.e., “Ben believes in ridiculous ideas.” 

10.5 Combining Evaluations and Implications 

Combining an Evaluation and an Implication yields an Evaluation, as in the ex-

ample 
 

Evaluation is_American Ben <tv1> 

Implication is_American is_idiot <tv2> 

|- 

Evaluation is_idiot Ben <tv3> 

 

The truth-value strength here is obtained via deduction, for reasons to be eluci-

dated below. For simple truth values, the weight of evidence is a discounted ver-

sion of the value obtained via deduction, where the discount (which we’ll call a 

“multiplier”) is the product of the M2ICountMultiplier and the 

I2MCountMultiplier. In the case of indefinite truth values, we replace the count 

multiplier with I2MIntervalWidthMultiplier and M2IIntervalWidthMultiplier. 

These width multipliers keep the means of the truth values constant while simply 

increasing the interval widths to account for losses in confidence. 

This is a “heuristic” form of inference whose correctness is not guaranteed by 

probability theory, due to the use of the I2M and M2I heuristic inference rules. 

These rules are approximatively valid for “cohesive concepts” whose members 

share a lot of properties; they’re badly invalid for random concepts.  

We now run through the detailed logic of this inference rule, using the above il-

lustrative example. First, by the definition of SatisfyingSet, we have: 
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Evaluation is_American Ben <tv1> 

Execution SatisfyingSet is_American  Americans <1> 

|- 

Member Ben Americans <tv1> 

 

(where “Americans” is the set of all Americans). We may also define the Satisfy-

ingSet of is_idiot: 

 
Execution SatisfyingSet is_idiot idiots <1> 

 

By the M2I (MemberToInheritance) heuristic we have 
 

Member Ben Americans <tv1> 

|-  

Inheritance {Ben} Americans <tv2> 

 

where tv2 has the same strength as tv1 but, depending on truth-value type, a dis-

counted count or wider interval.  By deduction we then have 

 
Inheritance {Ben} Americans <tv2> 

Inheritance Americans idiots <tv3> 

|- 

Inheritance {Ben} idiots <tv4> 

 

The I2M heuristic then yields 

 
Inheritance {Ben} idiots <tv4> 

|- 

Member Ben idiots <tv5> 

 

where tv5 has the same strength as tv4 but a discounted count (i.e. a wider inter-

val). 

From the definition of SatisfyingSet we then have 
 

Evaluation is_idiot Ben <tv5> 

10.6 Inference on Boolean Combinations 

Extensional Boolean operators may be defined on predicates in a straightfor-

ward way. For instance, if P and Q are Boolean predicates, then the degree to 

which (P AND Q) is true of a set S may be defined as the percentage of members 

x of S for which both P(x) and Q(x) are true. If P and Q are non-crisp predicates, 

then the degree to which (P AND Q)(x) is true may be defined in terms of fuzzy 
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intersection, and the degree to which (P AND Q)(S) is true may be defined as the 

truth-value of the fuzzy intersection (P AND Q) evaluated over the set S. 

Extending these notions to terms is also straightforward, because a Concept 

term A may be considered in terms of a predicate whose SatisfyingSet is A. In this 

way, Boolean operators on terms may be defined by means of Boolean operators 

on predicates. This is equivalent to the more direct approach of defining Boolean 

operation on Concept terms as set operations – according to which, e.g., the inter-

section of two Concept terms A and B is the Concept whose member-set is the in-

tersection of the member-sets of A and B. 

10.6.1 Inference on Boolean Compounds of Predicates 

First we give some heuristic rules for dealing with Boolean operators. These 

rules are generally bad approximations, so they are to be applied only when time 

is short or when there is no data to do direct evaluation. We illustrate them with 

simple examples:  

 

Inference Rule Truth-value Strength Formula 

is_Ugly 

AND is_Male is_Ugly  

|- 

isMale 

isMale.tv.s =  

(isMale & isUgly).tv.s 

/ isUgly.tv.s  

is_Ugly 

OR is_Male is_Ugly 

|- 

is_Male 

isMale.tv.s = (MU-

U)/(1-U) 

MU = (isMale OR 

isUgly).tv.s 

U = isUgly.tv.s 

 

isMale 

isUgly 

|- 

isMale AND isUgly 

(isMale & isUgly).tv.s 

= isMale.tv.s *  

isUgly.tv.s 

 

isMale 

is Ugly 

|- 

isMale OR isUgly 

(isMale & isUgly).tv.s 

= isMale.tv.s + 

isUgly.tv.s - is-

Male.tv.s *  isUgly.tv.s 

 

isMale 

|- 

NOT isMale 

 

(NOT isMale).tv.s = 1- 

isMale.tv.s 
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The subtle point about these rules is that a complex Boolean expression can be 

evaluated by applying these simple rules in many possible orders. Each order of 

evaluation allows the usage of different knowledge in memory. For instance, if we 

have 

 
is_Male AND is_Ugly AND is_Stupid 

and the memory contains information about 

 
is_Male AND is_Ugly 

and 

 
is_Ugly AND is_Stupid 

then the inference controller must choose whether to do the evaluation as 

 
(is_Male AND is_Ugly) AND is_Stupid 

or as 

 
is_Male AND (is_Ugly AND is_Stupid) 

Or, the system can do the evaluation both ways and then use revision to merge 

the results! Optimizing the evaluation order for large expressions is a hard prob-

lem. The approach taken in the current implementation is to use all evaluation or-

ders for which the memory contains reasonably confident data, and then revise the 

results. 

10.6.2  Boolean Logic Transformations 

Next, there are logical transformation rules, which are given in ordinary Boo-

lean logic notation as: 

 

! 

P"Q( )# ¬P$ Q( ) 

! 

P"Q( )#¬ P$¬Q( )  

! 

P"Q( )" P# Q( )$ Q# P( )( ) 
!

and which may be executed in PLN without change of truth-value.  

For example, 
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isMale OR isUgly <s,w> 

may be transformed into 

 
Implication <s,w> 

 ExOut NOT isMale 

 isUgly 

or else 

 
Implication <s,w> 

 P 

 isUgly 

where P is the predicate whose internal function is “NOT isMale”; or else, with 

variables, 
 

Implication <s,w> 

 

 Evaluation (ExOut NOT isMale) X 

 Evaluation isUgly X 

10.6.2.1  Boolean Operators for Combining Terms 

As already noted, the simple Boolean operators discussed above, though pre-

sented in the context of combining predicates, may also be used to combine ele-

mentary terms, according to the strategy of considering a term as the SatisfyingSet 

of a predicate and then combining the terms via combining these predicates. Or, 

equivalently, one may introduce separate operators for acting on terms, defined, 

e.g., by 

 

extensional intersection: (A ANDExt B) 

  
Equivalence 

  Member x (A ANDExt B)  

(Member x A) AND (Member x B) 

 

extensional difference: (A MINUSExtB) 

 
Equivalence 

 Member x (A MINUSExt B) 

 (Member x A) AND NOT (Member x B) 
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extensional union: (A ORExtB) 

 
Equivalence 

 Member x (A ORExt B) 

 (Member x A) OR (Member x B) 

 

A number of conclusions immediately follow from these definitions; e.g., 

 
Equivalence  

 Subset x (A ANDExt B) 

 (Subset x A) AND (Subset x B) 

 
Implication 

 (Subset x A) OR (Subset x B) 

 Subset (A ANDExt B) x 

 

To understand the importance of the latter implication, consider a simple ex-

ample. Assume there is a term for “Bank” and a term for “American Company,” 

and we want to make a new term that includes the common instances of the two 

(so intuitively what we get is “American Bank”). Obviously, the extension of the 

new term should be built by the intersection of the extensions of “Bank” and 

“American Company” as arguments, because a term is an instance of “American 

Bank” if and only if it is a “Bank” and it is an “American Company.” This is what 

the extensional intersection does. 

On the other hand, as the common subset of “Bank” and “American Com-

pany,” the supersets of “American Bank” include both the supersets of “Bank” 

and those of “American Company,” so the intension of the new term should be the 

union of the intensions of “Bank” and “American Company.” For example, 

“American Bank” is a kind of “Financial Institution” (because “Bank” is a kind of 

“Financial Institution”), though “American Company” is not a kind of “Financial 

Institution.” If we use the intersection (or union) operator for both the extension 

and intension we can still get a term, but it has no natural interpretation in terms of 

its components. Fortunately, elementary set theory behaves in the appropriate way 

and we have the implication given above, which says that the extensional intersec-

tion belongs to categories defined as the disjunction of the sets of categories to 

which its components belong. 

Regarding extensional difference, note that 

 
Equivalence 

 Subset x (A MINUSAsymExt B) 

  (Subset x A) AND NOT (Subset x B) 

 

Equivalence 

 Subset (A MINUSAsymExt B) x 

Subset A x  
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The asymmetric extensional difference A MINUSExt B contains things that are in 

the extension of A but not in the extension of B. Whether these things will belong 

to the same categories as B or not, we can’t say, which is why there is no Subset B 

x term in the second implication given above. 

Regarding union, we have: 

 
Equivalence 

 Subset x (A ORAsymExt B) 

 (Subset x A) OR (Subset x B) 

 

Equivalence 

 (Subset A x) OR (Subset B x) 

 Subset (A ORAsymExt B) x 

 

These term logical operators may be used inside an inference system in two 

different ways. They may be used as operators inside larger implications, or they 

may be used as heuristics for “seeding” the creation of new concepts. For instance, 

given the existence of the concepts of American Company and Bank, implications 

of the form 

 
Implication 

 American_Company ANDAsymMix Bank 

 Y 

 

may be learned. Or, a new concept C may be formed, initially defined as 

 
American_Company ANDAsymMix Bank 

 

but given the possibility of “drifting” over time via forming new relationships, 

gaining new members, etc. Both strategies have their value. 

10.7 Variable Instantiation 

As we’ve noted, variables are not necessary to PLN, in the sense that PLN-HOI 

also works with combinatory logic operators, which avoid the need for variables 

via use of higher-order functions. We will discuss this approach in Section 10.9 

and elsewhere below. However, in our practical implementation of PLN we have 

found variables quite useful, and so we have used them in several of the previous 

subsections of this chapter on HOI, and will continue to use them in later sections 

and chapters; and we will now describe some rules specifically oriented toward 

manipulating variables. 
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Variable instantiation refers to the inference step wherein one takes a relation-

ship involving variables and then inserts specific values for one of the variables. 

Of course, instantiating multiple variable values in a relationship can be handled 

by repeated single-variable instantiations. A useful truth-value function for vari-

able instantiation can be derived as a consequence of several truth-value functions 

previously derived. 

In general, suppose we have 

 
F($X) <tv> 

where $X is a variable, and we instantiate this to 

 
F(A) <tv1> 

The most direct way to do this is to observe that 

 
s1 = P( F($X) | $X = A) 

The most accurate and conceptually coherent method for estimating this condi-

tional probability is to include both direct and indirect evidence. We can accom-

plish this by interpreting 

 
s1 = P( F($X) | Similarity $X A) 

so that we have 

 
Implication 

 AND 

  Evaluation F $X 

  Similarity A $X 

 Evaluation F A 

 

To turn this interpretation into a concrete formula, it suffices to break down the 

proposed inference step into a series of substeps that are equivalent to previously 

discussed inference rules. What we need is to find a truth-value for the conclusion 

of the inference: 

 
Similarity A B 

Evaluation F B 

|- 

Evaluation A B 

 

But this inference can be transformed, via two applications of the M2I inference 

rule, into 
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Similarity A B 

Inheritance B (SatisfyingSet F) 

|- 

Inheritance A (SatisfyingSet F) 

 

which can be transformed into the following via the sim2inh rule: 
 

Inheritance A B 

Inheritance B (SatisfyingSet F) 

|- 

Inheritance A (SatisfyingSet F) 

 

And now we have arrived at an ordinary deductive inference.  

So according to this line of reasoning, the truth-value of the variable-

instantiation inference conclusion should be: 

 
F(A).tv = I2M ( deduction( M2I(F.tv),  

   sim2inh( (Similarity A $X).tv) ) 

Note that in the above derivation, the assumption is made that the SatisfyingSet 

of F is a “cohesive” set; i.e., that the elements within it tend to be fairly similar to 

each other. Without this assumption this approach doesn’t work well, and there’s 

no way to say anything about F(A) with a reasonably high confidence. PLN auto-

matically accounts for this lack of confidence via the count or interval width 

multipliers in the M2I/I2M rule, which depend on how cohesive the set involved 

is. More cohesive sets involve smaller multipliers. The right multiplier for each set 

may be computed empirically if elements of the set are known, or else it may be 

computed by inference via the assumption that similar sets will tend to have simi-

lar cohesions and therefore similar interval width multipliers. 

As a particular example of the above inference rule, consider the following two 

inferences, expressed in pseudo-NL notation: 

 

1) 

 
If isDead($X) then there exists $Y so that 

 killed($Y,$X) <[0.1, 0.3], 0.9, 10> 

|- 

If isDead(Osama) then there exists $Y so that 

 killed($Y,Osama) tv1 

 

2) 

 
If isDead($X) & isTerrorist($X), then there exists $Y 

 so that killed($Y,$X) <[0.5, 0.7] , 0.9, 10> 



Probabilistic Logic Networks  216 

|- 

If isDead(Osama) & isTerrorist(Osama), then there 

 exists $Y so that killed($Y,Osama) tv2 

 

These inferences include quantifiers, which won’t be discussed until the fol-

lowing chapter, but that’s not the main point we need to consider here. Assuming 

 
[ Similarity $X Osama ].tv = <[0,15, 0.25], 0.95, 10> 

and assuming M2I/I2M interval width multipliers of 1.5 for both inferences, then 

we obtain 

 
tv1 = <[0.123024, 0.486104], 0.9, 10> 

tv2 = <[0.235028, 0.570565], 0.9, 10> 

 

On the other hand, if we use the fact that the premise of the second inference 

involves a more cohesive set than the premise of the first inference, then that 

means that the second inference involves a lesser M2I/I2M interval width multi-

plier than the first one. In fact the set of $X who are dead terrorists is much 

smaller and much more cohesive than the set of $X who are dead entities. For 

dead terrorists (inference 2) we may plausibly assume an M2I/I2M interval width 

multiplier of 1.2. In this case we obtain the revised value 

 
tv2 = <[0.259443, 0.574509], 0.9, 10> 

10.7.1 Implications Between Non-Variable-Bearing Relationships 

Now we present an interesting, somewhat conceptually subtle application of 

the variable-instantiation formula. We show that it is possible to construct higher-

order relationships such as implications that relate simple relationships without 

variables – and without any higher-order functions being involved. The semantics 

of these relationships, however, is subtle and involves “possible worlds.” The 

truth-values of these relationships can be derived via a combination of the possi-

ble-worlds interpretation with the variable-instantiation truth-value formula given 

above. For simplicity, we will discuss this formula in the context of simple truth-

values, but extrapolation to indefinite truth-values is not difficult. 

As an example, consider 

 
Implication  

 Ben is ugly 

 Ben eats beef 

 

How can we define the truth-value of this?  
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First, we suggest, the most useful way to interpret the expression is: 

 
Implication  

 In possible universe C, Ben is ugly  

 In possible universe C, Ben eats beef  

 

Note that this reinterpretation has a variable – the possible universe C – and hence 

is interpretable as a standard Implication relationship. But we may interpret, e.g., 

 
In possible universe C, Ben is ugly 

 

as meaning 
 

Inheritance (Ben AND “possible universe C ”) ugly 

 

In other words, one may view Ben as a multiple-universe-spanning entity, and 

look at the intersections of Ben with the possible universes in the multiverse. 

Suppose then that we know 
 

Implication  

 Inheritance $X ugly 

 Inheritance $X beef_eater 

 

Variable instantiation lets us derive from this 
 

Implication  

 Inheritance (Ben AND “possible universe C ”) ugly 

Inheritance (Ben AND “possible universe C”)  

beef_eater 

 

which is equivalent by definition to 
 

Implication  

 Inheritance Ben ugly 

 Inheritance Ben beef_eater 

 

So, in short, we may quantify inheritance between non-variable-bearing relation-

ships using the variable instantiation formula. 

10.8 Execution Output Relationships 

As noted above, if we have a function that outputs an Atom, then we use an 

ExecutionOutput (ExOut for short) relationship to refer to the Atom that’s output, 
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and an Execution relationship to denote the ternary relationship between schema, 

input, and output. Here we describe a few basic rules for manipulating ExOut and 

Execution relationships. 

First, note that we have the tautology 

 
Execution $S $X (ExOut $S $X) <1,1> 

For example, if we want to say “The agent of a killing situation is usually Ar-

menian” then we may say 

 
Implication 

 Inheritance $x killing 

 Inheritance 

  ExOut Agent $x 

  Armenian 

 

which is equivalent to 

 
Implication 

 Inheritance $x killing 

 Implication 

  Execution Agent $x $y 

  Inheritance $y Armenian 

 

In this example, the ExOut relationship allows us to dispense with an additional 

relationship and an additional variable. There is a general rule 
 

Equivalence <1,1> 

Evaluation F (ExOut A B) 

AND 

  Execution A B $Y <1,1> 

  Evaluation F $Y 

 

that may be used to convert expressions with ExOuts into expressions without 

them. 

Finally, an alternative way of saying 
 
ExOut Agent $X 

 

is to construct a predicate P whose internal predicate-function evaluates “Agent 

$X”. Then we have 
 

Implication 

 Inheritance $X killing 
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 Inheritance 

  Evaluation P $X 

  Armenian 

10.9 Reasoning on Higher-Order Functions 

PLN-HOI is capable of dealing with functions or relationships of arbitrarily 

high order, with relationships between relationships ... between relationships, or 

functions of functions ... of functions. This property implies that a fully capable 

PLN can be created without any use of variables at all, due to the possibility of us-

ing combinatory logic to represent mathematical expressions that would normally 

be denoted using variables, in an entirely variable-free way. In practice, it seems 

that the use of variables is often worthwhile because it allows more compact rep-

resentation of useful higher-order relationships than would be possible without 

them. However, there are also many cases where curried relationships of the style 

common in combinatory logic and combinatory logic based programming lan-

guages are useful within PLN, due to their own ability to represent certain types of 

relationship with particular compactness. 

As a simple example of a case where the curried representation is semantically 

natural, consider the schema “very” which maps a predicate P into the predicate 

“very P.” Then we might have 

 
Implication 

 ExOut very $X 

 $X 

 

from which we can draw the conclusion e.g. 
 

Implication 

 ExOut very isMale 

 isMale 

 

Note that the original statement is equivalent to 
 

Implication 

 ExOut (ExOut very $X) $Y 

 ExOut $X $Y 

 

Alternately, we can do the same thing with combinators rather than variables. 

To make this work nicely we want to use the curried version of Implication, in 

which, e.g., 
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(Implication A B).tv := 

(Evaluation (ExOut Implication_curried A) B).tv 

 

where the standard Implication relationship might also be called Implication_list, 

since it is in effect a predicate that takes a list argument. The above example be-

comes 

 
Evaluation 

ExOut 

Implication_curried 

  ExOut very $X  

 ExOut I $X 

 

using the I combinator. To eliminate the variable we use the definitions 

 
S f g x = (fx) (gx), so 

  B f g x = f(gx) 

 

which lets us reason as follows, using Imp as a shorthand for Implication_curried: 

(Imp (very x)) (I x)  =  

((B Imp very) x) (I x) =  

S (B imp very) I x  

 

In term and relationship notation, this final result would be written 

 

ExOut 

 ExOut 

  S 

  A 

 I 

 

A := 

ExOut 

 ExOut 

  B 

  imp 

 very 

 

Note the cost of removing the variables; we’ve introduced a few extra terms 

and relationships. Whether the variable-free or variable-bearing form is better de-

pends on the kind of reasoning you’re doing. Removing variables allows one to 

use simpler inference control strategies, but generally increases the size of the 

structures being reasoned on. The variable-free, curried approach is useful only in 

cases where this size increase is not too severe. 
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10.10 Unification in PLN1 

The concept of unification is an important part of theoretical computer science, 

and also plays a key role in AI; for example, via its central role in the Prolog lan-

guage (Deransart et al 1996) and its role in computational linguistics (in unifica-

tion grammars) (Roark and Sproat 2007.) This section explores the manifestation 

of unification in PLN, which is relatively simple but different from usual treat-

ments of unification due to the lack of focus on variables and the central role 

played by uncertainty. 

To illustrate the nature of unification in PLN, let us introduce an example 

involving a Predicate P relating the expression values of two genes (XYZ and 

ABC) at different times: 

 
P($T) := 

Implication 

 expression(XYZ,$T)>.5 AND expression(ABC,$T+1)<.5 

expression(XYZ,$T)<.2 

 

and a related Predicate Q: 
 

Q := 

Implication 

 expression(XYZ, $T)>.9  

 expression(XYZ, $T)<.4 

 

Now, it is not hard to compute the truth-value of the relationship 

 
Implication P Q 

by referring to the actual underlying data points, assuming one has access to this 

data. But what if one wants to compute this truth-value without doing this, just by 

manipulating P and Q? To do this, one has to “unify” the two expressions. 

We may write the two expressions as 

 
Implication L1 R1 

Implication L2 R2 
 

It is possible to find L and R, with nontrivial truth-values, so that 

 
Implication L L1  <t1> 
Implication L L2  <t2> 

                                                             
1 This section was coauthored with Guilherme Lamacie. 
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Implication R R1  <t3> 

Implication R R2  <t4> 

 

also with nontrivial truth-values. Specifically, 

 
L($T) := [ expression(XYZ, $T) > .9 ] 

R($T) := [ expression(XYZ, $T) < .2 ] 

 

will work.  Induction then yields 

 
Implication L1  L2  <t5>  
Implication R1 R2  <t6> 

 

which then yields 

 
Implication <t7> 

Implication L1  R1 
Implication L2  R2 

 

by HOI rules. 

The “unification” step here is the determination of L and R; these terms “unify” 

the two original expressions. In this case, because of the specialized nature of the 

expressions, the unifying expressions are not hard to find. In general, finding uni-

fying expressions is not so simple. 

10.10.1   PLN Unification versus Prolog Unification 

It may not be immediately clear how this process we’ve called “unification” re-

lates to unification as conventionally done in mathematical logic, for instance in 

the Prolog programming language. A few brief comments in this regard may be 

valuable. We will use Prolog notation freely, and so this section may not be fully 

comprehensible to the reader who’s not familiar with Prolog; for necessary back-

ground the reader is referred to (Spivey 1996.)  

A typical Prolog unification might involve a query such as 

 
? son(A, sam), sister(B, becky), grandpa (A, B) 

 

and a database consisting of  

 
father(ted, ben) 

father(victor, ted) 

father(sam, victor) 

 male(X) ! father(X, Y) 
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grandpa(X, Z) ! father(X, Y),  father(Y, Z)  

sister(ben, becky) 

son(X, Y) ! father(Y, X), male(X) 

 

To process this, son(A, sam) is unified with son(X, Y), with the substitution $s1 

= {A/X_1, Y/sam}, yielding a third expression son(X_1,sam). This expression is 

then replaced with father(sam, X_1), male(X_1). The first Predicate father(sam, 

X_1) is unified with father(sam, victor), by substitution $s2 = {X_1/victor}. Given 

this substitution, the next step is to try to solve male(victor), which is done by uni-

fying it with male(X), by $s3 = {X/victor} and then solving the tail Predicate fa-

ther(victor, Y) (i.e., unifying it with father(victor, ted)). Now, the next Predicate in 

the query sister(B, becky) is unified with sister(ben, becky), by $s4 = {B/ben}. 

Note that substitutions $s1,$s2 and $s4 cause the last Predicate in the query to be 

grandpa(victor, ben). This can be now solved by unification with grandpa(X, Z), 

by $s5 = {X/victor, Z/ben}, and the third expression produces grandpa(victor, 

ben), which leads to the tail Predicates father(victor, Y), father(Y, ben), which are 

further solved analogously, thus yielding a proof of grandpa(Victor,Ben). 

In this type of unification, one compares two expressions to each other and tries 

to find variable values that will work in both expressions. The trick is in the order 

of processing of expressions; for this, Prolog uses a simple depth-first search with 

backtracking. 

PLN unification is a bit different, because there are not necessarily any vari-

ables, and implication relations are probabilistic rather than crisp. However, the 

above example can easily be done in PLN in several ways. Here we will show 

how it can be done by reformulating each expression in a variable-free way. For 

instance 

 
grandpa(X, Z) ! father(X, Y),  father(Y, Z) 

 

becomes 

 
Implication (B father father) grandpa 

 

(since B father father x y = father (father x) y). We then have a “database” consist-

ing of 

 
Evaluation (father Ted)  Ben 

Evaluation (father Victor) Ted 

Evaluation (father Sam) Victor 

Implication (B father father) grandpa  

Evaluation (sister Ben) Becky 

Implication son (C father) 

 

What is the “query”? Well, seeing that 
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grandpa (a, b) = (grandpa a) b = grandpa a b 

 

son(a, Sam) =(son a) Sam = C I Sam (son a) =  

     B (C I Sam) son a 

 

sister(b, Becky) = B (C I Becky) sister b  

 

the query is then just a search for terms a, b so that 

 
a ! SatisfyingSet (B (C I Sam) son ) 

b ! SatisfyingSet (B (C I Becky) sister) 

b ! SatisfyingSet ( grandpa a) 

 

To put this more elegantly, we can introduce an argument list (a,b) and then define 

 
listify grandpa (a, b) = grandpa a b 

 

We are then looking for an element of 

 

SatisfyingSet( listify grandpa ) "  

SatisfyingSet( (B (C I Sam) son, B (C I  Becky) sister) ) 

 

i.e., for an element that makes the Predicate  

 
AND  

listify grandpa 

( (B (C I Sam) son, B (C I Becky) sister) 

 

output the value True. 

Instead of doing classical variable unification, what happens to find an element 

of the SatisfyingSet of this Predicate function? First, the “sister” term in the term 

B (C I Becky) sister is matched with the “sister” term in the known fact  

 
 Evaluation (sister Ben) Becky 

 

So Ben is tried out as an argument of B (C I Becky) sister and is indeed found to 

cause this term to evaluate to True. Then, “son” is found not to match to anything 

concrete, but is found in the formula 

  
Implication son (C father) 

 

This formula is then used to create information such as 

 
Evaluation (son Ben) Ted 

Evaluation (son Ted) Victor 
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Evaluation (son Victor) Sam 

 

The last of these then matches the term B (C I Sam) son. 

On the other hand, there is no concrete match for grandpa in the given knowl-

edge base, but there is a rule grandpa = B father father, which matches directly 

with the knowledge 

 
 Evaluation (father Ted) Ben 

 Evaluation (father Victor) Ted 

 Evaluation (father Sam) Victor 

 

In this way the system is eventually led to discover that the pair 

 
(Ben, Victor) 

 

lies in the appropriate SatisfyingSet. 

This example illustrates the general principle that, in a variable-free context, 

logical unification comes down to finding elements in SatisfyingSets that are de-

fined by intersections of the SatisfyingSets corresponding to Predicates of interest. 

The chief difference between this example and the earlier example involving 

gene expression relationships is absence of probabilistic truth-value in the present 

example. In Prolog-like unification, two terms either match or they don’t – i.e., an 

item is either a member of a given SatisfyingSet or it’s not. In general PLN unifi-

cation, this is not the case; there can of course be degrees of membership, which 

makes the unification process yet more computationally difficult. 

10.10.2   General Unification 

The general problem of unification, in a PLN context, is as follows. Given two 

Predicates R and S, one wants to find a Predicate T so that 

SatisfyingSet(T)=SatisfyingSet(R)!SatisfyingSet(S) 

and SatisfyingSet(T) is as large as possible.  

Of course, one can nominally solve the problem by simply forming the Predi-

cate 

 
T = R AND S 

But of course in doing this one has no real idea of the truth-value of R AND S, un-

less one makes a possibly fallacious independence assumption. In some cases, af-

ter all, R and S may contradict each other, so that SatisfyingSet(T) is empty. The 

problem of unification, then, is basically the problem of making a dependence-
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savvy estimate of the truth-value of the compound R AND S. In practice, rather 

than evaluating T = R AND S explicitly, one may seek T so that 

Implication T (R AND S)  <t> 

with t<1, but with the property that the truth-value of T can be relatively readily 

assessed based on the system’s knowledge. 

There is no known generally effective algorithm for solving this problem. There 

are only more or less plausible heuristics. For instance, suppose that R and S are 

both conjunctive compounds of the form 

 
R = R1 AND … AND Rn 

S = S1 AND … AND Sn 
 

Then one can seek to unify each Ri with some Sj . Of course, this is not all that 

easy. First of all there are n2 pairings to look at. And for each one of these pairings 

one is stuck with a smaller, but possibly still difficult, unification problem.  

Here the terms Ri and Sj are effectively serving as the analogue of “variables” 

in Prolog-style unification. There are two profound difficulties here that are not 

seen in Prolog, however. First, there is no normal form for logical expressions 

here, so we don’t know which Ri should match with which Sj. Second, rather than 

just crisply substituting one “variable” for another, we have to evaluate probabilis-

tic implications (truth-values of relationships of the form Implication T (Ri, AND 

Sj). 

The gene expression example given above is actually an easier case than the 

conjunctive compound case. A brief re-analysis of this example may be instructive 

at this point. There we had two examples of the form 

 
Implication L1 R1 

Implication L2 R2 
 

Because these were obviously of the same format, it was reasonable to seek to 

unify L1 and L2, and R1 and R2 respectively. No consideration of a large number of 

permutations was required. Because of the particular form of the terms in this 

case, the intersections were not hard to find. For instance 

 
R1 AND R2 := 

expression(XYZ,t)<.2  AND  expression(XYZ,t)<.4 

 

This is an expression that can be simplified easily since  

 
Implication R1  R2  

 

is given, and it’s known that 
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AND( A, B) 

Implication A B  

|-  

A 

 

so that 

 
R1 AND R2 = expression(XYZ,t)<.2 

 

The case  

 
L1 AND L2  
:= 

AND 

expression(XYZ, t)>.5 AND expression(ABC, t+1)<.5 

expression(XYZ, t)>.9 

 

is not so simple, however. It can immediately be simplified to 

 
L1 AND L2  
:= 

expression(XYZ, t)>.9  AND expression(ABC, t+1)<.5 

 

To go further from here one has to either make some wild guesses or revert to 

actually evaluating this predicate on real data. The same goes for the further, more 

speculative reduction 

 
Implication 

expression(XYZ, t) > .9 

L1 AND L2  

 

In practice, then, we propose that unification problems can be approached in 

PLN via a combination of explicit quantitative predicate evaluation, and transfor-

mation using the earlier-given predicate transformation rules. The general rule is: 

keep on transforming until it doesn’t work anymore, and then start evaluating – 

where “doesn’t work anymore” means, essentially, that a precipitous drop in con-

fidence has occurred as a result of risky transformations. 

10.11 Inference on Embedded Relationships 

Two crucial cases of higher-order knowledge, requiring special treatment, are 

hypothetical and contextual knowledge. These are different cases, but closely re-

lated. Each of them represents knowledge that is stored in an AI system’s mem-
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ory, but implicitly understood not to pertain to the universe at large in a straight-

forward way. PLN can handle these kinds of knowledge easily, so long as the 

proper knowledge representation structures are put in place. 

10.11.1   Hypothetical Knowledge 

As a simple, archetypal example of hypothetical knowledge, consider the 

statement “Matt believes the Earth is flat.” Before presenting the way this is dealt 

with in PLN, we will discuss a couple of incorrect ways of presenting it to explain 

why we have chosen the course we have. First, the statement could facilely be rep-

resented as 

 
Evaluation believe Matt (Inheritance Earth flat) 

The problem with this, however, is that it involves entering a bogus piece of 

knowledge 

 
Inheritance Earth flat 

into the system. One might try to get around this problem by judiciously inserting 

truth-values, such as 

 
Evaluation <1>  

believe Matt (Inheritance Earth flat <0>) 

 

But this is not a good approach; immediately one faces difficulties. This expres-

sion has two possible interpretations: 
 

“Matt is certain that the Earth is not flat” 

“Matt is certain that the Earth is flat, but No-

vamente believes it is not flat” 

 

One might deal with this particular case by just accepting the second interpreta-

tion. But this isn’t really a general way out, because it doesn’t give one a way to 

say “Matt is pretty certain that the Earth is almost surely flat.” If one tries to ren-

der this latter statement as 
 

Evaluation <.7>  

 believe Matt (Inheritance Earth flat <.9>) 

 

then one is inserting the bogus knowledge (Inheritance Earth flat <.9>) into the 

system and there is no easy workaround. 
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The solution we have taken in PLN is to explicitly introduce a representation of 

“hypotheticalness” into the picture. We do this with the Hypothetical Atom, a 

unary relationship which has the informal semantics that 

 
Hypothetical A 

 

means “don’t assume A is true, just assume ‘Hypothetical A’ is true.” 

The interesting thing is, it’s not necessary to give PLN any kind of refined, ex-

plicit semantics for dealing with Hypothetical (sometimes Hyp for short). Rather, 

Hyp is a marker. Inferences such as  
 

Evaluation believe Matt (Hyp (Inheritance Earth 

flat)) 

Evaluation believe Matt (Hyp (Inheritance Mars 

Earth)) 

|- 

Evaluation believe Matt (Hyp (Inheritance Mars flat)) 

 

can be made automatically, just as if Hyp were any other relationship type. The 

special rule required is, quite simply, a rule stating that before drawing a 

conclusion 

 

L1 

L2 

|- 

L3 

 

it should be determined whether either L1 or L2 is hypothetical (is pointed to by a 

Hyp) or not. If so, then the inference is not done – though inferences of the form 

 

P (Hyp L1) 

P (Hyp L2) 

|- 

P (Hyp L3) 

 

may be done, for appropriate P, as in the preceding example. This “inference inhi-

bition” rule is the full explicitly encoded semantics of Hypothetical. 

An interesting question is whether, for example, the entry of the relation 

 
Matt believes ( Hyp (Inheritance unicorns cute)) 

 

into the system causes the strength of the truth-value of the unicorn Term to be in-

creased. In other words, if the system finds it’s often valuable to posit hypothetical 

unicorns, should this increase the system’s estimate of the probability of unicorns 

in “its world”? One may introduce a system parameter determining the amount 
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that a hypothetical mention of an Atom increases the TruthValue of that Atom, but 

ultimately this sort of thing must be dealt with differently in different contexts, 

hence it requires the learning of appropriate cognitive schemata. 

The combination of hypothetical and nonhypothetical information may also be 

useful, although it must be handled with care. For instance, suppose we want to 

reason 
 

Matt believes the Earth is flat 

Flat things are not round 

|-  

Matt believes the Earth is not round 

 

Properly enough, there is no way to do this directly. Rather, we need an additional 

premise such as 

 
Implication A (Matt believes Hyp(A)) 

 

or 

 
Implication  

 (A AND (Inheritance A C))  

 (Matt believes Hyp(A)) 

 

Implication (Inheritance flat NOT(round)) C 

 

where C is some category of knowledge in which the system is fairly sure Matt 

believes, in spite of his eccentric beliefs in other domains. 

Human beings are quite adept at forming such categories C, and thus at manag-

ing the overlapping but nonidentical belief systems of themselves and other hu-

man beings. This is a skill that seems to be learned in middle childhood, along 

with other aspects of advanced inference and advanced social understanding. 

10.11.2   Higher-Order Statements and Judgments 

The topic of hypothetical knowledge brings to the fore another issue that has 

more general relevance: the difference between higher-order statements and 

higher-order judgments. A higher-order statement is a relationship that treats its 

component relationships as truth-value-free entities. A higher-order judgment is a 

relationship that treats its component relationships as truth-valued entities. 

An example of higher-order judgment is: 

 
Evaluation believe Matt (Hyp (Inheritance Earth flat 

<.9>)) 
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This statement is saying that Matt believes the Earth is flat with a .9 strength.  

Similarly, to say that Cassio does not believe the Earth is flat we could say, for 

instance, 

 
Evaluation  

 believe  

 List 

  Cassio  

  Hypothetical 

    Inheritance Earth flat <.01> 

 

The presumption here is that the TruthValue of (Inheritance Earth flat) is part of 

the entity being fed to the believe Term as an argument. 

On the other hand, what would be an example of a higher-order statement? 

When we say 

 
Implication  

 AND 

  Inheritance Earth flat 

  Inheritance Earth planet 

 Inheritance planet flat 

 

we actually don’t mean 

 
Implication 

 AND 

  InheritanceEarth flat <t1> 

   Inheritance Earth planet <t2>  

 Inheritance planet flat <t3> 

 

In other words, we don’t mean  

 
The earth is flat with TruthValue t1 

The earth is a planet with TruthValue t2 

|- 

Planets are flat with TruthValue t3 

 

where t1 , t2 , t3 are the actual truth-values of the respective statements in the system. 

Inference could construct statements like this, but then the truth-value t3 produced 

by inference from t1 and t2 might not be the actual truth-value of Inheritance 

planet flat in the system. In fact it generally will not be, unless this inference step 

is the only thing that has ever affected the truth-value of this relationship. 

In our above examples of hypothetical relationships, we were assuming 

“higher-order judgment” (HOJ) style inference – that is, we were assuming rela-
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tionships were being referred to with truth-values intact. On the other hand, in our 

reasoning about flat planets, we were assuming “higher-order statement” (HOS) 

style inference; that is, we were assuming relationships were being referred to 

without specific truth-values attached. 

It seems that in hypothetical inference we often do want to assume the HOJ 

case. Otherwise, the HOS case is the most common case but not the exclusive 

case.  

There are, however, some cases where one might want to make non-

hypothetical higher-order judgments. For instance, to represent “I am positive that 

countries that are rich in oil are moderately wealthy,” one might use 

 
Implication <.99> 

 AND 

  Inheritance $X country 

  Inheritance $X oil_rich 

 Inheritance $X wealthy <.6> 

 

Here the <.99> is for the “positive”; the <.6> is for the “moderately.” Notation-

ally, one may distinguish the two cases implicitly as follows:  if a truth-value 

marker <t> is included in denoting an Atom that is part of another relationship, 

one may assume that HOJ is implied.  

Implementationally, to make the distinction one needs to introduce some kind 

of marker to distinguish the two cases. The marker should attach to logical rela-

tionships; e.g., Implication in the above example. We have chosen to make 

“higher-order statement” the default case, and require a special marker to denote 

“higher-order judgment.” Where extra notational explicitness is required we may 

denote this as, for instance, 

 
Implication_HOJ <.99> 

 AND 

  Inheritance X country 

  Inheritance X oil_rich 

 Inheritance X wealthy <.6> 

 

We have been focusing on cases involving relationships because this is the 

most common kind of higher-order judgment, but something similar can happen 

with Terms; e.g., one can say 
 

Inheritance_HOJ 

 ugly <.1> 

 beautiful <.8> 

 

meaning that things that are not very ugly are often very beautiful. However, this 

example is better said (to within a decent degree of approximation) as 
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Inheritance 

 ugly 

 NOT beautiful 

 

Generally speaking, in the situations we have analyzed, cases where inter-term 

HOJ relationships are the most convenient alternative are even rarer than similar 

cases with interrelationship HOJ relationships. 

10.11.3   Contextual Knowledge 

Hypothetical knowledge is knowledge that the reasoning system may not be-

lieve at all; contextual knowledge, on the other hand, is knowledge that the system 

believes only in certain circumstances.  For instance, suppose we want to say “Ben 

is competent in the domain of mathematics; Ben is incompetent in the domain of 

juggling.” What we mean here is something like 

 
Implication 

 Ben AND doing_mathematics 

 competent 

 

Implication 

 Ben AND doing_juggling 

 NOT competent 

 

Here we are saying that instances of Ben who are doing mathematics are compe-

tent (at what they are doing), whereas instances of Ben who are doing juggling are 

not competent (at what they are doing).  

Of course, this is only one among many possible representations of the posited 

conceptual relationships in terms of terms and relationships. In reality, there may 

be no single term for “competent” or “doing_juggling”, the given HOS’s may be 

represented as collections of HOJ’s, etc. We have just chosen a particularly simple 

possible representation for expository purposes. 

The case of contextual knowledge is so common that we believe it is worth-

while to have a special representational mechanism just for dealing with it. For 

this reason we introduce Context, with the semantics 

 
Context C (Hyp (R X Y)) 

:= 

R (X ANDExt C) (Y ANDExt C) 

 
Context C (Hyp (R X Y Z)) 

:= 

R (X ANDExt C) (Y ANDExt C) (Z ANDExt C) 
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So for example 
 

Context  

doing_mathematics  

Hyp (Inheritance Ben competent) 

 

Context  

 doing_juggling  

 Hyp  

  NOT (Inheritance Ben competent) 

 

Using the above definition of Context these translate into 
 

Implication 

 Ben ANDExt doing_mathematics 

 competent ANDExt doing_mathematics 

 

Implication 

 Ben ANDExt doing_juggling 

 NOT  

  competent ANDExt doing_juggling 

 

which are equivalent to the forms given previously. 

The value of the Context “macro” is that it simplifies inferences such as 
 

Context  

 doing_mathematics  

 Hyp (Inheritance Ben competent) 

Context  

 doing_mathematics  

 Hyp (Inheritance Gui competent) 

|- 

Context  

 doing_mathematics  

 Hyp (Similarity Ben Gui) 

 

This kind of inference could be done without Context, using the explicit 

ANDExt-heavy representations of the premise relationships. However, the exis-

tence of Context has the effect of pushing the system to make inferences of this 

type, whereas otherwise such inferences would be carried out only occasionally as 

part of the generic process of inference on Predicates. Now, an advanced AI sys-

tem without Context could be expected to learn from experience that inference on 

Predicates of the “Context-ish” variety is useful, and create cognitive schema bias-

ing the inference process toward combining Predicates of this type. However, we 



235 Chapter 10: Higher-Order Extensional Inference 

feel that explicitly pushing the system to combine Contexts inferentially will be a 

big help in getting any PLN-based reasoning system to the point where it’s able to 

do this kind of advanced cognitive schema creation.  

10.12 An Application of PLN-HOI to Inference Based on 

Natural Language Information Extraction 

In this section we summarize an example of PLN-HOI that was published in 

(Ikle and Goertzel, 2007), which was previously carried out using PLN inference 

rules together with alternate inference formulas acting directly on SimpleTruth-

Values. The analysis given in (Ikle and Goertzel, 2007) was a modification of an 

earlier treatment given in (Goertzel et al 2006), which utilized heuristic weight of 

evidence formulas; the newer treatment utilized indefinite probabilities. What we 

present here is a small and partial “inference trail” that is part of a larger trail de-

scribed in (Goertzel et al 2006), which was part of an experiment in integrative 

NLP using an integrated system that 

 

• Parsed the sentences in PubMed abstracts using a grammar parser 

• Transformed the output of the grammar parser into logical relation-

ships using a collection of expert rules 

• Performed probabilistic logical inference on these logical relationships 

using PLN 

 

The system, called Bioliterate, was created under a contract from the NIH 

Clinical Center and was specifically tuned to infer relationships between genes, 

proteins and malignancies. The overall inference of which this example is a part is 

depicted qualitatively in the following table, which shows the premises in the form 

of the actual sentences present in PubMed automatically extracted and used as 

premises. 

 

Premise 1 

Importantly, bone loss was almost 

completely prevented by p38 MAPK 

inhibition. 

Premise 2 Thus, our results identify DLC as 

a novel inhibitor of the p38 pathway 

and provide a molecular mechanism 

by which cAMP suppresses p38 acti-

vation and promotes apoptosis. 

 Conclusion DLC prevents bone loss.  

cAMP prevents bone loss. 

 

The premises depicted in this table were automatically converted into sets of 
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logical relationships using a set of hand-coded expert rules embodying linguistic 

knowledge, and PLN was used to draw the conclusion via forward chaining infer-

ence. The following table depicts a fragment of the overall inference trail, which 

basically gathers together a number of mutually relevant relationships within a 

single conjunction.  

 

Rule Premises 

 Conclusion 

 Inh inhib1, inhib  <[.95, 1], .9> 

Abduction Inh inhib2, inhib  <[.95, 1], .9> 

 Inh inhib1, inhib2 <[0, 0.221708], .9> 

Similarity Eval subj (prev1, inhib1) <[.95, 1], .9> 

Substitution Inh inhib1, inhib2 

 Eval subj (prev1, inhib2) <[.05, .44], .9> 

 Inh inhib2, inhib 

Deduction Inh inhib, causal_event <[.95, 1], .9> 

 Inh inhib2, causal_event <[.856, .998], .9> 

 Inh inhib2, causal_event 

 

 Inh prev1, causal_event <[.854, .998], .9> 

 

 Eval subj (prev1, inhib2) 

 

AND Eval subj (inhib2, DLC) <[.95, 1], .9> 

 

 AND  <[0.0625, 0.358972], 0.9> 

 

     Inh inhib2, causal_event 

 

     Inh prev2, causal_event 
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     Eval subj <prev2, inhib2> 

 

     Eval subj <inhib2, DLC> 

 

 

In the overall inference trail this conjunction is then used as a premise to a sub-

sequent inference step, which uses unification to conclude that Eval subj (prev1, in-

hib2); i.e., that the prevention mentioned in Premise 1 is the subject of the inhibi-

tion mentioned in Premise 2. We next use reverse truth-value conversion to 

convert the full <[L, U], b, k> truth-values into <s, n, b> triples for all of our 

premises, as well as for our conclusion. The truth-value conversion results are 

shown in the table: 

 

Premise     <[L,U],b>     <s,n,b> 

Inh inhib1 inhib     <[0.95, 1], 0.9>     <.988, 28, .9> 

inhib1 <[0.95, 1], 0.9>     <.988, 28, .9> 

inhib <[0, 0.168], 0.8>     <.083, 8, .8> 

inhib2 <[0, 0.032], 0.8>     <.016, 15, .8> 

Conclusion   

AND     <[0.06, 0.4], .9>     <.214, 6, .9> 

 

The heuristic approach reported previously produced a truth-value of <1, 0.07> 

for the final conjunction. The indefinite probabilities approach produced a truth-

value of <[0.0625, 0.358972], 0.9)> , or <.2143, 6> in <s,n> form, and <.2143, 

.358> in <s,w> form. These two results are not logically contradictory at all, but 

the indefinite probabilities result is more informative. The prior heuristic formulas 

told us that there is very little evidence supporting the contention that the strength 

of the conclusion is near 1. The indefinite probabilities formulas tell us (more use-

fully) that there is a reasonable though not overwhelming amount of evidence that 

the strength of the conclusion is near .21. Being more principled, the indefinite 

probabilities method is guaranteed, if the underlying distributional assumptions 

are realistic, to focus on the most interesting part of the conclusion truth-value dis-

tribution. 
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Chapter 11: Handling Crisp and Fuzzy 

Quantifiers with Indefinite Truth-Values 

Abstract   In this chapter, we exemplify the use of indefinite probabilities in the 

handling of inference involving crisp universal and existential quantifiers and also 

fuzzy quantifiers. The treatment is novel, involving third-order probabilities, but 

appears to give intuitively sensible results in specific examples. 

11.1  Quantifiers in Indefinite Probabilities 

We have discussed a variety of rules for inference on predicates, but haven’t 

yet broached the subtlest aspect, which is inference on quantified expressions. 

This is a case where the indefinite probabilities approach bears considerable fruit, 

allowing us to articulate a conceptually clear (though complex) approach that 

seems to cut through the confusion we perceive to exist in much of the literature 

on uncertain inference with quantifiers. 

The approach we outline is a subtle one. The best way we have found to handle 

quantifiers within the indefinite probabilities framework is to introduce another 

level of complexity and utilize third-order probabilities. To understand this, we 

first consider the problem of “direct evaluation” of the indefinite truth-values of 

universally and existentially quantified expressions. 

Building on the ideas from the previous chapter, we solve this problem via a 

semantic approach that is considerably conceptually different from the one stan-

dardly taken in formal logic. Normally, in logic, expressions with unbound vari-

ables are not assigned truth-values; truth-value assignment comes only with quan-

tification. In our approach, however, as exemplified in the previous chapter, we 

assign truth-values to expressions with unbound variables, yet without in doing so 

binding the variables. This is unusual but not contradictory in any way; an expres-

sion with unbound variables, as a mathematical entity, may certainly be mapped 

into a truth-value without introducing any mathematical or conceptual inconsis-

tency. This allows one to define the truth-value of a quantified expression as a 

mathematical transform of the truth-value of the corresponding expression with 

unbound variables, a notion that is key to our approach.  

This unusual semantic approach adds a minor twist to the notion that our ap-

proach to uncertain inference on quantified expressions reduces to standard crisp 

inference on quantified expressions as a special case. The twist is that our ap-

proach reduces to the standard crisp approach in terms of truth-value assignation 

for all expressions for which the standard crisp approach assigns a truth-value. 
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However, our approach also assigns truth-values to some expressions (formulas 

with unbound variables) to which the standard crisp approach assigns no truth-

value. 

Following up on this semantic approach, we will now explain how, if we have 

an indefinite probability for an expression F(t) with unbound variable t, summariz-

ing an envelope E of probability distributions corresponding to F(t), we may de-

rive from this an indefinite probability for the expression “ForAll x, F(x).” (Hav-

ing carried out the transform in this direction, it will then be straightforwardly 

possible to carry out a corresponding transform in reverse.) The approach we take 

here is to consider the envelope E to be part of a higher-level envelope E1, which 

is an envelope of envelopes. The question is, then, given that we have observed E, 

what is the chance (according to E1) that the true envelope describing the world 

actually is almost entirely supported within [1-e, 1], where the latter interval is in-

terpreted to constitute “essentially 1” (i.e., e is the margin of error accepted in as-

sessing ForAll-ness), and the phrase “almost entirely supported” is defined in 

terms of a threshold parameter? 

Similarly, in the case of existential quantification, we want to know the indefi-

nite probability corresponding to “ThereExists x, F(x).” The question is, then, 

given that we have observed E, what is the chance (according to E1) that the true 

envelope describing the world actually is not entirely supported within [0, e], 

where the latter interval is interpreted to constitute “essentially zero” (i.e., e is the 

margin of error accepted in assessing ThereExists-ness)? 

The point conceptually is that quantified statements require you to go one level 

higher than ordinary statements. So if ordinary statements get second-order prob-

abilities, quantified statements must get third-order probabilities. And the same 

line of reasoning that holds for “crisp” universal and existential quantifiers turns 

out to hold for fuzzy quantifiers as well. In fact, in the approach presented here, 

crisp quantifiers are innately considered as an extreme case of fuzzy quantifiers, 

so that handling fuzzy quantifiers doesn’t really require anything extra, just some 

parameter-tuning. 

The following sections elaborate the above points more rigorously. 

11.2  Direct Evaluation of Universally and Existentially 

Quantified Expressions 

We first consider the case of the direct evaluation of universally quantified ex-

pressions, an inference rule for which the idea is as follows: Given an indefinite 

truth-value for F(t), we want to get an indefinite TV for G = ForAll x, F(x). 

The roles of the three levels of distributions are roughly as follows. The first- 

and second-order levels play the role, with some modifications, of standard in-

definite probabilities. The third-order distribution then plays the role of “perturb-

ing” the second-order distribution. The idea is that the second-order distribution 
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represents the mean for the statement F(x). The third-order distribution then gives 

various values for x, and the first-order distribution gives the sub-distributions for 

each of the second-order distributions. 

The process proceeds as follows: 

1. Calculate [lf1,uf1] Interval for the third-order distribution. This step proceeds 

as usual for indefinite probabilities: see (Iklé and Goertzel 2008; Iklé et al 

2007). Given L, U, k, and b, set s = 0.5. We want to find a value for the variable 

diff so that the probability density function defined by 
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satisfied, they both should be. Alternatively, one can find diff for which 
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2. At present we are using only beta distributions for the desired “third-order” dis-

tribution family. To generate vectors of means for perturbed F(x) values, we 

first generate a vector of length n1 of random values chosen from a standard 

beta distribution. Next we scale the random means to the interval [lf1,uf1] us-

ing a linear transformation. 

3. Now we use the same procedure as in Step 1 to generate symmetric intervals 

! 

lf2 i[ ],uf2 i[ ][ ]  for each of the means found in Step 2. These intervals are now 

the desired [L1, U1] intervals for the third-order distributions. 

4. For each mean for the third-order distributions, we generate a sub-distribution. 

These sub-distributions represent the second-order distributions. 

5. We next generate first-order distributions with means chosen from the second-

order distributions. 
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6. Now we determine the percentage of elements in each first-order distribution 

that lie within the interval [1-e, 1]. Recall that we are using the interval [1-e, 1] 

as a “proxy” for the probability 1. The goal here is to determine the fraction of 

the first-order distributions that are almost entirely contained in the interval [1-

e, 1]. By “almost entirely contained” we mean that the fraction contained is at 

least proxy_confidence_level (PCL).  

7. Finally, we find the conclusion <[L,U],b> interval. For each of the third-order 

means, we calculate the average of all of the second-order distributions that are 

almost entirely contained in [1-e, 1], giving a list of n1 elements, probs, of 

probabilities. We finally find the elements of probs corresponding to quantiles 

using 

! 

L =
n1 1" b( ) +1

2

# 

$ 
# 

% 

& 
%  and 

! 

U =
n1 .5 + b( ) +1

2

" 

# 
" 

$ 

% 
$  

 

Given the above, it is simple to obtain the ThereExists rule through the equiva-

lence 
ThereExists x, F(x)  ! ¬[ForAll x, ¬F(x)] . 

11.3  Propagating Indefinite Probabilities through Quantifier-

Based Inference Rules 

As well as “directly evaluating” quantifiers in the manner of the previous sec-

tion, it is also necessary within a logical reasoning system to carry out various 

quantifier manipulations. We now discuss a variety of transformation rules that 

work on quantifiers, drawn from standard predicate logic.  

First, we have already seen that what is called “the rule of existential generali-

zation” holds in the indefinite probabilities framework (this is just a reformulation 

of what we have called “direct evaluation” of existentially quantified expressions, 

above): 

1) F(c) <[L,U], b, k> 

 |- 
 " $x, F($x) <[L,U], b, k> 

 where c may be any expression not involving $x. 

Next, consider universal specification: 

2) # $x, F($x) <[L,U], b, k>  

 |- 

 F(c) <[L,U, b, k> 

 where c is any expression not involving $x. 

To see that universal specification also holds with indefinite probabilities, given 

the truth-value above for ForAll $x, F($x), we can obtain an indefinite truth-value 
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for F(t). We then use the mean of F(t) over all values t, as a heuristic approxima-

tion to F(c) for a given value c. 

We have already also seen, at least implicitly, that all the standard quantifier 

exchange formulas hold for indefinite probabilities: 

3) ¬(!x)F(x)  "  (#x)¬F(x) 

    (!x)¬F(x) " ¬(#x)F(x) 

  ¬(!x)¬F(x) " (#x)F(x) 

 (!x)¬F(x)  " ¬(#x)¬F(x) 

For our last transformation rule, we consider the operation of removing con-

stants from within existential quantifiers. In predicate logic we have that: 

4) # x: G AND F(x) = G AND # x: F(x) 

Unlike the case for crisp predicate logic however, this rule is not, in general, true 

using indefinite probabilities. For example, consider the following set of premises 

with parameter settings e=0.5 and PCL=0.7: truth-value for G = <[0.45, 0.46], 0.9, 
10> and truth-value for F(x) = <[0.71, 0.72], 0.9, 10>. Then the result for # x: G 

AND F(x) becomes <[0.0, 0.04913], 0.9, 10>, while that for G AND # x: F(x) is 

<[0.23046, 0.28926], 0.9, 10>. On the other hand, we note that a different set of 

premises can yield similar results from the two approaches. Assuming the same 

parameter values for e and PCL, and truth-values for both F(x) and G of <[0.99, 
1.0], 0.9, 10> gives a result of <[0.98331, 0.99626], 0.9, 10> using # x: G AND 

F(x), and a similar result of <[0.98344, 0.99620], 0.9, 10> using G AND # x: 

F(x). 

For insight into what is happening here, we view H(F)(t) = G AND F(t) as a 
distortion of the distribution of F. In addition, if J(F) = # x J(x), then J(F) is a 

nonlinear distortion of F, so that even though H(F) is a linear distortion, it need 

not commute with J. An obvious and interesting question is then: Under what 

combination of premise values and parameter settings do the operators H and J 

“almost” commute? Due to space considerations we defer a thorough study of that 

question to a future paper. It does appear, however, that premise values near 1 lead 

to better commutativity than do values farther from 1. 

11.4  Fuzzy Quantifiers 

Analyzing the indefinite probabilities approach to the quantifiers ForAll and 

ThereExists, it should be readily apparent that indefinite probabilities provide a 

natural method for “fuzzy” quantifiers such as AlmostAll and AFew.  

In our discussion of the ForAll rule above, for example, the interval [PCL, 1] 

represents the fraction of bottom-level distributions completely contained in the 

interval [1-e, 1]. Recall that the interval [1-e,1] represents a proxy for probability 

1.  
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In analogy with the interval [PCL, 1] representing the ForAll rule, we can in-
troduce the parameters lower_proxy_confidence (LPC) and up-

per_proxy_confidence (UPC) so that the interval [LPC, UPC] represents 

an AlmostAll rule or an AFew rule. More explicitly, by setting [LPC, UPC] = [0.9, 

0.99], the interval could now naturally represent AlmostAll.  

Similarly, the same interval could represent AFew by setting LPC to a value 

such as 0.05 and UPC to, say, 0.1.  

Through simple adjustments of these two proxy confidence parameters, we can 

thus introduce a sliding scale for all sorts of fuzzy quantifiers. Moreover, each of 

these fuzzy quantifiers is now firmly grounded in probability theory through the 

indefinite probabilities formalism. 

11.5  Examples 

To further elucidate the above formalism, we now consider two examples. For 

our first example, we consider an example drawn from [15], which is there called 

the “crooked lottery” and extensively discussed: 

! 

¬ThereExists x  Winner x( )" false[ ] &

ThereExists y  ForAll x Winner x( ) || Winner y( )( )"Winner y( )[ ][ ]
 

The first clause is intended to represent the idea that everyone has a nonzero 

chance to win the lottery; the second clause is intended to represent the idea that 

there is one guy, y, who has a higher chance of winning than everybody else. In 

[15] Halpern examines various formalisms for quantifying uncertainty in a logical 

reasoning context and assesses which ones can provide a consistent and sensible 

truth-value evaluation for this expression. 

To evaluate the truth-value of this expression using indefinite probabilities, 

suppose we assume the truth-value for Winner(x) is <[0.05, 0.1], 0.9, 10>. For the 

second clause we also assume that the truth-value for Winner(y) is <[0.25, 0.5], 

0.9, 10> and that the truth-value for the implication 

! 

Winner x( ) ||Winner y( )"Winner y( )( ) is <[0.8, 0.9], 0.9, 10>. With these 

assumptions, we then vary the values of the parameters e and PCL for the There-

Exists rule to generate the following graphs of the resulting truth-value intervals. 

Note that the parameter values e and PCL used in the ForAll rule were the com-

plements, 1-e and 1-PCL, of the values used in ThereExists. 
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The intermediate results for each of the two main clauses provide insight into 

the interaction between these two clauses. First the results for clause 1: 

! 

¬ThereExists x  Winner x( )" false[ ]. 
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For clause 2, 

! 

ThereExists y  ForAll x Winner x( ) || Winner y( )( )"Winner y( )[ ][ ], all the lower 

limits are 0. The graph of the upper limit is: 

 

 
 

For our second example, we consider a simple probabilistic syllogism, but ex-

pressed using natural language quantifiers: 

Many women are beautiful. 

Almost all beautiful things bring happiness. 
|- 

Many women bring happiness 

In order to use the indefinite probabilities formalism, we first need to determine 

appropriate values for the parameters LPC and UPC to represent the fuzzy con-

cepts “many” and “almost all.” In practice, in the case where these rules are used 

within an integrative AGI system such as the NCE, appropriate values for these 

fuzzy concepts will be determined by the context in which they appear. In one 

context, for example, the interval [0.8, 0.9] might represent the idea “many,” but 

in a different situation we may wish for [0.6, 0.95] to represent “many.”  

For our example we set e=0.1. Let us suppose that “many” is represented by the 

interval [LPC, UPC]= [0.4, 0.95], and “almost all” by the interval [0.9, 0.99]. We 

will also assume truth-values identical to those in the previous example. The se-

quence of conclusions is then illustrated in the following tables. 
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Premise Truth-value 

Women <[0.45, 0.55], 0.9, 10> 

An individual woman is beautiful <[0.8, 0.95], 0.9, 10> 

Conclusion Truth-value 

Many women are beautiful <[0.35451, 0.63574], 0.9, 10> 

 

Premise Truth-value 

Beautiful things <[0.4, 0.8], 0.9, 10> 

A beautiful thing brings happiness <[0.8, 0.95], 0.9, 10> 

Conclusion Truth-value 

Almost all beautiful things bring hap-

piness 

<[0.03906, 0.37464], 0.9, 10> 

 

Premise Truth-value 

Women <[0.45, 0.55], 0.9, 10> 

Many women are beautiful <[0.35451, 0.63574], 0.9, 10> 

Beautiful things <[0.4, 0.8], 0.9, 10> 

Almost all beautiful things bring hap-

piness 

<[0.03906, 0.37464], 0.9, 10> 

Happiness <[0.4, 0.9], 0.9, 10> 

Conclusion Truth-value 

Many women bring happiness <[0.41308, 0.53068], 0.9, 10> 
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Chapter 12: Intensional Inference 

Abstract   In this chapter we make precise the notion of “intensional inheritance,” 

by which is meant inheritance based on “properties” or “patterns.” We have men-

tioned intensional or mixed inheritance relationships here and there previously, 

but have not formally defined them. 

12.1  Introduction 

We have already sketched out the basic notion of intensional inheritance used 

in PLN:  we define intensional inheritance by associating entities with pattern-sets, 

so that, e.g., fish would be associated with fishPAT, the set of all patterns associated 

with fish. The intensional inheritance between fish and whale is then defined as 

the Subset relationship between fishPAT and whalePAT, and the composite Inheri-

tance between two entities is defined as the disjunction of the Subset and Inten-

sionalInheritance between the entities. However, the concept of “pattern” used 

here was not formally defined previously; that is one of our tasks here. 

Before getting into formal details however, the conceptual foundations of the 

intension/extension distinction are worth reviewing in more depth because they 

become somewhat subtle. Intuitively, for instance, we might say: 

 

Subset whale fish <0> 

IntensionalInheritance whale fish <.7> 

 

Yet one might argue that the IntensionalInheritance relation is unnecessary 

here, because using only SubsetRelationships we could reason using PLN that 

 

Subset fish (lives_in_water AND swims) 

Subset whale (lives_in_water AND swims) 

|- 

Subset fish whale <tv> 

 

where tv.s > 0.  

But the problem is that this abductive inference would be based on the errone-

ous assumption that fish and whale are independent in (lives_in_water AND 
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swims). It would be overridden, for example, by textbook knowledge giving a 

definition of a fish as a complex predicate combining various attributes. What we 

want with intensional inheritance is some way of saying that fish inherits from 

whale that is NOT overridden by textbook knowledge. This is provided by the re-

course to pattern-sets. 

Inference on composite InheritanceRelationships, we contend, better captures 

the essence of human commonsense reasoning than reasoning on SubsetRelation-

ships. When we say something like 

 

“Life is a bowl of (half-rotten) cherries” 

 

we’re not merely doing Bayesian inference on the members of the sets “life” and 

“bowl of (half-rotten) cherries” – we’re noting an inheritance on the association or 

pattern level, which has a strength greater than would be obtained via Bayesian in-

ference applied in the standard extensional way. Philosophically, the issue is not 

that probability theory is wrong; the issue is that the most straightforward way of 

applying probability theory is not in accordance with common human practice, 

and that in this case common human practice has a good reason for being roughly 

the way it is (the reason being that finding similarities based on common patterns 

rather than common members is often useful for understanding a world in which 

many more patterns exist than would be expected at random). 

12.2  Probabilistic Pattern Theory 

Now we introduce the formal definition of the concept of pattern – a notion 

central to our analysis of intension but also highly significant in its own right. In 

Goertzel (1993, 1993a, 1997) a mathematical theory of pattern is outlined, based 

on algorithmic information theory. The conceptual foundation of that theory is the 

notion of a pattern as a “representation as something simpler.” In Goertzel (2006), 

a modification to pattern theory is presented in which the algorithmic-information 

notions are replaced with probability-theoretic notions, but the conceptual spirit of 

the original pattern theory is preserved. Here we give a brief outline of probabilis-

tic pattern theory, with PLN applications in mind.  

12.2.1  Association 

First, we introduce the notion of association. We will say that a predicate F is 

associated with another predicate G if 

 

! 

P F G( ) > P F¬G( )  
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That is, the presence of F is a positive indicator for the presence of G. The degree 

of association may be quantified as 

 

! 

ASSOC F,G( ) = P F G( ) " P F¬G( )[ ]
+

  

 

(where [x]+ denotes the positive part of x, which is x if x>0 and 0 otherwise).  

The association-structure of G may be defined as the fuzzy set of predicates F 

that are associated with G, where ASSOC is the fuzzy-set membership function. 

Of course, the same definition can be applied to concepts or individuals rather 

than predicates. 

One may also construct the “causal association-structure” of a predicate G, 

which is defined the same way, except with temporal quantification. One intro-

duces a time-lag T, and then defines 

 

ASSOC(F,G; T) =  

[P(F is true at time S+T | G is true at time T) –  

P(F is true at time S+T|~G is true at time T)]+ 

 

The temporal version may be interpreted in terms of possible-worlds semantics; 

i.e., 

 

P(F at time S+T|G at time T)) = the probability that 

the entity A will be satisfied in a random universe at 

time A, given that G is satisfied in that universe at 

time T-A 

 

P(F) = the probability that predicate F will be sat-

isfied in a random universe, generically 

 

If A and B are concepts or individuals rather than predicates, one can define 

ASSOC(A,B;T) by replacing each of A and B with an appropriately defined 

predicate. For instance, we can replace A with the predicate FA defined by 

 

ExtensionalEquivalence 

 Evaluation FA U 

 Subset A U 

12.2.2  From Association to Pattern 

From association to pattern is but a small step. A pattern in a predicate F is 

something that is associated with F, but is simpler than F. A pattern in an entity A 

is defined similarly. 
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We must assume there is some measure c() of complexity. Then we may define 

the fuzzy-set membership function called the “pattern-intensity”, defined as, e.g., 

 

IN(F,G) = [c(G) – c(F)]+ [P(F | G) - P(F|~G)]+ 

 

There is also a temporal version, of course, defined as 

 

IN(F,G;T) = [c(G;T) – c(F;T)]+ * ASSOC(F,G;T) 

 

The definition of complexity referenced here can be made in several different 

ways. Harking back to traditional pattern theory, one can use algorithmic informa-

tion theory, introducing some reference Turing machine and defining c(X) as the 

length in bits of X expressed on that reference machine. In this case, complexity is 

independent of time-lag T. 

Or one can take a probabilistic approach to defining complexity by introducing 

some reference process H, and defining 

 

c(F;T) = ASSOC(G,H;T) 

 

In this case we may write 

 

IN[H](F,G;T) = [ASSOC(F,H;T) – ASSOC(F,G;T)]+ * 

ASSOC(F,G;T) 

 

Notation-wise, typically we will suppress the H and T dependencies and just write 

IN(F,G) as a shorthand for IN[H](F,G;T), but of course this doesn’t mean the pa-

rameters H and T are unimportant. Note the dependence upon the underlying 

computational model is generally suppressed in both traditional pattern theory and 

algorithmic information theory. 

It’s worth noting that this approach can essentially replicate the algorithmic in-

formation theory approach to complexity. Suppose that M is a system that spits 

out bit strings of length <=N – choosing each bit at random, one by one, and then 

stopping when it gets to a bit string that represents a self-delimiting program on a 

given reference Turing machine. Next, define the predicate H as being True at a 

given point in time only if the system M is present and operational at that point in 

time. Next, for each bit string B of length <=N consider the predicate F[B](U,T) 

that returns True if B is present in possible-universe U at time T and False other-

wise. Then it is clear that P(F[B]) is effectively zero (in a universe without a pro-

gram randomly spitting out bit strings, the chance of a random bit string occurring 

is low). On the other hand, -log( P(F[B] at time S | H at time S-T) ) is roughly 

equal to the length of B. So for this special predicate H and the special predicates 

F[B], the complexity as defined above is basically equal to the negative logarithm 

of the program length. Algorithmic information theory emerges as a special case 

of the probabilistic notion of complexity.  



253  Chapter 12: Intensional Inference 

We can introduce a notion of relative pattern here – which is useful if patterns 

need to be calculated contextually. If we assume K as background knowledge, 

then we can define 

 

ASSOC(F,G|K) = [P(F | G & K) - P(F|~G & K)]+ 

 

and 

 

ASSOC(F, G| K ; T) =  

[P(F at time S+T | G & K at time T) –  

P(F at time S+T|~G & K at time T)]+ 

 

and 

 

IN(F,G|K;T) = [c(G|K;T) – c(F|K;T)]+ * ASSOC(F,G|K;T) 

IN[H](F,G|K;T) = [ASSOC(F,H|K;T) – ASSOC(F,G|K;T)]+ * 

ASSOC(F,G|K;T) 

 

Using these ideas, associated with any concept or predicate, we may construct a 

set called the “structure” of that entity. We may do this in (at least) two ways:  

 

• The associative structure, which consists of the set of all observations and 

concepts that are associated with the entity 

• The pattern structure, which is the set of all observations and concepts that 

are patterns in the entity 

 

For example, returning to our friend Stripedog, we may call these two sets 

stripedog_ASSOC and stripedog_PAT. Note that stripedog_ASSOC and stripe-

dog_PAT are sets of observations or concepts, whereas stripedog, as defined 

above, is a set of sets of observations. stripedog is a fuzzy set (as well as a fuzzy 

cat), since the truth-value of the Evaluation relationship 

 

Evaluation FStripedog $X 

 

need not be Boolean. And according to the definitions given above, stripe-

dog_ASSOC is also a fuzzy set because it’s not always entirely clear to what ex-

tent a given entity is associated with the individual Stripedog. 

12.3  Intensional Inheritance Relationships 

Now we will use the concepts of the previous section to give a novel perspec-

tive on the notion of intensional inheritance, as qualitatively introduced above. 

Suppose we want to compare our orange cat, Stripedog, to an orange (a particular 
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fruit; let’s name it orange_77). The set of entities stripedog_PAT associated with 

Stripedog includes observations such as 

 

"orange is observed by me" 

 

But this same observation is also included in orange_77_PAT. From this and other 

overlapping items, we may calculate that the probability associated with the rela-

tionship 

 

ExtensionalSimilarity stripedog_PAT orange_77_PAT 

 

is reasonably high. 

In this way, we arrive as a similarity between an orange cat and an orange fruit. 

Note that no individual orange cats are orange fruits. Nor do any sets of observa-

tions need to be identifiers for both orange cats and orange fruits. Rather, all that’s 

observed in the above similarity relationship is that there exists an overlap be-

tween the set of observations corresponding to the orange cat and the set of obser-

vations or properties corresponding to the orange fruit. So based on the above we 

cannot say 

 

ExtensionalSimilarity stripedog orange_77 

 

In fact this latter relationship may have a probability of zero. 

As noted earlier, a similar effect could be obtained via use of abductive infer-

ence. If one observes that 

 

Subset stripedog orange 

Subset orange_77 orange 

 

and then uses Bayes’ rule to calculate 

 

Subset orange orange_77 

 

and then uses PLN deduction to calculate 

 

Subset stripedog orange 

Subset orange orange_77 

|- 

Subset stripedog orange_77 

 

one will obtain a nonzero truth-value for the conclusion. However, this inference 

is based upon the erroneous assumption that stripedog and orange_77 are inde-

pendent inside the set “orange.” While it is nice that erroneous assumptions can 

sometimes lead to useful results, this is not a generally sound basis for common-

sense inference. In practice it will lead to much lower strength values than humans 
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typically obtain, because of the low strength values frequently produced by Bayes’ 

rule. We feel that looking at pattern and association sets provides a better qualita-

tive model of human commonsense inference in many cases – a perspective to be 

elaborated below. 

Based on this conceptual and mathematical line of thinking, there are several 

ways to structure a pattern-based reasoning system. One approach would be to 

construct separate terms for C, C_ASSOC and C_PAT, corresponding to each in-

dividual. Sets of individuals, such as the set of cats, would also spawn such dis-

tinct terms; there would be a cat term defined as the set of individual cats, and  

cat_ASSOC and cat_PAT terms defined as the set of observations associated with 

individual cats. Consistently with the above, the membership function of 

cat_ASSOC would be defined as 

 

[ P(cat| E) – P(cat|~E) ]+ 

 

where P(cat) means P(some element of the set of cats is observed), which is 

equivalent to P(some identifier of some cat is observed). The membership function 

of cat_PAT would be defined similarly as 

 

[c(cat) – c(E)]+ * [ P(cat| E) – P(cat|~E) ]+ 

 

However, this is not the implementation we have chosen. We believe this du-

plication of terms would be conceptually awkward – it doesn’t reflect the way 

human commonsense reasoning operates. Rather, we humans seem to fairly freely 

mix up reasoning about patterns with reasoning about sets of individuals. PLN is 

designed to enable this mixing-up, while at the same time allowing a distinction to 

be made clearly when this is appropriate. 

In order to do this, we introduce the notion of an IntensionalInheritance rela-

tionship. Subset, as defined above, has a truth-value defined simply by conditional 

probability. IntensionalInheritance, on the other hand, is a special relationship de-

fined by the convention that, e.g., 

 

IntensionalInheritance stripedog orange_77 

 

means 

 

Subset stripedog_ASSOC orange_77_ASSOC 

 

Formally, we may introduce the ASSOC operator, defined as 

 

ExtensionalEquivalence 

Member $X (ExOut ASSOC $C) 

 AND 

  ExtensionalImplication 

   Subset $Y $E 
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   Subset $Y $C  

  NOT  

   ExtensionalImplication 

    Subset $Y $E 

    NOT [Subset $Y $C]  

 

and then define the associational version of IntensionalInheritance via the relation-

ship  

 

ExtensionalEquivalence 

 IntensionalInheritance_ASSOC $X $Y 

 Subset (ExOut ASSOC $X) (ExOut ASSOC $Y) 

 

Next, we may define the ASSOC variant of the Inheritance relationship via 

 

ExtensionalEquivalence 

Inheritance_ASSOC $X $Y 

 OR 

Subset $X $Y 

IntensionalInheritance_ASSOC $X $Y 

 

And, analogously to the above, we may define a symmetric mixed inten-

sional/extensional relationship, 

 

Similarity_ASSOC A B <tv> 

= 

OR 

ExtSim A B <tv1> 

ExtSim A_ASSOC B_ASSOC <tv2> 

 

Of course, one can rewrite the above definitions using PAT instead of ASSOC. 

On the other hand, if we want to use both association-structure and pattern-

structure, then in fact things get a little more complicated. We have three different 

kinds of inheritance to be disjunctively combined; e.g., 

 

ExtensionalEquivalence 

Inheritance_ASSOC_PAT $X $Y 

 OR 

Subset $X $Y 

IntensionalInheritance_ASSOC $X $Y 

IntensionalInheritance_PAT $X $Y 

 

Typically we will leave off the qualifiers and just refer to Inheritance rather than 

Inheritance_ASSOC, etc. 
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Note a significant difference from NARS here. In NARS, it is assumed that X 

inherits from Y if X extensionally inherits from Y but Y intensionally inherits 

from (inherits properties from) X. We take a different approach here. We say that 

X inherits from Y if X’s members are members of Y, and the observations associ-

ated with X are also associated with Y. The duality of properties and members is 

taken to be provided via Bayes’ rule, where appropriate.  

By making frequent use of this kind of Inheritance relationship in PLN we are 

making the philosophical assertion that commonsense inference habitually mixes 

up extensional and intensional inheritance, as defined here, in a disjunctive way. 

Clearly this particular way of combining probabilities is not mathematically “nec-

essary” or natural in the sense that conditional probabilities are. However, we con-

tend that it is cognitively natural. 

We believe that it is very cognitively valuable to calculate intensional inheri-

tance and similarity values directly based on the above formulas – and use these 

together with extensional inheritance and similarity values within PLN inference. 

This is not hard to do in practice – it’s merely a matter of arranging conditional 

probability calculations in a different way; a way motivated by human psychology 

and pattern theory rather than probability theory proper. It is a credit to the flexi-

bility of the PLN framework that it supports this kind of variation so easily. 

We should note that the calculation of 

 

Intensional Inheritance A B 

 

involves a heuristic approximation because the probabilities inside, for instance, 

! 

"
ASSOC A( )C1 and 

! 

"
ASSOC A( )C2

, where 

! 

"  represents the fuzzy membership func-

tion (and  

! 

"
ASSOC $C( )$X  is simply a different notation for the truth value of 

Member $X (ExOut ASSOC $C))are not, in general, independent for the 

two properties 

! 

C
1
 and 

! 

C
2
.  

One way to minimize this sort of independence-assumption-based error is to 

choose a set of properties that are relatively independent of each other -- a sort of 

approximately-orthogonal ontology spanning concept-space. This same sort of ap-

proximately-orthogonal decomposition may also be useful in default inference 

which we discuss in chapter 13. 

12.3.1  Intensional Term Probabilities 

Next, we touch on some mathematical issues raised by these constructions. 

Since we’re asking a term like stripedog to serve as a proxy for two or more terms 

– stripedog and stripedog_ASSOC and stripedog_PAT – it would seem that the 

term should have several, separate term probabilities:  
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• An extensional term probability, indicating the extent to which a ran-

dom observation-set is an identifier for stripedog and counts as an ob-

servation of stripedog 

• Intensional term probabilities, indicating the extent to which a random 

observation is associated with, or is a pattern in, stripedog 

 

We can define a composite term truth-value via 

 

PInheritance($X) = OR( P($X), PASS($X), PPAT($X)) 

 

Obviously these Inheritance term-probabilities go naturally with Inheritance rela-

tionships, whereas the purely extensional term probabilities go naturally with Sub-

set relationships. 

 

 

12.4  Truth-value Conversion Formulas 

Next, the question arises how to convert between the extensional and mixed 

versions of inheritance relationships. Taking the ASSOC version of Inheritance 

for simplicity, the conversion rule 

 

Inheritance A B 

|- 

Subset A B 

 

has the form 

 

OR(X,Y) 

|- 

Y 

 

and the conversion rule 

 

Subset A B 

|- 

Inheritance A B 

 

has the form 

 

X 

|- 

X OR Y 
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Obviously these are badly underdetermined inference rules, and the only solu-

tions are simple heuristic ones. In the first case, we use the heuristic that 

 

s = (OR(X,Y).tv.s 

Y.tv.s = (s-c)/(1-c) 

 

where c is a constant that may be set equal to the average strength of all Intension-

alInheritance relations in the system’s memory. In the second case we use the heu-

ristic that 

 

s = X.tv.s 

 (OR(X,Y)).tv.s = c + (1-c)s 

 

where c is defined the same way. 

12.5  Intensional Boolean Operators 

Next, we turn to the intensional versions of the standard Boolean operators dis-

cussed in the previous chapter. In general, in PLN we may consider Boolean op-

erators to act either purely extensionally, purely intensionally, or in a mixed inten-

sional/extensional manner. For instance, one may consider (A AND B) purely 

extensionally, as was done above, by taking the intersection of the sets of mem-

bers of A and B. This is the default and the simplest approach, but not always the 

best route. Or, one may also consider (A AND B) purely intensionally, by taking 

the intersection of the sets of patterns associated with A and B. In this way, along 

with the standard (extensional) AND, OR, and NOT, we may define operators 

such as ANDInt and ORInt. 

And, as it happens, certain combinations of intensional and extensional Boo-

lean operations are more useful than others. For instance, it generally makes sense 

to pair extensional intersection with intensional union: the members of the inter-

section of A and B will generally share the properties of both A and B. Thus we 

may define (A ANDMix B) as the term containing the intersection of the exten-

sional relationships of A and B, and the union of the intensional relationships of A 

and B. Similarly, (A ORMix B) is the term containing the union of the extensional 

relationships of A and B, and the intersection of the intensional relationships of A 

and B. 

These various operators may be useful for generating new concepts to be util-

ized in future inferences. For instance, (cat ANDInt dog) is a category of hypotheti-

cal creatures sharing the properties of both cats and dogs. On the other hand, both 

(cat ANDMix pet) and (cat ANDExt pet) are the interpretations of the informal con-

cept “the set of pet cats” but may be different fuzzy sets, because both cat and pet 

may have intensional relationships that were not derived from analysis of the 

members of these sets (but were derived, perhaps, from natural language interpre-
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tation). In (cat ANDMix pet) these properties are carried over to the intersection but 

in (cat ANDExt pet) they are not. 

Apart from these logical operators, it may also be interesting to create new 

terms by simply taking the union or intersection of all relationships belonging to 

two terms A and B. However, it is important to understand that this kind of sim-

plistic intersection and union is not the most conceptually natural approach in 

terms of the logic of either intension or extension. 

12.6  Doing Inference on Inheritance Relationships 

Having defined generic Inheritance as a disjunction of extensional and inten-

sional inheritance, it is now natural to ask whether there are special inference rules 

for dealing with intensional and generic Inheritance relationships.  

For instance, suppose we have 

 

IntensionalInheritance A B 

IntensionalInheritance B C 

 

Can we then conclude 

 

IntensionalInheritance A C 

 

via “intensional deduction”? In fact, it seems that the best way to deal with this 

kind of situation is to use the definition of intensional inheritance in terms of 

probabilities. From  

 

IntensionalInheritance A B 

 

along with P(A) and P(B), one can figure out P(A|B); and similarly from 

 

IntensionalInheritance B C 

 

one can figure out P(C|B). Using ordinary (extensional) deduction one can then 

figure out P(C|A), and then from this plus P(C) and P(A) one can calculate the 

strength of 

 

IntensionalInheritance A C 

 

There is thus no need for a special “intensional deduction rule,” and the same 

basic method holds for other inference rules. What about mixed inference? Sup-

pose we have 

 

Inheritance A B 
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Inheritance B C 

 

Can 

 

Inheritance A C 

 

be concluded? Again, the story is a bit more complicated. The best thing is to re-

cord information separately about extensional and intensional inheritance. We can 

then combine them as weighted combinations of the following four types of infer-

ence: 

 

1)   ExtensionalInheritance A B 

    ExtensionalInheritance B C 

      |- 

      ExtensionalInheritance A C 

 

2)    IntensionalInheritance A B 

      IntensionalInheriatnce B C 

      |- 

      IntensionalInheritance A C 

 

3)    ExtensionalInheritance A B 

      IntesionalInheritance B C 

      |- 

      Inheritance A C (mixed Extensional/Intensional) 

 

4)    IntensionalInheritance A B 

    ExtensionalInheritance B C 

      Inheritance B C (mixed) 

 

On the other hand, sometimes one has information only about inheritance 

rather than about extensional and intensional inheritance particularly. This may 

happen, for instance, if one is dealing with knowledge parsed from natural lan-

guage. The sentence “cats are animals” is best interpreted in terms of mixed in-

heritance. So if we are doing reasoning of the form 

 

cats are animals 

animals are ugly 

|- 

cats are ugly 

 

then the best course is to map each of the premises into mixed inheritance rela-

tionships, then interpret each mixed inheritance relationship as a weighted sum of 

an extensional inheritance relationship and an intensional inheritance relationship. 

Inference may then be done to determine the truth-values of 
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IntensionalInheritance cat ugly 

 

and 

 

ExtensionalInheritance cat ugly 

 

and these may be combined to get the truth-value of 

 

Inheritance cat ugly 

 

There is significant arbitrariness here in the determination of the weighting fac-

tor. It may be set arbitrarily as a system parameter, or else it may be determined 

“inferentially” via analogy to cases where the extensional and intensional inheri-

tance values are known. For instance, if it is known that 

 

ExtensionalInheritance dog ugly <.41,.3> 

IntensionalInheritance dog ugly <.38,.5> 

ExtensionalInheritance hog ugly <.79,.2> 

IntensionalInheritance hog ugly <.82,.6> 

 

then this may be taken as evidence that for cats as well,  

 

ExtensionalInheritance cat ugly  

 

should get a lower weighting than 

 

IntensionalInheritance cat ugly  

 

In all, then, intensional inference in PLN emerges as a different way of organ-

izing the same basic probabilistic information that is used in extensional inference. 

The intension vs. extension distinction is important in terms of philosophy and 

cognitive science, yet in terms of the mathematics of probabilistic inference is 

merely a minor variation in the utilization of the familiar extensional inference 

rules. 

12.7  Doing Inference on Inheritance Relationships 

So far in our discussion of intension we have considered only strength values, 

and have not looked at weight of evidence or indefinite probabilities at all. Now 

we remedy this omission and explore how the indefinite probabilities framework 

may be extended to handle intensional inference. As usual in PLN, the tricky part 

is getting the semantics right; the mathematics follows fairly directly from that. 
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Consider the link 

 

IntensionalInheritance whale fish 

 

Suppose we want to assign an indefinite probability to this link (via direct evalua-

tion rather than inference, initially): what’s the semantics? Crudely, the semantics 

is 

 

P( x in PROP(fish) | x in PROP(whale) ) 

 

where PROP(A) may be defined as ASSOC(A) or PAT(A), depending on which 

variant one is using. One way to conceive of PROP(A), in either case, is as a fuzzy 

set to which B belongs to a degree determined by a specific formula such as 

 

!A(B) = floor[(P(A | B) – P(A | ~B) ) (1 - |A| / |B|) 

] 

 

in the case PROP=PAT. 

If conditional probabilities such as P(A|B) are characterized by second-order 

probability distributions (as in the indefinite probabilities approach), then as a 

consequence !A(B) will be characterized as a second-order probability distribution 

over the space of fuzzy set membership values. For instance, suppose we choose a 

specific joint distribution for ( P(A|B), P(A|~B) ); then this will give rise to a spe-

cific distribution for !A(B). Choosing various joint distributions for  

( P(A|B), P(A|~B) ), according to a second-order probability distribution specified 

for these conditional probabilities, one gets various distributions for !A(B); so one 

can then derive an envelope of distributions for !A(B). (Of course, we can choose 

these joint distributions using an independence assumptions if we want to; e.g., if 

we lack the information to do otherwise.) What this means is that the fuzzy mem-

bership value !A(B) is not a single value, but is rather an envelope of distributions 

describing a value, which may be summarized in many ways; for example, as an 

indefinite probability. 

What we need to know to evaluate the truth-value of the above IntensionalIn-

heritance relationship, then, is: Given the knowledge that X is a property of whale 

in the above sense, what’s the chance that X is also a property of fish? Obviously 

this can be quantified in a number of ways. One appealing way involves the 

choice function 

 

fA(B) = [ E(!A(B)) * woe(!A(B))] 

 

where E(!A(B)) tells you the expected value of the envelope of distributions cor-

responding to E(!A (B)), and woe(!A (B)) tells you the weight of evidence calcu-

lated from this envelope of distributions (either approximated as the b-level confi-

dence interval width of the set of means of distributions in the envelope for some 
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fixed b, or else calculated more elaborately using assumptions or knowledge about 

the underlying distributions).  

To calculate the truth-value of the above link, then, we can repeatedly carry out 

the following series of steps: 

 

1. Choose a property R of whale with a probability proportional to 

fR(whale), where f is the default choice function specified above. 

2. Estimate E(!R(fish) ). 

 

Doing this repeatedly gives us a distribution of means, which we can summarize 

using an indefinite probability. All this specifies how to define the indefinite prob-

ability governing the degree to which whale inherits from fish according to direct 

evaluation. If for some reason we want the whole envelope of distributions corre-

sponding to !R(fish), then we simply have to retain this envelope in Step 2 above. 

To calculate IntensionalSimilarity, on the other hand, one may use a minor 

variation on the above methodology. Continuing with the whale/fish case, for ex-

ample, one can repeatedly carry out the following series of steps: 

 

1. Choose a random pair (R, Z), where Z is either whale or fish and R is a 

property of one of them, and the probability of choosing the pair is pro-

portional to fR(Z), where f is the default choice function specified above. 

2. Estimate E(!R(W) ), where W is either whale or fish and is different from 

Z. 

 

Doing this repeatedly gives us a distribution of means, which we can summarize 

using an indefinite probability. 
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Chapter 13: Aspects of Inference Control 

Abstract   In this chapter we will describe a few important aspects of the mathe-

matical and software structures via which PLN has been implemented within the 

Novamente Cognition Engine – an implementation that has been structured with 

the goal of allowing PLN to serve the broadest possible variety of functions within 

an integrative AI context. 

13.1  Introduction 

The focus of this book is PLN mathematics, not software engineering, cogni-

tive science, or integrative AI. However, the purpose with which the PLN mathe-

matics has been conceived is closely tied to these other two topics; we have sought 

to create an uncertain inference framework capable of serving as a pragmatic un-

certain inference component within the integrative Novamente AI system. For 

simplicity we will avoid giving any details of the Novamente architecture, present-

ing only the PLN implementation architecture itself. The mathematical, software, 

and conceptual relationships between PLN and the remainder of the NCE are be-

yond the scope of this book. 

13.2  Forward- and Backward-Chaining Inference 

The PLN inference rules and formulas are local in character; they tell you how 

to produce a conclusion from a particular set of premises. They don’t address what 

is in a sense the most difficult aspect of inference: the determination of which in-

ference rules to perform in what order. We call this process “inference control.” 

Inference control in PLN is handled via mechanisms that are familiar from tradi-

tional AI – forward and backward chaining – but with special twists enforced by 

the omnipresence of uncertainty in PLN inference.  

Generically, in PLN or elsewhere, backward chaining is defined as an inference 

process that starts with one or more inference targets and works backward to find 

inference paths leading to these targets as conclusions. An inference engine using 

backward chaining starts by searching the available inference rules until it finds 



Probabilistic Logic Networks 266 

one that has a conclusion of a form that matches a desired goal. It then seeks to 

find suitable premises for the rule – premises that will cause the rule to output the 

goal as a conclusion. In conventional, crisp-logic Boolean backward chaining, if 

appropriate premises for that inference rule are not known to be true, then they are 

added to the list of goals, and the process continues until a path is found in which 

all goals on the path have been achieved. In PLN backward chaining, the probabil-

istic truth-values necessitate that the appropriate premises for that inference rule 

are recorded as such but also added to the list of goals. The process continues until 

the target atom can be produced with truth-value weight higher than a threshold 

set by the controller. The trick of making this work effectively is “pruning”: intel-

ligently and adaptively choosing which rules to choose and which premises to feed 

them, iteratively as the process proceeds. 

Generic forward chaining, on the other hand, starts with the available knowled-

ge and uses inference rules to derive a series of conclusions. An inference engine 

using forward chaining searches the inference rules until it finds one whose inputs 

have the same form as the given premises, then uses the rules to produce output. 

The output is then added to the set of possible premises to be used in future infe-

rence steps. The tricky part here is once again pruning; in most cases there are 

many different rules from which to select, and it’s not clear which are the right 

ones. 

The bugaboo of both forward- and backward-chaining inference control is 

combinatorial explosion. We describe here some heuristics used to palliate this 

problem in PLN, but these heuristics do not solve the problem fully adequately, 

except for the case of fairly simple inferences. Of course, the problem of com-

binatorial explosion is not fully solvable without introducing implausibly massive 

computational resources, but it must be solved more thoroughly than is done here 

if PLN is to be useful for powerful general intelligence. In the overall Novamente 

architecture, the combinatorial explosion is intended to be quelled via the integra-

tion of PLN with other AI components such as evolutionary learning, stochastic 

pattern mining and adaptive attention allocation, topics that will not be discussed 

here.  

13.3 Differences Between Crisp and Probabilistic Theorem-

Proving 

While the basic structures of PLN inference control (forward and backward 

chaining) are familiar from crisp-logic-based theorem-proving, significant diffe-

rences arise due to the prominent role that uncertainty plays in PLN inference. In 

the automated proof of crisp logical theorems, the goal is to build an inference 

trail that proceeds, in each step, from premise predicates with crisp truth-values to 

new predicates with crisp truth-values. The goal in backward chaining, for exam-
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ple, is to find a single path of this nature leading from some set of known premises 

to the given target predicate. 

In probabilistic theorem-proving, on the other hand, finding a single path from 

known premises to the target is not necessarily very useful, because the truth-

value estimate achieved via this path may have low confidence. Multiple paths 

may yield multiple truth-value estimates, which must then be revised or chosen 

between. These complexities make inference control subtler, and among other fac-

tors they imply a more prominent role for “effort management.” It is often easy to 

find some path from premises to the target if we have no requirements for the re-

sulting truth-value. Therefore, in PLN backward chaining we are in practice more 

interested in how many resources we are willing to allocate for improving the 

truth-value of the target by alternative inference paths, rather than aiming for the 

first possible path we can find. 

13.3.1  Atom Structure Templates 

In order to carry out an individual step in backward- or forward-chaining infe-

rence, we need to be able to quickly figure out which rules can be applied to a cer-

tain Atom (for forward chaining) or which rules can yield a certain Atom as output 

(for backward chaining). In order to be able to do this conveniently, we need a 

way to describe Atom properties in a concise way. We will do this with predicates 

called Atom structure templates. 

Given an Atom A, we may construct the predicate A^ so that A^(X) is true iff 

there is some Y so that A(Y)=X. In the case that A is a first-order Atom (a Term 

or a Relationship between Terms, with no variables or higher-order functions in-

volved), then A^(X) is true iff X=A; but this is not the most interesting case. 

 

E.g., for the Atoms 

 
P = 

Inheritance A B 

 

and 

 
Q = 

Inheritance 

 A 

 $1  

 

it is easy to see that Q^(P) is true (via the assignment $1=B) but P^(Q) is not.  

We may also define more complex Atom types such as 
 
HasTruthValueStrengthGreaterThan 
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 $1 

 0.5 

 

which can likewise be used as literals like any other Atoms, or as complex Atom 

structure templates that map Atoms into Boolean truth-values according to a spe-

cific property, such as “whether the truth-value.strength of the argument Atom is 

greater than 0.5.”  

Atom structure templates can also be used in conjunctions or disjunctions with 

other Atom structure templates. For example, the Atom structure template corres-

ponding to 

 
AND 

 HasTruthValueStrengthGreaterThan 

  $1 

  0.5 

 Inheritance 

  A 

  $1 

 

is true of an Atom such that A inherits from it and its truth-value.strength > 0.5. 

13.3.2  Rules and Filters 

Recall the distinction between rules and formulas in PLN. A Formula is an ob-

ject that maps a vector of truth-values into a single truth-value. For example, the 

deduction formula takes five truth-values and outputs the truth-value of the result-

ing Inheritance or Implication relationship. On the other hand, a Rule is an object 

that maps a vector of Atoms into a single new Atom. Along the way it applies a 

designated formula to calculate the truth-values. For example, the deduction rule 

takes two Inheritance relationships (A,B) and (B,C) and outputs a single Inheri-

tance relationship (A,C) with a truth-value calculated by the deduction formula. 

In the PLN software implementation, inference rules are represented by Rule 

objects. Each Rule object has both an input filter and an output-based-input filter, 

which will be used by forward chaining and backward chaining, respectively. The 

input filter is a vector of Atom structure templates that accept only specific kinds 

of argument Atoms in the respective place. For example, the input filter of Deduc-

tionRule is the vector of two Atoms representing Atom structure templates: 

 
InheritanceLink 

 $1 

 $2 

InheritanceLink  

 $2 
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 $3. 

 

The output-based-input filter is more complex. It is used to detemine which 

Atoms are needed as parameters for the Rule in order to produce Atoms of desired 

kind. For example, in order to produce the  

 
InheritanceLink 

 A 

 C 

 

by the DeductionRule you need to provide, as input to the DeductionRule, the 

Atoms that satisfy the Atom structure templates 

 
InheritanceLink 

 A 

 $1 

 

InheritanceLink 

 $1 

 C 

 

Of course a specific target may not be producible by a given rule, in which case 

the procedure simply returns a null result. In order to produce two Atoms that sa-

tisfy each one of the last two Atom structure templates, we need to begin a new 

proof process for each one separately, and so on. Since this particular proof con-

tains Atom structure template variables, we must at some point unify the variables. 

Because they occur inside distinct Atoms, it may happen that a specific unification 

choice in one will prevent the production of the other altogether. We must then 

backtrack to this unification step, choose differently, and retry. 

Note that producing InheritanceLink($1, C) is very different from producing an 

Atom that satisfies the Atom structure template InheritanceLink($1,C)^. Typi-

cally, in backward chaining we are interested in the latter. 

13.4  Simplification 

Some computational reasoning systems require all logical formulas to fall into 

a certain standard “normal form,” but this is not the case in PLN. There is the op-

tion for normalization, and we plan to experiment with using Holman’s Elegant 

Normal Form (Holman 1990) in PLN, as we do in other aspects of the NCE, but 

normalization of this nature is not required. As a default, the PLN implementation 

does only some elementary normalizations, which are not profoundly necessary 

for PLN inference control but do serve to simplify things and reduce the number 

of Rule objects required. 
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Some “explicit” normalization happens in the proxy that the new Atoms pass 

before entering the knowledge base, and then some “implicit” normalization hap-

pens in the structures used to manipulate the Atoms. An example of the former 

kind of normalization is conversion of EquivalenceLinks into two Implication-

Links, while an example of the latter kind is the mechanism that considers identi-

cal an Atom A and a single-member ListLink whose outgoing set consists of A. 

13.5 Backward Chaining 

We now describe the PLN backward-chaining inference process. Each step of 

this process is thought of as involving two substeps: expansion and evaluation. In 

the expansion step, the filters of Rule objects are used to figure out the possible 

child nodes for the current BIT (BackInferenceTree) node. These nodes are then 

inserted into an “expansion pool,” which contains all the nodes that can still be 

expanded to find additional proof paths. In the evaluation step the BIT is traversed 

from leaves towards the root, where children of a node are presented as input ar-

guments to the Rule object that the parent node represents. Because each child is 

in general a set of possible solutions for the given Rule argument, we have multi-

ple combinations of solutions to try out. 

As noted above, a central characteristic of PLN backward chaining is the fact 

that “topological” inference path-finding is only a subgoal of the main goal of 

PLN backward inference: maximizing the weight-of-evidence of the truth-value of 

the target Atom. So, in order to reach the latter goal, we may need to construct se-

veral different inference trees, with inference paths that may have considerable 

“topological” overlap yet assign different truth-values even to the overlapping no-

des.  

This process of multiple-tree generation can conveniently be described in evo-

lutionary terms, where the genotype of a Backward Inference Tree (BIT) consists 

of the individual Atoms and the Rules that combine them, while the weight of evi-

dence of the result produced by the tree is its fitness. To calculate the fitness of a 

BIT it is necessary to evaluate all the proof pathways in the tree, and then combine 

the final query results using the Rule of Choice.  

On the implementation level there is some subtlety involved in constructing the 

trees involved in backward-chaining inference, because the validity of a result 

may depend on other results that come from other branches. A whole new search 

tree must be created every time the production of a target Atom is attempted. To 

achieve this, on each attempt to produce a target Atom we save the partial tree 

produced thus far, and launch a new tree that contains only a pointer to the partial 

tree. Thus, the task of improving the truth-value of an Atom requires partial or 

complete reconstruction of the proof tree several times. Therefore, a critical im-

plementation requirement is the efficiency of the “retry mechanism” that allows 

for this.  
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Managing variable bindings in this tree expansion process is also tricky. In this 

approach, to carry out backward-chaining inference, you expand the inference tree 

step-by-step, and you may evaluate the fitness of the tree after any step. To produ-

ce each subresult several Rules can be invoked, causing bifurcation. At the time of 

evaluation, some subresults are in fact sets of results obtained via different path-

ways. Hence, the evaluation step must look at all the consistent conbinations of 

these; consistency here meaning that bindings of the subresults used in a specific 

combination must not conflict with each other. Ideally, one might want to check 

for binding consistency at the expansion stage and simply discard conflicting re-

sults. However, in case of conflict we do not in general know which ones of the 

conflicting bindings are worse ( i.e., will contribute to lower ultimate fitness) than 

others. Hence, it is best to do the consistency check at the evaluation stage. 

13.6 Simple BIT Pruning 

For pruning of the backward-chaining inference tree, we use initially a techni-

que based on the multi-armed bandit problem from statistics (Robbins 1952; Sut-

ton, Bartow 1998.) 

Consider first a relatively simple case: the backward-chainer wants to expand a 

given node N of the BIT it is creating, and there is a number of possibilities for 

expansion, corresponding to a number of different rules that may possibly give ri-

se to the expression contained at node N. Some of these have not yet been tried, 

but these have a priori probabilities, which may be set based on the general use-

fulness of the corresponding rule, or in a more sophisticated system based on the 

empirical usefulness of the rule in related contexts. Some may have already been 

expanded before, yielding a truth-value estimate with a known strength and weight 

of evidence.  

Then, in our current inference control approach, each possibility for expansion 

(each rule) must be assigned an “expected utility” number indicating the probabili-

ty distribution governing the degree of fitness increase expected to ensue from ex-

ploring this possibility. For unexplored possibilities this utility number must be 

the a priori probability of the rule in that context. For possibilities already extensi-

vely explored, this utility number may be calculated in terms of the weight of evi-

dence of the truth-value estimate obtained via exploring this possibility, and the 

amount of computational effort expended in calculating this truth-value.  

Regarding unexplored or lightly-explored possibilities, the two heuristics used 

to set the “a priori” utilities for BIT nodes are: 

 

1. Solution space size: Prefer nodes with more restrictive proof targets 

(i.e., ones with fewer free variables and more structure). 

2. Rule priority: Prefer e.g. direct atom lookup to a purely hypothetical 

guess. 
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To take into account information gained by prior exploration of a BIT node, 

one may utilize a simple heuristic formula such as 

 
u = d/E = weight_of_evidence / effort 

 

or more generally 

 
u = = F/E = fitness / effort 

 

(where e.g. fitness might be measured as weight_of_evidence*strength).  A more 

sophisticated variant might weight these two factors, yielding e.g. 

 
u = Fa/Eb 

 

Given these probabilities, an avenue for expanding the node may be selected 

via any one of many standard algorithms for handling multi-armed bandit prob-

lems; for initial experimentation we have chosen the SoftMax algorithm (Sutton, 

Bartow 1998), which simply chooses an avenue to explore at random, with a pro-

bability proportional to  

 
eu/T 

 

where T is a temperature parameter. High temperatures make all possibilities 

equiprobable whereas T=0 causes the method to emulate greedy search (via al-

ways following the most probable path). 

One of the strengths of this overall approach to inference control is its capabi-

lity to incorporate, into each inference step, information gained via other sorts of 

inference or via non-inferential processes.  This is particularly valuable when con-

sidering PLN as a component of an integrative AI system.  For instance, if en-

counters the link 

 
ExtensionalInheritance A B 

 

as a possibility for exploration in a BIT, then a reasonable heuristic is to check for 

the existence and truth value of the link h 

 
IntensionalInheritance A B 

 

If A and B share a lot of properties, they may heuristically be guessed to share 

a lot of members; etc.  Or, if there is no existing information directly pertinent to 

the ExtensionalInheritance relation being considered, and there are sufficient 

computational resources available, it might be worthwhile to execute some other 

non-inferential cognitive process aimed at gathering more relevant information; 

for instance, if many links of the form 
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MemberLink Ci B 

 

are available, an evolutionary learning or other supervised categorization algo-

rithm could be used to learn a set of logical rules characterizing the members of B, 

which could then be used in the inference process to gain additional information 

potentially pertinent to estimating the utility of expanding 
 

ExtensionalInheritance A B 

13.7  Pruning BITs in the Context of Rules with Interdependent 

Arguments 

The pruning situation becomes more complex when we consider rules such as 

Deduction, which take arguments that depend on each other. For Deduction to 

produce Implication(A,C), input arguments are of the form (Implication(A,$1), 

Implication($1,C)) where $1 is a variable. Naively, one might just want to simpli-

fy this by looking up only Atom pairs that simultaneously satisfy both require-

ments. This fails, however, because we must also be able to produce both argu-

ments by our regular inference process. So for each argument a separate inference 

tree is created, and the consistency check must be postponed.  

Expanding both branches independent of each other is wasteful, because once 

we find a good result for one of the arguments in that branch, e.g., binding $1 to 

B, we would like to bias the inference in the other branch toward being consistent 

with this;  i.e., producing Implication(B,C).  

One approach would be to launch a new separate proof process for this purpo-

se, but this is difficult to implement because in general there are other things going 

on in the proof beside this single (e.g., deduction) step, and we would like to have 

only a single control path. In this hypothetical approach it would be unclear when 

exactly we should continue with this proof process and when with the other 

one(s). 

A simpler approach is to create a clone of the parent of the current inference 

tree node, with the one difference that in this new node the said variable (B) has 

been bound. The new node is then added to the execution pool. 

This may seem counter-intuitive because we do not restrict the possible proof 

paths, but simply add a new one. For example, suppose that in this example Impli-

cation($1,C) is still in the expansion pool, and the Implication(A,$1) is currently 

under expansion. The expansion produces result Implication(A,B). Then, the exe-

cution pool will contain both Implication($1,C) and Implication(B,C). 

Note that the whole execution pool will typically not be exhausted, but we only 

expand a part of it until a sufficiently fit result has been found. Further, we have 

set the default utilities so that Implication(B,C) has a higher a priori utility than 

Implication($1,C) because these nodes are identical in all other respects, but the 
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former has fewer free variables and therefore a smaller solution space. It follows 

that the proof for Implication(B,C) will be attempted before the more general Im-

plication($1,C). Of course, if Implication(B,C) does not exist and has to be produ-

ced by inference, then the process may end up expanding Implication($1,C) before 

it has been able to produce Implication(B,C). But this is fine because Implicati-

on(B,C) was simply our first guess, and if the Atom does not exist we have no 

strong reason to believe that the binding $1=>B should be superior to other alter-

natives. 

The bandit problem based approach mentioned above may still be used in the 

more complex case of rules like deduction with interdependent arguments, but the 

method of calculating u must be modified slightly. In this case, the probability as-

signed to a given possible expansion might (to cite one sensible formula out of 

many possible ones, and to use the ”weight of evidence” fitness function purely 

for sake of exemplification) be set equal to  

 
u = (d1d2)

a/Eb 

 

where d1 is the weight of evidence of the truth-value output by the expansion no-

de, and d2 is the weight of evidence of the inference rule output produced using 

the output of the expansion node as input. For instance, if doing a deduction 

 
Inheritance A B <[0.8, 0.9], 0.9, 10> 

Inheritance B C <[0.7, 0.8], 0.9, 10> 

|- 

Inheritance A C <[0.618498, 0.744425], 0.9, 10> 

 

then a particular way of producing 

 
Inheritance A B  

 

would be assigned d1 based on the weight of evidence obtained for the latter link 

this way, and would be assigned d2 based on the weight of evidence obtained for  

 
Inheritance A C 

 

this way. 

13.8 Forward-Chaining Inference 

Finally, we consider the problem of forward-chaining inference. This is very 

closely comparable to backward-chaining inference, with the exception that the 

method of calculating utility used inside the bandit problem calculation is diffe-

rent. One is no longer trying to choose a path likely to yield maximum increase of 
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weight of evidence, but rather a path likely to yield this along with maximum “in-

terestingness” according to some specified criterion. For example, one definition 

of interestingness is simply deviation from probabilistic independence. Another, 

more general definition is the difference in the result obtained by evaluating the 

truth-value of the Atom with very little effort versus a large amount of effort. So 

one might have 

 
u = Ic da/Eb 

 

where I measures interestingness; or more general versions where e.g. the weight 

of evidence d is replaced with some other fitness function.  The measurement of 

interestingness is a deep topic unto itself, which brings us beyond PLN proper; 

however, one PLN-related way to gauge the interestingness of an Atom, relative to 

a knowledge base, is to ask how different the Atom’s actual truth value is, from 

the truth value that would be inferred for the Atom if it were removed and then 

had its truth value supplied by inference.  This measures how much surprisingness 

the Atom’s truth value contains, relative to the surrounding knowledge. 

Of course, forward-chaining inference can also invoke backward-chaining infe-

rence as a subordinate process. Once it has happened upon an interesting Atom, it 

can then invoke backward chaining to more thoroughly evaluate the truth-value of 

this Atom via a variety of different paths. 

Very shallow forward-chaining inference may be used as a method of “concept 

creation.” For instance, there is value in a process that simply searches for interes-

ting Boolean combinations of Atoms. This may be done by randomly selecting 

combinations of Atoms and using them as premises for a few steps of forward-

chaining inference. These combinations will then remain in memory to be used in 

future forward- or backward-chaining inference processes. 

13.9 Default Inference 

Inference control contains a great number of subtleties, only a small minority 

of which has been considered here. Before leaving the topic we will consider one 

additional aspect, lying at the borderline between inference control, PLN inference 

proper, and cognitive science. This is the notion of “default inheritance,” which 

plays a role in computational linguistics within the Word Grammar framework 

(Hudson 1984), and also plays a central role in various species of nonmonotonic 

“default logic” (Reiter, 1980; Delgrande and Schaub, 2003). The treatment of de-

fault inference in PLN exemplifies how, in the PLN framework, judicious infer-

ence control and intelligent integration of PLN with other structures may be used 

to achieve things that, in other logic frameworks, need to be handled via explicit 

extension of the logic. 

To exemplify the notion of default inheritance, consider the case of penguins, 

which do not fly, although they are a subclass of birds, which do fly. When one 



Probabilistic Logic Networks 276 

discovers a new type of penguin, say an Emperor penguin, one reasons initially 

that they do not fly – i.e., one reasons by reference to the new type’s immediate 

parent in the ontological hierarchy, rather than its grandparent. In some logical in-

ference frameworks, the notion of hierarchy is primary and default inheritance of 

this nature is wired in at the inference rule level. But this is not the case with PLN 

– in PLN, correct treatment of default inheritance must come indirectly out of 

other mechanisms. Fortunately, this can be achieved in a fairly simple and natural 

way. 

Consider the two inferences (expressed informally, as we are presenting a con-

ceptual discussion not yet formalized in PLN terms) 

 
A) 

penguin --> fly <0> 

bird --> penguin <.02> 

|- 

bird --> fly 

 

B) 

penguin --> bird <1> 

bird --> fly <.9> 

|- 

penguin --> fly 

 

The correct behavior according to the default inheritance idea is that, in a sys-

tem that already knows at least a moderate amount about the flight behavior of 

birds and penguins, inference A should be accepted but inference B should not. 

That is, evidence about penguins should be included in determining whether birds 

can fly – even if there is already some general knowledge about the flight behavior 

of birds in the system. But evidence about birds in general should not be included 

in estimating whether penguins can fly, if there is already at least a moderate level 

of knowledge that in fact penguins are atypical birds in regard to flight. 

But how can the choice of A over B be motivated in terms of PLN theory? The 

essence of the answer is simple: in case B the independence assumption at the 

heart of the deduction rule is a bad one. Within the scope of birds, being a penguin 

and being a flier are not at all independent. On the other hand, looking at A, we 

see that within the scope of penguins, being a bird and being a flier are independ-

ent. So the reason B is ruled out is that if there is even a moderate amount of 

knowledge about the truth-value of (penguin --> fly), this gives a hint that apply-

ing the deduction rule’s independence assumption in this case is badly wrong. 

On the other hand, what if a mistake is made and the inference B is done any-

way? In this case the outcome could be that the system erroneously increases its 

estimate of the strength of the statement that penguins can fly. On the other hand, 

the revision rule may come to the rescue here. If the prior strength of (penguin --> 

fly) is 0, and inference B yields a strength of .9 for the same proposition, then the 

special case of the revision rule that handles wildly different truth-value estimates 
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may be triggered. If the 0 strength has much more confidence attached to it than 

the .9, then they won’t be merged together, because it will be assumed that the .9 

is an observational or inference error. Either the .9 will be thrown out, or it will be 

provisionally held as an alternate, non-merged, low-confidence hypothesis, await-

ing further validation or refutation. 

What is more interesting, however, is to consider the implications of the de-

fault inference notion for inference control. It seems that the following may be a 

valuable inference control heuristic:  

 

1. Arrange terms in a hierarchy; e.g., by finding a spanning DAG of the 

terms in a knowledge base, satisfying certain criteria (e.g., maximiz-

ing total strength*confidence within a fixed limitation on the number 

of links). 

2. When reasoning about a term, first do deductive reasoning involving 

the term’s immediate parents in the hierarchy, and then ascend the 

hierarchy, looking at each hierarchical level only at terms that were 

not visited at lower hierarchical levels. 

 

This is precisely the “default reasoning” idea – but the key point is that in PLN 

it lives at the level of inference control, not inference rules or formulas. In PLN, 

default reasoning is a timesaving heuristic, not an elementary aspect of the logic 

itself. Rather, the practical viability of the default-reasoning inference-control heu-

ristic is a consequence of various other elementary aspects of the logic, such as the 

ability to detect dependencies rendering the deduction rule inapplicable, and the 

way the revision rule deals with wildly disparate estimates. 
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Chapter 14: Temporal and Causal Inference 

Abstract   In this chapter we briefly consider the question of doing temporal and 

causal logic in PLN, and give an example involving the use of PLN to control a 

virtually embodied agent in a simulated environment. 

14.1 Introduction 

While not as subtle mathematically as HOI, temporal logic is an extremely im-

portant topic conceptually, as the vast majority of human commonsense reasoning 

involves reasoning about events as they exist in, interrelate throughout, and 

change, over time. We argue that, via elaboration of a probabilistic event calculus 

and a few related special relationship types, temporal logic can be reduced to stan-

dard PLN plus some special bookkeeping regarding time-distributions.  

Causal inference, in our view, builds on temporal logic but involves other no-

tions as well, thus introducing further subtlety. Here we will merely scratch the 

surface of the topic, outlining how notions of causality fit into the overall PLN 

framework. 

14.2 A Probabilistic Event Calculus 

The Event Calculus (Kowalski & Sergo, 1986; Miller & Shanahan, 1991), a de-

scendant of Situation Calculus (McCarthy & Hayes, 1969), is perhaps the best-

fleshed-out attempt to apply predicate logic to the task of reasoning about com-

monsense events. A recent book by Erik Mueller (2006) reviews the application of 

Event Calculus to the solution of a variety of “commonsense inference problems,” 

defined as simplified abstractions of real-world situations. 

This section briefly describes a variation of Event Calculus called Probabilistic 

Event Calculus, in which the strict implications from standard Event Calculus are 

replaced with probabilistic implications. Other changes are also introduced, such 

as a repositioning of events and actions in the basic event ontology, and the intro-

duction of a simpler mechanism to avoid the use of circumscription for avoiding 

the “frame problem.” These changes make it much easier to use Event Calculus 
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type reasoning within PLN. The ideas in this section will be followed up in the 

following one, which introduces specific PLN relationship types oriented toward 

temporal reasoning.  

We suggest that the variant of event calculus presented here, as well as being 

easily compatible with PLN, also results in a more “cognitively natural” sort of 

Event Calculus than the usual variants, though of course this sort of claim is hard 

to substantiate rigorously and we will not pursue this line of argument extensively 

here, restricting ourselves to a few simple points.  Essentially, these points elabo-

rate in the temporal-inference context the general points made in the Introduction 

regarding the overall importance of probability theory in a logical inference con-

text: 

 

• There is growing evidence for probabilistic calculations in the human 

brain, whereas neural bases for crisp predicate logic and higher-order 

logic mechanisms like circumscription have never been identified even 

preliminarily. 

• The use of probabilistic implications makes clearer how reasoning 

about events may interoperate with perceptions of events (given that 

perception is generally uncertain) and data mining of regularities from 

streams of perceptions of events (which also will generally produce 

regularities with uncertain truth-values). 

• As will be discussed in the final subsection, the pragmatic resolution 

of the “frame problem” seems more straightforward using a probabil-

istic variant of Event Calculus, in which different events can have dif-

ferent levels of persistence. 

14.2.1 A Simple Event Ontology 

Probabilistic Event Calculus, as we define it here, involves the following cate-

gories of entity: 

 

• events 

o fluents 

• temporal predicates 

o holding 

o initiation 

o termination 

o persistence 

• actions 

• time distributions 

o time points 

o time intervals 

o general time distributions 
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A “time distribution” refers to a probability density over the time axis; i.e., it 

assigns a probability value to each interval of time. Time points are considered 

pragmatically as time distributions that are bump-shaped and supported on a small 

interval around their mean (true instantaneity being an unrealistic notion both psy-

chologically and physically). Time intervals are considered as time distributions 

corresponding to characteristic functions of intervals. 

The probabilistic predicates utilized begin with the functions: 

 
hold(event) 

 

initiate(event) 

 

terminate(event) 

 

These functions are assumed to map from events into probabilistic predicates 

whose inputs are time distributions, and whose outputs are probabilistic truth-

values. The class of “events” may be considered pragmatically as the domain of 

these functions. 

Based on these three basic functions, we may construct various other probabil-

istic predicates, such as 

 
holdsAt(event, time point) =  

 (hold (event))(time point) 

 

initiatedAt(event,time point) =  

 (initiate(event))(time point) 

 

terminatedAt(event, time point) =  

 (terminate(event))(time point) 

  

holdsThroughout(event, time interval) =  

 (hold (event))(time interval) 

 

initiatedThroughout(event, time interval) =  

 (initiate (event))(time interval) 

 

terminatedThroughout(event, time interval) =  

 (terminate (event))(time interval) 

 

holdsSometimeIn(event, time interval)  = 

    “There exists a time point t in time interval T 

   so that holdsAt(E,t)” 

 

initiatedSometimeIn(event, time interval) = 
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    “There exists a time point t in time interval T 

   so that initiatedAt(E,t)” 

 

terminatedSometimeIn(event, time interval) = 

    “There exists a time point t in time interval T 

   so that terminatedAt(E,t)” 

 

It may seem at first that the interval-based predicates could all be defined in 

terms of the time-point-based predicates using universal and existential quantifica-

tion, but this isn’t quite the case. Initiation and termination may sometimes be 

considered as processes occupying non-instantaneous stretches of time, so that a 

process initiating over an interval does not imply that the process initiates at each 

point within that interval. 

Using the SatisfyingSet operator, we may also define some useful schemata 

corresponding to the above predicates. For example, we may define 

SS_InitiatedAt via 

 
Equivalence 

 Member $X (SatSet InitatedAt(event, *)) 

 ExOut SS_InitiatedAt(event) $X 

 

which means that, for instance, SS_InitiatedAt(shaving_event_33) denotes the 

time at which the event shaving_event_33 was initiated. We will use a similar no-

tation for schemata associated with other temporal predicates, below. 

Next, there are various important properties that may be associated with events, 

for example persistence and continuity.  

 
Persistent(event) 

 

Continuous(event) 

 

Increasing(event) 

 
Decreasing(event) 

 

which are (like hold, initiate, and terminate) functions outputting probabilistic 

predicates mapping time distributions into probabilistic truth-values. 

Persistence indicates that the truth-value of an event can be expected to remain 

roughly constant over time from the point at which is initiated until the point at 

which the event is terminated. A “fluent” is then defined as an event that is persis-

tent throughout its lifetime. Continuous, Increasing, and Decreasing apply to non-

persistent events, and indicate that the truth-value of the event can be expected to 

{vary continuously, increase, or decrease} over time. 

For example, to say that the event of clutching (e.g., the agent clutching a ball) 

is persistent involves the predicate (isPersistent(clutching))([-infinity,infinity]). 
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Note that this predicate may be persistent throughout all time even if it is not true 

throughout all time; the property of persistence just says that once the event is ini-

tiated its truth-value remains roughly constant until it is terminated.  

Other temporal predicates may be defined in terms of these. For example, an 

“action” may be defined as an initiation and termination of some event that is as-

sociated with some agent (which is different from the standard Event Calculus 

definition of action). 

Next, there is also use for further derived constructs such as 

 
initiates(action, event) 

 

indicating that a certain action initiates a certain event or 

 
done(event) 

  

which is true at time-point t if the event terminated before t (i.e., before the sup-

port of the time distribution representing t). 

Finally, it is worth noting that in a logic system like PLN the above predicates 

may be nested within markers indicating them as hypothetical knowledge. This 

enables Probabilistic Event Calculus to be utilized much like Situation Calculus 

(McCarthy, 1986), in which hypothetical events play a critical role.  

14.2.2 The “Frame Problem” 

 A major problem in practical applications of Event Calculus is the “frame 

problem” (McCarthy, 1986; Mueller, 2006), which – as usually construed in AI – 

refers to the problem of giving AI reasoning systems implicit knowledge about 

which aspects of a real-world situation should be assumed not to change during a 

certain period of time. More generally, in philosophy the “frame problem” may be 

construed as the problem of how a rational mind should bound the set of beliefs to 

change when a certain action is performed. This section contains some brief con-

ceptual comments on the frame problem and its relationship to Probabilistic Event 

Calculus and PLN in general. 

For instance, if I tell you that I am in a room with a table in the center of it and 

four chairs around it, and then one of the chairs falls down, you will naturally as-

sume that the three other chairs did not also fall down – and also that, for instance, 

the whole house didn’t fall down as well (perhaps because of an earthquake). 

There are really two points here: 

 

1. The assumption that, unless there is some special reason to believe oth-

erwise, objects will generally stay where they are; this is  an aspect of 

what is sometimes known as the “commonsense law of inertia” (Muel-

ler, 2006). 
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2. The fact that, even though the above assumption is often violated in re-

ality, it is beneficial to assume it holds for the sake of making inference 

tractable. The inferential conclusions obtained may then be used, or 

not, in any particular case depending on whether the underlying as-

sumptions apply there.  

 

We can recognize the above as a special case of what we earlier called “default 

inference,” adopting terminology from the nonmonotonic reasoning community. 

After discussing some of the particulars of the frame problem, we will return to 

the issue of its treatment in the default reasoning context.  

The original strategy John McCarthy proposed for solving the frame problem 

(at least partially) was to introduce the formal-logical notion of circumscription 

(McCarthy, 1986). For example, if we know 

 
initiatesDuring(chair falls down, T1) 

 

regarding some time interval T1, then the circumscription of holdsDuring and T1 

in this formula is 

 
initiatesDuring(x,T1) <==> x = “chair falls down” 

  

Basically this just is a fancy mathematical way of saying that no other events 

are initiated in this interval except the one event of the chair falling down. If 

multiple events are initiated during the interval, then one can circumscribe the 

combination of events, arriving at the assertion that no other events but the ones in 

the given set occur. This approach has known shortcomings, which have been 

worked around via various mechanisms including the simple addition of an axiom 

stating that events are by default persistent in the sense given above (see Reiter, 

1991; Sandewall, 1998). Mueller (2006) uses circumscription together with work-

arounds to avoid the problems classically found with it. 

However, none of these mechanisms is really satisfactory. In a real-world sce-

nario there are always various things happening; one can’t simply assume that 

nothing else happens except a few key events one wants to reason about. Rather, a 

more pragmatic approach is to assume, for the purpose of doing an inference, that 

nothing important and unexpected happens that is directly relevant to the relation-

ships one is reasoning about. Event persistence must be assumed probabilistically 

rather than crisply; and just as critically, it need be assumed only for appropriate 

properties of appropriate events that are known or suspected to be closely related 

to the events being reasoned about in a given act of reasoning. 

This latter issue (the constraints on the assumption of persistence) is not ade-

quately handled in most treatments of formal commonsense reasoning, because 

these treatments handle “toy domains” in which reasoning engines are fed small 

numbers of axioms and asked to reason upon them. This is quite different from the 

situation of an embodied agent that receives a massive stream of data from its sen-

sors at nearly all times, and must define its own reasoning problems and its own 
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relevant contexts. Thus, the real trickiness of the “frame problem” is not exactly 

what the logical-AI community has generally made it out to be; they have side-

stepped the main problem due to their focus on toy problems. 

Once a relevant context is identified, it is relatively straightforward for an AI 

reasoning system to say “Let us, for the sake of drawing a relatively straightfor-

ward inference, make the provisional assumption that all events of appropriate 

category in this context (e.g., perhaps: all events involving spatial location of in-

animate household objects) are persistent unless specified otherwise.” Information 

about persistence doesn’t have to be explicitly articulated about each relevant ob-

ject in the context, any more than an AI system needs to explicitly record the 

knowledge that each human has legs – it can derive that Ben has legs from the fact 

that most humans have legs; and it can derive that Ben’s refrigerator is stationary 

from the fact that most household objects are stationary. The hard part is actually 

identifying the relevant context, and understanding the relevant categories (e.g., 

refrigerators don’t move around much, but people do). This must be done induc-

tively; e.g., by knowledge of what contexts have been useful for similar inferences 

in the past. This is the crux of the frame problem: 

 

• Understanding what sorts of properties of what sorts of objects tend to 

be persistent in what contexts (i.e., learning specific empirical prob-

abilistic patterns regarding the Persistent predicate mentioned above) 

• Understanding what is a natural context to use for modeling persis-

tence, in the context of a particular inference (e.g., if reasoning about 

what happens indoors, one can ignore the out of doors even it’s just a 

few feet away through the wall, because interactions between the in-

doors and out of doors occur only infrequently) 

 

And this, it seems, is just plain old “AI inference” – not necessarily easy, but 

without any obvious specialness related to the temporal nature of the content ma-

terial. As noted earlier, the main challenge with this sort of inference is making it 

efficient, which may be done, for instance, by use of a domain-appropriate ontol-

ogy to guide the default inference (allowing rapid estimation of when one is in a 

case where the default assumption of location-persistence will not apply). 

14.3 Temporal Logic Relationships 

In principle one can do temporal inference in PLN without adding any new 

constructs, aside from the predicates introduced above and labeled Probabilistic 

Event Calculus. One can simply use standard higher-order PLN links to interrelate 

event calculus predicates, and carry out temporal inference in this way. However, 

it seems this is not the most effective approach. To do temporal inference in PLN 

efficiently and elegantly, it’s best to introduce some new relationship types: pre-

dictive implication (PredictiveImplication and EventualPredictiveImplication) and 
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sequential and simultaneous conjunction and disjunction. Here we introduce these 

concepts, and then describe their usage for inferring appropriate behaviors to con-

trol an agent in a simulation world. 

14.3.1 Sequential AND 

Conceptually, the basic idea of sequential AND is that 

 
SeqAND (A1,  ..., An ) 

 

should be “just like AND but with the additional rule that the order of the items 

in the sequence corresponds to the temporal order in which they occur.” Similarly, 

SimOR and SimAND (“Sim” for Simultaneous)  may be used to define parallelism 

within an SeqAND list; e.g., the following pseudocode for holding up a conven-

ience store: 

 
SeqAND 

 enter store 

 SimOR 

  kill clerk 

  knock clerk unconscious 

 steal money 

 leave store 

 

However, there is some subtlety lurking beneath the surface here. The simplis-

tic interpretations of SeqAND as “AND plus sequence” is not always adequate, as 

the event calculus notions introduced above reveal. Attention must be paid to the 

initiations and terminations of events. The basic idea of sequential AND must be 

decomposed into multiple notions, based on disambiguating properties we call dis-

jointness and eventuality. Furthermore, there is some additional subtlety because 

the same sequential logical link types need to be applied to both terms and predi-

cates. 

Applied to terms, the definition of a basic, non-disjoint, binary SeqAND is 

 
SeqAND A B <s, T> 

 

iff 

 

AND 

 AND A B 

 Initiation(B) – Initiation(A) lies in interval T 
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Basically, what this says is “B starts x seconds after A starts, where x lies in the in-

terval T.” 

Note that in the above we use <s, T> to denote a truth-value with strength s and 

time-interval parameter T. For instance,  

 
SeqAND <.8,(0s,120s)> 

 shaving_event_33  

 showering_event_43  

 

means 

 
AND 

 AND  

  shaving_event_33 

  showering_event_43 

 SS_Initiation(showering_event_43)–  

 SS_Initiation(shaving_event_33) in [0s, 120s] 

 

On the other hand, the definition of a basic disjoint binary SeqAND between 

terms is 

 
DisjointSeqAND A B <s, T> 

 

iff 

 

AND 

 AND A B 

 Initiation(B) – Termination(A)  

     lies in interval T 

 

Basically, what this says is “B starts x seconds after A finishes, where x lies in the 

interval T” – a notion quite different from plain old SeqAND. 

EventualSeqAND and DisjointEventualSeqAND are defined similarly, but 

without specifying any particular time interval. For example, 

 
EventualSeqAND A B <s> 

 

iff 

 

AND 

 AND A B 

 Evaluation 

  after 

  List 

   SS_Initiation(B) 
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   SS_Initiation(A)  

      

 

Next, there are several natural ways to define (ordinary or disjoint) SeqAND as 

applied to predicates. The method we have chosen makes use of a simple variant 

of “situation semantics” (Barwise 1983). Consider P and Q as predicates that ap-

ply to some situation; e.g., 

 
P(S) = shave(S) =  

true if shaving occurs in situation S 

 

Q(S) = shower(S) =  

true if showering occurs in situation S 

 

Let 

 
timeof(P,S) =  

the set of times at which the predicate P is true in 

situation S 

 

Then 

 
SeqAND P Q 

 

is also a predicate that applies to a situation; i.e., 

 
(SeqAND P Q)(S) <s,T> 

 

is defined to be true of situation S iff 

 
AND <s> 

 AND P(S) Q(S) 

 timeof(Q,S) – timeof(P,S) intersects interval T 

 

In the case of an n-ary sequential AND, the time interval T must be replaced by 

a series of time intervals; e.g., 

 
SeqAND <s,(T1,…,Tn)> 

 A1 

 ... 

 An-1 

 An 

 

is a shorthand for 
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AND <s> 

SeqAND A1 A2 <T1> 

… 

SeqAND An-1 An <Tn> 

 

Simultaneous conjunction and disjunction are somewhat simpler to handle. 

We can simply say, for instance, 

 
SimAND A B <s, T> 

 

iff 

 

AND 

 HoldsThroughout(B,T) 

 HoldsThroughout(A,T) 

 

and make a similar definition for SimOr. Extension from terms to predicates using 

situation semantics works analogously for simultaneous links as for sequential 

ones. Related link types ExistentialSimAND and ExistentialSimOR, defined e.g. 

via 

 
SimOR A B <s, T> 

 

iff 

 

OR 

 HoldsSometimeIn(B,T) 

 HoldsSometimeIn(A,T) 

 

may also be useful. 

14.3.2 Predictive Implication 

Next, having introduced the temporal versions of conjunction (and disjunction), 

we introduce the temporal version of implication: the relationship 

ExtensionalPredictiveImplication P Q <s,T> 

which is defined as 

 
ExtensionalImplication <s> 

 P(S) 

[SeqAND( P ,  Q) <T>](S) 
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There is a related notion of DisjointPredictiveImplication defined in terms of Dis-

jointSeqAND. 

PredictiveImplication may also be meaningfully defined intensionally; i.e., 

 

IntensionalPredictiveImplication P Q <s,T> 

may be defined as 

 
IntensionalImplication <s> 

 P(S) 

[SeqAND( P ,  Q) <T>](S) 

and of course there is also mixed PredictiveImplication, which is, in fact, the most 

commonly useful kind. 

14.3.3 Eventual Predictive Implication 

Predictive implication is an important concept but applying it to certain kinds 

of practical situations can be awkward. It turns out to be useful to also introduce a 

specific relationship type with the semantics “If X continues for long enough, then 

Y will occur.” In PLN this is called EventualPredictiveImplication, so that, e.g., 

we may say 

 
EventualPredictiveImplication starve die 

 

EventualPredictiveImplication run sweat 

 

Formally, for events X and Y 

 
EventualPredictiveImplication P Q 

 

may be considered as a shorthand for 

 
Implication <s> 

 P(S) 

[EventualSeqAND( P ,  Q) <T>](S) 

 

There are also purely extensional and intensional versions, and there is a notion of 

DisjointEventualPredictiveImplication as well.  
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14.3.4 Predictive Chains 

Finally, we have found use for the notion of a predictive chain, where 

 
PredictiveChain <s,(T1,…,Tn)> 

 A1 

 ... 

 An-1 

 An 

 

means 
 

PredictiveImplication <s,Tn> 

 SeqAND <(T1,…,Tn-1)> 

  A1 

  ... 

  An-1 

 An 

 

For instance, 

 
PredictiveChain 

 Teacher is thirsty 

I go to the water machine 

I get a cup 

I fill the cup 

I bring the cup to teacher 

Teacher is happy 

 

Disjoint and eventual predictive chains may be introduced in an obvious way. 

14.3.5 Inference on Temporal Relationships 

Inference on temporal-logical relationships must use both the traditional truth-

values and the probability of temporal precedence; e.g., in figuring out whether  

 
PredictiveImplication A B 

PredictiveImplication B C 

|- 

PredictiveImplication A C 

 

one must calculate the truth-value of  
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Implication A C 

 

but also the odds that in fact A occurs before C. The key point here, conceptually, 

is that the probabilistic framework may be applied to time intervals, allowing PLN 

to serve as a probabilistic temporal logic not just a probabilistic static logic.   

In the context of indefinite probabilities, the use of time distributions may be 

viewed as adding an additional level of Monte Carlo calculation.  In handling each 

premise in an inference, one may integrate over all time-points, weighting each 

one by its probability according to the premise’s time distribution.  This means 

that for each collection of (premise, time point) pairs, one does a whole inference; 

and then one revises the results, using the weightings of the premises’ time distri-

butions. 

14.4 Application to Making a Virtual Agent Learn to Play Fetch 

As an example of PLN temporal inference, we describe here experiments that 

were carried out using temporal PLN to control the learning engine of a humanoid 

virtual agent carrying out simple behaviors in a 3D simulation world. Specifically, 

we run through in detail how PLN temporal inference was used to enable the agent 

to learn to play the game of fetch in the AGISim game world. 

The application described here was not a pure PLN application, but PLN’s 

temporal inference capability lay at its core. More broadly, the application in-

volved the Novamente Cognition Engine architecture and the application of PLN, 

in combination with other simpler modules, within this architecture. The NCE is 

extremely flexible, incorporating a variety of carefully inter-coordinated learning 

processes, but the experiments described in this section relied primarily on the in-

tegration of PLN inference with statistical pattern mining based perception and 

functional program execution based agent control.  

From the PLN and Novamente point of view, the experiments reported here are 

interesting mostly as a “smoke test” for embodied, inference-based reinforcement 

learning, to indicate that the basic mechanisms required for doing this sort of in-

ferential learning are integrated adequately and working correctly.  

One final preliminary note: Learning to play fetch in the manner described here 

requires the assumption that the system already has learned (or been provided in-

trinsically with the capability for) how to recognize objects: balls, teachers, and 

the like. Object recognition in AGISim is something the NCE is able to learn, 

given the relatively low-bandwidth nature of the perceptions coming into it from 

AGISim, but that was not the focus of the reported work. Instead, we will take this 

capability for granted here and focus on perception/action/cognition integration 

specific to the “fetch” task.  
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14.4.1 The Game of Fetch 

“Fetch” is a game typically played between a human and a dog. The basic idea 

is a simple one: the human throws an object and says “fetch,” the dog runs to the 

object, picks it up, and brings it back to the human, who then rewards the dog for 

correct behavior. In our learning experiments, the teacher (a humanoid agent in 

AGISim) plays the role of the human and the Novamente-controlled agent plays 

the role of the dog. 

In more complex AGISim experiments, the teacher is actually controlled by a 

human being, who delivers rewards to Novamente by using the Reward controls 

on the AGISim user interface. Due to the simplicity of the current task, in the 

“fetch” experiments reported here the human controller was replaced by auto-

mated control code. The critical aspect of this automated teacher is partial reward. 

That is, you can’t teach a dog (or a baby Novamente) to play fetch simply by re-

warding it when it successfully retrieves the object and brings it to you, and re-

warding it not at all otherwise – because the odds of it ever carrying out this “cor-

rect” behavior by random experimentation in the first place would be very low.. 

What is needed for instruction to be successful is for there to be a structure of par-

tial rewards in place. We used here a modest approach with only one partial re-

ward preceding the final reward for the target behavior. The partial reward is ini-

tially given for the agent when it manages to lift the ball from the ground, and 

once it has learnt to repeat this behavior we switch to the final stage where we 

only reward the agent when it proceeds to take the ball to the teacher and drop it 

there. 

14.4.2 Perceptual Pattern Mining 

Pattern mining, within the NCE, is a process that identifies frequent or other-

wise significant patterns in a large body of data. The process is independent of 

whether the data is perceptual or related to actions, cognition, etc. However, it is 

often associated with perceptual data and abstractions from perceptual data. In 

principle, everything obtained via pattern mining could also be obtained via in-

ference, but pattern mining has superior performance in many applications. 

The pattern mining relevant to the fetch learning consists of simply recogniz-

ing frequent sequences of events such as 

 
SequentialAND 

    SimultaneousAND 

      I am holding the ball 

      I am near the teacher 

     I get more reward. 
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which in full-fledged PLN notation is 

 
SequentialAND 

 SimultaneousAND 

  EvaluationLink 

   holding 

   ball 

  EvaluationLink 

   near 

   ListLink (me, teacher) 

 Reward 

14.4.3 Particularities of PLN as Applied to Learning to Play Fetch 

From a PLN perspective, learning to play fetch is a simple instance of back-

ward chaining inference – a standard inference control mechanism whose cus-

tomization to the PLN context was briefly described in the previous chapter. The 

goal of the NCE in this context is to maximize reward, and the goal of the PLN 

backward chainer is to find some way to prove that if some actionable predicates 

become true, then the truth-value of 

 
EvaluationLink(Reward) 

 

is maximized. This inference is facilitated by assuming that any action can be 

tried out; i.e., the trying of actions is considered to be in the axiom set of the in-

ference. (An alternative, also workable approach is to set a PredictiveImplica-

tionLink($1, Reward) as the target of the inference, and launch the inference to 

fill in the variable slot $1 with a sequence of actions.) 

PredictiveImplicationLink is a Novamente Link type that combines logical 

(probabilistic) implication with temporal precedence. Basically, the backward 

chainer is being asked to construct an Atom that implies reward in the future. 

Each PredictiveImplicationLink contains a time-distribution indicating how long 

the target is supposed to occur after the source does; in this case the time-

distribution must be centered on the rough length of time that a single episode of 

the “fetch” game occupies.  

To learn how to play fetch, The NCE must repeatedly invoke PLN backward 

chaining on a knowledge base consisting of Atoms that are constantly being acted 

upon by perceptual pattern mining as discussed above. PLN learns logical knowl-

edge about circumstances that imply reward, and then a straightforward process 

called predicate schematization produces NCE objects called “executable sche-

mata,” which are then executed. This causes the system to carry out actions, 

which in turn lead to new perceptions, which give PLN more information to 
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guide its reasoning and lead to the construction of new procedures, etc. 

In order to carry out very simple inferences about schema execution as re-

quired in the fetch example, PLN uses two primitive predicates:  

 

• try(X), indicating that the schema X is executed 
• can(X), indicating that the necessary preconditions of schema X are 

fulfilled, so that the successful execution of X will be possible 
 

Furthermore, the following piece of knowledge is assumed to be known by the 

system, and is provided to the NCE as an axiom: 

 
PredictiveImplication 

    SimultaneousAnd 

       Evaluation try X 

       Evaluation can X 

    Evaluation done X 

 

This simply means that if the system can do X, and tries to do X, then at some 

later point in time, it has done X. Note that this implication may also be used 

probabilistically in cases where it is not certain whether or not the system can do 

X.  Note that in essentially every case, the truth value of Evaluation can X 

will be uncertain (even if an action is extremely simple, there’s always some pos-

sibility of an error message from the actuator), so that the output of this Predic-

tiveImplication will essentially never be crisp. 

The proper use of the “can” predicate necessitates that we mine the history of 

occasions in which a certain action succeeded and occasions in which it did not. 

This allows us to create PredictiveImplications that embody the knowledge of the 

preconditions for successfully carrying out the action. In the inference experi-

ments reported here, we use a simpler approach because the basic mining prob-

lem is so easy; we just assume that “can” holds for all actions, and push the sta-

tistics of success/failure into the respective truth-values of the 

PredictiveImplications produced by pattern mining. 

Next, we must explain a few shorthands and peculiarities that we introduced 

when adapting the PLN rules to carry out the temporal inference required in the 

fetch example. The ModusPonensRule used here is simply a probabilistic version 

of the standard Boolean modus ponens, as described earlier. It can also be applied 

to PredictiveImplications, insofar as the system keeps track of the structure of the 

proof tree so as to maintain the (temporally) proper order of arguments. By fol-

lowing the convention that the order in which the arguments to modus ponens 

must be applied is always the same as the related temporal order, we may extract 

a plan of consecutive actions, in an unambiguous order, directly from the proof 

tree. 

Relatedly, the AndRules used are of the form 
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A 

B 

|- 

A & B 

 

and can be supplied with a temporal inference formula so as to make them appli-

cable for creating SequentialANDs. We will also make use of what we call the 

SimpleANDRule, which embodies a simplistic independence assumption and 

finds the truth-value of a whole conjunction based only on the truth-values of its 

individual constituents, without trying to take advantage of the truth-values possi-

bly known to hold for partial conjunctions. 

We use a “macro rule” called RewritingRule, which is defined as a composition 

of AndRule and ModusPonensRule. It is used as a shorthand for converting atoms 

from one form to another when we have a Boolean true implication at our dis-

posal.  

What we call CrispUnificationRule is a “bookkeeping rule” that serves simply 

to produce, from a variable-laden expression (Atom defined by a ForAll, ThereEx-

ists or VariableScope relationship), a version in which one or more variables have 

been bound. The truth-value of the resulting atom is the same as that of the quanti-

fied expression itself. 

Finally, we define the specific predicates used as primitives for this learning 

experiment, which enables us to abstract away from any actual motor learning:  

 

• Reward – a built-in sensation corresponding to the Novamente agent get-

ting Reward, either via the AGISim teaching interface or otherwise hav-

ing its internal Reward indicator stimulated 

• goto – a persistent event; goto(x) means the agent is going to x 

• lift – an action; lift(x) means the agent lifts x 

• drop – an action; drop(x) means the agent drops x if it is currently 

holding x (and when this happens close to an agent T, we can interpret 

that informally as “giving” x to T) 

• TeacherSay – a percept; TeacherSay(x) means that the teacher utters the 

string x 

• holding – a persistent event; holding(x) means the agent is holding x 

14.4.4 Learning to Play Fetch Via PLN Backward Chaining 

Next, we show a PLN inference trajectory that results in learning to play fetch 

once we have proceeded into the final reward stage. This trajectory is one of many 

produced by PLN in various indeterministic learning runs. When acted upon by 

the NCE’s predicate schematization process, the conclusion of this trajectory (de-

picted graphically in Figure 1) produces the simple schema (executable procedure) 
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try goto Ball 

try lift Ball 

try goto Teacher 

try drop Ball. 

 

 

 

 
 

Figure 1. Graphical depiction of the final logical plan learned for carrying 

out the fetch task 

 

It is quite striking to see how much work PLN and the perception system need 

to go through to get to this relatively simple plan, resulting in an even simpler 

logical procedure! Nevertheless, the computational work required to do this sort of 

inference is quite minimal, and the key point is that the inference is done by a 

general-purpose inference engine that was not at all tailored for this particular 

task. The inference target was 

 
EvaluationLink <0.80, 0.0099> 

 Reward: PredicateNode <1, 0>. 

 

The final truth-value found for the EvaluationLink is of the form <strength, weight 

of evidence>, meaning that the inference process initially found a way to achieve 

the Reward with a strength of 0.80, but with a weight of evidence of only .0099 

(the rather unforgiving scaling factor of which originates from the internals of the 

perception pattern miner). Continuing the run makes the strength and weight of 

evidence increase toward 1.0. 

The numbers such as [9053948] following nodes and links indicate the “han-

dle” of the entity in the NCE’s knowledge store, and serve as unique identifiers. 

The target was produced by applying ModusPonensRule to the combination of 
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PredictiveImplicationLink <0.8,0.01> [9053948] 

  SequentialAndLink <1,0> [9053937] 

    EvaluationLink <1,0> [905394208] 

      "holdingObject":PredicateNode <0,0> [6560272] 

      ListLink [7890576] 

        "Ball":ConceptNode <0,0> [6582640] 

    EvaluationLink <1,0> [905389520] 

      "done":PredicateNode <0,0> [6606960] 

      ListLink [6873008] 

        ExecutionLink [6888032] 

          "goto":GroundedSchemaNode <0,0> [6553792] 

          ListLink [6932096] 

             "Teacher":ConceptNode <0,0> [6554000] 

    EvaluationLink <1,0> [905393440] 

      "try":PredicateNode <0,0> [6552272] 

      ListLink [7504864] 

        ExecutionLink [7505792] 

          "drop":GroundedSchemaNode <0,0> [6564640] 

           ListLink [7506928] 

             "Ball":ConceptNode <0,0> [6559856] 

  EvaluationLink <1,0> [905391056] 

    "Reward":PredicateNode <1,0> [191] 

 

(the plan fed to predicate schematization, and shown in Figure 1) and 

 
  SequentialAndLink <1,0.01> [840895904] 

    EvaluationLink <1,0.01> [104300720] 

      "holdingObject":PredicateNode <0,0> [6560272] 

      ListLink [7890576] 

        "Ball":ConceptNode <0,0> [6582640] 

    EvaluationLink <1,1> [72895584] 

      "done":PredicateNode <0,0> [6606960] 

      ListLink [6873008] 

        ExecutionLink [6888032] 

          "goto":GroundedSchemaNode <0,0> [6553792] 

          ListLink [6932096] 

            "Teacher":ConceptNode <0,0> [6554000] 

    EvaluationLink <1,1> [104537344] 

      "try":PredicateNode <0,0> [6552272] 

      ListLink [7504864] 

        ExecutionLink [7505792] 

          "drop":GroundedSchemaNode <0,0> [6564640] 

          ListLink [7506928] 

            "Ball":ConceptNode <0,0> [6559856] 
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Next, the SequentialANDLink [840895904] was produced by applying Simple-

ANDRule to its three child EvaluationLinks. 

The EvaluationLink [104300720] was produced by applying ModusPonensRule 

to 

 
PredictiveImplicationLink <1,0.01> [39405248] 

  SequentialANDLink <1,0> [39403472] 

    EvaluationLink <1,0> [39371040] 

      "done":PredicateNode <0,0> [6606960] 

     ListLink [7511296] 

       ExecutionLink [7490272] 

         "goto":GroundedSchemaNode<0,0> [6553792] 

         ListLink [7554976] 

           "Ball":ConceptNode <0,0> [6558784] 

   EvaluationLink <1,0> [39402640] 

    “done":PredicateNode <0,0> [6606960] 

    ListLink [7851408] 

      ExecutionLink [7865376] 

        "lift":GroundedSchemaNode <0,0> [6553472] 

        ListLink [7890576] 

          "Ball":ConceptNode <0,0> [6582640] 

 EvaluationLink <1,0> [39404448] 

   "holdingObject":PredicateNode <0,0> [6560272] 

   ListLink [7890576] 

     "Ball":ConceptNode <0,0> [6582640] 

          

which was mined from perception data (which includes proprioceptive 

observation data indicating that the agent has completed an elementary 

action), and to 

 
SequentialANDLink <1,1> [104307776] 

   EvaluationLink <1,1> [72926800] 

      "done":PredicateNode <0,0> [6606960] 

      ListLink [7511296] 

         ExecutionLink [7490272] 

            "goto":GroundedSchemaNode <0,0> [6553792] 

            ListLink [7554976] 

               "Ball":ConceptNode <0,0> [6558784] 

   EvaluationLink <1,1> [72913264] 

      "done":PredicateNode <0,0> [6606960] 

      ListLink [7851408] 

         ExecutionLink [7865376] 

            "lift":GroundedSchemaNode <0,0> [6553472] 

            ListLink [7890576] 

               "Ball":ConceptNode <0,0> [6582640]. 
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The SequentialANDLink [104307776] was produced by applying SimpleAN-

DRule to its two child EvaluationLinks. The EvaluationLink [72926800] was pro-

duced by applying RewritingRule to 

 

EvaluationLink <1,1> [72916304] 

   "try":PredicateNode <0,0> [6552272] 

   ListLink [7511296] 

      ExecutionLink [7490272] 

         "goto":GroundedSchemaNode <0,0> [6553792] 

         ListLink [7554976] 

            "Ball":ConceptNode <0,0> [6558784] 

and 

 
EvaluationLink <1,1> [72923504] 

   "can":PredicateNode <1,0> [6566128] 

   ListLink [7511296] 

      ExecutionLink [7490272] 

         "goto":GroundedSchemaNode <0,0> [6553792] 

         ListLink [7554976] 

            "Ball":ConceptNode <0,0> [6558784]. 

 

The EvaluationLink [72916304], as well as all other try statements, were con-

sidered axiomatic and technically produced by applying the CrispUnificationRule 

to 

 
ForallLink <1,1> [6579808] 

   ListLink <1,0> [6564144] 

      "$A":VariableNode <1,0> [6563968] 

   EvaluationLink <1,0> [6579200] 

      "try":PredicateNode <0,0> [6552272] 

      ListLink <1,0> [6564144] 

         "$A":VariableNode <1,0> [6563968] 

                   

The EvaluationLink [72923504], as well as all other can statements, were con-

sidered axiomatic and technically produced by applying CrispUnificationRule to: 

 
ForallLink <1,1> [6559424] 

   ListLink <1,0> [6564496] 

      "$B":VariableNode <1,0> [6564384] 

   EvaluationLink <1,0> [6550720] 

      "can":PredicateNode <1,0> [6566128] 

      ListLink <1,0> [6564496] 

         "$B":VariableNode <1,0> [6564384] 
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The EvaluationLink [72913264] was produced by applying RewritingRule to 

 
EvaluationLink <1,1> [72903504] 

   "try":PredicateNode <0,0> [6552272] 

   ListLink [7851408] 

      ExecutionLink [7865376] 

         "lift":GroundedSchemaNode <0,0> [6553472] 

         ListLink [7890576] 

            "Ball":ConceptNode <0,0> [6582640] 

 

and 

 
EvaluationLink <1,1> [72909968] 

   "can":PredicateNode <1,0> [6566128] 

   ListLink [7851408] 

      ExecutionLink [7865376] 

         "lift":GroundedSchemaNode <0,0> [6553472] 

         ListLink [7890576] 

            "Ball":ConceptNode <0,0> [6582640] 

 

And finally, returning to the first PredictiveImplicationLink’s children, Evalua-

tionLink [72895584] was produced by applying RewritingRule to the axioms 

 
EvaluationLink <1,1> [72882160] 

   "try":PredicateNode <0,0> [6552272] 

   ListLink [6873008] 

      ExecutionLink [6888032] 

         "goto":GroundedSchemaNode <0,0> [6553792] 

         ListLink [6932096] 

            "Teacher":ConceptNode <0,0> [6554000] 

 

and 

 
EvaluationLink <1,1> [72888224] 

   "can":PredicateNode <1,0> [6566128] 

   ListLink [6873008] 

      ExecutionLink [6888032] 

         "goto":GroundedSchemaNode <0,0> [6553792] 

         ListLink [6932096] 

            "Teacher":ConceptNode <0,0> [6554000] 

 
In conclusion, we have given a relatively detailed treatment of a simple learn-

ing experiment – learning to play fetch – conducted with the NCE integrative AI 

system in the AGISim simulation world. Our approach was to first build an inte-

grative AI architecture we believe to be capable of highly general learning, and 
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only then apply it to the fetch test, while making minimal parameter adjustment to 

the specifics of the learning problem. This means that in learning to play fetch the 

system has to deal with perception, action, and cognition modules that are not 

fetch-specific, but are rather intended to be powerful enough to deal with a wide 

variety of learning tasks corresponding to the full range of levels of cognitive de-

velopment. 

Ultimately, in a problem this simple the general-intelligence infrastructure of 

the NCE and the broad sophistication of PLN don’t add all that much. There exist 

much simpler systems with equal fetch-playing prowess. For instance, the PLN 

system’s capability of powerful analogical reasoning is not being used at all here, 

and its use in an embodiment context is a topic for another paper. However, this 

sort of simple integrated learning lays the foundation for more complex embodied 

learning based on integrated cognition, the focus of much of our ongoing work. 

14.5 Causal Inference  

Temporal inference, as we have seen, is relatively conceptually simple from a 

probabilistic perspective. It leads to a number of new link types and a fair amount 

of bookkeeping complication (the node-and-link constructs shown in the context 

of the fetch example won’t win any prizes for elegance), but is not fundamentally 

conceptually problematic. The tricky issues that arise, such as the frame problem, 

are really more basic AI issues than temporal inference issues in particular. 

Next, what about causality? This turns out to be a much subtler matter. There is 

much evidence that human causal inference is pragmatic and heterogeneous rather 

than purely mathematical (see discussion and references in Goertzel 2006). One 

illustration of this is the huge variance in the concept of causality that exists 

among various humans and human groups (Smith 2003). Given this, it’s not to be 

expected that PLN or any other logical framework could, in itself, give a thorough 

foundation for understanding causality. But even so, there are interesting connec-

tions to be drawn between PLN and aspects of causal inference. 

Predictive implication, as discussed above, allows us to discuss temporal corre-

lation in a pragmatic way. But this brings us to what is perhaps the single most 

key conceptual point regarding causation: correlation and causation are distinct. 

To take the classic example, if a rooster regularly crows before dawn, we do not 

want to infer that he causes the sun to rise.  

In general, if X appears to cause Y, it may actually be due to Z causing both X 

and Y, with Y appearing later than X. We can only be sure that this is not the case 

if we have a way to identify alternative causes and test them in comparison to the 

causes we think are real. Or, as in the rooster/dawn case, we may have background 

knowledge that makes the “X causes Y” scenario intrinsically implausible in terms 

of the existence of potential causal mechanisms. 
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Let’s consider this example in a little more detail. In the case of roosters and 

dawn, clearly we have both implication and temporal precedence. Hence there will 

be a PredictiveImplication from “rooster crows” to “sun rises.” But will the rea-

soning system conclude from this PredictiveImplication that if a rooster happens 

to crow at 1 AM the sun is going to rise really early that morning – say, at 2 AM? 

How is this elementary error avoided? 

There are a couple of answers here. The first has to do with the inten-

sion/extension distinction. It says:  The strength of this particular PredictiveImpli-

cation may be set high by direct observation, but it will be drastically lowered by 

inference from more general background knowledge. Specifically, much of this in-

ference will be intensional in nature, as opposed to the purely extensional infor-

mation (direct evidence-counting) that is used to conclude that roosters crowing 

imply sun rising. We thus conclude that one signifier of bogus causal relationships 

is when  

 
ExtensionalPredictiveImplication A B 

has a high strength but 

 
IntensionalPredictiveImplication A B  

has a low strength. In the case of  

 
A = rooster crows 

B = sun rises 

the weight-of-evidence of the intensional relationship is much higher than that of 

the extensional relationship, so that the overall PredictiveImplication relationship 

comes out with a fairly low strength. 

To put it more concretely, if the reasoning system had never seen roosters crow 

except an hour before sunrise, and had never seen the sun rise except after rooster 

crowing, the posited causal relation might indeed be created. What would keep it 

from surviving for long would be some knowledge about the mechanisms underly-

ing sunrise. If the system knows that the sun is very large and rooster crows are 

physically insignificant forces, then this tells it that there are many possible con-

texts in which rooster crows would not precede the sun rising. Conjectural reason-

ing about these possible contexts leads to negative evidence in favor of the impli-

cation  

PredictiveImplication rooster_crows sun_rises 

which counterbalances – probably overwhelmingly – the positive evidence in fa-

vor of this relationship derived from empirical observation.  

More concretely, one has the following pieces of evidence: 
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PredictiveImplication <.00, .99> 

small_physical_force  

movement_of_large_object  

PredictiveImplication <.99,.99> 

rooster_crows  

small_physical_force  

PredictiveImplication <.99, .99> 

sun_rises  

movement_of_large_object  

PredictiveImplication <.00,.99> 

rooster_crows  

sun_rises  

which must be merged with 

PredictiveImplication rooster_crows sun_rises  <1,c> 

derived from direct observation. So it all comes down to: How much more confi-

dent is the system that a small force can’t move a large object, than that rooster 

crows always precede the sunrise? How big is the parameter we’ve denoted c 

compared to the confidence we’ve arbitrarily set at .99?  

Of course, for this illustrative example we’ve chosen only one of many general 

world-facts that contradicts the hypothesis that rooster crows cause the sunrise… 

in reality many, many such facts combine to effect this contradiction. This simple 

example just illustrates the general point that reasoning can invoke background 

knowledge to contradict the simplistic “correlation implies causation” conclusions 

that sometimes arise from direct empirical observation. 

14.5.1 Aspects of Causality Missed by a Purely Logical Analysis  

In this section we will briefly discuss a couple of aspects of causal inference 

that seem to go beyond pure probabilistic logic – and yet are fairly easily inte-

grable into a PLN-based framework. This sort of discussion highlights what we 

feel will ultimately be the greatest value of the PLN formalism; it formulates logi-

cal inference in a way that fits in naturally with a coherent overall picture of cog-

nitive function. Here we will content ourselves with a very brief sketch of these 

ideas, as to pursue it further would lead us too far afield. 

14.5.1.1 Simplicity of Causal Mechanisms 

The first idea we propose has to do with the notion of causal mechanism. The 

basic idea is, given a potential cause-effect pair, to seek a concrete function map-

ping the cause to the effect, and to consider the causality as more substantial if this 

function is simpler. In PLN terms, this means that one is not only looking at the 
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IntensionalPredictiveImplication relationship underlying a posited causal relation-

ship, but one is weighting the count of this relationship more highly if the Predi-

cates involved in deriving the relationship are simpler. This heuristic for count-

biasing means that one is valuing simple causal mechanisms as opposed to com-

plex ones. The subtlety lies in the definition of the “simplicity” of a predicate, 

which relies on pattern theory (Goertzel 2006) as introduced above in the context 

of intensional inference.  

14.5.1.2 Distal Causes, Enabling Conditions 

As another indication of the aspects of the human judgment of causality that 

are omitted by a purely logical analysis, consider the distinction between local and 

distal causes. For example, does an announcement by Greenspan cause the market 

to change, or is he just responding to changed economic conditions on interest 

rates, and they are the ultimate cause? Or, to take another example, suppose a man 

named Bill drops a stone, breaking a car windshield. Do we want to blame (assign 

causal status to) Bill for dropping the stone that broke the car windshield, or his 

act of releasing the stone, or perhaps the anger behind his action, or his childhood 

mistreatment by the owner of the car, or even the law of gravity pulling the rock 

down? Most commonly we would cite Bill as the cause because he was a free 

agent. But different causal ascriptions will be optimal in different contexts: typi-

cally, childhood mistreatment would be a mitigating factor in legal proceedings in 

such a case. 

Related to this is the distinction between causes and so-called enabling condi-

tions. Enabling conditions predictively imply their “effect,” but they display no 

significant variation within the context considered pertinent. For, example oxygen 

is necessary to use a match to start a fire, but because it is normally always present 

we usually ignore it as a cause, and it would be called an enabling condition. If it 

really is always present, we can ignore it in practice; the problem occurs when it is 

very often present but sometimes is not, as for example when new unforeseen 

conditions occur.  

We believe it is fairly straightforward to explain phenomena like distal causes 

and enabling conditions, but only at the cost of introducing some notions that exist 

in Novamente but not in PLN proper. In Novamente, Atoms are associated with 

quantitative “importance” values as well as truth-values. The importance value of 

an Atom has to do with how likely it is estimated to be that this Atom will be use-

ful to the system in the future. There are short- and long-term importance values 

associated with different future time horizons. Importance may be assessed via 

PLN inference, but this is PLN inference based regarding propositions about how 

useful a given Atom has been over a given time interval. 

It seems that the difference between a cause and an enabling condition often 

has to do with nonlogical factors. For instance, in Novamente PLN Atoms are as-

sociated not only with truth-values but also with other numbers called attention 
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values, including for instance “importance” values indicating the expected utility 

of the system to thinking about the Atom. For instance, the relationship 

  
PredictiveImplication oxygen fire 

 

may have a high strength and count, but it is going to have a very low importance 

unless the AI system in question is dealing with some cases where there is insuffi-

cient oxygen available to light fires. A similar explanation may help with the dis-

tinction between distal and local causes. Local causes are the ones associated with 

more important predictive implications – where importance needs to be assigned, 

by a reasoning system, based on inferences regarding which relationships are more 

likely to be useful in future inferences.  
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Appendix A: Comparison of PLN Rules with 

NARS Rules 

Rule Strength formulas 
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Revision 

NARS: 
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A.1 Graphical Comparisons of Deduction 

Rules 
We graphically illustrate here how the three deduction rules compare. The 

most similar sets of rules are those of NARS and 1-dimensional (1D) concept-

geometry (Recall that in 1D concept-geometry, we consider model sets as 1-

spheres on the surface of a 2-sphere.) We first depict a 3D graph of the NARS 

rule, for sAB and sBC, followed by the corresponding graph for 1D concept-

geometry. We generated all graphs in this appendix with Mathematica. 

 

Plot3D[sAB*sBC/(sAB + sBC - sAB*sBC), {sAB, 0, 1}, {sBC, 0, 1}] 
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Plot3D[sAB*sBC/(Min[sAB + sBC, 1]), {sAB, 0, 1}, {sBC, 0, 1}] 

 
To better see the differences in these two formulas, we now show a graph of 

the difference between the two. 

 

Plot3D[sAB*sBC/(sAB + sBC - sAB*sBC) - sAB*sBC/(Min[sAB + sBC, 1]), 

{sAB, 0, 1}, {sBC, 0, 1}] 
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NARS and 1D concept geometry provide very similar deduction rules, with the 

greatest difference occurring when both sAB and sBC are close to 0.5.  

We next provide graphs of the PLN independence-assumption-based deduction 

rule. Since this rule requires five independent variable (sA, sB, sC, sAB, sBC) 

rather than only the two required by NARS and 1D concept-geometry, we provide 

a series of 3D graphs corresponding to various input values for sA, sB, and sC, 

chosen to demonstrate a wide variety of  graph shapes. 

 

sA=sB=sC=0.1 

 

Plot3D[sAB*sBC + (1 - sAB) (sC - sB*sAB)/(1 - sB)* 

   (UnitStep[sAB - Max[(sA + sB - 1)/sA, 0]] -  

     UnitStep[sAB - Min[sB/sA, 1]])* 

   (UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] -  

     UnitStep[sBC - Min[sC/sB, 1]]), {sAB, 0, 1}, {sBC, 0, 1}] 
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sA=sB=0.1 and sC=0.9 

Plot3D[sAB*sBC + (1 - sAB) (sC - sB*sAB)/(1 - sB)*(UnitStep[sAB - Max[(sA 

+ sB - 1)/sA, 0]] - UnitStep[sAB - Min[sB/sA, 1]])*(UnitStep[sBC - Max[(sB + 

sC - 1)/sB, 0]] - UnitStep[sBC - Min[sC/sB, 1]]), {sAB, 0, 1}, {sBC, 0, 1}] 
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sA=sB=sC=0.9 

Plot3D[sAB*sBC + (1 - sAB) (sC - sB*sAB)/(1 - sB)*(UnitStep[sAB - Max[(sA 

+ sB - 1)/sA, 0]] - UnitStep[sAB - Min[sB/sA, 1]])*(UnitStep[sBC - Max[(sB + 

sC - 1)/sB, 0]] - UnitStep[sBC - Min[sC/sB, 1]]), {sAB, 0, 1}, {sBC, 0, 1}] 

 

 
 

Since NARS and 1D concept-geometry deduction rules provide similar values, 

we provide graphs only of the differences between the NARS deduction rule and 

the corresponding PLN independence based rule. Once again, we provide graphs 

for several sets of inputs for sA, sB, and sC. 
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sA=sB=sC=0.1 

Plot3D[sAB*sBC/(sAB + sBC - sAB*sBC) - (sAB*sBC + (1 - sAB) (sC - 

sB*sBC)/(1 - sB))*(UnitStep[sAB - Max[(sA + sB - 1)/sA, 0]] - UnitStep[sAB - 

Min[sB/sA, 1]])*(UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] -  UnitStep[sBC - 

Min[sC/sB, 1]]), {sAB, 0, 1}, {sBC, 0, 1}] 

 

 
sA=sB=0.1 and sC=0.9 

Plot3D[sAB*sBC/(sAB + sBC - sAB*sBC) - (sAB*sBC + (1 - sAB) (sC - 

sB*sBC)/(1 - sB))*(UnitStep[sAB - Max[(sA + sB - 1)/sA, 0]] - UnitStep[sAB - 

Min[sB/sA, 1]])*(UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] - UnitStep[sBC - 

Min[sC/sB, 1]]), {sAB, 0, 1}, {sBC, 0, 1}] 
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sA=sB=sC=0.9 

Plot3D[sAB*sBC/(sAB + sBC - sAB*sBC) - (sAB*sBC + (1 - sAB) (sC - 

sB*sBC)/(1 - sB))*(UnitStep[sAB - Max[(sA + sB - 1)/sA, 0]] - UnitStep[sAB - 

Min[sB/sA, 1]])*(UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] - UnitStep[sBC - 

Min[sC/sB, 1]]), {sAB, 0, 1}, {sBC, 0, 1}] 

 

 

A.2 Graphical Comparisons of Induction Rules 
 

Since the NARS Induction rule is exceedingly simple, sAC=sBA, its graph is 

not surprising: 
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Plot3D[sBA, {sBA, 0, 1}, {sBC, 0, 1}] 

 

 
Since the PLN induction rule again has additional inputs, we provide several 

sets of graphs for comparison. 

 

sA=sB=sC=0.1 

Plot3D[(sBA*sBC*sB/sA + (1 - sBA*sB/sA)*(sC - sB*sBC)/(1 - 

sB))*(UnitStep[sBA - Max[(sB + sA - 1)/sB, 0]] - UnitStep[sBA - Min[sA/sB, 

1]])*(UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] -  

UnitStep[sBC - Min[sC/sB, 1]]), {sBA, 0, 1}, {sBC, 0, 1}] 
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sA=sB=0.1 and sC=0.9 

Plot3D[(sBA*sBC*sB/sA + (1 - sBA*sB/sA)*(sC - sB*sBC)/(1 - 

sB))*(UnitStep[sBA - Max[(sB + sA - 1)/sB, 0]] - UnitStep[sBA - Min[sA/sB, 

1]])*(UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] -  

UnitStep[sBC - Min[sC/sB, 1]]), {sBA, 0, 1}, {sBC, 0, 1}] 

 

 
sA=sB=sC=0.9 

Plot3D[(sBA*sBC*sB/sA + (1 - sBA*sB/sA)*(sC - sB*sBC)/(1 - 

sB))*(UnitStep[sBA - Max[(sB + sA - 1)/sB, 0]] - UnitStep[sBA - Min[sA/sB, 

1]])*(UnitStep[sBC - Max[(sB + sC - 1)/sB, 0]] -  

UnitStep[sBC - Min[sC/sB, 1]]), {sBA, 0, 1}, {sBC, 0, 1}] 
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A.3 Graphical Comparisons of Abduction 

Rules 
The final rule for which we provide graphical comparisons between NARS and 

PLN is the abduction rule. Again, the NARS rule, sAC=sCB is very simple: 

 

Plot3D[sCB, {sAB, 0, 1}, {sCB, 0, 1}] 

 

 
 

 

As with the other PLN rules, the PLN abduction rule requires five inputs along 

with consistency conditions. To compare the behavior of the PLN abduction rule 

with that of NARS, we again depict a series of graphs corresponding to various 

values for sA, sB, and sC. 
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sA=sB=sC=0.1 

Plot3D[(sAB*sCB*sC/sB + sC*(1 - sAB)*(1 - sCB)/(1 - sB))* (UnitStep[sAB - 

Max[(sA + sB - 1)/sA, 0]] - UnitStep[sAB Min[sB/sA, 1]])*(UnitStep[sCB - 

Max[(sC + sB - 1)/sC, 0]] -  

UnitStep[sCB - Min[sB/sC, 1]]), {sAB, 0, 1}, {sCB, 0, 1}] 

 

 
sA=sB=0.1 and sC=0.9 

Plot3D[(sAB*sCB*sC/sB + sC*(1 - sAB)*(1 - sCB)/(1 - sB))* (UnitStep[sAB - 

Max[(sA + sB - 1)/sA, 0]] - UnitStep[sAB Min[sB/sA, 1]])*(UnitStep[sCB - 

Max[(sC + sB - 1)/sC, 0]] -  

UnitStep[sCB - Min[sB/sC, 1]]), {sAB, 0, 1}, {sCB, 0, 1}] 
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sA=sB=sC=0.9 

 

Plot3D[(sAB*sCB*sC/sB + sC*(1 - sAB)*(1 - sCB)/(1 - sB))* (UnitStep[sAB 

- Max[(sA + sB - 1)/sA, 0]] - UnitStep[sAB Min[sB/sA, 1]])*(UnitStep[sCB - 

Max[(sC + sB - 1)/sC, 0]] -  

UnitStep[sCB - Min[sB/sC, 1]]), {sAB, 0, 1}, {sCB, 0, 1}] 

 

 

 
 

A.4 A Brief Discussion of the Comparisons 
 

For all three of deduction, induction, and abduction, it is interesting to note that 

the NARS and PLN appear to provide extremely similar values for the cases in 

which sA, sB, and sC are all small. As these values increase, PLN places addi-

tional restrictions, through the consistency conditions, upon the other possible in-

put values. As a result, NARS and PLN values diverge as these values increase. 
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