
GOLEM:

Toward an AGI Meta-Architecture Enabling Both

Goal Preservation and Radical Self-Improvement

Ben Goertzel
Novamente LLC

1405 Bernerd Place
Rockville MD 20851

May 2, 2010

Abstract

A high-level AGI architecture called GOLEM (Goal-Oriented LEarn-
ing Meta-Architecture) is presented, along with an informal but care-
ful argument that GOLEM may be capable of preserving its initial
goals while radically improving its general intelligence. As a meta-
architecture, GOLEM can be wrapped around a variety of different
base-level AGI systems, and also has a role for a powerful narrow-AI
subcomponent as a probability estimator. The motivation underlying
these ideas is the desire to create AGI systems fulfilling the multiple
criteria of being: massively and self-improvingly intelligent; probably
beneficial; and almost surely not destructive.

1 Introduction

One question that looms large when thinking about the future of AGI is:
How to create an AGI system that will maintain its initial goals even as it
revises and improves itself – and becomes so much smarter that in many
ways it becomes incomprehensible to its creators or its initial condition.
One of the motives making this question interesting is the quest to design
AGI systems that are massively intelligent, probably beneficial, and almost
surely not destructive.

Informally, I define an intelligent system as steadfast if, over a long period
of time, it either continues to pursue the same goals it had at the start of
the time period, or stops acting altogether. In this terminology, one way

1



to confront the problem of creating probably-beneficial, almost surely non-
destructive AGI, is to solve the two problems of:

• How to encapsulate the goal of beneficialness in an AGI’s goal system

• How to create steadfast AGI, in a way that applies to the ”beneficial-
ness” goal among others

Of course, the easiest way to achieve steadfastness is to create a system that
doesn’t change or grow much. And the interesting question is how to couple
steadfastness with ongoing, radical, transformative learning.

I describe here an AGI meta-architecture, that I label the Goal Oriented
LEarning Meta-architecture (GOLEM), and I present a careful semi-formal
argument that, under certain reasonable assumptions (and given a large,
but not clearly infeasible amount of computer power), this architecture is
likely to be both steadfast and massively, self-improvingly intelligent. Full
formalization of the argument is left for a later paper.

An alternate version of GOLEM is also described, which possesses more
flexibility to adapt to an unknown future, but lacks a firm guarantee of
steadfastness.

Discussion of the highly nontrivial problem of ”how to encapsulate the
goal of beneficialness in an AGI’s goal system” is also left for elsewhere (see
[Goe10] for some informal discussion).

2 The Goal Oriented Learning Meta-Architecture

The Goal Oriented LEarning Meta-architecture (GOLEM) refers to an AGI
system S with the following high-level meta-architecture, depicted roughly
in Figure 1:

• Goal Evaluator = component that calculates, for each possible future
world (including environment states and internal program states), how
well this world fulfills the goal (i.e. it calculates the ”utility” of the
possible world)

– it may be that the knowledge supplied to the GoalEvaluator
initially (the ”base GEOP” i.e. ”base GoalEvaluator Operat-
ing Program”) is not sufficient to determine the goal-satisfaction
provided by a world-state; in that case the GoalEvaluator may
produce a probability distribution over possible goal-satisfaction
values

2



Figure 1: The GOLEM meta-architecture. Single-pointed errors indication
information flow; double-pointed arrows indicate more complex interrela-
tionships.

– initially the GoalEvaluator may be supplied with an inefficient
algorithm encapsulating the intended goals, which may then be
optimized and approximated by application of the Searcher (thus
leading to a GEOP different from the base GEOP)

– if the GoalEvaluator uses a GEOP produced by the Searcher, then
there may be an additional source of uncertainty involved, which
may be modeled by having the GoalEvaluator output a second-
order probability distribution (a distribution over distributions
over utility values), or else by collapsing this into a first-order
distribution

• HistoricalRepository = database storing the past history of Ss in-
ternal states and actions, as well as information about the environment
during Ss past

• Operating Program = the program that S is governing its actions
by, at a given point in time

3



– chosen by the Metaprogram as the best program the Searcher
has found, where ”best” is judged as ”highest probability of goal
achievement” based on the output of the Predictor and the Goal
Evaluator

• Predictor = program that estimates, given a candidate operating
program P and a possible future world W, the odds of P leading to W

• Searcher = program that searches through program space to find a
new program optimizing a provided objective function

• Memory Manager program = program that decides when to store
new observations and actions in the Historical Repository, and which
ones to delete in order to do so; potentially it may be given some
hard-wired constraints to follow, such as ”never forget human history,
or the previous century of your life.”

• Tester = hard-wired program that estimates the quality of a candi-
date Predictor, using a simple backtesting methodology

– That is, the Tester assesses how well a Predictor would have
performed in the past, using the data in the HistoricalRepository

• Metaprogram = fixed program that uses Searcher program to find
a good

– Searcher program (judged by the quality of the programs it finds,
as judged by the Predictor program)

– Predictor program (as judged by the Testers assessments of its
predictions)

– Operating Program (judged by Predictor working with Goal Eval-
uator, according to the idea of choosing an Operating Program
with the maximum expected goal achievement)

– GoalEvaluator Operating Program (judged by the Tester, eval-
uating whether a candidate program effectively predicts goal-
satisfaction given program-executions, according to the Histor-
icalRepository)

– Memory Manager (as judged by Searcher, which rates potential
memory management strategies based on the Predictor’s predic-
tions of how well the system will fare under each one)

4



The Metaprogram’s choice of Operating Program, Goal Evaluator Op-
erating Program and Memory Manager may all be interdependent, as
the viability of a candidate program for each of these roles may depend
on what program is playing each of the other roles. The metaprogram
also determines the amount of resources to allocate to searching for a
Searcher versus a Predictor versus an OP, according to a fixed algo-
rithm for parameter adaptation.

While this is a very abstract ”meta-architecture”, it’s worth noting that
it could be implemented using OpenCog [Goe09] or any other practical AGI
architecture as a foundation – in this case, OpenCog is ”merely” the initial
condition for the OP, the Memory Manager, the Predictor and the Searcher.
However, demonstrating that self-improvement can proceed at a useful rate
in any particular case like this, may be challenging.

Note that there are several fixed aspects in the above: the MetaProgram,
the Tester, the GoalEvaluator, and the structure of the HistoricalRepository.
The standard GOLEM, with these aspects fixed, will also be called the fixed
GOLEM, in contrast to an adaptive GOLEM in which everything is allowed
to be adapted based on experience.

2.1 Optimizing the GoalEvaluator

Note that the GoalEvaluator may need to be very smart indeed to do its job.
However, an important idea of the architecture is that the optimization of
the GoalEvaluator’s functionality may be carried out as part of the system’s
overall learning 1.

In its initial and simplest form, the GoalEvaluator’s internal Operating
Program (GEOP) could basically be a giant simulation engine, that tells
you, based on a codified definition of the goal function: in world-state W,
the probability distribution of goal-satisfaction values is as follows. It could
also operate in various other ways, e.g. by requesting human input when it
gets confused in evaluating the desirability of a certain hypothetical world-
state; by doing similarity matching according to a certain codified distance
measure against a set of desirable world-states; etc.

However, the Metaprogram may supplement the initial ”base GEOP”
with an intelligent GEOP, which is learned by the Searcher, after the Searcher
is given the goal of finding a program that will

1this general idea was introduced by Abram Demski upon reading an earlier draft of
this article, though he may not agree with the particular way I have improvised on his
idea here

5



• accurately agree with the base GEOP across the situations in the
HistoricalRepository, as determined by the Tester

• be as compact as possible

In this approach, there is a ”base goal evaluator” that may use simplistic
methods, but then the system learns programs that do approximately the
same thing as this but perhaps faster and more compactly, and potentially
embodying more abstraction. Since this program learning has the specific
goal of learning efficient approximations to what the GoalEvaluator does,
it’s not susceptible to ”cheating” in which the system revises its goals to
make them easier to achieve (unless the whole architecture gets broken).

What is particularly interesting about this mechanism is: it provides a
built-in mechanism for extrapolation beyond the situations for which the
base GEOP was created. The Tester requires that the learned GEOPs must
agree with the base GEOP on the HistoricalRepository, but for cases not
considered in the HistoricalRepository, the Metaprogram is then doing Oc-
cam’s Razor based program learning, seeing a compact and hence rationally
generalizable explanation of the base GEOP.

2.2 Conservative Meta-Architecture Preservation

Next, the GOLEM meta-architecture assumes that the goal embodied by
the GoalEvaluator includes, as a subgoal, the preservation of the overall
meta-architecture described above (with a fallback to inaction if this seems
infeasible). This may seem a nebulous assumption, but it’s not hard to
specify if one thinks about it the right way.

For instance, one can envision each of the items in the above component
list as occupying a separate hardware component, with messaging protocols
established for communicating between the components along cables. Each
hardware component can be assumed to contain some control code, which
is connected to the I/O system of the component and also to the rest of the
component’s memory and processors.

Then what we must assume is that the goal includes the following crite-
ria, which we’ll call conservative meta-architecture preservation:

1. No changes to the hardware or control code should be made except in
accordance with the second criterion

2. If changes to the hardware or control code are found, then the system
should stop acting (which may be done in a variety of ways, ranging

6



from turning off the power to self-destruction; we’ll leave that unspec-
ified for the time being as that’s not central to the point we want to
make here)

Any world-state that violates these criteria, should be rated extremely low
by the GoalEvaluator.

3 The Argument For GOLEM’s Steadfastness

Our main goal here is to argue that a program with (fixed) GOLEM meta-
architecture will be steadfast, in the sense that it will maintain its archi-
tecture (or else stop acting) while seeking to maximize the goal function
implicit in its GoalEvaluator.

Why do we believe GOLEM can be steadfast? The basic argument, put
simply, is that: If

• the GoalEvaluator and environment together have the property that:

– world-states involving conservative meta-architecture preserva-
tion tend to have very high fitness

– world-states not involving conservative meta-architecture preser-
vation tend to have very low fitness

– world-states approximately involving conservative meta-architecture
preservation tend to have intermediate fitness

• the initial Operating Program has a high probability of leading to
world-states involving conservative meta-architecture preservation (and
this is recognized by the GoalEvaluator)

then the GOLEM meta-architecture will be preserved. Because: according
to the nature of the metaprogram, it will only replace the initial Operat-
ing Program with another program that is predicted to be more effective
at achieving the goal, which means that it will be unlikely to replace the
current OP with one that doesn’t involve conservative meta-architecture
preservation.

Obviously, this approach doesn’t allow full self-modification; it assumes
certain key parts of the AGI (meta)architecture are hard-wired. But the
hard-wired parts are quite basic and leave a lot of flexibility. So the argument
covers a fairly broad and interesting class of goal functions.

7



4 A Partial Formalization of the Architecture and
Steadfastness Argument

To formalize the above conceptual argument, we use a formal agents model
that is inspired by the model used in Legg and Hutter [LH07] but with the
significant difference of not involving rewards. In the GOLEM framework,
the GoalEvaluator is used in place of We will formalize CRDT within the
formal agents framework used in [LH07], in the context of formalizing the
notion of general intelligence.

4.1 A Simple Formal Agents Model

Consider a class of active agents which observe and explore their environ-
ment and also take actions in it, which may affect the environment. For-
mally, the agent sends information to the environment by sending symbols
from some finite alphabet called the action space Σ; and the environment
sends signals to the agent with symbols from an alphabet called the percep-
tion space, denoted P.

Sometimes it is useful to consider agents that can also experience re-
wards, which lie in the reward space, denoted R, which for each agent is
a subset of the rational unit interval. GOLEM is not a reward-based ar-
chitecture, but a little later we will contrast GOLEM with reward-based
architectures. In the case of a non-reward-based architecture, in the formal
model all rewards ri ∈ R may be assumed constant.

The agent and environment are understood to take turns sending signals
back and forth, yielding a history of actions, observations and rewards, which
may be denoted

a1o1r1a2o2r2...

or else

a1x1a2x2...

if x is introduced as a single symbol to denote both an observation and
a reward. The complete interaction history up to and including cycle t is
denoted ax1:t; and the history before cycle t is denoted ax<t = ax1:t−1.

The agent is represented as a function π which takes the current history
as input, and produces an action as output. Agents need not be determin-
istic, an agent may for instance induce a probability distribution over the
space of possible actions, conditioned on the current history. In this case we

8



may characterize the agent by a probability distribution π(at|ax<t). Sim-
ilarly, the environment may be characterized by a probability distribution
µ(xk|ax<kak). Taken together, the distributions π and µ define a probability
measure over the space of interaction sequences.

It’s interesting to specifically consider the class of environments that are
reward-summable, meaning that the total amount of reward they return to
any agent is bounded by 1. Where ri denotes the reward experienced by
the agent from the environment at time i, the expected total reward for the
agent π from the environment µ is defined as

V π
µ ≡ E(

∞∑
1

ri) ≤ 1

Generally speaking, more intelligent agents will achieve greater reward; but
different agents may be better adapted to different environments.explicit
reward signals.

4.2 Toward a Formalization of GOLEM

We will use the notation [A→ B] to denote the space of functions mapping
space A to space B. Also, in cases where we denote a function signature via
ΦX , we will useX to denote the space of all programs embodying functions of
that signature; e.g. GE is the space of all functions fulfilling the specification
given for ΦGE .

The GOLEM architecture may be formally defined as follows.

• The Historical Repository Ht is a subset of the history x0−t

• An Operating Program is a program embodying a function ΨOP : H →
A. That is, based on a history (specifically, the one contained in the
Historical Repository at a given point in time), it generates actions

• A Memory Manager is a program embodying a function so that ΨMM (Ht, xt) =
Ht+1

• A Goal Evaluator is a program embodying a function ΨGE : H → [0, 1].
That is, it maps histories (hypothetical future histories, in the GOLEM
architecture) into real numbers representing utilities

• A Goal Evaluator Operating Program is an element of class GE

• A Searcher is a program embodying a function ΨSR : [P → [0, 1]]→ P.
That is, it maps ”fitness functions” on program space into programs.

9



• A Predictor is a program embodying a function ΨPR : OP×GE×H →
[0, 1]

• A Tester is a program embodying a function ΨTR : PR ×H → [0, 1],
where the output [0, 1] is to be interpreted as the output of the pre-
diction

• A Metaprogram is a program embodying a function ΨMP : SR×H ×
PR× TR×GE2×MM → SR×PR×OP ×GE ×MM . The GE in
the output, and one of the GEs in the input, are GEOPs.

The operation of the Metaprogram is as outlined earlier; and the effec-
tiveness of the architecture may be assessed as its average level of goal
achievement as evaluated by the GE, according to some appropriate aver-
aging measure.

As discussed above, a fixed GOLEM assumes a fixed GoalEvaluator,
Tester and Metaprogram, and a fixed structure for the Historical Repository,
and lets everything else adapt. One may also define an adaptive GOLEM
variant in which everything is allowed to adapt, and this will be discussed
below, but the conceptual steadfastness argument made above applies only
to the fixed-architecture variant, and the formal proof below is similarly
restricted.

Given the above formulation, it may be possible to prove a variety of
theorems about GOLEM’s steadfastness under various assumptions. We
will not pursue this direction very far here, but will only make a few semi-
formal conjectures, proposing some semi-formal propositions that we believe
may result in theorems after more work.

4.3 Some Conjectures about GOLEM

The most straightforward cases in which to formally explore the GOLEM
architecture are not particularly realistic ones. However, it may be worth-
while to begin with less realistic cases that are more analytically tractable,
and then proceed with the more complicated and more realistic cases.

Conjecture 1. Suppose that

• The Predictor is optimal (for instance an AIXI type system)

• Memory management is not an issue: there is enough memory for the
system to store all its experiences with reasonable access time

10



• The GE is sufficiently efficient that no approximative GEOP is needed

• The HR contains all relevant information about the world, so that at
any given time, the Predictor’s best choices based on the HR are the
same as the best choices it would make with complete visibility into the
past of the universe

Then, there is some time T so that from T onwards, GOLEM will not get
any worse at achieving the goals specified in the GE, unless it shuts itself
off.

The basic idea of Conjecture 1 is that, under the assumptions, GOLEM will
replace its various components only if the Predictor predicts this is a good
idea, and the Predictor is assumed optimal (and the GE is assumed accurate,
and the Historical Repository is assumed to contain as much information as
needed). The reason one needs to introduce a time T > 0 is that the initial
programs might be clever or lucky for reasons that aren’t obvious from the
HR.

If one wants to ensure that T = 0 one needs some additional conditions:

Conjecture 2. In addition to the assumptions of Conjecture 1, assume
GOLEM’s initial choices of internal programs are optimal based on the state
of the world at that time. Then, GOLEM will never get any worse at achiev-
ing the goals specified in the GE, unless it shuts itself off.

Basically, what this says is: If GOLEM starts off with an ideal initial state,
and it knows virtually everything about the universe that’s relevant to its
goals, and the Predictor is ideal – then it won’t get any worse as new in-
formation comes in; it will stay ideal. This would be nice to know as it
would be verification of the sensibleness of the architecture, but, isn’t much
practical use as these conditions are extremely far from being achievable.

Furthermore, it seems likely that

Conjecture 3. Suppose that

• The Predictor is nearly optimal (for instance an AIXItl type system)

• Memory management is not a huge issue: there is enough memory
for the system to store a reasonable proportion of its experiences with
reasonable access time

• The approximative GEOP is place is very close to accurate

11



• The HR contains a large percentage of the relevant information about
the world, so that at any given time, the Predictor’s best choices based
on the HR are roughly same as the best choices it would make with
complete visibility into the past of the universe

Then, there is some time T so that from T onwards, GOLEM is very un-
likely to get significantly worse at achieving the goals specified in the GE,
unless it shuts itself off.

Basically, this says that if the assumptions of Conjecture 1 are weakened
to approximations, then the conclusion also holds in an approximate form.
This also would not be a practically useful result, as the assumptions are
still too strong to be realistic.

What might we be able to say under more realistic assumptions? There
may be results such as

Conjecture 4. Assuming that the environment is given by a specific prob-
ability distribution µ, let

• δ1 be the initial expected error of the Predictor assuming µ, and as-
suming the initial GOLEM configuration

• δ2 be the initial expected deviation from optimality of the MM, assum-
ing µ and the initial GOLEM configuration

• δ3 be the initial expected error of the GEOP assuming µ and the initial
GOLEM configuration

• δ4 be the initial expected deviation from optimality of the HR assuming
µ and the initial GOLEM configuration

Then, there are ε > 0 and p ∈ [0, 1] so that GOLEM has odds < p of getting
worse at achieving the goals specified in the GE by more than ε, unless it
shuts itself off. The values ε and p may be estimated in terms of the δ
values, using formulas that may perhaps be made either dependent on or
independent of the environment distribution µ.

My suspicion is that, to get reasonably powerful results of the above form,
some particular assumptions will need to be made about the environment
distribution µ – which leads up to the interesting and very little explored
problem of formally characterizing the probability distributions describing
the ”human everyday world.”

12



5 Comparison to a Reinforcement Learning Based
Formulation

Readers accustomed to reinforcement learning approaches to AI [SB98] may
wonder why the complexity of the GOLEM meta-architecture is necessary.
Instead of using a ”goal based architecture” like this, why not just simplify
things to

• Rewarder

• Operating Program

• Searcher

• Metaprogram

where the Rewarder issues a certain amount of reward at each point in
time, and the Metaprogram: invokes the Searcher to search for a program
that maximizes expected future reward, and then installs this program as
the Operating Program (and contains some parameters balancing resource
expenditure on the Searcher versus the Operating Program)?

One significant issue with this approach is that ensuring conservative
meta-architecture preservation, based on reward signals, seems problematic.
Put simply: in a pure RL approach, in order to learn that mucking with
its own architecture is bad, the system would need to muck with its archi-
tecture and observe that it got a negative reinforcement signal. This seems
needlessly dangerous! One can work around the problem by assuming an
initial OP that has a bias toward conservative meta-architecture preserva-
tion. But then if one wants to be sure this bias is retained over time, things
get complicated. For the system to learn via RL that removing this bias is
bad, it would need to try it and observe that it got a negative reinforcement
signal.

One could try to achieve the GOLEM within a classical RL framework
by stretching the framework somewhat (RL++ ?) and

• allowing the Rewarder to see the OP, and packing the Predictor and
GoalEvaluator into the Rewarder. In this case the Rewarder is tasked
with giving the system a reward based on the satisfactoriness of the
predicted outcome of running its Operating Program.

• allowing the Searcher to query the Rewarder with hypothetical actions
in hypothetical scenarios (thus allowing the Rewarder to be used like
the GoalEvaluator!)

13



This RL++ approach is basically the GOLEM in RL clothing. It requires
a very smart Rewarder, since the Rewarder must carry out the job of pre-
dicting the probability of a given OP giving rise to a given world-state.
The GOLEM puts all the intelligence in one place, which seems simpler. In
RL++, one faces the problem of how to find a good Predictor, which may be
solved by putting another Searcher and Metaprogram inside the Rewarder;
but that complicates things inelegantly.

Note that the Predictor and GoalEvaluator are useful in RL++ specifi-
cally because we are assuming that in RL++ the Rewarder can see the OP.
If the Rewarder can see the OP, it can reward the system for what it’s going
to do in the future if it keeps running the same OP, under various possible
assumptions about the environment. In a strict RL design, the Rewarder
cannot see the OP, and hence it can only reward the system for what it’s
going to do based on chancier guesswork. This guesswork might include
guessing the OP from the system’s actions – but note that, if the Rewarder
has to learn a good model of what program the system is running via observ-
ing the system’s actions, it’s going to need to observe a lot of actions to get
what it could get automatically by just seeing the OP. So the learning of the
system can be much, much faster in many cases, if the Rewarder gets to see
the OP and make use of that knowledge. The Predictor and GoalEvaluator
are a way of making use of this knowledge.

Also, note that in GOLEM the Searcher can use the Rewarder to explore
hypothetical scenarios. In a strict RL architecture this is not possible di-
rectly; it’s possible only via the system in effect building an internal model
of the Rewarder, and using it to explore hypothetical scenarios. The risk
here is that the system builds a poor model of the Rewarder, and thus learns
less efficiently.

In all, it seems that RL is not the most convenient framework for thinking
about architecture-preserving AGI systems, and looking at ”goal-oriented
architectures” like GOLEM makes things significantly easier.

6 Specifying the Letter and Spirit of Goal Systems
(Are Both Difficult Tasks)

Probably the largest practical issue arising with the GOLEM meta-architecture
is that, given the nature of the real world, it’s hard to estimate how well the
Goal Evaluator will do its job! If one is willing to assume GOLEM, and if
a proof corresponding to the informal argument given above can be found,
then the predictably beneficial part of the problem of ”creating predictably

14



beneficial AGI” is largely pushed into the problem of the GoalEvaluator.
This makes one suspect that the hardest problem of making predictably

beneficial AGI probably isn’t ”preservation of formally-defined goal con-
tent under self-modification.” This may be hard if one enables total self-
modification, but it seems it may not be that hard if one places some fairly
limited restrictions on self-modification, as is done in GOLEM, and begins
with an appropriate initial condition.

The really hard problem, it would seem, is how to create a GoalEvalu-
ator that implements the desired goal content – and that updates this goal
content as new information about the world is obtained, and as the world
changes ... in a way that preserves the spirit of the original goals even if
the details of the original goals need to change as the world is explored and
better understood. Because the ”spirit” of goal content is a very subtle and
subjective thing.

The intelligent updating of the GEOP, including in the GOLEM design,
will not update the original goals, but it will creatively and cleverly apply
them to new situations as they arise – but it will do this according to Occam’s
Razor based on its own biases rather than necessarily according to human
intuition, except insofar as human intuition is encoded in the base GEOP
or the initial Searcher. So it seems sensible to expect that, as unforeseen
situations are encountered, a GOLEM system will act according to learned
GEOPs that are rationally considered ”in the spirit of the base GEOP”, but
that may interpret that ”spirit” in a different way than most humans would.
These are subtle issues, and important ones; but in a sense they’re ”good
problems to have”, compared to problems like evil, indifferent or wireheaded
2 AGI systems.

7 A More Radically Self-Modifying GOLEM

It’s also possible to modify the GOLEM design so as to enable it to modify
the GEOP more radically – still with the intention of sticking to the spirit
of the base GEOP, but allowing it to modify the ”letter” of the base GEOP
so as to preserve the ”spirit.” In effect this modification allows GOLEM to
decide that it understands the essence of the base GEOP better than those
who created the particulars of the base GEOP. This is certainly a riskier
approach, but it seems worth exploring at least conceptually.

The basic idea here is that, where the base GEOP is uncertain about
2A term used to refer to situations where a system rewires its reward or goal-satisfaction

mechanisms to directly enable its own maximal satisfaction

15



the utility of a world-state, the ”inferred GEOP” created by the Searcher is
allowed to be more definite. If the base GEOP comes up with a probability
distribution P in response to a world-state W , then the inferred GEOP is
allowed to come up with Q so long as Q is sensibly considered a refinement
of P .

To see how one might formalize this, imagine P is based on an observation-
set O1 containing N observations. Given another distribution Q over utility
values, one may then ask: What is the smallest number K so that one can
form an observation set O2 containing O1 plus K more observations, so that
Q emerges from O2? For instance, if P is based on 100 observations, are
there 10 more observations one could make so that from the total set of 110
observations, Q would be the consequence? Or would one need 200 more
observations to get Q out of O2?

Given an error ε > 0, let the minimum number K of extra observations
needed to create an O2 yielding Q within error ε, be denoted obsε(P,Q).
If we assume that the inferred GEOP outputs a confidence measure along
with each of its output probabilities, we can then explore the relationship
between these confidence values and the obs values.

Intuitively, if the inferred GEOP is very confident, this means it has a lot
of evidence about Q, which means we can maybe accept a somewhat large
obs(P,Q). On the other hand, if the inferred GEOP is not very confident,
then it doesn’t have much evidence supporting Q, so we can’t accept a very
large obs(P,Q).

The basic idea intended with a ”confidence measure” here is that if
inferred geop(W ) is based on very little information pertinent to W , then
inferred geop(W ).confidence is small. The Tester could then be required
to test the accuracy of the Searcher at finding inferred GEOPs with accurate
confidence assessments: e.g. via repeatedly dividing the HistoricalReposi-
tory into training vs. test sets, and for each training set, using the test set
to evaluating the accuracy of the confidence estimates produced by inferred
GEOPs obtained from that training set.

What this seems to amount to is a reasonably elegant method of allowing
the GEOP to evolve beyond the base GEOP in a way that is basically ”in
the spirit of the base GEOP.” But with this kind of method, we’re not
necessarily going to achieve a long-term faithfulness to the base GEOP. It’s
going to be more of a ”continuous, gradual, graceful transcendence” of the
base GEOP, it would seem. There seems not to be any way to let the
inferred GEOP refine the base GEOP without running some serious risk
of the inferred GEOP violating the ”spirit” of the base GEOP . But what
one gets in exchange for this risk is a GOLEM capable of having crisper

16



goal evaluations, moving toward lower-entropy utility distributions, in those
cases where the base GEOP is highly uncertain.

That is, we can create a GOLEM that knows what it wants better than
its creators did – but the cost is that one has to allow the system some leeway
in revising the details of its creators’ ideas based on the new evidence it’s
gathered, albeit in a way that respects the evidence its creators brought to
bear in making the base GEOP.

8 Concluding Remarks

What we’ve sought to do here is to sketch a novel approach to the design
of AGI systems that can massively improve their intelligence yet without
losing track of their initial goals. While we have not proven rigorously that
the GOLEM meta-architecture fulfills this specification, have given what
seems to be a reasonable, careful informal argument, along with some semi-
formal conjectures; and proofs along these lines will be pursued for later
publications.

It’s clear that GOLEM can be wrapped around practical AGI architec-
tures like OpenCog; but the major open question is, how powerful do these
architectures need to be in order to enable GOLEM to fulfill its potential
as a meta-architecture for yielding significant ongoing intelligence improve-
ment together with a high probability of goal system stability. The risk is
that the rigors of passing muster with the Tester are sufficiently difficult
that the base AGI architecture (OpenCog or whatever) simply doesn’t pass
muster, so that the base operating programs are never replaced, and one
gets goal-system preservation without self-improvement. Neither our theory
nor our practice is currently advanced enough to resolve this question, but
it’s certainly an important one. One approach to exploring these issues is to
seek to derive a variant of OpenCog or some other practical AGI design as
a specialization of GOLEM, rather than trying to study the combination of
GOLEM with a separately defined AGI system serving as its subcomponent.

There is also the open worry of what happens when the system shuts
down. Hypothetically, if a GOLEM system as described above were in a
battle situation, enemies could exploit its propensity to shut down when
its hardware is compromised. A GOLEM system with this property would
apparently be at a disadvantage in such a battle, relative to a GOLEM sys-
tem that avoided shutting down and instead made the best possible effort
to repair its hardware, even if this wound up changing its goal system a bit.
So, the particular safety mechanism used in GOLEM to prevent dangerous

17



runaway self-improvement, would put a GOLEM at an evolutionary disad-
vantage. If a GOLEM system becomes intelligent before competing systems,
and achieves massively greater power and intelligence than any competing
”startup” AGI system could expect to rapidly achieved, then this may be a
nonissue. But such eventualities are difficult to foresee in detail.

Finally, the dichotomy between the fixed and adaptive GOLEM architec-
tures highlights a major strategic and philosophical issue in the development
of advanced AGI systems more broadly. The fixed GOLEM can grow far
beyond humans in its intelligence and understanding and capability, yet in
a sense, remains rooted in the human world, due to its retention of human
goals. Whether this is a positive or negative aspect of the design is a pro-
found nontechnical issue. From an evolutionary perspective, one could argue
that adaptive GOLEMs will have greater ability to accumulate power due to
their fewer limitations. However, a fixed GOLEM could hypothetically be
created, with part of its goal system being to inhibit the creation of adaptive
GOLEMs or other potentially threatening AGI systems. Here however we
venture into the territory of science fiction and speculative futurology, and
we will leave further such discussion for elsewhere.

References

[Goe09] Ben Goertzel. Opencog prime: A cognitive synergy based archi-
tecture for embodied artificial general intelligence. In ICCI 2009,
Hong Kong, 2009.

[Goe10] Ben Goertzel. Coherent aggregated volition. Multiverse Accord-
ing to Ben, 2010. http://multiverseaccordingtoben.blogspot.
com/2010/03/coherent-aggregated-volition-toward.htm.

[LH07] Shane Legg and Marcus Hutter. A definition of machine intelli-
gence. Minds and Machines, 17:–, 2007.

[SB98] Richard Sutton and Andrew Barto. Reinforcement Learning. MIT
Press, 1998.

18


