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Abstract

A simple probabilistic grounding of the ”fuzzy set membership de-
gree” is presented, and used to provide definitions of the absolute and
conditional probabilities of fuzzy sets. Among other possible applica-
tions, this allows fuzzy membership values to be coherently incorpo-
rated into probabilistic reasoning processes.

1 Introduction

Fuzzy set theory [3] and probability theory provide two qualitatively different,
separately useful methods for quantifying uncertainty. In the Probabilistic
Logic Networks reasoning framework [2], fuzzy and probabilistic truth values
are interrelated within the same inference processes, and this interrelation-
ship is argued to be essential to commonsense reasoning. However, [2] does
not fully formalize this interrelationship; the purpose of this note is to rem-
edy this gap, by giving a formulation of fuzzy truth values and fuzzy set
theory in probabilistic terms.

It must be emphasized that the formulation given here does not consti-
tute a reduction of fuzzy truth values to probabilities in a naive sense. For
instance, we are not claiming that the fuzzy statement xr(s) = ¢ is equiv-
alent to the probabilistic statement P(s € F') = c¢. Rather, our formulation



attempts to capture the unique semantics of fuzzy set membership, via prob-
abilities defined in terms of certain multisets derived from fuzzy sets.

One concrete result from this formulation is a firm probabilistic grounding
for the PLN formulas given in [2] for the conditional probability P(F|G)
and the distance d(F,G) between two fuzzy sets F' and G. We also discuss
the interoperation of fuzzy sets with probabilistic quantifiers, and sketch
an approach to a general unification of fuzzy and probabilistic logics using
fibring of logics.

2 A Probabilistic Characterization of Fuzzy
Sets and their Interrelationships

Where N is a positive integer and S is a set of cardinality n, consider the
space JF of all fuzzy sets formed from the elements of S, whose membership
degrees are restricted to the set {%, k=0,..,N}.

Construct a multiset O called the observation set, which contains Ny g(s)
copies of the pair (s, F') for each FF € F and s € S.

Intuitively, to picture this multiset one may envision a ”property detec-
tor” machine that, when used to scan an object s, prints out up to n/N paper
cards, each of which has some marking (s, F') on it. The number of cards
marked (s, F') that are produced, may be interpreted as a scaled version of
the degree to which s has property F' (specifically, it’s equal to this degree
multiplied by N).

For F' € F, define P(F) as the probability that, if a random item is
chosen from O, it is a pair of the form (s, F') for some s € S. le., it is the
probability that a randomly chosen card, produced by the machine (when
applied to a randomly chosen object), has (s, F') printed on it for some s.

It follows from this definition that
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Next, each F' € F may be identified with a multiset Mg of cardinality
Y ses XF(s) < Nn, which contains Nxp(s) copies of each s € S. The stan-
dard multiset intersection defines the number of copies of s in F'N G as the
minimum of the number of copies of s in F' and the number of copies of s

P(F) =



in GG. Based on this definition, multiset intersection coincides with standard
fuzzy set intersection, and we find

Mpng = Mp N0 Mg

A distribution over these multisets may be imposed by setting P(Mp) =
P(F).
Thus if we have two fuzzy sets F' and G drawn from F, we can define

P(FIG) = %
or equivalently
P(F|G) = —P(‘]\inﬂzﬁd

Relatedly, one can construct a similarity measure and a metric on the
space of fuzzy sets via

P(FNG)

sim(F,G) = PFUG)

d(F,G) =1—sim(F,QG)

where the latter is easily seen to be equal to the Tanimoto distance [4]
between the vectors defined from the membership functions of F' and G.

3 A Few Extensions

3.1 The Weighted Case

A natural extension to the above is obtained by considering the case where
the elements s € S have prior probabilities 7(s); then one may say

ZseS 7T(£)XF<S)

ZseS,Hef m(s)xm(s)

P(F) =



3.2 Distributions over Fuzzy Sets

If instead of an individual fuzzy set F' one has a distribution v defined over
F, then one can define
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and proceed similarly to above. Of course one may also use a distribution
m over S together with this distribution v.

P(F) =

3.3 The Continuous Case

If S is infinite, and one looks at the set F of fuzzy sets with elements in S
whose membership values live in the continuum between 0 and 1, then one
can extend the above to assess the probability of a set of fuzzy sets R C F
by defining

Jecs.per XF(s)dp(s)dv(F)
Jeesmer X (s)du(s)dv(H)

for appropriate probability measures p and v; and under appropriate
assumptions one finds that this continuous probability is a limit of the prob-
abilities of discrete fuzzy sets as N — oo. Continuum-based conditional
probabilities then follow in the obvious way; and one may add a distribution
7 over S if desired. However, we shall not focus on this case here.

P(R) =

4 More Complex Mixtures of Fuzzy and Prob-
abilistic Operators

Beyond the simple case considered above, involving conditional probabilities
among fuzzy sets, there are also more complex cases, in which one must mix
fuzzy and probabilistic operators in moderately subtle ways to capture the
semantics of commonsense relationships between fuzzy terms. The mathe-
matics here becomes more involved, and in this section we will only sketch the
main ideas that must be introduced to handle this case, leaving the details
for another publication.



4.1 Mixing Fuzzy Functions and Probabilistic Quanti-
fiers

Consider for instance the case

P(hasTallDad|tall)

Given in this form, this is formalized by the multiset approach described
above. But what if we need to define hasTallDad in terms of the primitives
tall and dadO f?

We can define

hasTallDad(z) = Jy : ((x € tall) N (dadO f(x,y)))

but the semantics of the right hand side requires some explanation.

Firstly, N is a fuzzy conjunction, defined using the familiar min-formula
from fuzzy set theory (which means that dadOf(x,y) is interpreted as hav-
ing a fuzzy truth value). Thus, F(z,y) = ((z € tall) NdadO f(x,y))) is a
function that maps a pair (z,y) into a fuzzy truth value.

To interpret the existential quantifier, we set F,(y) = F(z,y), and note
that if we assume a prior probability distribution over y values, then for fixed
x this yields a probability distribution over F.(y) (fuzzy) values. Given this
distribution, we can define an indefinite truth value for 3y : F,(y) using the
approach given in [2].

Finally, we consider hasTall Dad(z) as a fuzzy set where Xpasratpad() 18
determined by the indefinite truth value of Jy : F,(y). An indefinite truth
value is a confidence interval ([L, U],b) (where b is the confidence level, L is
the lower and U the upper bound, and there is also a parameter k), so if we
want hasTallDad(z) to have an ordinary single-number fuzzy truth value,
we need to project the indefinite truth value into a single number, such as
the midpoint of L and U.

4.2 Fibring Fuzzy and Probabilistic Logic

To formalize generally what this example illustrates, one route is to fibre
together probabilistic and standard fuzzy logic [1]. Setting quantitative truth
value formulas aside, one can construct a homogeneous fibring of the mixed
predicate/term logic from [2] and fuzzy logic (considering the two logics to
contain entirely different operator sets, e.g. considering fuzzy conjunction to



be a different operation from probabilistic conjunction): syntactically, this is
simply the logic whose set of inference rules is the union of the set of PLN
inference rules and the set of fuzzy inference rules. Then, one can derive
uncertain truth value formulas for this fibred logic by:

e applying probabilistic truth value formulas to PLN inference rules and
fuzzy truth value formulas to fuzzy inference rules

e using the approach from Section 2 to deal with (PLN) logical implica-
tions between fuzzy terms

e using the method from the hasTallDad example above to deal with
(PLN) quantifiers over fuzzy terms

While a full formalization of this approach, would go beyond the scope of
this paper (as it would require consideration of the axiomatization of PLN),
we hope the idea is clear from these brief comments; and in fact the detailed
elaboration is fairly straightforward.
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