
Cognitive Synergy between Procedural and Declarative Learning in the Control of
Animated and Robotic Agents Using the OpenCogPrime AGI Architecture

B. Goertzel1,3, J. Pitt2, J. Wigmore2, N. Geisweiller1, Z. Cai2,3, R. Lian3, D. Huang2,3, G. Yu2

1 Novamente LLC, Rockville MD, USA, 2 M-Lab, School of Design, Hong Kong Polytechnic University,
3 Fujian Key Lab for Brain-Like Intelligent Systems, Cog. Sci. Dept., Xiamen University, China

Abstract

The hypothesis is presented that ”cognitive synergy”
– proactive and mutually-assistive feedback between
different cognitive processes associated with different
types of memory – may serve as a foundation for ad-
vanced artificial general intelligence. A specific AI ar-
chitecture founded on this idea, OpenCogPrime, is de-
scribed, in the context of its application to control vir-
tual agents and robots. The manifestations of cognitive
synergy in OpenCogPrime’s procedural and declarative
learning algorithms are discussed in some detail.

Supposing one agrees that a broadly ”integrative” approach
is an appropriate way to achieve advanced AI functionality.
One must then specify what ”integrative” really means. At
one extreme, it could mean merely connecting together dif-
ferent software components that solve problems via highly
independent internal processes, in such a way that they occa-
sionally pass each other problems to solve and receive each
others’ answers. At the other extreme, it could mean binding
various components together in tight feedback loops so that
the internal dynamics of each component can be effectively
understood only in the internal context of the others. While
many approaches to integration may be workable, here we
are specifically concerned with AI of the ”very tightly inte-
grated” type.

Specifically, we describe some theoretical elaborations
and practical applications of the concept of cognitive syn-
ergy introduced in (?), defined roughly as: the fitting-
together of different intelligent components into an appro-
priate cognitive architecture, in such a way that the com-
ponents proactively and mutually assist each other’s inter-
nal operations, regularly coming to each others rescue ”mid
thought process” in situations where ineffective cognition is
observed or anticipated. We describe some aspects of a re-
search program designed to explore (and leverage the poten-
tial truth of) the hypothesis that the cognitive synergy ensu-
ing from integrating multiple symbolic and subsymbolic
learning and memory components in an appropriate cog-
nitive architecture and environment, can ultimately pro-
duce artificial general intelligence (AGI) at the human
level or beyond. For discussion of what is meant by the

Copyright c� 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

term AGI, see (?); in brief, it is intended to refer to the
broadly human-like capability to solve problems in a variety
of domains without domain-specific training, including po-
tentially domains unknown to the system or its programmers
at the time of system creation, and the ability to generalize
knowledge from a set of domains to dramatically different
domains.

This approach fits neatly with what is known about hu-
man neurobiology. The human brain is an integration of
an assemblage of diverse structures and dynamics, built us-
ing common components and arranged according to a sensi-
ble cognitive architecture. Its algorithms and structures have
been honed by evolution to work closely together – they are
very tightly inter-adapted, in the same way that the different
organs of the body are adapted to work together. Due their
close interoperation they give rise to the systemic behaviors
that characterize human-like general intelligence.

At the broadest level, there are four primary challenges in
constructing a cognitive synergy based AGI system:

1. choosing an overall cognitive architecture that pos-
sesses adequate richness and flexibility for the task of
achieving advanced cognition

2. choosing appropriate AI algorithms and data struc-
tures to fulfill each of the functions identified in the
cognitive architecture (e.g. visual perception, audition,
episodic memory, language generation, analogy,...)

3. ensuring that these algorithms and structures, within the
chosen cognitive architecture, are able to cooperate in
such a way as to provide appropriate coordinated, syner-
getic intelligent behavior (critical since advanced cogni-
tion is an integrated functional response to the world, not
a loosely coupled collection of capabilities)

4. embedding one’s system in an environment that provides
sufficiently rich stimuli and interactions to enable the
system to use this cooperation to ongoingly create an in-
telligent internal world-model and self-model

We describe here an AGI-oriented architecture called
OpenCogPrime (OCP), based on the open-source OpenCog
project http://opencog.org, which is fundamentally
reliant on the cognitive synergy concept, and which is cur-
rently being used (in research projects) to control animated
agents in video game worlds, and (via the OpenCogBot

(OCB) extension (?)) humanoid (Nao) robots in a robot lab.
The various subsystems of OpenCogBot involve sophisti-
cated methods for visual and auditory pattern inference, lan-
guage comprehension and generation, action planning, com-
monsense uncertain reasoning, and concept creation; and
most of these capabilities have been evaluated in prior ap-
plications of narrower scope.

The medium-term goal of the OCP/OCB project is to cre-
ate systems that can function broadly comparably to young
human children in virtual and robotic preschool contexts (?).
Longer-term, the project is explicitly aimed at the grand old
goals of the AI field – full human-adult-level intelligence,
and ultimately beyond. The current functionality of the sys-
tem is not particularly close to these ambitious goals, how-
ever, the architecture has been worked out with these goals
in mind, both in the broad outline and in the algorithmic and
implementation details.

OpenCogBot is a large and complex system whose care-
ful description occupies a lengthy volume (?). Here, after
describing the basic concepts of the architecture, we focus
on describing the role cognitive synergy plays in two as-
pects of the architecture in particular, the declarative (prob-
abilistic logic based) learning component and the procedu-
ral (probabilistic program evolution based) learning compo-
nent. While only a fraction of the whole story, this does give
some flavor of how cognitive synergy manifests itself in the
concrete AGI design. We emphasize the implications of this
cognitive synergy for the system’s performance in virtual
and robotic agent control.

OpenCogPrime and OpenCogBot
Conceptually founded on the ”patternist” systems theory of
intelligence outlined in (?), OpenCogPrime combines mul-
tiple AI paradigms such as uncertain logic, computational
linguistics, evolutionary program learning and connection-
ist attention allocation in a unified architecture. Cognitive
processes embodying these different paradigms interoper-
ate together on a common neural-symbolic knowledge store
called the Atomspace. The interaction of these processes
is designed to encourage the self-organizing emergence of
high-level network structures in the Atomspace, including
superposed hierarchical and heterarchical knowledge net-
works, and a self-model network enabling meta-knowledge
and meta-learning.

The high-level architecture of OCP – as shown in the
broader OpenCogBot architecture diagram in Figure ?? –
involves the use of multiple cognitive processes associated
with multiple types of memory to enable an intelligent agent
to execute the procedures that it believes have the best prob-
ability of working toward its goals in its current context. In a
preschool context, for example, the top-level goals are sim-
ple things such as pleasing the teacher, learning new infor-
mation and skills, and protecting the agent’s body.

What OCP does not handle is low-level perception and
action; OpenCogBot surmounts this problem via integrating
OCP with a hierarchical temporal memory system, DeSTIN
(?).

Memory Types in OpenOCP OCP’s memory types are
the declarative, procedural, sensory, and episodic memory
types that are widely discussed in cognitive neuroscience
(?), plus attentional memory for allocating system resources
generically, and intentional memory for allocating system
resources in a goal-directed way. Table ?? overviews these
memory types, giving key references and indicating the cor-
responding cognitive processes, and which of the generic
patternist cognitive dynamics each cognitive process corre-
sponds to (pattern creation, association, etc.).

The essence of the OCP design lies in the way the struc-
tures and processes associated with each type of memory are
designed to work together in a closely coupled way, the op-
erative hypothesis being that this will yield cooperative in-
telligence going beyond what could be achieved by an archi-
tecture merely containing the same structures and processes
in separate “black boxes.”

The inter-cognitive-process interactions in OpenCog are
designed so that
• conversion between different types of memory is possible,

though sometimes computationally costly (e.g. an item
of declarative knowledge may with some effort be inter-
preted procedurally or episodically, etc.)

• when a learning process concerned centrally with one
type of memory encounters a situation where it learns
very slowly, it can often resolve the issue by converting
some of the relevant knowledge into a different type of
memory: i.e. cognitive synergy

Goal-Oriented Dynamics in OpenOCP OCP’s dynamics
has both goal-oriented and “spontaneous” aspects; here for
simplicity’s sake we will focus on the goal-oriented ones.
The basic goal-oriented dynamic of the OCP system, within
which the various types of memory are utilized, is driven by
“cognitive schematics”, which take the form

Context ^ Procedure! Goal < p >

(summarized C ^ P ! G). Semi-formally, this implica-
tion may interpreted to mean: “If the context C appears to
hold currently, then if I enact the procedure P , I can expect
to achieve the goal G with certainty p.” Cognitive synergy
means that the learning processes corresponding to the dif-
ferent types of memory actively cooperate in figuring out
what procedures will achieve the system’s goals in the rele-
vant contexts within its environment.

OCP’s cognitive schematic is significantly similar to pro-
duction rules in classical architectures like SOAR and ACT-
R; however, there are significant differences which are im-
portant to OCP’s functionality. Unlike with classical produc-
tion rules systems, uncertainty is core to OCP’s knowledge
representation, and each OCP cognitive schematic is labeled
with an uncertain truth value, which is critical to its utiliza-
tion by OCP’s cognitive processes. Also, in OCP, cognitive
schematics may be incomplete, missing one or two of the
terms, which may then be filled in by various cognitive pro-
cesses. A stronger similarity is to MicroPsi’s triplets.

Finally, the biggest difference between OCPs cognitive
schematics and production rules or other similar constructs,

Memory Type Specific Cognitive Processes General Cognitive
Functions

Declarative Probabilistic Logic Networks (PLN) (?); concept blending (?) pattern creation

Procedural MOSES (a novel probabilistic evolutionary program learning
algorithm) (?) pattern creation

Episodic internal simulation engine (?) association, pattern creation

Attentional Economic Attention Networks (ECAN) (?) association, credit
assignment

Intentional probabilistic goal hierarchy refined by PLN and ECAN,
structured according to MicroPsi (?)

credit assignment, pattern
creation

Sensory In OpenCogBot, this will be supplied by the DeSTIN
component

association, attention
allocation, pattern creation,

credit assignment

Table 1: Memory Types and Cognitive Processes in OpenCog Prime. The third column indicates the general cognitive function
that each specific cognitive process carries out, according to the patternist theory of cognition.

is that in OCP this level of knowledge representation is
not the only important one. CLARION uses production
rules for explicit knowledge representation and then uses a
totally separate subsymbolic knowledge store for implicit
knowledge. In OCP both explicit and implicit knowledge
are stored in the same graph of nodes and links, with ex-
plicit knowledge stored in probabilistic logic based nodes
and links such as cognitive schematics; and implicit knowl-
edge stored in patterns of activity among these same nodes
and links, defined via the activity of the “importance” val-
ues associated with nodes and links and propagated by the
ECAN attention allocation process.

The meaning of a cognitive schematic in OCP is hence not
entirely encapsulated in its explicit logical form, but resides
largely in the activity patterns that ECAN causes its activa-
tion or exploration to give rise to. And this fact is important
because the synergetic interactions of system components
are in large part modulated by ECAN activity. Without the
real-time combination of explicit and implicit knowledge in
the system’s knowledge graph, the synergetic interaction of
different cognitive processes would not work so smoothly.

Current and Prior Applications of OpenCog OpenCog
has been used for commercial applications in the area of
natural language processing and data mining; e.g. see (?)
where OpenCog’s PLN reasoning and RelEx language pro-
cessing are combined to do automated biological hypothe-
sis generation based on information gathered from PubMed
abstracts. Most relevantly to the present proposal, has also
been used to control virtual agents in virtual worlds (?),
using an OpenCog variant called the OpenPetBrain (see
http://novamente.net/example for some videos
of these virtual dogs in action).

While the OpenCog virtual dogs do not display intelli-
gence closely comparable to that of real dogs (or human
children), they do demonstrate a variety of interesting and
relevant functionalities including learning new behaviors
based on imitation and reinforcement; responding to natural
language commands and questions, with appropriate actions
and natural language replies; and spontaneous exploration of

their world, remembering their experiences and using them
to bias future learning and linguistic interaction. These are
simpler versions of capabilities we are working to demon-
strate with the OpenCogBot system.

Integrating OpenOCP with Hierarchical Temporal
Memory OpenOCP is designed to handle most of the
types of knowledge important for human like intelligence,
in a manner manifesting cognitive synergy, but in its current
form it doesn’t deal with low-level sensorimotor knowledge.
It could be extended to handle such knowledge in various
ways, but in the OpenCogBot architecture we have chosen
a different approach: hybridizing OCP with another sort of
cognitive architecture, hierarchical temporal memory, that is
specifically oriented toward sensorimotor learning, and has
already been extensively tested in the perception domain.

The DeSTIN architecture (?) comprises three interlinked
hierarchies:
• a deep spatiotemporal inference network carrying out per-

ception and world-modeling
• a similarly architected critic network that provides feed-

back on the inference network’s performance
• an action network that controls actuators based on the ac-

tivity in inference network.
The nodes in these networks perform probabilistic pattern
recognition according to algorithms; and the nodes in each
of the networks may receive states of nodes in the other net-
works as inputs, providing rich interconnectivity and syner-
getic dynamics.

The basic logic of the integration of DeSTIN with OCP is
depicted in Figure ?? but of course the essence of the inte-
gration lies in the dynamics, not the structure.

Cognitive Synergy for Procedural and
Declarative Learning

We now present more algorithmic detail regarding the op-
eration and synergetic interaction of OCP’s two most so-
phisticated components: the MOSES procedure learning al-
gorithm, and the PLN uncertain inference framework. The

Figure 1: High-Level OpenCogBot Architecture Diagram

ideas discussed here play a significant role in our current
work using OCP to control virtual agents, but for space rea-
sons we will not give details here, only the broad ideas.

Cognitive Synergy in MOSES . MOSES, OCP’s pri-
mary algorithm for learning procedural knowledge, has been
tested on a variety of application problems including stan-
dard GP test problems, virtual agent control, biological data
analysis and text classification (?). It represents procedures
internally as program trees. Each node in a MOSES program
tree is supplied with a “knob,” comprising a set of values that
may potentially be chosen to replace the data item or oper-
ator at that node. So e.g. a node containing the number 7
may be supplied with a knob that can take on any integer
value. A node containing a while loop may be supplied with
a knob that can take on various possible control flow opera-
tors including conditionals or the identity. A node containing
a procedure representing a particular robot movement, may
be supplied with a knob that can take on values correspond-
ing to multiple possible movements. The metaphor is that
MOSES learning covers both “knob twiddling” (setting the
values of knobs) and “knob creation.”

MOSES is invoked within OCP in a number of ways, but
most commonly for finding a procedure P satisfying a prob-
abilistic implication C&P ! G as described above, where
C is an observed context and G is a system goal. In this case
the probability value of the implication provides the “ob-
jective function” that MOSES uses to assess the quality of
candidate procedures.

For example, suppose an OCP-controlled agent is trying
to learn to play the game of “tag” (an application that has
been carried out). Then its context C is that others are trying
to play a game they call “tag” with it; and we may assume
its goals are to please them and itself, and that it has fig-
ured out that in order to achieve this goal it should learn
some procedure to follow when interacting with others who
have said they are playing “tag.” In this case a potential tag-
playing procedure might contain nodes for physical actions
like stepforward(speed s), as well as control flow nodes
containing operators like ifelse (e.g. there would probably
be a conditional telling the robot to do something differ-
ent depending on whether someone seems to be chasing it).
Each of these program tree nodes would have an appropriate
knob assigned to it. And the objective function would eval-
uate a procedure P in terms of how successfully the robot
played tag when controlling its behaviors according to P

(noting that it may also be using other control procedures
concurrently with P). It’s worth noting here that evaluating
the objective function in this case involves some inference
already, because in order to tell if it is playing tag success-
fully, in a real-world context, it must watch and understand
the behavior of the other players.

MOSES operates according to the following process for
evolving a metapopulation of “demes“ of programs (each
deme being a set of relatively similar programs, forming a
sort of island in program space):

1. Construct an initial set of knobs based on some prior (e.g.,
based on an empty program; or more interestingly, using

prior knowledge supplied by PLN based on the system’s
memory) and use it to generate an initial random sampling
of programs. Add deme to the metapopulation.

2. Select a deme from the metapopulation and update its
sample, as follows:

(a) Select some promising programs from the deme’s ex-
isting sample to use for modeling, according to the ob-
jective function.

(b) Considering the promising programs as collections of
knob settings, generate new collections of knob settings
by applying some (competent) optimization algorithm.
For best performance on difficult problems, it is impor-
tant to use an optimization algorithm that makes use of
the system’s memory in its choices, consulting PLN
inference to help estimate which collections of knob
settings will work best.

(c) Convert the new collections of knob settings into their
corresponding programs, reduce the programs to nor-
mal form, evaluate their scores, and integrate them into
the deme’s sample, replacing less promising programs.
In the case that objective is expensive, score evalua-
tion may be preceded by score estimation, which may
use PLN inference, enaction of procedures in an inter-
nal simulation environment, and/or similarity match-
ing against episodic memory.

3. For each new program that meet the criterion for creating
a new deme, if any:

(a) Construct a new set of knobs (a process called
“representation-building”) to define a region centered
around the program (the deme’s exemplar), and use it
to generate a new random sampling of programs, pro-
ducing a new deme.

(b) Integrate the new deme into the metapopulation, possi-
bly displacing less promising demes.

4. Repeat from step 2.

MOSES is a complex algorithm and each part plays its role;
if any one part is removed the performance suffers signif-
icantly (?). However, the main point we want to highlight
here is the role played by synergetic interactions between
MOSES and other cognitive components such as PLN, sim-
ulation and episodic memory, as indicated in boldface in the
above pseudocode. MOSES is powerful, but still has scala-
bility issues; one reason we feel it has potential to play a
major role in human-level AI is its capacity for productive
interoperation with other cognitive components.

Continuing the “tag” example, the power of MOSES’s in-
tegration with other cognitive processes would come into
play if, before learning to play tag, the agent has already
played simpler games involving chasing. If the agent al-
ready has experience chasing and being chased by other
agents, then its episodic and declarative memory will con-
tain knowledge about how to pursue and avoid other agents
in the context of running around an environment full of ob-
jects, and this knowledge will be deployable within the ap-
propriate parts of MOSES’s Steps 1 and 2. Cross-process
and cross-memory-type integration make it tractable for

MOSES to act as a “transfer learning” algorithm, not just a
task-specific machine-learning algorithm. OCP experiments
of this nature have been conducted with virtual agents, but
not yet robots.

Cognitive Synergy in PLN . While MOSES handles
much of OCP’s procedural learning, and OpenCog’s internal
simulation engine handles most episodic knowledge, OCP’s
primary tool for handling declarative knowledge is an un-
certain inference framework called Probabilistic Logic Net-
works (PLN). The complexities of PLN are the topic of a
lengthy technical monograph (?), and here we will eschew
most details and focus mainly on pointing out how PLN
seeks to achieve efficient inference control via integration
with other cognitive processes.

As a logic, PLN is broadly integrative: it combines cer-
tain term logic rules with more standard predicate logic
rules, and utilizes both fuzzy truth values and a variant of
imprecise probabilities called indefinite probabilities. PLN
mathematics tells how these uncertain truth values propa-
gate through its logic rules, so that uncertain premises give
rise to conclusions with reasonably accurately estimated un-
certainty values.

PLN can be used in either forward or backward chaining
mode; and in the language introduced above, it can be used
for either analysis or synthesis. As an example, we will con-
sider backward chaining analysis, exemplified by the prob-
lem of an AI preschool student trying to determine whether
a new playmate “Bob” is likely to be a regular visitor to is
preschool or not (evaluating the truth value of the implica-
tion Bob ! regular visitor). The basic backward chain-
ing process for PLN analysis looks like:

1. Given an implication L ⌘ A ! B whose truth value
must be estimated (e.g. L ⌘ C&P ! G as discussed
above), create a list (A1, ..., An) of (inference rule, stored
knowledge) pairs that might be used to produce L

2. Using analogical reasoning to prior inferences, assign
each Ai a probability of success

• If some of the Ai are estimated to have reasonable
probability of success at generating reasonably confi-
dent estimates of L’s truth value, then invoke Step 1
with Ai in place of L (at this point the inference pro-
cess becomes recursive)

• If none of the Ai looks sufficiently likely to succeed,
then inference has “gotten stuck” and another cognitive
process should be invoked, e.g.

– Concept creation may be used to infer new concepts
related to A and B, and then Step 1 may be revisited,
in the hope of finding a new, more promising Ai in-
volving one of the new concepts

– MOSES may be invoked with one of several spe-
cial goals, e.g. the goal of finding a procedure P so
that P (X) predicts whether X ! B. If MOSES
finds such a procedure P then this can be converted
to declarative knowledge understandable by PLN and
Step 1 may be revisited....

– Simulations may be run in OCP’s internal simulation
engine, so as to observe the truth value of A ! B in
the simulations; and then Step 1 may be revisited....

The combinatorial explosion of inference control is combat-
ted by the capability to defer to other cognitive processes
when the inference control procedure is unable to make a
sufficiently confident choice of which inference steps to take
next. Note that just as MOSES may rely on PLN to model
its evolving populations of procedures, PLN may rely on
MOSES to create complex knowledge about the terms in its
logical implications.

In the “new playmate” example, the interesting case is
where the robot initially seems not to know enough about
Bob to make a solid inferential judgment (so that none of
the Ai seem particularly promising). E.g., it might carry out
a number of possible inferences and not come to any reason-
ably confident conclusion, so that the reason none of the Ai

seem promising is that all the decent-looking ones have been
tried already. So it might then recourse to MOSES, simula-
tion or concept creation.

For instance, the PLN controller could make a list of ev-
eryone who has been a regular visitor, and everyone who has
not been, and pose MOSES the task of figuring out a proce-
dure for distinguishing these two categories. This procedure
could then used directly to make the needed assessment, or
else be translated into logical rules to be used within PLN in-
ference. For example, perhaps MOSES would discover that
older males wearing ties tend not to become regular visitors.
If the new playmate is an older male wearing a tie, this is
directly applicable. But if the current playmate is wearing
a tuxedo, then PLN may be helpful via reasoning that even
though a tuxedo is not a tie, it’s a similar form of fancy dress
– so PLN may extend the MOSES-learned rule and infer that
the new playmate is not likely to be a regular visitor.

Discussion
From a theoretical standpoint, one key question posed by
this material is how critical the cognitive-synergetic aspects
actually are for the OCP and OCB systems’ practical intelli-
gence. A theoretical demonstration of the necessity of cog-
nitive synergy for general intelligence in certain sorts of en-
vironments has been previously attempted (?), but remains
sketchy and semi-rigorous; so it is very tempting to try to ex-
plore this issue empirically. One may well ask: What if one
disallowed cognitive synergy and forced the system to uti-
lize its components in a completely separated way – would
it operate less intelligently?

As natural as this question may seem, however, it turns out
not to make so much sense. The OCP and OCB designs have
been constructed around the principle of cognitive synergy,
so the answer is that if one disables cross-cognitive-process
interactions it won’t work nearly as well – but this doesn’t
resolve the deeper question of whether one could somehow
modify the various component cognitive processes so as to
lead to highly effective whole-system performance in the ab-
sence of significant cognitive synergy. It is extremely diffi-
cult to isolate the impact of particular properties of com-
plex, tightly-linked integrative AI systems; much more so

than evaluating the effectiveness of such a system at carry-
ing out particular sorts of tasks.1

References
Arel, I.; Rose, D.; and Coop, R. 2009. Destin: A scal-
able deep learning architecture with application to high-
dimensional robust pattern recognition. Proc. AAAI Work-
shop on Biologically Inspired Cognitive Architectures.
Bach, J. 2009. Principles of Synthetic Intelligence. Oxford
University Press.
Fauconnier, G., and Turner, M. 2002. The Way We Think:
Conceptual Blending and the Mind’s Hidden Complexities.
Basic.
Goertzel, B., and Bugaj, S. V. 2009. Agi preschool. In
Proceedings of the Second Conference on Artificial General
Intelligence. Atlantis Press.
Goertzel, B., and Et Al, C. P. 2008. An integrative method-
ology for teaching embodied non-linguistic agents, applied
to virtual animals in second life. In Proceedings of the First
Conference on Artificial General Intelligence. IOS Press.
Goertzel, B., and Pennachin, C. 2005. Artificial General
Intelligence. Springer.
Goertzel, B.; Pinto, H.; Pennachin, C.; and Goertzel, I. F.
2006. Using dependency parsing and probabilistic infer-
ence to extract relationships between genes, proteins and
malignancies implicit among multiple biomedical research
abstracts. In Proceedings of Bio-NLP 2006.
Goertzel, B.; Ikle, M.; Goertzel, I.; and Heljakka, A. 2008.
Probabilistic Logic Networks. Springer.
Goertzel, B.; Pitt, J.; Ikle, M.; Pennachin, C.; and Liu, R.
2010. Glocal memory: a design principle for artificial brains
and minds. Neurocomputing, Special Issue of Artificial
Brain.
Goertzel, B.; Pennachin, C.; and Geisweiller, N. 2010.
Building Better Minds: Engineering Beneficial General In-
telligence. In preparation.
Goertzel, B. 2006. The Hidden Pattern. Brown Walker.
Goertzel, B. 2009a. Cognitive synergy: A universal princi-
ple of feasible general intelligence? In Proceedings of ICCI-
09.
Goertzel, B. 2009b. The embodied communication prior. In
Proceedings of ICCI-09.
Goertzel, B. e. a. 2010. Opencogbot: An integrative archi-
tecture for embodied agi. Proceedings of ICAI-10, Beijing.
Looks, M. 2006. Competent Program Evolution. PhD The-
sis, Computer Science Department, Washington University.
Tulving, E., and Craik, R. 2005. The Oxford Handbook of
Memory. Oxford University Press.

1This work was partially funded by Chinese NSF grant
60975084/F030603, ”Learning by Imitation and Reinforcement
in a Humanoid Robot”, and a Hong Kong ITF grant for ”A Soft-
ware Toolkit for Creating Intelligent Non-Player Characters in
Video Games”

