
Toward a Robust Software Architecture for
Generally Intelligent Humanoid Robotics
Ben Goertzel

OpenCog Foundation
G/F, 51C Lung Mei Village

Tai Po, N.T., Hong Kong
Email: ben@goertzel.org

David Hanson
Hanson Robotics

25th Floor, Workington Tower
78 Bonham Strand

Sheung Wan, Hong Kong
Email: david@hansonrobotics.com

Gino Yu
School of Design

Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Email: mcgino@polyu.edu.hk

Abstract—This brief “position paper” summarizes the authors’
thinking regarding the design of a software framework for
interfacing between general-intelligence-oriented software sys-
tems and complex mobile robots, including humanoid robots.
It is presented from the perspective of soliciting input from
the community while the software framework in question is
in the phase of design and early implementation, so that this
feedback may be appropriately incorporated. An initial case
study motivating this work is the use of the OpenCog AGI
(Artificial General Intelligence) software framework to help
control humanoid robots created by Hanson Robotics.

I. INTRODUCTION

One approach to achieving intelligent behavior in complex
mobile robots such as humanoids, is to integrate a general-
purpose cognitive architecture with an appropriate conglom-
eration of robotics-specific software. This is by no means the
only possible approach, e.g. purely subsumption-oriented [1]
or biomorphic [2] approaches are also interesting and poten-
tially effective. However, the integrative cognitive architecture
approach is also worthy of exploration.

In this brief position paper we present some ideas regarding
the design and engineering of a software system for connecting
cognitive software with robotics software to achieve an inte-
grated cognitive architecture for intelligent robotics. The initial
motivation for this system is a current project involving the use
of the OpenCog Artificial General Intelligence (AGI) software
system 1 [3], [4] to control humanoid robots created by Hanson
Robotics. However, the goal is to create a general-purpose
architecture, not restricted to this particular application.

II. HIGH LEVEL REQUIREMENTS

The creation of a requirements specification for a software
framework connecting cognitive architectures to robots, is
itself a complex pursuit, and it is hoped that discussion of this
position paper will facilitate collection of ideas in this regard
from the community, which can then be used to formulate a
detailed requirements list. What is presented here is merely
an outline of high level requirements, intended to evoke the
basic intentions underlying the software framework:

• Perception

1http:\\opencog.org

– Intake of perceptual data from a variety of different
robotic sensors, each with their own drivers and
preprocessors

– Synthesis of data from multiple sensors into an
overall perceptual world-view, or (depending on the
nature of the data) a collection of overlapping partial
world-views

– Export of processed, synthesized versions of percep-
tual data to cognitive systems

• Action
– Intake of high-level or medium-level action plans

from cognitive systems, and transformation of these
into detailed action plans suitable for enaction by
robotic systems

– Intake of detailed action plans from external systems
(e.g. telerobotics controllers)

– Delivery of detailed action plans to specific robotic
systems, for driving robot actions

– Synthesis of multiple high or medium level action
plans, intended for simultaneous or overlapping ac-
tion, into a single detailed action plan suitable for
driving action of a specific robotic system

• Control / Coordination
– Determination of which actions a robot should take,

given its perceptions at a given time and also condi-
tional on the understanding of the current goals and
context, where two important cases are:
∗ the understanding of goals and context is provided

by reference to an external cognitive system
∗ the understanding of goals and context is provided

by relatively simple ruled supplied directly within
the robot control/coordination framework (hence
allowing for rapid response in the case of rela-
tively simple “reflex” behaviors or other behaviors
that are desired to be preprogrammed in a specific
context)

– Receipt of robot control signals from remote controls
or other user interfaces
∗ In some cases, control signals from UIs may

be treated as absolute commands; in other cases

they may be treated as special perceptual signals,
to be considered alongside other perceptions in
formulating appropriate action plans

III. REFERENCE TOOLS

Among the numerous tools needed to fulfill the above broad
requirements are:

• A cognitive architecture, capable of ingesting perceptual
data, forming a model of the current context of a robot
therefrom, and suggesting appropriate actions

• A robot simulator
• A software framework for interacting with robots
• Optionally, software for generating robot movements, e.g.

a 3D graphic art program and/or motion capture program
To the extent these various tools are already able to work

together, development will be easier. For example, one option
would be to make use of the Blender infrastructure, i.e.

• MORSE, integrated with Blender, for robot simulation
• ROS, integrated with MORSE, for robot control
• BGE, Blender Game Engine, for scripting interactions

involving simulated robots
• Blender for art asset creation (including perhaps addi-

tional plugins like MakeHuman)
For the cognitive architecture, as stated above our current work
involves OpenCog but the framework sketched here doesn’t
depend on OpenCog specifically.

IV. ARCHITECTURE SKETCH

At a very high level, we suggest to fulfill the requirements
posited above via creation of the following software compo-
nents:

• Action Orchestrator (AO)
• Action Creator (AC)
• Perception Synthesizer (PS)
• Robot Controller (RC)
• Action Data Source (ADS), an interface that might wrap

up more than one such data source
• Robot Control User Interface (RCUI)
There are plausible deployment scenarios in which the AC,

ADS or RCUI might be implemented on a variety of platforms
(e.g. Windows, Mac; or for the RCUI, Android or iOS). On the
other hand, we can assume for the foreseeable future that the
RC, PS and AO will be run on Linux. Hence one deployment
possibility is to deploy the RC, PS and AO as ROS nodes;
but implement communication with the other components via
some more platform-independent method like ZeroMQ.

A. Action Orchestrator

The AO receives signals from the RC, indicating what set
of high level actions to carry out at a given point in time.
It then directs the robot how to carry out the actions. In
general the signals received by the AO would be lists of action
descriptions. Each action description would contain an action
name and optionally some (discrete or quantitative) action
parameters. The actions usable by the AO should be specified

in a configuration file, not hard coded, so it is easy to add new
actions or change the parameter-sets of existing ones.

The AO could be connected to a physical robot, or else to a
simulated robot in the chosen simulation platform. This would
be determined in a configuration file. Ideally the commands
sent from the AO to the physical or simulated robot would be
identical.

In an initial implementation of the AO, each action type
would simply come with a hard-coded mapping into a set of
detailed motor commands for a particular robot. A slightly
more advanced implementation would handle blending, i.e.
would have a way of dealing with multiple simultaneous
action requests by blending the corresponding lists of motor
commands.

Ultimately, a sophisticated AO would contain an internal
hierarchical representation of actions, representing each action
as a hierarchically structured set of trajectories of body parts.
This would allow flexible blending of actions that started at
different times and involved overlapping parts of the body.
But this represents a significant AI undertaking, specification
of which goes beyond the scope of this document. (Some early
thoughts in this regard are given in OpenCog documentation,
e.g. in Engineering General Intelligence.)

B. Action Creator

The AC translates movement scripts created externally, into
robot action sequences to be enacted in a robot simulator or
physical robot.

As one example, the AC would translate animations created
in an art program (e.g. Blender, Maya, etc.) into robot action
sequences. If the bone structure of the animated character and
the robot are identical or very similar, this is relatively straight-
forward (though still not trivial as it requires knowledge of the
parameters of the robot motors, etc.). If the bone structures are
different this requires some fancier mathematical translation.
The action sequences created in the AC are then exported to
the AO, which can invoke them as needed.

C. Perception Synthesizer

The PS receives data from the robot, e.g. sound from a
microphone, 3D visual data from a Kinect, visual data from
a webcam, etc. It then processes this data into an appropriate
form for further utilization. For example, the PS might overlay
webcam visual data with Kinect visual data. Or the PS might
be configured to pass along to the RC only those parts of the
visual data stream that have changed since the last message
passed along to the RC. Basic signal processing could also be
done in the PS. In essence the PS cleans up and filters data for
passing along to the RC (and potentially on to other sources
as well, e.g. a data store or OpenCogs Atomspace).

The PS could receive information from the physical robot,
or the simulated robot. Ideally the data received in the two
cases would be identical in format. (Of course the particulars
of e.g. visual data obtained from a simulation would not be
the same as from actual visual sensors, though.)

In a future version the AO and PS could work in collabo-
ration, but initially they will be separately operating pieces of
software.

Assuming one utilizes ROS as an infrastructure, the AO,
PS and RC could be three separate ROS nodes, in frequent
communication. The AO and PS would then communicate with
other ROS nodes representing particular aspects of the robot
or associated software.

D. Action Data Source

An Action Data Source comprises an external piece of
software that produces descriptions of actions to be sent to
the Action Creator.

One example would be a Telerobotics Data Source, con-
taining a mechanism for observing the movement of a human
face, and packaging these movements as a stream to pass to
the PS for perceptual understanding; and in a tele-operation
scenario, to the AC as well.

E. Robot Control UI

In many cases it will be useful to have a human being
directly control a robot, via manipulating a User Interface that
sends messages to the RC.

E.g., one possibility is to make such a UI in the form of
an Android phone app. This avoids the need to use special
hardware, but makes the UI mobile, so that a person can hold
the phone in their hand like a remote control and manipulate
the robot. It also leaves the opportunity open for advanced
manipulation of control parameters as well as simple controls.

F. Robot Controller

The RC contains the logic for choosing actions based
on perceptions and based on user controls. Initially, for a
standalone application, this logic could be fairly simple. For
instance, instances of non user control driven action logic
might include:

• Move the head to face someone who is detected to be
talking

• Move the head to look at the nearest human face, or at a
human face that has recently become mobile, etc.

• Imitate the movements of the person being tracked by the
ADS

• Imitate the movements of the person being tracked by the
ADS; or if this person is looking at a certain person, then
look at that person

The best way to formalize this action logic is not clear. One
option is to leverage OpenCog, and:

• Use the OpenCog AtomSpace to contain symbolic ab-
stractions of perceptual data, and action commands

• Use Implication relations in OpenCogs AtomSpace to en-
code (potentially probabilistically weighted) action logic
rules

OpenCog provides a highly general and flexible formalism
here, including probability weighting of actions; and also
provides a framework in which learning of action logic rules

can naturally take place (although the initial action logic rules
will be hard coded).

The RC must be able to receive control signals from external
sources as well – from humans via the RCUI, or from other
software programs. The right messaging protocol must be
chosen carefully here; ZeroMQ is one candidate currently
under consideration.

V. TOWARD A SIMPLE, ROBUST, EXTENSIBLE ROBOT
CONTROL API

As one possible form of input, we are considering the pos-
sibility of implementing the high-level robot control language
specified in Jamie Diproses paper Human-Centric API for
Programming Socially Interactive Robots [5] as a means of
sending high level commands to the RC. Without replicating
the description of this API here, we nevertheless will give
some simple examples of what the extension of the API we
propose might look like. The syntax and semantics are simple
enough that the examples should be fairly transparent. Mainly,
what is needed for the present purposes is to create classes that
represent the various actions the robot performs, and tell the
robot to execute them commands like robot.do(...) .

E.g. one could say

robot = Robot()

greet = SayTo()
smile = GestureAt(Gesture.Smile, person)
wave = GestureAt(Gesture.Wave, person)

greet.add_gesture_start(smile)
greet.add_gesture_start(wave)
greet.add_text("Hello")
greet.add_gesture_end(smile)
greet.add_gesture_end(wave)

robot.do(greet)

Or, one could say

robot = Robot()
person = Person()

point = GestureAt(Gesture.Point, person)
frown = GestureAt(Gesture.Frown, person)
robot.do(point, frown)

It will also sometimes be necessary to say what parts of the
body are going to execute a gesture. E.g. whether its the left
or right arm that will point. You could do this two ways, via

robot = Robot()
person = Person()
point = GestureAt(Gesture.Point, person,

body_part = robot.left_arm)
robot.do(point)

or

robot = Robot()

person = Person()
point = GestureAt(Gesture.Point, person)
robot.left_arm.do(point)

This sort of simple syntax, appropriately fleshed out and
extended, could be used to enable relatively simple yet func-
tionally sophisticated interfacing with the RC component of
the proposed architecture.

VI. CONCLUSION

A rough sketch of a software architecture for interfacing
between cognitive architectures and robotics software systems
has been outlined. This represents current work in progress,
on which feedback is solicited from others working in the
area. Feedback will be incorporated in the ongoing design and
engineering work, hopefully resulting in a system with broad
utility beyond the initial application of flexibly interfacing
OpenCog with Hanson Robotics robots.

ACKNOWLEDGMENT

The authors would like to thank Jamie Diprose, David
Hanson, Lake Watkins and Alex van der Peet for discussions
that were integral in formulating the ideas presented here.

REFERENCES

[1] R. A. Brooks, Flesh and Machines, Pantheon Books, New York. NY,
2002.

[2] B. Hasslacher and M. W. Tilden, “Living machines,” Robotics and
Autonomous Systems, p. 143169, 1995.

[3] B. Goertzel, C. Pennachin, and N. Geisweiller, Engineering General
Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning
and Cognitive Synergy. Springer: Atlantis Thinking Machines, 2013.

[4] ——, Engineering General Intelligence, Part 2: The CogPrime Archi-
tecture for Integrative, Embodied AGI. Springer: Atlantis Thinking
Machines, 2013.

[5] J. Diprose, B. Plimmer, B. MacDonald, and J. Hosking, “A human-centric
api for programming socially interactive robots,” University of Auckland
technical report, 2014.

