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Abstract

The PSI theory of Dietrich Dörner touches a number of questions, especially about knowledge representation, perception and
bounded rationality. However, since it is formulated within psychology, it has relatively little impact on the discussion of emotion
modeling within computer science. This paper introduces a computational model for emotion generation and function by formalizing
part of Döner’s PSI theory. We also borrowed some technical ideas from MicroPSI, one of the concrete implementations of PSI theory
by Joscha Bach. Based on this computational model, a number of simulation experiments have been performed and evaluated. The
experimental results show that the emotions of agents controlled by our proposed model can emerge from the interaction between
the agents and the environment. Then the dynamics of this computational model are studied using Lewis’s dynamic theory of emotions.
We successfully found hints of phase transitions in the emotional changes, including trigger, self-amplification and self-stabilization
phases, as suggested by Lewis. Based on these simulation results, we argue that this computational model is a quite promising approach
of modeling both emotion emergence and dynamics.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade, affective computing has proven to be a
viable field of research comprised of a large number of
multidisciplinary researchers resulting in work that is widely
published and used (Broekens, 2010). A large body of
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researchers have studied automatic emotion recognition
(Fasel & Luettin, 2003; Fragopanagos & Taylor, 2005;
Hanjalic & Xu, 2005; Picard, 2003) and computational mod-
eling of casual factors of emotion for human–computer
(Bickmore & Picard, 2005; Hudlicka, 2003; Paiva, 2000)
and human–robot interaction (Breazeal, 2003; Fong,
Nourbakhsh, & Dautenhahn, 2003). However, only a small
part of affective computing community is explicitly con-
cerned with modeling the effects of emotion, such as affective
influences on cognition (Canamero, 2002; Gadanho, 2003;
Hudlicka, 2005; Marsella & Gratch, 2009; Velsquez, 1998),
formal modeling of cognitive appraisal theory (Broekens,
DeGroot, & Kosters, 2008; Marsella & Gratch, 2009;
Meyer, 2006), interacting emotional states in agent
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reasoning (Coddington & Luck, 2003; Meyer, 2006;
Steunebrink, Dastani, & Meyer, 2008) and models of
emergent emotions, such as emerging from the interaction
between a simple adaptive agent and its environment
(Canamero, 2002; Lahnstein, 2005; Velsquez, 1998).

This article introduces a computational model inspired
by PSI theory, proposed and described informally by Ger-
man psychologist Dietrich Dörner (Dörner, 2003; Dörner
& Hille, 1995; Dörner & Starker, 2004; Dörner, Gerdes,
Mayer, & Misra, 2006). The PSI theory adopts many ideas
from different disciplines, such as dynamical system theory,
neural networks, semantic nets, functionalist and structur-
alist foundations, contemporary theory of perception, emo-
tion and action control that developed by Dörner himself.
It covers a wide range fields of intelligence, including
knowledge representation, perception and bounded ratio-
nality. However, we mainly focus on its emotional model,
which is quite different from other affective models like
OCC (Ortony, Clore, & Collins, 1990). Emotion in PSI the-
ory, is not considered as an isolated component, instead, it
emerges from the interaction between the agent and the
environment where the agent lives. The agent controlled
by the PSI model is considered as an autonomous machine
driven by internal motives that are connected to urges,
which stand for physiological, cognitive or social demands.
Then emotions, in PSI model, are derived from the dynam-
ics of the whole system, where the processes of perception,
cognition and action selection interact with each other.

The work described in this paper is not the first attempt
to formulate the original PSI theory, which is formulated
within psychology and has relatively little impact on the
subject of emotion modeling within computer science. Jos-
cha Bach, for instance, has extended the original PSI the-
ory and implemented a concrete model named MicroPSI
(Bach, 2003, 2008; Bach, Dörner, & Vuine, 2006). Many
of his work has been described in his book (Bach, 2008)
in detail. However, the dynamics of the PSI theory has
not been thoroughly discussed yet. So the main purpose
of this article is to study the aspects of dynamics and emer-
gence of the PSI model. Firstly a computational model
based on PSI theory is implemented and then a bunch of
experiments are performed on our computational model,
and finally the experimental results are carefully analyzed
by one of the contemporary dynamic theories of emotions
proposed by Lewis.

Lewis, like Dörner, holds a non-linear, dynamic view of
emotional activations (Lewis, 2000, 2005). He argues that
emotions should be considered as phenomenon, which
emerges from the dynamics of the whole system. He sug-
gested that emotion-appraisals may be conceived as phase
transitions including trigger phase, self-amplification phase
and self-stabilization phase. Once triggered, recurrent
interactions between microscopic processes of emotion
appraisal induce a rapid self-amplification effect on the
activity of the interaction of the appraisal-emotion constit-
uents of the system. Positive feedback loop between per-
ceptual, emotional and attentional processes are firstly
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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lured by the self-amplifying phase but then inhibited or
constrained by negative feedback effects as the amplifica-
tion grows. When negative feedback overtakes the system
dynamics, the appraisal process enters self-stabilization
phase, where change decreases and continuity increases.

Our simulation results show that the computational
model proposed in this paper is a quite promising approach
of emotions modeling, since phase transitions suggested by
Lewis could be observed in our experimental results. Two
reasonable relations between emotional levels and resource
allocations in the environment are also found, which com-
ply with our common sense quite well but are not prede-
fined in the affective model.

In Section 2, the PSI theory, especially the emotion
model of it, is explained in detail. In Section 3, dynamic
theories of affective models are discussed. In Section 4,
the computational model based on PSI theory is described
in detail. Section 5illustrates the model by a number of sim-
ulation experiments with different environmental settings.
Section 6 concludes the paper with a discussion, compari-
son with other cognitive models, and future work. The
emotion model is currently applied in a very simple sce-
nario, latter on, it should be verified by applying to NPCs
(non-player characters) in a more complex game world or
even social robot in the real world.

2. PSI theory

2.1. Global overview of PSI theory

The most distinctive feature of PSI theory is its perspec-
tive on the autonomous choice and regulation of behaviors.
It suggests that each goal-directed action has its source in a
motive that is connected to an urge, which stands for a
physiological, cognitive or social demand (Bach, 2009).
When a positive goal is reached, a demand may be partially
or completely fulfilled, which creates a pleasure signal that
is used for learning, by strengthening the associations of
the goal with the actions carried out and situations that
have led to the fulfillment.

In order to verify the ability of the PSI model, Dörner
also implemented virtual agents controlled by PSI living
within a complex simulated game world (Fig. 1). These
PSI agents are little virtual steam vehicles, which depend
on fuel and water for their survival.

A PSI agent does not need any executive structure that
controls its behavior, instead it is driven by demands. A
limited number of basic needs are modeled through homeo-
static variables. Some of the demands related to external
resources, such as energy and water, or its integrity. How-
ever, there are also abstract cognitive demands, like cer-
tainty and competence, while the affiliation demand is an
example of social urge, which can only be fulfilled by other
agents. In addition there is a threshold for each demand. A
deviation from the threshold set for a need will signal as an
urge, which then give rise to an intention or a motive.
There may be multiple motives at any given time but only
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 1. The PSI agent and the island, adopted from Dörner (2003).
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one “ruling motive” dominates the system. The active
motive is selected based on the strength of the urge and
the estimated chance of realization.

After selecting a motive intention, actions of the agent
are produced according to the active motive. A PSI agent
has three stages for handling the selected intention.

� Firstly, the agent tries to recall an automatic, highly rit-
ualized reactions base on the intention from its memory.
� If no such reaction exists, it attempts to construct a plan,

utilizing existing knowledge in its memory.
� Once both automatic and planning fail, the agent resorts

to exploration by applying trial and error.

Perception, which is derived from the environment and
the actions being executed on it, forms the agent’s situation
image, a description of the present situation. There are
links connecting these situation images. The strength of
Fig. 2. Perception and motives,
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the links depend on the motivational relevance of the event
in the current situation (Fig. 2). Whenever a demand is sat-
isfied the links of the current situation to its immediate past
are strengthened, so that relevant situations become associ-
ated both to the demand and the sequence of events that
lead to the satisfaction of the demand. As a result,
“islands” of related events appear in the agent’s long term
memory, which can be used for planing later.

PSI agents are based on something like a “sense-think-
act” cycle, but perception, planning and action do not occur
in strict succession. Instead they are working as parallel pro-
cesses and are strongly interrelated. All actions of agents
happen due to motivational impulses, which are derived
from a set of predefined dynamic demands. Perception,
memory retrieval and action control strategies are influenced
by modulator parameters, which make up a setting that can
be interpreted as an emotional configuration (Fig. 3).

Dörner has suggested four modulators:

� Activation is the preparedness of perception and reac-
tion. It makes the agent balance between rapid, intensive
activity and reflective, cognitive activity. Fast behavior
comes along with high level activation and becomes
slower with decreasing level of activation.
� Resolution level determines the accuracy of cognitive pro-

cesses including perception, planning, action regulation
etc. It decrease with increasing activation. For instance,
when an agent gets angry (with high activation), it would
probably not give careful consideration to the conse-
quence of its action (with low resolution level).
� Securing threshold controls the frequency of securing

behavior, which is implemented as a series of behavior
programs that check unexpected changes in a dynamic
environment. The securing threshold is proportional to
the strength of the current motive, that is there will be
less securing behavior (with high securing threshold) in
adopted from Bach (2009).

utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 3. PSI architecture, adopted from Bach et al. (2006).
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the face of urgency. It also depends on agent’s certainty
of current situation. An undetermined environment
requires more securing behavior (with low securing
threshold).
Fig. 4. Dimensions of emotion,

Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
nitive Systems Research (2011), doi:10.1016/j.cogsys.2011.11.002
� Selection threshold indicates how easily the agent
switches between conflicting intentions. It prevents oscil-
lation of behavior by giving the current leading motive
priority. It increases with heightening activation. For
example, when escaping threats (with high activation),
the agent is highly concentrated on current integrity
demand (with high selection threshold).

2.2. The emergence of emotions in PSI model

As we know, the OCC (Ortony et al., 1990) model has
established itself as the standard model for emotion synthe-
sis. Since the OCC model describes a concise hierarchy of
22 emotions and specifies the conditions of each emotions
in terms of objects, actions and emotions, it could be easily
described in formal language. A number of computational
models have been proposed by formalizing the OCC
model, such as Kshirsagar (2002), Egges, Kshirsagar, and
Magnenat-Thalmann (2003), Liu and Pan (2005), Gebhard
(2005), Katsionis and Virvou (2005).

However, unlike these affective models, emotion in PSI
model is not considered as isolated component. Instead it
emerges from the dynamics of the whole system, where
the processes of perception, cognition and action selection
controlled by modulators interact together. The very
basic idea of emotion in PSI is to define a small set of
proto-emotional dimensions in terms of basic demands
and modulators. Then all sorts of emotions are recog-
nized as regions in the space spanned by these
dimensions.
adopted from Bach (2009).
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For example we can use a six-dimensional continuous
space in the simplest approach:

� Pleasure
� Activation
� Resolution level
� Securing threshold
� Selection threshold
� Level of goal-directed behavior

It worth noting that these dimensions are not orthogo-
nal. Fig. 4 shows how they are derived from underlying
urges and modulators. For instance, resolution is mainly
inversely related to activation.

Then emotions in PSI theory are understood as areas in
the multidimensional space. Anger, for example, is charac-
terized by high activation, low resolution, strong motive
dominance, few background checks and strong goal-orien-
tedness; sadness by low activation, high resolution, strong
dominance, few background checks and low goal-orented-
ness (Bach, 2009).

However, the six-dimensional model is not exhaustive.
When dealing with social emotions, one may wish to intro-
duce demands for affiliation (external obedience to social
norms) and honor (internal obedience to social norms),
then additional dimensions may be needed.

3. Dynamics of an affective model

Affective computing has been studied for decades. How-
ever, many researchers mainly focus on automatic emotion
recognition and computational modeling of casual factors
of emotions; and only a few of them pay special attention
to the dynamics of the cognitive appraisal processes.
Scherer and Lewis are two of those researchers interested
in the dynamics of emotional models.

Scherer has proposed a “component process model of
emotion” (Scherer, 2000) emphasizing continuous evalua-
tive monitoring of the organism’s environment. He claims
that emotional reactions are “incredibly complex, multi-
componential processes that can not be captured and
described by verbal labels”.

Lewis (2005) like Scherer also holds a non-linear,
dynamic view of emotional activations, but criticizes
Scherer’s process model of emotions on the grounds that
it, like many other classical appraisal theories, views apprai-
sal as antecedent to emotion. Lewis espouses the view that
emotions are actually both cause and effect of appraisals.
Lewis provides a model of “appraisal-emotion amalgams”,
which places emphasis on the emergence of stable states
induced by the effects of negative feedback on the amplify-
ing effect on states receiving positive feedback. This increas-
ingly popular position as to a possible mechanism for the
engendering of emotions is similarly described by the neuro-
scientist:”The basic emotional systems may act as ’strange
attractors’ within widespread neural networks that exert a
certain type of ’neurogravitational’ force on many ongoing
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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activities of the brain, from physiological to cognitive.”
Lowe, Herrera, Morse, and Ziemke (2007).

According to Lewis, “appraisal-emotional amalgams are
construed as globally coherent states arising and stabilizing
through non-linear casual transactions among appraisal
and emotion constituents.” Once triggered, recurrent inter-
actions between the microscopic process constituents of the
emotion-appraisal amalgams induce a rapid self-amplifying
effect on the activity of the interaction of the appraisal-
emotion constituents of the system. The self-amplifying
effect thus results in positive feedback loop between percep-
tual, emotional and attentional processes that initially per-
petuate the positive feedback effect but are then inhibited
or constrained by negative feedback effects as the amplifi-
cation grows. This chain of events, culminating in a stabil-
ization phase, i.e. phase transition, is referred to by Lewis
as Emotion Interpretation or EIs.

We, like Lewis, also argue that emotions should be con-
sidered as phenomenon that emerges from the dynamic of
the whole system. According to (Smith & Thelen, 2003), for
a dynamic system, there are two basic assumptions of its
development:

� Multicausality. Dynamic systems are complex systems
composed of many individual elements, none of which
has causal priority. Such systems can exhibit coherent
behavior: the parts are coordinated without an executive
agent or a programme that produces the organized pat-
tern. Rather, the coherent is generated in the relation-
ship between the organic components and the
constraints, and opportunities of the environment. Such
self-organized systems are characterized by the relative
stability or instability of their states.
� Nested timescales. Behavioural change occurs over dif-

ferent timescales. As Table 1 illustrates, emotional epi-
sode happens in seconds or minutes, while mood can
last for hours or days, and the personality may take
years to develop. For the organism, time is unified and
coherent, as are the collaborating elements of the sys-
tem, that is, the dynamics of one time-scale (e.g. emo-
tional episode) must be continuous with and nested
within the dynamics of all other time scales (e.g. the
changes of mood or the development of personality).

Lewis’s dynamical systems approach to emotion-
appraisals was conceived as a means of providing a bridge
between psychological and neurobiological mechanisms for
emotion-appraisal processing. The key ideas of his model
are as follows:

� Trigger phase is usually the beginning of an appraisal-
emotion episode, when the orderly behavior of the sys-
tem is interrupted by a perturbation, resulting in rapid
loss of orderliness and an increase in sensitivity to the
environment. Thus a trigger indicates a phase transition,
characterized by sudden change and temporary disorder
as the system switches to a new organization.
utational affective model inspired by Dörner’s PSI theory. Cog-
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Table 1
Scales of emotional development (Lewis, 2000).

Emotional episode Mood Personality

Timescale Seconds, minutes Hours, days Years
Description Rapid convergence of a cognitive

interpretation with an emotional state
Lasting entrainment of interpretative
bias with a narrow emotional range

Lasting interpretive-emotional habits
specific to classes of situations

Dynamic system formalism Attractor Temporary modification of state
space

Permanent structure of state space

Possible neurobiological
mechanism

Cortical coherence mediated by
orbito-frontal organization entrained
with limbic circuits

Orbitofrontal-corticolimbic
entrainment, motor rehearsal, and
preafference, sustainded
neurohormone release

Selection and strengthening of some
corticocortical and corticolimbic
connections, pruning of others, loss
of plasticity

Higher-order form Intention, goal Intentional orientation Sense of self
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� Self-amplification phase follows perturbation and nucle-
ation. Then the system enters positive feedback loops.
When positive feedback predominates, systems are
highly sensitive, that is small deviations may be rapidly
amplified.
� Self-stabilization phase happens when negative feedback

overtakes the system dynamics, change decreases and
continuity increases. Dynamics systems principles sug-
gest that the consolidation of coherent emotion-cogni-
tive appraisal states is necessary for complexification,
allowing appraisals to become more elaborate and
articulated.
� Learning cognition-emotion associations that tend to

recur in future is the connection between biases, believes,
traits, emotional habits and real-time appraisal processes.
The self-stabilization phase is the necessary precondition
for this learning. When appraisals have stabilized, inter-
pretations, action plans and expectancies endure for some
period of time. Then the connectivity among these ele-
ments that are reciprocally activated in real time are
strengthened, which is responsible for learning.

From Lewis’s perspective, emotions can be understood
based on the instability of appraisal and emotion response.
We argue that different phase transitions among trigger,
self-amplification and self-stabilization are the results of
multicausality of processes in dynamic systems, and the
coherence of emotional process in nested timescales can
be achieved by learning.

4. Our computational model in detail

4.1. General architecture

Our proposed model adopts multi-agent architecture,
which contains a server called “mind server” and a bunch
of “mind agents” running in the server (Fig. 5). For each
loop of the “mind server” i.e. “mind cycle”, it would check
if it is time to execute a specific “mind agent”. A “mind
agent” is a software object that is intended to act during
“mind cycle”.

”World Interface”, similar to “world adapter” in
MicroPSI (Bach, 2003; Bach et al., 2006), provides a generic
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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interface between mind server and outside world, which can
be a game world or even the real world. It converts data com-
ing from the world into the format desired by Perception
Updater Mind Agent, and encapsulates actions generated
by Action Selection Mind Agent into requests sent back to
the outside world.

Though the world can be a virtual world or the real
world, as an initial step in this paper, we choose a simple
game world to verify our computational model. All the
avatars controlled by the affective model are living within
a simulated game world, depending on food and water
for their survival (Fig. 6). There are two tribes in the virtual
world. Avatars from different tribes are enemies and may
fight for food or water; while avatars within the same tribe
are friends and they tend to live together with members in
the same tribe, that results in the satisfaction of affiliation
demand. When the avatar firstly enters the game world, it
has no knowledge of the environment. Then its certainty
increases, when exploring the world. Its competence also
varies during the interaction with the environment and
other avatars. Our proposed model is then applied to
model the behaviors and emotional changes of these ava-
tars living in this virtual world.

Regarding to “Knowledge Base”, it consists of short
term and long term memories, which can be converted to
each other to some extend. Short term memory holds the
information, such as perception, in an active, readily avail-
able state for a short period of time; long term memory
contains knowledge, such as rules used for action planning,
which may be reusable in future.

We argue that multiple knowledge representations are
almost inevitable in practical modeling due to restricted
computing resource and time pressure, especially when
dealing with the real world. However, it would be conve-
nient to apply data mining or machine learning algorithms
to the knowledge base if unified knowledge representation
is adopted. So we use hypergraph (Gunopulos, Mannila,
Khardon, & Toivonen, 1997; Karypis, Kumar, & Mobash-
er, 1998; Zass & Shashua, 2008) as unified knowledge rep-
resentation for long term memory, where data mining and
machine learning algorithms mainly apply to, and are open
to all sorts of knowledge representations for short term
memory, which focus more on efficiency.
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 6. Snapshot of the virtual world. Blue points stand for water; green
ones are for food; red and black dots represent avatars from two tribes
respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Framework overview.
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Technically we tend to use NoSQL database (Leavitt,
2010; Vicknair et al., 2010; Xiang, Hou, & Zhou, 2010)
as our concrete knowledge base, which is a broad class of
database management systems that differ from currently
dominant relational database management systems (RDB-
Ses). Compared with RDBSes, NoSQL database provides
flexible data models, and is good at elastic scaling and deal-
ing with dig data. Moreover, many open source NoSQL
database management systems, written in popular pro-
gramming languages, are already available and ready to
use (see also http://nosql-database.org/).
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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Finally, there are two optional subsystems “visualizer”

and “log system”, which can easily track the changes of
internal states within ”mind server” and “mind agents”.
For example, Fig. 7 shows the changes of modulators,
demands and feelings in real time from the visualizer. It
is quite useful for observing the internal dynamics of the
model as the system evolves and also helpful when tuning
parameters of the system. In addition, the log system can
record even more details in log files, which can be analyzed
later. Our experiments in Section 5 take advantages of
both.

4.2. Mind agents related to PSI theory

Our proposed model is implemented as five “mind
agents” in the architecture described above. Each of them
has a specific task, which can hardly produce complex
behavior alone. However, as illustrated in Fig. 8, they clo-
sely interact with each other, which would result in much
more complicated and interesting behavior. Then the emo-
tions emerge from the dynamics of both internal changes,
and the interaction between the system and the environ-
ment. Remaining part of this section will describe all these
“mind agents” in detail.

DemandUpdaterMindAgent is in charge of updating a
fixed set of demands of the avatar living in the virtual
world, and the primary goal of the avatar is to maintain
these demands within certain ranges.

For each demand (d), it comes along with a minimum
and maximum level (min_l and max_l), then the
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 7. Visualizer of internal states, including levels of demands, modulators and feelings.

Fig. 8. PSI related mind agents.
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satisfaction (S) of the demand can be derived from current
level (L) using simple fuzzy formulas,

SdðL;min l;max l; aÞ

¼
fuzzy equalðL;min l; aÞ; L < min l;

0:9þ 0:1 � randomð0; 1Þ; L > max l;

0:8þ 0:2 � randomð0; 1Þ; otherwise:

8><>: ð1Þ

Where fuzzy_equal is defined as

fuzzy equalðx; t; aÞ ¼ 1=ð1þ a � ðx� tÞ2Þ ð2Þ

random(0,1) generates random numbers in [0, 1]. When
L > max_l, 0.9 6 S_d 6 1.0; when min_l 6 L 6 max_l,
0.8 6 S_d 6 1.0.

a is a parameter, which controls how fast the fuzzy_
equal output decreases when x deviates from t. Larger a
results faster decrease. In our experiment we choose
a = 150.

It should be noted that, unlike PSI or MicroPSI, in our
model, the target ranges of demands are not fixed, instead,
they hold initial values and then can be updated based on
the interaction between avatar and the environment
(formula (3) and (4)). The very basic assumptions is that
the avatar would expect even more if a specific demand is
satisfied and may tend to restrain themselves when the
related resource of the demand is not easily reachable. As
the system evolves, the personality of an avatar could be
leaned from appraisal processes.

min lðt þ 1Þ ¼
b �min lðtÞ þ d; demand is satisfied;

b �min lðtÞ; otherwise:

(
ð3Þ

max lðt þ 1Þ ¼
b �max lðtÞ þ d; demand is satisfied;

b �max lðtÞ; otherwise:

�
ð4Þ

Regarding to the demand levels, many physiological
demand levels can be retrieved directly from the world
interface, while levels of more abstract demands, such as
affiliation, certainty and competence, are calculated based
on the environment or avatar’s experience.

Formula (5), (7) and (9) are tentative equations of
updating affiliation, certainty and competence demands,
which are currently adopted in our model. In formula
(5), di is the distance between friend i and the avatar itself,
dmax is a distance threshold to decrease influence of friends
far away. For formula (7), ti is the latest time stamp of
observing object i and ts is the current time stamp of the
virtual world.

L affiliation

¼
Pfriend num

i¼1 fuzzy nearðdi; dmaxÞ þ randomð0; 1Þ
ð1þ expð�0:1 � friend numÞÞ � ðfriend numþ 1Þ ð5Þ

fuzzy nearðdi; dmaxÞ ¼ 1=ð1þ 0:00015 � ðdi � dmaxÞÞ ð6Þ
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
nitive Systems Research (2011), doi:10.1016/j.cogsys.2011.11.002
L certainty

¼
Pobject num

i¼1 fuzzy newðti; tsÞ þ randomð0; 1Þ
ð1þ expð�0:05 � object numÞÞ � ðobject numþ 1Þ ð7Þ

fuzzy newðti; tsÞ ¼ 2=ð1þ expð0:002 � ðts � tiÞÞÞ ð8Þ
L competenceðtþ1Þ

¼
L competenceðtÞ �0:95þ0:05; action at time t succeeds;

L competenceðtÞ �0:95; action at time t fails:

�
ð9Þ

ModulatorUpdaterMindAgent would update modulators
during “mind cycle”. Modulators are considered as param-
eters that control both cognitive and emotional processes.
Moreover, they are closely related, thus result in the inher-
ent dynamics of the system.

We suggest using a group of formulas below to update
the modulators.

activation ¼ Scertainty � ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Scompetence

p
Þ ð10Þ

resolution level ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
activation
p

ð11Þ

securing threshold ¼ normalize
1þ Scertainty

1þ Scurrent demand
; 0:5; 2

� �
ð12Þ

selection threshold

¼ clip withinððselection threshold þ 0:5Þ
� ðactivationþ 0:5Þ; 0:001; 1Þ ð13Þ

Where normalize and clip_within are defined as,

normalizeðx;min;maxÞ ¼ ðx�minÞ=ðmax �minÞ ð14Þ

clip withinðx;min;maxÞ ¼
min; x < min;

max; x > max;

x; otherwise:

8><>: ð15Þ

Activation is related to certainty and competence
demands (formula (10)), that is, the avatar will be more
ready to react (higher activation), when it is more familiar
with the environment (higher Scertainty) and feels more con-
fidence of its ability (higher Scompetence).

Resolution level is mainly reverse to activation (formula
(11)), which means if the avatar is more ready to execute an
action (higher activation), it will spend less energy in cog-
nitive processes (lower resolution level), such as perception,
action planning etc.

Securing threshold is influenced by satisfactions of cer-
tainty demand and currently selected demand (formula
(12)). When the avatar knows more about the environment
(higher Scertainty) or is not satisfied with the current demand
(lower Scurrent_demand), it would tend to more securing
behavior (lower securing threshold).

Selection threshold is proportional to activation and its
previous value (formula (13)). When the avatar focuses
more on executing current action (higher activation), the
probability to discard the current action (or plan) should
be low (higher selection threshold).
utational affective model inspired by Dörner’s PSI theory. Cog-
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Table 2
Relationship between emotions and modulators. (H = high, L = low,
M = medium, EL = extremely low, EH = extremely high and
U = undefined).

Angry Fear Happy Sad
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ActionSelectionMindAgent starts from a demand and
tries to figure out a chain of actions that would probably
lead to the satisfaction of the demand. Selection threshold
has impact on choosing active intention. The pseudo code
below presents a simple mechanism currently used.
Activation H H H L
Resolution L L L H
Securing threshold H L H L
Selection threshold L H H L
Pleasure L L H L
IF random (0,1) < selection_threshold
Select the demand with lowest

satisfaction

ELSE

Randomly pick up a demand
Table 3
Current modulator levels.

Modulator Value

Activation 0.3441
Resolution 0.6532
Securing threshold 0.5762
Selection threshold 0.2504
Pleasure 0.1783

Table 4
Current emotional intensities.

Emotion Intensity

Angry 0.4808
Fear 0.2426
Happy 0.0919
Sad 0.7214
PerceptionUpdaterMindAgent renews the perception of
the environment. The perception process is modulated by
resolution level. Since this mind agent closely related to
the environment, the concrete implementation depends
on the outside world. For instance, in our simple virtual
world, the resolution level has impact on the range of vir-
tual field. Higher resolution level comes along with a larger
visual field, which would make the avatar take more effort
to explore the environment.

FeelingUpdaterMindAgent updates the emotional states
of the avatar based on modulators and pleasure. Since
these modulators control the dynamics of the whole sys-
tem, emotional changes derived from modulators naturally
embody system dynamics.

For each kind of emotion (E), its intensity (I) can be cal-
culated from modulator (m) levels

IðEÞ ¼
X

m;im – U

W m � P ðm; imÞ

ðim ¼ H ; L;M ;EL;EH ;UÞ ð16Þ

Wm is the weight of modulator m. P is a simple fuzzy
logic function that outputs a number within [0,1] according
to the modulator level m and its corresponding indicator
im. The indicator that controls the calculation of P can be
H (high), L (low), M (medium), EL (extremely low), EH
(extremely high), and U (undefined).

More specifically, we suggest P as

P ðm; imÞ ¼

fuzzy lowðm; 0:15; 150Þ; im ¼ EL;
fuzzy lowðm; 0:30; 150Þ; im ¼ L;
fuzzy equalðm; 0:50; 150Þ; im ¼ M ;

fuzzy highðm; 0:70; 150Þ; im ¼ H ;
fuzzy highðm; 0:85; 150Þ; im ¼ EH ;
0; im ¼ U :

8>>>>>>><>>>>>>>:
ð17Þ

fuzzy lowðx; t; aÞ ¼
fuzzy equalðx; t; aÞ; x > t;

1; otherwise:

�
ð18Þ

fuzzy highðx; t; aÞ ¼
fuzzy equalðx; t; aÞ; x < t;

1; otherwise:

�
ð19Þ

The parameter a in formulas (18) and (19) holds the
same meaning in formula (2).
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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After calculating the intensities of all the emotions, the
dominant emotion bE with greatest intensity is selected and
can be processed further, such as emotional expression etc.

For instance, given the relationship of emotions and
modulators (Table 2), we firstly calculate intensities of each
emotions according to current modulator levels (Table 3).
For example, assuming all the Wm are equivalent (all
equals to 1/5) then the intensity of Anger could be calcu-
lated as,

I(Anger) = 0.2 � P(0.3441,H) + 0.2 � P(0.6532,L) + 0.2 �
P(0.5762,H) + 0.2 � P(0.2504,L), 0.2 � P(0.1783,L) = 0.4808

Then Sad is selected as the dominant emotion, since it
has the highest intensity 0.7214 (Table 4).

5. Simulation results

In order to test the dynamics of proposed model, a num-
ber of experiments (under different parameter settings)
have been performed. As shown in Table 5, each experi-
ment uses different parameter settings related to resources,
such as water or food amount, to simulate different envi-
ronments. However, all the avatars in all the experiments
share the same parameters of emotional model (Table 6),
such as initial modulator values and the target range of
each demand. That means all the experimental results pre-
sented here are caused by different environments and the
dynamics of the affective model itself, rather than a set of
carefully tuned parameters of emotional model.
utational affective model inspired by Dörner’s PSI theory. Cog-
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Table 6
Values of variables related to demands and modulators.

Variable Fixed value Initial value

Activation NA 0.7
Resolution NA 0.6
Securing threshold NA 0.7
Selection threshold NA 0.8
Energy level NA 0.9
Minimum energy level 0.70 NA
Maximum energy level 1.00 NA
Water level NA 0.95
Minimum water level 0.75 NA
Maximum water level 1.00 NA
Integrity level NA 0.95
Minimum integrity level 0.90 NA
Maximum integrity level 1.00 NA
Affiliation level NA 0.30
Minimum affiliation level 0.50 NA
Maximum affiliation level 1.00 NA
Certainty level NA 0.40
Minimum certainty level 0.75 NA
Maximum certainty level 1.00 NA
Competence level NA 0.80
Minimum competence level 0.85 NA
Maximum competence level 1.00 NA

Table 5
Values of variables related to environment.

No. Avatar type A
amount

Avatar type B
amount

Water
amount

Food
amount

1 10 10 10 10
2 10 10 20 20
3 10 10 30 30
4 20 20 10 10
5 20 20 20 20
6 20 20 30 30
7 30 30 10 10
8 30 30 20 20
9 30 30 30 30

Z. Cai et al. / Cognitive Systems Research xxx (2011) xxx–xxx 11
Two types of perspectives are addressed:

� General view (Section 5.1), which focuses on the average
emotional levels under different circumstances. The
basic idea here is that, if the emotions in our proposed
model emerge from the system, it should present some
reasonable trends that are not predefined in the model.
For example, when there are more resources, like food
or water, in the environment, avatars would probably
feel happier. According to Fig. 9, we successfully
observe this trend, which is not hard coded in the model
but fits our common sense.
� Individual view (Section 5.2), which presents changes of

internal states, including demand satisfactions, modula-
tor levels and feeling levels in detail, for each of six ran-
domly selected avatars. We found that the dynamics of
emotional changes become more complex as the resources
getting more abundant. Further more, we observe some
different phases of emotional changes of these avatars,
predicted by Lewis’s dynamical theory of emotions.
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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5.1. Emotions emerge from the interaction with the

environment

In this case, we firstly calculated the average emotional
levels of avatars during experiments with different resource
allocations listed in Table 5. Then we compared the aver-
age emotional levels with different environmental settings.

Fig. 9 consists of nine bar graphs, each of which shows
the comparison of average emotional levels during two
experiments listed in Table 5. These bar graphs are
arranged in three rows carefully, that all the graphs in
the same row share the same avatar numbers but with dif-
ferent water and food amount. The arrangement of Fig. 10
is similar to Fig. 9; graphs in the same row share the same
water and food amount, but with different avatar numbers.

Then we found two non-trivial trends as follows:

� Avatars living in an environment with more water and
food, in which case water and energy demands are more
easily satisfied, tend to experience more happiness and
less sadness (Fig. 9).
� Avatars living in an environment with larger avatar

numbers, in which case affiliation demand is more likely
to be contented, tend to be happier and and feel less sad
(Fig. 10).

It is important to note that both two trends are not pre-
defined in our emotional model and they fit our common
sense quite well. We argue that they are the evidences that
emotions in our proposed model emerge from the interac-
tion between avatar and the environment where it lives,
since emotions are affected by resource allocations in the
environment, and this relationship is not explicitly defined
in our model.

5.2. Different phases of emotional dynamics

Since it is difficult to observe the dynamics of emotions
from the general perspective, six avatars are selected,
almost randomly, to verify the dynamics of our proposed
model under different circumstances. Fig. 11 shows the
internal changes of two avatars in the environment with
insufficient resources; Figs. 12 and 13 show emotional
dynamics in the environments with sufficient and plentiful
resources respectively. As can be seen from comparison
of these three figures, the emotional changes become more
complex with the amount of resources increase. This may
be explained as in an environment short of resources
(Fig. 11), avatars tend to gather around food and water
for survival. Hence the emotional variations are very con-
straint in this case. However, if avatars live in an environ-
ment full of food and water (Fig. 13), they can explore the
world more freely and do other interesting stuff like meet-
ing friends or fighting with enemies, that causes more
dynamics of emotions.
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 9. Average emotions change with the variation of food and water.
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In addition, when we study more carefully, we found
some hints of different phases as suggested by Lewis’s
dynamical theory of emotions. Take avatar with id = 23
(left lower corner of Fig. 13) as an example, emotional lev-
els change dramatically in mind cycle = 3000, which may
experience self-amplification phases, since small deviations
accumulated during previous stages are rapidly amplified.
Before mind cycle = 3000, there are small and frequently
variations, which may stand for trigger phases. Within
the trigger stage, the orderliness is lost by perturbation
from the environment and the system becomes sensitive
to the environment; while after mind cycle = 3000, the sys-
tem might undergo self-stabilization phases as negative
feedback gradually takes control of the system dynamics
and the variations of emotional levels decrease. During this
stage the avatar feel more sad than happy. When we check
its demand satisfactions (left upper corner of Fig. 13), we
got the reason is that its affiliation level is critical low dur-
ing that period. Two other phase transitions can also be
observed when mind cycle falls between 6000 to 7500.
The emotional changes during this period can also be
explained by the variations of demand satisfactions (left
upper corner of Fig. 13). During this period, the avatar
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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experiences happiness as affiliation and water demands
are satisfied and then the happiness level decreases as the
avatar runs out of energy.

6. Discussion

6.1. Conclusion

In this paper, a formal model for Dörner’s PSI theory
has been introduced. The affective model and a simple vir-
tual world for simulation have been constructed.

Simulation experiments have been performed for differ-
ent situations, environments with insufficient, adequate and
plentiful resources separately. However, we fixed the
parameters of emotional model itself, which eliminates
the possibility of distorting simulation results by means
of turning these parameters. The experimental results are
then analyzed from two perspectives, general view and
individual view in detail. Two non-trivial trends are discov-
ered by comparison of average emotional levels under dif-
ferent circumstances: avatars experience more happiness
when living in a world with more food and water and
avatars feel happier as there are more friends exist in the
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 10. Average emotions change with the variation of avatar numbers.
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environment. Both two patterns are reasonable and fit our
common sense quite well. Moreover, they are not prede-
fined by the emotional model. Thus, they may serve as evi-
dences that emotions in our proposed model emerge from
the dynamics of interactions between the avatars and the
environment.

Since the variations of average emotions do not show
the dynamics of emotions directly, we selected six avatars,
almost randomly, under different situations to study their
internal changes in detail. The experimental results seem
quite promising as we successfully found several hints of
phases transitions as suggested by Lewis, including trigger
phase, self-amplification and self-stabilization phases. In
addition, these phase changes comply with the variations
of demand satisfactions, i.e., the happiness level increase
as demands being satisfied and decreases when demands
are not properly contented. Another interesting pattern is
also discovered in our analysis, the emotional changes
become more complicated as the amount of resources in
the environment increase.

These simulation results show our computational model
inspired by Dörner’s PSI theory is a quite promising
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
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approach of emotion modeling, as three essential features
are presented:

� Emotions emerge from the dynamics of the system auto-
matically, rather than derived by a set of predefined
appraisal rules.
� Emotional changes experience critical phase transitions,

such as trigger, self-amplification and self-stabilization
stages.
� Emotional phase transitions comply with the dynamics

of the environment, i.e., both emotion and emotional
changes are grounded to the environment.

6.2. Comparison

The ACT-R model (Anderson, 1996, 2000; Lebiere &
Anderson, 2008) is a hybrid production-system of human
cognition. At the symbolic level, ACT-R is defined in terms
of declarative memory of long-term facts, and procedure
memory holding general production rules. It is a goal-
directed system with a stack of goals, onto which new goals
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 11. Dynamics of two avatars (avatar type A = 10, avatar type B = 10, food = 10, water = 10).
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can be pushed and satisfied goals popped. It is also an acti-
vation-based system in which the behavior at symbolic
level is controlled by associated real-valued parameters.
These parameters are learned by Bayesian learning mecha-
nism to reflect the system’s environment (Lebiere, 1999).
ACT-R contains various mechanisms for learning new
rules and sophisticated probabilistic equations for updating
activation levels associated with items of knowledge.

The CLARION model (Sun & Peterson, 1996, 1998; Sun,
Merrill, & Peterson, 1998) was firstly proposed as skill learn-
ing model, which adopts a bottom-up approach toward low-
level skill learning, that is procedure knowledge develops
first and then declarative knowledge develops. However,
CLARION has been greatly improved and become a
domain generic computational cognitive model (Sun, 2007;
Sun & Naveh, 2004). Its capability of modeling conscious-
ness was also discussed (Coward & Sun, 2004). CLARION
is mainly made up of four subsystems, action-centered sub-
system (the ACS), the non-action-centered subsystem (the
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
nitive Systems Research (2011), doi:10.1016/j.cogsys.2011.11.002
NACS), the motivational subsystem (the MS), and the
meta-cognition subsystem (the MCS) (Sun, 2007).

ACT-R, CLARION and our model are all goal-directed
architectures. Further more, both CLARION and our
model take high-level and low-level into consideration dur-
ing action decision making. However, they achieve this in
quite different approaches. In CLARION, the combination
of high-level and low-level decision making is performed
explicitly, by combining Q-values of actions in the bottom
level and explicit symbolic rules in the top level. In our
computational model, decision makings in different levels
are more implicit. The dominant goal is firstly selected by
competition of demands in the low level, and then a bunch
of candidate actions are obtained by action planner in the
higher level with a number of symbolic rules.

Another distinction among these three architectures is
how to modulate the system behavior. In ACT-R a number
of real-valued quantities learned by Bayesian principles are
used to control the performance at symbolic level; in
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 12. Dynamics of two avatars (avatar type A = 20, avatar type B = 20, food = 20, water = 20).
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CLARION, an explicit meta-cognition subsystem is intro-
duced to achieve this; while in our model a set of modula-
tors are carefully selected, which modulate all sorts of
cognitive processes, perception and action execution.

Compared with ACT-R and CLARION, the most dis-
tinctive feature of our model is that it lacks a decent learn-
ing mechanism, but it puts heavy emphasize on explaining
how different emotions emerge from the dynamics of a
complex cognitive system, how emotions have impact on
cognitive processes, perception and action execution via
modulations, and how these modulators could be closely
related by non-linear functions.

6.3. Future work

Many improvements could still be made to the model.
For example, target ranges of demands are currently fixed
in the initial implementation. These could be made
dynamic, by means of learning form real time appraisal pro-
cesses. Another improvement could be implementing more
Please cite this article in press as: Cai, Z., et al. Dynamics of a comp
nitive Systems Research (2011), doi:10.1016/j.cogsys.2011.11.002
emotions rather than just happiness and sadness, which
requires a more complex virtual world. Since emotions of
our proposed model emerge from the dynamics of the envi-
ronment, it is quite impossible to model other emotions like
anger, fear etc., in a too simplified game world, as the one
presented in this paper. A final extension would be intro-
ducing more complex interaction between emotions and
cognitive process such as planning, which also relies on a
more rich and colorful game world. At the same time of
writing this paper, we are also busy with incorporating this
computational model in a minecraft like game (see also
http://www.minecraft.net/). Similar to minecraft, our game
world on going is also a virtual world full of building blocks
that could be used by players or NPCs (non-player charac-
ters) to create anything needed. The affective model pro-
posed in this paper would be used to control NPCs in the
game, which would help human players improving their
experiences of playing the game. Actually some other emo-
tion models have been applied to autonomous NPCs as
described by Lim, Dias, Aylett, and Paiva (2010).
utational affective model inspired by Dörner’s PSI theory. Cog-
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Fig. 13. Dynamics of two avatars (avatar type A = 30, avatar type B = 30, food = 30, water = 30).
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However, we will not constrain ourselves only in the
game industry. As soon as the model has been verified
and adapted in the game world, we would like to explore
the possibilities to apply it in the real world, which is, of
course, much more complicated than the game world, that
is applying this model to a robot in the real world, that can
communicate affectively with humans in a more natural
way. A more complex environment is of both challenge
and chance for our emotional model. Because in our
model, emotions are heavily coupled with the environment,
there would be chances to observe more emotions and
more interesting dynamics within a more complex and
dynamic environment.
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