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Aims and Scope of the Series


This series publishes books resulting from theoretical research on and reproduc-
tions of general Artificial Intelligence (AI). The book series focuses on the
establishment of new theories and paradigms in AI. At the same time, the series
aims at exploring multiple scientific angles and methodologies, including results
from research in cognitive science, neuroscience, theoretical and experimental AI,
biology and from innovative interdisciplinary methodologies.


For more information on this series and our other book series, please visit our
website at:


www.atlantis-press.com/publications/books
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45 Preface


46 Welcome to the second volume of Engineering General Intelligence! This is the
47 second half of a two-part technical treatise aimed at outlining a practical approach
48 to engineering software systems with general intelligence at the human level and
49 ultimately beyond.
50 Our goal here is an ambitious one and not a modest one: machines with flexible
51 problem-solving ability, open-ended learning capability, creativity and eventually,
52 their own kind of genius.
53 Part 1 set the stage, dealing with a variety of general conceptual issues related
54 to the engineering of advanced AGI, as well as presenting a brief overview of the
55 CogPrime design for Artificial General Intelligence. Now here in Part 2 we plunge
56 deep into the nitty-gritty, and describe the multiple aspects of the CogPrime with a
57 fairly high degree of detail.
58 First we describe the CogPrime software architecture and knowledge repre-
59 sentation in detail; then we review the ‘‘cognitive cycle’’ via which CogPrime
60 perceives and acts in the world and reflects on itself. We then turn to various forms
61 of learning: procedural, declarative (e.g., inference), simulative, and integrative.
62 Methods of enabling natural language functionality in CogPrime are then dis-
63 cussed; and the volume concludes with a chapter summarizing the argument that
64 CogPrime can lead to human-level (and eventually perhaps greater) AGI, and a
65 chapter giving a ‘‘thought experiment’’ describing the internal dynamics via which
66 a completed CogPrime system might solve the problem of obeying the request
67 ‘‘Build me something with blocks that I haven’t seen before.’’
68 Reading this book before Engineering General Intelligence, Part 1 first is not
69 especially recommended, since the prequel not only provides the context for this
70 one, but also defines a number of specific terms and concepts that are used here
71 without explanation (for example, Part 1 has an extensive Glossary). However, the
72 impatient reader who has not mastered Part 1, or the reader who has finished Part 1
73 but is tempted to hop through Part 2 nonlinearly, might wish to first skim the final
74 chapter, and then return to reading in linear order.
75 While the majority of the text here was written by the lead Author Ben Go-
76 ertzel, the overall work and underlying ideas have been very much a team effort,
77 with major input from the secondary authors Cassio Pennachin and Nil
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78 Geisweiller, and large contributions from various other contributors as well. Many
79 chapters have specifically indicated Co-authors; but the contributions from various
80 collaborating researchers and engineers go far beyond these. The creation of the
81 AGI approach and design presented here is a process that has occurred over a long
82 period of time among a community of people; and this book is in fact a quite
83 partial view of the existent body of knowledge and intuition regarding CogPrime.
84 For example, beyond the ideas presented here, there is a body of work on the
85 OpenCog wiki site, and then the OpenCog codebase itself.
86 More extensive introductory remarks may be found in the Preface of Part 1,
87 including a brief history of the book and acknowledgements to some of those who
88 helped inspire it.
89 Also, one brief comment from the Preface of Part 1 bears repeating: At several
90 places in this volume, as in its predecessor, we will refer to the ‘‘current’’ Cog-
91 Prime implementation (in the OpenCog framework); in all cases this refers to the
92 OpenCog software system as of late 2013.
93 We fully realize that this book is not ‘‘easy reading,’’ and that the level and
94 nature of exposition varies somewhat from chapter to chapter. We have done our
95 best to present these very complex ideas as clearly as we could, given our own
96 time constraints, and the lack of commonly understood vocabularies for discussing
97 many of the concepts and systems involved. Our hope is that the length of the
98 book, and the conceptual difficulty of some portions, will be considered as com-
99 pensated by the interest of the ideas we present. For, make no mistake—for all


100 their technicality and subtlety, we find the ideas presented here incredibly exciting.
101 We are talking about no less than the creation of machines with intelligence,
102 creativity, and genius equaling and ultimately exceeding that of human beings.
103 This is, in the end, the kind of book that we (the authors) all hoped to find when
104 we first entered the AI field: a reasonably detailed description of how to go about
105 creating thinking machines. The fact that so few treatises of this nature, and so few
106 projects explicitly aimed at the creation of advanced AGI, exist, is something that
107 has perplexed us since we entered the field. Rather than just complain about it, we
108 have taken matters into our own hands, and worked to create a design and a
109 codebase that we believe capable of leading to human-level AGI and beyond.
110 We feel tremendously fortunate to live in times when this sort of pursuit can be
111 discussed in a serious, scientific way.


112 Online Appendices


113 Just one more thing before getting started! This book originally had even more
114 chapters than the ones currently presented in Parts 1 and 2. In order to decrease
115 length and increase focus, however, a number of chapters dealing with periphe-
116 ral—yet still relevant and interesting—matters were moved to online appendices.
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117 These may be downloaded in a single PDF file at http://goertzel.org/engineering_
118 general_Intelligence_appendices_B-H.pdf. The titles of these appendices are:


119 • Appendix A: Possible Worlds Semantics and Experiential Semantics
120 • Appendix B: Steps Toward a Formal Theory of Cognitive Structure and
121 Dynamics
122 • Appendix C: Emergent Reflexive Mental Structures
123 • Appendix D: GOLEM: Toward an AGI Meta-Architecture Enabling Both Goal
124 Preservation and Radical Self-Improvement
125 • Appendix E: Lojban??: A Novel Linguistic Mechanism for Teaching AGI
126 Systems
127 • Appendix F: Possible Worlds Semantics and Experiential Semantics
128 • Appendix G: PLN and the Brain
129 • Appendix H: Propositions About Environments in Which CogPrime Compo-
130 nents Are Useful


131 None of these are critical to understanding the key ideas in the book, which is
132 why they were relegated to online appendices. However, reading them will deepen
133 your understanding of the conceptual and formal perspectives underlying the
134 CogPrime design. These appendices are referred to here and there in the text of the
135 main book.


136 September 2013 Ben Goertzel
137


138


139
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Chapter 1
The OpenCog Framework


AQ1


1.1 Introduction0


The primary burden of this book is to explain the CogPrime architecture for AGI—1


the broad outline of the design, the main dynamics it’s intended to display once2


complete, and the reasons why we believe it will be capable of leading to general3


intelligence at the human level and beyond.4


The crux of CogPrime lies in its learning algorithms and how they are intended to5


interact together synergetically, making use of CogPrime’s knowledge representation6


and other tools. Before we can get to this, however, we need to elaborate some of7


the “plumbing” within which this learning dynamics occurs. We will start out with a8


brief description of the OpenCog framework in which implementation of CogPrime9


has been, gradually and incrementally, occurring for the last few years.10


1.1.1 Layers of Abstraction in Describing Artificial Minds11


There are multiple layers intervening between a conceptual theory of mind and a12


body of source code. How many layers to explicitly discuss is a somewhat arbitrary13


decision, but one way to picture it is exemplified in Table 1.1.14


In Vol. 5 of this work we have concerned ourselves mainly with levels 5 and15


6 in the table: mathematical/conceptual modeling of cognition and philosophy of16


mind (with occasional forays into levels 3 and 4). Most of Vol. 6, on the other hand,17


deals with level 4 (mathematical/conceptual AI design), verging into level 3 (high-18


level software design). This chapter however will focus on somewhat lower-level19


material, mostly level 3 with some dips into level 2. We will describe the basic20


architecture of CogPrime as a software system, implemented as “OpenCogPrime”21


within the OpenCog Framework (OCF). The reader may want to glance back at22


Chap. 1 of Vol. 5 before proceeding through this one, to get a memory-refresh on23


basic CogPrime terminology. Also, OpenCog and OpenCogPrime are open-source,24


B. Goertzel et al., Engineering General Intelligence, Part 2, 3
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_1,
© Atlantis Press and the authors 2014
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4 1 The OpenCog Framework


Table 1.1 Levels of abstractions in CogPrime’s implementation and design


Level of abstraction Description/example


1 Source code
2 Detailed software design
3 Software architecture Largely programming-language-independent, but


not hardware-architecture-independent: much of
the material in this chapter, for example, and most
of the OpenCog framework


4 Mathematical and conceptual AI design e.g., The sort of characterization of CogPrime
given in most of this volume of this book


5 Abstract mathematical modeling of cognition e.g., The SRAM model discussed in Chap. 7 of
Vol. 5, which could be used to inspire or describe
many different AI systems


6 Philosophy of mind e.g. Patternism, the Mind-World Correspondence
Principle


so the reader who wishes to dig into the source code (mostly C++, some Python and25


Scheme) is welcome to; directions to find the code are on the http://www.opencog.26


org website.27


1.1.2 The OpenCog Framework28


The OpenCog Framework forms a bridge between the mathematical structures and29


dynamics of CogPrime’s concretely implemented mind, and the nitty-gritty realities30


of modern computer technology. While CogPrime could in principle be implemented31


in a quite different infrastructure, in practice the CogPrime design has been developed32


closely in conjunction with OpenCog, so that a qualitative understanding of the nature33


of the OCF is fairly necessary for an understanding of how CogPrime is intended to34


function, and a detailed understanding of the OCF is necessary for doing concrete35


implementation work on CogPrime.36


Marvin Minsky, in a personal conversation with one of the authors (Goertzel),37


once expressed the opinion that a human-level general intelligence could probably38


be implemented on a 486 PC, if we just knew the algorithm. We doubt this is the39


case—at least not unless the 486 PC were supplied with masses of external memory40


and allowed to proceed much, much slower than any human being—and it is certainly41


not the case for CogPrime. By current computing hardware standards, a CogPrime42


system is a considerable resource hog. And it will remain so for a number of years,43


even considering technology progress.44


It is one of the jobs of the OCF to manage the system’s gluttonous behavior. It is45


the software layer that abstracts the real world efficiency compromises from the rest46


of the system; this is why we call it a “Mind OS”: it provides services, rules, and47
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1.1 Introduction 5


protection to the Atoms and cognitive processes (see Sect. 1.4) that live on top of it,48


which are then allowed to ignore the software architecture they live on.49


And so, the nature of the OCF is strongly influenced by the quantitative require-50


ments imposed on the system, as well as the general nature of the structure and51


dynamics that it must support. The large number and great diversity of Atoms needed52


to create a significantly intelligent CogPrime, demands that we pay careful attention53


to such issues as concurrent, distributed processing, and scalability in general. The54


number of Nodes and Links that we will need in order to create a reasonably com-55


plete CogPrime is still largely unknown. But our experiments with learning, natural56


language processing, and cognition over the past few years have given us an intuition57


for the question. We currently believe that we are likely to need billions—but prob-58


ably not trillions, and almost surely not quadrillions—of Atoms in order to achieve59


a high degree of general intelligence. Hundreds of millions strikes us as possible but60


overly optimistic. In fact we have already run CogPrime systems utilizing hundreds61


of millions of Atoms, though in a simplified dynamical regime with only a couple62


very simple processes acting on most of them.63


The operational infrastructure of the OCF is an area where pragmatism must reign64


over idealism. What we describe here is not the ultimate possible “mind operating65


system” to underlie a CogPrime system, but rather a workable practical solution66


given the hardware, networking and software infrastructure readily available today67


at reasonable prices. Along these lines, it must be emphasized that the ideas pre-68


sented in this chapter are the result of over a decade of practical experimentation by69


the authors and their colleagues with implementations of related software systems.70


The journey began in earnest in 1997 with the design and implementation of the71


Webmind AI Engine at Intelligenesis Corp., which itself went through a few major72


design revisions; and then in 2001–2002 the Novamente Cognition Engine was archi-73


tected and implemented, and evolved progressively until 2008, when a subset of it74


was adapted for open-sourcing as OpenCog. Innumerable mistakes were made, and75


lessons learned, along this path. The OCF as described here is significantly different,76


and better, than these previous architectures, thanks to these lessons, as well as to the77


changing landscape of concurrent, distributed computing over the past few years.78


The design presented here reflects a mix of realism and idealism, and we haven’t79


seen fit here to describe all the alternatives that were pursued on the route to what80


we present. We don’t claim the approach we’ve chosen is ideal, but it’s in use now81


within the OpenCog system, and it seems both workable in practice and capable of82


effectively supporting the entire CogPrime design. No doubt it will evolve in some83


respects as implementation progresses; one of the principles kept in mind during the84


design and development of OpenCog was modularity, enabling substantial modifi-85


cations to particular parts of the framework to occur without requiring wholesale86


changes throughout the codebase.87


319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


6 1 The OpenCog Framework


1.2 The OpenCog Architecture88


1.2.1 OpenCog and Hardware Models89


The job of the OCF is closely related to the nature of the hardware on which it runs.90


The ideal hardware platform for CogPrime would be a massively parallel hardware91


architecture, in which each Atom was given its own processor and memory. The92


closest thing would have been the Connection Machine [Hil89]: a CM5 was once93


built with 64000 processors and local RAM for each processor. But even 6400094


processors wouldn’t be enough for a highly intelligent CogPrime to run in a fully95


parallelized manner, since we’re sure we need more than 64000 Atoms.96


Connection Machine style hardware seems to have perished in favor of more97


standard SMP (Symmetric Multi-Processing) machines. It is true that each year we98


see SMP machines with more and more processors on the market, and more and99


more cores per processor. However, the state of the art is still in the hundreds of100


cores range, many orders of magnitude from what would be necessary for a one101


Atom per processor CogPrime implementation.102


So, at the present time, technological and financial reasons have pushed us to103


implement the OpenCog system using a relatively mundane and standard hardware104


architecture. If the CogPrime project is successful in the relatively near term, the first105


human-level OpenCogPrime system will most likely live on a network of high-end106


commodity SMP machines. These are machines with dozens of gigabytes of RAM107


and several processor cores, perhaps dozens but not thousands. A highly intelligent108


CogPrime would require a cluster of dozens and possibly hundreds or thousands of109


such machines. We think it’s unlikely that tens of thousands will be required, and110


extremely unlikely that hundreds of thousands will be.111


Given this sort of architecture, we need effective ways to swap Atoms back and112


forth between disk and RAM, and carefully manage the allocation of processor time113


among the various cognitive processes that demand it. The use of a widely-distributed114


network of weaker machines for peripheral processing is a serious possibility, and we115


have some detailed software designs addressing this option; but for the near future116


we believe that this can best be used as augmentation to core CogPrime processing,117


which must remain on a dedicated cluster.118


Of course, the use of specialized hardware is also a viable possibility, and we have119


considered a host of possibilities such as120


• True supercomputers like those created by IBM or Cray (which these days are121


distributed systems, but with specialized, particularly efficient interconnection122


frameworks and overall control mechanisms).123


• GPU supercomputers such as the Nvidia Tesla (which are currently being used124


for vision processing systems considered for hybridization with OCP), such as125


DeSTIN and Hugo de Garis’s Parcone.126


• Custom chips designed to implement the various CogPrime algorithms and data127


structures in hardware.128


319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


1.2 The OpenCog Architecture 7


• More speculatively, it might be possible to use evolutionary quantum computing or129


adiabatic quantum computing a la Dwave (http://www.dwave.com) to accelerate130


CogPrime procedure learning.131


All these possibilities and many more are exciting to envision, but the CogPrime132


architecture does not require any of them in order to be successful.133


1.2.2 The Key Components of the OpenCog Framework134


Given the realities of implementing CogPrime on clustered commodity servers, as135


we have seen above, the three key questions that have to be answered in the OCF136


design are:137


1. How do we store CogPrime’s knowledge?138


2. How do we enable cognitive processes to act on that knowledge, refining and139


improving it?140


3. How do we enable scalable, distributed knowledge storage and cognitive process-141


ing of that knowledge?142


The remaining sections of this chapter are dedicated to answering each of these143


questions in more detail.144


While the basic landscape of concurrent, distributed processing is largely the145


same as it was a decade ago—we’re still dealing with distributed networks of multi-146


processor von Neumann machines—we can draw on advancements in both computer147


architecture and software. The former is materialized on the increasing availability148


of multiple real and virtual cores in commodity processors. The latter reflects the149


emergence of a number of tools and architectural patterns, largely thanks to the rise150


of “big data” problems and businesses. Companies and projects dealing with massive151


datasets face challenges that aren’t entirely alike those of building CogPrime, but152


which share many useful similarities.153


These advances are apparent mostly in the architectute of the AtomSpace, a distrib-154


uted knowledge store for efficient storage of hypergraphs and its use by CogPrime’s155


cognitive dynamics. The AtomSpace, like many NoSQL datastores, is heavily dis-156


tributed, utilizing local caches for read and write operations, and a special purpose157


design for eventual consistency guarantees.158


We also attempt to minimize the complexities of multi-threading in the scheduling159


of cognitive dynamics, by allowing those to be deployed either as agents sharing a160


single OS process, or, preferably, as processes of their own. Cognitive dynamics161


communicate through message queues, which are provided by a sub-system that162


hides the deployment decision, so the messages exchanged are the same whether163


delivered within a process, to another process in the same machine, or to a process164


in another machine in the cluster.165


319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard



http://www.dwave.com





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


8 1 The OpenCog Framework


1.3 The AtomSpace166


As alluded to above and in Chap. 13 of Vol. 5, and discussed more fully in Chap. 2167


below, the foundation of CogPrime’s knowledge representation is the Atom, an object168


that can be either a Node or a Link. CogPrime’s hypergraph is implemented as169


the AtomSpace, a specialized datastore that comes along with an API designed170


specifically for CogPrime’s requirements.171


1.3.1 The Knowledge Unit: Atoms172


Atoms are used to represent every kind of knowledge in the system’s memory in one173


way or another. The particulars of Atoms and how they represent knowledge will be174


discussed in later chapters; here we present only a minimal description in order to175


motivate the design of the AtomSpace. From that perspective, the most important176


properties of Atoms are:177


• Every Atom has an AtomHandle, which is a universal ID across a CogPrime178


deployment (possibly involving thousands of networked machines). The Atom-179


Handles are the keys for acessing Atoms in the AtomSpace, and once a handle is180


assigned to an Atom it can’t be changed or reused.181


• Atoms have TruthValue and AttentionValue entities associated with them, each182


of which are small collections of numbers; there are multiple versions of truth183


values, with varying degrees of detail. TruthValues are context-dependent, and184


useful Atoms will typically have multiple TruthValues, indexed by context.185


• Some Atoms are nodes, and may have names.186


• Atoms that are links will have a list of targets, of variable size (as in CogPrime’s187


hypergraph links may connect more than two nodes).188


Some Atom attributes are immutable, such as Node names and, most importantly,189


Link targets, called outgoing sets in AtomSpace lingo. One can remove a Link, but190


not change its targets. This enables faster implementation of some neighborhood191


searches, as well as indexing. Truth and attention values, on the other hand, are192


mutable, an essential requirement for CogPrime.193


For performance reasons, some types of knowledge have alternative represen-194


tations. These alternative representations are necessary for space or speed reasons,195


but knowledge stored that way can always be translated back into Atoms in the196


AtomSpace as needed. So, for instance, procedures are represented as program trees197


in a ProcedureRepository, which allows for faster execution, but the trees can be198


expanded into a set of Nodes and Links if one wants to do reasoning on a specific199


program.200
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1.3 The AtomSpace 9


1.3.2 AtomSpace Requirements and Properties201


The major high-level requirements for the AtomSpace are the following ones:202


• Store Atoms indexed by their immutable AtomHandles as compactly as possible,203


while still enabling very efficient modification of the mutable properties of an204


Atom (TruthValues and AttentionValues).205


• Perform queries as fast as possible.206


• Keep the working set of all Atoms currently being used by CogPrime’s cognitive207


dynamics in RAM.208


• Save and restore hypergraphs to disk, a more traditional SQL or non-SQL database,209


or other structure such as binary files, XML, etc.210


• Hold hypergraphs consisting of billions or trillions of Atoms, scaling up to211


petabytes of data.212


• Be transparently distributable across a cluster of machines.213


The design trade-offs in the AtomSpace implementation are driven by the needs214


of CogPrime. The datastore is implemented in a way that maximizes the perfor-215


mance of the cognitive dynamics running on top of it. From this perspective, the216


AtomSpace differs from most datastores, as the key decisions aren’t made in terms217


of flexibility, consistency, reliability and other common criteria for databases. It is a218


very specialized database. Among the factors that motivate the AtomSpace’s design,219


we can highlight a few:220


1. Atoms tend to be small objects, with very few exceptions (links with many targets221


or Atoms with many different context-derived TruthValues).222


2. Atom creation and deletion are common events, and occur according to complex223


patterns that may vary a lot over time, even for a particular CogPrime instance.224


3. Atoms involved in CogPrime’s cognitive dynamics at any given time need to live225


in RAM. However, the system still needs the ability to save sets of Atoms to disk226


in order to preserve RAM, and then retrive those later when they get contextually227


relevant.228


4. Some Atoms will remain around for a really long time, others will be ephemeral229


and get removed shortly after they’re created. Removal may be to disk, as outlined230


above, or plain deletion.231


Besides storing Atoms, the AtomSpace also contains a number of indices for232


fast Atom retrieval according to several criteria. It can quickly search for Atoms233


given their type, importance, truth value, arity, targets (for Links), name (for Nodes),234


and any combination of the above. These are built-in indexes. The AtomSpace also235


allows cognitive processes to create their own indexes, based on the evaluation of a236


Procedure over the universe of Atoms, or a subset of that universe specified by the237


process responsible for the index.238


The AtomSpace also allows pattern matching queries for a given Atom structure239


template, which allows for fast search for small subgraphs displaying some desir-240


able properties. In addition to pattern matching, it provides neighborhood searches.241
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10 1 The OpenCog Framework


Although it doesn’t implement any graph-traversal primitives, it’s easy for cognitive242


processes to do so on top of the pattern matching and neighborhood primitives.243


Note that, since CogPrime’s hypergraph is quite different from a regular graph,244


using a graph database without modification would probably be inadequate. While245


it’s possible to automatically translate a hypergraph into a regular graph, that process246


is expensive for large knowledge bases, and leads to higher space requirements,247


reducing the overall system’s scalability.248


In terms of database taxonomy, the AtomSpace lies somewhere between a key-249


value store and a document store, as there is some structure in the contents of each250


value (an Atom’s properties are well defined, and listed above), but no built-in flex-251


ibility to add more contents to an existing Atom.252


We will now discuss the above requirements in more detail, starting with querying253


the AtomSpace, followed by persistence to disk, and then handling of specific forms254


of knowledge that are best handled by specialized stores.255


1.3.3 Accessing the Atomspace256


The AtomSpace provides an API, which allows the basic operations of creating new257


Atoms, updating their mutable properties, searching for Atoms and removing Atoms.258


More specifically, the API supports the following operations:259


• Create and store a new Atom. There are special methods for Nodes and Links,260


in the latter case with multiple convenience versions depending on the number of261


targets and other properties of the link.262


• Remove an Atom. This requires the validation that no Links currently point to that263


Atom, otherwise they’d be left dangling.264


• Look up one or more Atoms. This includes several variants, such as:265


– Look up an Atom by AtomHandle;266


– Look up a Node by name;267


– Find links with an Atom as target;268


– Pattern matching, i.e., find Atoms satisfying some predicate, which is designed269


as a “search criteria” by some cognitive process, and results in the creation of a270


specific index for that predicate;271


– Neighborhood search, i.e., find Atoms that are within some radius of a given272


centroid Atom;273


– Find Atoms by type (this can be combined with the previous queries, resulting274


in type specific versions);275


– Find Atoms by some AttentionValue criteria, such as the top N most important276


Atoms, or those with importance above some threshold (can also be combined277


with previous queries);278


– Find Atoms by some TruthValue criteria, similar to the previous one (can also279


be combined with other queries);280
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1.3 The AtomSpace 11


– Find Atoms based on some temporal or spatial association, a query that relies281


on the specialized knowledge stores mentioned below;282


Queries can be combined, and the Atom type, AttentionValue and TruthValue283


criteria are often used as filters for other queries, preventing the result set size284


from exploding.285


• Manipulate an Atom, retrieving or modifying its AttentionValue and TruthValue.286


In the modification case, this causes the respective indexes to be updated.287


1.3.4 Persistence288


In many planned CogPrime deployment scenarios, the amount of knowledge that289


needs to be stored is too vast to fit in RAM, even if one considers a large cluster of290


machines hosting the AtomSpace and the cognitive processes. The AtomSpace must291


then be able to persist subsets of that knowledge to disk, and reload them later when292


necessary.293


The decision of whether to keep an Atom in RAM or remove it is made based on its294


AttentionValue, through the process of economic attention allocation that is the topic295


of Chap. 5. AttentionValue determines how important an Atom is to the system, and296


there are multiple levels of importance. For the persistence decisions, the ones that297


matter are Long Term Importance (LTI) and Very Long Term Importance (VLTI).298


LTI is used to estimate the probability that the Atom will be necessary or useful299


in the not too distant future. If this value is low, below a threshold i1, then it is safe300


to remove the Atom from RAM, a process called forgetting. When the decision to301


forget an Atom has been made, VLTI enters the picture. VLTI is used to estimate302


the probability that the Atom will be useful eventually at some distant point in the303


future. If VLTI is high enough, the forgotten Atom is persisted to disk so it can be304


reloaded. Otherwise, the Atom is permanently forgotten.305


When an Atom has been forgotten, a proxy is kept in its place. The proxy is more306


compact than the original Atom, preserving only a crude measure of its LTI. When307


the proxy’s LTI increases above a second threshold i2, the system understands that308


the Atom has become relevant again, and loads it from disk.309


Eventually, it may happen that the proxy doesn’t become important enough over a310


very long period of time. In this case, the system should remove even the proxy, if its311


Long Term Importance (LTI) is below a third threshold i3. Other actions, usually taken312


by the system administrator, can cause the removal of Atoms and their proxies from313


RAM. For instance, in a CogPrime system managing information about a number314


of users of some information system, the deletion of a user from the system would315


cause all that user’s specific Atoms to be removed.316


When Atoms are saved to disk and have no proxies in RAM, they can only be317


reloaded by the system administrator. When reloaded, they will be disconnected from318


the rest of the AtomSpace, and should be given special attention in order to pursue319


the creation of new Links with the other Atoms in the system.320
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12 1 The OpenCog Framework


It’s important that the values of i1, i2, and i3 be set correctly. Otherwise, one or321


more of the following problems may arise:322


• If i1 and i2 are too close, the system may spend a lot of resources with saving and323


loading Atoms.324


• If i1 is set too high, important Atoms will be excluded from the system’s dynamics,325


decreasing its intelligence.326


• If i3 is set too high, the system will forget very quickly and will have to spend327


resources re-creating necessary but no longer available evidence.328


• If either i1 or i3 is set too low, the system will consume significantly more resources329


than it needs to with knowledge store, sacrificing cognitive processes.330


Generally, we want to enforce a degree of hysteresis for the freezing and defrosting331


process. What we mean is that:332


i2 − i1 > c1 > 0333


334


i1 − i3 > c2 > 0335


This ensures that when Atoms are reloaded, their importance is still above the thresh-336


old for saving, so they will have a chance to be part of cognitive dynamics and become337


more important, and won’t be removed again too quickly. It also ensures that saved338


Atoms stay in the system for a period of time before their proxies are removed and339


they’re definitely forgotten.340


Another important consideration is that forgetting individual Atoms makes little341


sense, because, as pointed out above, Atoms are relatively small objects. So the342


forgetting process should prioritize the removal of clusters of highly interconnected343


Atoms whenever possible. In that case, it’s possible that a large subset of those344


Atoms will only have relations within the cluster, so their proxies aren’t needed and345


the memory savings are maximized.346


1.3.5 Specialized Knowledge Stores347


Some specific kinds of knowledge are best stored in specialized data structures, which348


allow big savings in space, query time, or both. The information provided by these349


specialized stores isn’t as flexible as it would be if the knowledge were stored in full350


fledged Node and Link form, but most of the time CogPrime doesn’t need the fully351


flexible format. Translation between the specialized formats and Nodes and Links is352


always possible, when necessary.353


We note that the ideal set of specialized knowledge stores is application domain354


specific. The stores we have deemed necessary reflect the pre-school based roadmap355


towards AGI, and are likely sufficient to get us through most of that roadmap, but356


not sufficient nor particularly adequate for an architecture where self-modification357
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1.3 The AtomSpace 13


plays a key role. These specialized stores are a pragmatic compromise between358


performance and formalism, and their existence and design would need to be revised359


once CogPrime is mostly functional.360


1.3.5.1 Procedure Repository361


Procedural knowledge, meaning knowledge that can be used both for the selection362


and execution of actions, has a specialized requirement—this knowledge needs to be363


executable by the system. While it will be possible, and conceptually straightforward,364


to execute a procedure that is stored as a set of Atoms in the AtomSpace, it is much365


simpler, faster, and safer to rely on a specialized repository.366


Procedural knowledge in CogPrime is stored as programs in a special-purpose367


LISP-like programming language called Combo. The motivation and details of this368


language are the subject of Chap. 3.369


Each Combo program is associated with a Node (a GroundedProcedureNode, to370


be more precise), and the AtomHandle of that Node is used to index the procedure371


repository, where the executable version of the program is kept, along with specifi-372


cations of the necessary inputs for its evaluation and what kind of output to expect.373


Combo programs can also be saved to disk and loaded, like regular Atoms. There is374


a text representation of Combo for this purpose.375


Program execution can be very fast, or, in cognitive dynamics terms, very slow, if376


it involves interacting with the external world. Therefore, the procedure repository377


should also facilitate the storage of program states during the execution of procedures.378


Concurrent execution of many procedures is possible with no significant overhead.379


1.3.5.2 3D Space Map380


In the AGI Preschool setting, CogPrime is embodied in a three-dimensional world381


(either a real one, in which it controls a robot, or a virtual one, in which it controls382


an avatar). This requires the efficient storage and querying of vast amounts of spatial383


data, including very specialized queries about the spacial interrelationship between384


entities. This spatial data is a key form of knowledge for CogPrime’s world percep-385


tion, and it also needs to be accessible during learning, action selection, and action386


execution.387


All spatial knowledge is stored in a 3D Space Map, which allows for fast queries388


about specific regions of the world, and for queries about the proximity and relative389


placement of objects and entities. It can be used to provide a coarse-grained object390


level perception for the AtomSpace, or it can be instrumental in supporting a lower391


level vision layer in which pixels or polygons are used as the units of perception.392


In both cases, the knowledge stored in the 3D Space Map can be translated into393


full-fledged Atoms and Links through the AtomHandles.394


One characteristic feature of spatial perception is that vast amounts of data are395


generated constantly, but most of it is very quickly forgotten. The mind abstracts the396
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14 1 The OpenCog Framework


perceptual data into the relevant concepts, which are linked with other Atoms, and397


most of the underlying information can then be discarded. The process is repeated398


at a high frequency as long as something novel is being perceived in the world. 3D399


Space Map is then optimized for quick inserts and deletes.400


1.3.5.3 Time Server401


Similarly to spatial information, temporal information poses challenges for a402


hypergraph-based storage. It can be much more compactly stored in specific data403


structures, which also allow for very fast querying. The Time Server is the special-404


ized structure for storing and querying temportal data in CogPrime.405


Temporal information can be stored by any cognitive process, based on its own406


criteria for determining that some event should be remembered in a specific temporal407


context in the future. This can include the perception of specific events, or the agents408


participation in those, such as the first time it meets a new human teacher. It can409


also include a collection of concepts describing specific contexts in which a set of410


actions has been particularly useful. The possibilities are numerous, but from the411


Time Server perspective, all equivalent. They add up to associating a time point or412


time interval with a set of Atoms.413


The Time Server is a bi-directional storage, as AtomHandles can be used as keys,414


but also as objects indexed by time points or time intervals. In the former case, the415


Time Server tells us when an Atom was associated with temporal data. In the latter416


case, it tells us, for a given time point or interval, which Atoms have been marked as417


relevant.418


Temporal indexing can be based on time points or time intervals. A time point419


can be at any granularity: from years to sub-seconds could be useful. A time interval420


is simply a set of two points, the second being necessary after the first one, but their421


granularities not necessarily the same. The temporal indexing inside the Time Server422


is hierarchical, so one can query for time points or intervals in granularities other423


than the ones originally used when the knowledge was first stored.424


1.3.5.4 System Activity Table Set425


The last relevant specialized store is the System Activity Table Set, which is described426


in more detail in Chap. 5. This set of tables records, with fine-grained temporal427


associations, the most important activities that take place inside CogPrime. There are428


different tables for recording cognitive process activity (at the level of MindAgents, to429


be described in the next section), for maintaining a history of the level of achievement430


of each important goal in the system, and for recording other important aspects of431


the system state, such as the most important Atoms and contexts.432
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1.4 MindAgents: Cognitive Processes 15


1.4 MindAgents: Cognitive Processes433


The AtomSpace holds the system’s knowledge, but those Atoms are inert. How is434


that knowledge used and useful? That is the province of cognitive dynamics. These435


dynamics, in a CogPrime system, can be considered on two levels.436


First, we have the cognitive processes explicitly programmed into CogPrime’s437


source code. These are what we call Concretely-Implemented Mind Dynamics, or438


CIM-Dynamics. Their implementation in software happens through objects called439


MindAgents. We use the term CIM-Dynamic to discuss a conceptual cognitive440


process, and the term MindAgents for its actual implementation and execution441


dynamics.442


The second level corresponds to the dynamics that emerge through the system’s443


self-organizing dynamics, based on the cooperative activity of the CIM-Dynamics444


on the shared AtomSpace.445


Most of the material in the following chapters is concerted with particular CIM-446


Dynamics in the CogPrime system. In this section we will simply give some gen-447


eralities about the CIM-Dynamics as abstract processes and as software processes,448


which are largely independent of the actual AI contents of the CIM-Dynamics. In449


practice the CIM-Dynamics involved in a CogPrime system are fairly stereotyped in450


form, although diverse in the actual dynamics they induce.451


1.4.1 A Conceptual View of CogPrime Cognitive Processes452


We return now to the conceptual trichotomy of cognitive processes presented in453


Chap.4 of Vol. 5, according to which CogPrime cognitive processes may be divided454


into:455


• Control processes;456


• Global cognitive processes;457


• Focused cognitive processes.458


In practical terms, these may be considered as three categories of CIM-Dynamic.459


Control Process CIM-Dynamics are hard to stereotype. Examples are the process460


of homeostatic parameter adaptation of the parameters associated with the various461


other CIM-Dynamics, and the CIM-Dynamics concerned with the execution of pro-462


cedures, especially those whose execution is made lengthy by the interactions with463


the external world.464


Control Processes tend to focus on a limited and specialized subset of Atoms or465


other entities, and carry out specialized mechanical operations on them (e.g. adjusting466


parameters, interpreting procedures). To an extent, this may be considered a “grab467


bag” category containing CIM-Dynamics that are not global or focused cognitive468


processes according to the definitions of the latter two categories. However, it is a469


nontrivial observation about the CogPrime system that the CIM-Dynamics that are470
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16 1 The OpenCog Framework


not global or focused cognitive processes are all explicitly concerned with system471


control in some way or another, so this grouping makes sense.472


Global and Focused Cognitive Process CIM-Dynamics all have a common aspect473


to their structure. Then, there are aspects in which Global versus Focused CIM-474


Dynamics diverge from each other in stereotyped ways.475


In most cases, the process undertaken by a Global or Focused CIM-Dynamic476


involves two parts: a selection process and an actuation process. Schematically, such477


a CIM-Dynamic typically looks something like this:478


1. Fetch a set of Atoms that it is judged will be useful to process, according to some479


selection process.480


2. Operate on these Atoms, possibly together with previously selected ones (this is481


what we sometimes call the actuation process of the CIM-Dynamic).482


3. Go back to step 1.483


The major difference between Global and Focused cognitive processes lies in the484


selection process. In the case of a Global process, the selection process is very broad,485


sometimes yielding the whole AtomSpace, or a significant subset of it. This means486


that the actuation process must be very simple, or the activation of this CIM-Dynamic487


must be very infrequent.488


On the other hand, in the case of a Focused process, the selection process is very489


narrow, yielding only a small number of Atoms, which can then be processed more490


intensively and expensively, on a per-Atom basis.491


Common selection processes for Focused cognitive processes are fitness-oriented492


selectors, which pick one or a set of Atoms from the AtomSpace with a probability493


based on some numerical quantity associated with the atom, such as properties of494


TruthValue or AttentionValue.495


There are also more specific selection processes, which choose for example496


Atoms obeying some particular combination of relationships in relation to some497


other Atoms; say choosing only Atoms that inherit from some given Atom already498


being processed. There is a notion, described in the PLN book, of an Atom Structure499


Template; this is basically just a predicate that applies to Atoms, such as500


P(X).tv501


equals502


((InheritanceLink X cat)AND (EvaluationLink eats(X,cheese)).tv503


which is a template that matches everything that inherits from cat and eats cheese.504


Templates like this allow a much more refined selection than the above fitness-505


oriented selection process.506


Selection processes can be created by composing a fitness-oriented process with507


further restrictions, such as templates, or simpler type-based restrictions.508
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1.4 MindAgents: Cognitive Processes 17


1.4.2 Implementation of MindAgents509


MindAgents follow a very simple design. They need to provide a single method510


through which they can be enacted, and they should execute their actions in atomic,511


incremental steps, where each step should be relatively quick. This design enables512


collaborative scheduling of MindAgents, at the cost of allowing “opportunistic”513


agents to have more than their fair share of resources. We rely on CogPrime devel-514


opers to respect the above guidelines, instead of trying to enforce exact resource515


allocations on the software level.516


Each MindAgent can have a set of system parameters that guide its behavior.517


For instance, a MindAgent dedicated to inference can provide drastically different518


conclusions if its parameters tell it to select a small set of Atoms for processing each519


time, but to spend significant time on each Atom, rather than selecting many Atoms520


and doing shallow inferences on each one. It’s expected that multiple copies of the521


same MindAgent will exist in the cluster, but delivering different dynamics thanks522


to those parameters.523


In addition to their main action method, MindAgents can also communicate with524


other MindAgents through message queues. CogPrime has, in its runtime configura-525


tion, a list of avaliable MindAgents and their locations in the cluster. Communications526


between MindAgents typically take the form of specific, one-time requests, which527


we call Tasks.528


The default action of MindAgents and the processing of Tasks constitute the529


cognitive dynamics of CogPrime. Nearly everything that takes place within a Cog-530


Prime deployment is done by either a MindAgent (including the control processes),531


a Task, or specialized code handling AtomSpace internals or communications with532


the external world. We now talk about how those dynamics are scheduled.533


MindAgents live inside a process called a CogPrime Unit. One machine in a534


CogPrime cluster can contain one or more Units, and one Unit can contain one or535


more MindAgents. In practice, given the way the AtomSpace is distributed, which536


requires a control process in each machine, it typically makes more sense to have537


a single Unit per machine, as this enables all MindAgents in that machine to make538


direct function calls to the AtomSpace, instead of using more expensive inter-process539


communication.540


There are exceptions to the above guideline, to accommodate various situations:541


1. Very specific MindAgents may not need to communicate with other agents, or542


only do so very rarely, so it makes sense to give them their own process.543


2. MindAgents whose implementation is a poor fit for the collaborative processing in544


small increments design described above also should be given their own process,545


so they don’t interfere with the overall dynamics in that machine.546


3. MindAgents whose priority is either much higher or much lower than that of547


other agents in the same machine should be given their own process, so operating548


system-level scheduling can be relied upon to reflect those very different priority549


levels.550
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18 1 The OpenCog Framework


1.4.3 Tasks551


It is not convenient for CogPrime to do all its work directly via the action of MindA-552


gent objects embodying CIM-Dynamics. This is especially true for MindAgents553


embodying focused cognitive processes. These have their selection algorithms, which554


are ideally suited to guarantee that, over the long run, the right Atoms get selected555


and processed. This, however, doesn’t address the issue that, on many occasions, it556


may be necessary to quickly process a specific set of Atoms in order to execute an557


action or rapidly respond to some demand. These actions tend to be one-time, rather558


than the recurring patterns of mind dynamics.559


While it would be possible to design MindAgents so that they could both cover560


their long term processing needs and rapidly respond to urgent demands, we found it561


much simpler to augment the MindAgent framework with an additional scheduling562


mechanism that we call the Task framework. In essence, this is a ticketing system,563


designed to handle cases where MindAgents or Schema spawn one—off tasks to be564


executed—things that need to be done only once, rather that repeatedly and iteratively565


as with the things embodied in MindAgents.566


For instance, grab the most important Atoms from the AtomSpace and do shallow567


PLN reasoning to derive immediate conclusions from them is a natural job for a568


MindAgent. But do search to find entities that satisfy this particular predicate P is569


a natural job for a Task.570


Tasks have AttentionValues and target MindAgents. When a Task is created it571


is submitted to the appropriate Unit and then put in a priority queue. The Unit will572


schedule some resources to processing the more important Tasks, as we’ll see next.573


1.4.4 Scheduling of MindAgents and Tasks in a Unit574


Within each Unit we have one or more MindAgents, a Task queue and, optionally,575


a subset of the distributed AtomSpace. If that subset isn’t held in the unit, it’s held576


in another process running on the same machine. If there is more than one Unit per577


machine, their relative priorities are handled by the operating system’s scheduler.578


In addition to the Units, CogPrime has an extra maintenance process per machine,579


whose job is to handle changes in those priorities as well as reconfigurations caused580


by MindAgent migration, and machines joining or leaving the CogPrime cluster.581


So, at the Unit level, attention allocation in CogPrime has two aspects: how582


MindAgents and Tasks receive attention from CogPrime, and how Atoms receive583


attention from different MindAgents and Tasks. The topic of this section is the for-584


mer. The latter is dealt with elsewhere, in two ways:585


• In Chap. 5, which discusses the dynamic updating of the AttentionValue structures586


associated with Atoms, and how these determine how much attention various587


focused cognitive processes MindAgents pay to them.588
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1.4 MindAgents: Cognitive Processes 19


• In the discussion of various specific CIM-Dynamics, each of which may make589


choices of which Atoms to focus on in its own way (though generally making use590


of AttentionValue and TruthValue in doing so).591


The attention allocation subsystem is also pertinent to MindAgent scheduling,592


because it discusses dynamics that update ShortTermImportance (STI) values asso-593


ciated with MindAgents, based on the usefulness of MindAgents for achieving system594


goals. In this chapter, we will not enter into such cognitive matters, but will merely595


discuss the mechanics by which these STI values are used to control processor allo-596


cation to MindAgents.597


Each instance of a MindAgent has its own AttentionValue, which is used to sched-598


ule processor time within the Unit. That scheduling is done by a Scheduler object599


which controls a collection of worker threads, whose size is a system parameter. The600


Scheduler aims to allocate worker threads to the MindAgents in a way that’s roughly601


proportional to their STI, but it needs to account for starvation, as well as the need602


to process the Tasks in the task queue.603


This is an area in which we can safely borrow from reasonably mature computer604


science research. The requirements of cognitive dynamics scheduling are far from605


unique, so this is not a topic where new ideas need to be invented for OpenCog;606


rather, designs need to be crafted meeting CogPrime’s specific requirements based607


on state-of-the-art knowledge and experience.608


One example scheduler design has two important inputs: the STI associated with609


each MindAgent, and a parameter determining how much resources should go to610


the MindAgents vs the Task queue. In the CogPrime implementation, the Scheduler611


maps the MindAgent STIs to a set of priority queues, and each queue is run a number612


of times per cycle. Ideally one wants to keep the number of queues small, and rely on613


multiple Units and the OS-level scheduler to handle widely different priority levels.614


When the importance of a MindAgent changes, one just has to reassign it to a615


new queue, which is a cheap operation that can be done between cycles. MindAgent616


insertions and removals are handled similarly.617


Finally, Task execution is currently handled via allocating a certain fixed percent-618


age of processor time, each cycle, to executing the top Tasks on the queue. Adaptation619


of this percentage may be valuable in the long term but was not yet implemented.620


Control processes are also implemented as MindAgents, and processed in the621


same way as the other kinds of CIM-Dynamics, although they tend to have fairly622


low importance.623


1.4.5 The Cognitive Cycle624


We have mentioned the concept of a “cycle” in the discussion about scheduling,625


without explaining what we mean. Let’s address that now. All the Units in a CogPrime626


cluster are kept in sync by a global cognitive cycle, whose purpose is described in627


Sect. II.628
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20 1 The OpenCog Framework


We mentioned above that each machine in the CogPrime cluster has a housekeep-629


ing process. One of its tasks is to keep track of the cognitive cycle, broadcasting630


when the machine has finished its cycle, and listening to similar broadcasts from its631


counterparts in the cluster. When all the machines have completed a cycle, a global632


counter is updated, and each machine is then free to begin the next cycle.633


One potential annoyance with this global cognitive cycle is that some machines634


may complete their cycle much faster than others, and then sit idly while the stragglers635


finish their jobs. CogPrime addresses this issue in two ways:636


• Over the long run, a load balancing process will assign MindAgents from over-637


burdened machines to underutilized ones. The MindAgent migration process is638


described in the next section.639


• In a shorter time horizon, during which a machine’s configuration is fixed, there640


are two heuristics to minimize the waste of processor time without breaking the641


overall cognitive cycle coordination:642


– The Task queue in each of the machine’s Units can be processed more extensively643


than it would by default; in extreme cases, the machine can go through the whole644


queue.645


– Background process MindAgents can be given extra activations, as their activity646


is unlikely to throw the system out of sync, unlike with more focused and goal-647


oriented processes.648


Both heuristics are implemented by the scheduler inside each unit, which has one649


boolean trigger for each heuristic. The triggers are set by the housekeeping process650


when it observes that the machine has been frequently idle over the recent past,651


and then reset if the situation changes.652


1.5 Distributed AtomSpace and Cognitive Dynamics653


As hinted above, realistic CogPrime deployments will be spread around reason-654


ably large clusters of co-located machines. This section describes how this distrib-655


uted deployment scenario is planned for in the design of the AtomSpace and the656


MindAgents, and how the cognitive dynamics take place in such a scenario.657


We won’t review the standard principles of distributed computing here, but we658


will focus on specific issues that arise when the CogPrime is spread across a relatively659


large number of machines. The two key issues that need to be handled are:660


• How to distribute knowledge (i.e., the AtomSpace) in a way that doesn’t impose661


a large performance penalty?662


• How to allocate resources (i.e., machines) to the different cognitive processes663


(MindAgents) in a way that’s flexible and dynamic?664
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1.5 Distributed AtomSpace and Cognitive Dynamics 21


1.5.1 Distributing the AtomSpace665


The design of a distributed AtomSpace was guided by the following high level666


requirements:667


1. Scale up, transparently, to clusters of dozens to hundreds of machines, without668


requiring a single central master server.669


2. The ability to store portions of an Atom repository on a number of machines670


in a cluster, where each machine also runs some MindAgens. The distribution671


of Atoms across the machines should benefit from the fact that the cognitive672


processes on one machine are likely to access local Atoms more often than remote673


ones.674


3. Provide transparent access to all Atoms in RAM to all machines in the cluster,675


even if at different latency and performance levels.676


4. For local access to Atoms in the same machine, performance should be as close677


as possible to what one would have in a similar, but non-distributed AtomSpace.678


5. Allow multiple copies of the same Atom to exist in different machines of the679


cluster, but only one copy per machine.680


6. As Atoms are updated fairly often by cognitive dynamics, provide a mechanism681


for eventual consistency. This mechanism needs not only to propagate changes to682


the Atoms, but sometimes to reconcile incompatible changes, such as when two683


cognitive processes update an Atom’s TruthValue in opposite ways. Consistency684


is less important than efficiency, but should be guaranteed eventually.685


7. Resolution of inconsistencies should be guided by the importance of the Atoms686


involved, so the more important ones are more quickly resolved.687


8. System configuration can explicitly order the placement of some Atoms to specific688


machines, and mark a subset of those Atoms as immovable, which should ensure689


that local copies are always kept.690


9. Atom placement across machines, aside from the immovable Atoms, should be691


dynamic, rebalancing based on frequency of access to the Atom by the different692


machines.693


The first requirement follows obviously from our estimates of how many machines694


CogPrime will require to display advanced intelligence.695


The second requirement above means that we don’t have two kinds of machines696


in the cluster, where some are processing servers and some are database servers.697


Rather, we prefer each machine to store some knowledge and host some processes698


acting on that knowledge. This design assumes that there are simple heuristic ways699


to partition the knowledge across the machines, resulting in allocations that, most of700


the time, give the MindAgents local access to the Atoms they need most often.701


Alas, there will always be some cases in which a MindAgent needs an Atom that702


isn’t available locally. In order to keep the design on the MindAgents simple, this703


leads to the third requirement, transparency, and to the fourth one, performance.704


This partition design, on the other hand, means that there must be some repli-705


cation of knowledge, as there will always be some Atoms that are needed often by706
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22 1 The OpenCog Framework


MindAgents on different machines. This leads to requirement five (allow redundant707


copies of an Atom). However, as MindAgents frequently update the mutable com-708


ponents of Atoms, requirements six and seven are needed, to minimize the impact709


of conflicts on system performance while striving to guarantee that conflicts are710


eventually solved, and with priority proportional to the importance of the impacted711


Atoms.712


1.5.1.1 Mechanisms of Managing Distributed Atomspaces713


When one digs into the details of distributed AtomSpaces, a number of subtleties714


emerge. Going into these in full detail here would not be appropriate, but we will715


make a few comments, just to give a flavor of the sorts of issues involved.716


To discuss these issues clearly, some special terminology is useful. In this context,717


it is useful to reserve the word “Atom” for its pure, theoretical definition, viz: “a Node718


is uniquely determined by its name. A Link is uniquely determined by its outgoing719


set”. Atoms sitting in RAM may then be called “Realized Atoms”. Thus, given720


a single, pure “abstract/theoretical” Atom, there might be two different Realized721


Atoms, on two different servers, having the same name/outgoing-set. It’s OK to722


think of a RealizedAtom as a clone of the pure, abstract Atom, and to talk about723


it that way. Analogously, we might call atoms living on disk, or flying on a wire,724


“Serialized Atoms”; and, when need be, use specialized terms like “ZMQ-serialized725


atoms”, or “BerkeleyDB-serialized Atoms”, etc.726


An important and obvious coherency requirement is: “If a MindAgent asks for727


the Handle of an Atom at time A, and then asks, later on, for the Handle of the same728


Atom, it should receive the same Handle.”729


By the “AtomSpace”, in general, we mean the container(s) that are used to store730


the set of Atoms used in an OpenCog system, both in RAM and on disk. In the case731


of an Atom space that is distributed across multiple machines or other data stores,732


we will call each of these an “Atom space portion”.733


Atoms and Handles734


Each OpenCog Atom is associated with a Handle object, which is used to identify735


the Atom uniquely. The Handle is a sort of “key” used, at the infrastructure level, to736


compactly identify the Atom. In a single-machine, non-distributed Atomspace, one737


can effectively just use long ints as Handles, and assign successive ints as Handles738


to successively created new Atoms. In a distributed Atomspace, it’s a little subtler.739


Perhaps the cleanest approach in this case is to use a hash of the serialized Atom740


data as the handle for an Atom. That way, if an Atom is created in any portion, it will741


inherently have the same handle as any of its clones.742


The issue of Handle collisions then occurs—it is possible, though it will be rare,743


that two different Atoms will be assigned the same Handle via the hashing function.744


This situation can be identified via checking, when an Atom is imported into a portion,745


whether there is already some Atom in that portion with the same Handle but different746


fundamental aspects. In the rare occasion where this situation does occur, one of the747
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1.5 Distributed AtomSpace and Cognitive Dynamics 23


Atoms must then have its Handle changed. Changing an Atom’s handle everywhere748


it’s referenced in RAM is not a big deal, so long as it only happens occasionally.749


However, some sort of global record of Handle changes should be kept, to avoid750


confusion in the process of loading saved Atoms from disk. If a loaded Atomspace751


contains Atoms that have changed Handle since the file was saved, the Atom loading752


process needs to know about this.753


The standard mathematics of hash functions collisions, shows that if one has a754


space of H possible Handles, one will get two Atoms with the same Handle after755


1.25 × √
(H) tries, on average.... Rearranging this, it means we’d need a space of756


around N 2 Handles to have a space of Handles for N possible Atoms, in which one757


collision would occur on average.... So to have a probability of one collision, for N758


possible Atoms, one would have to use a handle range up to N 2. The number of bits759


needed to encode N 2 is twice as many as the number needed to encode N . So, if760


one wants to minimize collisions, one may need to make Handles twice as long, thus761


taking up more memory.762


However, this memory cost can be palliated via introducing “local Handles” sep-763


arate from the global, system-wide Handles. The local Handles are used internally764


within each local Atomspace, and then each local Atomspace contains a translation765


table going back and forth between local and global Handles. Local handles may be766


long ints, allocated sequentially to each new Atom entered into a portion. Persistence767


to disk would always use the global Handles.768


To understand the memory tradeoffs involved in these solutions, assume that the
global Handles were k times as long as the local handles... and suppose that the
average Handle occurred r times in the local Atomspace. Then the memory inflation
ratio of the local/global solution as opposed to a solution using only the shorter local
handles, would be


(1 + k + r)/r = 1 + (k + 1)/r


if k = 2 and r = 10 (each handle is used 10 times on average, which is realistic based769


on current real-world OpenCog Atomspaces), then the ratio is just 1.3×—suggesting770


that using hash codes for global Handles, and local Handles to save memory in each771


local AtomSpace, is acceptable memory-wise.772


1.5.1.2 Distribution of Atoms773


Given the goal of maximizing the probability that an Atom will be local to the774


machines of the MindAgents that need it, the two big decisions are how to allocate775


Atoms to machines, and then how to reconcile the results of MindAgents actuating776


on those Atoms.777


The initial allocation of Atoms to machines may be done via explicit system778


configuration, for Atoms known to have different levels of importance to specific779


MindAgents. That is, after all, how MindAgents are initially allocated to machines780


as well.781
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24 1 The OpenCog Framework


One may, for instance, create a CogPrime cluster where one machine (or group)782


focuses on visual perception, one focuses on language processing, one focuses on783


abstract reasoning, etc. In that case one can hard-wire the location of Atoms.784


What if one wants to have three abstract-reasoning machines in one’s cluster?785


Then one can define an abstract-reasoning zone consisting of three Atom repository786


portions. One can hard-wire that Atoms created by MindAgents in the zone must787


always remain in that zone—but can potentially be moved among different portions788


within that zone, as well as replicated across two or all of the machines, if need be.789


By default they would still initially be placed in the same portion as the MindAgent790


that created them.791


However Atoms are initially placed in portions, sometimes it will be appropriate792


to move them. And sometimes it will be appropriate to clone an Atom, so there’s a793


copy of it in a different portion from where it exists. Various algorithms could work794


for this, but the following is one simple mechanism:795


• When an Atom A in machine M1 is requested by a MindAgent in machine M2,796


then a clone of A is temporarily created in M2.797


• When an Atom is forgotten (due to low LTI), then a check is made if it has any798


clones, and any links to it are changed into links to its clones.799


• The LTI of an Atom may get a boost if that Atom has no clones (the amount of800


this boost is a parameter that may be adjusted).801


1.5.1.3 MindAgents and the Distributed AtomSpace802


In the context of a distributed AtomSpace, the interactions between MindAgents and803


the knowledge store become subtler, as we’ll now discuss.804


When a MindAgent wants to create an Atom, it will make this request of the local805


AtomSpace process, which hosts a subset of the whole AtomSpace. It can, on Atom806


creation, specify whether the Atom is immovable or not. In the former case, it will807


initially only be accessible by the MindAgents in the local machine.808


The process of assigning the new Atom an AtomHandle needs to be taken care of,809


in a way that doesn’t introduce a central master. One way to achieve that is to make810


handles hierarchical, so the higher order bits indicate the machine. This, however,811


means that AtomHandles are no longer immutable. A better idea is to automatically812


allocate a subset of the AtomHandle universe to each machine. The initial use of813


those AtomHandles is the privilege of that machine but, as Atoms migrate or are814


cloned, the handles can move through the cluster.815


When a MindAgent wants to retrieve one or more Atoms, it will perform a query816


on the local AtomSpace subset, just as it would with a single machine repository.817


Along with the regular query parameters, it may specify whether the request should818


be processed locally only, or globally. Local queries will be fast, but may fail to819


retrieve the desired Atoms, while global queries may take a while to return. In the820


approach outlined above for MindAgent dynamics and scheduling, this would just821


cause the MindAgent to wait until results are available.822
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1.5 Distributed AtomSpace and Cognitive Dynamics 25


Queries designed to always return a set of Atoms can have a third mode, which823


is “prioritize local Atoms”. In this case, the AtomSpace, when processing a query824


that looks for Atoms that match a certain pattern would try to find all local responses825


before asking other machines.826


1.5.1.4 Conflict Resolution827


A key design decision when implementing a distributed AtomSpace is the trade-off828


between consistency and efficiency. There is no universal answer to this conflict,829


but the usage scenarios for CogPrime, current and planned, tend to fall on the same830


broad category as far consistency goes. CogPrime’s cognitive processes are relatively831


indifferent to conflicts and capable of working well with outdated data, especially if832


the conflicts are temporary. For applications such as the AGI Preschool, it is unlikely833


that outdated properties of single Atoms will have a large, noticeable impact on834


the system’s behavior; even if that were to happen on rare occasions, this kind of835


inconsistency is often present in human behavior as well.836


On the other hand, CogPrime assumes fairly fast access to Atoms by the cognitive837


processes, so efficiency shouldn’t be too heavily penalized. The robustness against838


mistakes and the need for performance mean that a distributed AtomSpace should839


follow the principle of “eventual consistency”. This means that conflicts are allowed840


to arise, and even to persist for a while, but a mechanism is needed to reconcile them.841


Before describing conflict resolution, which in CogPrime is a bit more complicated842


than in most applications, we note that there are two kinds of conflicts. The simple one843


happens when an Atom that exists in multiple machines is modified in one machine,844


and that change isn’t immediately propagated. The less obvious one happens when845


some process creates a new Atom in its local AtomSpace repository, but that Atom846


conceptually “already exists” elsewhere in the system. Both scenarios are handled847


in the same way, and can become complicated when, instead of a single change or848


creation, one needs to reconcile multiple operations.849


The way to handle conflicts is to have a special purpose control process, a rec-850


onciliation MindAgent, with one copy running on each machine in the cluster. This851


MindAgent keeps track of all recent write operations in that machine (Atom creations852


or changes).853


Each time the reconciliation MindAgent is called, it processes a certain number854


of Atoms in the recent writes list. It chooses the Atoms to process based on a com-855


bination of their STI, LTI and recency of creation/change. Highest priority is given856


to Atoms with higher STI and LTI that have been around longer. Lowest priority is857


given to Atoms with low STI or LTI that have been very recently changed—both858


because they may change again in the very near future, and because they may be859


forgotten before it’s worth solving any conflicts. This will be the case with most860


perceptual Atoms, for instance.861


By tuning how many Atoms this reconciliation MindAgent processes each time862


it’s activated we can tweak the consistency versus efficiency trade-off.863


When the AtomReconciliation agent processes an Atom, what it does is:864
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26 1 The OpenCog Framework


• Searches all the machines in the cluster to see if there are other equivalent Atoms865


(for Nodes, these are Atoms with the same name and type; for Links, these are866


Atoms with the same type and targets).867


• If it finds equivalent Atoms, and there are conflicts to be reconciled, such as dif-868


ferent TruthValues or AttentionValues, the decision of how to handle the conflicts869


is made by a special probabilistic reasoning rule, called the Rule of Choice (see870


Chap. 16). Basically, this means:871


– It decided whether to merge the conflicting Atoms. We always merge Links, but872


some Nodes may have different semantics, such as Nodes representing different873


procedures that have been given the same name.874


– In the case that the two Atoms A and B should be merged, it creates a new875


Atom C that has all the same immutable properties as A and B. It merges their876


TruthValues according to the probabilistic revision rule (see Chap. 16). The877


AttentionValues are merged by prioritizing the higher importances.878


– In the case that two Nodes should be allowed to remain separate, it allocates879


one of them (say, B) a new name. Optionally, it also evaluates whether a Simi-880


larityLink should be created between the two different Nodes.881


Another use for the reconcilitation MindAgent is maintaining approximate con-882


sistency between clones, which can be created by the AtomSpace itself, as described883


above in Sect. 1.5.1.2. When the system knows about the multiple clones of an Atom,884


it keeps note of these versions in a list, which is processed periodically by a conflict885


resolution MindAgent, in order to prevent the clones from drifting too far apart by886


the actions of local cognitive processes in each machine.887


1.5.2 Distributed Processing888


The OCF infrastructure as described above already contains a lot of distributed889


processing implicit in it. However, it doesn’t tell you how to make the complex cogni-890


tive processes that are part of the CogPrime design distributed unto themselves—say,891


how to make PLN or MOSES themselves distributed. This turns out to be quite pos-892


sible, but becomes quite intricate and specific depending on the particular algorithms893


involved. For instance, the current MOSES implementation is now highly amenable894


to distributed and multiprocessor implementation, but in a way that depends subtly895


on the specifics of MOSES and has little to do with the role of MOSES in CogPrime896


as a whole. So we will not delve into these topics here.897


Another possibility worth mentioning is broadly distributed processing, in which898


CogPrime intelligence is spread across thousands or millions of relatively weak899


machines networked via the Internet. Even if none of these machines is exclusively900


devoted to CogPrime, the total processing power may be massive, and massively901


valuable. The use of this kind of broadly distributed computing resource to help902


CogPrime is quite possible, but involves numerous additional control problems which903


we will not address here.904
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1.5 Distributed AtomSpace and Cognitive Dynamics 27


A simple case is massive global distribution of MOSES fitness evaluation. In905


the case where fitness evaluation is isolated and depends only on local data, this is906


extremely straightforward. In the more general case where fitness evaluation depends907


on knowledge stored in a large AtomSpace, it requires a subtler design, wherein908


each globally distributed MOSES subpopulation contains a pool of largely similar909


genotypes and a cache of relevant parts of the AtomSpace, which is continually910


refreshed during the fitness evaluation process. This can work so long as each globally911


distributed lobe has a reasonably reliable high bandwidth, low latency connection to912


a machine containing a large AtomSpace.913


On the more mundane topic of distributed processing within the main CogPrime914


cluster, three points are worth discussing:915


• Distributed communication and coordination between MindAgents.916


• Allocation of machines to functional groups, and MindAgent migration.917


• Machines entering and leaving the cluster.918


1.5.2.1 Distributed Communication and Coordination919


Communications between MindAgents, Units and other CogPrime components are920


handled by a message queue subsystem. This subsystem provides a unified API, so921


the agents involved are unaware of the location of their partners: distributed messages,922


inter-process messages in the same machine, and intra-process messages in the same923


Unit are sent through the same API, and delivered to the same target queues. This924


design enables transparent distribution of MindAgents and other components.925


In the simplest case, of MindAgents within the same Unit, messages are delivered926


almost immediately, and will be available for processing by the target agent the927


next time it’s enacted by the scheduler. In the case of messages sent to other Units or928


other machines, they’re delivered to the messaging subsystem component of that unit,929


which has a dedicated thread for message delivery. That subsystem is scheduled for930


processing just like any other control process, although it tends to have a reasonably931


high importance, to ensure speedy delivery.932


The same messaging API and subsystem is used for control-level communications,933


such as the coordination of the global cognitive cycle. The cognitive cycle completion934


message can be used for other housekeeping contents as well.935


1.5.2.2 Functional Groups and MindAgent Migration936


A CogPrime cluster is composed of groups of machines dedicated to various937


high-level cognitive tasks: perception processing, language processing, background938


reasoning, procedure learning, action selection and execution, goal achievement plan-939


ning, etc. Each of these high-level tasks will probably require a number of machines,940


which we call functional groups.941
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28 1 The OpenCog Framework


Most of the support needed for functional groups is provided transparently by942


the mechanisms for distributing the AtomSpace and by the communications layer.943


The main issue is how much resources (i.e., how many machines) to allocate to944


each functional group. The initial allocation is determined by human administrators945


via the system configuration—each machine in the cluster has a local configura-946


tion file which tells it exactly which processes to start, along with the collection of947


MindAgents to be loaded onto each process and their initial AttentionValues.948


Over time, however, it may be necessary to modify this allocation, adding949


machines to overworked or highly important functional groups. For instance, one950


may add more machines to the natural language and perception processing groups951


during periods of heavy interaction with humans in the preschool environment, while952


repurposing those machines to procedure learning and background inference during953


periods in which the agent controlled by CogPrime is resting or “sleeping”.954


This allocation of machines is driven by attention allocation in much the same way955


that processor time is allocated to MindAgents. Functional groups can be represented956


by Atoms, and their importance levels are updated according to the importance of957


the system’s top level goals, and the usefulness of each functional group to their958


achievement. Thus, once the agent is engaged by humans, the goals of pleasing them959


and better understanding them would become highly important, and would thus drive960


the STI of the language understanding and language generation functional groups.961


Once there is an imbalance between a functional group’s STI and its share of the962


machines in the cluster, a control process CIM-Dynamic is triggered to decide how963


to reconfigure the cluster. This CIM-Dynamic works approximately as follows:964


• First, it decides how many extra machines to allocate to each sub-represented965


functional group.966


• Then, it ranks the machines not already allocated to those groups based on a967


combination of their workload and the aggregate STI of their MindAgents and968


Units. The goal is to identify machines that are both relatively unimportant and969


working under capacity.970


• It will then migrate the MindAgents of those machines to other machines in the971


same functional group (or just remove them if clones exist), freeing them up.972


• Finally, it will decide how best to allocate the new machines to each functional973


group. This decision is heavily dependent on the nature of the work done by974


the MindAgents in that group, so in CogPrime these decisions will be somewhat975


hardcoded, as is the set of functional groups. For instance, background reasoning976


can be scaled just by adding extra inference MindAgents to the new machines977


without too much trouble, but communicating with humans requires MindAgents978


responsible for dialog management, and it doesn’t make sense to clone those, so979


it’s better to just give more resources to each MindAgent without increasing their980


numbers.981


The migration of MindAgents becomes, indirectly, a key driver of Atom migration.982


As MindAgents move or are cloned to new machines, the AtomSpace repository in983


the source machine should send clones of the Atoms most recently used by these984


MindAgents to the target machine(s), anticipating a very likely distributed request985
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1.5 Distributed AtomSpace and Cognitive Dynamics 29


that would create those clones in the near future anyway. If the MindAgents are986


moved but not cloned, the local copies of those Atoms in the source machine can987


then be (locally) forgotten.988


1.5.2.3 Adding and Removing Machines989


Given the support for MindAgent migration and cloning outlined above, the issue of990


adding new machines to the cluster becomes a specific application of the heuristics991


just described. When a new machine is added to the cluster, CogPrime initially992


decides on a functional group for it, based both on the importance of each functional993


group and on their current performance—if a functional group consistently delays994


the completion of the cognitive cycle, it should get more machines, for instance.995


When the machine is added to a functional group, it is then populated with the most996


important or resource starved MindAgents in that group, a decision that is taken by997


economic attention allocation.998


Removal of a machine follows a similar process. First the system checks if the999


machine can be safely removed from its current functional group, without greatly1000


impacting its performance. If that’s the case, the non-cloned MindAgents in that1001


machine are distributed among the remaining machines in the group, following the1002


heuristic described above for migration. Any local-only Atoms in that machine’s1003


AtomSpace container are migrated as well, provided their LTI is high enough.1004


In the situation in which removing a machine M1 would have an intolerable impact1005


on the functional group’s performance, a control process selects another functional1006


group to lose a machine M2. Then, the MindAgents and Atoms in M1 are migrated1007


to M2, which goes through the regular removal process first.1008


In principle, one might use the insertion or removal of machines to perform a1009


global optimization of resource allocation within the system, but that process tends1010


to be much more expensive than the simpler heuristics we just described. We believe1011


these heuristics can give us most of the benefits of global re-allocation at a fraction1012


of the disturbance for the system’s overall dynamics during their execution.1013
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Chapter 2
Knowledge Representation Using the Atomspace


2.1 Introduction0


CogPrime’s knowledge representation must be considered on two levels: implicit1


and explicit. This chapter considers mainly explicit knowledge representation, with2


a focus on representation of declarative knowledge. We will describe the Atom knowl-3


edge representation, a generalized hypergraph formalism which comprises a specific4


vocabulary of Node and Link types, used to represent declarative knowledge but also,5


to a lesser extent, other types of knowledge as well. Other mechanisms of represent-6


ing procedural, episodic, attentional, and intentional knowledge will be handled in7


later chapters, as will the subtleties of implicit knowledge representation.8


The AtomSpace Node and Link formalism is the most obviously distinctive aspect9


of the OpenCog architecture, from the point of view of a software developer building10


AI processes in the OpenCog framework. But yet, the features of CogPrime that11


are most important, in terms of our theoretical reasons for estimating it likely to12


succeed as an advanced AGI system, are not really dependent on the particulars of13


the AtomSpace representation.14


What’s important about the AtomSpace knowledge representation is mainly that15


it provides a flexible means for compactly representing multiple forms of knowledge,16


in a way that allows them to interoperate—where by “interoperate” we mean that e.g.17


a fragment of a chunk of declarative knowledge can link to a fragment of a chunk of18


attentional or procedural knowledge; or a chunk of knowledge in one category can19


overlap with a chunk of knowledge in another category (as when the same link has20


both a (declarative) truth value and an (attentional) importance value). In short, any21


representational infrastructure sufficiently flexible to support22


• compact representation of all the key categories of knowledge playing dominant23


roles in human memory24


• the flexible creation of specialized sub-representations for various particular sub-25


types of knowledge in all these categories, enabling compact and rapidly manip-26


ulable expression of knowledge of these subtypes27


B. Goertzel et al., Engineering General Intelligence, Part 2, 31
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_2,
© Atlantis Press and the authors 2014
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32 2 Knowledge Representation Using the Atomspace


• the overlap and interlinkage of knowledge of various types, including that repre-28


sented using specialized sub-representations29


will probably be acceptable for CogPrime’s purposes. However, precisely formulat-30


ing these general requirements is tricky, and is significantly more difficult than simply31


articulating a single acceptable representational scheme, like the current OpenCog32


Atom formalism. The Atom formalism satisfies the relevant general requirements33


and has proved workable from a practical software perspective.34


In terms of the Mind-World Correspondence Principle introduced in Chap. 1035


of Vol. 5, the important point regarding the Atom representation is that it must be36


flexible enough to allow the compact and rapidly manipulable representation of37


knowledge that has aspects spanning the multiple common human knowledge cat-38


egories, in a manner that allows easy implementation of cognitive processes that39


will manifest the Mind-World Correspondence Principle in everyday human-like sit-40


uations. The actual manifestation of mind-world correspondence is the job of the41


cognitive processes acting on the AtomSpace—the job of the AtomSpace is to be an42


efficient and flexible enough representation that these cognitive processes can man-43


ifest mind-world correspondence in everyday human contexts given highly limited44


computational resources.45


2.2 Denoting Atoms46


First we describe the textual notation we’ll use to denote various sorts of Atoms47


throughout the following chapters. The discussion will also serve to give some par-48


ticular examples of cognitively meaningful Atom constructs.49


2.2.1 Meta-Language50


As always occurs when discussing (even partially) logic-based systems, when dis-51


cussing CogPrime there is some potential for confusion between logical relationships52


inside the system, and logical relationships being used to describe parts of the sys-53


tem. For instance, we can state as observers that two Atoms inside CogPrime are54


equivalent, and this is different from stating that CogPrime itself contains an Equiv-55


alence relation between these two Atoms. Our formal notation needs to reflect this56


difference.57


Since we will not be doing any fancy mathematical analyses of CogPrime struc-58


tures or dynamics here, there is no need to formally specify the logic being used for59


the metalanguage. Standard predicate logic may be assumed.60


So, for example, we will say things like61
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2.2 Denoting Atoms 33


(IntensionalInheritanceLink Ben monster).TruthValue.strength = .562


This is a metalanguage statement, which means that the strength field of the63


TruthValue object associated with the link (IntensionalInheritance Ben monster) is64


equal to .5. This is different than saying65


EquivalenceLink66


ExOutLink67


GetStrength68


ExOutLink69


GetTruthValue70


IntensionalInheritanceLink Ben monster71


NumberNode 0.572


which refers to an equivalence relation represented inside CogPrime. The former73


refers to an equals relationship observed by the authors of the book, but perhaps74


never represented explicitly inside CogPrime.75


In the first example above we have used the C++ convention76


structure_variable_name.field_name77


for denoting elements of composite structures; this convention will be stated formally78


below.79


In the second example we have used schema corresponding to TruthValue and80


Strength; these schema extract the appropriate fields from the Atoms they’re applied81


to, so that e.g.82


ExOutLink83


GetTruthValue84


A85


returns the number86


A.TruthValue87


Following a convention from mathematical logic, we will also sometimes use the special symbol88


|-89


to mean “implies in the metalanguage”. For example, the first-order PLN deductive90


inference strength rule may be written91


InheritanceLink A B <sAB>92


InheritanceLink B C <sBC>93


|-94


InheritanceLink A C <sAC>95


where96


sAC = sAB sBC + (1-sAB) ( sC - sB sBC ) / (1- sB )97


This is different from saying98
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34 2 Knowledge Representation Using the Atomspace


ForAll $A, $B, $C, $sAB, $sBC, $sAC99


100


ExtensionalImplicationLink_HOJ101


AND102


InheritanceLink $A $B <$sAB>103


InheritanceLink $B $C <$sBC>104


AND105


InheritanceLink $A $C <$sAC>106


$sAC = $sAB $sBC + (1-$sAB) ($sC - $sB $sBC) / (1- $sB)107


which is the most natural representation of the independence-based PLN deduction108


rule (for strength-only truth values) as a logical statement within CogPrime. In the109


latter expression the variables $A, $sAB, and so forth represent actual Variable Atoms110


within CogPrime. In the former expression the variables represent concrete, non-111


Variable Atoms within CogPrime, which however are being considered as variables112


within the metalanguage.113


(As explained in the PLN book, a link labeled with “HOJ” refers to a “higher114


order judgment”, meaning a relationship that interprets its relations as entities with115


particular truth values. For instance,116


ImplicationLink_HOJ117


Inh $X stupid <.9>118


Inh $X rich <.9>119


means that if (Inh $X stupid) has a strength of .9, then (Inh $X rich) has a strength120


of .9). WIKISOURCE:AtomNotation121


2.2.2 Denoting Atoms122


Atoms are the basic objects making up CogPrime knowledge. They come in vari-123


ous types, and are associated with various dynamics, which are embodied in Mind124


Agents. Generally speaking Atoms are endowed with TruthValue and AttentionValue125


objects. They also sometimes have names, and other associated Values as previously126


discussed. In the following subsections we will explain how these are notated, and127


then discuss specific notations for Links and Nodes, the two types of Atoms in the128


system.129


2.2.2.1 Names130


In order to denote an Atom in discussion, we have to call it something. Relatedly but131


separately, Atoms may also have names within the CogPrime system. (As a matter132


of implementation, in the current OpenCog version, no Links have names; whereas,133


all Nodes have names, but some Nodes have a null name, which is conceptually the134


same as not having a name.)135
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2.2 Denoting Atoms 35


(name, type) pairs must be considered as unique within each Unit within a136


OpenCog system, otherwise they can’t be used effectively to reference Atoms. It’s137


OK if two different OpenCog Units both have SchemaNodes named “+”, but not if138


one OpenCog Unit has two SchemaNodes both named “+”—this latter situation is139


disallowed on the software level, and is assumed in discussions not to occur.140


Some Atoms have natural names. For instance, the SchemaNode correspond-141


ing to the elementary schema function + may quite naturally be named “+”. The142


NumberNode corresponding to the number .5 may naturally be named “.5”, and143


the CharacterNode corresponding to the character c may naturally be named “c”.144


These cases are the minority, however. For instance, a SpecificEntityNode represent-145


ing a particular instance of + has no natural name, nor does a SpecificEntityNode146


representing a particular instance of c.147


Names should not be confused with Handles. Atoms have Handles, which are148


unique identifiers (in practice, numbers) assigned to them by the OpenCog core149


system; and these Handles are how Atoms are referenced internally, within OpenCog,150


nearly all the time. Accessing of Atoms by name is a special case—not all Atoms151


have names, but all Atoms have Handles. An example of accessing an Atom by name152


is looking up the CharacterNode representing the letter “c” by its name “c”. There153


would then be two possible representations for the word “cat”:154


1. this word might be associated with a ListLink—and the ListLink corresponding155


to “cat” would be a list of the Handles of the Atoms of the nodes named “c”, “a”,156


and “t”.157


2. for expedience, the word might be associated with a WordNode named “cat”.158


In the case where an Atom has multiple versions, this may happen for instance if the159


Atom is considered in a different context (via a ContextLink), each version has a Ver-160


sionHandle, so that accessing an AtomVersion requires specifying an AtomHandle161


plus a VersionHandle. See Chap. 1 for more information on Handles.162


OpenCog never assigns Atoms names on its own; in fact, Atom names are assigned163


only in the two sorts of cases just mentioned:164


1. Via preprocessing of perceptual inputs (e.g. the names of NumberNode, Charac-165


terNodes).166


2. Via hard-wiring of names for SchemaNodes and PredicateNodes corresponding167


to built-in elementary schema (e.g. +, AND, Say).168


If an Atom A has a name n in the system, we may write169


A.name = n170


On the other hand, if we want to assign an Atom an external name, we may make171


a meta-language assertion such as172


L1 := (InheritanceLink Ben animal)173


indicating that we decided to name that link L1 for our discussions, even though174


inside OpenCog it has no name.175
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36 2 Knowledge Representation Using the Atomspace


In denoting (nameless) Atoms we may use arbitrary names like L1. This is more176


convenient than using a Handle based notation which Atoms would be referred to as177


1, 3433322, etc.; but sometimes we will use the Handle notation as well.178


Some ConceptNodes and conceptual PredicateNode or SchemaNodes may cor-179


respond with human-language words or phrases like cat, bite, and so forth. This will180


be the minority case; more such nodes will correspond to parts of human-language181


concepts or fuzzy collections of human-language concepts. In discussions in this182


book, however, we will often invoke the unusual case in which Atoms correspond to183


individual human-language concepts. This is because such examples are the easiest184


ones to write about and discuss intuitively. The preponderance of named Atoms in185


the examples in the book implies no similar preponderance of named Atoms in the186


real OpenCog system. It is merely easier to talk about a hypothetical Atom named187


“cat” than it is about a hypothetical Atom with Handle 434. It is not impossible that188


a OpenCog system represents “cat” as a single ConceptNode, but it is just as likely189


that it will represent “cat” as a map composed of many different nodes without any190


of these having natural names. Each OpenCog works out for itself, implicitly, which191


concepts to represent as single Atoms and which in distributed fashion.192


For another example,193


ListLink194


CharacterNode "c"195


CharacterNode "a"196


CharacterNode "t"197


corresponds to the character string198


("c", "a", "t")199


and would naturally be named using the string cat. In the system itself, however, this200


ListLink need not have any name.201


2.2.2.2 Types202


Atoms also have types. When it is necessary to explicitly indicate the type of an203


atom, we will use the keyword Type, as in204


A.Type = InheritanceLink205


206


N_345.Type = ConceptNode207


On the other hand, there is also a built-in schema HasType which lets us say208


EvaluationLink HasType A InheritanceLink209


210


EvaluationLink HasType N_345 ConceptNode211


This covers the case in which type evaluation occurs explicitly in the system,212


which is useful if the system is analyzing its own emergent structures and dynamics.213
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2.2 Denoting Atoms 37


Another option currently implemented in OpenCog is to explicitly restrict the214


type of a variable using TypedVariableLink such as follows215


TypedVariableLink216


VariableNode $X217


VariableTypeNode "ConceptNode"218


Note also that we will frequently remove the suffix Link or Node from their219


type name, such as220


Inheritance221


Concept A222


Concept B223


instead of224


InheritanceLink225


ConceptNode A226


ConceptNode B227


2.2.2.3 Truth Values228


The truth value of an atom is a bundle of information describing how true the Atom229


is, in one of several different senses depending on the Atom type. It is encased in a230


TruthValue object associated with the Atom. Most of the time, we will denote the231


truth value of an atom in <>’s following the expression denoting the atom. This232


very handy notation may be used in several different ways.233


A complication is that some Atoms may have CompositeTruthValues, which con-234


sist of different estimates of their truth value made by different sources, which for235


whatever reason have not been reconciled (maybe no process has gotten around to236


reconciling them, maybe they correspond to different truth values in different con-237


texts and thus logically need to remain separate, maybe their reconciliation is being238


delayed pending accumulation of more evidence, etc.). In this case we can still assume239


that an Atom has a default truth value, which corresponds to the highest-confidence240


truth value that it has, in the Universal Context.241


Most frequently, the notation is used with a single number in the brackets, e.g.242


A <.4>243


to indicate that the atom A has truth value .4; or244


IntensionalInheritanceLink Ben monster <.5>245


to indicate that the IntensionalInheritance relation between Ben and monster has truth246


value strength .5. In this case, <tv> indicates (roughly speaking) that the truth value247


of the atom in question involves a probability distribution with a mean of tv. The248


precise semantics of the strength values associated with OpenCog Atoms is described249


in Probabilistic Logic Networks (see Chap. 16). Please note, though: This notation250


does not imply that the only data retained in the system about the distribution is the251


single number .5.252
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38 2 Knowledge Representation Using the Atomspace


If we want to refer to the truth value of an Atom A in the context C, we can use253


the construct254


ContextLink <truth value>255


C256


A257


Sometimes, Atoms in OpenCog are labeled with two truth value components as258


defined by PLN: strength and weight-of-evidence. To denote these two components,259


we might write260


IntensionalInheritanceLink Ben scary <.9,.1>261


indicating that there is a relatively small amount of evidence in favor of the proposition262


that Ben is very scary.263


We may also put the TruthValue indicator in a different place, e.g. using indent264


notation,265


IntensionalInheritanceLink <.9,.1>266


Ben267


scary268


This is mostly useful when dealing with long and complicated constructions.269


If we want to denote a composite truth value (whose components correspond to270


different “versions” of the Atom), we can use a list notation, e.g.271


IntensionalInheritance (<.9,.1>, <.5,.9> [h,123],<.6,.7> [c,655])272


Ben273


scary274


where e.g.275


<.5,.9> [h,123]276


denotes the TruthValue version of the Atom indexed by Handle 123. The h denotes277


that the AtomVersion indicated by the VersionHandle h,123 is a Hypothetical Atom,278


in the sense described in the PLN book. Some versions may not have any index279


Handles.280


The semantics of composite TruthValues are described in the PLN book, but281


roughly they are as follows. Any version not indexed by a VersionHandle is a “primary282


TruthValue” that gives the truth value of the Atom based on some body of evidence. A283


version indexed by a VersionHandle is either contextual or hypothetical, as indicated284


notationally by the c or h in its VersionHandle. So, for instance, if a TruthValue285


version for Atom A has VersionHandle h,123 that means it denotes the truth value286


of Atom A under the hypothetical context represented by the Atom with handle 123.287


If a TruthValue version for Atom A has VersionHandle c,655 this means it denotes288


the truth value of Atom A in the context represented by the Atom with Handle 655.289


Alternately, truth values may be expressed sometimes in <L,U,b> or <L,U,b,N>290


format, defined in terms of indefinite probability theory as defined in the PLN book291


and recalled in Chap. 16. For instance,292
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2.2 Denoting Atoms 39


IntensionalInheritanceLink Ben scary <.7,.9,.8,20>293


has the semantics that There is an estimated 80 % chance that after 20 more294


observations have been made, the estimated strength of the link will be in the interval295


(.7, .9).296


The notation may also be used to specify a TruthValue probability distribution, e.g.297


A <g(5,7,12)>298


would indicate that the truth value of A is given by distribution g with parameters299


(5, 7, 12), or300


A <M>301


where M is a table of numbers, would indicate that the truth value of A is approximated302


by the table M.303


The <> notation for truth value is an unabashedly incomplete and ambiguous304


notation, but it is very convenient. If we want to specify, say, that the truth value305


strength of IntensionalInheritanceLink Ben monster is in fact the number .5, and no306


other truth value information is retained in the system, then we need to say307


( Intensional Inheritance Ben monster).TruthValue308


= [(strength, .5)]309
310


(where a hashtable form is assumed for TruthValue objects, i.e. a list of name-value311


pairs). But this kind of issue will rarely arise here and the <> notation will serve312


us well.313


2.2.2.4 Attention Values314


The AttentionValue object associated with an Atom does not need to be notated315


nearly as often as truth value. When it does however we can use similar notational316


methods.317


AttentionValues may have several components, but the two critical ones are called318


short-term importance (STI) and long-term importance (LTI). Furthermore, multiple319


STI values are retained: for each (Atom, MindAgent) pair there may be a Mind-320


Agent-specific STI value for that Atom. The pragmatic import of these values will321


become clear in a later chapter when we discuss attention allocation.322


Roughly speaking, the long-term importance is used to control memory usage:323


when memory gets scarce, the atoms with the lowest LTI value are removed. On324


the other hand, the short-term importance is used to control processor time alloca-325


tion: MindAgents, when they decide which Atoms to act on, will generally, but not326


only, choose the ones that have proved most useful to them in the recent past, and327


additionally those that have been useful for other MindAgents in the recent past.328


We will use the double bracket <<>> to denote attention value (in the rare cases329


where such denotation is necessary). So, for instance,330
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40 2 Knowledge Representation Using the Atomspace


Cow_7 <<.5>>331


will mean the node Cow_7 has an importance of .5; whereas,332


Cow_7 <<STI=.1, LTI = .8>>333


or simply334


Cow_7 <<.1, .8>>335


will mean the node Cow_7 has short-term importance = .1 and long-term impor-336


tance= .8 .337


Of course, we can also use the style338


(Intensional InheritanceLink Ben monster).AttentionValue339


= [(STI,.1), (LTI, .8)]340
341


where appropriate.342


2.2.2.5 Links343


Links are represented using a simple notation that has already occurred many times in this book.344


For instance,345


Inheritance A B346


347


Similarity A B348


Note that here the symmetry or otherwise of the link is not implicit in the notation.349


SimilarityLinks are symmetrical, InheritanceLinks are not. When this distinction is350


necessary, it will be explicitly made. WIKISOURCE:FunctionNotation351


2.3 Representing Functions and Predicates352


SchemaNodes and PredicateNodes contain functions internally; and Links may also353


usefully be considered as functions. We now briefly discuss the representations and354


notations we will use to indicate functions in various contexts.355


Firstly, we will make some use of the currying notation drawn from combinatory356


logic, in which adjacency indicates function application. So, for instance, using357


currying,358


f x359


means the function f evaluated at the argument x; and (f x y) means (f(x))(y). If360


we want to specify explicitly that a block of terminology is being specified using361


currying we will use the notation @[expression], for instance362
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2.3 Representing Functions and Predicates 41


@[f x y z]363


means364


((f(x))(y))(z)365


We will also frequently use conventional notation to refer to functions, such as366


f(x,y). Of course, this is consistent with the currying convention if (x,y) is interpreted367


as a list and f is then a function that acts on 2-element lists. We will have many other368


occasions than this to use list notation.369


Also, we will sometimes use a non-curried notation, most commonly with Links,370


so that e.g.371


InheritanceLink x y372


does not mean a curried evaluation but rather means InheritanceLink(x,y).373


2.3.0.6 Execution Output Links374


In the case where f refers to a schema, the occurrence of the combination f x in the375


system is represented by376


ExOutLink f x377


or graphically378


@379


/ \380


f x381


Note that, just as when we write382


f (g x)383


we mean to apply f to the result of applying g to x, similarly when we write384


ExOutLink f (ExOutLink g x)385


we mean the same thing. So for instance386


EvaluationLink (ExOutLink g x) y <.8>387


means that the result of applying g to x is a predicate r, so that r(y) evaluates to True388


with strength .8.389


This approach, in its purest incarnation, does not allow multi-argument schemata.390


Now, multi-argument schemata are never actually necessary, because one can use391


argument currying to simulate multiple arguments. However, this is often awkward,392


and things become simpler if one introduces an explicit tupling operator, which we393


call ListLink. Simply enough,394


ListLink A1 ... An395


denotes an ordered list (A1, …, An)396
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42 2 Knowledge Representation Using the Atomspace


2.3.1 Execution Links397


ExecutionLinks give the system an easy way to record acts of schema execution.398


These are ternary links of the form:399


SchemaNode: S400


401


Atom: A, B402


403


ExecutionLink S A B404


In words, this says the procedure represented by SchemaNode S has taken input405


A and produced output B.406


There may also be schemata that do not take output, or do not take input. But407


these are treated as PredicateNodes, to be discussed below; their activity is recorded408


by EvaluationLinks, not ExecutionLinks.409


The TruthValue of an ExecutionLink records how frequently the result encoded410


in the ExecutionLink occurs. Specifically,411


• the TruthValue of (ExecutionLink S A B) tells you the probability of getting B as412


output, given that you have run schema S on input A413


• the TruthValue of (ExecutionLink S A) tells you the probability that if S is run, it414


is run on input A.415


Often it is useful to record the time at which a given act of schema execution was416


carried out; in that case one uses the atTime link, writing e.g.417


atTimeLink418


T419


ExecutionLink S A B420


where T is a TimeNode, or else one uses an implicit method such as storing the time-421


stamp of the ExecutionLink in a core-level data-structure called the TimeServer. The422


implicit method is logically equivalent to explicitly using atTime, and is treated the423


same way by PLN inference, but provides significant advantages in terms of memory424


usage and lookup speed.425


For purposes of logically reasoning about schema, it is useful to create binary426


links representing ExecutionLinks with some of their arguments fixed. We name427


these as follows:428


ExecutionLink1 A B means: X so that ExecutionLink X A B429


430


ExecutionLink2 A B means: X so that ExecutionLink A X B431


432


ExecutionLink3 A B means: X so that ExecutionLink A B X433


Finally, a SchemaNode may be associated with a structure called a Graph.434


Where S is a SchemaNode,435


Graph(S) = { (x,y): ExecutionLink S x y }436
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2.3 Representing Functions and Predicates 43


Sometimes, the graph of a SchemaNode may be explicitly embodied as a Con-437


ceptNode; other times, it may be constructed implicitly by a MindAgent in analyzing438


the SchemaNode (e.g. the inference MindAgent).439


Note that the set of ExecutionLinks describing a SchemaNode may not define440


that SchemaNode exactly, because some of them may be derived by inference. This441


means that the model of a SchemaNode contained in its ExecutionLinks may not442


actually be a mathematical function, in the sense of assigning only one output to443


each input. One may have444


ExecutionLink S X A <.5>445


446


ExecutionLink S X B <.5>447


meaning that the system does not know whether S(X) evaluates to A or to B. So448


the set of ExecutionLinks modeling a SchemaNode may constitute a non-function449


relation, even if the schema inside the SchemaNode is a function.450


Finally, what of the case where f x represents the action of a built-in system func-451


tion f on an argument x? This is an awkward case that would not be necessary if452


the CogPrime system were revised so that all cognitive functions were carried out453


using SchemaNodes. However, in the current CogPrime version, where most cogni-454


tive functions are carried out using C++ MindAgent objects, if we want CogPrime to455


study its own cognitive behavior in a statistical way, we need BuiltInSchemaNodes456


that refer to MindAgents rather than to ComboTrees (or else, we need to represent457


MindAgents using ComboTrees, which will become practicable once we have a suf-458


ficiently efficient Combo interpreter). The semantics here is thus basically the same459


as where f refers to a schema. For instance we might have460


ExecutionLink FirstOrderInferenceMindAgent (L1, L2) L3461


where L1, L2 and L3 are links related by462


L1463


L2464


|-465


L3466


according to the first-order PLN deduction rules.467


2.3.1.1 Predicates468


Predicates are related but not identical to schema, both conceptually and notation-469


ally. PredicateNodes involve predicate schema which output TruthValue objects. But470


there is a difference between a SchemaNode embodying a predicate schema and a471


PredicateNode, which is that a PredicateNode doesn’t output a TruthValue, it adjusts472


its own TruthValue as a result of the output of its own internal predicate schema.473


The record of the activity of a PredicateNode is given not by an ExecutionLink474


but rather by an:475
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44 2 Knowledge Representation Using the Atomspace


EvaluationLink P A <tv>476


where P is a PredicateNode, A is its input, and <tv> is the truth value assumed by477


the EvaluationLink corresponding to the PredicateNode being fed the input A. There478


is also the variant479


EvaluationLink P <tv>480


for the case where the PredicateNode P embodies a schema that takes no inputs.1481


A simple example of a PredicateNode is the predicate GreaterThan. In this case482


we have, for instance483


EvaluationLink GreaterThan 5 6 <0>484


485


EvaluationLink GreaterThan 5 3 <1>486


and we also have:487


EquivalenceLink488


GreaterThan489


ExOutLink490


And491


ListLink492


ExOutLink493


Not494


LessThan495


ExOutLink496


Not497


EqualTo498


Note how the variables have been stripped out of the expression, see the PLN book for499


more explanation about that. We will also encounter many commonsense-semantics500


predicates such as isMale, with e.g.501


EvaluationLink isMale Ben_Goertzel <1>502


Schemata that return no outputs are treated as predicates, and handled using503


EvaluationLinks. The truth value of such a predicate, as a default, is considered504


as True if execution is successful, and False otherwise.505


And, analogously to the Graph operator for SchemaNodes, we have for Predi-506


cateNodes the SatisfyingSet operator, defined so that the SatisfyingSet of a predicate507


is the set whose members are the elements that satisfy the predicate. Formally, that508


is:509


S = SatisfyingSet P510


1 Actually, if P does take some inputs, EvaluationLink P <tv> is defined too and tv cor-
responds to the average of P(X) over all inputs X, this is explained in more depth in the PLN
book.
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2.3 Representing Functions and Predicates 45


means511


TruthValue(MemberLink X S)512


equals513


TruthValue(EvaluationLink P X)514


This operator allows the system to carry out advanced logical operations like higher-515


order inference and unification.516


2.3.2 Denoting Schema and Predicate Variables517


CogPrime sometimes uses variables to represent the expressions inside schemata and518


predicates, and sometimes uses variable-free, combinatory-logic-based representa-519


tions. There are two sorts of variables in the system, either of which may exist either520


inside compound schema or predicates, or else in the AtomSpace as VariableNodes:521


It is important to distinguish between two sorts of variables that may exist in522


CogPrime:523


• Variable Atoms, which may be quantified (bound to existential or universal quan-524


tifiers) or unquantified.525


• Variables that are used solely as function-arguments or local variables inside the526


“Combo tree” structures used inside some ProcedureNodes (PredicateNodes or527


SchemaNodes) (to be described below), but are not related to Variable Atoms.528


Examples of quantified variables represented by Variable Atoms are $X and $Y in:529


ForAll $X <.0001>530


ExtensionalImplicationLink531


ExtensionalInheritanceLink $X human532


ThereExists $Y533


AND534


ExtensionalInheritanceLink $Y human535


EvaluationLink parent_of ($X, $Y)536


An example of an unquantified Variable Atom is $X in537


ExtensionalImplicationLink <.3>538


ExtensionalInheritanceLink $X human539


ThereExists $Y540


AND541


ExtensionalInheritanceLink $Y human542


EvaluationLink parent_of ($X, $Y)543


This ImplicationLink says that 30 % of humans are parents: a more useful state-544


ment than the ForAll Link given above, which says that it is very very unlikely to be545


true that all humans are parents.546


We may also say, for instance,547
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46 2 Knowledge Representation Using the Atomspace


SatisfyingSet( EvaluationLink eats (cat, $X) )548


to refer to the set of X so that eats(cat, X).549


On the other hand, suppose we have the implication550


Implication551


Evaluation f $X552


Evaluation553


f554


ExOut reverse $X555


where f is a PredicateNode embodying a mathematical operator acting on pairs of556


NumberNodes, and reverse is an operator that reverses a list. So, this implication says557


that the f predicate is commutative. Now, suppose that f is grounded by the formula558


f(a,b) = (a > b - 1)559


embodied in a Combo Tree object (which is not commutative but that is not the560


point), stored in the ProcedureRepository and linked to the PredicateNode for f.561


These f-internal variables, which are expressed here using the letters a and b, are not562


VariableNodes in the CogPrime AtomTable. The notation we use for these within563


the textual Combo language, that goes with the Combo Tree formalism, is to replace564


a and b in this example with #1 and #2, so the above grounding would be denoted565


f -> (#1 > #2 - 1)566


version, it is assumed that type restrictions are always crisp, not probabilistically567


truth-valued. This assumption may be revisited in a later version of the system.568


2.3.2.1 Links as Predicates569


It is conceptually important to recognize that CogPrime link types may be interpreted570


as predicates. For instance, when one says571


InheritanceLink cat animal <.8>572


indicating an Inheritance relation between cat and animal with a strength .8, effec-573


tively one is declaring that one has a predicate giving an output of .8. Depending on574


the interpretation of InheritanceLink as a predicate, one has either the predicate575


InheritanceLink cat $X576


acting on the input577


animal578


or the predicate579


InheritanceLink $X animal580


acting on the input581
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2.3 Representing Functions and Predicates 47


cat582


or the predicate583


InheritanceLink $X $Y584


acting on the list input585


(cat, animal)586


This means that, if we wanted to, we could do away with all Link types except587


OrderedLink and UnorderedLink, and represent all other Link types as PredicateN-588


odes embodying appropriate predicate schema.589


This is not the approach taken in the current codebase. However, the situation is590


somewhat similar to that with CIM-Dynamics:591


• In future we will likely create a revision of CogPrime that regularly revises its own592


vocabulary of Link types, in which case an explicit representation of link types as593


predicate schema will be appropriate.594


• In the shorter term, it can be useful to treat link types as virtual predicates, meaning595


that one lets the system create SchemaNodes corresponding to them, and hence596


do some meta level reasoning about its own link types.597


2.3.3 Variable and Combinator Notation598


One of the most important aspects of combinatory logic, from a CogPrime perspec-599


tive, is that it allows one to represent arbitrarily complex procedures and patterns600


without using variables in any direct sense. In CogPrime, variables are optional, and601


the choice of whether or how to use them may be made (by CogPrime itself) on a602


contextual basis.603


This section deals with the representation of variable expressions in a variable-604


free way, in a CogPrime context. The general theory underlying this is well-known,605


and is usually expressed in terms of the elimination of variables from lambda calculus606


expressions (lambda lifting). Here we will not present this theory but will restrict607


ourselves to presenting a simple, hopefully illustrative example, and then discussing608


some conceptual implications.609


2.3.3.1 Why Eliminating Variables is So Useful610


Before launching into the specifics, a few words about the general utility of variable-611


free expression may be worthwhile.612


Some expressions look simpler to the trained human eye with variables, and some613


look simpler without them. However, the main reason why eliminating all variables614
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48 2 Knowledge Representation Using the Atomspace


from an expression is sometimes very useful, is that there are automated program-615


manipulation techniques that work much more nicely on programs (schemata, in616


CogPrime lingo) without any variables in them.617


As will be discussed later (e.g. Chap. 15 on evolutionary learning, although the618


same process is also useful for supporting probabilistic reasoning on procedures), in619


order to mine patterns among multiple schema that all try to do the same (or related)620


things, we want to put schema into a kind of “hierarchical normal form”. The normal621


form we wish to use generalizes Holman’s Elegant Normal Form (which is discussed622


in Moshe Looks’ PhD thesis) to program trees rather than just Boolean trees.623


But, putting computer programs into a useful, nicely-hierarchically-structured624


normal form is a hard problem—it requires one to have a pretty nice and compre-625


hensive set of program transformations.626


But the only general, robust, systematic program transformation methods that627


exist in the computer science literature require one to remove the variables from628


one’s programs, so that one can use the theory of functional programming (which629


ties in with the theory of monads in category theory, and a lot of beautiful related630


math).631


In large part, we want to remove variables so we can use functional programming632


tools to normalize programs into a standard and pretty hierarchical form, in order to633


mine patterns among them effectively.634


However, we don’t always want to be rid of variables, because sometimes, from a635


logical reasoning perspective, theorem-proving is easier with the variables in there.636


(Sometimes not.)637


So, we want to have the option to use variables, or not.638


2.3.3.2 An Example of Variable Elimination639


Consider the PredicateNode640


AND641


InheritanceLink X cat642


eats X mice643


Here we have used a syntactically sugared representation involving the variable X.644


How can we get rid of the X?645


Recall the C combinator (from combinatory logic), defined by646


C f x y = f y x647


Using this tool,648


InheritanceLink X cat649


becomes650


C InheritanceLink cat X651


and652
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2.3 Representing Functions and Predicates 49


eats X mice653


becomes654


C eats mice X655


so that overall we have656


AND657


C InheritanceLink cat658


C eats mice659


where the C combinators essentially give instructions as to where the virtual argument660


X should go.661


In this case the variable-free representation is basically just as simple as the662


variable-based representation, so there is nothing to lose and a lot to gain by getting663


rid of the variables. This won’t always be the case—sometimes execution efficiency664


will be significantly enhanced by use of variables.665


WIKISOURCE:TypeInheritance666


2.3.4 Inheritance Between Higher-Order Types667


Next, this section deals with the somewhat subtle matter of Inheritance between668


higher-order types. This is needed, for example, when one wants to cross over or669


mutate two complex schemata, in an evolutionary learning context. One encounters670


questions like: When mutation replaces a schema that takes integer input, can it671


replace it with one that takes general numerical input? How about vice versa? These672


questions get more complex when the inputs and outputs of schema may themselves673


be schema with complex higher-order types. However, they can be dealt with ele-674


gantly using some basic mathematical rules.675


Denote the type of a mapping from type T to type S, asT -> S. Use the shorthand676


inh to mean inherits from. Then the basic rule we use is that677


T1 -> S1 inh T2 -> S2678


iff679


T2 inh T1680


S1 inh S2681


In other words, we assume higher-order type inheritance is countervariant. The682


reason is that, if R1 = T1 -> S1 is to be a special case of R2 = T2 -> S2, then one683


has to be able to use the latter everywhere one uses the former. This means that any684


input R2 takes, has to also be taken by R1 (hence T2 inherits from T1). And it means685


that the outputs R2 gives must be able to be accepted by any function that accepts686


outputs of R1 (hence S1 inherits from S2).687
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50 2 Knowledge Representation Using the Atomspace


This type of issue comes up in programming language design fairly frequently, and688


there are a number of research papers debating the pros and cons of countervariance689


versus covariance for complex type inheritance. However, for the purpose of schema690


type inheritance in CogPrime, the greater logical consistency of the countervariance691


approach holds sway.AQ1692


For instance, in this approach, INT -> INT is not a subtype of NO -> INT693


(where NO denotes FLOAT), because NO -> INT is the type that includes all func-694


tions which take a real and return an int, and an INT -> INT does not take a real.695


Rather, the containment is the other way around: every NO -> INT function is an696


example of an INT -> INT function. For example, consider the NO -> INT that697


takes every real number and rounds it up to the nearest integer. Considered as an698


INT -> INT function, this is simply the identity function: it is the function that699


takes an integer and rounds it up to the nearest integer.700


Of course, tupling of types is different, it’s covariant. If one has an ordered pair701


whose elements are of different types, say (T1, T2), then we have702


(T1 , S1) inh (T2, S2)703


iff704


T1 inh T2705


S1 inh S2706


As a mnemonic formula, we may say707


(general -> specific) inherits from (specific -> general)708


709


(specific, specific) inherits from (general, general)710


In schema learning, we will also have use for abstract type constructions, such as711


(T1, T2) where T1 inherits from T2712


Notationally, we will refer to variable types as Xv1, Xv2, etc., and then denote713


the inheritance relationships by using numerical indices, e.g. using714


[1 inh 2]715


to denote that716


Xv1 inh Xv2717


So for example,718


(INT, VOID) inh (Xv1, Xv2)719


is true, because there are no restrictions on the variable types, and we can just assign720


Xv1 = INT, Xv2 = VOID.721


On the other hand,722


( INT, VOID ) inh ( Xv1, Xv2 ), [ 1 inh 2 ]723
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2.3 Representing Functions and Predicates 51


is false because the restriction Xv1 inh Xv2 is imposed, but it’s not true that INT inh724


VOID.725


The following list gives some examples of type inheritance, using the elementary726


types INT, FLOAT (FL), NUMBER (NO), CHAR and STRING (STR), with the727


elementary type inheritance relationships728


• INT inh NUMBER729


• FLOAT inh NUMBER730


• CHAR inh STRING731


• ( NO -> FL ) inh ( INT -> FL )732


• ( FL -> INT ) inh ( FL -> NO )733


• ( ( INT -> FL ) -> ( FL -> INT ) ) inh ( ( NO -> FL ) -> ( FL -> NO ) )734


WIKISOURCE:AbstractSchemaManipulation.735


2.3.5 Advanced Schema Manipulation736


Now we describe some special schema for manipulating schema, which seem to be737


very useful in certain contexts.738


2.3.5.1 Listification739


First, there are two ways to represent n-ary relations in CogPrime’s Atom level740


knowledge representation language: using lists as in741


f_list (x1, ..., xn)742


or using currying as in743


f_curry x1 ... xn744


To make conversion between list and curried forms easier, we have chosen to745


introduce special schema (combinators) just for this purpose:746


listify f = f_list so that f_list (x1, ..., xn ) = f x1 ... xn747


748


unlistify listify f = f749


For instance750


kick_curry Ben Ken751


denotes752


(kick_curry Ben) Ken753


which means that kick is applied to the argument Ben to yield a predicate schema754


applied to Ken. This is the curried style. The list style is755
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52 2 Knowledge Representation Using the Atomspace


kick_List (Ben, Ken)756


where kick is viewed as taking as an argument the List (Ben, Ken). The conversion757


between the two is done by758


listify kick_curry = kick_list759


760


unlistify kick_list = kick_curry761


As a more detailed example of unlistification, let us utilize a simple mathemat-762


ical example, the function (X − 1)2. If we use the notations—and pow to denote763


SchemaNodes embodying the corresponding operations, then this formula may be764


written in variable-free node-and-link form as765


ExOutLink766


pow767


ListLink768


ExOutLink769


-770


ListLink771


X772


1773


2774


But to get rid of the nasty variable X, we need to first unlistify the functions pow775


and—, and then apply the C and B combinators a couple times to move the variable776


X to the front. The B combinator (see Combinatory Logic REF) is recalled below:777


B f g h = f (g h)778


This is accomplished as follows (using the standard convention of left-associativity779


for the application operator, denoted @ in the tree representation given in Sect. Execution780


Output Links)781


pow(-(x, 1), 2)782


unlistify pow (-(x, 1) 2)783


C (unlistify pow) 2 (-(x,1))784


C (unlistify pow) 2 ((unlistify -) x 1)785


C (unlistify pow) 2 (C (unlistify -) 1 x)786


B (C (unlistify pow) 2) (C (unlistify -) 1) x787


yielding the final schema788


B (C (unlistify pow) 2) (C (unlistify -) 1)789


By the way, a variable-free representation of this schema in CogPrime would look790


like791


ExOutLink792


ExOutLink793


B794


ExOutLink795
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2.3 Representing Functions and Predicates 53


ExOutLink796


C797


ExOutLink798


unlistify799


pow800


2801


ExOutLink802


ExOutLink803


C804


ExOutLink805


unlistify806


-807


1808


The main thing to be observed is that the introduction of these extra schema lets809


us remove the variable X. The size of the schema is increased slightly in this case,810


but only slightly—an increase that is well—justified by the elimination of the many811


difficulties that explicit variables would bring to the system. Furthermore, there is a812


shorter rendition which looks like813


ExOutLink814


ExOutLink815


B816


ExOutLink817


ExOutLink818


C819


pow_curried820


2821


ExOutLink822


ExOutLink823


C824


-_curried825


1826


This rendition uses alternate variants of—and pow schema, labeled—_curried827


and pow_curried, which do not act on lists but are curried in the manner of828


combinatory logic and Haskell. It is 13 lines whereas the variable-bearing version is829


9 lines, a minor increase in length that brings a lot of operational simplification.830


2.3.5.2 Argument Permutation831


In dealing with List relationships, there will sometimes be use for an argument-832


permutation operator, let us call it P, defined as follows833


(P p f) (v1, ..., vn) = f (p (v1, ..., vn ))834


where p is a permutation on n letters. This deals with the case where we want to say,835


for instance that836


Equivalence parent(x,y) child(y,x)837
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54 2 Knowledge Representation Using the Atomspace


Instead of positing variable names x and y that span the two relations parent838


(x, y) and child (y, x), what we can instead say in this example is839


Equivalence parent (P {2,1} child)840


For the case of two-argument functions, argument permutation is basically doing841


on the list level what the C combinator does in the curried function domain. On the842


other hand, in the case of n-argument functions with n > 2, argument permutation843


doesn’t correspond to any of the standard combinators.844AQ2


Finally, let’s conclude with a similar example in a more standard predicate logic845


notation, involving both combinators and the permutation argument operator intro-846


duced above. We will translate the variable-laden predicate847


likes(y,x) AND likes(x,y)848


into the equivalent combinatory logic tree. Let us first recall the combinator S whose849


function is to distribute an argument over two terms.850


S f g x = (f x) (g x)851


Assume that the two inputs are going to be given to us as a list. Now, the combi-852


natory logic representation of this is853


S (B AND (B (P {2,1} likes))) likes854


We now show how this would be evaluated to produce the correct expression:855


S (B AND (B (P {2,1} likes))) likes (x,y)856


S gets evaluated first, to produce857


(B AND (B (P {2,1} likes)) (x,y)) (likes (x,y))858


now the first B859


AND ((B (P {2,1} likes)) (x,y)) (likes (x,y))860


now the second one861


AND ((P {2,1} likes) (x,y)) (likes (x,y))862


now P863


AND (likes (y,x)) (likes (x,y))864


which is what we wanted.865
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Chapter 3
Representing Procedural Knowledge


3.1 Introduction0


We now turn to CogPrime’s representation and manipulation of procedural1


knowledge. In a sense this is the most fundamental kind of knowledge—since intel-2


ligence is most directly about action selection, and it is procedures which generate3


actions.4


CogPrime involves multiple representations for procedures, including procedure5


maps and (for sensorimotor procedures) neural nets or similar structures. Its most6


basic procedural knowledge representation, however, is the program. The choice to7


use programs to represent procedures was made after considerable reflection—they8


are not of course the only choice, as other representations such as recurrent neural9


networks possess identical representational power, and are preferable in some regards10


(e.g. resilience with respect to damage). Ultimately, however, we chose programs11


due to their consilience with the software and hardware underlying CogPrime (and12


every other current AI program). CogPrime is a program, current computers and13


operating systems are optimized for executing and manipulating programs; and we14


humans now have many tools for formally and informally analyzing and reasoning15


about programs. The human brain probably doesn’t represent most procedures as16


programs in any simple sense, but CogPrime is not intended to be an emulation of17


the human brain. So, the representation of programs as procedures is one major case18


where CogPrime deviates from the human cognitive architecture in the interest of19


more effectively exploiting its own hardware and software infrastructure.20


CogPrime represents procedures as programs in an internal programming lan-21


guage called “Combo.” While Combo has a textual representation, described online22


at the OpenCog wiki, this isn’t one of its more important aspects (and may be23


redesigned slightly or wholly without affecting system intelligence or architecture);24


the essence of Combo programs lies in their tree representation not their text repre-25


sentation. One could fairly consider Combo as a dialect of LISP, although it’s not26


equivalent to any standard dialect, and it hasn’t particularly been developed with this27


in mind. In this chapter we discuss the key concepts underlying the Combo approach28


to program representation, seeking to make clear at each step the motivations for29


doing things in the manner proposed.30


B. Goertzel et al., Engineering General Intelligence, Part 2, 55
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_3,
© Atlantis Press and the authors 2014
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56 3 Representing Procedural Knowledge


In terms of the overall CogPrime architecture diagram given in Chap. 1 of Vol. 5,31


this chapter is about the box labeled “Procedure Repository.” The latter, in OpenCog,32


is a specialized component connected to the AtomSpace, storing Combo tree repre-33


sentations of programs; each program in the repository is linked to a SchemaNode34


in the AtomSpace, ensuring full connectivity between procedural and declarative35


knowledge.36


3.2 Representing Programs37


What is a “program” anyway? What distinguishes a program from an arbitrary rep-38


resentation of a procedure?39


The essence of programmatic representations is that they are well-specified, com-40


pact, combinatorial, and hierarchical:41


• Well-specified: unlike sentences in natural language, programs are unambiguous;42


two distinct programs can be precisely equivalent.43


• Compact: programs allow us to compress data on the basis of their regularities.44


Accordingly, for the purposes of this chapter, we do not consider overly constrained45


representations such as the well-known conjunctive and disjunctive normal forms46


for Boolean formulae to be programmatic. Although they can express any Boolean47


function (data), they dramatically limit the range of data that can be expressed48


compactly, compared to unrestricted Boolean formulae.49


• Combinatorial: programs access the results of running other programs (e.g. via50


function application), as well as delete, duplicate, and rearrange these results (e.g.51


via variables or combinators).52


• Hierarchical: programs have intrinsic hierarchical organization, and may be53


decomposed into subprograms.54


Eric Baum has advanced a theory “under which one understands a problem when55


one has mental programs that can solve it and many naturally occurring varia-56


tions” [Bau06]. In this perspective—which we find an agreeable way to think about57


procedural knowledge, though perhaps an overly limited perspective on mind as a58


whole—one of the primary goals of artificial general intelligence is systems that59


can represent, learn, and reason about such programs [Bau06, Bau04]. Furthermore,60


integrative AGI systems such as CogPrime may contain subsystems operating on61


programmatic representations. Would-be AGI systems with no direct support for62


programmatic representation will clearly need to represent procedures and proce-63


dural abstractions somehow. Alternatives such as recurrent neural networks have64


serious downsides, including opacity and inefficiency, but also have their advantages65


(e.g. recurrent neural nets can be robust with regard to damage, and learnable via66


biologically plausible algorithms).67


Note that the problem of how to represent programs for an AGI system dissolves in68


the unrealistic case of unbounded computational resources. The solution is algorith-69


mic information theory [Cha08], extended recently to the case of sequential decision70
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3.2 Representing Programs 57


theory [Hut05a]. The latter work defines the universal algorithmic agent AIXI, which71


in effect simulates all possible programs that are in agreement with the agent’s set72


of observations. While AIXI is uncomputable, the related agent AIXItl may be com-73


puted, and is superior to any other agent bounded by time t and space l [Hut05b].74


The choice of a representational language for programs1 is of no consequence, as75


it will merely introduce a bias that will disappear within a constant number of time76


steps.277


Our goal in this chapter is to provide practical techniques for approximating78


the ideal provided by algorithmic probability, based on what Pei Wang has termed79


the assumption of insufficient knowledge and resources [Wan06], and assuming an80


AGI architecture that’s at least vaguely humanlike in nature, and operates largely81


in everyday human environments, but uses programs to represent many procedures.82


Given these assumptions, how programs are represented is of paramount importance,83


as we shall see in Sects. 3.3 and 3.4, where we give a conceptual formulation of what84


we mean by tractable program representations, and introduce tools for formalizing85


such representations. Section 3.4 delves into effective techniques for representing86


programs. A key concept throughout is syntactic–semantic correlation, meaning87


that programs which are similar on the syntactic level, within certain constraints88


will tend to also be similar in terms of their behavior (i.e. on the semantic level).89


Lastly, Sect. 3.5 changes direction a bit and discusses the translation of programmatic90


structure into declarative form for the purposes of logical inference.91 AQ1


In the future, we will experimentally validate that these normal forms and heuris-92


tic transformations do in fact increase the syntactic–semantic correlation in program93


spaces, as has been shown so far only in the Boolean case. We would also like94


to explore the extent to which even stronger correlation, and additional tractabil-95


ity properties, can be observed when realistic probabilistic constraints on “natural”96


environment and task spaces are imposed.97


The importance of a good programmatic representation of procedural knowledge98


becomes quite clear when one thinks about it in terms of the Mind-World Corre-99


spondence Principle introduced in Chap. 10 of Vol. 5. That principle states, roughly,100


that transition paths between world-states should map naturally onto transition paths101


between mind-states. This suggests that there should be a natural, smooth mapping102


between real-world action series and the corresponding series of internal states.103


Where internal states are driven by explicitly given programs, this means that the104


transitions between internal program states should nicely mirror transitions between105


the states of the real world as it interacts with the system controlled by the program.106


The extent to which this is true will depend on the specifics of the programming107


language—and it will be true for a much greater extent, on the whole, if the pro-108


gramming language displays high syntactic–semantic correlation for behaviors that109


commonly occur when the program is used to control the system in the real world.110


So, the various technical issues mentioned above and considered below, regarding111


the qualities desired in a programmatic representation, are merely the manifestation112


1 As well as a language for proofs in the case of AIXItl .
2 The universal distribution converges quickly.
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58 3 Representing Procedural Knowledge


of the general Mind-World Correspondence Principle in the context of procedural113


knowledge, under the assumption that procedures are represented as programs. The114


material in this chapter may be viewed as an approach to ensuring the validity of the115


Mind-World Correspondence principle for programmatically-represented procedural116


knowledge, for CogPrime systems concerned with achieving humanly meaningful117


goals in everyday human environments.118


3.3 Representational Challenges119


Despite the advantages outlined in Sect. 3.2 there are a number of challenges in120


working with programmatic representations:121


• Open-endedness—in contrast to some other knowledge representations current122


in machine learning, programs vary in size and “shape”, and there is no obvious123


problem-independent upper bound on program size. This makes it difficult to124


represent programs as points in a fixed-dimensional space, or to learn programs125


with algorithms that assume such a space.126


• Over-representation—often, syntactically distinct programs will be semantically127


identical (i.e. represent the same underlying behavior or functional mapping).128


Lacking prior knowledge, many algorithms will inefficiently sample semantically129


identical programs repeatedly [Loo07a, GBK04].130


• Chaotic execution—programs that are very similar, syntactically, may be very131


different, semantically. This presents difficulties for many heuristic search algo-132


rithms, which require syntactic and semantic distance to be correlated [Loo07b,133


TVCC05].134


• High resource-variance—programs in the same space vary greatly in the space135


and time they require to execute.136


It’s easy to see how the latter two issues may present a challenge for mind-137


world correspondence! Chaotic execution makes it hard to predict whether a pro-138


gram will indeed manifest state-sequences mapping nicely to a corresponding world-139


sequences; and high resource-variance makes it hard to predict whether, for a given140


program, this sort of mapping can be achieved for relevant goals given available141


resources.142


Based on these concerns, it is no surprise that search over program spaces quickly143


succumbs to combinatorial explosion, and that heuristic search methods are some-144


times no better than random sampling [LP02]. However, alternative representations145


of procedures also have their difficulties, and so far we feel the thornier aspects of146


programmatic representation are generally an acceptable price to pay in light of the147


advantages.148


For some special cases in CogPrime we have made a different choice—e.g. when149


we use DeSTIN for sensory perception (see Chap. 10) we utilize a more specialized150


representation comprising a hierarchical network of more specialized elements. DeS-151


TIN doesn’t have problems with resource variance or chaotic execution, though it152
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3.3 Representational Challenges 59


does suffer from over-representation. It is not very open-ended, which helps increase153


its efficiency in the perceptual processing domain, but may limit its applicability to154


more abstract cognition. In short we feel that, for general representation of cognitive155


procedures, the benefits of programmatic representation outweigh the costs; but for156


some special cases such as low-level perception and motor procedures, this may not157


be true and one may do better to opt for a more specialized, more rigid but less158


problematic representation.159


It would be possible to modify CogPrime to use, say, recurrent neural nets for160


procedure representation, rather than programs in an explicit language. However,161


this would rate as a rather major change in the architecture, and would cause multi-162


ple problems in other aspects of the system. For example, programs are reasonably163


straightforward to reason about using PLN inference, whereas reasoning about the164


internals of recurrent neural nets is drastically more problematic, though not impossi-165


ble. The choice of a procedure representation approach for CogPrime has been made166


considering not only procedural knowledge in itself, but the interaction of procedural167


knowledge with other sorts of knowledge. This reflects the general synergetic nature168


of the CogPrime design.169


There are also various computation-theoretic issues regarding programs; however,170


we suspect these are not particularly relevant to the task of creating human-level AGI,171


though they may rear their heads when one gets into the domain of super-human,172


profoundly self-modifying AGI systems. For instance, in the context of the the diffi-173


culties caused by over-representation and high resource-variance, one might observe174


that determinations of e.g. programmatic equivalence for the former, and e.g. halting175


behavior for the latter, are uncomputable. But we feel that, given the assumption of176


insufficient knowledge and resources, these concerns dissolve into the larger issue177


of computational intractability and the need for efficient heuristics. Determining the178


equivalence of two Boolean formulae over 500 variables by computing and compar-179


ing their truth tables is trivial from a computability standpoint, but, in the words of180


Leonid Levin, “only math nerds would call 2500 finite” [Lev94]. Similarly, a pro-181


gram that never terminates is a special case of a program that runs too slowly to be182


of interest to us.183


One of the key ideas underlying our treatment of programmatic knowledge is184


that, in order to tractably learn and reason about programs, an AI system must have185


prior knowledge of programming language semantics. That is, in the approach we186


advocate, the mechanism whereby programs are executed is assumed known a priori,187


and assumed to remain constant across many problems. One may then craft AI188


methods that make specific use of the programming language semantics, in various189


ways. Of course in the long run a sufficiently powerful AGI system could modify190


these aspects of its procedural knowledge representation; but in that case, according191


to our approach, it would also need to modify various aspects of its procedure learning192


and reasoning code accordingly.193


Specifically, we propose to exploit prior knowledge about program structure via194


enforcing programs to be represented in normal forms that preserve their hierarchical195


structure, and to be heuristically simplified based on reduction rules. Accordingly,196


one formally equivalent programming language may be preferred over another by197
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60 3 Representing Procedural Knowledge


virtue of making these reductions and transformations more explicit and concise198


to describe and to implement. The current OpenCogPrime system uses a simple199


LISP-like language called Combo (which takes both tree form and textual form) to200


represent procedures, but this is not critical; the main point is using some language201


or language variant that is “tractable” in the sense of providing a context in which202


the semantically useful reductions and transformations we’ve identified are naturally203


expressible and easily usable.204


3.4 What Makes a Representation Tractable?205


Creating a comprehensive formalization of the notion of a tractable program rep-206


resentation would constitute a significant achievement; and we will not answer that207


summons here. We will, however, take a step in that direction by enunciating a set208


of positive principles for tractable program representations, corresponding closely209


to the list of representational challenges above. While the discussion in this section210


is essentially conceptual rather than formal, we will use a bit of notation to ensure211


clarity of expression; S to denote a space of programmatic functions of the same type212


(e.g. all pure Lisp λ-expressions mapping from lists to numbers), and B to denote213


a metric space of behaviors.214


In the case of a deterministic, side-effect-free program, execution maps from pro-215


grams in S to points in B, which will have separate dimensions for the function’s216


output across various inputs of interest, as well as dimensions corresponding to the217


time and space costs of executing the program. In the case of a program that interacts218


with an external environment, or is intrinsically nondeterministic, execution will map219


from S to probability distributions over points in B, which will contain additional220


dimensions for any side-effects of interest that programs in S might have. Note the221


distinction between syntactic distance, measured as e.g. tree-edit distance between222


programs in S, and semantic distance, measured between program’s corresponding223


points in or probability distributions over B. We assume that semantic distance accu-224


rately quantifies our preferences in terms of a weighting on the dimensions of B;225


i.e. if variation along some axis is of great interest, our metric for semantic distance226


should reflect this.227


Let P be a probability distribution over B that describes our knowledge of what228


sorts of problems we expect to encounter, let R(n) ⊆ S be all the programs in229


our representation with (syntactic) size no greater than n. We will say that R(n)230


d-covers the pair (B,P) to extent p if the probability that, for a random behavior231


b ∈ B chosen according to P , there is some program in R whose behavior is within232


semantic distance d of b, is greater than or equal to p. Then, some among the various233


properties of tractability that seem important based on the above discussion are as234


follows:235


• for fixed d, p quickly goes to 1 as n increases,236


• for fixed p, d quickly goes to 0 as n increases,237


319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


3.4 What Makes a Representation Tractable? 61


• for fixed d and p, the minimal n needed for R(n) to d-cover (B,P) to extent p238


should be as small as possible,239


• ceteris paribus, syntactic and semantic distance (measured according to P) are240


highly correlated.241


This is closely related to the Mind-Brain Correspondence Principle articulated242


in Chap. 10 of Vol. 5, and to the geometric formulation of cognitive synergy posited243


in Appendix ??. Syntactic distance has to do with distance along paths in mind-244


space related to formal program structures, and semantic distance has to do with245


distance along paths in mind-space and world-space corresponding to the record246


of the program’s actual behavior. If syntax–semantics correlation failed, then there247


would be paths through mind-space (related to formal program structures) that were248


poorly matched to their closest corresponding paths through the rest of mind-space249


and world-space, hence causing a failure (or significant diminution) of cognitive250


synergy and mind-world correspondence.251 AQ2


Since execution time and memory usage considerations may be incorporated into252


the definition of program behavior, minimizing chaotic execution and managing253


resource variance emerges conceptually here as subcases of maximizing correlation254


between syntactic and semantic distance. Minimizing over-representation follows255


from the desire for small program size: roughly speaking the less over-representation256


there is, the smaller average program size can be achieved.257 AQ3


In some cases one can achieve fairly strong results about tractability of repre-258


sentations without any special assumptions about P: for example in prior work we259


have shown that adoption of an appropriate hierarchical normal form can generically260


increase correlation between syntactic and semantic distance in the space of Boolean261


functions [?, Loo07b]. In this case we may say that we have a generically tractable262


representation. However, to achieve tractable representation of more complex pro-263


grams, some fairly strong assumptions about P will be necessary. This should not be264


philosophically disturbing, since it’s clear that human intelligence has evolved in a265


manner strongly conditioned by certain classes of environments; and similarly, what266


we need to do to create a viable program representation system for pragmatic AGI267


usage, is to achieve tractability relative to the distribution P corresponding to the268


actual problems the AGI is going to need to solve. Formalizing the distributions P269


of real-world interest is a difficult problem, and one we will not address here (recall270


the related, informal discussions of Chap. 9 of Vol. 5 where we considered the vari-271


ous important peculiarities of the human everyday world). However, we hypothesize272


that the representations presented in Sect. 3.5 may be tractable to a significant extent273


irrespective of P ,3 and even more powerfully tractable with respect to this as-yet274


unformalized distribution. As weak evidence in favor of this hypothesis, we note that275


many of the representations presented have proved useful so far in various narrow276


problem-solving situations.277


3 Specifically, with only weak biases that prefer smaller and faster programs with hierarchical
decompositions.
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62 3 Representing Procedural Knowledge


3.5 The Combo Language278


The current version of OpenCogPrime uses a simple language called Combo, which279


is an example of a language in which the transformations we consider important280


for AGI-focused program representation are relatively simple and natural. Here we281


illustrate the Combo language by example, referring the reader to the OpenCog wiki282


site for a formal presentation.283


The main use of the Combo language in OpenCog is behind-the-scenes, i.e. using284


tree representations of Combo programs; but there is also a human-readable syn-285


tax, and an interpreter that allows humans to write Combo programs when needed.286


The main use of Combo, however, is not for human-coded programs, but rather for287


programs that are learned via various AI methods.288


In Combo all expressions are in prefix form like LISP, but the left parenthesis is289


placed after the operator instead of before, for example:290


• +(4 5)291


is a 0-ari expression that returns 4 + 5292


• and(#1 0<(#2))293


is a binary expression of type bool × f loat �→ bool that returns true if and only294


if the first input is true and the second input positive. #n designates the n-th input.295


• fact(1) := if(0<(#1) *(#1 fact(+(#1 -1))) 1)296


is a recursive definition of factorial.297


• and_seq(goto(stick) grab(stick) goto(owner) drop)298


is a 0-ari expression with side effects, it evaluates a sequence of actions until299


completion or failure of one of them. Each action is executed in the environ-300


ment the agent is connected to and returns action_success upon success or301


action_ f ailure otherwise. The action sequence returns action_success if it302


completes or action_ f ailure if it does not.303


• if(near(owner self)304


lick(owner)305


and_seq(goto(owner) wag)306


is a 0-ary expression with side effects; it means that if at the time of its evaluation307


the agent referred as self (here a virtual pet) is near its owner then lick him/her,308


otherwise go to the owner and wag the tail.309


3.6 Normal Forms Postulated to Provide Tractable310


Representations311


We now present a series of normal forms for programs, postulated to provide tractable312


representations in the contexts relevant to human-level, roughly human-like general313


intelligence.314
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3.6 Normal Forms Postulated to Provide Tractable Representations 63


3.6.1 A Simple Type System315


We use a simple type system to distinguish between the various normal forms intro-316


duced below. This is necessary to convey the minimal information needed to correctly317


apply the basic functions in our canonical forms. Various systems and applications318


may of course augment these with additional type information, up to and including319


the satisfaction of arbitrary predicates (e.g. a type for prime numbers). This can be320


overlaid on top of our minimalist system to convey additional bias in selecting which321


transformations to apply, and introducing constraints as necessary. For instance, a322


call to a function expecting a prime number, called with a potentially composite argu-323


ment, may be wrapped in a conditional testing the argument’s primality. A similar324


technique is used in the normal form for functions to deal with list arguments that325


may be empty.326


Normal forms are provided for Boolean and number primitive types, and the327


following parametrized types:328


• list types, listT , where T is any type,329


• tuple types, tupleT1,T2,...TN , where all Ti are types, and N is a positive natural330


number,331


• enum types, {s1, s2, . . . sN }, where N is a positive number and all si are unique332


identifiers,333


• function types T1, T2, . . . TN → O , where O and all Ti are types,334


• action result types.335


A list of type listT is an ordered sequence of any number of elements, all of which336


must have type T . A tuple of type tupleT1,T2,...TN is an ordered sequence of exactly337


N elements, where every i th element is of type Ti . An enum of type {s1, s2, . . . sN } is338


some element si from the set. Action result types concern side-effectful interaction339


with some world external to the system (but perhaps simulated, of course), and will340


be described in detail in Sect. 3.6.2. Other types may certainly be added at a later341


date, but we believe that those listed above provide sufficient expressive power to342


conveniently encompass a wide range of programs, and serve as a compelling proof of343


concept. The normal form for a type T is a set of elementary functions with codomain344


T, a set of constants of type T, and a tree grammar. Internal nodes for expressions345


described by the grammar are elementary functions, and leaves are either Uvar or346


Uconstant , where U is some type (often U = T ).347


Sentences in a normal form grammar may be transformed into normal form expres-348


sions. The set of expressions that may be generated is a function of a set of bound349


variables and a set of external functions that must be provided (both bound variables350


and external functions are typed). The transformation is as follows:351


• Tconstant leaves are replaced with constants of type T,352


• Tvar leaves are replaced with either bound variables matching type T, or expres-353


sions of the form f (expr1, expr2, . . . exprM ), where f is an external function of354


type T1, T2, . . . TM → T , and each expri is a normal form expression of type Ti355


(given the available bound variables and external functions).356
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64 3 Representing Procedural Knowledge


3.6.2 Boolean Normal Form357


The elementary functions are and, or , and not . The constants are {true, f alse}.358


The grammar is:359


bool_root = or_form | and_form | literal | bool_constant360


literal = bool_var | not( bool_var )361


or_form = or( {and_form | literal}{2,} )362


and_form = and( {or_form | literal}{2,} ) .363


The construct foo{x,} refers to x or more matches of foo (e.g. {x | y }{2,}364


is two or more items in sequences where each item is either an x or a y).365


3.6.3 Number Normal Form366


The elementary functions are ∗ (times) and + (plus). The constants are some subset367


of the rationals (e.g. those with IEEE single-precision floating-point representations).368


The grammar is:369


num_root = times_form | plus_form | num_constant | num_var370


times_form = *( {num_constant | plus_form} plus_form{1,} )371


| num_var372


plus_form = +( {num_constant | times_form} times_form{1,} )373


| num_var374


3.6.4 List Normal Form375


For list types listT , the elementary functions are list (an n-ary list constructor) and376


append. The only constant is the empty list (nil). The grammar is:377


list_T_root = append_form | list_form | list_T_var378


| list_T_constant379


append_form = append( {list_form | list_T_var}{2,} )380


list_form = list( T_root{1,} )381


3.6.5 Tuple Normal Form382


For tuple types tupleT1,T2,...TN , the only elementary function is the tuple constructor383


(tuple). The constants are384


T1_constant×T2_constant× · · · × TN_constant385


The normal form is either a constant, a var, or386


tuple( T1_root T2_root . . . TN_root )387
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3.6 Normal Forms Postulated to Provide Tractable Representations 65


3.6.6 Enum Normal Form388


Enums are atomic tokens with no internal structure—accordingly, there are no389


elementary functions. The constants for the enum {s1, s2, . . . sN } are the si s. The390


normal form is either a constant or a variable.391


3.6.7 Function Normal Form392


For T1, T2, . . . TN → O , the normal form is a lambda-expression of arity N whose393


body is of type O . The list of variable names for the lambda-expression is not a394


“proper” argument—it does not have a normal form of its own. Assuming that none395


of the Ti s is a list type, the body of the lambda-expression is simply in the normal396


form for type O (with the possibility of the lambda-expressions arguments appearing397


with their appropriate types). If one or more Ti s are list types, then the body is a call398


to the spli t function with all arguments in normal form.399


Spli t is a family of functions with type signatures400


(T1, listT1 , T2, listT2 , . . . Tk, listTk → O),401


tuplelistT1 ,O , tuplelistT2 ,O , . . . tuplelistTk ,O → O.402
403


To evaluate spli t ( f, tuple(l1, o1), tuple(l2, o2), . . . tuple(lk, ok)), the list argu-404


ments l1, l2, . . . lk are examined sequentially. If some li is found that is empty, then405


the result is the corresponding value oi . If all li are nonempty, we deconstruct each406


of them into xi : xsi , where xi is the first element of the list and xsi is the rest.407


The result is then f (x1, xs1, x2, xs2, . . . xk, xsk). The spli t function thus acts as an408


implicit case statement to deconstruct lists only if they are nonempty.409


3.6.8 Action Result Normal Form410


An action result type act corresponds to the result of taking an action in some world.411


Every action result type has a corresponding world type, world. Associated with412


action results and worlds are two special sorts of functions.413


• Perceptions—functions that take a world as their first argument and regular (non-414


world and non-action-result) types as their remaining arguments, and return regular415


types. Unlike other function types, the result of evaluating a perception call may416


be different at different times, because the world will have different configurations417


at different times.418


• Actions—functions that take a world as their first argument and regular types as419


their remaining arguments, and return action results (of the type associated with420


the type of their world argument). As with perceptions, the result of evaluating an421


action call may be different at different times. Furthermore, actions may have side422
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66 3 Representing Procedural Knowledge


effects in the associated world that they are called in. Thus, unlike any other sort423


of function, actions must be evaluated, even if their return values are ignored.424


Other sorts of functions acting on worlds (e.g. ones that take multiple worlds as425


arguments) are disallowed.426


Note that an action result expression cannot appear nested inside an expression427


of any other type. Consequently, there is no way to convert e.g. an action result428


to a Boolean, although conversion in the opposite direction is permitted. This is429


required because mathematical operations in our language have classical mathemat-430


ical semantics; x and y must equal y and x, which will not generally be the case if431


x or y can have side-effects. Instead, there are special sequential versions of logical432


functions which may be used instead.433


The elementary functions for action result types are andseq (sequential and,434


equivalent to C’s short-circuiting &&), orseq (sequential or, equivalent to C’s short-435


circuiting ||), and f ails (negates success to failure and vice versa). The constants436


may vary from type to type but must at least contain success and f ailure, indicating437


absolute success/failure in execution.4 The normal form is as follows:438


act_root = orseq_form |andseq_form | seqlit439


seqlit = act | fails( act )440


act = act_constant | act_var441


orseq_form = orseq( {andseq_form | seqlit}{2,} )442


andseq_form = andseq( {orseq_form | seqlit}{2,} )443


3.7 Program Transformations444


A program transformation is any type-preserving mapping from expressions to445


expressions. Transformations may be guaranteed to preserve semantics. When doing446


program evolution there is an intermediate category of fitness preserving transfor-447


mations that may alter semantics, but not fitness. In general, the only way that fitness448


preserving transformations will be uncovered is by scoring programs that have had449


their semantics potentially transformed to determine their fitness, which is what most450


fitness function does. On the other hand if the fitness function is encompassed in the451


program itself, so a candidate directly outputs the fitness itself, then only preserving452


semantics transformations are needed.453


3.7.1 Reductions454


These are semantics preserving transformations that do not increase some size mea-455


sure (typically number of symbols), and are idempotent. For example, and(x, x, y)456


4 A do(arg1, arg2, . . . argN ) statement (known as progn in Lisp), which evaluates its argu-
ments sequentially regardless of success or failure, is equivalent to andseq (orseq (arg1, success),
orseq (arg2, success), . . . orseq (argN , success)).
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3.7 Program Transformations 67


→ and(x, y) is a reduction for Boolean expressions. A set of canonical reductions is457


defined for every type that has a normal form. For numerical functions, the simplifier458


in a computer algebra system may be used. The full list of reductions is omitted in for459


brevity. An expression is reduced if it maps to itself under all canonical reductions460


for its type, and all of its children are reduced.461


Another important set of reductions are the compressive abstractions, which462


reduce or keep constant the size of expressions by introducing new functions. Con-463


sider464


list(*(+(a p q) r)465


*(+(b p q) r)466


*(+(c p q) r))467


which contains 19 symbols. Transforming this to468


f(x) = *(+(x p q) r)469


list(f(a) f(b) f(c))470


reduces the total number of symbols to 15. One can generalize this notion to consider471


compressive abstractions across a set of programs. Compressive abstractions appear472


to be rather expensive to uncover, although not prohibitively so, the computation473


may easily be parallelized and may rely heavily on subtree mining [TODO REF].474


3.7.1.1 A Simple Example of Reduction475


We now give a simple example of how CogPrime’s reduction engine can transform476


a program into a semantically equivalent but shorter one.477


Consider the following program and the chain of reduction:478


1. We start with the expression479


if(P and_seq(if(P A B) B) and_seq(A B))480


2. A reduction rule permits to reduce the conditional if(P A B) to if(true A B).481


Indeed if P is true, then the first branch is evaluated and P must still be true.482


if(P and_seq(if(true A B) B) and_seq(A B))483


3. Then a rule can reduce if(true A B) to A.484


if(P and_seq(A B) and_seq(A B))485


4. And finally another rule replaces the conditional by one of its branches since they486


are identical487


and_seq(A B)488


Note that the reduced program is not only smaller (3 symbols instead of 11) but a489


bit faster too. Of course it is not generally true that smaller programs are faster but490


in the restricted context of our experiments it has often been the case.491
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68 3 Representing Procedural Knowledge


3.7.2 Neutral Transformations492


Semantics preserving transformations that are not reductions are not useful on their493


own—they can only have value when followed by transformations from some other494


class. They are thus more speculative than reductions, and more costly to consider.495


I will refer to these as neutral transformations [Ols95].496


• Abstraction—given an expression E containing non-overlapping subexpressions497


E1, E2, …EN , let E ′ be E with all Ei replaced by the unbound variables vi .498


Define the function f (v1, v2, . . . v3) = E ′, and replace E with f (E1, E2, . . . EN ).499


Abstraction is distinct from compressive abstraction because only a single call to500


the new function f is introduced.5501


• Inverse abstraction—replace a call to a user-defined function with the body of the502


function, with arguments instantiated (note that this can also be used to partially503


invert a compressive abstraction).504


• Distribution—let E be a call to some function f , and let E ′ be an expression505


of E’s i th argument that is a call to some function g, such that f is distributive506


over g’s arguments, or a subset thereof. We shall refer to the actual arguments to507


g in these positions in E ′ as x1, x2, . . . xn . Now, let D(F) be the function that is508


obtained by evaluating E with its i th argument (the one containing E ′) replaced509


with the expression F . Distribution is replacing E with E ′, and then replacing each510


x j (1 ≤ j ≤ n) with D(x j ). For example, consider511


+(x *(y if(cond a b)))512


Since both + and * are distributive over the result branches of if, there are two513


possible distribution transformations, giving the expressions514


if(cond +(x *(y a)) +(x *(y b)))515


+(x(if(cond *(y a) *(y b))))516


• Inverse distribution (factorization)—the opposite of distribution. This is nearly517


a reduction; the exceptions are expressions such as f (g(x)), where f and g are518


mutually distributive.519


• Arity broadening—given a function f , modify it to take an additional argument520


of some type. All calls to f must be correspondingly broadened to pass it an521


additional argument of the appropriate type.522


• List broadening6—given a function f with some i th argument x of type T, modify523


f to instead take an argument y of type listT , which gets split into x : xs. All524


calls to f with i th argument x ′ must be replaced by corresponding calls with i th525


argument list (x ′).526


• Conditional insertion—an expression x is replaced by if(true, x, y), where y is527


some expression of the same type of x .528


5 In compressive abstraction there must be at least two calls in order to avoid increasing the number
of symbols.
6 Analogous tuple-broadening transformations may be defined as well, but are omitted for brevity.
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3.7 Program Transformations 69


As a technical note, action result expressions (which may cause side-effects) com-529


plicate neutral transformations. Specifically, abstractions and compressive abstrac-530


tions must take their arguments lazily (i.e. not evaluate them before the function531


call itself is evaluated), in order to be neutral. Furthermore, distribution and inverse532


distribution may only be applied when f has no side-effects that will vary (e.g. be533


duplicated or halved) in the new expression, or affect the nested computation (e.g.534


change the result of a condition within a conditional). Another way to think about535


this issue is to consider the action result type as a lazy domain-specific language536


embedded within a pure functional language (where evaluation order is unspeci-537


fied). Spector has performed an empirical study of the tradeoffs in lazy versus eager538


function abstraction for program evolution [Spe96].539


The number of neutral transformations applicable to any given program grows540


quickly with program size.7 Furthermore, synthesis of complex programs and541


abstractions does not seem to be possible without them. Thus, a key hypothesis542


of any approach to AGI requiring significant program synthesis, without assuming543


the currently infeasible computational capacities required to brute-force the prob-544


lem, is that the inductive bias to select promising neutral transformations can be545


learned and/or programmed. Referring back to the initial discussion of what con-546


stitutes a tractable representation, we speculate that perhaps, whereas well-chosen547


reductions are valuable for generically increasing program representation tractability,548


well-chosen neutral transformations will be valuable for increasing program repre-549


sentation tractability relative to distributions P to which the transformations have550


some (possibly subtle) relationship.551


3.7.3 Non-Neutral Transformations552


Non-neutral transformations are the general class defined by removal, replacement,553


and insertion of subexpressions, acting on expressions in normal form, and preserving554


the normal form property. Clearly these transformations are sufficient to convert555


any normal form expression into any other. What is desired is a subclass of the556


non-neutral transformations that is combinatorially complete, where each individual557


transformation is nonetheless a semantically small step.558


The full set of transformations for Boolean expressions is given in [Loo06]. For559


numerical expressions, the transcendental functions sin, log, and ex are used to560


construct transformations. These obviate the need for division (a/b = elog(a)−log(b)),561


and subtraction (a−b = a+−1∗b). For lists, transformations are based on insertion562


of new leaves (e.g. to append function calls), and “deepening” of the normal form by563


insertion of subclauses (see [Loo06] for details). For tuples, we take the union of the564


transformations of all the subtypes. For other mixed-type expressions the union of the565


non-neutral transformations for all types must be considered as well. For enum types566


the only transformation is replacing one symbol with another. For function types, the567


transformations are based on function composition. For action result types, actions568


7 Exact calculations are given by Olsson [Ols95].
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70 3 Representing Procedural Knowledge


are inserted/removed/altered, akin to the treatment of Boolean literals for the Boolean569


type.570


We propose an additional class of non-neutral transformations based on the mar-571


velous fold function:572


fold( f, v, l) = i f (empty(l), v, f (first(l), fold( f, v, rest(l))))573


With fold we can express a wide variety of iterative constructs, with guaranteed574


termination and a bias towards low computational complexity. In fact, fold allows us575


to represent exactly the primitive recursive functions [Hut99].576


Even considering only this reduced space of possible transformations, in many577


cases there are still too many possible programs “nearby” some target to effectively578


consider all of them. For example many probabilistic model-building algorithms,579


such as learning the structure of a Bayesian network from data, can require time580


cubic in the number of variables (in this context each independent non-neutral trans-581


formation can correspond to a variable). Especially as the size of the programs we582


wish to learn grows, and as the number of typologically matching functions increases,583


there will be simply too many variables to consider each one intensively, let alone584


apply a quadratic-time algorithm.585


To alleviate this scaling difficulty, we propose three techniques.586


The first is to consider each potential variable (i.e. independent non-neutral587


transformation) to heuristically determine its usefulness in expressing constructive588


semantic variation. For example, a Boolean transformation that collapses the overall589


expression into a tautology is assumed to be useless.8590


The second is heuristic coupling rules that allow us to calculate, for a pair of591


transformations, the expected utility of applying them in conjunction.592


Finally, while fold is powerful, it may need to be augmented by other methods in593


order to provide tractable representation of complex programs that would normally594


be written using numerous variables with diverse scopes. One approach that we have595


explored involves application of [SMI97]’s ideas about director strings as combina-596


tors. In Sinot’s approach, special program tree nodes are labeled with director strings,597


and special algebraic operators interrelate these strings. One then achieves the rep-598


resentational efficiency of local variables with diverse scopes, without needing to do599


any actual variable management. Reductions and other (non-)neutral transformation600


rules related to broadening and reducing variable scope may then be defined using601


the director string algebra.602


3.8 Interfacing Between Procedural and Declarative Knowledge603


Finally, another critical aspect of procedural knowledge is its interfacing with declar-604


ative knowledge. We now discuss the referencing of declarative knowledge within605


procedures, and the referencing of the details of procedural knowledge within Cog-606


Prime’s declarative knowledge store.607


8 This is heuristic because such a transformation might be useful together with other transformations.
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3.8 Interfacing Between Procedural and Declarative Knowledge 71


3.8.1 Programs Manipulating Atoms608


Above we have used Combo syntax implicitly, referring to Appendix ?? for the formal609


definitions. Now we introduce one additional, critical element of Combo syntax: the610


capability to explicitly reference declarative knowledge within procedures.611


For this purpose Combo must contain the following types:612


Atom, Node, Link, T ruthV alue, AtomT ype, AtomT able613


Atom is the union of Node and Link.614


So a type Node within a Combo program refers to a Node in CogPrime’s Atom-615


Table. The mechanisms used to evaluate these entities during program evaluation are616


discussed in Chap. 7.617


For example, suppose one wishes to write a Combo program that creates Atoms618


embodying the predicate-argument relationship eats(cat, f ish), represented619


Evaluation eats (cat, fish)620


aka621


Evaluation622


eats623


List624


cat625


fish626


To do this, one could say for instance,627


new-link(EvaluationLink628


new-node(PredicateNode ‘‘eats’’)629


new-link(ListLink630


new-node(ConceptNode ‘‘cat’’)631


new-node(ConceptNode ‘‘fish’’))632


(new-stv .99 .99))633


3.9 Declarative Representation of Procedures634


Next, we consider the representation of program tree internals using declarative data635


structures. This is important if we want OCP to inferentially understand what goes on636


inside programs. In itself, it is more of a “bookkeeping” issue than a deep conceptual637


issue, however.638


First, note that each of the entities that can live at an internal node of a program,639


can also live in its own Atom. For example, a number in a program tree corresponds640


to a NumberNode; an argument in a Combo program already corresponds to some641


Atom; and an operator in a program can be wrapped up in a SchemaNode all its own,642


and considered as a one-leaf program tree.643


319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030-0_7





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


72 3 Representing Procedural Knowledge


Thus, one can build a kind of virtual, distributed program tree by linking a num-644


ber of ProcedureNodes (i.e. PredicateNodes or SchemaNodes) together. All one645


needs in order to achieve this is an analogue of the @ symbol (as defined in Sect. 2.3646


of Chap. 2) for relating ProcedureNodes. This is provided by the ExecutionLink type,647


where648


(ExecutionLink f g)649


essentially means the same as650


f g651


in curried notation or652


@653


/ \654


f g655


The same generalized evaluation rules used inside program trees may be thought656


of in terms of ExecutionLinks; formally, they are crisp ExtensionalImplicationLinks657


among ExecutionLinks.658


Note that we are here using ExecutionLink as a curried function; that is, we are659


looking at (ExecutionLink f g) as a function that takes an argument x, where the truth660


value of661


(ExecutionLink f g) x662


represents the probability that executing f, on input g, will give output x.663


One may then construct combinator expressions linking multiple ExecutionLinks664


together; these are the analogues of program trees.665


For example, using ExecutionLinks, one equivalent of y = x + xˆ2 is:666


Hypothetical667


SequentialAND668


ExecutionLink669


pow670


List v1 2671


v2672


ExecutionLink673


+674


List v1 v2675


v3676


Here the v1, v2, v3 are variables which may be internally represented via com-677


binators. This AND is sequential in case the evaluation order inside the program678


interpreter makes a difference.679


As a practical matter, it seems there is no purpose to explicitly storing program680


trees in conjunction-of-ExecutionLinks form. The information in the ExecutionLink681


conjunct is already there in the program tree. However, the PLN reasoning system,682


when reasoning on program trees, may carry out this kind of expansion internally as683


part of its analytical process.684
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Chapter 4
Emotion, Motivation, Attention and Control


4.1 Introduction0


This chapter begins the heart of the book: the part that explains how the CogPrime1


design aims to implement roughly human-like general intelligence, at the human2


level and ultimately beyond. First, here in Sect. 4.2 we explain how CogPrime can3


be used to implement a simplistic animal-like agent without much learning: an agent4


that perceives, acts and remembers, and chooses actions that it thinks will achieve its5


goals; but doesn’t do any sophisticated learning or reasoning or pattern recognition6


to help it better perceive, act, remember or figure out how to achieve its goals. We’re7


not claiming CogPrime is the best way to implement such an animal-like agent,8


though we suggest it’s not a bad way and depending on the complexity and nature9


of the desired behaviors, it could be the best way. We have simply chosen to split10


off the parts of CogPrime needed for animal-like behavior and present them first,11


prior to presenting the various “knowledge creation” (learning, reasoning and pattern12


recognition) methods that constitute the more innovative and interesting part of the13


design.14


In Stan Franklin’s terms, what we explain here in Sect. 4.2 is how a basic cognitive15


cycle may be achieved within CogPrime. In that sense, the portion of CogPrime16


explained in this section is somewhat similar to the parts of Stan’s LIDA architecture17


that have currently been worked out in detail, and that. However, while LIDA has18


not yet been extended in detail (in theory or implementation) to handle advanced19


learning, cognition and language, those aspects of CogPrime have been developed20


and in fact constitute the largest portion of this book.21


Looking back to the integrative diagram from Chap. 6 of Vol. 5, the cognitive22


cycle is mainly about integrating vaguely LIDA-like structures and mechanisms with23


heavily Psi-like structures and mechanisms—but doing so in a way that naturally links24


Co-authored with Zhenhua Cai.


B. Goertzel et al., Engineering General Intelligence, Part 2, 75
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_4,
© Atlantis Press and the authors 2014
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76 4 Emotion, Motivation, Attention and Control


in with perception and action mechanisms “below,” and more abstract and advanced25


learning mechanisms “above”.AQ1 26


In terms of the general theory of general intelligence, the basic CogPrime cognitive27


cycle can be seen to have a foundational importance in biasing the CogPrime system28


toward the problem of controlling an agent in an environment requiring a variety29


of real-time and near-real-time responses based on a variety of kinds of knowledge.30


Due to its basis in human and animal cognition, the CogPrime cognitive cycle likely31


incorporates many useful biases in ways that are not immediately obvious, but that32


would become apparent if comparing intelligent agents controlled by such a cycle33


versus intelligent agents controlled via other means.34


The cognitive cycle also provides a framework in which other cognitive processes,35


relating to various aspects of the goals and environments relevant to human-level gen-36


eral intelligence, may conveniently dynamically interoperate. The “Mind OS” aspect37


of the CogPrime architecture provides general mechanisms in which various cogni-38


tive processes may interoperate on a common knowledge store; the cognitive cycle39


goes further and provides a specific dynamical pattern in which multiple cognitive40


processes may intersect. Its effective operation places strong demands on the cogni-41


tive synergy between the various cognitive processes involved, but also provides a42


framework that encourages this cognitive synergy to develop and persist.43


Finally, it should be stressed that the cognitive cycle is not all-powerful nor wholly44


pervasive in CogPrime’s dynamics. It’s critical for the real-time interaction of a45


CogPrime-controlled agent with a virtual or physical world; but there may be many46


processes within CogPrime that most naturally operate outside such a cycle. For47


instance, humans will habitually do deep intellectual thinking (even something so48


abstract as mathematical theorem proving) within a cognitive cycle somewhat similar49


to the one they use for practical interaction with the external world. But, there’s no50


reason that CogPrime systems need to be constrained in this way. Deviating from a51


cognitive cycle based dynamic may cause a CogPrime system to deviate further from52


human-likeness in its intelligence, but may also help it to perform better than humans53


on some tasks, e.g. tasks like scientific data analysis or mathematical theorem proving54


that benefit from styles of information processing that humans aren’t particularly55


good at.56


4.2 A Quick Look at Action Selection57


We will begin our exposition of CogPrime’s cognitive cycle with a quick look at58


action selection. As Stan Franklin likes to point out, the essence of an intelligent59


agent is that it does things; it takes actions. The particular mechanisms of action60


selection in CogPrime are a bit involved and will be given in Chap. 6; in this chapter61


we will give the basic idea of the action selection mechanism and then explain62


how a variant of the Psi model (described in Chap. 5 of Vol. 5) is used to handle63


motivation (emotions, drives, goals, etc.) in CogPrime, including the guidance of64


action selection.65
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4.2 A Quick Look at Action Selection 77


The crux of CogPrime’s action selection mechanism is as follows66


• the action selector chooses procedures that seem likely to help achieve important67


goals in the current context68


– Example: If the goal is to create a block structure that will surprise Bob, and69


there is plenty of time, one procedure worth choosing might be a memory search70


procedure for remembering situations involving Bob and physical structures.71


Alternately, if there isn’t much time, one procedure worth choosing might be a72


procedure for building the base of a large structure—as this will give something73


to use as part of whatever structure is eventually created. Another procedure74


worth choosing might be one that greedily assembles structures from blocks75


without any particular design in mind.76


• to support the action selector, the system builds implications of the form Context77


and Procedure → Goal, where Context is a predicate evaluated based on the78


agent’s situation79


– Example: If Bob has asked the agent to do something, and it knows that Bob is80


very insistent on being obeyed, then implications such as81


· “Bob instructed to do X” and “do X” → “please Bob” < 0.9, 0.9 >82


will be utilized83


– Example: If the agent wants to make a tower taller, then implications such as84


· “T is a blocks structure” and “place block atop T” → “make T taller”85


< 0.9, 0.9 > will be utilized86


• the truth values of these implications are evaluated based on experience and infer-87


ence88


– Example: The above implication involving Bob could be evaluated based on89


experience, by assessing it against remembered episodes involving Bob giving90


instructions91


– Example: The same implication could be evaluated based on inference, using92


analogy to experiences with instructions from other individuals similar to Bob;93


or using things Bob has explicitly said, combined with knowledge that Bob’s94


self-descriptions tend to be reasonably accurate95


• Importance values are propagated between goals using economic attention alloca-96


tion (and, inference is used to learn subgoals from existing goals)97


– Example: If Bob has told the agent to do X, and the agent has then derived (from98


the goal of pleasing Bob) the goal of doing X, then the “please Bob” goal will99


direct some of its currency to the “do X” goal (which the latter goal can then100


pass to its subgoals, or spend on executing procedures)101


These various processes are carried out in a manner orchestrated by Dorner’s Psi102


model as refined by Joscha Bach (as reviewed in Chap. 5 of Vol. 5), which supplies103


(among other features) AQ2104
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78 4 Emotion, Motivation, Attention and Control


• a specific theory regarding what “demands” should be used to spawn the top-level105


goals106


• a set of (four) interrelated system parameters governing overall system state in a107


useful manner reminiscent of human and animal psychology108


• a systematic theory of how various emotions (wholly or partially) emerge from109


more fundamental underlying phenomena.110


4.3 Psi in CogPrime111


The basic concepts of the Psi approach to motivation, as reviewed in Chap. 5 of Vol. 5,112


are incorporated in CogPrime as follows (note that the following list includes many113


concepts that will be elaborated in more detail in later chapters):114


• Demands are GroundedPredicateNodes (GPNs), i.e. Nodes that have their truth115


value computed at each time by some internal C++ code or some Combo procedure116


in the ProcedureRepository117


– Examples: Alertness, perceived novelty, internal novelty, reward from teachers,118


social stimulus119


– Humans and other animals have familiar demands such as hunger, thirst and120


excretion; to create an AGI closely emulating a human or (say) a dog one may121


wish to simulate these in one’s AGI system as well122


• Urges are also GPNs, with their truth values defined in terms of the truth values of123


the Nodes for corresponding Demands. However in CogPrime we have chosen the124


term “Ubergoal” instead of Urge, as this is more evocative of the role that these125


entities play in the system’s dynamics (they are the top-level goals).126


• Each system comes with a fixed set of Ubergoals (and only very advanced Cog-127


Prime systems will be able to modify their Ubergoals)128


– Example: Stay alert and alive now and in the future; experience and learn new129


things now and in the future; get reward from the teachers now and in the future;130


enjoy rich social interactions with other minds now and in the future131


– A more advanced CogPrime system could have abstract (but experientially132


grounded) ethical principles among its Ubergoals, e.g. an Ubergoal to promote133


joy, an Ubergoal to promote growth and an Ubergoal to promote choice, in134


accordance with the ethics described in [Goe06]135


• The ShortTermImportance of an Ubergoal indicates the urgency of the goal, so136


if the Demand corresponding to an Ubergoal is within its target range, then the137


Ubergoal will have zero STI. But all Ubergoals can be given maximal LTI to138


guarantee they don’t get deleted.139


– Example: If the system is in an environment continually providing an adequate140


level of novelty (according to its Ubergoal), then the Ubergoal corresponding141
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4.3 Psi in CogPrime 79


to external novelty will have low STI but high LTI. The system won’t expend142


resources seeking novelty. But then, if the environment becomes more monoto-143


nous, the urgency of the external novelty goal will increase, and its STI will144


increase correspondingly, and resources will begin getting allocated toward im-145


proving the novelty of the stimuli received by the agent.146


• Pleasure is a GPN, and its internal truth value computing program compares the147


satisfaction of Ubergoals to their expected satisfaction148


– Of course, there are various mathematical functions (e.g. p′th power averages1
149


for different p) that one can use to average the satisfaction of multiple Ubergoals;150


and choices here, i.e. different specific ways of calculating Pleasure, could lead151


to systems with different “personalities”152


• Goals are Nodes or Links that are on the system’s list of goals (the GoalPool).153


Ubergoals are automatically Goals, but there will also be many other Goals also154


– Example: The Ubergoal of getting reward from teachers might spawn subgoals155


like “getting reward from Bob” (if Bob is a teacher), or “making teachers smile”156


or “create surprising new structures” (if the latter often garners teacher reward).157


The subgoal of “create surprising new structures” might, in the context of a new158


person entering the agent’s environment with a bag of toys, lead to the creation159


of a subgoal of asking for a new toy of the sort that could be used to help create160


new structures, etc.161


• Psi’s memory is CogPrime’s AtomTable, with associated structures like the162


ProcedureRepository (explained in Chap. 1), the SpaceServer and TimeServer163


(explained in Chap. 8), etc.164


– Examples: The knowledge of what blocks look like and the knowledge that tall165


structures often fall down, go in the AtomTable; specific procedures for picking166


up blocks of different shapes go in the ProcedureRepository; the layout of a167


room or a pile of blocks at a specific point in time go in the SpaceServer; the168


series of events involved in the building-up of a tower are temporally indexed169


in the TimeServer.170


– In Psi and MicroPsi, these same phenomena are stored in memory in a rather171


different way, yet the basic Psi motivational dynamics are independent of these172


representational choices.173


• Psi’s “motive selection” process is carried out in CogPrime by economic attention174


allocation, which allocates ShortTermImportance to Goal nodes175


– Example: The flow of importance from “Get reward from teachers” to “get176


reward from Bob” to “make an interesting structure with blocks” is an instance177


of what Psi calls “motive selection”. No action is being taken yet, but choices are178


being made regarding what specific goals are going to be used to guide action179


selection.180


1 the p′th power average is defined as p
√∑


X p
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80 4 Emotion, Motivation, Attention and Control


• Psi’s action selection plays the same role as CogPrime’s action selection, with181


the clarification that in CogPrime this is a matter of selecting which procedures182


(i.e. schema) to run, rather than which individual actions to execute. However, this183


notion exists in Psi as well, which accounts for “automatized behaviors” that are184


similar to CogPrime schemata; the only (minor) difference here is that in CogPrime185


automatized behaviors are the default case.186


– Example: If the goal “make an interesting structure with blocks” has a high187


STI, then it may be used to motivate choice of a procedure to execute, e.g. a188


procedure that finds an interesting picture or object seen before and approximates189


it with blocks, or a procedure that randomly constructs something and then190


filters it based on interestingness. Once a blocks-structure-building procedure191


is chosen, this procedure may invoke the execution of sub-procedures such as192


those involved with picking up and positioning particular blocks.193


• Psi’s planning is carried out via various learning processes in CogPrime, including194


PLN plus procedure learning methods like MOSES or hillclimbing195


– Example: If the agent has decided to build a blocks structure emulating a pyramid196


(which it saw in a picture), and it knows how to manipulate and position individ-197


ual blocks, then it must figure out a procedure for carrying out individual-block198


actions that will result in production of the pyramid. In this case, a very inex-199


perienced agent might use MOSES or hillclimbing and “guidedly-randomly”200


fiddle with different construction procedures until it hit on something workable.201


A slightly more experienced agent would use reasoning based on prior struc-202


tures it had built, to figure out a rational plan (like: “start with the base, then203


iteratively pile on layers, each one slightly smaller than the previous.”)204


• The modulators are system parameters which may be represented by PredicateN-205


odes, and which must be incorporated appropriately in the dynamics of various206


MindAgents, e.g.207


– activation affects action selection. For instance this may be effected by a process208


that, each cycle, causes a certain amount of STICurrency to pass to schema209


satisfying certain properties (those involving physical action, or terminating210


rapidly). The amount of currency passed in this way would be proportional to211


the activation212


– resolution level affects perception schema and MindAgents, causing them to213


expend less effort in processing perceptual data214


– certainty affects inference and pattern mining and concept creation processes,215


causing them to place less emphasis on certainty in guiding their activities,216


i.e. to be more accepting of uncertain conclusions. To give a single illustrative217


example: When backward chaining inference is being used to find values for218


variables, a “fitness target” of the form strength × confidence is sometimes219


used; this may be replaced with strengthp × confidence2−p, where activation220


parameter affects the exponent p, so when p tends to 0 confidence is more221


319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


4.3 Psi in CogPrime 81


important, when p tends to 2 strength is more important and when p tends to 1222


strength and confidence are equally important.223


– selection threshold may be used to effect a process that, each cycle, causes a224


certain amount of STICurrency (proportional to the selection threshold) to pass225


to the Goal Atoms that were wealthiest at the previous cycle.226


Based on this run-down, Psi and CogPrime may seem very similar, but that’s because227


we have focused here only on the motivation and emotion aspect. Psi uses a very dif-228


ferent knowledge representation than CogPrime; and in the Psi architecture diagram,229


nearly all of CogPrime is pushed into the role of “background processes that operate230


in the memory box”. According to the theoretical framework underlying CogPrime,231


the multiple synergetic processes operating in the memory box are actually the crux232


of general intelligence. But getting the motivation/emotion framework right is also233


very important, and Psi seems to do an admirable job of that.234


4.4 Implementing Emotion Rules atop Psi’s235


Emotional Dynamics236


Human motivations are largely determined by human emotions, which are the result237


of humanity’s evolutionary heritage and embodiment, which are quite different than238


the heritage and embodiment of current AI systems. So, if we want to create AGI239


systems that lack humanlike bodies, and didn’t evolve to adapt to the same environ-240


ments as humans did, yet still have vaguely human-like emotional and motivational241


structures, the latter will need to be explicitly engineered or taught in some way.242


For instance, if one wants to make a CogPrime agent display anger, something243


beyond Psi’s model of emotion needs to be coded into the agent to enable this. After244


all, the rule that when angry the agent has some propensity to harm other beings,245


is not implicit in Psi and needs to be programmed in. However, making use of246


Psi’s emotion model, anger could be characterized as an emotion consisting of high247


arousal, low resolution, strong motive dominance, few background checks, strong248


goal-orientedness (as the Psi model suggests) and a propensity to cause harm to249


agents or objects. This is much simpler than specifying a large set of detailed rules250


characterizing angry behavior.251


The “anger” example brings up the point that desirability of giving AGI systems252


closely humanlike emotional and motivational systems is questionable. After all we253


humans cause ourselves a lot of problems with these aspects of our mind/brains,254


and we sometimes put our more ethical and intellectual sides at war with our emo-255


tional and motivational systems. Looking into the future, an AGI with greater power256


than humans yet a humanlike motivational and emotional system, could be a very257


dangerous thing.258


On the other hand, if an AGI’s motivational and emotional system is too different259


from human nature, we might have trouble understanding it, and it understanding260


us. This problem shouldn’t be overblown—it seems possible that an AGI with a261
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82 4 Emotion, Motivation, Attention and Control


more orderly and rational motivational system than the human one might be able to262


understand us intellectually very well, and that we might be able to understand it263


well using our analytical tools. However, if we want to have mutual empathy with an264


AGI system, then its motivational and emotional framework had better have at least265


some reasonable overlap with our own. The value of empathy for ethical behavior266


was stressed extensively in Chap. 12 of Vol. 5.267


This is an area where experimentation is going to be key. Our initial plan is to268


supply CogPrime with rough emulations of some but not all human emotions. We269


see no need to take explicit pains to simulate emotions like anger, jealousy and270


hatred. On the other hand, joy, curiosity, sadness, wonder, fear and a variety of other271


human emotions seem both natural in the context of a robotically or virtually embod-272


ied CogPrime system, and valuable in terms of allowing mutual human/CogPrime273


empathy.274


4.4.1 Grounding the Logical Structure of Emotions275


in the Psi Model276


To make this point in a systematic way, we point out that Ortony et al’s [OCC90]277


“cognitive theory of emotions” can be grounded in CogPrime’s version of Psi in a278


natural way. This theory captures a wide variety of human and animal emotions in279


a systematic logical framework, so that grounding their framework in CogPrime Psi280


goes a long way toward explaining how CogPrime Psi accounts for a broad spectrum281


of human emotions.282


The essential idea of the cognitive theory of emotions can be seen in Fig. 4.1.283


What we see there is that common emotions can be defined in terms of a series of284


choices:285


• Is it positive or negative?286


• Is it a response to an agent, an event or an object?287


• Is it focused on consequences for oneself, or for another?288


– If on another, is it good or bad for the other?289


– If on oneself, is it related to some event whose outcome is uncertain?290


· if it’s related to an uncertain outcome, did the expectation regarding the out-291


come get fulfilled or not?292


Figure 4.1 shows how each set of answers to these questions leads to a different293


emotion. For instance: what is a negative emotion, responding to events, focusing on294


another, and undesirable to the other? Pity.295


In the list of questions, we see that two of them—positive versus negative, and296


expectation fulfillment versus otherwise—are foundational in the Psi model. The297


other questions are evaluations that an intelligent agent would naturally make, but298


aren’t bound up with Psi’s emotion/motivation infrastructure in such a deep way.299


Thus, the cognitive theory of emotion emerges as a combination of some basic Psi300
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4.4 Implementing Emotion Rules atop Psi’s Emotional Dynamics 83


Fig. 4.1 Ontology of Emotions from [OCC90]


factors with some more abstract cognitive properties (good vs. bad for another; agents301


vs. events vs. objects).302


4.5 Goals and Contexts303


Now we dig deeper into the details of motivation in CogPrime. Just as we have304


both explicit (local) and implicit (global) memory in CogPrime, we also have both305
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84 4 Emotion, Motivation, Attention and Control


Fig. 4.2 Context, procedures and goals. Examples of the basic “goal/context/procedure” triad in a
simple game-agent situation


explicit and implicit goals. An explicit goal is formulated as a Goal Atom, and then306


MindAgents specifically orient the system’s activity toward achievement of that goal.307


An implicit goal is something that the system works toward, but in a more loosely308


organized way, and without necessarily explicitly representing the knowledge that it309


is working toward that goal.310


Here we will focus mainly on explicit motivation, beginning with a description311


of Goal Atoms, and the Contexts in which Goals are worked toward via executing312


Procedures. Figure 4.2 gives a rough depiction of the relationship between goals,313


procedures and context, in a simple example relevant to an OpenCogPrime-controlled314


virtual agent in a game world.315
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4.5 Goals and Contexts 85


4.5.1 Goal Atoms316


A Goal Atom represents a target system state and is true to the extent that the system317


satisfied the conditions it represents. A Context Atom represents an observed state318


of the world/mind, and is true to the extent that the state it defines is observed. Taken319


together, these two Atom types provide the infrastructure CogPrime needs to orient320


its actions in specific contexts toward specific goals. Not all of CogPrime’s activity is321


guided by these Atoms; much of it is non-goal-directed and spontaneous, or ambient322


as we sometimes call it. But it is important that some of the system’s activity—and323


in some cases, a substantial portion—is controlled explicitly via goals.324


Specifically, a Goal Atom is simply an Atom (usually a PredicateNode, some-325


times a Link, and potentially another type of Atom) that has been selected by the326


GoalRefinement MindAgent as one that represents a state of the atom space which327


the system finds important to achieve. The extent to which an Atom is considered a328


Goal Atom at a particular point in time is determined by how much of a certain kind329


of financial instrument called an RFS (Request For Service) it possesses (as will be330


explained in Chap. 6).331


A CogPrime instance must begin with some initial Ubergoals (aka top level super-332


goals), but may then refine these goals in various ways using inference. Immature,333


“childlike” CogPrime systems cannot modify their Ubergoals nor add nor delete334


Ubergoals. Advanced CogPrime systems may be allowed to modify, add or delete335


Ubergoals, but this is a critical and subtle aspect of system dynamics that must be336


treated with great care. WIKISOURCE:ContextAtom.337


4.6 Context Atoms338


Next, a Context is simply an Atom that is used as the source of a ContextLink, for339


instance340


Context341


quantum_computing342


Inheritance Ben amateur343


or344


Context345


game_of_fetch346


PredictiveAttraction347


Evaluation give (ball , teacher)348


Satisfaction349


The former simply says that Ben is an amateur in the context of quantum computing.350


The latter says that in the context of the game of fetch, giving the ball to the teacher351


implies satisfaction. A more complex instance pertinent to our running example352


would be353
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86 4 Emotion, Motivation, Attention and Control


Context354


Evaluation355


Recently356


List357


Minute358


Evaluation359


Ask360


List361


Bob362


ThereExists $X363


And364


Evaluation365


Build366


List367


self368


$X369


Evaluation370


surprise371


List372


$X373


Bob374


AverageQuantifier $Y375


PredictiveAttraction376


And377


Evaluation378


Build379


List380


self381


$Y382


Evaluation383


surprise384


List385


$Y386


Jim387


Satisfaction388


which says that, if the context is that Bob has recently asked for something surprising389


to be built, then one strategy for getting satisfaction is to build something that seems390


likely to satisfy Jim.391


An implementation-level note: in the current OpenCogPrime implementation of392


CogPrime, ContextLinks are implicit rather than explicit entities. An Atom can393


contain a ComplexTruthValue which in turn contains a number of VersionHandles.394


Each VersionHandle associates a Context or a Hypothetical with a TruthValue. This395


accomplishes the same thing as a formal ContextLink, but without the creation396


of a ContextLink object. However, we continue to use ContextLinks in this book397


and other documents about CogPrime; and it’s quite possible that future CogPrime398


implementations might handle them differently.399
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4.7 Ubergoal Dynamics 87


4.7 Ubergoal Dynamics400


In the early phases of a CogPrime system’s cognitive development, the goal system401


dynamics will be quite simple. The Ubergoals are supplied by human programmers,402


and the system’s adaptive cognition is used to derive subgoals. Attentional currency403


allocated to the Ubergoals is then passed along to the subgoals, as judged appropriate.404


As the system becomes more advanced, however, more interesting phenomena405


may arise regarding Ubergoals: implicit and explicit Ubergoal creation.406


4.7.1 Implicit Ubergoal Pool Modification407


First of all, implicit Ubergoal creation or destruction may occur. Implicit Uber-408


goal destruction may occur when there are multiple Ubergoals in the system, and409


some prove easier to achieve than others. The system may then decide not to bother410


achieving the more difficult Ubergoals. Appropriate parameter settings may mitigate411


against this phenomenon, of course.412


Implicit Ubergoal creation may occur if some Goal Node G arises that inherits as413


a subgoal from multiple Ubergoals. This Goal G may then come to act implicitly as414


an Ubergoal, in that it may get more attentional currency than any of the Ubergoals.415


Also, implicit Ubergoal creation may occur via forgetting. Suppose that G416


becomes a goal via inferred inheritance from one or more Ubergoals. Then, sup-417


pose G forgets why this inheritance exists, and that in fact the reason becomes ob-418


solete, but the system doesn’t realize that and keeps the inheritance there. Then, G419


is an implicit Ubergoal in a strong sense: it gobbles up a lot of attentional currency,420


potentially more than any of the actual Ubergoals, but actually doesn’t help achieve421


the Ubergoals, even though the system thinks it does. This kind of dynamic is obvi-422


ously very bad and should be avoided—and can be avoided with appropriate tuning423


of system parameters (so that the system pays a lot of attention to making sure that424


its subgoaling-related inferences are correct and are updated in a timely way).425


4.7.2 Explicit Ubergoal Pool Modification426


An advanced CogPrime system may be given the ability to explicitly modify its427


Ubergoal pool. This is a very interesting but very subtle type of dynamic, which428


is not currently well understood and which potentially could lead to dramatically429


unpredictable behaviors.430


However, modification, creation and deletion of goals is a key aspect of human431


psychology, and the granting of this capability to mature CogPrime systems must be432


seriously considered.433


In the case that Ubergoal pool modification is allowed, one useful heuristic may434


be to make implicit Ubergoals into explicit Ubergoals. For instance: if an Atom is435
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88 4 Emotion, Motivation, Attention and Control


found to consistently receive a lot of RFSs, and has a long time-scale associated436


with it, then the system should consider making it an Ubergoal. But this heuristic is437


certainly not sufficient, and any advanced CogPrime system that is going to modify438


its own Ubergoals should definitely be tuned to put a lot of thought into the process!439


The science of Ubergoal pool dynamics basically does not exist at the moment,440


and one would like to have some nice mathematical models of the process prior to441


experimenting with it in any intelligent capable CogPrime system Although Schmid-442


dhuber’s Gödel machine [Sch06] has the theoretical capability to modify its ubergoal443


(note that CogPrime is, in some way, a Gödel machine), there is currently no math-444


ematics allowing us to assess the time and space complexity of such process in a445


realistic context, given a certain safety confidence target.446


4.8 Goal Formation447


Goal formation in CogPrime is done via PLN inference. In general, what PLN does448


for goal formation is to look for predicates that can be proved to probabilistically449


imply the existing goals. These new predicates will then tend to receive RFS currency,450


according to the logic of RFS’s to be outlined in Chap. 6), which (according to goal-451


driven attention allocation dynamics) will make the system more likely to enact452


procedures that lead to their satisfaction.453


As an example of the goal formation process, consider the case where External-454


Novelty is an Ubergoal. The agent may then learn that whenever Bob gives it a picture455


to look at, its quest for external novelty is satisfied to a significant degree. That is, it456


learns457


Attraction458


Evaluation give (Bob , me , picture)459


ExternalNovelty460


where Attraction A B measures how much A versus ¬A implies B (as explained461


in Chap. 16). This information allows the agent (the Goal Formation MindAgent) to462


nominate the atom:463


EvaluationLink give (Bob , me , picture)464


as a goal (a subgoal of the original Ubergoal). This is an example of goal refinement,465


which is one among many ways that PLN can create new goals from existing ones.466


4.9 Goal Fulfillment and Predicate Schematization467


When there is a Goal Atom G important in the system (with a lot of RFS), the Goal-468


Fulfillment MindAgent seeks SchemaNodes S that it has reason to believe, if enacted,469


will cause G to become true (satisfied). It then adds these to the ActiveSchemaPool,470
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4.9 Goal Fulfillment and Predicate Schematization 89


an object to be discussed below. The dynamics by which the GoalFulfillment process471


works will be discussed in Chap. 6 below.472


For example, if a Context Node Chas a high truth value at that time (because it is473


currently satisfied), and is involved in a relation:474


Attraction475


C476


PredictiveAttraction S G477


(for some SchemaNode S and Goal Node G) then this SchemaNode S is likely to478


be selected by the GoalFulfillment process for execution. This is the fully formalized479


version of the Context and Schema → Goal notion discussed frequently above.480


The process may also allow the importance of various schema S to bias its choices481


of which schemata to execute.482


For instance, following up previous examples, we might have483


Attraction484


Evaluation485


near486


List487


self488


Bob489


PredictiveAttraction490


Evaluation491


ask492


List493


Bob494


‘‘Show me a picture ’’495


ExternalNovelty496


Of course this is a very simplistic relationship but it’s similar to a behavior a young497


child might display. A more advanced agent would utilize a more abstract relation-498


ship that distinguishes various situations in which Bob is nearby, and also involves499


expressing a concept rather than a particular sentence.500


The formation of these schema-context-goal triads may occur according to501


generic inference mechanisms. However, a specially-focused PredicateSchematiza-502


tion MindAgent is very useful here as a mechanism of inference control, increasing503


the number of such relations that will exist in the system.504


4.10 Context Formation505


New contexts are formed by a combination of processes:506


• The MapEncapsulation MindAgent, which creates Context Nodes embodying507


repeated patterns in the perceived world. This process encompasses508


– Maps creating Context Nodes involving Atoms that have high STI at the same509


time510
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90 4 Emotion, Motivation, Attention and Control


· Example: A large number of Atoms related to towers could be joined into a511


single map, which would then be a ConceptNode pointing to “tower-related512


ideas, procedures and experiences”513


– Maps creating Context Nodes that are involved in a temporal activation pattern514


that recurs at multiple points in the system’s experience.515


· Example: There may be a common set of processes involving creating a516


building out of blocks: first build the base, then the walls, then the roof. This517


could be encapsulated as a temporal map embodying the overall nature of518


the process. In this case, the map contains information of the nature: first do519


things related to this, then do things related to this, then do things related to520


this...521


• A set of concept creation MindAgents (see Chap. 20, which fuse and split Context522


Nodes to create new ones.523


– The concept of a building and the concept of a person can be merged to create524


the concept of a BuildingMan525


– The concept of a truck built with Legos can be subdivided into trucks you can526


actually carry Lego blocks with, versus trucks that are “just for show” and can’t527


really be loaded with objects and then carry them around.528


4.11 Execution Management529


The GoalFulfillment MindAgent chooses schemata that are found likely to achieve530


current goals, but it doesn’t actually execute these schemata. What it does is to take531


these schemata and place them in a container called the ActiveSchemaPool.532


The ActiveSchemaPool contains a set of schemata that have been determined to533


be reasonably likely, if enacted, to significantly help with achieving the current goal-534


set. i.e., everything in the active schema pool should be a schema S so that it has535


been concluded that536


Attraction537


C538


PredictiveAttraction S G539


—where C is a currently applicable context and G is one of the goals in the current540


goal pool—has a high truth value compared to what could be obtained from other541


known schemata S or other schemata S that could be reasonably expected to be found542


via reasoning.543


The decision of which schemata in the ActiveSchemaPool to enact is made by an544


object called the ExecutionManager, which is invoked each time the SchemaActiva-545


tion MindAgent is executed. The ExecutionManager is used to select which schemata546


to execute, based on doing reasoning and consulting memory regarding which ac-547


tive schemata can usefully be executed simultaneously without causing destructive548


interference (and hopefully causing constructive interference). This process will also549


sometimes (indirectly) cause new schemata to be created and/or other schemata from550
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4.11 Execution Management 91


the AtomTable to be made active. This process is described more fully in Chap. 6 on551


action selection. WIKISOURCE:GoalsAndTime.552


For instance, if the agent is involved in building a blocks structure intended to sur-553


prise or please Bob, then it might simultaneously carry out some blocks-manipulation554


schema, and also a schema involving looking at Bob to garner his approval. If it can555


do the blocks manipulation without constantly looking at the blocks, this should be556


unproblematic for the agent.557


4.12 Goals and Time558


The CogPrime system maintains an explicit list of “Ubergoals”, which as will be559


explained in Chap. 6, receive attentional currency which they may then allocate to560


their subgoals according to a particular mechanism.561


However, there is one subtle factor involved in the definition of the Ubergoals:562


time. The truth value of a Ubergoal is typically defined as the average level of satisfac-563


tion of some Demand over some period of time—but the time scale of this averaging564


can be very important. In many cases, it may be worthwhile to have separate Uber-565


goals corresponding to the same Demand but doing their truth-value time-averaging566


over different time scales. For instance, corresponding to Demands such as Novelty567


or Health, we may posit both long-term and short-term versions, leading to Uber-568


goals such as CurrentNovelty, LongTermNovelty, CurrentHealth, LongTermHealth,569


etc. Of course, one could also wrap multiple Ubergoals corresponding to a single570


Demand into a single Ubergoal combining estimates over multiple time scales; this571


is not a critical issue and the only point of splitting Demands into multiple Ubergoals572


is that it can make things slightly simpler for other cognitive processes.573


For instance, if the agent has a goal of pleasing Bob, and it knows Bob likes to be574


presented with surprising structures and ideas, then the agent has some tricky choices575


to make. Among other choices it must balance between focusing on576


• creating things and then showing them to Bob577


• studying basic knowledge and improving its skills.578


Perhaps studying basic knowledge and skills will give it a foundation to surprise579


Bob much more dramatically in the mid-term future ... but in the short run will580


not allow it to surprise Bob much at all, because Bob already knows all the basic581


material. This is essentially a variant of the general “exploration versus exploitation”582


dichotomy, which lacks any easy solution. Young children are typically poor at583


carrying out this kind of balancing act, and tend to focus overly much on near-term584


satisfaction. There are also significant cultural differences in the heuristics with which585


adult humans face these issues; e.g. in some contexts Oriental cultures tend to focus586


more on mid to long term satisfaction whereas Western cultures are more short term587


oriented.588
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Chapter 5
Attention Allocation


5.1 Introduction0


The critical factor shaping real-world general intelligence is resource constraint.1


Without this issue, we could just have simplistic program-space-search algorithms2


like AIXItl instead of complicated systems like the human brain or CogPrime.3


Resource constraint is managed implicitly within various components of CogPrime,4


for instance in the population size used in evolutionary learning algorithms, and the5


depth of forward or backward chaining inference trees in PLN. But there is also a6


component of CogPrime that manages resources on a global and cognitive-process-7


independent manner: the attention allocation component.8


The general principles the attention allocation process should follow are easy9


enough to see: History should be used as a guide, and an intelligence should make10


probabilistic judgments based on its experience, guessing which resource-allocation11


decisions are likely to maximize its goal-achievement. The problem is that this is a12


difficult learning and inference problem, and to carry it out with excellent accuracy13


would require a limited-resources intelligent system to spend nearly all its resources14


deciding what to pay attention to and nearly none of them actually paying attention15


to anything else. Clearly this would be a very poor allocation of an AI system’s16


attention! So simple heuristics are called for, to be supplemented by more advanced17


and expensive procedures on those occasions where time is available and correct18


decisions are particularly crucial.19


Attention allocation plays, to a large extent, a “meta” role in enabling mind-20


world correspondence. Without effective attention allocation, the other cognitive21


processes can’t do their jobs of helping an intelligent agent to achieve its goals in22


an environment, because they won’t be able to pay attention to the most important23


parts of the environment, and won’t get computational resources at the times when24


they need it. Of course this need could be addressed in multiple different ways.25


Co-authored with Joel Pitt and Matt Ikle’ and Rui Liu.
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94 5 Attention Allocation


For example, in a system with multiple complex cognitive processes, one could have26


attention allocation handled separately within each cognitive process, and then a27


simple “top layer” of attention allocation managing the resources allocated to each28


cognitive process. On the other hand, one could also do attention allocation via a29


single dynamic, pervasive both within and between individual cognitive processes.30


The CogPrime design gravitates more toward the latter approach, though also with31


some specific mechanisms within various MindAgents; and efforts have been made32


to have these specific mechanisms modulated by the generic attention allocation33


structures and dynamics wherever possible.34


In this chapter we will dig into the specifics of how these attention allocation35


issues are addressed in the CogPrime design. In short, they are addressed via a set36


of mechanisms and equations for dynamically adjusting importance values attached37


to Atoms and MindAgents. Different importance values exist pertinent to different38


time scales, most critically the short-term (STI) and long-term (LTI) importances.39


The use of two separate time-scales here reflects fundamental aspects of human-like40


general intelligence and real-world computational constraints.41


The dynamics of STI is oriented partly toward the need for real-time responsive-42


ness, and the more thoroughgoing need for cognitive processes at speeds vaguely43


resembling the speed of “real time” social interaction. The dynamics of LTI is based44


on the fact that some data tends to be useful over long periods of time, years or decades45


in the case of human life, but the practical capability to store large amounts of data46


in a rapidly accessible way is limited. One could imagine environments in which47


very-long-term multiple-type memory was less critical than it is in typical human-48


friendly environments; and one could envision AGI systems carrying out tasks in49


which real-time responsiveness was unnecessary (though even then some attention50


focusing would certainly be necessary). For AGI systems like these, an attention allo-51


cation system based on STI and LTI with CogPrime-like equations would likely be52


inappropriate. But for an AGI system intended to control a vaguely human-like agent53


in an environment vaguely resembling everyday human environments, the focus on54


STI and LTI values, and the dynamics proposed for these values in CogPrime, appear55


to make sense.56


Two basic innovations are involved in the mechanisms attached to these STI and57


LTI importance values:58


• treating attention allocation as a data mining problem: the system records infor-59


mation about what it’s done in the past and what goals it’s achieved in the past, and60


then recognizes patterns in this history and uses them to guide its future actions61


via probabilistically adjusting the (often context-specific) importance values asso-62


ciated with internal terms, actors and relationships, and adjusting the “effort esti-63


mates” associated with Tasks.64


• using an artificial-economics approach to update the importance values (attached65


to Atoms, MindAgents, and other actors in the CogPrime system) that regulate66


system attention. (And, more speculatively, using an information geometry based67


approach to execute the optimization involved in the artificial economics approach68


efficiently and accurately.)69
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5.1 Introduction 95


The integration of these two aspects is crucial. The former aspect provides fun-70


damental data about what’s of value to the system, and the latter aspect allows this71


fundamental data to be leveraged to make sophisticated and integrative judgments72


rapidly. The need for the latter, rapid-updating aspect exists partly because of the73


need for real-time responsiveness, imposed by the need to control a body in a rapidly74


dynamic world, and the prominence in the architecture of an animal-like cogni-75


tive cycle. The need for the former, data-mining aspect (or something functionally76


equivalent) exists because, in the context of the tasks involved in human-level gen-77


eral intelligence, the assignment of credit problem is hard—the relations between78


various entities in the mind and the mind’s goals are complex, and identifying and79


deploying these relationships is a difficult learning problem requiring application of80


sophisticated intelligence.81


Both of these aspects of attention allocation dynamics may be used in computa-82


tionally lightweight or computationally sophisticated manners:83


• For routine use in real-time activity.84


– “data mining” consists of forming HebbianLinks (involved in the associative85


memory and inference control, see Sect. 5.5), where the weight of the link from86


Atom A to Atom B is based on the probability of shared utility of A and B.87


– economic attention allocation consists of spreading ShortTermImportance and88


LongTermImportance “artificial currency” values (both grounded in the uni-89


versal underlying “juju” currency value defined further below) between Atoms90


according to specific equations that somewhat resemble neural net activation91


equations but respect the conservation of currency.92


• For use in cases where large amounts of computational resources are at stake93


based on localized decisions, hence allocation of substantial resources to specific94


instances of attention-allocation is warranted.95


– “data mining” may be more sophisticated, including use of PLN, MOSES and96


pattern mining to recognize patterns regarding what probably deserves more97


attention in what contexts.98


– economic attention allocation may involve more sophisticated economic cal-99


culations involving the expected future values of various “expenditures” of100


resources.101


The particular sort of “data mining” going on here is definitely not exactly what102


the human brain does, but we believe this is a case where slavish adherence to neu-103


roscience would be badly suboptimal (even if the relevant neuroscience were well104


known, which is not the case). Doing attention allocation entirely in a distributed,105


formal-neural-net-like way is, we believe, extremely and unnecessarily inefficient,106


and given realistic resource constraints it leads to the rather poor attention allocation107


that we experience every day in our ordinary waking state of consciousness. Several108


aspects of attention allocation can be fruitfully done in a distributed, neural-net-like109


way, but not having a logically centralized repository of system-history informa-110


tion (regardless of whether it’s physically distributed or not) seems intrinsically111
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96 5 Attention Allocation


problematic in terms of effective attention allocation. And we argue that, even for112


those aspects of attention allocation that are best addressed in terms of distributed,113


vaguely neural-net-like dynamics, an artificial-economics approach has significant114


advantages over a more strictly neural-net-like approach, due to the greater ease of115


integration with other cognitive mechanisms such as forgetting and data mining.116


5.2 Semantics of Short and Long Term Importance117


We now specify the two types of importance value (short and long term) that play a key118


role in CogPrime dynamics. Conceptually, ShortTermImportance (STI) is defined as119


STI(A) = P(A will be useful in the near future)120


whereas LongTermImportance (LTI) is defined as121


LTI(A) = P(A will be useful eventually, in the foreseeable future).122


Given a time-scale T , in general we can define an importance value relative to T as123


IT (A) = P(A will be useful during the next T seconds).124


In the ECAN module in CogPrime, we deal only with STI and LTI rather than any125


other importance values, and the dynamics of STI and LTI are dealt with by treating126


them as two separate “artificial currency” values, which however are interconvertible127


via being mutually grounded in a common currency called “juju.”128


For instance, if the agent is intensively concerned with trying to build interesting129


blocks structures, then knowledge about interpreting biology research paper abstracts130


is likely to be of very little current importance. So its biological knowledge will get131


low STI, but—assuming the agent expects to use biology again—it should main-132


tain reasonably high LTI so it can remain in memory for future use. And if in its133


brainstorming about what blocks structures to build, the system decides to use some134


biological diagrams as inspiration, STI can always spread to some of the biology-135


related Atoms, increasing their relevance and getting them more attention. While136


the attention allocation system contains mechanisms to convert STI to LTI, it also137


has parameter settings biasing it to spend its juju on both kinds of importance—138


i.e. it contains an innate bias to both focus its attention judiciously, and manage its139


long-term memory conscientiously.140


Because in CogPrime most computations involving STI and LTI are required to141


be very rapid (as they’re done for many Atoms in the memory very frequently), in142


most cases when dealing with these quantities, it will be appropriate to sacrifice143


accuracy for efficiency. On the other hand, it’s useful to occasionally be able to carry144


out expensive, highly accurate computations involving importance.145


An example where doing expensive computations about attention allocation might146


pay off, would be the decision whether to use biology-related or engineering-related147


metaphors in creating blocks structures to please a certain person. In this case it148
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5.2 Semantics of Short and Long Term Importance 97


could be worth doing a few steps of inference to figure out whether there’s a greater149


intensional similarity between that person’s interests and biology or engineering;150


and then using the results to adjust the STI levels of whichever of the two comes out151


most similar. This would not be a particularly expensive inference to carry out, but152


it’s still much more effort than what can be expended on Atoms in the memory most153


of the time. Most attention allocation in CogPrime involves simple neural-net type154


spreading dynamics rather than explicit reasoning.155


Figure 5.1 illustrates the key role of LTI in the forgetting process. Figure 5.2 illus-156


trates the key role of STI in maintaining a “moving bubble of attention”, which we157


call the system’s AttentionalFocus.158


5.2.1 The Precise Semantics of STI and LTI159


Now we precisiate the above definitions of STI and LTI.160


First, we introduce the notion of reward. Reward is something that Goals give to161


Atoms. In principle a Goal might give an Atom reward in various different forms,162


though in the design given here, reward will be given in units of a currency called juju.163


The process by which Goals assign reward to Atoms is part of the “assignment of164


credit” process (and we will later discuss the various time-scales on which assignment165


of credit may occur and their relationship to the time-scale parameter within LTI).166


Next, we define167


J(A, t1, t2, r) = expected amount of reward A will receive between168


t1 and t2 time-steps in the future, if its STI has percentile169


rank r among all Atoms in the Atom Table170


The percentile rank r of an Atom is the rank of that Atom in a list of Atoms ordered171


by decreasing STI, divided by the total number of Atoms. The reason for using a172


Fig. 5.1 LongTermImportance and forgetting
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98 5 Attention Allocation


Fig. 5.2 Formation of the AttentionalFocus. The dynamics of STI is configured to encourage the
emergence of richly cross-connected networks of Atoms with high STI (above a threshold called
the AttentionalFocusBoundary), passing STI among each other as long as this is useful and forming
new HebbianLinks among each other. The collection of these Atoms is called the AttentionalFocus


percentile rank instead of the STI itself is because at any given time only a limited173


number of atoms can be given attention, so all atoms below a certain perceptible174


rank, depending on the amount of available resource, will simply be ignored.175
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5.2 Semantics of Short and Long Term Importance 99


This is a fine-grained measure of how worthwhile it is expected to be to increase176


A’s STI, in terms of getting A rewarded by Goals.177


For practical purposes it is useful to collapse J(A, t1, t2, r) to a single number:178


J(A, t1, t2) =
∑


r J(A, t1, t2, r)wr∑
r wr


179


where wr weights the different percentile ranks (and should be chosen to be monotone180


increasing in r). This is a single-number measure of the responsiveness of an Atom’s181


utility to its STI level. So for instance if A has a lot of STI and it turns out to be182


rewarded then J(A, t1, t2) will be high. On the other hand if A has little STI then183


whether it gets rewarded or not will not influence J(A, t1, t2) much.184


To simplify notation, it’s also useful to define a single-time-point version185


J(A, t) = J(A, t, t).186


5.2.1.1 Formalizing STI187


Using these definitions, one simple way to make the STI definition precise is:188


STIthresh(A, t) = P(J(A, t, t + tshort) ≥ sthreshold)189


where sthreshold demarcates the “attentional focus boundary”. Which is a way of190


saying that we don’t want to give STI to atoms that would not get rewarded if they191


were given attention.192


Or one could make the STI definition precise in a fuzzier way, and define193


STIfuzzy(A, t) =
∞∑


s=0


J(A, t + s)c−s
194


for some appropriate parameter c (or something similar with a decay function less195


severe than exponential).196


In either case, the goal of the ECAN subsystem, regarding STI, is to assign each197


Atom A an STI value that corresponds as closely as possible to the theoretical STI198


values defined by whichever one of the above equations is selected (or some other199


similar equation).200


5.2.2 STI, STIFund, and Juju201


But how can one estimate these probabilities in practice? In some cases they may be202


estimated via explicit inference. But often they must be estimated by heuristics.203
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100 5 Attention Allocation


The estimative approach taken in current CogPrime design is an artificial economy,204


in which each Atom maintains a certain fund of artificial currency. In the current205


proposal this currency is called juju and is the same currency used to value LTI. Let206


us call the amount of juju owned by Atom A the STIFund of A. Then, one way to207


formalize the goal of the artificial economy is to state that: if one ranks all Atoms208


by the wealth of their STIFund, and separately ranks all Atoms by their theoretical209


STI value, the rankings should be as close as possible to the same. One may also210


formalize the goal in terms of value correlation instead of rank correlation, of course.211


Proving conditions under which the STIFund values will actually correlate well212


with the theoretical STI values, is an open math problem. Heuristically, one may map213


STIFund values into theoretical STI values by a mapping such as214


A.STI = α + β
A.STIFund − STIFund. min


STIFund. max −STIFund. min
215


where STIFund. min = min
X


X.STIFund. However, we don’t currently have rigorous216


grounding for any particular functional form for such a mapping; the above is just a217


heuristic approximation.218


The artificial economy approach leads to a variety of supporting heuristics. For219


instance, one such heuristic is: if A has been used at time t, then it will probably220


be useful at time t + s for small s. Based on this heuristic, whenever a MindAgent221


uses an Atom A, it may wish to increase A’s STIFund (so as to hopefully increase222


correlation of A’s STIFund with its theoretical STI). It does so by transferring some223


of its juju to A’s STIFund.224


5.2.3 Formalizing LTI225


Similarly to STI, with LTI we will define theoretical LTI values, and posit an LTI-226


Fund associated with each Atom, which seeks to create values correlated with the227


theoretical LTI values.228


For LTI, the theoretical issues are subtler. There is a variety of different ways to229


precisiate the above loose conceptual definition of LTI. For instance, one can (and230


we will below) create formalizations of both:231


1. LTIcont(A) = (some time-weighting or normalization of) the expected value of232


A’s total usefulness over the long-term future.233


2. LTIburst(A) = the probability that A ever becomes highly useful at some point in234


the long-term future.235


(here “cont” stands for “continuous”). Each of these may be formalized, in similar236


but nonidentical ways.237


These two forms of LTI may be viewed as extremes along a continuum; one could238


posit a host of intermediary LTI values between them. For instance, one could define239
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5.2 Semantics of Short and Long Term Importance 101


LTIp(A) = the p′th power average1 of expectation of the utility of A over brief time240


intervals, measured over the long-term future.241


Then we would have242


LTIburst = LTI∞243


LTIcont = LTI1244
245


and could vary p to vary the sharpness of the LTI computation. This might be useful246


in some contexts, but our guess is that it’s overkill in practice and that looking at247


LTIburst and LTIcont is enough (or more than enough; the current OCP code uses only248


one LTI value and that has not been problematic so far).249


5.2.4 Applications of LTIburst Versus LTIcont250


It seems that the two forms of LTI discussed above might be of interest in different251


contexts, depending on the different ways that Atoms may be used so as to achieve252


reward.253


If an Atom is expected to get rewarded for the results of its being selected by254


MindAgents that carry out diffuse, background thinking (and hence often select255


low-STI Atoms from the AtomTable), then it may be best associated with LTIcont .256


On the other hand, if an Atom is expected to get rewarded for the results of its257


being selected by MindAgents that are focused on intensive foreground thinking (and258


hence generally only select Atoms with very high STI), it may be best associated259


with LTIburst .260


In principle, Atoms could be associated with particular LTIp based on the particu-261


lars of the selection mechanisms of the MindAgents expected to lead to their reward.262


But the issue with this is, it would result in Atoms carrying around an excessive abun-263


dance of different LTIp values for various p, resulting in memory bloat; and it would264


also require complicated analyses of MindAgent dynamics. If we do need more than265


one LTI value, one would hope that two will be enough, for memory conservation266


reasons.267


And of course, if an Atom has only one LTI value associated with it, this can268


reasonably be taken to stand in for the other one: either of LTIburst or LTIcont may,269


in the absence of information to the contrary, be taken as an estimate of the other.270


5.2.4.1 LTI with Various Time Lags271


The issue of the p value in the average in the definition of LTI is somewhat similar to272


(though orthogonal to) the point that there are many different interpretations of LTI,273


achieved via considering various time-lags. Our guess is that a small set of time-lags274


1 the p′th power average is defined as p
√∑


Xp.
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102 5 Attention Allocation


will be sufficient. Perhaps one wants an exponentially increasing series of time-lags:275


i.e. to calculate LTI over k cycles where k is drawn from {r, 2r, 4r, 8r, . . . , 2N r}.276


The time-lag in LTI seems related to the time-lag in the system’s goals. If a Goal277


object is disseminating juju, and the Goal has an intrinsic time scale of t, then it may278


be interested in LTI on time-scale t. So when a MA (MindAgent) is acting in pursuit279


of that goal, it should spend a bunch of its juju on LTI on time-scale t.280


Complex goals may be interested in multiple time-scales (for instance, a goal281


might place greater value on things that occur in the next hour, but still have nonzero282


interest in things that occur in a week), and hence may have different levels of interest283


in LTI on multiple time-scales.284


5.2.4.2 Formalizing Burst LTI285


Regarding burst LTI, two approaches to formalization seem to be the threshold ver-286


sion287


LTIburst, thresh(A) = P(A will receive a total of at least sthreshold288


amount of normalized stimulus during some time interval of289


length tshort in the next tlong time steps)290


and the fuzzy version,291


LTIburst,fuzzy(A, t) =
∞∑


s=0


J(A, t + s, t + s + tshort)f (s, tlong)292


where f (t, tlong) : R+ × R+ → R+ is a nonincreasing function that remains roughly293


constant in t up till a point tlong steps in the future, and then begins slowly decaying.294


5.2.4.3 Formalizing Continuous LTI295


The threshold version of continuous LTI is quite simply:296


LTIcont,thresh(A, tlong) = STIthresh(A, tlong)297


That is, smooth threshold LTI is just like smooth threshold STI, but the time-scale298


involved is longer.299


On the other hand, the fuzzy version of smooth LTI is:300


LTIcont,fuzzy(A, t) =
∞∑


s=0


J(A, t + s)f (s, tlong)301


using the same decay function f that was introduced above in the context of burst302


LTI.303
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5.3 Defining Burst LTI in Terms of STI 103


5.3 Defining Burst LTI in Terms of STI304


It is straightforward to define burst LTI in terms of STI, rather than directly in terms305


of juju. We have306


LTIburst, thresh(A, t) = P
(⋃s=tlong


s=0 STIthresh(A, t + s)
)


.307


Or, using the fuzzy definitions, we obtain instead the approximate equation308


LTIburst,fuzzy(A, t) ≈
∞∑


s=0


α(s)STIfuzzy(A, t + s)f (s, tlong)309


where310


α(s) = 1 − c


1 − cs+1311


or the more complex exact equation:312


LTIburst,fuzzy(A, t) =
∞∑


s=0


STIfuzzy(A, t + s)


(


f (s, tlong) −
s∑


r=1


(c−r f (s − r, tlong))


)


.313


5.4 Valuing LTI and STI in Terms of a Single Currency314


We now further discuss the approach of defining LTIFund and STIFund in terms of315


a single currency: juju (which as noted, corresponds in the current ECAN design to316


normalized stimulus).317


In essence, we can think of STIFund and LTIFund as different forms of financial318


instrument, which are both grounded in juju. Each Atom has two financial instruments319


attached to it: “STIFund of Atom A” and “LTIFund of Atom A” (or more if multiple320


versions of LTI are used). These financial instruments have the peculiarity that,321


although many agents can put juju into any one of them, no record is kept of who put322


juju in which one. Rather, the MA’s are acting so as to satisfy the system’s Goals, and323


are adjusting the STIFund and LTIFund values in a heuristic manner that is expected324


to approximately maximize the total utility propagated from Goals to Atoms.325


Finally, each of these financial instruments has a value that gets updated by a326


specific update equation.327


To understand the logic of this situation better, consider the point of view of a328


Goal with a certain amount of resources (juju, to be used as reward), and a certain329


time-scale on which its satisfaction is to be measured. Suppose that the goal has a330


certain amount of juju to expend on getting itself satisfied.331


This Goal clearly should allocate some of its juju toward getting processor time332


allocated toward the right Atoms to serve its ends in the near future; and some of333
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104 5 Attention Allocation


its juju toward ensuring that, in future, the memory will contain the Atoms it will334


want to see processor time allocated to. Thus, it should allocate some of its juju335


toward boosting the STIFund of Atoms that it thinks will (if chosen by appropriate336


MindAgents) serve its needs in the near future, and some of its juju toward boosting337


the LTIFund of Atoms that it thinks will serve its need in the future (if they remain338


in RAM). Thus, when a Goal invokes a MindAgent (giving the MindAgent the juju339


it needs to access Atoms and carry out its work), it should tell this MindAgent to put340


some of its juju into LTIFunds and some into STIFunds.341


If a MindAgent receives a certain amount of juju each cycle, independently of342


what the system Goals are explicitly telling it, then this should be viewed as reflecting343


an implicit goal of “ambient cognition”, and the balance of STI and LTI associated344


with this implicit goal must be a system parameter.345


In general, the trade-off between STI and LTI boils down to the weighting between346


near and far future that is intrinsic to a particular Goal. Simplistically: if a Goal values347


getting processor allocated to the right stuff immediately 25 times more than getting348


processor allocated to the right stuff 20K cycles in the future, then it should be willing349


spend 25× more of its juju on STI than on LTI20K cycles. (This simplistic picture is350


complicated a little by the relationship between different time-scales. For instance,351


boosting LTI10K cycles(A) will have an indirect effect of increasing the odds that A352


will still be in memory 20K cycles in the future.)353


However, this isn’t the whole story, because multiple Goals are setting the impor-354


tance values of the same set of Atoms. If M1 pumps all its juju into STI for certain355


Atoms, then M2 may decide it’s not worthwhile for it to bother competing with M1356


in the STI domain, and to spend its juju on LTI instead.357


Note that the current system doesn’t allow a MA to change its mind about LTI358


allocations. One can envision a system where a MindAgent could in January pay juju359


to have Atom A kept around for a year, but then change its mind in June 6 months later,360


and ask for some of the money back. But this would require an expensive accounting361


procedure, keeping track of how much of each Atom’s LTI had been purchased by362


which MindAgent; so it seems a poor approach.363


A more interesting alternative would be to allow MA’s to retain adjustable “reserve364


funds” of juju. This would mean that a MindAgent would never see a purpose to365


setting LTIoneyear(A) instead of repeatedly setting LTIoneminute, unless a substantial366


transaction cost were incurred with each transaction of adjusting an Atom’s LTI.367


Introducing a transaction cost plus an adjustable per-MindAgent juju reserve fund,368


and LTI’s on multiple time scales, would give the LTI framework considerable flexi-369


bility. (To prevent MA’s from hoarding their juju, one could place a tax rate on reserve370


juju.)371


The conversion rate between STI and LTI becomes an interesting matter; though372


it seems not a critical one, since in the practical dynamics of the system it’s juju that373


is used to produce STI and LTI. In the current design there is no apparent reason to374


spread STI of one Atom to LTI of another Atom, or convert the STI of an Atom into375


LTI of that same Atom, etc.—but such an application might come up. (For the rest of376


this paragraph, let’s just consider LTI with one time scale, for simplicity.) Each Goal377


will have its own preferred conversion rate between STI and LTI, based on its own378
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5.4 Valuing LTI and STI in Terms of a Single Currency 105


balancing of different time scales. But, each Goal will also have a limited amount379


of juju, hence one can only trade a certain amount of STI for LTI, if one is trading380


with a specific goal G. One could envision a centralized STI-for-LTI market where381


different MA’s would trade with each other, but this seems overcomplicated, at least382


at the present stage.383


As a simpler software design point, this all suggests a value for associating each384


Goal with a parameter telling how much of its juju it wants to spend on STI versus385


LTI. Or, more subtly, how much of its juju it wants to spend on LTI on various time-386


scales. On the other hand, in a simple ECAN implementation this balance may be387


assumed constant across all Goals.388


5.5 Economic Attention Networks389


Economic Attention Networks (ECANs) are dynamical systems based on the propa-390


gation of STI and LTI values. They are similar in many respects to Hopfield nets, but391


are based on a different conceptual foundation involving the propagation of amounts392


of (conserved) currency rather than neural-net activation. Further, ECANs are specifi-393


cally designed for integration with a diverse body of cognitive processes as embodied394


in integrative AI designs such as CogPrime. A key aspect of the CogPrime design is395


the imposition of ECAN structure on the CogPrime AtomSpace.396


Specifically, ECANs have been designed to serve two main purposes within Cog-397


Prime: to serve as an associative memory for the network, and to facilitate effective398


allocation of the attention of other cognitive processes to appropriate knowledge399


items.400


An ECAN is simply a graph, consisting of un-typed nodes and links, and also401


“Hebbian” links that may have types such as HebbianLink, InverseHebbianLink,402


or SymmetricHebbianLink. Each node and link in an ECAN is weighted with two403


currency values, called STI (short-term importance) and LTI (long-term importance);404


and each Hebbian link is weighted with a probabilistic truth value.405


The equations of an ECAN explain how the STI, LTI and Hebbian link weights406


values get updated over time. As alluded to above, the metaphor underlying these407


equations is the interpretation of STI and LTI values as (separate) artificial currencies.408


The fact that STI and LTI are currencies means that, except in unusual instances409


where the ECAN controller decides to introduce inflation or deflation and explicitly410


manipulate the amount of currency in circulation, the total amounts of STI and LTI411


in the system are conserved. This fact makes the dynamics of an ECAN dramatically412


different than that of an attractor neural network.413


In addition to STI and LTI as defined above, the ECAN equations also contain the414


notion of an Attentional Focus (AF), consisting of those Atoms in the ECAN with the415


highest STI values (and represented by the sthreshold value in the above equations).416


These Atoms play a privileged role in the system and, as such, are treated using an417


alternate set of equations.418


319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


106 5 Attention Allocation


5.5.1 Semantics of Hebbian Links419


Conceptually, the probability value of a HebbianLink from A to B is the odds that420


if A is in the AF, so is B; and correspondingly, the InverseHebbianLink from A to421


B is weighted with the odds that if A is in the AF, then B is not. An ECAN will422


often be coupled with a “Forgetting” process that removes low-LTI Atoms from423


memory according to certain heuristics. A critical aspect of the ECAN equations424


is that Atoms periodically spread their STI and LTI to other Atoms that connect to425


them via Hebbian and InverseHebbianLinks; this is the ECAN analogue of activation426


spreading in neural networks.427


Multiple varieties of HebbianLink may be constructed, for instance428


• Asymmetric HebbianLinks, whose semantics are as mentioned above: the truth429


value of HebbianLink A B denotes the probability that if A is in the AF, so is B430


• Symmetric HebbianLinks, whose semantics are that: the truth value of Symmet-431


ricHebbianLink A B denotes the probability that if one of A or B is in the AF, both432


are433


It is also worth noting that one can combine ContextLinks with HebbianLinks and434


express contextual association such that in context C, there is a strong HebbianLink435


between A and B.436


5.5.2 Explicit and Implicit Hebbian Relations437


In addition to explicit HebbianLinks, it can be useful to treat other links implicitly as438


HebbianLinks. For instance, if ConceptNodes A and B are found to connote similar439


concepts, and a SimilarityLink is formed between them, then this gives reason to440


believe that maybe a SymmetricHebbianLink between A and B should exist as well.441


One could incorporate this insight in CogPrime in at least three ways:442


• creating HebbianLinks paralleling other links (such as SimilarityLinks).443


• adding “Hebbian weights” to other links (such as SimilarityLinks).444


• implicitly interpreting other links (such as SimilarityLinks) as HebbianLinks.445


Further, these strategies may potentially be used together.446


There are some obvious semantic relationships to be used in interpreting other447


link types implicitly as HebbianLinks: for instance, Similarity maps into Symmet-448


ricHebbian, and Inheritance A B maps into Hebbian A B. One may express these as449


inference rules, e.g.450


SimilarityLink A B<tv_1 >451


|-452


SymmetricHebbianLink A B <tv_2 >453


where tv2.s = tv1.s. Clearly, tv2.c < tv1.c; but the precise magnitude of tv2.c must454


be determined by a heuristic formula. One option is to set tv2.c = αtv1.c where455
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5.5 Economic Attention Networks 107


the constant α is set empirically via data mining the System Activity Tables to be456


described below.457


5.6 Dynamics of STI and LTI Propagation458


We now get more specific about how some of these ideas are implemented in the459


currently implemented ECAN subsystem of CogPrime. We’ll discuss mostly STI460


here because in the current design LTI works basically the same way.461


MindAgents send out stimulus to Atoms whenever they use them (or else, some-462


times, just for the purpose of increasing the Atom’s STI); and before these stimulus463


values are used to update the STI levels of the receiving Atom, they are normalized464


by: the total amount of stimulus sent out by the MindAgent in that cycle, multiplied465


by the total amount of STI currency that the MindAgent decided to spend in that466


cycle. The normalized stimulus is what has above been called juju. This normaliza-467


tion preserves fairness among MA’s, and conservation of currency.468


(The reason “stimuli” exist, separately from STI, is that stimulus-sending needs469


to be very computationally cheap, as in general it’s done frequently by each MA each470


cycle, and we don’t want each action a MA takes to invoke some costly importance-471


updating computation.)472


Then, Atoms exchange STI according to certain equations (related to Hebbian-473


Links and other links), and have their STI values updated according to certain equa-474


tions (which involve, among other operations, transferring STI to the “central bank”).475


5.6.1 ECAN Update Equations476


The CogServer is understood to maintain a kind of central bank of STI and LTI477


funds. When a non-ECAN MindAgent finds an Atom valuable, it sends that Atom a478


certain amount of Stimulus, which results in that Atom’s STI and LTI values being479


increased (via equations to be presented below, that transfer STI and LTI funds from480


the CogServer to the Atoms in question). Then, the ECAN ImportanceUpdating481


MindAgent carries out multiple operations, including some that transfer STI and482


LTI funds from some Atoms back to the CogServer.483


There are multiple ways to embody this process equationally; here we briefly484


describe two variants.485


5.6.1.1 Definition and Analysis of Variant 1486


We now define a specific set of equations in accordance with the ECAN concep-487


tual framework described above. We define HSTI = [s1, . . . , sn] to be the vector488
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108 5 Attention Allocation


of STI values, and C =
⎡


⎢
⎣


c11, · · · , c1n
...
. . .


...


cn1, · · · , cnn


⎤


⎥
⎦ to be the connection matrix of Hebbian489


probability values, where it is assumed that the existence of a HebbianLink or Inverse-490


HebbianLink between A and B are mutually exclusive possibilities. We also define491


CLTI =
⎡


⎢
⎣


g11, · · · , g1n
...
. . .


...


gn1, · · · , gnn


⎤


⎥
⎦ to be the matrix of LTI values for each of the corresponding492


links.493


We assume an updating scheme in which, periodically, a number of Atoms are494


allocated Stimulus amounts, which causes the corresponding STI values to change495


according to the equations496


∀i : si = si − rent + wages,497


where rent and wages are given by498


rent =


⎧
⎪⎨


⎪⎩


〈Rent〉 · max


(


0,
log


(
20si


recentMaxSTI


)


2


)


, if si > 0


0, if si ≥ e ≥ 0


499


rent = 0, ifsi ≤ e500


and501


wages =
{ 〈Wage〉〈Stimulus〉∑n


i=1 pi
, if pi = 1


〈Wage〉〈Stimulus〉
n−∑n


i=1 pi
, if pi = 0


,502


where P = [
p1, . . . , pn


]
, with pi ∈ {0, 1} is the cue pattern for the pattern that is to503


be retrieved.504


All quantities enclosed in angled brackets are system parameters, and LTI updating505


is accomplished using a completely analogous set of equations.506


The changing STI values then cause updating of the connection matrix, according507


to the “conjunction” equations. First define508


normi =
{ si


recentMaxSTI , if si ≥ 0
si


recentMinSTI , if si < 0
.509


Next define510


conj = Conjunction
(
si, sj


) = normi × normj511


and512
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5.6 Dynamics of STI and LTI Propagation 109


c′
ij = 〈ConjDecay〉 conj + (1 − conj) cij.513


Finally update the matrix elements by setting514


cij =
{


cji = c′
ij, if c′


ij ≥ 0
c′


ij, if c′
ij < 0


.515


We are currently also experimenting with updating the connection matrix in accor-516


dance with the equations suggested by Storkey (1997, 1998, 1999).517


A key property of these equations is that both wages paid to, and rent paid by,518


each node are positively correlated to their STI values. That is, the more important519


nodes are paid more for their services, but they also pay more in rent.520


A fixed percentage of the links with the lowest LTI values is then forgotten (which521


corresponds equationally to setting the LTI to 0).522


Separately from the above, the process of Hebbian probability updating is carried523


out via a diffusion process in which some nodes “trade” STI utilizing a diffusion524


matrix D, a version of the connection matrix C normalized so that D is a left stochastic525


matrix. D acts on a similarly scaled vector v, normalized so that v is equivalent to a526


probability vector of STI values.527


The decision about which nodes diffuse in each diffusion cycle is carried out via528


a decision function. We currently are working with two types of decision functions:529


a standard threshold function, by which nodes diffuse if and only if the nodes are in530


the AF; and a stochastic decision function in which nodes diffuse with probability531


tanh(shape(si−FocusBoundary))+1
2 , where shape and FocusBoundary are parameters.532


The details of the diffusion process are as follows. First, construct the diffusion533


matrix from the entries in the connection matrix as follows:534


If cij ≥ 0, then dij = cij,


else, set dji = −cij.
535


Next, we normalize the columns of D to make D a left stochastic matrix. In so doing,536


we ensure that each node spreads no more than a 〈MaxSpread〉 proportion of its STI,537


by setting538


if
n∑


i=1


dij > 〈MaxSpread〉 :539


540


dij =
{


dij × 〈MaxSpread〉∑n
i=1 dij


, for i �= j


djj = 1 − 〈MaxSpread〉541


else:542


djj = 1 −
n∑


i = 1
i �= j


dij543
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110 5 Attention Allocation


Now we obtain a scaled STI vector v by setting544


minSTI = min
i∈{1,2,...,n} si and maxSTI = max


i∈{1,2,...,n} si545


546


vi = si − min STI


max STI − min STI
547


The diffusion matrix is then used to update the node STIs548


v′ = Dv549


and the STI values are rescaled to the interval [minSTI, maxSTI].550


In both the rent and wage stage and in the diffusion stage, the total STI and551


LTI funds of the system each separately form a conserved quantity: in the case of552


diffusion, the vector v is simply the total STI times a probability vector. To maintain553


overall system funds within homeostatic bounds, a mid-cycle tax and rent-adjustment554


can be triggered if necessary; the equations currently used for this are555


1. 〈Rent〉 = recent stimulus awarded before update×〈Wage〉
recent size of AF ;556


2. tax = x
n , where x is the distance from the current AtomSpace bounds to the center557


of the homeostatic range for AtomSpace funds;558


3. ∀i:si = si − tax559


5.6.1.2 Investigation of Convergence Properties of Variant 1560


Now we investigate some of the properties that the above ECAN equations display561


when we use an ECAN defined by them as an associative memory network in the562


manner of a Hopfield network.563


We consider a situation where the ECAN is supplied with memories via a “train-564


ing” phase in which one imprints it with a series of binary patterns of the form565


P = [
p1, . . . , pn


]
, with pi ∈ {0, 1}. Noisy versions of these patterns are then used as566


cue patterns during the retrieval process.567


We obviously desire that the ECAN retrieve the stored pattern corresponding to568


a given cue pattern. In order to achieve this goal, the ECAN must converge to the569


correct fixed point.570


Theorem 5.1 For a given value of e in the STI rent calculation, there is a subset of571


hyperbolic decision functions for which the ECAN dynamics converge to an attracting572


fixed point.573


Proof Rent is zero whenever e ≤ si ≤ recentMaxSTI
20 , so we consider this case first.574


The updating process for the rent and wage stage can then be written as f (s) =575


s + constant. The next stage is governed by the hyperbolic decision function576
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5.6 Dynamics of STI and LTI Propagation 111


g (s) = tanh (shape (s − FocusBoundary)) + 1


2
.577


The entire updating sequence is obtained by the composition (g ◦ f ) (s), whose deriv-578


ative is then579


(g ◦ f )
′ = sech2 (f (s)) · shape


2
· (1) ,580


which has magnitude less than 1 whenever −2 < shape < 2. We next consider the581


case si > recentMaxSTI
20 ≥ e. The function f now takes the form582


f (s) = s − log (20s/recentMaxSTI)


2
+ constant,583


and we have584


(g ◦ f )
′ = sech2 (f (s)) · shape


2
·
(


1 − 1


2s


)
.585


which has magnitude less than 1 whenever |shape| <


∣
∣
∣ 4e


2e−1


∣
∣
∣. Choosing the shape586


parameter to satisfy 0 < shape < min
(


2,


∣
∣
∣ 4e


2e−1


∣
∣
∣
)


then guarantees that
∣
∣
∣(g ◦ f )


′ ∣∣
∣587


< 1. Finally, g◦ f maps the closed interval [recentMinStI, recentMaxSTI] into itself,588


so applying the Contraction Mapping Theorem completes the proof.589


5.6.1.3 Definition and Analysis of Variant 2590


The ECAN variant described above has performed completely acceptably in our591


experiments so far; however we have also experimented with an alternate variant,592


with different convergence properties. In Variant 2, the dynamics of the ECAN are593


specifically designed so that a certain conceptually intuitive function serves as a594


Liapunov function of the dynamics.595


At a given time t, for a given Atom indexed i, we define two quantities: OUTi(t) =596


the total amount that Atom i pays in rent and tax and diffusion during the time-597


t iteration of ECAN; INi(t) = the total amount that Atom i receives in diffusion,598


stimulus and welfare during the time-t iteration of ECAN. Note that welfare is a new599


concept to be introduced below. We then define DIFFi(t) = INi(t) − OUTi(t); and600


define AVDIFF(t) as the average of DIFFi(t) over all i in the ECAN.601


The design goal of Variant 2 of the ECAN equations is to ensure that, if the para-602


meters are tweaked appropriately, AVDIFF can serve as a (deterministic or stochastic,603


depending on the details) Lyapunov function for ECAN dynamics. This implies that604


with appropriate parameters the ECAN dynamics will converge toward a state where605


AVDIFF = 0, meaning that no Atom is making any profit or incurring any loss. It606


must be noted that this kind of convergence is not always desirable, and sometimes607


one might want the parameters set otherwise. But if one wants the STI components of608
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112 5 Attention Allocation


an ECAN to converge to some specific values, as for instance in a classic associative609


memory application, Variant 2 can guarantee this easily.610


In Variant 2, each ECAN cycle begins with rent collection and welfare distribution,611


which occurs via collecting rent via the Variant 1 equation, and then performing the612


following two steps:613


• Step A calculate X, defined as the positive part of the total amount by which614


AVDIFF has been increased via the overall rent collection process.615


• Step B redistribute X to needy Atoms as follows: For each Atom z, calculate the616


positive part of OUT −IN , defined as deficit(z). Distribute X +e wealth among all617


Atoms z, giving each Atom a percentage of X that is proportional to deficit(z), but618


never so much as to cause OUT < IN for any Atom (the welfare being given counts619


toward IN). Here e > 0 ensures AVDIFF decrease; e = 0 may be appropriate if620


convergence is not required in a certain situation.621


Step B is the welfare step, which guarantees that rent collection will decrease AVD-622


IFF. Step A calculates the amount by which the rich have been made poorer, and623


uses this to make the poor richer. In the case that the sum of deficit(z) over all nodes624


z is less than X, a mid-cycle rent adjustment may be triggered, calculated so that step625


B will decrease AVDIFF. (i.e. we cut rent on the rich, if the poor don’t need their626


money to stay out of deficit.)627


Similarly, in each Variant 2 ECAN cycle, there is a wage-paying process, which628


involves the wage-paying equation from Variant 1 followed by two steps. Step A:629


calculate Y , defined as the positive part of the total amount by which AVDIFF has630


been increased via the overall wage payment process. Step B: exert taxation based on631


the surplus Y as follows: For each Atom z, calculate the positive part of IN − OUT ,632


defined as surplus(z). Collect Y + e1 wealth from all Atom z, collecting from each633


node a percentage of Y that is proportional to surplus(z), but never so much as to634


cause IN < OUT for any node (the new STI being collected counts toward OUT).635


In case the total of surplus(z) over all nodes z is less than Y , one may trigger a636


mid-cycle wage adjustment, calculated so that step B will decrease AVDIFF, i.e. we637


cut wages since there is not enough surplus to support it.638


Finally, in the Variant 2 ECAN cycle, diffusion is done a little differently, via639


iterating the following process: If AVDIFF has increased during the diffusion round640


so far, then choose a random node whose diffusion would decrease AVDIFF, and let641


it diffuse; if AVDIFF has decreased during the diffusion round so far, then choose a642


random node whose diffusion would increase AVDIFF, and let it diffuse. In carrying643


out these steps, we avoid letting the same node diffuse twice in the same round.644


This algorithm does not let all Atoms diffuse in each cycle, but it stochastically lets a645


lot of diffusion happen in a way that maintains AVDIFF constant. The iteration may646


be modified to bias toward an average decrease in AVDIFF.647


The random element in the diffusion step, together with the logic of the ren-648


t/welfare and wage/tax steps, combines to yield the result that for Variant 2 of ECAN649


dynamics, AVDIFF is a stochastic Lyapunov function. The details of the proof of this650


will be omitted but the outline of the argument should be clear from the construction651
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5.6 Dynamics of STI and LTI Propagation 113


of Variant 2. And note that by setting the e and e1 parameter to 0, the convergence652


requirement can be eliminated, allowing the network to evolve more spontaneously653


as may be appropriate in some contexts; these parameters allow one to explicitly654


adjust the convergence rate.655


One may also derive results pertaining to the meaningfulness of the attractors, in656


various special cases. For instance, if we have a memory consisting of a set M of m657


nodes, and we imprint the memory on the ECAN by stimulating m nodes during an658


interval of time, then we want to be able to show that the condition where precisely659


those m nodes are in the AF is a fixed-point attractor. However, this is not difficult,660


because one must only show that if these m nodes and none others are in the AF, this661


condition will persist.662


5.6.2 ECAN as Associative Memory663


We have carried out experiments gauging the performance of Variant 1 of ECAN as664


an associative memory, using the implementation of ECAN within CogPrime, and665


using both the conventional and Storkey Hebbian updating formulas.666


As with a Hopfield net memory, the memory capacity (defined as the number667


of memories that can be retrieved from the network with high accuracy) depends668


on the sparsity of the network, with denser networks leading to greater capacity. In669


the ECAN case the capacity also depends on a variety of parameters of the ECAN670


equations, and the precise unraveling of these dependencies is a subject of current671


research. However, one interesting dependency has already been uncovered in our672


preliminary experimentation, which has to do with the size of the AF versus the size673


of the memories being stored.674


Define the size of a memory (a pattern being imprinted) as the number of nodes675


that are stimulated during imprinting of that memory. In a classical Hopfield net676


experiment, the mean size of a memory is usually around, say, 0.2–0.5 of the number677


of neurons. In typical CogPrime associative memory situations, we believe the mean678


size of a memory will be one or two orders of magnitude smaller than that, so that679


each memory occupies only a relatively small portion of the overall network.680


What we have found is that the memory capacity of an ECAN is generally com-681


parable to that of a Hopfield net with the same number of nodes and links, if and only682


if the ECAN parameters are tuned so that the memories being imprinted can fit into683


the AF. That is, the AF threshold or (in the hyperbolic case) shape parameter must684


be tuned so that the size of the memories is not so large that the active nodes in a685


memory cannot stably fit into the AF. This tuning may be done adaptively by testing686


the impact of different threshold/shape values on various memories of the appropri-687


ate size; or potentially a theoretical relationship between these quantities could be688


derived, but this has not been done yet. This is a reasonably satisfying result given689


the cognitive foundation of ECAN: in loose terms what it means is that ECAN works690


best for remembering things that fit into its focus of attention during the imprinting691


process.692
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114 5 Attention Allocation


5.7 Glocal Economic Attention Networks693


In order to transform ordinary ECANs into glocal ECANs, one may proceed in694


essentially the same manner as with glocal Hopfield nets as discussed in Chap. 13 of695


Vol. 5. In the language normally used to describe CogPrime, this would be termed a696


“map encapsulation” heuristic. As with glocal Hopfield nets, one may proceed most697


simply via creating a fixed pool of nodes intended to provide locally-representative698


keys for the maps formed as attractors of the network. Links may then be formed to699


these key nodes, with weights and STI and LTI values adapted by the usual ECAN700


algorithms.701AQ1


5.7.1 Experimental Explorations702


To compare the performance of glocal ECANs with glocal Hopfield networks in a703


simple context, we ran experiments using ECAN in the manner of a Hopfield network.704


That is, a number of nodes take on the equivalent role of the neurons that are presented705


patterns to be stored. These patterns are imprinted by setting the corresponding nodes706


of active bits to have their STI within the AF, whereas nodes corresponding to inactive707


bits of the pattern are below the AF threshold. Link weight updating then occurs,708


using one of several update rules, but in this case the update rule of [SV99] was709


used. Attention was spread using a diffusion approach by representing the weights710


of Hebbian links between pattern nodes within a left stochastic Markov matrix, and711


multiplying it by the vector of normalised STI values to give a vector representing712


the new distribution of STI.713


To explore the effects of key nodes on ECAN Hopfield networks, in [Goe08b]714


we used the palimpsest testing scenario of [SV99], where all the local neighbours715


of the imprinted pattern, within a single bit change, are tested. Each neighbouring716


pattern is used as input to try and retrieve the original pattern. If all the retrieved717


patterns are the same as the original (within a given tolerance) then the pattern is718


deemed successfully retrieved and recall of the previous pattern is attempted via its719


neighbours. The number of patterns this can repeat for successfully is called the720


palimpsest storage of the network.721


As an example, consider one simple experiment that was run with recollection722


of 10 × 10 pixel patterns (so, 100 nodes, each corresponding to a pixel in the grid),723


a Hebbian link density of 30 %, and with 1 % of links being forgotten before each724


pattern is imprinted. The results demonstrated that, when the mean palimpsest storage725


is calculated for each of 0, 1, 5 and 10 key nodes we find that the storage is 22.6, 22.4,726


24.9, and 26.0 patterns respectively, indicating that key nodes do improve memory727


recall on average.728
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5.8 Long-Term Importance and Forgetting 115


5.8 Long-Term Importance and Forgetting729


Now we turn to the forgetting process (carried out by the Forgetting MindAgent),730


which is driven by LTI dynamics, but has its own properties as well.731


Overall, the goal of the “forgetting” process is to maximize the total utility of the732


Atoms in the AtomSpace throughout the future. The most basic heuristic toward this733


end is to remove the Atoms with the lowest LTI, but this isn’t the whole story. Clearly,734


the decision to remove an Atom from RAM should depend on factors beyond just735


the LTI of the Atom. For example, one should also take into account the expected736


difficulty in reconstituting the given Atom from other Atoms. Suppose the system737


has the relations:738


’’dogs are animals ’’739


740


’’animals are cute ’’741


742


’’dogs are cute ’’743


and the strength of the third relation is not dissimilar from what would be obtained744


by deduction and revision from the first two relations and others in the system. Then,745


even if the system judges it will be very useful to know dogs are cute in the future,746


it may reasonably choose to remove dogs are cute from memory anyway, because it747


knows it can be so easily reconstituted, by a few inference steps for instance. Thus,748


as well as removing the lowest-LTI Atoms, the Forgetting MindAgent should also749


remove Atoms meeting certain other criteria such as the combination of:750


• low STI.751


• easy reconstitutability in terms of other Atoms that have LTI not less than its own.752


5.9 Attention Allocation via Data Mining on the System753


Activity Table754


In this section we’ll discuss an object called the System Activity Table, which con-755


tains a number of subtables recording various activities carried out by the various756


objects in the CogPrime system. These tables may be used for sophisticated atten-757


tion allocation processes, according to an approach in which importance values and758


HebbianLink weight values are calculated via direct data mining of a centralized759


knowledge store (the System Activity Table). This approach provides highly accu-760


rate attention allocation but at the cost of significant computational effort.761


The System Activity Table is actually a set of tables, with multiple components.762


The precise definition of the tables will surely be adapted based on experience as763


the work with CogPrime progresses; what is described here is a reasonable first764


approximation.765
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116 5 Attention Allocation


First, there is a MindAgent Activity Table, which includes, for each MindAgent766


in the system, a table such as Table 5.1 (in which the time-points recorded are the767


last T system cycles, and the Atom-lists recorded are lists of Handles for Atoms).768


The MindAgent’s activity table records, for that MindAgent and for each system769


cycle, which Atom-sets were acted on by that MindAgent at that point in time.770


Similarly, a table of this nature must be maintained for each Task-type, e.g. Infer-771


enceTask, MOSESCategorizationTask, etc. The Task tables are used to estimate772


Effort values for various Tasks, which are used in the procedure execution process.773


If it can be estimated how much spatial and temporal resources a Task is likely to774


use, via comparison to a record of previous similar tasks (in the Task table), then a775


MindAgent can decide whether it is appropriate to carry out this Task (versus some776


other one, or versus some simpler process not requiring a Task) at a given point in777


time, a process to be discussed in a later chapter.778


In addition to the MindAgent and Task-type tables, it is convenient if tables are779


maintained corresponding to various goals in the system (as shown in Table 5.2),780


including the Ubergoals but also potentially derived goals of high importance.781


For each goal, at minimum, the degree of achievement of the goal at a given time782


must be recorded. Optionally, at each point in time, the degree of achievement of a783


goal relative to some particular Atoms may be recorded. Typically the list of Atom-784


specific goal-achievements will be short and will be different for different goals and785


different time points. Some goals may be applied to specific Atoms or Atom sets,786


others may only be applied more generally.787


The basic idea is that attention allocation and credit assignment may be effectively788


carried out via datamining on these tables.789


Table 5.1 Example MindAgent table


System Effort Memory Atom combo 1 Atom combo 2 . . .


cycle spent used utilized utilized


Now 3.3 4,000 Atom21, Atom44 Atom 44, Atom 47, Atom 345 . . .


Now −1 0.4 6,079 Atom123, Atom33 Atom 345 . . .


. . . . . . . . . . . . . . . . . .


Table 5.2 Example goal table


System Total Achievement Achievement for set . . .


cycle achievement for Atom44 {Atom44, Atom 233}


Now 0.8 0.4 0.5 . . .


Now −1 0.9 0.5 0.55 . . .


. . . . . . . . . . . . . . .
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5.10 Schema Credit Assignment 117


5.10 Schema Credit Assignment790


And, how do we apply a similar approach to clarifying the semantics of schema791


credit assignment?792


From the above-described System Activity Tables, one can derive information of793


the form794


Achieve(G,E,T) =‘‘Goal G was achieved to extent795


E at time T’’796


which may be grounded as, for example:797


798


Similarity799


E800


ExOut801


GetTruthValue802


Evaluation803


atTime804


T805


HypLink G806


and more refined versions such as807


808


Achieve(G,E,T,A,P) = ‘‘Goal G was achieved to extent809


E using810


Atoms A (with parameters P)811


at time T’’812


813


Enact(S,I,$T_1$ ,O,$T_2$) = ‘‘Schema S was enacted on814


inputs I815


at time $T_1$ , producing816


outputs O817


at time $T_2$ ’’818


The problem of schema credit assignment is then, in essence: Given a goal G and819


a distribution of times D, figure out what schema to enact in order to cause G’s820


achievement at some time in the future, where the desirability of times is weighted821


by D.822


The basic method used is the learning of predicates of the form823


824


ImplicationLink
F(C, P1, . . . , Pn)


G
825


where826


• the Pi are Enact() statements in which the T1 and T2 are variable, and the S, I and827


O may be concrete or variable.828


• C is a predicate representing a context.829


• G is an Achieve() statement, whose arguments may be concrete or abstract.830
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118 5 Attention Allocation


• F is a Boolean function.831


Typically, the variable expressions in the T1 and T2 positions will be of the form832


T +offset, where offset is a constant value and T is a time value representing the time833


of inception of the whole compound schema. T may then be defined as TG − offset1,834


where offset1 is a constant value and TG is a variable denoting the time of achievement835


of the goal.836


In CogPrime, these predicates may be learned by a combination of statistical837


pattern mining, PLN inference and MOSES or hill-climbing procedure learning.838


The choice of what action to take at a given point in time is then a probabilistic839


decision. Based on the time-distribution D given, the system will know a certain840


number of expressions C = F(C, P1, . . . , Pn) of the type described above. Each of841


these will be involved in an ImplicationLink with a certain estimated strength. It may842


select the “compound schema” C with the highest strength.843


One might think to introduce other criteria here, e.g. to choose the schema with the844


highest strength but the lowest cost of execution. However, it seems better to include845


all pertinent criteria in the goal, so that if one wants to consider cost of execution,846


one assumes the existence of a goal that incorporates cost of execution (which may847


be measured in multiple ways, of course) as part of its internal evaluation function.848


Another issue that arises is whether to execute multiple C simultaneously. In many849


cases this won’t be possible because two different C’s will contradict each other. It850


seems simplest to assume that C’s that can be fused together into a single plan of851


action, are presented to the schema execution process as a single fused C. In other852


words, the fusion is done during the schema learning process rather than the execution853


process.854


A question emerges regarding how this process deals with false causality, e.g.855


with a schema that, due to the existence of a common cause, often happens to occur856


immediately prior to the occurrence of a given goal. For instance, roosters crowing857


often occurs prior to the sun rising. This matter is discussed in more depth in the PLN858


book and The Hidden Pattern; but in brief, the answer is: In the current approach,859


if roosters crowing often causes the sun to rise, then if the system wants to cause860


the sun to rise, it may well cause a rooster to crow. Once this fails, then the system861


will no longer hold the false belief, and afterwards will choose a different course862


of action. Furthermore, if it holds background knowledge indicating that roosters863


crowing is not likely to cause the sun to rise, then this background knowledge will be864


invoked by inference to discount the strength of the ImplicationLink pointing from865


rooster-crowing to sun-rising, so that the link will never be strong enough to guide866


schema execution in the first place.867


The problem of credit assignment thus becomes a problem of creating appropri-868


ate heuristics to guide inference of ImplicationLinks of the form described above.869


Assignment of credit is then implicit in the calculation of truth values for these links.870


The difficulty is that the predicates F involved may be large and complex.871
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5.11 Interaction Between ECANs and Other CogPrime Components 119


5.11 Interaction Between ECANs and Other CogPrime872


Components873


We have described above a number of interactions between attention allocation and874


other aspects of CogPrime; in this section we gather a few comments on these inter-875


actions, and some additional ones.876


5.11.1 Use of PLN and Procedure Learning to Help ECAN877


MOSES or hillclimbing may be used to help mine the SystemActivityTable for878


patterns of usefulness, and create HebbianLinks reflecting these patterns.879


PLN inference may be carried out on HebbianLinks by treating (HebbianLink A880


B) as a virtual predicate evaluation relationship, i.e. as881


EvaluationLink Hebbian_predicate (A, B)882


PLN inference on HebbianLinks may then be used to update node importance val-883


ues, because node importance values are essentially node probabilities correspond-884


ing to HebbianLinks. And similarly, MindAgent-relative node importance values are885


node probabilities corresponding to MindAgent-relative HebbianLinks.886


Note that conceptually, the nature of this application of PLN is different from887


most other uses of PLN in CogPrime. Here, the purpose of PLN is not to draw888


conclusions about the outside world, but rather about what the system should focus889


its resources on in what context. PLN, used in this context, effectively constitutes a890


nonlinear-dynamical iteration governing the flow of attention through the CogPrime891


system.892


Finally, inference on HebbianLinks leads to the emergence of maps, via the recog-893


nition of clusters in the graph of HebbianLinks.894


5.11.2 Use of ECAN to Help Other Cognitive Processes895


First of all, associative-memory functionality is directly important in CogPrime896


because it is used to drive concept creation. The CogPrime heuristic called “map897


formation” creates new Nodes corresponding to prominent attractors in the ECAN,898


a step that (according to our preliminary results) not only increases the memory899


capacity of the network beyond what can be achieved with a pure ECAN but also900


enables attractors to be explicitly manipulated by PLN inference.901


Equally important to associative memory is the capability of ECANs to facili-902


tate effective allocation of the attention of other cognitive processes to appropriate903


knowledge items (Atoms). For example, one key role of ECANs in CogPrime is904


to guide the forward and backward chaining processes of PLN (Probabilistic Logic905
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120 5 Attention Allocation


Network) inference. At each step, the PLN inference chainer is faced with a great906


number of inference steps (branches) from which to choose; and a choice is made907


using a statistical “bandit problem” mechanism that selects each possible inference908


step with a probability proportional to its expected “desirability”. In this context,909


there is considerable appeal in the heuristic of weighting inference steps using prob-910


abilities proportional to the STI values of the Atoms they contain. One thus arrives911


at a combined PLN/ECAN dynamic as follows:912


1. An inference step is carried out, involving a choice among multiple possible913


inference steps, which is made using STI-based weightings (and made among914


Atoms that LTI weightings have deemed valuable enough to remain in RAM).915


2. The Atoms involved in the inference step are rewarded with STI and LTI propor-916


tionally to the utility of the inference step (how much it increases the confidence917


of Atoms in the system’s memory).918


3. The ECAN operates, and multiple Atom’s importance values are updated.919


4. Return to Step 1 if the inference isn’t finished.920


An analogous interplay may occur between ECANs and MOSES.921


It seems intuitively clear that the same attractor-convergence properties high-922


lighted in the above analysis of associative-memory behavior, will also be highly923


valuable for the application of ECANs to attention allocation. If a collection of924


Atoms is often collectively useful for some cognitive process (such as PLN), then925


the associative-memory-type behavior of ECANs means that once a handful of the926


Atoms in the collection are found useful in a certain inference process, the other927


Atoms in the collection will get their STI significantly boosted, and will be likely to928


get chosen in subsequent portions of that same inference process. This is exactly the929


sort of dynamics one would like to see occur. Systematic experimentation with these930


interactions between ECAN and other CogPrime processes is one of our research931


priorities going forwards.932


5.12 MindAgent Importance and Scheduling933


So far we have discussed economic transactions between Atoms and Atoms, and934


between Atoms and Units. MindAgents have played an indirect role, via spreading935


stimulation to Atoms which causes them to get paid wages by the Unit. Now it is936


time to discuss the explicit role of MindAgents in economic transactions. This has937


to do with the integration of economic attention allocation with the Scheduler that938


schedules the core MindAgents involved in the basic cognitive cycle.939


This integration may be done in many ways, but one simple approach is:940


1. When a MindAgent utilizes an Atom, this results in sending stimulus to that941


Atom. (Note that we don’t want to make MindAgents pay for using Atoms942


individually; that would penalize MA’s that use more Atoms, which doesn’t943


really make much sense.)944
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5.12 MindAgent Importance and Scheduling 121


2. MindAgents then get currency from the Lobe (as defined in Chap. 1) periodically,945


and get extra currency based on usefulness for goal achievement as determined946


by the credit assignment process. The Scheduler then gives more processor time947


to MindAgents with more STI.948


3. However, any MindAgent with LTI above a certain minimum threshold will get949


some minimum amount of processor time (i.e. get scheduled at least once each950


N cycles).951


As a final note: In a multi-Lobe Unit, the Unit may use the different LTI values952


of MA’s in different Lobes to control the distribution of MA’s among Lobes: e.g. a953


very important (LTI) MA might get cloned across multiple Lobes.954


5.13 Information Geometry for Attention Allocation955


Appendix ?? outlines some very broad ideas regarding the potential utilization of956


information geometry and related ideas for modeling cognition. In this section, we957


present some more concrete and detailed experiments inspired by the same line of958


thinking. We model CogPrime’s Economic Attention Networks (ECAN) component959


using information geometric language, and then use this model to propose a novel960


information geometric method of updating ECAN networks (based on an extension961


of Amari’s ANGL algorithm). Tests on small networks suggest that information-962


geometric methods have the potential to vastly improve ECAN’s capability to shift963


attention from current preoccupations to desired preoccupations. However, there is964


a high computational cost associated with the simplest implementations of these965


methods, which has prevented us from carrying out large-scale experiments so far.966


We are exploring the possibility of circumventing these issues via using sparse matrix967


algorithms on GPUs.968


5.13.1 Brief Review of Information Geometry969


“Information geometry” is a branch of applied mathematics concerned with the970


application of differential geometry to spaces of probability distributions. In [GI11]971


we have suggested some extensions to traditional information geometry aimed at972


allowing it to better model general intelligence. However for the concrete technical973


work in this Chapter, the traditional formulation of information geometry will suffice.974


One of the core mathematical constructs underlying information geometry, is the975


Fisher Information, a statistical quantity which has a a variety of applications rang-976


ing far beyond statistical data analysis, including physics [Fri98], psychology and AI977


[AN00]. Put simply, FI is a formal way of measuring the amount of information that978


an observable random variable X carries about an unknown parameter θ upon which979


the probability of X depends. FI forms the basis of the Fisher-Rao metric, which has980
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122 5 Attention Allocation


been proved the only Riemannian metric on the space of probability distributions981


satisfying certain natural properties regarding invariance with respect to coordinate982


transformations. Typically θ in the FI is considered to be a real multidimensional983


vector; however, [Dab99] has presented a FI variant that imposes basically no restric-984


tions on the form of θ . Here the multidimensional FI will suffice, but the more general985


version is needed if one wishes to apply FI to AGI more broadly, e.g. to declarative986


and procedural as well as attentional knowledge.987


In the set-up underlying the definition of the ordinary finite-dimensional Fisher988


information, the probability function for X, which is also the likelihood function for989


θ ∈ Rn, is a function f (X; θ); it is the probability mass (or probability density) of the990


random variable X conditional on the value of θ . The partial derivative with respect991


to θi of the log of the likelihood function is called the score with respect to θi. Under992


certain regularity conditions, it can be shown that the first moment of the score is 0.993


The second moment is the Fisher information:994


I(θ)i = IX(θ)i = E


[((
∂


∂θi
ln f (X; θ)


)2
)


|θ
]


995


where, for any given value of θi, the expression E[..|θ ] denotes the conditional996


expectation over values for X with respect to the probability function f (X; θ) given997


θ . Note that 0 ≤ I(θ)i < ∞. Also note that, in the usual case where the expectation998


of the score is zero, the Fisher information is also the variance of the score.999


One can also look at the whole Fisher information matrix1000


I(θ)i,j = E


[(
∂lnf (X, θ)


∂θi


∂lnf (X, θ)


∂θj


)
|θ
]


1001


which may be interpreted as a metric gij, that provably is the only “intrinsic” metric1002


on probability distribution space. In this notation we have I(θ)i = I(θ)i,i.1003


Dabak [Dab99] has shown that the geodesic between two parameter vectors θ1004


and θ ′ is given by the exponential weighted curve (γ (t)) (x) = f (x,θ)1−t f (x,θ ′)t
∫


f (y,θ)1−t f (y,θ ′)tdy
,1005


under the weak condition that the log-likelihood ratios with respect to f (X, θ) and1006


f (X, θ ′) are finite. Also, along this sort of curve, the sum of the Kullback-Leibler1007


distances between θ and θ ′, known as the J-divergence, equals the integral of the1008


Fisher information along the geodesic connecting θ and θ ′. This suggests that if one1009


is attempting to learn a certain parameter vector based on data, and one has a certain1010


other parameter vector as an initial value, it may make sense to use algorithms that1011


try to follow the Fisher-Rao geodesic between the initial condition and the desired1012


conclusion. This is what Amari [Ama85] [AN00] calls “natural gradient” based1013


learning, a conceptually powerful approach which subtly accounts for dependencies1014


between the components of θ .1015
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5.13 Information Geometry for Attention Allocation 123


5.13.2 Information-Geometric Learning for Recurrent1016


Networks: Extending the ANGL Algorithm1017


Now we move on to discuss the practicalities of information-geometric learning1018


within CogPrime’s ECAN component. As noted above, Amari [Ama85, AN00] intro-1019


duced the natural gradient as a generalization of the direction of steepest descent on1020


the space of loss functions of the parameter space. Issues with the original imple-1021


mentation include the requirement of calculating both the Fisher information matrix1022


and its inverse. To resolve these and other practical considerations, Amari [Ama98]1023


proposed an adaptive version of the algorithm, the Adaptive Natural Gradient Learn-1024


ing (ANGL) algorithm. Park, Amari, and Fukumizu [PAF00] extended ANGL to a1025


variety of stochastic models including stochastic neural networks, multi-dimensional1026


regression, and classification problems.1027


In particular, they showed that, assuming a particular form of stochastic feedfor-1028


ward neural network and under a specific set of assumptions concerning the form of1029


the probability distributions involved, a version of the Fisher information matrix can1030


be written as1031


G(θ) = Eξ


[(
r′


r


)2
]


Ex


[
∇H (∇H)T


]
.1032


Although Park et al. considered only feedforward neural networks, their result1033


also holds for more general neural networks, including the ECAN network. What is1034


important is the decomposition of the probability distribution as1035


p (y|x; θ) =
L∏


i=1


ri (yi − Hi (x, θ) )1036


where1037


y = H(x; θ) + ξ, y = (y1, . . . , yL)T , H = (H1, . . . , HL)T , ξ = (ξ1, . . . , ξL)T ,1038


where ξ is added noise. If we assume further that each ri has the same form as1039


a Gaussian distribution with zero mean and standard deviation σ , then the Fisher1040


information matrix simplifies further to1041


G(θ) = 1


σ 2 Ex


[
∇H (∇H)T


]
.1042


The adaptive estimate for Ĝ−1
t+1 is given by1043


Ĝ−1
t+1 = (1 + εt)Ĝ


−1
t − εt(Ĝ


−1
t ∇H)(Ĝ−1


t ∇H)T .1044


and the loss function for our model takes the form1045
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124 5 Attention Allocation


l(x, y; θ) = −
L∑


i=1


log r(yi − Hi(x, θ)).1046


The learning algorithm for our connection matrix weights θ is then given by1047


θt+1 = θt − ηt Ĝ
−1
t ∇l(θt).1048


5.13.3 Information Geometry for Economic Attention1049


Allocation: A Detailed Example1050


We now present the results of a series of small-scale, exploratory experiments com-1051


paring the original ECAN process running alone with the ECAN process coupled1052


with ANGL. We are interested in determining which of these two lines of processing1053


result in focusing attention more accurately.1054


The experiment started with base patterns of various sizes to be determined by1055


the two algorithms. In the training stage, noise was added, generating a number of1056


instances of noisy base patterns. The learning goal is to identify the underlying base1057


patterns from the noisy patterns as this will identify how well the different algorithms1058


can focus attention on relevant versus irrelevant nodes.1059


Next, the ECAN process was run, resulting in the determination of the connec-1060


tion matrix C. In order to apply the ANGL algorithm, we need the gradient, ∇H,1061


of the ECAN training process, with respect to the input x. While calculating the1062


connection matrix C, we used Monte Carlo simulation to simultaneously calculate1063


an approximation to ∇H.1064


After ECAN training was completed, we bifurcated the experiment. In one branch,1065


we ran fuzzed cue patterns through the retrieval process. In the other, we first applied1066


the ANGL algorithm, optimizing the weights in the connection matrix, prior to1067


running the retrieval process on the same fuzzed cue patterns. At a constant value1068


of σ = 0.8 we ran several samples through each branch with pattern sizes of 4 × 4,1069


Fig. 5.3 Results from experi-
ment 1
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5.13 Information Geometry for Attention Allocation 125


Fig. 5.4 Results from experi-
ment 2


7 × 7, 10 × 10, 15 × 15, and 20 × 20. The results are shown in Fig. 5.3. We also ran1070


several experiments comparing the sum of squares of the errors to the input training1071


noise as measured by the value of σ.; see Figs. 5.4 and ??.1072 AQ2


These results suggest two major advantages of the ECAN+ANGL combination1073


compared to ECAN alone. Not only was the performance of the combination better1074


in every trial, save for one involving a small number of nodes and little noise, but the1075


combination clearly scales significantly better both as the number of nodes increases,1076


and as the training noise increases.1077
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Chapter 6
Economic Goal and Action Selection


6.1 Introduction0


A significant portion of CogPrime’s dynamics is explicitly goal-driven—that is, based1


on trying (inasmuch as possible within the available resources) to figure out which2


actions will best help the system achieve its goals, given the current context. A3


key aspect of this explicit activity is guided by the process of “goal and action4


selection”—prioritizing goals, and then prioritizing actions based on these goals.5


We have already outlined the high-level process of action selection, in Chap. 4. Now6


we dig into the specifics of the process, showing how action selection is dynamically7


entwined with goal prioritization, and how both processes are guided by economic8


attention allocation as described in Chap. 5.9


While the basic structure of CogPrime’s action selection aspect is fairly similar to10


MicroPsi (due to the common foundation in Dorner’s Psi model), the dynamics are11


less similar. MicroPsi’s dynamics are a little closer to being a formal neural net model,12


whereas ECAN’s economic foundation tends to push it in different directions. The13


CogPrime goal and action selection design involves some simple simulated financial14


mechanisms, building on the economic metaphor of ECAN, that are different from,15


and more complex than, anything in MicroPsi.16


The main actors (apart from the usual ones like the AtomTable, economic attention17


allocation, etc.) in the tale to be told here are as follows:18


• Structures:19


– UbergoalPool20


– ActiveSchemaPool21


• MindAgents:22


– GoalBasedSchemaSelection23


– GoalBasedSchemaLearning24


– GoalAttentionAllocation25


– FeasibilityUpdating26


– SchemaActivation27


B. Goertzel et al., Engineering General Intelligence, Part 2, 127
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_6,
© Atlantis Press and the authors 2014
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128 6 Economic Goal and Action Selection


The Ubergoal Pool contains the Atoms that the system considers as top-level28


goals. These goals must be treated specially by attention allocation: they must be29


given funding by the Unit so that they can use it to pay for getting themselves achieved.30


The weighting among different top-level goals is achieved via giving them different31


amounts of currency. STICurrency is the key kind here, but of course ubergoals must32


also get some LTICurrency so they won’t be forgotten. (Inadvertently deleting your33


top-level supergoals from memory is generally considered to be a bad thing ... it’s in34


a sense a sort of suicide...)35


6.2 Transfer of STI “Requests for Services” Between Goals36


Transfer of “attentional funds” from goals to subgoals, and schema modules to other37


schema modules in the same schema, take place via a mechanism of promises of38


funding (or ‘requests for service’, to be called ‘RFS’s’ from here on). This mechanism39


relies upon and interacts with ordinary economic attention allocation but also has40


special properties. Note that we will sometimes say that an Atom “issues” an RFS41


or “transfers” currency while what we really mean is that some MindAgent working42


on that Atom issues an RFS or transfers currency.43


The logic of these RFS’s is as follows. If agent A issues an RFS of value x to44


agent B, then45


1. When B judges it appropriate, B may redeem the note and ask A to transfer46


currency of value x to B.47


2. A may withdraw the note from B at any time.48


(There is also a little more complexity here, in that we will shortly introduce the49


notion of RFS’s whose value is defined by a set of constraints. But this complexity50


does not contradict the two above points.) The total value of the of RFS’s possessed51


by an Atom may be referred to as its “promise”.52


A rough schematic depiction of this RFS process is given in Fig. 6.1.53


Now we explain how RFS’s may be passed between goals. Given two predicates54


A and B, if A is being considered as a goal, then B may be considered as a subgoal55


of A (and A the supergoal of B) if there exists a Link of the form56


PredictiveImplication B A57


i.e., achieving B may help to achieve A. Of course, the strength of this link and58


the temporal characteristics of this link are important in terms of quantifying how59


strongly and how usefully B is a subgoal of A.60


Supergoals (not only top-level ones, aka ubergoals) allocate RFS’s to subgoals61


as follows. Supergoal A may issue a RFS to subgoal B if it is judged that achieve-62


ment (i.e., predicate satisfaction) of B implies achievement of A. This may proceed63


recursively: subgoals may allocate RFS’s to subsubgoals according to the same jus-64


tification.65
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6.2 Transfer of STI “Requests for Services” Between Goals 129


Fig. 6.1 The RFS propagation process. An illustration of the process via which RFS’s propagate
from goals to abstract procedures, and finally must get cashed out to pay for the execution of actual
concrete procedures that are estimated relatively likely to lead to goal fulfillment


Unlike actual currency, RFS’s are not conserved. However, the actual payment66


of real currency upon redemption of RFS’s obeys the conservation of real currency.67


This means that agents need to be responsible in issuing and withdrawing RFS’s. In68


practice this may be ensured by having agents follow a couple simple rules in this69


regard.70


1. If B and C are two alternatives for achieving A, and A has x units of currency,71


then A may promise both B and C x units of currency. Whoever asks for a72


redemption of the promise first, will get the money, and then the promise will73


be rescinded from the other one.74
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130 6 Economic Goal and Action Selection


2. On the other hand, if the achievement of A requires both B and C to be achieved,75


then B and C may be granted RFS’s that are defined by constraints. If A has x units76


of currency, then B and C receive an RFS tagged with the constraint (B+C<=x).77


This means that in order to redeem the note, either one of B or C must confer78


with the other one, so that they can simultaneously request constraint-consistent79


amounts of money from A.80


As an example of the role of constraints, consider the goal of playing fetch success-81


fully (a subgoal of “get reward”).... Then suppose it is learned that:82


ImplicationLink83


SequentialAND84


get_ball85


deliver_ball86


play_fetch87


where SequentialAND A B is the conjunction of A and B but with B occurring after88


A in time. Then, if play_fetch has $10 in STICurrency, it may know it has $10 to89


spend on a combination of get_ball and deliver_ball. In this case both get_ball and90


deliver_ball would be given RFS’s labeled with the contraint:91


RFS.get_ball + RFS.deliver_ball <= 1092


The issuance of RFS’s embodying constraints is different from (and generally93


carried out prior to) the evaluation of whether the constraints can be fulfilled.94


An ubergoal may rescind offers of reward for service at any time. And, generally,95


if a subgoal gets achieved and has not spent all the money it needed, the supergoal96


will not offer any more funding to the subgoal (until/unless it needs that subgoal97


achieved again).98


As there are no ultimate sources of RFS in OCP besides ubergoals, promise may99


be considered as a measure of “goal-related importance”.100


Transfer of RFS’s among Atoms is carried out by the GoalAttentionAllocation101


MindAgent.102


6.3 Feasibility Structures103


Next, there is a numerical data structure associated with goal Atoms, which is called104


the feasibility structure. The feasibility structure of an Atom G indicates the feasibility105


of achieving G as a goal using various amounts of effort. It contains triples of the106


form (t, p, E) indicating the truth value t of achieving goal G to degree p using effort107


E. Feasibility structures must be updated periodically, via scanning the links coming108


into an Atom G; this may be done by a FeasibilityUpdating MindAgent. Feasibility109


may be calculated for any Atom G for which there are links of the form:110


Implication111


Execution S112


G113
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6.3 Feasibility Structures 131


for some S. Once a schema has actually been executed on various inputs, its cost of114


execution on other inputs may be empirically estimated. But this is not the only case115


in which feasibility may be estimated. For example, if goal G inherits from goal G1,116


and most children (e.g. subgoals) of G1 are achievable with a certain feasibility, then117


probably G is achievable with a similar feasibility as well. This allows feasibility118


estimation even in cases where no plan for achieving G yet exists, e.g. if the plan can119


be produced via predicate schematization, but such schematization has not yet been120


carried out.121


Feasibility then connects with importance as follows. Important goals will get122


more STICurrency to spend, thus will be able to spawn more costly schemata. So,123


the GoalBasedSchemaSelection MindAgent, when choosing which schemata to push124


into the ActiveSchemaPool, will be able to choose more costly schemata correspond-125


ing to goals with more STICurrency to spend.126


6.4 GoalBasedSchemaSelection127


Next, the GoalBasedSchemaSelection (GBSS) selects schemata to be placed into the128


ActiveSchemaPool. It does this by choosing goals G, and then choosing schemata129


that are alleged to be useful for achieving these goals. It chooses goals via a fitness130


function that combines promise and feasibility. This involves solving an optimization131


problem: figuring out how to maximize the odds of getting a lot of goal-important132


stuff done within the available amount of (memory and space) effort. Potentially133


this optimization problem can get quite subtle, but initially some simple heuristics134


are satisfactory. (One subtlety involves handling dependencies between goals, as135


represented by constraint-bearing RFS’s.)136


Given a goal, the GBSS MindAgent chooses a schema to achieve that goal via137


the heuristic of selecting the one that maximizes a fitness function balancing the138


estimated effort required to achieve the goal via executing the schema, with the139


estimated probability that executing the schema will cause the goal to be achieved. AQ1140


When searching for schemata to achieve G, and estimating their effort, one factor141


to be taken into account is the set of schemata already in the ActiveSchemaPool.142


Some schemata S may simultaneously achieve two goals; or two schemata achieving143


different goals may have significant overlap of modules. In this case G may be able144


to get achieved using very little or no effort (no additional effort, if there is already145


a schema S in the ActiveSchemaPool that is going to cause G to be achieved). But146


if G “decides” it can be achieved via a schema S already in the ActiveSchemaPool,147


then it should still notify the ActiveSchemaPool of this, so that G can be added to148


S’s index (see below). If the other goal G1 that placed S in the ActiveSchemaPool149


decides to withdraw S, then S may need to hit up G1 for money, in order to keep150


itself in the ActiveSchemaPool with enough funds to actually execute.151
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132 6 Economic Goal and Action Selection


6.4.1 A Game-Theoretic Approach to Action Selection152


Min Jiang has observed that, mathematically, the problem of action selection (repre-153


sented in CogPrime as the problem of goal-based schema selection) can be modeled154


in terms of game theory, as follows:155


• the intelligent agent is one player, the world is another player156


• the agent’s model of the world lets it make probabilistic predictions of how the157


world may respond to what the agent does (i.e. to estimate what mixed strategy158


the world is following, considering the world as a game player)159


• the agent itself chooses schema probabilistically, so it’s also following a mixed160


strategy161


• so, in principle the agent can choose schema that it thinks will lead to a mixed162


Nash equilibrium.1163


But the world’s responses are very high-dimensional, which means that finding164


a mixed Nash equilibrium even approximately is a very hard computational prob-165


lem. Thus, in a sense, the crux of the problem seems to come down to feature166


identification. If the world’s response (real or predicted) can be represented as a167


low-dimensional set of features, then these features can be considered as the world’s168


“move” in the game... and the game theory problem becomes tractable via approxi-169


mation schemes. But without the reduction of the world to a low-dimensional set of170


features, finding the mixed Nash equilbrium even approximately will not be compu-171


tationally tractable...172


Some AI theorists would argue that this division into “feature identification”173


versus “action selection” is unnecessarily artificial; for instance, Hawkins [HB06]174


or Arel [ARC09b] might suggest to use a single hierarchical neural network to do175


both of them. But the brain after all contains many different regions, with different176


architectures and dynamics.... In the visual cortex, it seems that feature extraction177


and object classification are done separately. And it seems that in the brain, action178


selection has a lot to do with the basal ganglia, whereas feature extraction is done179


in the cortex. So the neural analogy provides some inspiration for an architecture in180


which feature identification and action selection are separated.181


There is literature discussing numerical methods for calculating approximate Nash182


equilibria; however, this is an extremely tricky topic in the CogPrime context because183


action selection must generally be done in real-time. Like perception processing, this184


may be an area calling for the use of parallel processing hardware. For instance, a185


neural network algorithm for finding mixed Nash equilibria could be implemented on186


a GPU supercomputer, enabling rapid real-time action selection based on a reduced-187


dimensionality model of the world produced by intelligent feature identification.188


Consideration of the application of game theory in this context brings out an189


important point, which is that to do reasonably efficient and intelligent action se-190


lection, the agent needs some rapidly-evaluable model of the world, i.e. some way191


1 In game theory, a Nash equilibrium is when no player can do better by unilaterally changing its
strategy.
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6.4 GoalBasedSchemaSelection 133


to rapidly evaluate the predicted response of the world to a hypothetical action192


by the agent. In the game theory approach (or any other sufficiently intelligent ap-193


proach), for the agent to evaluate fitness of a schema-set S for achieving certain goals194


in a certain context, it has to (explicitly or implicitly) estimate:195


• how the world will respond if the agent does S196


• how the agent could usefully respond to the world’s response (call this action-197


set S1)198


• how the world will respond to the agent doing S1199


• etc.200


and so to rapidly evaluate the fitness of S, the agent needs to be able to quickly201


estimate how the world will respond. This may be done via simulation, or it may202


be done via inference (which however will rarely be fast enough, unless with a203


very accurate inference control mechanism), or it may be done by learning some204


compacted model of the world as represented for instance in a hierarchical neural205


network.206


6.5 SchemaActivation207


And what happens with schemata that are actually in the ActiveSchemaPool? Let us208


assume that each of these schema is a collection of modules (subprograms), connected209


via ActivationLinks, which have semantics: (ActivationLink A B) means that if the210


schema that placed module A in the schema pool is to be completed, then after A211


is activated, B should be activated. (We will have more to say about schemata, and212


their modularization, in Chap. 7.)213


When a goal places a schema in the ActiveSchemaPool, it grants that schema an214


RFS equal in value to the total or some fraction of the promissory+real currency215


it has in its possession. The heuristics for determining how much currency to grant216


may become sophisticated; but initially we may just have a goal give a schema all its217


promissory currency; or in the case of a top-level supergoal, all its actual currency.218


When a module within a schema actually executes, then it must redeem some219


of its promissory currency to turn it into actual currency, because executing costs220


money (paid to the Lobe). Once a schema is done executing, if it hasn’t redeemed221


all its promissory currency, it gives the remainder back to the goal that placed it in222


the ActiveSchemaPool.223


When a module finishes executing, it passes promissory currency to the other224


modules to which it points with ActivationLinks.225


The network of modules in the ActiveSchemaPool is a digraph (whose links are226


ActivationLinks), because some modules may be shared within different overall227


schemata. Each module must be indexed via which schemata contain it, and each228


schema must be indexed via which goal(s) want it in the ActiveSchemaPool.229
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134 6 Economic Goal and Action Selection


6.6 GoalBasedSchemaLearning230


Finally, we have the process of trying to figure out how to achieve goals, i.e. trying to231


learn links between ExecutionLinks and goals G. This process should be focused on232


goals that have a high importance but for which feasible achievement-methodologies233


are not yet known. Predicate schematization is one way of achieving this; another is234


MOSES procedure evolution.235
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Chapter 7
Integrative Procedure Evaluation


7.1 Introduction0


Procedural knowledge must be learned, an often subtle and difficult process—but it1


must also be enacted. Procedure enaction is not as tricky a topic as procedure learning,2


but still is far from trivial, and involves the real-time interaction of procedures, during3


the course of execution, with other knowledge. In this brief chapter we explain4


how this process may be most naturally and flexibly carried out, in the context of5


CogPrime’s representation of procedures as programs (“Combo trees”).6


While this may seem somewhat of a “mechanical”, implementation-level topic,7


it also involves some basic conceptual points, on which CogPrime as an AGI design8


does procedure evaluation fundamentally differently from narrow-AI systems or9


conventional programming language interpreters. Basically, what makes CogPrime10


Combo tree evaluation somewhat subtle is due to the interfacing between the Combo11


evaluator itself and the rest of the CogPrime system.12


In the CogPrime design, Procedure objects (which contain Combo trees, and13


are associated with ProcedureNodes) are evaluated by ProcedureEvaluator objects.14


Different ProcedureEvaluator objects may evaluate the same Combo tree in different15


ways. Here we explain these various sorts of evaluation—how they work and what16


they mean.17 AQ1


7.2 Procedure Evaluators18


In this section we will mention three different ProcedureEvaluators:19


• Simple procedure evaluation20


• Effort-based procedure evaluation, which is more complex but is required for21


integration of inference with procedure evaluation22


• Adaptive evaluation order based procedure evaluation23


B. Goertzel et al., Engineering General Intelligence, Part 2, 135
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_7,
© Atlantis Press and the authors 2014
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136 7 Integrative Procedure Evaluation


In the following section we will delve more thoroughly into the interactions between24


inference and procedure evaluation.25


Another related issue is the modularization of procedures. This issue however is26


actually orthogonal to the distinction between the three ProcedureEvaluators men-27


tioned above. Modularity simply requires that particular nodes within a Combo tree28


be marked as “module roots”, so that they may be extracted from the Combo tree29


as a whole and treated as separate modules (called differently, sub-routines), if the30


ExecutionManager judges this appropriate.31


7.2.1 Simple Procedure Evaluation32


The SimpleComboTreeEvaluator simply does Combo tree evaluation as described33


earlier. When an Atom is encountered, it looks into the AtomTable to evaluate the34


object.35


In the case that a Schema refers to an ungrounded SchemaNode (that is not defined36


by a ComboTree as defined in Chap. 1), and an appropriate EvaluationLink value isn’t37


in the AtomTable, there’s an evaluation failure, and the whole procedure evaluation38


returns the truth value 〈.5, 0〉: i.e. a zero-weight-of-evidence truth value, which is39


equivalent essentially to returning no value.40


In the case that a Predicate refers to an ungrounded PredicateNode, and an41


appropriate EvaluationLink isn’t in the AtomTable, then some very simple “default42


thinking” is done, and it is assigned the truth value of the predicate on the given43


arguments to be the TruthValue of the corresponding PredicateNode. (which is de-44


fined as the mean truth value of the predicate across all arguments known to Cog-45


Prime.)46


7.2.2 Effort Based Procedure Evaluation47


The next step is to introduce the notion of “effort” the amount of effort that the48


CogPrime system must undertake in order to carry out a procedure evaluation.49


The notion of effort is encapsulated in Effort objects, which may take various forms.50


The simplest Effort objects measure only elapsed processing time; more advanced51


Effort objects take into consideration other factors such as memory usage.52


An effort-based Combo tree evaluator keeps a running total of the effort used in53


evaluating the Combo tree. This is necessary if inference is to be used to evaluate54


Predicates, Schema, Arguments, etc. Without some control of effort expenditure, the55


system could do an arbitrarily large amount of inference to evaluate a single Atom.56


The matter of evaluation effort is nontrivial because in many cases a given node57


of a Combo tree may be evaluated in more than one way, with a significant effort58


differential between the different methodologies. If a Combo tree Node refers to59


a predicate or schema that is very costly to evaluate, then the ProcedureEvaluator60
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7.2 Procedure Evaluators 137


managing the evaluation of the Combo tree must decide whether to evaluate it directly61


(expensive) or estimate the result using inference (cheaper but less accurate). This62


decision depends on how much effort the ProcedureEvaluator has to play with, and63


what percentage of this effort it finds judicious to apply to the particular Combo tree64


Node in question.65


In the relevant prototypes we built within OpenCog, this kind of decision was66


made based on some simple heuristics inside ProcedureEvaluator objects. However,67


it’s clear that, in general, more powerful intelligence must be applied here, so that68


one needs to have ProcedureEvaluators that—in cases of sub-procedures that are69


both important and highly expensive—use PLN inference to figure out how much70


effort to assign to a given subproblem.71


The simplest useful kind of effort-based Combo tree evaluator is the EffortInter-72


valComboTreeEvaluator, which utilizes an Effort object that contains three numbers73


(yes, no, max). The yes parameter tells it how much effort should be expended to74


evaluate an Atom if there is a ready answer in the AtomTable. The no parameter75


tells it how much effort should be expended in the case that there is not a ready76


answer in the AtomTable. The max parameter tells it how much effort should be77


expended, at maximum, to evaluate all the Atoms in the Combo tree, before giving78


up. Zero effort, in the simplest case, may be heuristically defined as simply looking79


into the AtomTable—though in reality this does of course take effort, and a more80


sophisticated treatment would incorporate this as a factor as well.81


Quantification of amounts of effort is nontrivial, but a simple heuristic guideline82


is to assign one unit of effort for each inference step. Thus, for instance,83


• (yes, no, max) = (0, 5, 1,000) means that if an Atom can be evaluated by AtomTable84


lookup, this is done, but if AtomTable lookup fails, a minimum of five inference85


steps are done to try to do the evaluation. It also says that no more than 1,00086


evaluations will be done in the course of evaluating the Combo tree.87


• (yes, no, max) = (3, 5, 1,000) says the same thing, but with the change that even88


if evaluation could be done by direct AtomTable lookup, three inference steps are89


tried anyway, to try to improve the quality of the evaluation.90


7.2.3 Procedure Evaluation with Adaptive Evaluation Order91


While tracking effort enables the practical use of inference within Combo tree eval-92


uation, if one has truly complex Combo trees, then a higher degree of intelligence is93


necessary to guide the evaluation process appropriately. The order of evaluation of94


a Combo tree may be determined adaptively, based on up to three things:95


• The history of evaluation of the Combo tree96


• Past history of evaluation of other Combo trees, as stored in a special AtomTable97


consisting only of relationships about Combo tree-evaluation-order probabilities98


• New information entering into CogPrime’s primary AtomTable during the course99


of evaluation100
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138 7 Integrative Procedure Evaluation


ProcedureEvaluator objects may be selected at runtime by cognitive schemata, and101


they may also utilize schemata and MindAgents internally. The AdaptiveEvalua-102


tionOrderComboTreeEvaluator is more complex than the other ProcedureEvaluators103


discussed, and will involve various calls to CogPrime MindAgents, particularly those104


concerned with PLN inference. WIKISOURCE:ProcedureExecutionDetails.105


7.3 The Procedure Evaluation Process106


Now we give a more thorough treatment of the procedure evaluation process, as107


embodied in the effort-based or adaptive-evaluation-order evaluators discussed108


above. The process of procedure evaluation is somewhat complex, because it en-109


compasses three interdependent processes:110


• The mechanics of procedure evaluation, which in the CogPrime design involves111


traversing Combo trees in an appropriate order. When a Combo tree node referring112


to a predicate or schema is encountered during Combo tree traversal, the process113


of predicate evaluation or schema execution must be invoked.114


• The evaluation of the truth values of predicates—which involves a combination115


of inference and (in the case of grounded predicates) procedure evaluation.116


• The computation of the truth values of schemata—which may involve inference117


as well as procedure evaluation.118


We now review each of these processes.119


7.3.1 Truth Value Evaluation120


What happens when the procedure evaluation process encounters a Combo tree Node121


that represents a predicate or compound term? The same thing as when some other122


CogPrime process decides it wants to evaluate the truth value of a PredicateNode or123


CompoundTermNode: the generic process of predicate evaluation is initiated.124


This process is carried out by a TruthValueEvaluator object. There are several125


varieties of TruthValueEvaluator, which fall into the following hierarchy:126


TruthValueEvaluator127


DirectTruthValueEvaluator (abstract)128


SimpleDirectTruthValueEvaluator129


InferentialTruthValueEvaluator (abstract)130


SimpleInferentialTruthValueEvaluator131


MixedTruthValueEvaluator132


A DirectTruthValueEvaluator evaluates a grounded predicate by directly execut-133


ing it on one or more inputs; an InferentialTruthValueEvaluator evaluates via infer-134


ence based on the previously recorded, or specifically elicited, behaviors of other135


319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


7.3 The Procedure Evaluation Process 139


related predicates or compound terms. A MixedTruthValueEvaluator contains ref-136


erences to a DirectTruthValueEvaluator and an InferentialTruthValueEvaluator, and137


contains a weight that tells it how to balance the outputs from the two.138


Direct truth value evaluation has two cases. In one case, there is a given argument139


for the predicate; then, one simply plugs this argument in to the predicate’s internal140


Combo tree, and passes the problem off to an appropriately selected ProcedureEval-141


uator. In the other case, there is no given argument, and one is looking for the truth142


value of the predicate in general. In this latter case, some estimation is required. It is143


not plausible to evaluate the truth value of a predicate on every possible argument,144


so one must sample a bunch of arguments and then record the resulting probabil-145


ity distribution. A greater or fewer number of samples may be taken, based on the146


amount of effort that’s been allocated to the evaluation process. It’s also possible to147


evaluate the truth value of a predicate in a given context (information that’s recorded148


via embedding in a ContextLink); in this case, the random sampling is restricted to149


inputs that lie within the specified context.150


On the other hand, the job of an InferentialTruthValueEvaluator is to use inference151


rather than direct evaluation to guess the truth value of a predicate (sometimes on152


a particular argument, sometimes in general). There are several different control153


strategies that may be applied here, depending on the amount of effort allocated.154


The simplest strategy is to rely on analogy, simply searching for similar predicates155


and using their truth values as guidance. (In the case where a specific argument156


is given, one searches for similar predicates that have been evaluated on similar157


arguments.) If more effort is available, then a more sophisticated strategy may be158


taken. Generally, an InferentialTruthValueEvaluator may invoke a SchemaNode that159


embodies an inference control strategy for guiding the truth value estimation process.160


These SchemaNodes may then be learned like any others.161


Finally, a MixedTruthValueEvaluator operates by consulting a DirectTruthVal-162


ueEvaluator and/or an InferentialTruthValueEvaluator as necessary, and merging the163


results. Specifically, in the case of an ungrounded PredicateNode, it simply returns164


the output of the InferentialTruthValueEvaluator it has chosen. But in the case of a165


GroundedPredicateNode, it returns a weighted average of the directly evaluated and166


inferred values, where the weight is a parameter. In general, this weighting may be167


done by a SchemaNode that is selected by the MixedTruthValueEvaluator; and these168


schemata may be adaptively learned.169


7.3.2 Schema Execution170


Finally, schema execution is handled similarly to truth value evaluation, but it’s a171


bit simpler in the details. Schemata have their outputs evaluated by SchemaExecutor172


objects, which in turn invoke ProcedureEvaluator objects. We have the hierarchy:173


SchemaExecutor174


DirectSchemaExecutor (abstract)175


SimpleDirectSchemaExecutor176
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140 7 Integrative Procedure Evaluation


InferentialSchemaExecutor (abstract)177


SimpleInferentialSchemaExecutor178


MixedSchemaExecutor179


A DirectSchemaExecutor evaluates the output of a schema by directly executing180


it on some inputs; an InferentialSchemaExecutor evaluates via inference based on181


the previously recorded, or specifically elicited, behaviors of other related schemata.182


A MixedSchemaExecutor contains references to a DirectSchemaExecutor and an183


InferentialSchemaExecutor, and contains a weight that tells it how to balance the184


outputs from the two (not always obvious, depending on the output type in question).185


Contexts may be used in schema execution, but they’re used only indirectly, via186


being passed to TruthValueEvaluators used for evaluating truth values of Predicate187


Nodes or CompoundTermNodes that occur internally in schemata being executed.188
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Chapter 8
Perceptual and Motor Hierarchies


8.1 Introduction0


Having discussed declarative, attentional, intentional and procedural knowledge, we1


are left only with sensorimotor and episodic knowledge to complete our treatment2


of the basic CogPrime “cognitive cycle” via which a CogPrime system can interact3


with an environment and seek to achieve its goals therein.4


The cognitive cycle in its most basic form leaves out the most subtle and unique5


aspects of CogPrime, which all relate to learning in various forms. But nevertheless it6


is the foundation on which CogPrime is built, and within which the various learning7


processes dealing with the various forms of memory all interact. The CogPrime8


cognitive cycle is more complex in many respects than it would need to be if not for9


the need to support diverse forms of learning. And this learning-driven complexity10


is present to some extent in the contents of the present chapter as well. If learning11


weren’t an issue, perception and actuation could more likely be treated as wholly12


(or near-wholly) distinct modules, operating according to algorithms and structures13


independent of cognition. But our suspicion is that this sort of approach is unlikely to14


be adequate for achieving high levels of perception and action capability under real-15


world conditions. Instead, we suspect, it’s necessary to create perception and action16


processes that operate fairly effectively on their own, but are capable of cooperating17


with cognition to achieve yet higher levels of functionality.18


And the benefit in such an approach goes both ways. Cognition helps perception19


and actuation deal with difficult cases, where the broad generalization that is cog-20


nition’s specialty is useful for appropriately biasing perception and actuation based21


on subtle environmental regularities. And, the patterns involved in perception and22


actuation help cognition, via supplying a rich reservoir of structures and processes23


to use as analogies for reasoning and learning at various levels of abstraction. The24


prominence of visual and other sensory metaphors in abstract cognition is well known25


[Arn69, Gar00]; and according to Lakoff and Nunez [LN00] even pure mathematics26


is grounded in physical perception and action in very concrete ways.27


B. Goertzel et al., Engineering General Intelligence, Part 2, 143
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_8,
© Atlantis Press and the authors 2014
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144 8 Perceptual and Motor Hierarchies


We begin by discussing the perception and action mechanisms required to inter-28


face CogPrime with an agent operating in a virtual world. We then turn to the more29


complex mechanisms needed to effectively interface CogPrime with a robot possess-30


ing vaguely humanoid sensors and actuators, focusing largely on vision processing.31


This discussion leads up to deeper discussions in Chaps. 9–11 where we describe in32


detail the strategy that would be used to integrate CogPrime with the DeSTIN frame-33


work for AGI perception/action (which was described in some detail in Chap. 534


of Vol. 5).35AQ1


In terms of the integrative cognitive architecture presented in Chap. 6 of Vol. 5, the36


material presented in the chapters in this section has mostly to do with the percep-37


tual and motor hierarchies, also touching on the pattern recognition and imprinting38


processes that play a role in the interaction between these hierarchies and the concep-39


tual memory. The commitment to a hierarchical architecture for perception and action40


is not critical for the CogPrime design as a whole—one could build a CogPrime with41


non-hierarchical perception and action modules, and the rest of the system would be42


about the same. The role of hierarchy here is a reflection of the obvious hierarchical43


structure of the everyday human environment, and of the human body. In a world44


marked by hierarchical structure, a hierarchically structured perceptual system is45


advantageous. To control a body marked by hierarchical structure, an hierarchically46


structured action system is advantageous. It would be possible to create a CogPrime47


system without this sort of in-built hierarchical structure, and have it gradually self-48


adapt in such a way as to grow its own internal hierarchical structure, based its49


experience in the world. However, this might be a case of pushing the “experiential50


learning” perspective too far. The human brain definitely has hierarchical structure51


built into it; it doesn’t need to learn to experience the world in hierarchical terms; and52


there seems to be no good reason to complicate an AGI’s early development phase53


by forcing it to learn the basic facts of the world’s and its body’s hierarchality.54


8.2 The Generic Perception Process55


We have already discussed the generic action process of CogPrime, in Chap. 7 on56


procedure evaluation. Action sequences are generated by Combo programs, which57


execute primitive actions, including those corresponding to actuator control signals as58


well as those corresponding to, say, mathematical or cognitive operations. In some59


cases the actuator control signals may directly dictate movements; in other cases60


they may supply inputs and/or parameters to other software (such as DeSTIN, in the61


integrated CogBot architecture to be described below).62


What about the generic perception process? We distinguish sensation from per-63


ception, in a CogPrime context, by defining64


• perception as what occurs when some signal from the outside world registers itself65


in either: a CogPrime Atom, or some other sort of node (e.g. a DeSTIN node) that66


is capable of serving as the target of a CogPrime Link.67
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8.2 The Generic Perception Process 145


• sensation as any “preprocessing” that occurs between the impact of some signal68


on some sensor, and the creation of a corresponding perception.69


Once perceptual Atoms have been created, various perceptual MindAgents comes70


into play, taking perceptual schemata (schemata whose arguments are perceptual71


nodes or relations therebetween) and applying them to Atoms recently created (cre-72


ating appropriate ExecutionLinks to store the results). The need to have special,73


often modality-specific perception MindAgents to do this, instead of just leaving it74


to the generic SchemaExecution MindAgent, has to do with computational efficiency,75


scheduling and parameter settings. Perception MindAgents are doing schema execu-76


tion urgently, and doing it with parameter settings tuned for perceptual processing.77


This means that, except in unusual circumstances, newly received stimuli will be78


processed immediately by the appropriate perceptual schemata.79


Some newly formed perceptual Atoms will have links to existing atoms, ready-80


made at their moment of creation. CharacterInstanceNodes and Number Instance81


Nodes are examples; they are born linked to the appropriate CharacterNodes and82


NumberNodes. Of course, atoms representing perceived relationships, perceived83


groupings, etc., will not have ready-made links and will have to grow such links84


via various cognitive processes. Also, the ContextFormation MindAgent looks at85


perceptual atom creation events and creates Context Nodes accordingly; and this86


must be timed so that the Context Nodes are entered into the system rapidly, so that87


they can be used by the processes doing initial-stage link creation for new perceptual88


Atoms.89


In a full CogPrime configuration, newly created perceptual nodes and perceptual90


schemata may reside in a special perception-oriented Units, so as to ensure that91


perceptual processes occur rapidly, not delayed by slower cognitive processes.92


8.2.1 The ExperienceDB93


Separate from the ordinary perception process, it may also valuable for there to be a94


direct route from the system’s sensory sources to a special “ExperienceDB” database95


that records all of the system’s experience. This does not involve perceptual schemata96


at all, nor is it left up to the sensory source; rather, it is carried out by the CogPrime97


server at the point where it receives input from the sensory source. This experience98


database is a record of what the system has seen in the past, and may be mined by99


the system in the future for various purposes. The creation of new perceptual atoms100


may also be stored in the experience database, but this must be handled with care as101


it can pose a large computational expense; it will often be best to store only a subset102


of these.103


Obviously, such an ExperienceDB is something that has no correlate in the human104


mind/brain. This is a case where CogPrime takes advantage of the non-brainlike105


properties of its digital computer substrate. The CogPrime perception process is106


intended to work perfectly well without access to the comprehensive database of107


319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


146 8 Perceptual and Motor Hierarchies


experiences potentially stored in the ExperienceDB. However, a complete record of108


a mind’s experience is a valuable thing, and there seems no reason for the system109


not to exploit it fully. Advantages like this allow the CogPrime system to partially110


compensate for its lack of some of the strengths of the human brain as an AI platform,111


such as massive parallelism.112


8.3 Interfacing CogPrime with a Virtual Agent113


We now discuss some of the particularities of connecting CogPrime to a virtual114


world (such as Second Life, Multiverse, or Unity3D, to name some of the virtual115


world/gaming platforms to which OpenCog has already been connected in practice).116


8.3.1 Perceiving the Virtual World117


The most complex, high-bandwidth sensory data coming in from a typical virtual118


world is visual data, so that will be our focus here. We consider three modes in which119


a virtual world may present visual data to CogPrime (or any other system):120


• Object vision: CogPrime receives information about polygonal objects and their121


colors, textures and coordinates (each object is a set of contiguous polygons, and122


sometimes objects have “type” information, e.g. cube or sphere).123


• Polygon vision: CogPrime receives information about polygons and their colors,124


textures and coordinates.125


• Pixel vision: CogPrime receives information about pixels and their colors and126


coordinates.127


In each case, coordinates may be given either in “world coordinates” or in “relative128


coordinates” (relative to the gaze). This distinction is not a huge deal since within129


an architecture like CogPrime, supplying schemata for coordinate transformation130


is trivial; and, even if treated as a machine learning task, this sort of coordinate131


transformation is not very difficult to learn. Our current approach is to prefer relative132


coordinates, as this approach is more natural in terms of modern Western human133


psychology; but we note that in some other cultures world coordinates are preferred134


and considered more psychologically natural.135


Currently we have not yet done any work with pixel vision in virtual worlds. We136


have been using object vision for most of our experiments, and consider a combi-137


nation of polygon vision and object vision as the “right” approach for early AGI138


experiments in a virtual worlds context. The problem with pure object vision is that139


it removes the possibility for CogPrime to understand object segmentation. If, for140


instance, CogPrime perceives a person as a single object, then how can it recognize a141


head as a distinct sub-object? Feeding the system a pre-figured hierarchy of objects,142
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8.3 Interfacing CogPrime with a Virtual Agent 147


sub-objects and so forth seems inappropriate in the context of an experiential learning143


system. On the other hand, the use of polygon vision instead of pixel vision seems144


to meet no such objections. This may take different forms in different platforms. For145


instance, in our work with a Minecraft-like world in the Unity3D environment, we146


have relied heavily on virtual objects made of blocks, in which case the polygons of147


most interest are the faces of the blocks.148


Momentarily sticking with the object vision case for simplicity, examples of the149


perceptions emanating from the virtual world perceptual preprocessor into CogPrime150


are things like:151


1. I am at world-coordinates $W152


2. Object with metadata $M is at world-coordinates $W153


3. Part of object with metadata $M is at world-coordinates $W154


4. Avatar with metadata $M is at world-coordinates $W155


5. Avatar with metadata $M is carrying out animation $A156


6. Statements in natural language, from the pet owner.157


The perceptual preprocessor takes these signals and translates them into Atoms,158


making use of the special Atomspace mechanisms for efficiently indexing spatial159


and temporal information (the and) as appropriate.160


8.3.1.1 Transforming Real-World Vision into Virtual Vision161


One approach to enabling CogPrime to handle visual data coming from the real world162


is to transform this data into data of the type CogPrime sees in the virtual world.163


While this is not the approach we are taking in our current work, we do consider it164


a viable strategy, and we briefly describe it here.165


One approach along these lines would involve multiple phases:166


• Use a camera eye and a LiDAR (Light Detection And Ranging, used for high-167


resolution topographic mapping) sensor in tandem, so as to avoid having to deal168


with stereo vision.169


• Using the above two inputs, create a continuous 3D contour map of the perceived170


visual world.171


• Use standard mathematical transforms to polygon-ize the 3D contour map into a172


large set of small polygons.173


• Use heuristics to merge together the small polygons, obtaining a smaller set of174


larger polygons (but retaining the large set of small polygons for the system to175


reference in cases where a high level of detail is necessary).176


• Feed the polygons into the perceptual pattern mining subsystem, analogously to177


the polygons that come in from virtual-world.178


In this approach, preprocessing is used to make the system see the physical world in a179


manner analogous to how it sees the virtual-world world. This is quite different from180


the DeSTIN-based approach to CogPrime vision that we will discuss in Chap. 10,181


but may well also be feasible.182
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148 8 Perceptual and Motor Hierarchies


8.3.2 Acting in the Virtual World183


Complementing the perceptual preprocessor is the action postprocessor: code that184


translates the actions and action-sequences generated by CogPrime into instructions185


the virtual world can understand (such as “launch thus-and-thus animation”). Due to186


the particularities of current virtual world architectures, the current OpenCogPrime187


system carries out actions via executing pre-programmed high-level procedures, such188


as “move forward one step”, “bend over forward” and so forth. Example action189


commands are:190


1. Move ($D, $S): $D is a distance, $S is a speed191


2. Turn ($A, $S): $A is an angle, $S is a speed192


3. Pitch ($A, $S): turn vertically up/down... [for birds only]193


4. Jump ($D, $H, $S): $H is a maximum height, at the center of the jump194


5. Say ($T), $T is text: for agents with linguistic capability, which is not enabled in195


the current version196


6. Pick up($O): $O is an object197


7. Put down($O).198


This is admittedly a crude approach, and if a robot simulator rather than a typical199


virtual world were used, it would be possible for CogPrime to emanate detailed servo-200


motor control commands rather than high-level instructions such as these. However,201


as noted in Chap. 16 of Vol. 5, at the moment there is no such thing as a “massive202


multiplayer robot simulator”, and so the choice is between a multi-participant virtual203


environment (like the Multiverse environment currently used with the PetBrain) or204


a small-scale robot simulator. Our experiments with virtual worlds so far have used205


the high-level approach described here; but we are also experimenting with using206


physical robots and corresponding simulators, as will be described below.207


8.4 Perceptual Pattern Mining208


Next we describe how perceptual pattern mining may be carried out, to recognize209


meaningful structures in the stream of data produced via perceiving a virtual or210


physical world.211


In this subsection we discuss the representation of knowledge, and then in the212


following subsection we discuss the actual mining. We discuss the process in the213


context of virtual-world perception as outlined above, but the same processes apply to214


robotic perception, whether one takes the “physical world as virtual world” approach215


described above or a different sort of approach such as the DeSTIN hybridization216


approach described below.217
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8.4 Perceptual Pattern Mining 149


8.4.1 Input Data218


First, we may assume that each perception is recorded as set of “transactions”, each219


of which is of the form220


Time , 3D coordinates , object type221


or222


Time , 3D coordinates , action type223


Each transaction may also come with an additional list of (attribute, value) pairs,224


where the list of attributes is dependent upon the object or action type. Transactions225


are represented as Atoms, and don’t need to be a specific Atom type—but are referred226


to here by the special name transactions simply to make the discussion clear.227


Next, define a transaction template as a transaction with location and time infor-228


mation set to wild cards—and potentially, some other attributes set to wild cards.229


(These are implemented in terms of Atoms involving VariableNodes.)230


For instance, some transaction templates in the current virtual-world might be231


informally represented as:232


• Reward233


• Red cube234


• Kick235


• Move_forward236


• Cube237


• Cube, size 5238


• Me239


• Teacher.240


8.4.2 Transaction Graphs241


Next we may conceive a transaction graph, whose nodes are transactions and whose242


links are labeled with labels like after, SimAND, SSeqAND (short for Simultane-243


ousSequentialAND), near, in_front_of, and so forth (and whose links are weighted244


as well).245


We may also conceive a transaction template graph, whose nodes are transaction246


templates, and whose links are the same as in the transaction graph. Examples of247


transaction template graphs are248


near(Cube , Teacher)249


250


SSeqAND(move_forward , Reward)251


where Cube, Teacher, etc are transaction templates since Time and 3D coordinates252


are left unspecified.253
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150 8 Perceptual and Motor Hierarchies


And finally, we may conceive a transaction template relationship graph (TTRG),254


whose nodes may be any of: transactions; transaction templates; basic spatiotemporal255


predicates evaluated at tuples of transactions or transaction templates. For instance256


SimAND(near(Cube , Teacher), above(Cube , Chair))257


8.4.3 Spatiotemporal Conjunctions258


Define a temporal conjunction as a conjunction involving SimultaneousAND and259


SequentialAND operators (including SSeqAND as a special case of SeqAND: the260


special case that interests us in the short term). The conjunction is therefore ordered,261


e.g.262


A SSeqAND B SimAND C SSeqAND D263


We may assume that the order of operations favors SimAND, so that no paren-264


thesizing is necessary.265


Next, define a basic spatiotemporal conjunction as a temporal conjunction that266


conjoins terms that are either267


• transactions, or268


• transaction templates, or269


• basic spatiotemporal predicates applied to tuples of transactions or transaction270


templates.271


i.e. a basic spatiotemporal conjunction is a temporal conjunction of nodes from the272


transaction template relationship graph.273


An example would be:274


(hold ball) SimAND ( near(me , teacher) ) SSeqAND275


Reward276


This assumes that the hold action has an attribute that is the type of object held,277


so that278


hold ball279


in the above temporal conjunction is a shorthand for the transaction template280


specified by281


action type: hold282


283


object_held_type: ball284


This example says that if the agent is holding the ball and is near the teacher then285


shortly after that, the agent will get a reward.286
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8.4 Perceptual Pattern Mining 151


8.4.4 The Mining Task287


The perceptual mining task, then, is to find basic spatiotemporal conjunctions that288


are interesting. What constitutes interestingness is multifactorial, and includes.289


• involves important Atoms (e.g. Reward)290


• has a high temporal cohesion (i.e. the strength of the time relationships embodied291


in the SimAND and SeqAND links is high)292


• has a high spatial cohesion (i.e. the near( ) relationships have high strength)293


• has a high frequency294


• has a high surprise value (its frequency is far from what would be predicted by its295


component sub-conjunctions).296


Note that a conjunction can be interesting without satisfying all these criteria; e.g. if297


it involves something important and has a high temporal cohesion, we want to find298


it regardless of its spatial cohesion.299


In preliminary experiments we have worked with a provisional definition of “inter-300


estingness” as the combination of frequency and temporal cohesion, but this must be301


extended; and one may even wish to have the combination function optimized over302


time (slowly) where the fitness function is defined in terms of the STI and LTI of the303


concepts generated.304


8.4.4.1 A Mining Approach305


One tractable approach to perceptual pattern mining is greedy and iterative, involving306


the following steps:307


1. Build an initial transaction template graph G.308


2. Greedily mine some interesting basic spatiotemporal conjunctions from it,309


adding each interesting conjunction found as a new node in G (so that G becomes310


a transaction template relationship graph), repeating step 2 until boredom results311


or time runs out.312


The same TTRG may be maintained over time, but of course will require a robust313


forgetting mechanism once the history gets long or the environment gets nontrivially314


complex.315


The greedy mining step may involve simply grabbing SeqAND or SimAND links316


with probability determined by the (importance and/or interestingness) of their tar-317


gets, and the probabilistic strength and temporal strength of the temporal AND rela-318


tionship, and then creating conjunctions based on these links (which then become319


new nodes in the TTRG, so they can be built up into larger conjunctions).320


319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


152 8 Perceptual and Motor Hierarchies


8.5 The Perceptual-Motor Hierarchy321


The perceptual pattern mining approach described above is “flat”, in the sense that it322


simply proposes to recognize patterns in a stream of perceptions, without imposing323


any kind of explicitly hierarchical structure on the pattern recognition process or324


the memory of perceptual patterns. This is different from how the human visual325


system works, with its clear hierarchical structure, and also different from many326


contemporary vision architectures, such as DeSTIN or Hawkins’ Numenta system327


which also utilizes hierarchical neural networks.328


However, the approach described above may be easily made hierarchical within329


the CogPrime architecture, and this is likely the most effective way to deal with com-330


plex visual scenes. Most simply, in this approach, a hierarchy may be constructed331


corresponding to different spatial regions, within the visual field. The Region Nodes332


at the lowest level of the hierarchy correspond to small spatial regions, the ones at333


the next level up correspond to slightly larger spatial regions, and so forth. Each334


RegionNode also correspond to a certain interval of time, and there may be differ-335


ent RegionNodes corresponding to the same spatial region but with different time-336


durations attached to them. RegionNodes may correspond to overlapping rather than337


disjoint regions.338


Within each region mapped by a RegionNode, then, perceptual pattern mining339


as defined in the previous section may occur. The patterns recognized in a region340


are linked to the corresponding RegionNode—and are then fed as inputs to the341


RegionNodes corresponding to larger, encompassing regions; and as suggestions-to-342


guide-pattern-recognition to nearby RegionNodes on the same level. This architec-343


ture involves the fundamental hierarchical structure/dynamic observed in the human344


visual cortex. Thus, the hierarchy incurs a dynamic of patterns-within-patterns-345


within-patterns, and the heterarchy incurs a dynamic of patterns-spawning-similar-346


patterns.347


Also, patterns found in a RegionNode should be used to bias the pattern-search in348


the RegionNodes corresponding to smaller, contained regions: for instance, if many349


of the sub-regions corresponding to a certain region have revealed parts of a face,350


then the pattern-mining processes in the remaining sub-regions may be instructed to351


look for other face-parts.352


This architecture permits the hierarchical dynamics utilized in standard hierarchi-353


cal vision models, such as Jeff Hawkins’ and other neural net models, but within the354


context of CogPrime’s pattern-mining approach to perception. It is a good example355


of the flexibility intrinsic to the CogPrime architecture.356


Finally, why have we called it a perceptual-motor hierarchy above? This is357


because, due to the embedding of the perceptual hierarchy in CogPrime’s general358


Atom-network, the percepts in a certain region will automatically be linked to actions359


occurring in that region. So, there may be some perception-cognition-action inter-360


play specific to a region, occurring in parallel with the dynamics in the hierarchy of361


multiple regions. Clearly this mirrors some of the complex dynamics occurring in the362


human brain, and is also reflected in the structure of sophisticated perceptual-motor363


approaches like DeSTIN, to be discussed below.364
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8.6 Object Recognition from Polygonal Meshes 153


8.6 Object Recognition from Polygonal Meshes365


Next we describe a more specific perceptual pattern recognition algorithm—a strat-366


egy for identifying objects in a visual scene that is perceived as a set of polygons. It367


is not a thoroughly detailed algorithmic approach, but rather a high-level description368


of how this may be done effectively within the CogPrime design. It is offered here369


largely as an illustration of how specialized perceptual data processing algorithms370


may be designed and implemented within the CogPrime framework.371


We deal here with an agent whose perception of the world, at any point in time,372


is understood to consist of a set of polygons, each one described in terms of a list of373


corners. The corners may be assumed to be described in coordinates relative to the374


viewing eye of the agent.375


What we mean by “identifying objects” here is something very simple. We don’t376


mean identifying that a particular object is a chair, or is Ben’s brown chair, or any-377


thing like that—we simply mean identifying that a given collection of polygons is378


meaningfully grouped into an object. That is the task considered here. The object379


could be a single block, it could be a person, or it could be a tower of blocks (which380


appears as a single object until it is taken apart).381


Of course, not all approaches to polygon-based vision processing would require382


this sort of phase: it would be possible, as an alternative, to simply compare the383


set of polygons in the visual field to a database of prior experience and then do384


object identification (in the present sense) based on this database-comparison. But385


in the approach described in this section, one begins instead with an automated386


segmentation of the set of perceived polygons into a set of objects.387


8.6.1 Algorithm Overview388


The algorithm described here falls into three stages:389


1. Recognizing PersistentPolygonNodes (PPNodes) from PolygonNodes.390


2. Creating Adjacency Graphs from PPNodes.391


3. Clustering in the Adjacency Graph.392


Each of these stages involves a bunch of details, not all of which have been fully393


resolved: this section just gives a conceptual overview.394


We will speak in terms of objects such as PolygonNode, PPNode and so forth,395


because inside the CogPrime AI engine, observed and conceived entities are repre-396


sented as nodes in an graph. However, this terminology is not very important here,397


and what we call a PolygonNode here could just as well be represented in a host of398


other ways, within the overall CogPrime framework.399
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154 8 Perceptual and Motor Hierarchies


8.6.2 Recognizing PersistentPolygonNodes400


from PolygonNodes401


A PolygonNode represents a polygon observed at a point in time. A PPNode repre-402


sents a series of PolygonNodes that are heuristically guessed to represent the same403


PolygonNode at different moments in time.404


Before “object permanence” is learned, the heuristics for recognizing PPNodes405


will only work in the case of a persistent polygon that, over an interval of time, is406


experiencing relative motion within the visual field, but is never leaving the visual407


field. For example some reasonable heuristics are: If P1 occurs at time t, P2 occurs408


at time s where s is very close to t, and P1 are similar in shape, size and color and409


position, then P1 and P2 should be grouped together into the same PPNode.410


More advanced heuristics would deal carefully with the case where some of these411


similarities did not hold, which would allow us to deal e.g. with the case where an412


object was rapidly changing color.413


In the case where the polygons are coming from a simulation world like OpenSim,414


then from our positions as programmers and world-masters, we can see that what a415


PPNode is supposed to correspond to is a certain side of a certain OpenSim object;416


but it doesn’t appear immediately that way to CogPrime when controlling an agent417


in OpenSim since CogPrime isn’t perceiving OpenSim objects, it’s perceiving poly-418


gons. On the other hand, in the case where polygons are coming from software that419


postprocesses the output of a LiDAR based vision system, then the piecing together420


of PPNodes from PolygonNodes is really necessary.421


8.6.3 Creating Adjacency Graphs from PPNodes422


Having identified PPNodes, we may then draw a graph between PPNodes, a PPGraph423


(also called an “Adjacency Graph”), wherein the links are AdjacencyLinks (with424


weights indicating the degree to which the two PPNodes tend to be adjacent, over425


time). A more refined graph might also involve SpatialCoordinationLinks (with426


weights indicating the degree to which the vector between the centroids of the two427


PPNodes tends to be consistent over time).428


We may then use this graph to do object identification:429


• First-level objects may be defined as clusters in the graph of PPNodes.430


• One may also make a graph between first-level objects, an ObjectGraph with the431


same kinds of links as in the PPGraph. Second-level objects may be defined as432


clusters in the ObjectGraph.433


The “strength” of an identified object may be assigned as the “quality” of the cluster434


(measured in terms of how tight the cluster is, and how well separated from other435


clusters.)436
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8.6 Object Recognition from Polygonal Meshes 155


As an example, consider a robot with two parts: a body and a head. The whole437


body may have a moderate strength as a first-level object, but the head and body438


individually will have significantly greater strengths as first-level objects. On the439


other hand, the whole body should have a pretty strong strength as a second-level440


object.441


It seems convenient (though not necessary) to have a PhysicalObjectNode type442


to represent the objects recognized via clustering; but the first versus second level443


object distinction should not need to be made on the Atom type level.444


Building the adjacency graph requires a mathematical formula defining what it445


means for two PPNodes to be adjacent. Creating this formula may require a little446


tuning. For instance, the adjacency between two PPNodes PP1 and PP2 may be447


defined as the average over time of the adjacency of the PolygonNodes PP1(t) and448


PP2(t) observed at each time t. (A p′th power average1 may be used here, and dif-449


ferent values of p may be tried.) Then, the adjacency between two (simultaneous)450


PolygonNodes P1 and P2 may be defined as the average over all x in P1 of the mini-451


mum over all y in P2 of sim(x, y), where sim(,) is an appropriately scaled similarity452


function. This latter average could arguably be made a maximum; or perhaps even453


better a p′th power average with large p, which approximates a maximum.454


8.6.4 Clustering in the Adjacency Graph455


As noted above, the idea is that objects correspond to clusters in the adjacency456


graph. This means we need to implement some hierarchical clustering algorithm457


that is tailored to find clusters in symmetric weighted graphs. Probably some decent458


algorithms of this character exist, if not it would be fairly easy to define one, e.g. by459


mapping some standard hierarchical clustering algorithm to deal with graphs rather460


than vectors.461


Clusters will then be mapped into PhysicalObjectNodes, interlinked appropriately462


via PhysicalPartLinks and AdjacencyLinks (e.g. there would be a PhysicalPartLink463


between the PhysicalObjectNode representing a head and the PhysicalObjectNode464


representing a body [where the body is considered as including the head]).465


8.6.5 Discussion466


It seems probable that, for simple scenes consisting of a small number of simple467


objects, clustering for object recognition will be fairly unproblematic. However,468


there are two cases that are potentially tricky:469


1 the p′th power average is defined as p
√∑


X p .
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156 8 Perceptual and Motor Hierarchies


• Sub-objects: e.g. the head and torso of a body, which may move separately; or the470


nose of the head, which may wiggle; or the legs of a walking dog; etc.471


• Coordinated objects: e.g. if a character’s hat is on a table, and then later on his472


head, then when it’s on his head we basically want to consider him and his hat as473


the same object, for some purposes.474


These examples show that partitioning a scene into objects is a borderline-cognitive475


rather than purely lower-level-perceptual task, which cannot be hard-wired in any476


very simple way.477


We also note that, for complex scenes, clustering may not work perfectly for478


object recognition and some reasoning may be needed to aid with the process. Intu-479


itively, these may correspond to scenes that, in human perceptual psychology, require480


conscious attention and focus in order to be accurately and usefully perceived.481


8.7 Interfacing the Atomspace with a Deep Learning482


Based Perception-Action Hierarchy483


We have discussed how one may do perception processing such as object recognition484


within the Atomspace, and this is indeed a viable strategy. But an alternate approach485


is also interesting, and likely more valuable in the case of robotic perception/action:486


build a separate perceptual-motor hierarchy, and link it in with the Atomspace. This487


approach is appealing in large part because a lot of valuable and successful work488


has already been done using neural networks and related architectures for perception489


and actuation. And it is not necessarily contradictory to doing perception processing490


in the Atomspace—obviously, one may have complementary, synergetic perception491


processing occurring in two different parts of the architecture.492


This section reviews some general ideas regarding the interfacing of CogPrime493


with deep learning hierarchies for perception and action; the following chapter then494


discusses one example of this in detail, involving the DeSTIN deep learning archi-495


tecture.496


8.7.1 Hierarchical Perception Action Networks497


CogPrime could be integrated with a variety of different hierarchical perception/498


action architectures. For the purpose of this section, however, we will consider a class499


of architectures that is neither completely general nor extremely specific. Many of the500


ideas to be presented here are in fact more broadly applicable beyond the architecture501


described here.502


The following assumptions will be made about the HPANs (Hierarchical503


Perception/Action Network) to be hybridized with CogPrime. It may be best to use504


multiple HPANs, at least one for declarative/sensory/episodic knowledge (we’ll call505
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8.7 Interfacing the Atomspace 157


this the “primary HPAN”) and one for procedural knowledge. A HPAN for inten-506


tional knowledge (a goal hierarchy; in DeSTIN called the “critic hierarchy”) may be507


valuable as well. We assume that each HPAN has the properties:508


1. It consists of a network of nodes, endowed with a learning algorithm, whose509


connectivity pattern is largely but not entirely hierarchical (and whose hierarchy510


contains both feedback, feedforward and lateral connections).511


2. It contains a set of input nodes, receiving perceptual inputs, at the bottom of the512


hierarchy.513


3. It has a set of output nodes, which may span multiple levels of the hierarchy.514


The “output nodes” indicate informational signals to cognitive processes lying515


outside the HPAN, or else control signals to actuators, which may be internal or516


external.517


4. Other nodes besides I/O nodes may potentially be observed or influenced by518


external processes; for instance they may receive stimulation.519


5. Link weights in the HPAN get updated via some learning algorithm that is roughly520


speaking “statistically Hebbian”, in the sense that on the whole when a set of nodes521


get activated together for a period of time, they will tend to become attractors.522


By an attractor we mean: a set S of nodes such that the activation of a subset of523


S during a brief interval tends to lead to the activation of the whole set S during524


a reasonably brief interval to follow.525


6. As an approximate but not necessarily strict rule, nodes higher in the hierarchy526


tend to be involved in attractors corresponding to events or objects localized in527


larger spacetime regions.528


Examples of specific hierarchical architectures broadly satisfying these requirements529


are the visual pattern recognition networks constructed by Hawkins [HB06] and530


[PCP00], and Arel’s DeSTIN system discussed earlier (and in more depth in follow-531


ing chapters). The latter appears to fit the requirements particularly snugly due to532


having dynamics very well suited to the formation of a complex array of attractors,533


and a richer methodology for producing outputs. These are all not only HPANs but534


have a more particular structure that in Chap. 9 is called a Compositional Spatiotem-535


poral Deep Learning Network or CSDLN.536


The particulars of the use of HPANs with OpenCog are perhaps best explained537


via enumeration of memory types and control operations.538


8.7.2 Declarative Memory539


The key idea here is linkage of primary HPAN attractors to CogPrime540


ConceptNodes via MemberLinks. This is in accordance with the notion of glo-541


cal memory, in the language of which the HPAN attractors are the maps and the542


corresponding ConceptNodes are the keys. Put simply, when a HPAN attractor is543


recognized, MemberLinks are created between the HPAN nodes comprising the544
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158 8 Perceptual and Motor Hierarchies


main body of the attractor, and a ConceptNode in the AtomTable representing the545


attractor. MemberLink weights may be used to denote fuzzy attractor membership.546


Activation may spread from HPAN nodes to ConceptNodes, and STI may spread547


from ConceptNodes to HPAN nodes; a conversion rate between HPAN activation548


and STI currency must be maintained by the CogPrime central bank (see Chap. 5),549


for ECAN purposes.550


Both abstract and concrete knowledge may be represented in this way. For551


instance, the Eiffel Tower would correspond to one attractor, the general shape of552


the Eiffel Tower would correspond to another, and the general notion of a “tower”553


would correspond to yet another. As these three examples are increasingly abstract,554


the corresponding attractors would be weighted increasingly heavily on the upper555


levels of the hierarchy.556


8.7.3 Sensory Memory557


CogPrime may also use its primary HPAN to store memories of sense-perceptions and558


low-level abstractions therefrom. MemberLinks may join concepts in the AtomTable559


to percept-attractors in the HPAN. If the HPAN is engineered to associate specific560


neural modules to specific spatial regions or specific temporal intervals, then this561


may be accounted for by automatically indexing ConceptNodes corresponding to562


attractors centered in those modules in the AtomTable’s TimeServer and SpaceServer563


objects, which index Atoms according to time and space.564


An attractor representing something specific like the Eiffel Tower, or Bob’s face,565


would be weighted largely in the lower levels of the hierarchy, and would correspond566


mainly to sensory rather than conceptual memory.567


8.7.4 Procedural Memory568


The procedural HPAN may be used to learn procedures such as low-level motion569


primitives that are more easily learned using HPAN training than using more abstract570


procedure learning methods. For example, a Combo tree learned by MOSES in Cog-571


Prime might contain a primitive corresponding to the predicate-argument relationship572


pick_up(ball); but the actual procedure for controlling a robot hand to pick up a ball,573


might be expressed as an activity pattern within the low-level procedural HPAN.574


A procedure P stored in the low-level procedural HPAN would be represented in575


the AtomTable as a ConceptNode C linked to key nodes in the HPAN attractor cor-576


responding to P. The invocation of P would be accomplished by transferring STI577


currency to C and then allowing ECAN to do its work.578


On the other hand, CogPrime’s interfacing of the high-level procedural HPAN579


with the CogPrime ProcedureRepository is intimately dependent on the particulars580


of the MOSES procedure learning algorithm. As will be outlined in more depth581
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8.7 Interfacing the Atomspace 159


in Chap. 15, MOSES is a complex, multi-stage process that tries to find a program582


maximizing some specified fitness function, and that involves doing the following583


within each “deme” (a deme being an island of roughly-similar programs)584


1. casting program trees into a hierarchical normal form585


2. evaluating the program trees on a fitness function586


3. building a model distinguishing fit versus unfit program trees, which involves:587


(a) figuring out what program tree features the model should include588


(b) building the model using a learning algorithm589


4. generating new program trees that are inferred likely to give high fitness, based590


on the model591


5. return to step 1 with these new program trees.592


593


There is also a system for managing the creation and deletion of demes.594


The weakest point in CogPrime’s current MOSES-based approach to procedure595


learning appears to be step 3. And the main weakness is conceptual rather than596


algorithmic; what is needed is to replace the current step 3 with something that uses597


long-term memory to do model-building and feature-selection, rather than (like the598


current code) doing these things in a manner that’s restricted to the population of599


program trees being evolved to optimize a particular fitness function.600


One promising approach to resolving this issue is via replacing step 3(b) (and,601


to a limited extent, 3(a)) with an interconnection between MOSES and a procedural602


HPAN. A HPAN can do supervised categorization, and can be designed to handle603


feature selection in a manner integrated with categorization, and also to integrate604


long-term memory into its categorization decisions.605


8.7.5 Episodic Memory606


In a hybrid CogPrime/HPAN architecture, episodic knowledge may be handled via607


a combination of:608


1. using a traditional approach to store a large ExperienceDB of actual experienced609


episodes (including sensory inputs and actions; and also the states of the most610


important items in memory during the experience)611


2. using the Atomspace (with its TimeServer and SpaceServer components) to store612


declarative knowledge about experiences613


3. using dimensional embedding to index the AtomSpace’s episodic knowledge in614


a spatiotemporally savvy way, as described in Chap. 22615


4. training a large HPAN to summarize the scope of experienced episodes (this616


could be the primary HPAN used for declarative and sensory memory, or could617


potentially be a separate episodic HPAN).618


319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030_15

http://dx.doi.org/10.2991/978-94-6239-030_22





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


160 8 Perceptual and Motor Hierarchies


Such a network should be capable of generating imagined episodes based on cues,619


as well recalling real episodes. The HPAN would serve as a sort of index into the620


memory of episodes, There would be HebbianLinks from the AtomTable into the621


episodic HPAN.622


For instance, suppose that once the agent built an extremely tall tower of blocks,623


taller than any others in its memory. Perhaps it wants to build another very tall tower624


again, so it wants to summon up the memory of that previous occasion, to see if625


there is possibly guidance therein. It then proceeds by thinking about tallness and626


towerness at the same time, which stimulates the relevant episode, because at the627


time of building the extremely tall tower, the agent was thinking a lot about tallness628


(so thoughts of tallness are part of the episodic memory).629


8.7.6 Action Selection and Attention Allocation630


CogPrime’s action selection mechanism chooses procedures based on which ones631


are estimated most likely to achieve current goals given current context, and places632


these in an “active procedure pool” where an ExecutionManager object mediates633


their execution.634


Attention allocation spans all components of CogPrime, including an HPAN if635


one is integrated. Attention flows between the two components due to the conversion636


of STI to and from HPAN activation. And in this manner assignment of credit flows637


from GoalNodes into the HPAN, because this kind of simultaneous activation may638


be viewed as “rewarding” a HPAN link. So, the HPAN may reward signals from Goal639


Nodes via ECAN, because when a ConceptNode gets rewarded, if the ConceptNode640


points to a set of nodes, these nodes get some of the reward.641


8.8 Multiple Interaction Channels642


Now we discuss a broader issue regarding the interfacing between CogPrime and643


the external world. The only currently existing embodied OpenCog applications,644


PetBrain and CogBot, are based on a loosely human model of perception and action,645


in which a single CogPrime instance controls a single mobile body, but this of course646


is not the only way to do things. More generally, what we can say is that a variety647


of external-world events come into a CogPrime system from physical or virtual648


world sensors, plus from other sources such as database interfaces, Web spiders,649


and/or other sources. The external systems providing CogPrime with data may be650


generically referred to as sensory sources (and in the terminology we adopt here,651


once Atoms have been created to represent external data, then one is dealing with652


perceptions rather than sensations). The question arises how to architect a CogPrime653


system, in general, for dealing with a variety of sensory sources.654
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8.8 Multiple Interaction Channels 161


We introduce the notion of an “interaction channel”: a collection of sensory655


sources that is intended to be considered as a whole as a synchronous stream, and that656


is also able to receive CogPrime actions—in the sense that when CogPrime carries657


out actions relative to the interaction channel, this directly affects the perceptions658


that CogPrime receives from the interaction channel. A CogPrime meant to have659


conversations with ten separate users at once might have 10 interaction channels. A660


human mind has only one interaction channel in this sense (although humans may661


become moderately adept at processing information from multiple external-world662


sources, coming in through the same interaction channel).663


Multiple-interaction-channel digital psychology may become extremely664


complex—and hard for us, with our single interaction channels, to comprehend.665


This is one among many cases where a digital mind, with its more flexible architec-666


ture, will have a clear advantage over our human minds with their fixed and limited667


neural architectures. For simplicity, however, in the following chapters we will often668


focus on the single-interaction-channel case.669


Events coming in through an interaction channel are presented to the system as670


new perceptual Atoms, and relationships amongst these. In the multiple interaction671


channel case, the AttentionValues of these newly created Atoms require special672


treatment. Not only do they require special rules, they require additional fields to be673


added to the AttentionValue object, beyond what has been discussed so far.674


We require newly created perceptual Atoms to be given a high initial STI. And675


we also require them to be given a high amount of a quantity called “interaction-676


channel STI”. To support this, the AttentionValue objects of Atoms must be expanded677


to contain interaction-channel STI values; and the ImportanceUpdating MindAgent678


must compute interaction-channel importance separately from ordinary importance.679


And, just as we have channel-specific AttentionValues, we may also have channel-680


specific TruthValues. This allows the system to separately account for the frequency681


of a given perceptual item in a given interaction channel. However, no specific mech-682


anism is needed for these, they are merely contextual truth values, to be interpreted683


within a Context Node associated with the interaction channel.684
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Chapter 9
Integrating CogPrime with a Compositional
Spatiotemporal Deep Learning Network


9.1 Introduction0


Many different approaches to “low-level” perception and action processing are1


possible within the overall CogPrime framework. We discussed several in the previ-2


ous chapter, all elaborations of the general hierarchical pattern recognition approach.3


Here we describe one sophisticated approach to hierarchical pattern recognition based4


perception in more detail: the tight integration of CogPrime with a sophisticated hier-5


archical perception/action oriented learning system such as the DeSTIN architecture6


reviewed in Chap. 5 of Vol. 5. AQ17


We introduce here the term “Compositional Spatiotemporal Deep Learning Net-8


work” (CSDLN), to refer to deep learning networks whose hierarchical structure9


directly mirrors the hierarchical structure of spacetime. In the language of Chap. 8, a10


CSDLN is a special kind of HPAN (hierarchical perception action network), which11


has the special property that each of its nodes refers to a certain spatiotemporal region12


and is concerned with predicting what happens inside that region. Current exempli-13


fications of the CSDLN paradigm include the DeSTIN architecture that we will14


focus on here, along with Jeff Hawkins’ Numenta “HTM” system [HB06],1 Itamar15


Arel’s DeSTIN [ARC09a], Itamar Arel’s HDRN2 system (the proprietary, closed-16


source sibling of DeSTIN), Dileep George’s spin-off from Numenta,3 and work by17


Mohamad Tarifi [TSH11], Bundzel and Hashimoto [BH10], and others. CSDLNs are18


reasonably well proven as an approach to intelligent sensory data processing, and19


have also been hypothesized as a broader foundation for artificial general intelligence20


at the human level and beyond [HB06] [ARC09a].21


While CSDLNs have been discussed largely in the context of perception, the22


specific form of CSDLN we will pursue here goes beyond perception processing,23


1 While the Numenta system is the best-known CSDLN architecture, other CSDLNs appear more
impressively functional in various respects; and many CSDLN-related ideas existed in the literature
well before Numenta’s advent.
2 http://www.binatix.com
3 http://www.vicarioussystems.com


B. Goertzel et al., Engineering General Intelligence, Part 2, 163
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_9,
© Atlantis Press and the authors 2014
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164 9 Integrating CogPrime


and involves the coupling of three separate hierarchies, for perception, action and24


goals/reinforcement [GLdG+10]. The “action” CSDLNs discussed here25


correspond to the procedural HPAN discussed in Chap. 8. Abstract learning and26


self-understanding are then hypothesized as related to systems of attractors emerg-27


ing from the close dynamic coupling of the upper levels of the three hierarchies.28


DeSTIN is our paradigm case of this sort of CSDLN, but most of the considerations29


given here would apply to any CSDLN of this general character.30


CSDLNs embody a certain conceptual model of the nature of intelligence, and31


to integrate them appropriately with a broader architecture, one must perform the32


integration not only on the level of software code but also on the level of conceptual33


models. Here we focus here on the problem of integrating an extended version of the34


DeSTIN CSDLN system with the CogPrime integrative AGI (artificial general intel-35


ligence) system. The crux of the issue here is how to map DeSTIN’s attractors into36


CogPrime’s more abstract, probabilistic “weighted, labeled hypergraph” representa-37


tion (called the Atomspace). The main conclusion reached is that in order to perform38


this mapping in a conceptually satisfactory way, one requires a system of hierarchies39


involving the structure of DeSTIN’s network but the semantic structures of40


the Atomspace. The DeSTIN perceptual hierarchy is augmented by motor and goal41


hierarchies, leading to a tripartite “extended DeSTIN”. In this spirit, three “semantic-42


perceptual” hierarchies are proposed, corresponding to the three extended-DeSTIN43


CSDLN hierarchies and explicitly constituting an intermediate level of representa-44


tion between attractors in DeSTIN and the habitual cognitive usage of CogPrime45


Atoms and Atom-networks. For simple reference we refer to this as the “Semantic46


CSDLN” approach.47


A “tripartite semantic CSDLN” consisting of interlinked semantic perceptual,48


motoric and goal hierarchies could be coupled with DeSTIN or another CSDLN49


architecture to form a novel AGI approach; or (our main focus here) it may be used50


as a glue between an CSDLN and and a more abstract semantic network such as the51


cognitive Atoms in CogPrime’s Atomspace.52


One of the core intuitions underlying this integration is that, in order to achieve53


the desired level of functionality for tasks like picture interpretation and assembly of54


complex block structures, a convenient route is to perform a fairly tight integration55


of a highly capable CSDLN like DeSTIN with other CogPrime components. For56


instance, we believe it’s necessary to go deeper than just using DeSTIN as an57


input/output layer for CogPrime, by building associative links between the nodes58


inside DeSTIN and those inside the Atomspace.59


This “tightly linked integration” approach is obviously an instantiation of the60


general cognitive synergy principle, which hypothesizes particular properties that61


the interactions between components in an integrated AGI system should display, in62


order for the overall system to display significant general intelligence using limited63


computational resources. Simply piping output from an CSDLN to other components,64


and issuing control signals from these components to the CSDLN, is likely an inad-65


equate mode of integration, incapable of leveraging the full potential of CSDLNs;66


what we are suggesting here is a much tighter and more synergetic integration.67
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9.1 Introduction 165


In terms of the general principle of mind-world correspondence, the conceptual68


justification for CSDLN/CogPrime integration would be that the everyday human69


world contains many compositional spatiotemporal structures relevant to human70


goals, but also contains many relevant patterns that are not most conveniently cast into71


a compositional spatiotemporal hierarchy. Thus, in order to most effectively perceive,72


remember, represent, manipulate and enact the full variety of relevant patterns in the73


world, it is sensible to have a cognitive structure containing a CSDLN as a significant74


component, but not the only component.75


9.2 Integrating CSDLNs with Other AI Frameworks76


CSDLNs represent knowledge as attractor patterns spanning multiple levels of hier-77


archical networks, supported by nonlinear dynamics and (at least in the case of the78


overall DeSTIN design) involving cooperative activity of perceptual, motor and con-79


trol networks. These attractors are learned and adapted via a combination of methods80


including localized pattern recognition algorithms and probabilistic inference. Other81


AGI paradigms represent and learn knowledge in a host of other ways. How then can82


CSDLNs be integrated with these other paradigms?83


A very simple form of integration, obviously, would be to use a CSDLN as a84


sensorimotor cortex for another AI system that’s focused on more abstract cognition.85


In this approach, the CSDLN would stream state-vectors to the abstract cognitive86


system, and the abstract cognitive system would stream abstract cognitive inputs to87


the CSDLN (which would then consider them together with its other inputs). One88


thing missing in this approach is the possibility of the abstract cognitive system’s89


insights biasing the judgments inside the CSDLN. Also, abstract cognition systems90


aren’t usually well prepared to handle a stream of quantitative state vectors (even91


ones representing intelligent compressions of raw data).92


An alternate approach is to build a richer intermediate layer, which in effect93


translates between the internal language of the CSDLN and the internal language of94


the other AI system involved. The particulars, and the viability, of this will depend95


on the particulars of the other AI system. What we’ll consider here is the case where96


the other AI system contains explicit symbolic representations of patterns (including97


patterns abstracted from observations that may have no relation to its prior knowledge98


or any linguistic terms). In this case, we suggest, a viable approach may be to construct99


a “semantic CSDLN” to serve as an intermediary. The semantic CSDLN has the same100


hierarchical structure as an CSDLN, but inside each node it contains abstract patterns101


rather than numerical vectors. This approach has several potential major advantages:102


the other AI system is not presented with a large volume of numerical vectors (which103


it may be unprepared to deal with effectively); the CSDLN can be guided by the104


other AI system, without needing to understand symbolic control signals; and the105


intermediary semantic CSDLN can serve as a sort of “blackboard” which the CSDLN106


and the other AI system can update in parallel, and be guided by in parallel, thus107


providing a platform encouraging “cognitive synergy”.108
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166 9 Integrating CogPrime


The following sections go into more detail on the concept of semantic CSDLNs.109


The discussion mainly concerns the specific context of DeSTIN/CogPrime integra-110


tion, but the core ideas would apply to the integration of any CSDLN architecture with111


any other AI architecture involving uncertain symbolic representations susceptible112


to online learning.113


9.3 Semantic CSDLN for Perception Processing114


In the standard perceptual CSDLN hierarchy, a node N on level k (considering level 1115


as the bottom) corresponds to a spatiotemporal region S with size sk (sk increasing116


monotonically and usually exponentially with k); and, has children on level k − 1117


corresponding to spatiotemporal regions that collectively partition S. For example,118


a node on level 3 might correspond to a 16 × 16 pixel region S of 2D space over a119


time period of 10 s, and might have four level 2 children corresponding to disjoint120


4 × 4 regions of 2D space over 10 s, collectively composing S.121


This kind of hierarchy is very effective for recognizing certain types of visual122


patterns. However it is cumbersome for recognizing some other types of patterns,123


e.g. the pattern that a face typically contains two eyes beside each other, but at variable124


distance from each other.125


One way to remedy this deficiency is to extend the definition of the hierarchy,126


so that nodes do not refer to fixed spatial or temporal positions, but only to relative127


positions. In this approach, the internals of a node are basically the same as in an128


CSDLN, and the correspondence of the nodes on level k with regions of size sk is129


retained, but the relationships between the nodes are quite different. For instance, a130


variable-position node of this sort could contain several possible 2D pictures of an131


eye, but be nonspecific about where the eye is located in the 2D input image.132


Figure 9.1 depicts this “semantic-perceptual CSDLN” idea heuristically, showing133


part of a semantic-perceptual CSDLN indicating the parts of a face, and also the con-134


nections between the semantic-perceptual CSDLN, a standard perceptual CSDLN,135


and a higher-level cognitive semantic network like CogPrime’s Atomspace.4136


More formally, in the suggested “semantic-perceptual CSDLN” approach, a node137


N on level k, instead of pointing to a set of level k −1 children, points to a small (but138


not necessarily connected) semantic network , such that the nodes of the semantic139


network are (variable-position) level k − 1 nodes; and the edges of the semantic140


4 The perceptual CSDLN shown is unrealistically small for complex vision processing (only four
layers), and only a fragment of the semantic-perceptual CSDLN is shown (a node corresponding to
the category face, and then a child network containing nodes corresponding to several components
of a typical face). In a real semantic-perceptual CSDLN, there would be many other nodes on the
same level as the face node, many other parts to the face subnetwork besides the eyes, nose and
mouth depicted here; the eye, nose and mouth nodes would also have child subnetworks; there
would be link from each semantic node to centroids within a large number of perceptual nodes; and
there would also be many nodes not corresponding clearly to any single English language concept
like eye, nose, face, etc.
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9.3 Semantic CSDLN for Perception Processing 167


Fig. 9.1 Simplified depiction of the relationship between a semantic-perceptual CSDLN, a tra-
ditional perceptual CSDLN (like DeSTIN), and a cognitive semantic network (like CogPrime’s
AtomSpace)


network possess labels representing spatial or temporal relationships, for example141


horizontally_aligned, vertically_aligned, right_side, left_side, above, behind, imme-142


diately_right, immediately_left, immediately_above, immediately_below, after,143


immediately_after. The edges may also be weighted either with numbers or prob-144


ability distributions, indicating the quantitative weight of the relationship indicated145


by the label.146


So for example, a level 3 node could have a child network of the form horizontally_147


aligned(N1, N2) where N1 and N2 are variable-position level 2 nodes. This would148


mean that N1 and N2 are along the same horizontal axis in the 2D input but don’t need149


to be immediately next to each other. Or one could say, e.g. on_axis_perpendicular_to150


(N1, N2, N3, N4), meaning that N1 and N2 are on an axis perpendicular to the axis151


between N3 and N4. It may be that the latter sort of relationship is fundamentally152


better in some cases, because hori zontally_aligned is still tied to a specific orien-153


tation in an absolute space, whereas on_axis_per pendicular_to is fully relative.154


But it may be that both sorts of relationship are useful.155 AQ2


Next, development of learning algorithms for semantic CSDLNs seems a tractable156


research area. First of all, it would seem that, for instance, the DeSTIN learning157


algorithms could straightforwardly be utilized in the semantic CSDLN case, once158
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168 9 Integrating CogPrime


the local semantic networks involved in the network are known. So at least for some159


CSDLN designs, the problem of learning the semantic networks may be decoupled160


somewhat from the learning occurring inside the nodes. DeSTIN nodes deal with161


clustering of their inputs, and calculation of probabilities based on these clusters (and162


based on the parent node states). The difference between the semantic CSDLN and163


the traditional DeSTIN CSDLN has to do with what the inputs are.164


Regarding learning the local semantic networks, one relatively straightforward165


approach would be to data mine them from a standard CSDLN. That is, if one166


runs a standard CSDLN on a stream of inputs, one can then run a frequent pattern167


mining algorithm to find semantic networks (using a given vocabulary of semantic168


relationships) that occur frequently in the CSDLN as it processes input. A subnetwork169


that is identified via this sort of mining, can then be grouped together in the semantic170


CSDLN, and a parent node can be created and pointed to it.171


Also, the standard CSDLN can be searched for frequent patterns involving172


the clusters (referring to DeSTIN here, where the nodes contain clusters of input173


sequences) inside the nodes in the semantic CSDLN. Thus, in the “semantic174


DeSTIN” case, we have a feedback interaction wherein: (1) the standard CSDLN is175


formed via processing input;176


(2) frequent pattern mining on the standard CSDLN is used to create subnetworks177


and corresponding parent nodes in the semantic CSDLN;178


(3) the newly created nodes in the semantic CSDLN get their internal clusters179


updated via standard DeSTIN dynamics;180


(4) the clusters in the semantic nodes are used as seeds for frequent pattern mining181


on the standard CSDLN, returning us to Step 2 above.182


After the semantic CSDLN is formed via mining the perceptual CSDLN, it may183


be used to bias the further processing of the perceptual CSDLN. For instance, in DeS-184


TIN each node carries out probabilistic calculations involving knowledge of the prior185


probability of the “observation” coming into that node over a given interval of time.186


In the current DeSTIN version, this prior probability is drawn from a uniform distri-187


bution, but it would be more effective to draw the prior probability from the semantic188


network—observations matching things represented in the semantic network would189


get a higher prior probability. One could also use subtler strategies such as using190


imprecise probabilities in DeSTIN [Goe11b], and assigning a greater confidence to191


probabilities involving observations contained in the semantic network.192


Finally, we note that the nodes and networks in the semantic CSDLN may either193


• be linked into the nodes and links in a semantic network such as CogPrime’s194


AtomSpace195


• actually be implemented in terms of an abstract semantic network language like196


CogPrime’s AtomSpace (the strategy to be suggested in Chap. 11).197


This allows us to think of the semantic CSDLN as a kind of bridge between the198


standard CSDLN and the cognitive layer of an AI system. In an advanced imple-199


mentation, the cognitive network may be used to suggest new relationships between200


nodes in the semantic CSDLN, based on knowledge gained via inference or language.201


319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030-0_11





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


9.4 Semantic CSDLN for Motor and Sensorimotor Processing 169


9.4 Semantic CSDLN for Motor and Sensorimotor202


Processing203


Next we consider a semantic CSDLN that focuses on movement rather than sensation.204


In this case, rather than a 2D or 3D visual space, one is dealing with an n-dimensional205


configuration space (C-space). This space has one dimension for each degree of206


freedom of the agent in question. The more joints with more freedom of movement207


an agent has, the higher the dimensionality of its configuration space.208


Using the notion of configuration space, one can construct a semantic-motoric209


CSDLN hierarchy analogous to the semantic-perceptual CSDLN hierarchy. However,210


the curse of dimensionality demands a thoughtful approach here. A square of side211


2 can be tiled with 4 squares of side 1, but a 50-dimensional cube of side 2 can be212


tiled with 250 50-dimensional cubes of side 1. If one is to build a CSDLN hierarchy213


in configuration space analogous to that in perceptual space, some sort of sparse214


hierarchy is necessary.215


There are many ways to build a sparse hierarchy of this nature, but one simple216


approach is to build a hierarchy where the nodes on level k represent motions that217


combine the motions represented by nodes on level k−1. In this case the most natural218


semantic label predicates would seem to be things like simultaneously, after, imme-219


diately_after, etc. So a level k node represents a sort of “motion plan” corresponded220


by chaining together (serially and/or in parallel) the motions encoded in level k − 1221


nodes. Overlapping regions of C-space correspond to different complex movements222


that share some of the same component movements, e.g. if one is trying to slap one223


person while elbowing another, or run while kicking a soccer ball forwards. Also224


note, the semantic CSDLN approach reveals perception and motor control to have225


essentially similar hierarchical structures, more so than with the traditional CSDLN226


approach and its fixed-position perceptual nodes.227


Just as the semantic-perceptual CSDLN is naturally aligned with a traditional228


perceptual CSDLN, similarly a semantic-motoric CSDLN may be naturally aligned229


with a “motor CSDLN”. A typical motoric hierarchy in robotics might contain a230


node corresponding to a robot arm, with children corresponding to the hand, upper231


arm and lower arm; the hand node might then contain child nodes corresponding to232


each finger, etc. This sort of hierarchy is intrinsically spatiotemporal because each233


individual action of each joint of an actuator like an arm is intrinsically bounded in234


space and time. Perhaps the most ambitious attempt along these lines is [AM01],235


which shows how perceptual and motoric hierarchies are constructed and aligned in236


an architecture for intelligent automated vehicle control.237


Figure 9.2 gives a simplified illustration of the potential alignment between a238


semantic-motoric CSDLN and a purely motoric hierarchy (like the one posited above239


in the context of extended DeSTIN).5 In the figure, the motoric hierarchy is assumed240


5 In the figure, only a fragment of the semantic-motoric CSDLN is shown (a node corresponding
to the “get object” action category, and then a child network containing nodes corresponding to
several components of the action). In a real semantic-motoric CSDLN, there would be many other
nodes on the same level as the get-object node, many other parts to the get-object subnetwork besides
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170 9 Integrating CogPrime


Fig. 9.2 Simplified depiction of the relationship between a semantic-motoric CSDLN, a motor
control hierarchy (illustrated by the hierarchy of servos associated with a robot arm), and a cognitive
semantic network (like CogPrime’s AtomSpace)


to operate somewhat like DeSTIN, with nodes corresponding to (at the lowest level)241


individual servomotors, and (on higher levels) natural groupings of servomotors.242


The node corresponding to a set of servos is assumed to contain centroids of clus-243


ters of trajectories through configuration space. The task of choosing an appropriate244


action is then executed by finding the appropriate centroids for the nodes. Note245


an asymmetry between perception and action here. In perception the basic flow is246


bottom-up, with top-down flow used for modulation and for “imaginative” genera-247


tion of percepts. In action, the basic flow is top-down, with bottom-up flow used for248


modulation and for imaginative, “fiddling around” style generation of actions. The249


semantic-motoric hierarchy then contains abstractions of the C-space centroids from250


the motoric hierarchy—i.e. actions that bind together different C-space trajectories


(Footnote 5 continued)
the ones depicted here; the subnetwork nodes would also have child subnetworks; there would be
link from each semantic node to centroids within a large number of motoric nodes; and there might
also be many nodes not corresponding clearly to any single English language concept like “grasp
object” etc.
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9.4 Semantic CSDLN for Motor and Sensorimotor Processing 171


that correspond to the same fundamental action carried out in different contexts or251


under different constraints. Similarly to in the perceptual case, the semantic hierar-252


chy here serves as a glue between lower-level function and higher-level cognitive253


semantics.254


9.5 Connecting the Perceptual and Motoric Hierarchies255


with a Goal Hierarchy256


One way to connect perceptual and motoric CSDLN hierarchies is using a “semantic-257


goal CSDLN” bridging the semantic-perceptual and semantic-motoric CSDLNs.258


The semantic-goal CSDLN would be a “semantic CSDLN” loosely analogous to the259


perceptual and motor semantic CSDLNs—and could optionally be linked into the260


reinforcement hierarchy of a tripartite CSDLN like extended DeSTIN. Each node261


in the semantic-goal CSDLN would contain implications of the form “Context and262


Procedure → Goal”, where Goal is one of the AI system’s overall goals or a subgoal263


thereof, and Context and Procedure refer to nodes in the perceptual and motoric264


semantic CSDLNs respectively.265


For instance, a semantic-goal CSDLN node might contain an implication of the266


form “I perceive my hand is near object X and I grasp object X → I possess object X.”267


This would be useful if “I possess object X” were a subgoal of some higher-level268


system goal, e.g. if X were a food object and the system had the higher-level goal of269


obtaining food.270


To the extent that the system’s goals can be decomposed into hierarchies of pro-271


gressively more and more spatiotemporally localized subgoals, this sort of hierarchy272


will make sense, leading to a tripartite hierarchy as loosely depicted in Fig. 9.3.6 One273


could attempt to construct an overall AGI approach based on a tripartite hierarchy274


of this nature, counting on the upper levels of the three hierarchies to come together275


dynamically to form an integrated cognitive network, yielding abstract phenomena276


like language, self, reasoning and mathematics. On the other hand, one may view this277


sort of hierarchy as a portion of a larger integrative AGI architecture, containing a278


separate cognitive network, with a less rigidly hierarchical structure and less of a tie279


to the spatiotemporal structure of physical reality. The latter view is the one we are280


primarily taking within the CogPrime AGI approach, viewing perceptual, motoric281


and goal hierarchies as “lower level” subsystems connected to a “higher level” system282


based on the CogPrime AtomSpace and centered on its abstract cognitive processes.283


284


6 The diagram is simplified in many ways, e.g. only a handful of nodes in each hierarchy is shown
(rather than the whole hierarchy), and lines without arrows are used to indicate bidirectional arrows,
and nearly all links are omitted. The purpose is just to show the general character of interaction
between the components in a simplified context.


319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


172 9 Integrating CogPrime


Fig. 9.3 Simplified illustration of the proposed interoperation of perceptual, motoric and goal
semantic CSDLNs


Learning of the subgoals and implications in the goal hierarchy is of course a285


complex matter, which may be addressed via a variety of algorithms, including online286


clustering (for subgoals or implications) or supervised learning (for implications, the287


“supervision” being purely internal and provided by goal or subgoal achievement).288
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Chapter 10
Making DeSTIN Representationally
Transparent


10.1 Introduction0


In this chapter and the next we describe one particular incarnation of the above ideas1


on semantic CSDLNs in more depth: the integration of CogPrime with the DeSTIN2


architecture reviewed in Chap. 5 of Vol. 5.3


One of the core intuitions underlying this integration is that, in order to achieve4


the desired level of functionality for tasks like picture interpretation and assembly5


of complex block structures, it will be necessary to integrate DeSTIN (or some6


similar system) and CogPrime components fairly tightly—going deeper than just7


using DeSTIN as an input/output layer for CogPrime, by building a number of explicit8


linkages between the nodes inside DeSTIN and CogPrime respectively.9


The general DeSTIN design has been described in talks as comprising three10


crosslinked hierarchies, handling perception, action and reinforcement; but so far11


only the perceptual hierarchy (also called the “spatiotemporal inference network”)12


has been implemented or described in detail in publications. In this chapter we13


will focus on DeSTIN’s perception hierarchy. We will explain DeSTIN’s perceptual14


dynamics and representations as we understand them, more thoroughly than was done15


in the brief review above; and we will describe a series of changes to the DeSTIN16


design, made in the spirit of easing DeSTIN/OpenCog integration. In the following17


chapter we will draw action and reinforcement into the picture, deviating somewhat18


in the details from the manner in which these things would be incorporated into19


a standalone DeSTIN, but pursuing the same concepts in an OpenCog integration20


context.21


What we describe here is a way to make a “Uniform DeSTIN”, in which the inter-22


nal representation of perceived visual forms is independent of affine transformations23


(translation, scaling, rotation and shear). This “representational transparency” means24


that, when Uniform DeSTIN perceives a pattern: no matter how that pattern is shifted25


Co-authored with Itamar Arel.


B. Goertzel et al., Engineering General Intelligence, Part 2, 173
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_10,
© Atlantis Press and the authors 2014
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174 10 Making DeSTIN Representationally Transparent


or linearly transformed, the way Uniform DeSTIN represents that pattern internally26


is going to be basically the same. This makes it easy to look at a collection of DeSTIN27


states, obtained by exposing a DeSTIN perception network to the world at different28


points in time, and see the commonalities in what they are perceiving and how they29


are interpreting it. By contrast, in the original version of DeSTIN (here called “clas-30


sic DeSTIN”), it may take significant effort to connect the internal representation31


of a visual pattern and the representation of its translated or linearly transformed32


versions. The uniformity of Uniform DeSTIN makes it easier for humans to inspect33


DeSTIN’s state and understand what’s going on, and also (more to the point) makes34


it easier for other AI components to recognize patterns in sets of DeSTIN states. The35


latter fact is critical for the DeSTIN/OpenCog integration.36


10.2 Review of DeSTIN Architecture and Dynamics37


The hierarchical architecture of DeSTIN’s spatiotemporal inference network com-38


prises an arrangement into multiple layers of “nodes” comprising multiple instantia-39


tions of an identical processing unit. Each node corresponds to a particular spatiotem-40


poral region, and uses a statistical learning algorithm to characterize the sequences41


of patterns that are presented to it by nodes in the layer beneath it.42


More specifically, at the very lowest layer of the hierarchy nodes receive as input43


raw data (e.g. pixels of an image) and continuously construct a belief state that44


attempts to characterize the sequences of patterns viewed. The second layer, and45


all those above it, receive as input the belief states of nodes at their corresponding46


lower layers, and attempt to construct belief states that capture regularities in their47


inputs. Each node also receives as input the belief state of the node above it in48


the hierarchy (which constitutes “contextual” information, utilized in the node’s49


prediction process).50


Inside each node, an online clustering algorithm is used to identify regularities51


in the sequences received by that node. The centroids of the clusters learned are52


stored in the node and comprise the basic visual patterns recognized by that node.53


The node’s “belief” regarding what it is seeing, is then understood as a probability54


density function defined over the centroids at that node. The equations underlying55


this centroid formation and belief updating process are identical for every node in56


the architecture, and were given in their original form in [ARC09a], though the57


current open-source DeSTIN codebase reflects some significant improvements not58


yet reflected in the publication record.59AQ1


In short, the way DeSTIN represents an item of knowledge is as a probability60


distribution over “network activity patterns” in its hierarchical network. An activity61


pattern, at each point in time, comprises an indication of which centroids in each62


node are most active, meaning they have been identified as most closely resembling63


what that node has perceived, as judged in the context of the perceptions of the other64


nodes in the system. Based on this methodology, the DeSTIN perceptual network65
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10.2 Review of DeSTIN Architecture and Dynamics 175


serves the critical role of building and maintaining a model of the state of the world66


as visually perceived.67


This methodology allows for powerful unsupervised classification. If shown a68


variety of real-world scenes, DeSTIN will automatically form internal structures69


corresponding to the various natural categories of objects shown in the scenes, such70


as trees, chairs, people, etc.; and also to the various natural categories of events it71


sees, such as reaching, pointing, falling. In order to demonstrate the informative-72


ness of these internal structures, experiments have been done using DeSTIN’s states73


as input feature vectors for supervised learning algorithms, enabling high-accuracy74


supervised learning of classification models from labeled image data [KAR10]. A75


closely related algorithm developed by the same principal researcher (Itamar Arel)76


has proven extremely successful at audition tasks such as phoneme recognition77


[ABS+11].78


10.2.1 Beyond Gray-Scale Vision79


The DeSTIN approach may easily be extended to other senses beyond gray-scale80


vision. For color vision, it suffices to replace the one-dimensional signals coming81


into DeSTIN’s lower layer with 3D signals representing points in the color spectrum;82


the rest of the DeSTIN process may be carried over essentially without modification.83


Extension to further senses is also relatively straightforward on the mathematical84


and software structure level, though they may of course require significant additional85


tuning and refinement of details.86


For instance, olfaction does not lend itself well to hierarchical modeling, but87


audition and haptics (touch) do:88


• for auditory perception, one could use a DeSTIN architecture in which each layer89


is one-dimensional rather than two-dimensional, representing a certain pitch. Or90


one could use two dimensions for pitch and volume. This results in a system quite91


similar to the DeSTIN-like system shown to perform outstanding phoneme recog-92


nition in [ABS+11], and is conceptually similar to Hierarchical Hidden Markov93


Models (HHMMs), which have proven quite successful in speech recognition and94


which Ray Kurzweil has argued are the central mechanism of human intelligence95


[Kur12]. Note also recent results published by Microsoft Research, showing dra-96


matic improvements over prior speech recognition results based on use of a broadly97


HHMM-like deep learning system [HDY+12].98


• for haptic perception, one could use a DeSTIN architecture in which the lower layer99


of the network possesses a 2D topology reflecting the topology of the surface of100


the body. Similar to the somatosensory cortex in the human brain, the map could101


be distorted so that more “pixels” are used for regions of the body from which102


more data is available (e.g. currently this might be the fingertips, if these were103


implemented using Syntouch technology [FL12], which has proved excellent at104


touch-based object identification). Input could potentially be multidimensional if105
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176 10 Making DeSTIN Representationally Transparent


multiple kinds of haptic sensors were available, e.g. temperature, pressure and106


movement as in the Syntouch case.107


Augmentation of DeSTIN to handle action as well as perception is also possible, and108


will be discussed in Chap. 11.109


10.3 Uniform DeSTIN110


It would be possible to integrate DeSTIN in its original form with OpenCog or111


other AI systems with symbolic aspects, via using an unsupervised machine learning112


algorithm to recognize patterns in sets of states of the DeSTIN network as originally113


defined. However, this pattern recognition task becomes much easier if one suitably114


modifies DeSTIN, so as to make the commonalities between semantically similar115


states more obviously perceptible. This can be done by making the library of pat-116


terns recognized within each DeSTIN node invariant with respect to translation, scale,117


rotation and shear—a modification we call “Uniform DeSTIN.” This “uniformiza-118


tion” decreases DeSTIN’s degree of biological mimicry, but eases integration of119


DeSTIN with symbolic AI methods.120


10.3.1 Translation-Invariant DeSTIN121


The first revision to the “classic DeSTIN” to be suggested here is: All the nodes on122


the same level of the DeSTIN hierarchy should share the same library of patterns.123


In the context of classic DeSTIN (i.e. in the absence of further changes to DeSTIN124


to be suggested below, which extend the type of patterns usable by DeSTIN), this125


means: the nodes on the same level should share the same list of centroids. This126


makes DeSTIN’s pattern recognition capability translation-invariant. This transla-127


tion invariance can be achieved without any change to the algorithms for updating128


centroids and matching inputs to centroids.129


In this approach, it’s computationally feasible to have a much larger library of130


patterns utilized by each node, as compared to in classic DeSTIN. Suppose we131


have a n × n pixel grid, where the lowest level has nodes corresponding to 4 × 4132


squares. Then, there are ( n
4 )2 nodes on the lowest level, and on the kth level there are133


( n
4k )2 nodes. This means that, without increasing computational complexity (actu-134


ally decreasing it, under reasonable assumptions), in translation-invariant Uniform135


DeSTIN we can have a factor of ( n
4k )2 more centroids on level k.136


One can achieve a much greater decrease in computational complexity (with the137


same amount of centroid increase) via use of a clever data structure like a cover tree138


[BKL06] to store the centroids at each level. Then the nearest-neighbor matching of139


input patterns to the library (centroid) patterns would be very rapid, much faster than140


linearly comparing the input to each pattern in the list.141
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10.3 Uniform DeSTIN 177


10.3.1.1 Conceptual Justification for Uniform DeSTIN142


Generally speaking, one may say that: if the class of images that the system will see143


is invariant with respect to linear translations, then without loss of generality, we144


can assume that the library of patterns at each node on the same level is the same.145


In reality this assumption isn’t quite going to hold. For instance, for an eye attached146


to a person or humanoid robot, the top of the pixel grid will probably look at a person’s147


hair more often than the bottom... because the person stands right-side-up more often148


than they stand upside-down, and because they will often fixate the center of their149


view on a person’s face, etc. For this reason, we can recognize our friend’s face better150


if we’re looking at them directly, with their face centered in our vision.151


However, we suggest that this kind of peculiarity is not really essential to vision152


processing for general intelligence. There’s no reason you can’t have an intelligent153


vision system that recognizes a face just as well whether it’s centered in the visual154


field or not. (In fact you could straightforwardly explicitly introduce this kind of bias155


within a translation-invariant DeSTIN, but it’s not clear this is a useful direction.)156


By and large, in almost all cases, it seems to us that in a DeSTIN system exposed157


to a wide variety of real-world inputs in complex situations, the library of patterns158


in the different nodes at the same level would turn out to be substantially the same.159


Even if they weren’t exactly the same, they would be close to the same, embodying160


essentially the same regularities. But of course, this sameness would be obscured,161


because centroid 7 in a certain node X on level 4 might actually be the same as162


centroid 18 in some other node Y on level 4 ... and there would be no way to tell that163


centroid 7 in node X and centroid 18 and node Y were actually referring to the same164


pattern, without doing a lot of work.165


10.3.1.2 Comments on Biological Realism166


Translation-invariant DeSTIN deviates further from human brain structure than clas-167


sic DeSTIN, but this is for good reason.168


The brain has a lot of neurons, since adding new neurons was fairly easy and169


cheap for evolution; and tends to do things in a massively parallel manner, with great170


redundancy. For the brain, it’s not so problematically expensive to have the functional171


equivalent of a lot of DeSTIN nodes on the same level, all simultaneously using and172


learning libraries of patterns that are essentially identical to each other. Using current173


computer technology, on the other hand, this sort of strategy is rather inefficient.174


In the brain, messaging between separated regions is expensive, whereas repli-175


cating function redundantly is cheap. In most current computers (with some partial176


exceptions such as GPUs), messaging between separated regions is fairly cheap (so177


long as those regions are stored on the same machine), whereas replicating function178


redundantly is expensive. Thus, even in cases where the same concept and abstract179


mathematical algorithm can be effectively applied in both the brain and a computer,180


the specifics needed for efficient implementation may be quite different.181
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178 10 Making DeSTIN Representationally Transparent


10.3.2 Mapping States of Translation-Invariant182


DeSTIN into the Atomspace183


Mapping classic DeSTIN’s states into a symbolic pattern-manipulation engine like184


OpenCog is possible, but relatively cumbersome. Doing the same thing with Uniform185


DeSTIN is much more straightforward.186


In Uniform DeSTIN, for example, Cluster 7 means the same thing in ANY node187


on level 4. So after a Uniform DeSTIN system has seen a fair number of images,188


you can be pretty sure its library of patterns is going to be relatively stable. Some189


clusters may come and go as learning progresses, but there’s going to be a large and190


solid library of clusters at each level that persists, because all of its member clusters191


occur reasonably often across a variety of inputs.192


Define a DeSTIN state-tree as a (quaternary) tree with one node for each DeSTIN193


node; and living at each node, a small list of (integer pattern_code, float weight)194


pairs. That is, at each node, the state-tree has a short-list of the patterns that closely195


match a given state at that node. The weights may be assumed between 0 and 1. The196


integer pattern codes have the same meaning for every node on the same level.197


As you feed DeSTIN inputs, at each point in time it will have a certain state,198


representable as a state-tree. So, suppose you have a large database of DeSTIN state-199


trees, obtained by showing various inputs to DeSTIN over a long period of time.200


Then, you can do various kinds of pattern recognition on this database of state-trees.201


More formally, define a state-subtree as a (quaternary) tree with a single integer at202


each node. Two state-subtrees may have various relationships with each other within203


a single state-tree—for instance they may be adjacent to each other, or one may appear204


atop or below the other, etc. In these terms, one interesting kind of pattern recognition205


to do is: Recognize frequent state-subtrees in the stored library of state-trees; and206


then recognize frequent relationships between these frequent state-subtrees. The207


latter relationships will form a kind of “image grammar”, conceptually similar and208


formally related to those described in [ZM06]. Further, temporal patterns may be209


recognized in the same way as spatial ones, as part of the state-subtree grammar210


(e.g. state-subtree A often occurs right before state-subtree B; state-subtree C often211


occurs right before and right below state-subtree D; etc.).212


The flow of activation from OpenCog back down to DeSTIN is also fairly straight-213


forward in the context of translation-invariant DeSTIN. If relationships have been214


stored between concepts in OpenCogPrime’s memory and grammatical patterns215


between state-subtrees, then whenever concept C becomes important in OpenCog-216


Prime’s memory, this can cause a top–down increase in the probability of matching217


inputs to DeSTIN node centroids, that would cause the DeSTIN state-tree to contain218


the grammatical patterns corresponding to concept C .219
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10.3 Uniform DeSTIN 179


10.3.3 Scale-Invariant DeSTIN220


The next step, moving beyond translation invariance, is to make DeSTIN’s pattern221


recognition mostly (not wholly) scale invariant. We will describe a straightforward222


way to map centroids on one level of DeSTIN, into centroids on the other levels of223


DeSTIN. This means that when a centroid has been learned on one level, it can be224


experimentally ported to all the other levels, to see if it may be useful there too.225


To make the explanation of this mapping clear, we reiterate some DeSTIN basics226


in slightly different language:227


• A centroid on Level N is: a spatial arrangement (e.g. k ×k square lattice) of beliefs228


of Level N −1. (More generally it is a spatiotemporal arrangement of such beliefs,229


but we will ignore this for the moment).230


• A belief on Level N is: a probability distribution over centroids on Level N . For231


heuristic purposes one can think about this as a mixture of Gaussians, though this232


won’t always be the best model.233


• Thus, a belief on Level N is: a probability distribution over spatial (or more234


generally, spatiotemporal) arrangements of beliefs on Level N − 1.235


On Level 1, the role of centroids is played by simple k × k squares of pixels. Level 1236


beliefs are probability distributions over these small pixel squares. Level 2 centroids237


are hence spatial arrangements of probability distributions over small pixel-squares;238


and Level 2 beliefs are probability distributions over spatial arrangements of proba-239


bility distributions over small pixel-squares.240


A small pixel-square S may be mapped into a single pixel P via a heuristic241


algorithm such as:242


• if S has more black than white pixels, then P is black243


• is S has more white than black pixels, then P is white244


• if S has an equal number of white and black pixels, then use some heuristic. For245


instance if S is 4×4 you could look at the central 2 ×2 square and assign P to the246


color that occurs most often there. If that is also a tie, then you can just arbitrarily247


assign P to the color that occurs in the upper left corner of S.248


A probability distribution over small pixel-squares may then be mapped into a249


probability distribution over pixel values (B or W ). A probability distribution over250


the two values B and W may be approximatively mapped into a single pixel value—251


the one that occurs most often in the distribution, with a random choice made to252


break a tie. This tells us how to map Level 2 beliefs into spatial arrangements of253


pixels; and thus, it tells us how to map Level 2 beliefs into Level 1 beliefs.254


But this tells us how to map Level N beliefs into Level N −1 beliefs, inductively.255


Remember, a Level N belief is a probability distribution (pdf for short) over spatial256


arrangements of beliefs on Level N − 1. For example: A Level 3 belief if a pdf over257


arrangements of Level 2 beliefs. But since we can map Level 2 beliefs into Level258


1 beliefs, this means we can map a Level 3 belief into a pdf over arrangements of259


Level 1 beliefs—which means we can map a Level 3 belief into a Level 2 belief, etc.260
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180 10 Making DeSTIN Representationally Transparent


Of course, this also tells us how to map Level N centroids into Level N − 1261


centroids. A Level N centroid is a pdf over arrangements of Level N − 1 beliefs; a262


Level N − 1 centroid is a pdf over arrangements of Level N − 2 beliefs. But Level263


N − 1 beliefs can be mapped into Level N − 2 beliefs, so Level N centroids can be264


represented as pdfs over arrangements of Level N beliefs, and hence mapped into265


Level N − 1 centroids.266


In practice, one can implement this idea by moving from the bottom up. Given the267


mapping from Level 1 “centroids” to pixels, one can iterate through the Level 1 beliefs268


and identify which pixels they correspond to. Then one can iterate through the Level 2269


beliefs and identify which Level 1 beliefs they correspond to, etc. Each Level N belief270


can be explicitly linked to a corresponding level N −1 belief. Synchronously, as one271


moves up the hierarchy, Level N centroids can be explicitly linked to corresponding272


Level N − 1 centroids.273


Since there are in principle more possible Level N beliefs than Level N −1 beliefs,274


the mapping from level N beliefs to level N − 1 beliefs is many-to-one. This is a275


reason not to simply maintain a single centroid pool across levels. However, when a276


new centroid C is added to the Level N pool, it can be mapped into a Level N − 1277


centroid to be added to the Level N − 1 pool (if not there already). And, it can also278


be used to spawn a Level N + 1 centroid, drawn randomly from the set of possible279


Level N + 1 centroids that map into C .280


Also, note that it is possible to maintain a single centroid numbering system across281


levels, so that a reference like “centroid # 175” has only one meaning in an entire282


DeSTIN network, even though some of these centroid may only be meaningful above283


a certain level in the network.284


10.3.4 Rotation Invariant DeSTIN285


With a little more work, one can make DeSTIN rotation and shear invariant as well.1286


Considering rotation first:287


• When comparing an input A to a Level N node with a Level N centroid B, con-288


sider various rotations of A, and see which rotation gives the closest match.289


• When you match a centroid to an input observation-or-belief, record the rotation290


angle corresponding to the match.291


The second of these points implies the tweaked definitions292


• A centroid on Level N is: a spatial arrangement (e.g. k ×k square lattice) of beliefs293


of Level N − 1.294


• A belief on Level N is: a probability distribution over (angle, centroid) pairs on295


Level N .296


1 The basic idea in this section, in the context of rotation, is due to Jade O’Neill (private commu-
nication).
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10.3 Uniform DeSTIN 181


From these it follows that a belief on Level N is: a probability distribution over297


(angle, spatial arrangement of beliefs) pairs on Level N − 1.298


An additional complexity here is that two different (angle, centroid) pairs (on the299


same level) could be (exactly or approximately) equal to each other. This necessitates300


an additional step of “centroid simplification”, in which ongoing checks are made to301


see if there are any two centroids C1, C2 on the same level so that: There exist angles302


A1, A2 so that (A1, C1) is very close to (A2, C2). In this case the two centroids may303


be merged into one.304


To apply these same ideas to shear, one may simply replace “rotation angle” in305


the above by “(rotation angle, shear factor) pair.”306


10.3.5 Temporal Perception307


Translation and scale invariant DeSTIN can be applied perfectly well if the inputs to308


DeSTIN, at level 1, are movies rather than static images. Then, in the simplest version,309


Level 1 consists of pixel cubes instead of pixel squares, etc. (the third dimension in310


the cube representing time). The scale invariance achieved by the methods described311


above would then be scale invariance in time as well as in space.312


In this context, one may enable rectangular shapes as well as cubes. That is, one313


can look at a Level N centroid consisting of m time-slices of a k × k arrangement of314


Level N −1 beliefs—without requiring that m = k .... This would make the centroid315


learning algorithm a little more complex, because at each level one would want to316


consider centroids with various values of m, from m = 1, ..., k (and potentially317


m > k also).318


10.4 Interpretation of DeSTIN’s Activity319


Uniform DeSTIN constitutes a substantial change in how DeSTIN does its business320


of recognizing patterns in the world—conceptually as well as technically. To expli-321


cate the meaning of these changes, we briefly present our favored interpretation of322


DeSTIN’s dynamics.323


The centroids in the DeSTIN library represent points in “spatial pattern space”, i.e.324


they represent exemplary spatial patterns. DeSTIN’s beliefs, as probability distribu-325


tions over centroids, represent guesses as to which of the exemplary spatial patterns326


are the best models of what’s currently being seen in a certain space-time region.327


This matching between observations and centroids might seem to be a simple328


matter of “nearest neighbor matching”; but the subtle point is, it’s not immediately329


obvious how to best measure the distance between observations and centroids. The330


optimal way of measuring distance is going to depend on context; that is to say, on331


the actual distribution of observations in the system’s real environment over time.332
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182 10 Making DeSTIN Representationally Transparent


DeSTIN’s algorithm for calculating the belief at a node, based on the observation333


and centroids at that node plus the beliefs at other nearby nodes, is essentially a way334


of tweaking the distance measurement between observations and centroids, so that335


this measurement accounts for the context (the historical distribution of observa-336


tions). There are many possible ways of doing this tweaking. Ideally one could use337


probability theory explicitly, but that’s not always going to be computationally fea-338


sible, so heuristics may be valuable, and various versions of DeSTIN have contained339


various heuristics in this regard.340


The various ways of “uniformizing” DeSTIN described above (i.e. making its341


pattern recognition activity approximately invariant with respect to affine transfor-342


mations), don’t really affect this story—they just improve the algorithm’s ability343


to learn based on small amounts of data (and its rapidity at learning from data in344


general), by removing the need for the system to repeatedly re-learn transformed345


versions of the same patterns. So the uniformization just lets DeSTIN carry out its346


basic activity faster and using less data.347


10.4.1 DeSTIN’s Assumption of Hierarchical Decomposability348


Roughly speaking, DeSTIN will work well to the extent that: The average distance349


between each part of an actually observed spatial pattern, and the closest centroid350


pattern, is not too large (note: the choice of distance measure in this statement is351


potentially subtle). That is: DeSTIN’s set of centroids is supposed to provide a352


compact model of the probability distribution of spatial patterns appearing in the353


experience of the cognitive system of which DeSTIN is a part.354


DeSTIN’s effective functionality relies on the assumption that this probability dis-355


tribution is hierarchically decomposable—i.e. that the distribution of spatial patterns356


appearing over a k × k region can be compactly expressed, to a reasonable degree357


of approximation, as a spatial combination of the distributions of spatial patterns358


appearing over (k/4) × (k/4) regions. This assumption of hierarchical decompos-359


ability greatly simplifies the search problem that DeSTIN faces, but also restricts360


DeSTIN’s capability to deal with more general spatial patterns that are not easily361


hierarchically decomposable. However, the benefits of this approach seem to out-362


weigh the costs, given that visual patterns in the environments humans naturally363


encounter do seem (intuitively at least) to have this hierarchical property.364


10.4.2 Distance and Utility365


Above we noted that choice of distance measure involved in the assessment of366


DeSTIN’s effective functionality is subtle. Further above, we observed that the func-367


tion of DeSTIN’s belief assessment is basically to figure out the contextually best368
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10.4 Interpretation of DeSTIN’s Activity 183


way to measure the distance between the observation and the centroids at a node.369


These comments were both getting at the same point.370


But what is the right measure of distance between two spatial patterns? Ultimately,371


the right measure is: the probability that the two patterns A and B can be used in the372


same way. That is: the system wants to identify observation A with centroid B if it373


has useful action-patterns involving B, and it can substitute A for B in these patterns374


without loss.375


This is difficult to calculate in general, though—a rough proxy, which it seems376


will often be acceptable, is to measure the distance between A and B in terms of both377


• the basic (extensional) distance between the physical patterns they embody (e.g.378


pixel by pixel distance)379


• the contextual (intensional) distance, i.e. the difference between the contexts in380


which they occur.381


Via enabling the belief in a node’s parent to play a role in modulating a certain node’s382


belief, DeSTIN’s core algorithm enables contextual/intensional factors to play a role383


in distance assessment.384


10.5 Benefits and Costs of Uniform DeSTIN385


We now summarize the main benefits and costs of Uniform DeSTIN a little more386


systematically. The key point we have made here regarding Uniform DeSTIN and387


representational transparency may be summarized as follows:388


• Define an “affine perceptual equivalence class” as a set of percepts that are equiv-389


alent to each other, or nearly so, under affine transformation. An example would390


be views of the same object from different perspectives or distances.391


• Suppose one has an embodied agent using DeSTIN for visual perception, whose392


perceptual stream tends to include a lot of reasonably large affine perceptual equiv-393


alence classes.394


• Then, supposing the “mechanics” of DeSTIN can be transferred to the Uniform395


DeSTIN case without dramatic loss of performance, Uniform DeSTIN should be396


able to recognize patterns based on many fewer examples than classic DeSTIN.397


As soon as Uniform DeSTIN has learned to recognize one element of a given affine398


perceptual equivalence class, it can recognize all of them. Whereas, classic DeSTIN399


must learn each element of the equivalence class separately. So, roughly speaking,400


the number of cases required for unsupervised training of Uniform DeSTIN will be401


less than that for classic DeSTIN, by a ratio equal to the average size of the affine402


perceptual equivalence classes in the agent’s perceptual stream.403


Counterbalancing this, we have the performance cost of comparing the input to404


each node against a much larger set of centroids (in Uniform DeSTIN as opposed405


to classic DeSTIN). However, if a cover tree or other efficient data structure is used,406
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184 10 Making DeSTIN Representationally Transparent


this cost is not so onerous. The cost of nearest neighbor queries in a cover tree storing407


n items (in this case, n centroids) is O(c12logn), where the constant c represents the408


“intrinsic dimensionality” of the data; and in practice the cover tree search algorithm409


seems to perform quite well. So, the added time cost for online clustering in Uniform410


DeSTIN as opposed to DeSTIN, is a factor on the order of the log of the number of411


nodes in the DeSTIN tree. We believe this moderate added time cost is well worth412


paying, to gain a significant decrease in the number of training examples required413


for unsupervised learning.414


Beyond increases in computational cost, there is also the risk that the online clus-415


tering may just not work as well when one has so many clusters in each node. This is416


the sort of problem that can really only be identified, and dealt with, during extensive417


practice—since the performance of any clustering algorithm is largely determined by418


the specific distribution of the data it’s dealing with. It may be necessary to improve419


DeSTIN’s online clustering in some way to make Uniform DeSTIN work optimally,420


e.g. improving its ability to form clusters with markedly non-spherical shapes. This421


ties in to a point raised in Chap. 11—the possibility of supplementing traditional422


clusters with predicates learned by CogPrime, which may live inside DeSTIN nodes423


alongside centroids. Each such predicate in effect defines a (generally nonconvex)424


“cluster”.425


10.6 Imprecise Probability as a Tool for Linking426


CogPrime and DeSTIN427


One key aspect of vision processing is the ability to preferentially focus attention on428


certain positions within a perceived visual scene. In this section we describe a novel429


strategy for enabling this in a hybrid CogPrime/DeSTIN system, via use of imprecise430


probabilities. In fact the basic idea suggested here applies to any probabilistic sensory431


system, whether deep-learning-based or not, and whether oriented toward vision or432


some other sensory modality. However, for sake of concreteness, we will focus here433


on the case of DeSTIN/CogPrime integration.434


10.6.1 Visual Attention Focusing435


Since visual input streams contain vast amounts of data, it’s beneficial for a vision436


system to be able to focus its attention specifically on the most important parts of437


its input. Sometimes knowledge of what’s important will come from cognition and438


long-term memory, but sometimes it may come from mathematical heuristics applied439


to the visual data itself.440


In the human visual system the latter kind of “low level attention focusing” is441


achieved largely in the context of the eye changing its focus frequently, looking442
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10.6 Imprecise Probability as a Tool 185


preferentially at certain positions in the scene [Cha09]. This works because the443


center of the eye corresponds to a greater density of neurons than the periphery.444


So for example, consider a computer vision algorithm like SIFT (Scale-Invariant445


Feature Extraction) [Low99], which (as shown in Fig. 10.1) mathematically isolates446


certain points in a visual scene as “keypoints” which are particularly important for447


identifying what the scene depicts (e.g. these may be corners, or easily identifiable448


curves in edges). The human eye, when looking at a scene, would probably spend a449


greater percentage of its time focusing on the SIFT keypoints than on random points450


in the image.451


The human visual system’s strategy for low-level attention focusing is obviously452


workable (at least in contexts similar to those in which the human eye evolved), but it’s453


also somewhat complex, requiring the use of subtle temporal processing to interpret454


even static scenes. We suggest here that there may be a simpler way to achieve the455


same thing, in the context of vision systems that are substantially probabilistic in456


nature, via using imprecise probabilities. The crux of the idea is to represent the457


most important data, e.g. keypoints, using imprecise probability values with greater458


confidence.459


Similarly, cognition-guided visual attention-focusing occurs when a mind’s460


broader knowledge of the world tells it that certain parts of the visual input may461


be more interesting to study than others. For example, in a picture of a person walk-462


ing down a dark street, the contours of the person may not be tremendously striking463


visually (according to SIFT or similar approaches); but even so, if the system as a464


whole knows that it’s looking at a person, it may decide to focus extra visual attention465


on anything person-like. This sort of cognition guided visual attention focusing, we466


suggest, may be achieved similarly to visual attention focusing guided on lower-467


level cues—by increasing the confidence of the imprecise probabilities associated468


with those aspects of the input that are judged more cognitively significant.469


10.6.2 Using Imprecise Probabilities to Guide470


Visual Attention Focusing471


Suppose one has a vision system that internally constructs probabilistic values cor-472


responding to small local regions in visual input (these could be pixels or voxels, or473


something a little larger), and then (perhaps via a complex process) assigns probabili-474


ties to different interpretations of the input based on combinations of these input-level475


probabilities. For this sort of vision system, one may be able to achieve focusing of476


attention via appropriately replacing the probabilities with imprecise probabilities.477


Such an approach may be especially interesting in hierarchical vision systems, that478


also involve the calculation of probabilities corresponding to larger regions of the479


visual input. Examples of the latter include deep learning based vision systems like480


HTM or DeSTIN, which construct nested hierarchies corresponding to larger and481


larger regions of the input space, and calculate probabilities associated with each of482
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186 10 Making DeSTIN Representationally Transparent


Fig. 10.1 The SIFT algorithm finds keypoints in an image, i.e. localized features that are particularly
useful for identifying the objects in an image. The top row shows images that are matched against
the image in the middle row. The bottom-row image shows some of the keypoints used to perform
the matching (i.e. these keypoints demonstrate the same features in the top-row images and their
transformed middle-row counterparts). SIFT keypoints are identified via a staged filtering approach.
The first stage identifies key locations in scale space by looking for locations that are maxima or
minima of a difference-of-Gaussian function. Each point is used to generate a feature vector that
describes the local image region sampled relative to its scale-space coordinate frame. The features
achieve partial invariance to local variations, such as affine or 3D projections, by blurring image
gradient locations
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10.6 Imprecise Probability as a Tool 187


the regions on each level, based in part on the probabilities associated with other483


related regions.484


In this context, we now state the basic suggestion of the section:485


1. Assign higher confidence to the low-level probabilities that the vision system486


creates corresponding to the local visual regions that one wants to focus attention487


on (based on cues from visual preprocessing or cognitive guidance)488


2. Carry out the vision system’s processing using imprecise probabilities rather than489


single-number probabilities490


3. Wherever the vision system makes a decision based on “the most probable choice”491


from a number of possibilities, change the system to make a decision based on492


“the choice maximizing the product (expectation * confidence)”.493


10.6.3 Sketch of Application to DeSTIN494


Internally to DeSTIN, probabilities are assigned to clusters associated with local495


regions of the visual input. If a system such as SIFT is run as a preprocessor to496


DeSTIN, then those small regions corresponding to SIFT keypoints may be assumed497


semantically meaningful, and internal DeSTIN probabilities associated with them498


can be given a high confidence. A similar strategy may be taken if a cognitive system499


such as OpenCog is run together with DeSTIN, feeding DeSTIN information on500


which portions of a partially-processed image appear most cognitively relevant. The501


probabilistic calculations inside DeSTIN can be replaced with corresponding calcu-502


lations involving imprecise probabilities. And critically, there is a step in DeSTIN503


where, among a set of beliefs about the state in each region of an image (on each504


of a set of hierarchical levels), the one with the highest probability is selected. In505


accordance with the above recipe, this step should be modified to select the belief506


with the highest probability * confidence.507


10.6.3.1 Conceptual Justification508


What is the conceptual justification for this approach?509


One justification is obtained by assuming that each percept has a certain proba-510


bility of being erroneous, and those percepts that appear to more closely embody the511


semantic meaning of the visual scene are less likely to be erroneous. This follows512


conceptually from the assumption that the perceived world tends to be patterned and513


structured, so that being part of a statistically significant pattern is (perhaps weak)514


evidence of being real rather than artifactual. Under this assumption, the proposed515


approach will maximize the accuracy of the system’s judgments.516


A related justification is obtained by observing that this algorithmic approach517


follows from the consideration of the perceived world as mutable. Consider a518


vision system that has the capability to modify even the low-level percepts that it519
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188 10 Making DeSTIN Representationally Transparent


intakes—i.e. to use what it thinks and knows, to modify what it sees. The human520


brain certainly has this potential [Cha09]. In this case, it will make sense for the521


system to place some constraints regarding which of its percepts it is more likely522


to modify. Confidence values semantically embody this—a higher confidence being523


sensibly assigned to percepts that the system considers should be less likely to be524


modified based on feedback from its higher (more cognitive) processing levels. In525


that case, a higher confidence should be given to those percepts that seem to more526


closely embody the semantic meaning of the visual scene—which is exactly what527


we’re suggesting here.528


10.6.3.2 Enabling Visual Attention Focusing in DeSTIN529


via Imprecise Probabilities530


We now refer back to the mathematical formulation of DeSTIN summarized in531


Sect. 5.3.1 of Chap. 5 in Vol. 5, in the context of which the application of imprecise532


probability based attention focusing to DeSTIN is almost immediate.533


The probabilities P(o|s) may be assigned greater or lesser confidence depending534


on the assessed semantic criticality of the observation o in question. So for instance,535


if one is using SIFT as a preprocessor to DeSTIN, then one may assign probabilities536


P(o|s) higher confidence if they correspond to observations o of SIFT keypoints,537


than if they do not.538


These confidence levels may then be propagated throughout DeSTIN’s proba-539


bilistic mathematics. For instance, if one were using Walley’s interval probabilities,540


then one could carry out the probabilistic equations using interval arithmetic.541


Finally, one wishes to replace Eq. 5.3.1.2 in Chap. 5 of Vol. 5 with542


c = arg max
s


(
(bp(s)).strength ∗ (bp(s)).confidence


)
, (10.1)543


or some similar variant. The effect of this is that hypotheses based on high-confidence544


observations are more likely to be chosen, which of course has a large impact on the545


dynamics of the DeSTIN network.546
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Chapter 11
Bridging the Symbolic/Subsymbolic Gap


11.1 Introduction0


While it’s widely accepted that human beings carry out both symbolic and1


subsymbolic processing, as integral parts of their general intelligence, the precise2


definition of “symbolic” versus “subsymbolic” is a subtle issue, which different AI3


researchers will approach in different ways depending on their differing overall per-4


spectives on AI. Nevertheless, the intuitive meaning of the concepts is commonly5


understood:6


• “subsymbolic” refers to things like pattern recognition in high-dimensional quan-7


titative sensory data, and real-time coordination of multiple actuators taking mul-8


tidimensional control signals.9


• “symbolic” refers to things like natural language grammar and (certain or uncer-10


tain) logical reasoning, that are naturally modeled in terms of manipulation of11


symbolic tokens in terms of particular (perhaps experientially learned) rules.12


Views on the relationship between these two aspects of intelligence in human and13


artificial cognition are quite diverse, including perspectives such as14


1. Symbolic representation and reasoning are the core of human-level intelligence;15


subsymbolic aspects of intelligence are of secondary importance and can be16


thought of as pre- or post-processors to symbolic representation and reasoning.17


2. Subsymbolic representation and learning are the core of human intelligence; sym-18


bolic aspects of intelligence19


(a) emerge from the subsymbolic aspects as needed; or,20


(b) arise via a relatively simple, thin layer on top of subsymbolic intelligence,21


that merely applies subsymbolic intelligence in a slightly different way.22


3. Symbolic and subsymbolic aspects of intelligence are best considered as different23


subsystems, which24


B. Goertzel et al., Engineering General Intelligence, Part 2, 189
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_11,
© Atlantis Press and the authors 2014
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190 11 Bridging the Symbolic/Subsymbolic Gap


(a) have a significant degree of independent operation, but also need to coordi-25


nate closely together; or,26


(b) operate largely separately and can be mostly considered as discrete modules.27


In evolutionary terms, it is clear that subsymbolic intelligence came first, and that28


most of the human brain is concerned with the subsymbolic intelligence that humans29


share with other animals. However, this observation doesn’t have clear implications30


regarding the relationship between symbolic and subsymbolic intelligence in the31


context of everyday cognition.32AQ1


In the history of the AI field, the symbolic/subsymbolic distinction was sometimes33


aligned with the dichotomy between logic-based and rule-based AI systems (on the34


symbolic side) and neural networks (on the subsymbolic side) [PJ88b]. However, this35


dichotomy has become much blurrier in the last couple decades, with developments36


such as neural network models of language parsing [GH11] and logical reasoning37


[LBH10], and symbolic approaches to perception and action [SR04]. Integrative38


approaches have also become more common, with one of the major traditional sym-39


bolic AI systems, ACT-R, spawning a neural network version [LA93] with parallel40


structures and dynamics to the traditional explicitly symbolic version and a hybridiza-41


tion with a computational neuroscience model [JL08]; and another one, SOAR, incor-42


porating perception processing components as separate modules [Lai12]. The field43


of “neural-symbolic computing” has emerged, covering the emergence of symbolic44


rules from neural networks, and the hybridization of neural networks with explicitly45


symbolic systems [HH07].46


Our goal here is not to explore the numerous deep issues involved with the47


symbolic/subsymbolic dichotomy, but rather to describe the details of a particu-48


lar approach to symbolic/subsymbolic integration, inspired by Perspective 3(a) in49


the above list: the consideration of symbolic and subsymbolic aspects of intelligence50


as different subsystems, which have a significant degree of independent operation,51


but also need to coordinate closely together. We believe this kind of integration can52


serve a key role in the quest to create human-level general intelligence. The approach53


presented here is at the beginning rather than end of its practical implementation;54


what we are describing here is the initial design intention of a project in progress,55


which is sure to be revised in some respects as implementation and testing proceed.56


We will focus mainly on the tight integration of a subsymbolic system enabling57


gray-scale vision processing into a cognitive architecture with significant symbolic58


aspects, and will then briefly explain how the same ideas can be used for color vision,59


and multi-sensory and perception-action integration.60


The approach presented here begins with two separate AI systems, OpenCog61


(introduced in Chap. 6 of Vol. 5) and DeSTIN (introduced in Chap. 4 of Vol. 5)—62


both currently implemented in open-source software. Here are the relevant features63


of each as they pertain to our current effort of bridging the symbolic/subsymbolic64


gap::65


• OpenCog is centered on a “weighted, labeled hypergraph” knowledge repre-66


sentation called the Atomspace, and features a number of different, sophisti-67


cated cognitive algorithms acting on the Atomspace. Some of these cognitive68
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11.1 Introduction 191


algorithms are heavily symbolic in focus (e.g. a probabilistic logic engine); others69


are more subsymbolic in nature (e.g. a neural net like system for allocating atten-70


tion and assigning credit). However, OpenCog in its current form cannot deal with71


high-dimensional perceptual input, nor with detailed real-time control of complex72


actuators. OpenCog is now being used to control intelligent characters in an exper-73


imental virtual world, where the perceptual inputs are the 3D coordinate locations74


of objects or small blocks; and the actions are movement commands like “step75


forward”, “turn head to the right”.76


• DeSTIN is a deep learning system consisting of a hierarchy of processing nodes,77


in which the nodes on higher levels correspond to larger regions of space-time, and78


each node carries out prediction regarding events in the space-time region to which79


it corresponds. Feedback and feedforward dynamics between nodes combine with80


the predictive activity within nodes, to create a complex nonlinear dynamical81


system whose state self-organizes to reflect the state of the world being perceived.82


However, the specifics of DeSTIN’s dynamics have been designed in what we83


consider a particularly powerful way, and the system has shown good results on84


small-scale test problems [KAR10]. So far DeSTIN has been utilized only for85


vision processing, but a similar proprietary system has been used for auditory data86


as well; and DeSTIN was designed to work together with an accompanying action87


hierarchy.88


These two systems were not originally designed to work together, but we will describe89


a method for achieving their tight integration via90


1. Modifying DeSTIN in several ways, so that91


(a) the patterns in its states over time will have more easily recognizable regu-92


larities93


(b) its nodes are able to scan their inputs not only for simple statistical patterns94


(DeSTIN “centroids”), but also for patterns recognized by routines supplied95


to it by an external source (e.g. another AI system such as OpenCog).96


2. Utilizing one of OpenCogPrime’s cognitive processes (the “Fishgram” frequent97


subhypergraph mining algorithm) to recognize patterns in sets of DeSTIN states,98


and then recording these patterns in OpenCogPrime’s Atomspace knowledge99


store.100


3. Utilizing OpenCogPrime’s other cognitive processes to abstract concepts and101


draw conclusions from the patterns recognized in DeSTIN states by Fishgram.102


4. Exporting the concepts and conclusions thus formed to DeSTIN, so that its nodes103


can explicitly scan for their presence in their inputs, thus allowing the results of104


symbolic cognition to explicitly guide subsymbolic perception.105


5. Creating an action hierarchy corresponding closely to DeSTIN’s perceptual hier-106


archy, and also corresponding to the actuators of a particular robot. This allows107


action learning to be done via an optimization approach ([LKP+05], [YKL+04]),108


where the optimization algorithm uses DeSTIN states corresponding to perceived109


actuator states as part of its inputs.110
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192 11 Bridging the Symbolic/Subsymbolic Gap


The ideas presented here are compatible with those described in [Goe11a], but111


different in emphasis. That chapter described a strategy for integrating OpenCog112


and DeSTIN via creating an intermediate “semantic CSDLN” hierarchy to translate113


between OpenCog and DeSTIN, in both directions. In the approach suggested here,114


this semantic CSDLN hierarchy exists conceptually but not as a separate software115


object: it exists as the combination of116


• OpenCog predicates exported to DeSTIN and used alongside DeSTIN centroids,117


inside DeSTIN nodes.118


• OpenCog predicates living in the OpenCog knowledge repository (AtomSpace),119


and interconnected in a hierarchical way using OpenCog nodes and links (thus120


reflecting DeSTIN’s hierarchical structure within the AtomSpace).121


This hierarchical network of predicates, spanning the two software systems, plays122


the role of a semantic CSDLN as described in [Goe11a].123


11.2 Simplified OpenCog Workflow124


The dynamics inside an OpenCog system may be highly complex, defying sim-125


ple flowcharting, but from the point of view of OpenCog-DeSTIN integration, one126


important pattern of information flow through the system is as follows:127


1. Perceptions come into the Atomspace. In the current OpenCog system, these are128


provided via a proxy to the game engine where the OpenCog controlled character129


interacts. In an OpenCog-DeSTIN hybrid, these will be provided via DeSTIN.130


2. Hebbian learning builds HebbianLinks between perceptual Atoms representing131


percepts that have frequently co-occurred.132


3. PLN inference, concept blending and other methods act on these perceptual Atoms133


and their HebbianLinks, forming links between them and linking them to other134


Atoms stored in the Atomspace reflecting prior experience and generalizations135


therefrom.136


4. Attention allocation gives higher short and long term importance values to those137


Atoms that appear likely to be useful based on the links they have obtained.138


5. Based on the system’s current goals and subgoals (the latter learned from the top-139


level goals using PLN), and the goal-related links in the Atomspace, the OpenPsi140


mechanism triggers the PLN-based planner, which chooses a series of high-level141


actions that are judged likely to help the system achieve its goals in the current142


context.143


6. The chosen high-level actions are transformed into series of lower-level, directly144


executable actions. In the current OpenCog system, this is done by a set of145


hand-coded rules based on the specific mechanics of the game engine where146


the OpenCog controlled character interacts. In an OpenCog-DeSTIN hybrid, the147


lower-level action sequence will be chosen by an optimization method acting148


based on the motor control and perceptual hierarchies.149
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11.2 Simplified OpenCog Workflow 193


This pattern of information flow omits numerous aspects of OpenCog cognitive150


dynamics, but gives the key parts of the picture in terms of the interaction of OpenCog151


cognition with perception and action. Most of the other aspects of the dynamics152


have to do with the interaction of multiple cognitive processes acting on the Atom-153


space, and the interaction between the Atomspace and several associated specialized154


memory stores, dealing with procedural, episodic, temporal and spatial aspects of155


knowledge. From the present point of view, these additional aspects may be viewed156


as part of Step 3 above, wrapped up in the phrase “and other methods act on these157


perceptual Atoms”. However, it’s worth noting that in order to act appropriately on158


perceptual Atoms, a lot of background cognition regarding more abstract conceptual159


Atoms (often generalized from previous perceptual Atoms) may be drawn on. This160


background inference incorporates both symbolic and subsymbolic aspects, but goes161


beyond the scope of the present discussion, as its particulars do not impinge on the162


particulars of DeSTIN-OpenCog integration.163


OpenCog also possesses a specialized facility for natural language comprehen-164


sion and generation [LGE10] [Goe11a], which may be viewed as a parallel percep-165


tion/action pathway, bypassing traditional human-like sense perception and dealing166


with text directly. Integrating OpenCogPrime’s current linguistics processes with167


DeSTIN-based auditory and visual processing is a deep and important topic, but one168


we will bypass here, for sake of brevity and because it’s not our current research169


priority.170


11.3 Integrating DeSTIN and OpenCog171


The integration of DeSTIN and OpenCog involves two key aspects:172


• recognition of patterns in sets of DeSTIN states, and exportation of these patterns173


into the OpenCog Atomspace174


• use of OpenCog-created concepts within DeSTIN nodes, alongside statistically-175


derived “centroids”.176


From here on, unless specified otherwise, when we mention “DeSTIN” we will refer177


to “Uniform DeSTIN” as presented in Chap. 10 and an extension of “classic DeSTIN”178


as defined in [ARK09].179


11.3.1 Mining Patterns from DeSTIN States180


The first step toward using OpenCog tools to mine patterns from sets of DeSTIN181


states, is to represent these states in Atom form in an appropriate way. A simple but182


workable approach, restricting attention for the moment to purely spatial patterns, is183


to use the six predicates:184
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194 11 Bridging the Symbolic/Subsymbolic Gap


• hasCentroid(node N , int k)185


• has ParentCentroid(node N , int k)186


• has NorthNeighborCentroid(node N , int k)187


• hasSouthNeighborCentroid(node N , int k)188


• has East NeighborCentroid(node N , int k)189


• hasW est NeighborCentroid(node N , int k)190


For instance191


has NorthNeighborCentroid(N , 3)192


means that N ’s north neighbor has centroid #3193


One may consider also the predicates194


• has Parent (node N , Node M)195


• has NorthNeighbor(node N , Node M)196


• hasSouthNeighbor(node N , Node M)197


• has East Neighbor(node N , Node M)198


• hasW est Neighbor(node N , Node M)199


Now suppose we have a stored set of DeSTIN states, saved from the application of200


DeSTIN to multiple different inputs. What we want to find are predicates P that are201


conjunctions of instances of the above 10 predicates, which occur frequently in the202


stored set of DeSTIN states. A simple example of such a predicate would be the203


conjunction of204


• has NorthNeighbor($N , $M)205


• has ParentCentroid($N , 5)206


• has ParentCentroid($M, 5)207


• has NorthNeighborCentroid($N , 6)208


• hasW est NeighborCentroid($M, 4)209


This predicate could be evaluated at any pair of nodes ($N , $M) on the same DeSTIN210


level. If it is true for atypically many of these pairs, then it’s a “frequent pattern”,211


and should be detected and stored.212


OpenCogPrime’s pattern mining component, Fishgram, exists precisely for the213


purpose of mining this sort of conjunction from sets of relationships that are stored214


in the Atomspace. It may be applied to this problem as follows:215


• Translate each DeSTIN state into a set of relationships drawn from: hasNorth-216


Neighbor, hasSouthNeighbor, hasEastNeighbor, hasWestNeighbor, hasCentroid,217


hasParent.218


• Import these relationships, describing each DeSTIN state, into the OpenCog Atom-219


space.220


• Run pattern mining on this AtomSpace.221
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11.3 Integrating DeSTIN and OpenCog 195


11.3.2 Probabilistic Inference on Mined Hypergraphs222


Patterns mined from DeSTIN states can then be reasoned on by OpenCogPrime’s223


PLN inference engine, allowing analogy and generalization.224 AQ2


Suppose centroids 5 and 617 are estimated to be similar—either via DeSTIN’s225


built-in similarity metric, or, more interestingly via OpenCog inference on the Atom226


representations of these centroids. As an example of the latter, consider: 5 could227


represent a person’s nose and 617 could represent a rabbit’s nose. In this case, DeSTIN228


might not judge the two centroids particularly similar on a purely visual level, but,229


OpenCog may know that the images corresponding to both of these centroids are are230


called “noses” (e.g. perhaps via noticing people indicate these images in association231


with the word “nose”), and may thus infer (using a simple chain of PLN inferences)232


that these centroids seem probabilistically similar.233


If 5 and 617 are estimated to be similar, then a predicate like234


ANDLink235


EvaluationLink236


hasNorthNeighbor237


ListLink $N $M238


EvaluationLink239


hasParentCentroid240


ListLink $N 5241


EvaluationLink242


hasParentCentroid243


ListLink $M 5244


EvaluationLink245


hasNorthNeighborCentroid246


ListLink $N 6247


EvaluationLink248


hasWestNeighborCentroid249


ListLink $M 4250


mined from DeSTIN states, could be extended via PLN analogical reasoning to251


ANDLink252


EvaluationLink253


hasNorthNeighbor254


ListLink $N $M255


EvaluationLink256


hasParentCentroid257


ListLink $N 617258


EvaluationLink259


hasParentCentroid260


ListLink $M 617261


EvaluationLink262


hasNorthNeighborCentroid263
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196 11 Bridging the Symbolic/Subsymbolic Gap


ListLink $N 6264


EvaluationLink265


hasWestNeighborCentroid266


ListLink $M 4267


11.3.3 Insertion of OpenCog-Learned Predicates268


into DeSTIN’s Pattern Library269


Suppose one has used Fishgram, as described in the earlier part of this chapter, to270


recognize predicates embodying frequent or surprising patterns in a set of DeSTIN271


states or state-sequences. The next natural step is to add these frequent or surprising272


patterns to DeSTIN’s pattern library, so that the pattern library contains not only clas-273


sic DeSTIN centroids, but also these corresponding “image grammar” style patterns.274


Then, when a new input comes into a DeSTIN node, in addition to being compared275


to the centroids at the node, it can be fed as input to the predicates associated with276


the node.277


What is the advantage of this approach, compared to DeSTIN without these predi-278


cates? The capability for more compact representation of a variety of spatial patterns.279


In many cases, a spatial pattern that would require a large number of DeSTIN cen-280


troids to represent, can be represented by a single, fairly compact predicate. It is281


an open question whether these sorts of predicates are really critical for human-like282


vision processing. However, our intuition is that they do have a role in human as283


well as machine vision. In essence, DeSTIN is based on a fancy version of nearest-284


neighbor search, applied in a clever way on multiple levels of a hierarchy, using285


context-savvy probabilities to bias the matching. But we suspect there are many286


visual patterns that are more compactly and intuitively represented using a more287


flexible language, such as OpenCog predicates formed by combining elementary288


predicates involving appropriate spatial and temporal relations.289


For example, consider the archetypal spatial pattern of a face as: either two eyes290


that are next to each other, or sunglasses, above a nose, which is in turn above a291


mouth. (This is an oversimplified toy example, but we’re positing it for illustration292


only. The same point applies to more complex and realistic patterns.) One could293


represent this in OpenCogPrime’s Atom language as something like:294


AND295


InheritanceLink N B_nose296


InheritanceLink M B_mouth297


EvaluationLink298


above299


ListLink E N300


EvaluationLink301


above302


ListLink N M303
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11.3 Integrating DeSTIN and OpenCog 197


OR304


AND305


MemberLink E1 E306


MemberLink E2 E307


EvaluationLink308


next_to309


ListLink E1 E2310


InheritanceLink E1 B_eye311


AND312


InheritanceLink E B_sunglasses313


where e.g. B_eye is a DeSTIN belief that corresponds roughly to recognition of the314


spatial pattern of a human eye. To represent this using ordinary DeSTIN centroids,315


one couldn’t represent the OR explicitly; instead one would need to split it into316


two different sets of centroids, corresponding to the eye case and the sunglasses317


case—unless the DeSTIN pattern library contained a belief corresponding to “eyes318


or sunglasses”. But the question then becomes: how would classic DeSTIN actually319


learn a belief like this? In the suggested architecture, pattern mining on the database320


of DeSTIN states is proposed as an algorithm for learning such beliefs.321


This sort of predicate-enhanced DeSTIN will have advantages over the traditional322


version, only if the actual distribution of images observed by the system contains323


many (reasonably high probability) images modeled accurately by predicates involv-324


ing disjunctions and/or negations as well as conjunctions. If the system’s perceived325


world is simpler than this, then good old DeSTIN will work just as well, and the326


OpenCog-learned predicates are a needless complication.327


Without these sorts of predicates, how might DeSTIN be extended to include328


beliefs like “eyes or sunglasses”? One way would be to couple DeSTIN with a rein-329


forcement learning subsystem, that reinforced the creation of beliefs that were useful330


for the system as a whole. If reasoning in terms of faces (independent of whether they331


have eyes or sunglasses) got the system reward, presumably it could learn to form the332


concept “eyes or sunglasses”. We believe this would also be a workable approach,333


but that given the strengths and weaknesses of contemporary computer hardware,334


the proposed DeSTIN-OpenCog approach will prove considerably simpler and more335


effective.336


11.4 Multisensory Integration, and Perception-Action337


Integration338


In Chap. 10 we have briefly indicated how DeSTIN could be extended beyond339


vision to handle other senses such as audition and touch. If one had multiple340


perception hierarchies corresponding to multiple senses, the easiest way to inte-341


grate them within an OpenCog context would be to use OpenCog as the com-342


munication nexus—representing DeSTIN centroids in the various modality-specific343
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198 11 Bridging the Symbolic/Subsymbolic Gap


hierarchies as OpenCog Atoms (PerceptualCentroidNodes), and building Hebbian-344


Links in OpenCogPrime’s Atomspace between these PerceptualCentroidNodes as345


appropriate based on their association. So for instance the sound of a person’s foot-346


steps would correspond to a certain belief (probability distribution over centroids)347


in the auditory DeSTIN network, and the sight of a person’s feet stepping would348


correspond to a certain belief (probability distribution over centroids) in the visual349


DeSTIN network; and the OpenCog Atomspace would contain links between the sets350


of centroids assigned high weights between these two belief distributions. Importance351


spreading between these various PerceptualCentroidNodes would cause a dynamic352


wherein seeing feet stepping would bias the system to think it was hearing footsteps,353


and hearing footsteps would bias it to think it was seeing feet stepping.354


And, suppose there are similarities between the belief distributions for the visual355


appearance of dogs, and the visual appearance of cats. Via the intermediary of the356


Atomspace, this would bias the auditory and haptic DeSTIN hierarchies to assume357


a similarity between the auditory and haptic characteristics of dogs, and the analo-358


gous characteristics of cats. Because: PLN analogical reasoning would extrapolate359


from, e.g.360


• HebbianLinks joining cat-related visual PerceptualCentroidNodes and dog-related361


visual PerceptualCentroidNodes362


• HebbianLinks joining cat-related visual PerceptualCentroidNodes to cat-related363


haptic PerceptualCentroidNodes; and others joining dog-related visual Perceptu-364


alCentroidNodes to dog-related haptic PerceptualCentroidNodes365


to yield HebbianLinks joining cat-related haptic PerceptualCentroidNodes and dog-366


related haptic PerceptualCentroidNodes. This sort of reasoning would then cause the367


system DeSTIN to, for example, upon touching a cat, vaguely expect to maybe hear368


dog-like things. This sort of simple analogical reasoning will be right sometimes and369


wrong sometimes—a cat walking sounds a fair bit like a dog walking, and cat and370


dog growls sound fairly similar, but a cat meowing doesn’t sound that much like a371


dog barking. More refined inferences of the same basic sort may be used to get the372


details right as the system explores and understands the world more accurately.373


11.4.1 Perception-Action Integration374


While experimentation with DeSTIN has so far been restricted to perception process-375


ing, the system was designed from the beginning with robotics applications in376


mind, involving integration of perception with action and reinforcement learning.377


As OpenCog already handles reinforcement learning on a high level (via OpenPsi),378


our approach to robot control using DeSTIN and OpenCog involves creating a control379


hierarchy parallel to DeSTIN’s perceptual hierarchy, and doing motor learning using380


optimization algorithms guided by reinforcement signals delivered from OpenPsi381


and incorporating DeSTIN perceptual states as part of their input information.382
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11.4 Multisensory Integration, and Perception-Action Integration 199


Our initial research goal, where action is concerned, is not to equal the best383


purely control-theoretic algorithms at fine-grained control of robots carrying out384


specialized tasks, but rather to achieve basic perception/control/cognition integration385


in the rough manner of a young human child. A two year old child is not particularly386


well coordinated, but is capable of coordinating actions involving multiple body387


parts using an integration of perception and action with unconscious and deliberative388


reasoning. Current robots, in some cases, can carry out specialized actions with great389


accuracy, but they lack this sort of integration, and thus generally have difficulty390


effectively carrying out actions in unforeseen environments and circumstances.391


We will create an action hierarchy with nodes corresponding to different parts of392


the robot body, where e.g. the node corresponding to an arm would have child nodes393


corresponding to a shoulder, elbow, wrist and hand; and the node corresponding to a394


hand would have child nodes corresponding to the fingers of the hand; etc. Physical395


self-perception is then achieved by creating a DeSTIN “action-perception” hierarchy396


with nodes corresponding to the states of body components. In the simplest case this397


means the lowest-level nodes will correspond to individual servomotors, and their398


inputs will be numerical vectors characterizing servomotor states. If one is dealing399


with a robot endowed with haptic technology, e.g. Syntouch [FL12] fingertips, then400


numerical vectors characterizing haptic inputs may be used alongside these.401


The configuration space of an action-perception node, corresponding to the402


degrees of freedom of the servomotors of the body part the node represents, may403


be approximated by a set of “centroid” vectors. When an action is learned by the404


optimization method used for this purpose, this involves movements of the servomo-405


tors corresponding to many different nodes, and thus creates a series of “configuration406


vectors” in each node. These configuration vector series may be subjected to online407


clustering, similar to percepts in a DeSTIN perceptual hierarchy. The result is a408


library of “codewords”, corresponding to discrete trajectories of movement, associ-409


ated with each node. The libraries may be shared by identical body parts (e.g. shared410


among legs, shared among fingers), but will be distinct otherwise. Each coordinated411


whole-body action thus results in a series of (node, centroid) pairs, which may be412


mined for patterns, similarly to the perception case.413


The set of predicates needed to characterize states in this action-perception hier-414


archy is simpler than the one described for visual perception above; here one requires415


only416


• hasCentroid(node N , int k)417


• has ParentCentroid(node N , int k)418


• has Parent (node N , Node M)419


• hasSibling(node N , Node M)420


and most of the patterns will involve specific nodes rather than node variables. The421


different nodes in a DeSTIN vision hierarchy are more interchangeable (in terms of422


their involvement in various patterns) than, say, a leg and a finger.423


In a pure DeSTIN implementation, the visual and action-perception hierarchies424


would be directly linked. In the context of OpenCog integration, it is simplest to425
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200 11 Bridging the Symbolic/Subsymbolic Gap


link the two via OpenCog, in a sense using cognition as a bridge between action and426


perception. It is unclear whether this strategy will be sufficient in the long run, but we427


believe it will be more than adequate for experimentation with robotic perceptual-428


motor coordination in a variety of everyday tasks. OpenCogPrime’s Hebbian learning429


process can be used to find common associations between action-perception states430


and visual-perception states, via mining a data store containing time-stamped state431


records from both hierarchies.432


Importance spreading along the HebbianLinks learned in this way can then be433


used to bias the weights in the belief states of the nodes in both hierarchies. So,434


for example, the action-perception patterns related to clenching the fist, would be435


Hebbianly correlated with the visual-perception patterns related to seeing a clenched436


fist. When a clenched fist was perceived via servomotor data, importance spread-437


ing would increase the weighting of visual patterns corresponding to clenched fists,438


within the visual hierarchy. When a clenched fist was perceived via visual data,439


importance spreading would increase the weighting of servomotor data patterns cor-440


responding to clenched fists, within the action-perception hierarchy.441


11.4.2 Thought-Experiment: Eye-Hand Coordination442


For example, how would DeSTIN-OpenCog integration as described here carry out a443


simple task of eye-hand coordination? Of course the details of such a feat, as actually444


achieved, would be too intricate to describe in a brief space, but it still is meaningful445


to describe the basic ideas. Consider the case of a robot picking up a block, in plain446


sight immediately in front of the robot, via pinching it between two fingers and then447


lifting it. In this case,448


• The visual scene, including the block, is perceived by DeSTIN; and appropriate449


patterns in various DeSTIN nodes are formed.450


• Predicates corresponding to the distribution of patterns among DeSTIN nodes are451


activated and exported to the OpenCog Atomspace.452


• Recognition that a block is present is carried out, either by453


– PLN inference within OpenCog, drawing the conclusion that a block is present454


from the exported predicates, using ImplicationLinks comprising a working455


definition of a “block”.456


– A predicate comprising the definition of “block”, previously imported into457


DeSTIN from OpenCog and utilized within DeSTIN nodes as a basic pattern458


to be scanned for. This option would obtain only if the system had perceived459


many blocks in the past, justifying the automation of block recognition within460


the perceptual hierarchy.461


• OpenCog, motivated by one of its higher-level goals, chooses “picking up the462


block” as subgoal. So it allocates effort to finding a procedure whose execution, in463


the current context, has a reasonable likelihood of achieving the goal of picking up464
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11.4 Multisensory Integration, and Perception-Action Integration 201


the block. For instance, the goal could be curiosity (which might make the robot465


want to see what lies under the block), or the desire to please the agent’s human466


teacher (in case the human teacher likes presents, and will reward the robot for467


giving it a block as a present), etc.468


• OpenCog, based on its experience, uses PLN to reason that “grabbing the block”469


is a subgoal of “picking up the block”.470


• OpenCog utilizes a set of predicates corresponding to the desired state of “grabbing471


the the block” as a target for an optimization algorithm, designed to figure out a472


series of servomotor actions that will move the robot’s body from the current state473


to the target state. This is a relatively straightforward control theory problem.474


• Once the chosen series of servomotor actions has been executed, the robot has475


its fingers poised around the block, ready to pick it up. At this point, the action-476


perception hierarchy perceives what is happening in the fingers. If the block is477


really being grabbed properly, then the fingers are reporting some force, due to478


the feeling of grabbing the block (haptic input is another possibility and would be479


treated similarly, but we will leave that aside for now). Importance spreads from480


these action-perception patterns into the Atomspace, and back down into the visual481


perception hierarchy, stimulating concepts and percepts related to “something is482


being grabbed by the fingers”.483


• If the fingers aren’t receiving enough force, because the agent is actually only484


poking the block with one finger and grabbing the air with another finder, then the485


“something is being grabbed by the fingers” stimulation doesn’t happen, and the486


agent is less sure it’s actually grabbing anything. In that case it may withdraw its487


hand a bit, so that it can more easily assess its hand’s state visually, and try the488


optimization-based movement planning again.489


• Once the robot estimates the goal of grabbing the block has been successfully490


achieved, it proceeds to the next sub-subgoal, and asks the action-sequence opti-491


mizer to find a sequence of movements that will likely cause the predicates corre-492


sponding to “hold the block up” to obtain. It then executes this movement series493


and picks the block up in the air.494


This simple example is a far cry from the perceptual-motor coordination involved in495


doing embroidery, juggling or serving a tennis ball. But we believe it illustrates, in496


a simple way, the same basic cognitive structures and dynamics used in these more497


complex instances.498


11.5 A Practical Example: Using Subtree Mining499


to Bridge the Gap Between DeSTIN and PLN500


In this section we describe some relatively simple practical experiments we have run,501


exploring the general ideas described above. The core idea of these experiments is502


to apply Yun Chi’s Frequent Subtree Mining software [CXYM05]1 to mine frequent503


1 available for download at http://www.nec-labs.com/~ychi/publication/software.html.
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202 11 Bridging the Symbolic/Subsymbolic Gap


patterns from a data-store of trees representing DeSTIN states. In this application,504


each frequent subtree represents a “common visual pattern”. These patterns may505


then be reasoned about using PLN. This approach may also be extended to include506


additional quality metrics besides frequency, e.g. interaction information [Bel03]507


which lets one measure how “surprising” a subtree is.508


Figure 11.1 illustrates the overall architecture into which the use of frequent509


subtree mining to bridge DeSTIN and PLN is intended to fit. This architecture is not510


yet fully implemented, but is a straightforward extension of the current OpenCog511


architecture for processing data from game worlds [GEA08], and is scheduled for512


implementation later in 2013 in the course of a funded project involving the use of513


DeSTIN and OpenCog for humanoid robot control.514


The components intervening between DeSTIN and OpenCog, in this architecture,515


are:516


• DeSTIN State DB: Stores all DeSTIN states the system has experienced, indexed517


by time of occurrence.518


• Frequent Subtree Miner: Recognizes frequent subtrees in the database of519


DeSTIN states, and can also filter the frequent subtrees by other criteria such520


as information-theoretic surprisingness. These subtrees may sometimes span mul-521


tiple time points.522


• Frequent Subtree Recognizer: Scans DeSTIN output, and recognizes frequent523


subtrees therein. These subtrees are the high level “visual patterns” that make their524


way from DeSTIN to OpenCog.525


Fig. 11.1 Graphical depiction of the architecture for DeSTIN/OpenCog integration using frequent
subtree mining as a bridge. Semantic feedback is not yet implemented; and sophisticated process-
ing of DeSTIN or other visual input is not yet handled by OpenCog’s Perception Collector. The
experiments presented here utilized a simplified, preliminary version of the architecture
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11.5 A Practical Example 203


• Perception Collector: Linearly normalizes the spatial coordinates associated with526


its input subtrees, to compensate for movement of the camera. Filters out percep-527


tions that didn’t change recently (e.g. a static white wall), so that only new visual528


information is passed along to OpenCog. Translates the subtrees into Scheme files529


representing OpenCog logical Atoms.530


• Experience DB: Stores all the normalized subtrees that have actually made their531


way into OpenCog.532


• Semantic Feedback: Allows the semantic associations OpenCog makes to a sub-533


tree, to be fed back into DeSTIN as additional inputs to the nodes involved in the534


subtree. This allows perception to make use of cognitive information.535


11.5.1 The Importance of Semantic Feedback536


One aspect of the above architecture not yet implemented, but worthy of note, is537


semantic feedback. Without the semantic feedback, we expect to be able to emulate538


human object and event recognition insofar as they are done by the human brain539


in a span of less than 500 ms or so. In this time frame, the brain cannot do much540


sophisticated cognitive feedback, and processes perceptual data in an essentially541


feedforward manner. On the other hand, properly tuned semantic feedback along542


with appropriate symbolic reasoning in OpenCog, may allow us to emulate human543


object and event recognition as the human brain does it when it has more time544


available, and can use its cognitive understanding to guide vision processing.545


A simple example of this sort of symbolic reasoning is analogical inference. Given546


a visual scene, OpenCog can reason about what the robot has seen in similar situations547


before, where its notion of “similarity” draws not only on visual cues but on other548


contextual information: what time it is, what else is in the room (even if not currently549


visible), who has been seen in the room recently, etc.550


For instance, recognizing familiar objects that are largely occluded and in dim551


light, may be something requiring semantic feedback, and not achievable via the552


feedforward dynamics alone. This can be tested in a robot vision context via showing553


the robot various objects and events in various conditions of lighting and occlusion,554


and observing its capability at recognizing the objects and events with and without555


semantic feedback, in each of the conditions.556


If the robot sees an occluded object in a half-dark area on a desk, and it knows557


that a woman was recently sitting at that desk and then got up and left the room, its558


symbolic analogical inference may make it more likely to conclude that the object is559


a purse. Without this symbolic inference, it might not be able to recognize the object560


as a purse based on bottom-up visual clues alone.561
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204 11 Bridging the Symbolic/Subsymbolic Gap


11.6 Some Simple Experiments with Letters562


To illustrate the above ideas in an elementary context, we now present results of an563


experiment using DeSTIN, subtree mining and PLN together to recognize patterns564


among a handful of black and white images comprising simple letter-forms. This is565


a “toy” example, but exemplifies the key processes reviewed above. During the next566


year we will be working on deploying these same processes in the context of robot567


vision.568


11.6.1 Mining Subtrees from DeSTIN States Induced569


via Observing Letterforms570


Figure 11.2 shows the 7 input images utilized; Fig. 11.3 shows the centroids found on571


each of the layers of DeSTIN (note that translation invariance was enabled for these572


experiments); and Fig. 11.4 shows the most frequent subtrees recognized among the573


DeSTIN states induced by observing the 7 input images.574


(a) (b)


(c) (d) (e)


(f) (g)


Fig. 11.2 Simple input images fed to DeSTIN for the experiment reported here. a Image 0,
b Image 1, c Image 2, d Image 3, e Image 4, f Image 5, g Image 6
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11.6 Some Simple Experiments with Letters 205


(a) (b)


(c) (d) (e)


(f) (g) (h)


Fig. 11.3 Example visualization of the centroids on the 7 layers of the DeSTIN network. Each
picture shows multiple centroids at the corresponding level. Higher level centroids are visualized
as p’th power averages of lower level centroids, with p = 4. a Layer 0, b Layer 1, c Layer 2,
d Layer 3, e Layer 4, f Layer 5, g Layer 6, h Layer 7


The centroid images shown in Fig. 11.3 were generated as follows. For the bottom575


layer, centroids were directly represented as 4 × 4 grayscale images (ignoring the576


previous and parent belief sections of the centroid). For higher-level centroids, we577


proceeded as follows:578


• Divide the centroid into 4 sub-arrays. An image is generated for each sub-array by579


treating the elements of the sub-array as weights in a weighted sum of the child580


centroid images. This weighted sum is used superpose/blend the child images into581


1 image.582


• Then these 4 sub-array images are combined in a square to create the whole centroid583


image.584


• Repeat the process recursively, till one reaches the top level.585
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206 11 Bridging the Symbolic/Subsymbolic Gap


(a) (b)


(c) (d) (e)


(f) (g) (h)


Fig. 11.4 Example subtrees extracted from the set of DeSTIN states corresponding to the input
images given above. Each subtree is associated with a triple (level, centroid, position). The position
is one of the four level n squares making up a level n − 1 centroid. In this simple exmaple,
all these frequent subtrees happen to be from Level 6, but this is not generally the case for
more complex images. some of the centroids look like whitespace, but this is because a com-
mon region of whitespace was recognized among multiple input images. a Subtree 0: (L6, C2, P0),
b Subtree 1: (L6, C12, P0), c Subtree 2: (L6, C19, P0), d Subtree 3: (L6, C12, P1), e Subtree 4:
(L6, C13, P1), f Subtree 5: (L6, C1, P2), g Subtree 6: (L6, C5, P2), h Subtree 7: (L6, C20, P3)


The weighted averaging used a p-power approach, i.e. replacing each weight wi with586


w
p
i /(w


p
1 + · · · + w


p
n ) for a given exponent p > 0. The parameter p toggles how587


much attention is paid to nearby versus distant centroids. In generating Fig. 11.3 we588


used p = 4.589
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11.6 Some Simple Experiments with Letters 207


The relation between subtrees and input images, in this example, was directly590


given via the subtree miner as:591


tree #0 matches input image: 4 6592


tree #1 matches input image: 1 2593


tree #2 matches input image: 3 5594


tree #3 matches input image: 0 1 2 4595


tree #4 matches input image: 3 5596


tree #5 matches input image: 4 5597


tree #6 matches input image: 1 2598


tree #7 matches input image: 0 3 4599


11.6.2 Mining Subtrees from DeSTIN States Induced600


via Observing Letterforms601


The subtree-image relationships listed above may be most directly expressed in PLN602


syntax/semantics via603


Evaluation contained_in (Tree0 Image4)604


Evaluation contained_in (Tree0 Image6)605


Evaluation contained_in (Tree1 Image1)606


Evaluation contained_in (Tree1 Image2)607


Evaluation contained_in (Tree2 Image3)608


Evaluation contained_in (Tree2 Image5)609


Evaluation contained_in (Tree3 Image0)610


Evaluation contained_in (Tree3 Image1)611


Evaluation contained_in (Tree3 Image2)612


Evaluation contained_in (Tree3 Image4)613


Evaluation contained_in (Tree4 Image3)614


Evaluation contained_in (Tree4 Image5)615


Evaluation contained_in (Tree5 Image4)616


Evaluation contained_in (Tree5 Image5)617


Evaluation contained_in (Tree6 Image1)618


Evaluation contained_in (Tree6 Image2)619


Evaluation contained_in (Tree7 Image0)620


Evaluation contained_in (Tree7 Image3)621


Evaluation contained_in (Tree7 Image4)622


But while this is a perfectly natural way to import such relationships into OpenCog,623


it is not necessarily the most convenient form for PLN to use to manipulate them.624


For some useful inference chains, it is most convenient for PLN to translate these625


into the more concise form626


Inheritance Image4 hasTree0627


Inheritance Image6 hasTree0628


...629


Inheritance Image3 hasTree7630


Inheritance Image4 hasTree7631


PLN performs the translation from Evaluation into Inheritance form via the inference632


steps633
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208 11 Bridging the Symbolic/Subsymbolic Gap


Evaluation contains (Tree0 Image4)634


==> \\ definition of SatisfyingSet635


Member Image4 (SatisfyingSet (Evaluation636


contains(Tree0 *)) )637


== \\ definition of hasTree0638


Member Image4 hasTree0639


==> \\ M2I , Member to Inheritance inference640


Inheritance Image4 hasTree0641


Finally, given the Inheritance relations listed above, PLN can draw some simple642


conclusions fairly directly, such as:643


Similarity Image1 Image2 <1, .375>644


Similarity Image3 Image5 <.5, .444>645


The PLN truth values above are given in the form “ <strength, confidence>”, where646


strength is in this case effectively a probability, and confidence represents a scaling647


into the interval [0, 1] of the amount of evidence on which that strength value is648


based. The confidence is calculated using a “personality parameter” of k = 5 (k may649


vary between 1 and ∞, with higher numbers indicating less value attached to each650


individual piece of evidence. For example the truth value strength of 1 attached to651


“Similarity Image1 Image2” indicates that according to the evidence provided by652


these subtrees (and ignoring all other evidence), Image1 and Image2 are the same.653


Of course they are not the same—one is a C and another is an O—and once more654


evidence is given to PLN, it will decrease the strength value of this SimilarityLink.655


The confidence value of .375 indicates that PLN is not very certain of the sameness656


of these two letters.657


What conclusion can we draw from this toy example, practically speaking? The658


conclusions drawn by the PLN system are not useful in this case—PLN thinks C and659


O are the same, as a provisional hypothesis based on this data. But this is not because660


DeSTIN and PLN are stupid. Rather, it’s because they have not been fed enough data.661


The hypothesis that a C is an occluded O is actually reasonably intelligent. If we662


fed these same systems many more pictures, then the subtree miner would recognize663


many more frequent subtrees in the larger corpus of DeSTIN states, and PLN would664


have a lot more information to go on, and would draw more conmmonsensically665


clever conclusions. We will explore this in our future work.666


We present this toy example not as a useful practical achievement, but rather as a667


very simple illustration of the process via which subsymbolic knowledge (as in the668


states of the DeSTIN deep learning architecture) can be mapped into abstract logical669


knowledge, which can then be reasoned on via a probabilistic logical reasoning engine670


(such as PLN). We believe that the same process illustrated so simplistically in this671


example, will also generalize to more realistic and interesting examples, involving672


more complex images and inferences. The integration of DeSTIN and OpenCog673


described here is being pursued in the context of a project aimed at the creation of674


a humanoid robot capable of perceiving interpreting and acting in its environment675


with a high level of general intelligence.676
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11.7 Conclusion 209


11.7 Conclusion677


We have described, at a high level, a novel approach to bridging the symbolic/678


subsymbolic gap, via very tightly integrating DeSTIN with OpenCog. We don’t679


claim that this is the only way to bridge the gap, but we do believe it is a viable680


way. Given the existing DeSTIN and OpenCog designs and codebases, the execution681


of the ideas outlined here seems to be relatively straightforward, falling closer to682


the category of “advanced development” than that of blue-sky research. However,683


fine-tuning all the details of the approach will surely require substantial effort.684


While we have focused on robotics applications here, the basic ideas described685


could be implemented and evaluated in a variety of other contexts as well, for example686


the identification of objects and events in videos, or intelligent video summarization.687


Our interests are broad, however, we feel that robotics is the best place to start—688


partly due to a general intuition regarding the deep coupling between human-like689


intelligence and human-like embodiment; and partly due to a more specific intuition690


regarding the value of action for perception, as reflected in Heinz von Foerster’s691


dictum “if you want to see, learn how to act”. We suspect there are important cognitive692


reasons why perception in the human brain centrally involves premotor regions.693


The coupling of a perceptual deep learning hierarchy and a symbolic AI system694


doesn’t intrinsically solve the combinatorial explosion problem intrinsic in looking695


for potential conceptual patterns in masses of perceptual data. However, a system with696


particular goals and the desire to act in such a way as to achieve them, possesses a very697


natural heuristic for pruning the space of possible perceptual/conceptual patterns. It698


allows the mind to focus in on those percepts and concepts that are useful for action.699


Of course, there are other ways besides integrating action to enforce effective pruning,700


but the integration of perception and action has a variety of desirable properties that701


might be difficult to emulate via other methods, such as the natural alignment of the702


hierarchical structures of action and reward with that of perception.703


The outcome of any complex research project is difficult to foresee in detail. How-704


ever, our intuition—based on our experience with OpenCog and DeSTIN, and our705


work with the mathematical and conceptual theories underlying these two systems—706


is that the hybridization of OpenCog and DeSTIN as described here will constitute707


a major step along the path to human-level AGI. It will enable the creation of an708


OpenCog instance endowed with the capability of flexibly interacting with a rich709


stream of data from the everyday human world. This data will not only help OpenCog710


to guide a robot in carrying out everyday tasks, but will also provide raw material711


for OpenCogPrime’s cognitive processes to generalize from in various ways—e.g.712


to use as the basis for the formation of new concepts or analogical inferences.713
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Chapter 12
Procedure Learning as Program
Learning


12.1 Introduction0


Broadly speaking, the learning of predicates and schemata (executable procedures)1


is done in CogPrime via a number of different methods, including for example PLN2


inference and concept predicatization (to be discussed in later chapters). Most of these3


methods, however, merely extrapolate procedures directly from other procedures or4


concepts in the AtomSpace, in a local way—a new procedure is derived from a5


small number of other procedures or concepts. General intelligence also requires6


a method for deriving new procedures that are more “fundamentally new.” This is7


where CogPrime makes recourse to explicit procedure learning algorithms such as8


hillclimbing and MOSES, discussed in Chaps. 14 and 15.9


In this brief chapter we formulate the procedure learning problem as a program10


learning problem in a general way, and make some high-level observations about it.11


Conceptually, this chapter is a follow-up to Chap. 3 which discussed the choice to12


represent procedures as programs; here we make some simple observations regarding13


the implications of this choice for procedure learning, and the formal representation14


of procedure learning with CogPrime.15


12.1.1 Program Learning16


An optimization problem may be defined as follows: a solution space S is speci-17


fied, together with some fitness function on solutions, where “solving the problem”18


corresponds to discovering a solution in S with a sufficiently high fitness.19


In this context, we may define program learning as follows: given a program20


space P, a behavior space B, an execution function exec : P �→ B, and a fitness21


function on behaviors, “solving the problem” corresponds to discovering a program22


p in P whose corresponding behavior, exec(p), has a sufficiently high fitness.23


B. Goertzel et al., Engineering General Intelligence, Part 2, 213
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_12,
© Atlantis Press and the authors 2014
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214 12 Procedure Learning as Program Learning


In evolutionary learning terms, the program space is the space of genotypes, and24


the behavior space is the space of phenotypes.25


This formalism of procedure learning serves well for explicit procedure learning26


CogPrime, not counting cases like procedure learning within other systems (like27


DeSTIN) that may be hybridized with CogPrime.28


Of course, this extended formalism can of be entirely vacuous—the behavior29


space could be identical to the program space, and the execution function simply30


identity, allowing any optimization problem to be cast as a problem of program31


learning. The utility of this specification arises when we make interesting assumptions32


regarding the program and behavior spaces, and the execution and fitness functions33


(thus incorporating additional inductive bias):34


1. Open-endedness—P has a natural “program size” measure—programs may be35


enumerated from smallest to largest, and there is no obvious problem-independent36


upper bound on program size.37


2. Over-representation—exec often maps many programs to the same behavior.38


3. Compositional hierarchy—programs themselves have an intrinsic hierarchical39


organization, and may contain subprograms which are themselves members of40


P or some related program space. This provides a natural family of distance41


measures on programs, in terms of the the number and type of compositions /42


decompositions needed to transform one program into another (i.e. edit distance).43


4. Chaotic Execution—very similar programs (as conceptualized in the previous44


item) may have very different behaviors.45


Precise mathematical definitions could be given for all of these properties but46


would provide little insight—it is more instructive to simply note their ubiquity in47


symbolic representations; human programming languages (LISP, C, etc.), Boolean48


and real-valued formulae, pattern-matching systems, automata, and many more. The49


crux of this line of thought is that the combination of these four factors conspires to50


scramble fitness functions—even if the mapping from behaviors to fitness is separable51


or nearly decomposable, the complex1 program space and chaotic execution function52


will often quickly lead to intractability as problem size grows. These properties are53


not superficial inconveniences that can be circumvented by some particularly clever54


encoding. On the contrary, they are the essential characteristics that give programs55


the power to compress knowledge and generalize correctly, in contrast to flat, inert56


representations such as lookup tables (see Baum [Bau04] for a full treatment of this57


line of argument).58


The consequences of this particular kind of complexity, together with the fact59


that most program spaces of interest are combinatorially very large, might lead one60


to believe that competent program learning is impossible. Not so: real-world pro-61


gram learning tasks of interest have a compact structure2—they are not “needle in62


haystack” problems or uncorrelated fitness landscapes, although they can certainly63


1 Here “complex” means open-ended, over-representing, and hierarchical.
2 Otherwise, humans could not write programs significantly more compact than lookup tables.
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12.1 Introduction 215


be encoded as such. The most one can definitively state is that algorithm foo, method-64


ology bar, or representation baz is unsuitable for expressing and exploiting the reg-65


ularities that occur across interesting program spaces. Some of these regularities are66


as follows:67


1. Simplicity prior—our prior assigns greater probability mass to smaller programs.68


2. Simplicity preference—given two programs mapping to the same behavior, we69


prefer the smaller program (this can be seen as a secondary fitness function).70


3. Behavioral decomposability—the mapping between behaviors and fitness is sep-71


arable or nearly decomposable. Relatedly, fitness are more than scalars—there is a72


partial ordering corresponding to behavioral dominance, where one behavior dom-73


inates another if it exhibits a strict superset of the latter’s desideratum, according74


to the fitness function.3 This partial order will never contradict the total ordering75


of scalar fitness.76


4. White box execution—the mechanism of program execution is known a priori,77


and remains constant across many problems.78


How these regularities may be exploited will be discussed in later sections and79


chapters. Another fundamental regularity of great interest for artificial general intelli-80


gence is patterns across related problems that may be solvable with similar programs81


(e.g. involving common modules).82


12.2 Representation-Building83


One important issue in achieving competent program learning is representation84


building. In an ideally encoded optimization problem, all prespecified variables85


would exhibit complete separability, and could be optimized independently. Prob-86


lems with hierarchical dependency structure cannot be encoded this way, but are still87


tractable by dynamically learning the problem decomposition (as is done by the BOA88


and hBOA, described in Chap. 15). For complex problems with interacting subcom-89


ponents, finding an accurate problem decomposition is often tantamount to finding90


a solution. In an idealized run of a competent optimization algorithm, the problem91


decomposition evolves along with the set of solutions being considered, with parallel92


convergence to the correct decomposition and the global solution optima. However,93


this is certainly contingent on the existence of some compact4 and reasonably correct94


decomposition in the space (of decompositions, not solutions) being searched.95


Difficulty arises when no such decomposition exists, or when a more effec-96


tive decomposition exists that cannot be formulated as a probabilistic model over97


3 For example, in supervised classification one rule dominates another if it correctly classifies all
of the items that second rule classifies correctly, as well as some which the second rule gets wrong.
4 The decomposition must be compact because in practice only a fairly small sampling of solutions
may be evaluated (relative to the size of the total space) at a time, and the search mechanism for
exploring decomposition-space is greedy and local. This is in also accordance with the general
notion of learning corresponding to compression.
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216 12 Procedure Learning as Program Learning


representational parameters. Accordingly, one may extend current approaches via98


either: a more general modeling language for expressing problem decompositions;99


or additional mechanisms that modify the representations on which modeling oper-100


ates (introducing additional inductive bias). In CogPrime we have focused on the101


latter—the former would appear to require qualitatively more computational capac-102


ity than will be available in the near future. If one ignores this constraint, such a103


“universal” approach to general problem-solving is indeed possible, e.g. AI X I tl as104


discussed in Sect. 7.3105


We refer to these additional mechanisms as “representation-building” because106


they serve the same purpose as the pre-representational mechanisms employed (typ-107


ically by humans) in setting up an optimization problem—to present an optimization108


algorithm with the salient parameters needed to build effective problem decompo-109


sitions and vary solutions along meaningful dimensions. We return to this issue in110


detail in Chap. 15 in the context of MOSES, the most powerful procedure-learning111


algorithm provided in CogPrime.112


12.3 Specification Based Procedure Learning113


Now we explain how procedure learning fits in with the declarative and intentional114


knowledge representation in the Atomspace.115


The basic method that CogPrime uses to learn procedures that appear funda-116


mentally new from the point of view of the AtomSpace at a given point in time is117


“specification-based procedure learning”. This involves taking a PredicateNode with118


a ProcedureNode input type as a specification, and searching for ProcedureNodes119


that fulfill this specification (in the sense of making the specification PredicateNode120


as true as possible). In evolutionary computing lingo, the specification predicate is a121


fitness function.122


Searching for PredicateNodes that embody patterns in the AtomSpace as a whole123


is a special case of this kind of learning, where the specification PredicateNode124


embodies a notion of what constitutes an “interesting pattern”. The quantification of125


interestingness is of course an interesting and nontrivial topic in itself.126


Finding schemata that are likely to achieve goals important to the system is also127


a special case of this kind of learning. In this case, the specification predicate is of128


the form:129


F(S) = PredictiveImplicationLink (ExOutLink S) G130


This measures the extent to which executing schema S is positively correlated131


with goal-predicate G being achieved shortly later.132


Given a PredicateNode interpretable as a specification, how do we find a Proce-133


dureNode satisfying the specification? Lacking prior knowledge sufficient to enable134


an incremental approach like inference, we must search the space of possible Pro-135


cedureNodes, using an appropriate search heuristic, hopefully one that makes use of136


the system’s existing knowledge as fully as possible.137
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Chapter 13
Learning Procedures via Imitation,
Reinforcement and Correction


13.1 Introduction0


In procedure learning as elsewhere in cognition, it’s not enough to use the right algo-1


rithm, one has to use it in the right way based on the data and context and affordances2


available. While Chaps. 14 and 15 focus on procedure learning algorithms, this one3


focuses on procedure learning methodology. We will delve into the important spe-4


cial case of procedure learning in which the fitness function involves reinforcement5


and imitation supplied by a teacher and/or an environment, and look at examples6


of this in the context of teaching behaviors to virtual pets controlled by OpenCog-7


Prime. While this may seem a very narrow context, many of the lessons learned are8


applicable more broadly; and the discussion has the advantage of being grounded in9


actual experiments done with OpenCogPrime’s predecessor system, the Novamente10


Cognition Engine, and with an early OpenCog version as well, during the period11


2007–2008.12


We will focus mainly on learning from a teacher, and then common on the very13


similar case where the environment, rather than some specific agent, is the teacher.14


13.2 IRC Learning15


Suppose one intelligent agent (the “teacher”) has knowledge of how to carry out a16


certain behavior, and wants to transfer this knowledge to another intelligent agent17


(the “student”). But, suppose the student agent lacks the power of language (which18


might be, for example, because language is the thing being taught!). How may the19


knowledge be transferred? At least three methodologies are possible:20


Co-authored with Moshe Looks, Samir Araujo and Welter Silva.


B. Goertzel et al., Engineering General Intelligence, Part 2, 217
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_13,
© Atlantis Press and the authors 2014
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218 13 Learning Procedures via Imitation, Reinforcement and Correction


1. Imitative learning: The teacher acts out the behavior, showing the student by21


example22


2. Reinforcement learning: The student tries to do the behavior himself, and the23


teacher gives him feedback on how well he did24


3. Corrective learning: As the student attempts the behavior, the teacher actively25


corrects (i.e., changes) the student’s actions, guiding him toward correct perfor-26


mance27


Obviously, these three forms of instruction are not exclusive. What we describe here,28


and call IRC learning, is a pragmatic methodology for instructing AGI systems that29


combines these three forms of instruction. We believe this combination is a potent30


one, and is certainly implicit in the way human beings typically teach young children31


and animals.32


For sake of concreteness, we present IRC learning here primarily in the context of33


virtually embodied AGI systems—i.e., AGI systems that control virtual agents living34


in virtual worlds. There is an obvious extension to physical robots living in the real35


world and capable of flexible interaction with humans. In principle, IRC learning36


is applicable more broadly as well, and could be explored in various non-embodied37


context such as (for instance) automated theorem-proving. In general, the term “IRC38


learning” may be used to describe any teacher/student interaction that involves a39


combination of reinforcement, imitation and correction. While we have focused in40


our practical work so far on the use of IRC to teach simple “animal-like” behaviors,41


the application that interests us more in the medium term is language instruction, to42


which we will return in later chapters.43


Harking back to Chap. 9 of Vol. 5, it is clear that an orientation toward effective44


IRC learning will be valuable for any system attempting to achieve complex goals45


in an environment heavily populated by other intelligences possessing significant46


goal-relevant knowledge. Everyday human environments possess this characteristic,47


and we suggest the best way to create human-level AGIs will be to allow them to48


develop in environments possessing this characteristic as well.49


13.2.1 A Simple Example of Imitation/Reinforcement Learning50


Perhaps the best way to introduce the essential nature of the IRC teaching protocol51


is to give a brief snippet from a script that was created to guide the actual training of52


the virtual animals controlled by the PetBrain. This snippet involves only I and R;53


the C will be discussed afterwards.54


This snippet demonstrates a teaching methodology that involves two avatars: Bob55


who is being the teacher, and Jill who is being an “imitation animal,” showing the56


animal what to do by example.57


1. Bob wants to teach the dog Fido a trick. He calls his friend Jill over. “Jill, can58


you help me teach Fido a trick?”59


2. Jill comes over. “How much will you pay me for it?”60
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13.2 IRC Learning 219


3. Bob gives her a kiss.61


4. “All right,” says Jill, “what do you want to teach him?”62


5. “Let’s start with fetching stuff,” replies Bob.63


6. So Bob and Jill start teaching Fido to fetch using the Pet language....64


7. Bob says: “Fido, I’m going to teach you to play fetch with Jill.”65


8. Fido sits attentively, looking at Bob.66


9. Bob says: “OK, I’m playing fetch now.”67


10. Bob picks up a stick from the ground and throws it. Jill runs to get the stick and68


brings it back to Bob.69


11. Bob says: “I’m done fetching.”70


12. Bob says, “You try it.”71


13. Bob throws a stick. Fido runs to the stick, gets it, and brings it back.72


14. Bob says “Good dog!”73


15. Fido looks happy.74


16. Bob says: “Ok, we’re done with that game of fetch.”75


17. Bob says, “Now, let’s try playing fetch again.”76


18. This time, Bob throws a stick in a different direction, where there’s already a77


stick lying on the ground (call the other stick Stick 2).78


19. Fido runs and retrieves Stick 2. As soon as he picks it up, Bob says “No.” But79


Fido keeps on running and brings the stick back to Bob.80


20. Bob says “No, that was wrong. That was the wrong stick. Stop trying!”81


21. Jill says, “Furry little moron!”82


22. Bob says to Jill, “Have some patience, will you? Let’s try again.”83


23. Fido is slowly wandering around, sniffing the ground.84


24. Bob says “Fido, stay.” Fido returns near Bob and sits.85


25. Bob throws Stick 2. Fido starts to get up and Bob repeats “Fido, stay.”86


26. Bob goes and picks up Stick 1, and walks back to his original position.87


27. Bob says “Fido, I’m playing fetch with Jill again.”88


28. Bob throws the first stick in the direction of stick 2.89


29. Jill goes and gets stick 1 and brings it back to Bob.90


30. Bob says “I’m done playing fetch with Jill.”91


31. Bob says “Try playing fetch with me now.” He throws stick 1 in another direc-92


tion, where stick 3 and stick 4 are lying on the ground, along with some other93


junk.94


32. Fido runs and gets stick 1 and brings it back.95


33. Bob and Jill both jump up and down smiling and say “Good dog! Good dog,96


Fido!! Good dog!!”97


34. Fido smiles and jumps up and licks Jill on the face.98


35. Bob says, “Fido, we’re done practicing fetch.”99


In the above transcript, Line 7 initiates a formal training session, and Line 33 ter-100


minates this session. The training session is broken into “exemplar” intervals during101


which exemplars are being given, and “trial” intervals during which the animal is102


trying to imitate the exemplars, following which is receives reinforcement on its103


success or otherwise. For instance line 9 initiates the presentation of an exemplar104
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220 13 Learning Procedures via Imitation, Reinforcement and Correction


interval, and line 11 indicates the termination of this interval. Line 12 indicates the105


beginning of a trial interval, and line 16 indicates the termination of this interval.106


The above example of combined imitative/reinforcement learning involves two107


teachers, but, this is of course not the only way things can be done. Jill could be108


eliminated from the above teaching example. The result of this would be that, in109


figuring out how to imitate the exemplars, Fido would have to figure out which of110


Bob’s actions were “teacher” actions and which were “simulated student” actions.111


This is not a particularly hard problem, but it’s harder than the case where Jill carries112


out all the simulated-student actions. So in the case of teaching fetch with only one113


teacher avatar, on average, more reinforcement trials will be required.114


13.2.2 A Simple Example of Corrective Learning115


Another interesting twist on the imitative/reinforcement teaching methodology116


described above is the use of explicit correctional instructions from the teacher to the117


animal. This is not shown in the above example but represents an important addition118


to the methodology show there. One good example of the use of corrections would119


be the problem of teaching would be teaching an animal to sit and wait until the120


teacher says “Get Up,” using only a single teacher. Obviously, using two teachers,121


this is a much easier problem. Using only one teacher, it’s still easy, but involves a122


little more subtlety, and becomes much more tractable when corrections are allowed.123


One way that human dog owners teach their dogs this sort of behavior is as follows:124


1. Tell the dog “sit”125


2. tell the dog “stay”126


3. Whenever the dog tries to get up, tell him “no” or “sit,” and then he sits down127


again128


4. eventually, tell the dog to “get up”129


The real dog understands, in its own way, that the “no” and “sit” commands said after130


the “stay” command are meta-commands rather than part of the “stay” behavior.131


In our virtual-pet case, this would be more like132


1. tell the dog “I’m teaching you to stay”133


2. Tell the dog “sit”134


3. Whenever the dog tries to get up, tell him “no” or “sit,” and then he sits down135


again136


4. eventually, tell the dog to “get up”137


5. tell the dog “I’m done teaching you to stay”138


One easy way to do this, which deviates from the pattern of humanlike interaction,139


would be to give the agent knowledge about how to interpret an explicit META flag140


in communications directed toward it. In this case, the teaching would look like141
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13.2 IRC Learning 221


1. tell the dog “I’m teaching you to stay”142


2. Tell the dog “META: sit”143


3. Whenever the dog tries to get up, tell him “META: no” or “META: sit,” and then144


he sits down again145


4. eventually, tell the dog to “get up”146


5. tell the dog “I’m done teaching you to stay”147


Even without the META tag, this behavior (and other comparable ones) is learn-148


able via CogPrime’s learning algorithms within a modest number of reinforce-149


ment trials. So we have not actually implemented the META approach. But it well150


illustrates the give-and-take relationship between the sophistication of the teaching151


methodology and the number of reinforcement trials required. In many cases, the152


best way to reduce the number of reinforcement trials required to learn a behavior153


is not to increase the sophistication of the learning algorithm, but rather to increase154


the information provided during the instruction process. No matter how advanced155


the learning algorithm, if the teaching methodology only gives a small amount of156


information, it’s going to take a bunch of reinforcement trials to go through the search157


space and find one of the right procedures satisfying the teacher’s desires. One of158


the differences between the real-world learning that an animal or human child (or159


adult) experiences, and the learning “experienced” by standard machine-learning160


algorithms, is the richness and diversity of information that the real world teaching161


environment provides, beyond simple reinforcement signals. Virtual worlds provide162


a natural venue in which to experiment with providing this sort of richer feedback to163


AI learning systems, which is one among the many reasons why we feel that virtual164


worlds are an excellent venue for experimentation with and education of early-stage165


AGI systems.166


13.3 IRC Learning in the PetBrain167


Continuing the theme of the previous section, we now discuss “trick learning” in168


the PetBrain, as tested using OpenCog and the Multiverse virtual world during169


2007–2008. The PetBrain constitutes a specific cognitive infrastructure implement-170


ing the IRC learning methodology in the virtual-animal context, with some extensi-171


bility beyond this context as well.172


In the PetBrain, learning itself is carried out by a variety of hillclimbing as173


described in Chap. 14, which is a fast learning algorithm but may fail on harder174


behaviors (in the sense of requiring an unacceptably large number of reinforcement175


trials). For more complex behaviors, MOSES (Chap. 15) would need to be integrated176


as an alternative. Compared to hillclimbing, MOSES is much smarter but slower, and177


may take a few minutes to solve a problem. The two algorithms (as implemented for178


the PetBrain) share the same Combo knowledge representation and some other soft-179


ware components (e.g., normalization rules for placing procedures in an appropriate180


hierarchical normal form, as described in Chap. 3).181
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222 13 Learning Procedures via Imitation, Reinforcement and Correction


The big challenge involved in designing the PetBrain system, AI-wise, was that182


these learning algorithms, used in a straightforward way with feedback from a human-183


controlled avatar as the fitness function, would have needed an excessive number184


of reinforcement trials to learn relatively simple behaviors. This would bore the185


human beings involved with teaching the animals. This is not a flaw of the particular186


learning algorithms being proposed, but is a generic problem that would exist with187


any AI algorithms. To choose an appropriate behavior out of the space of all possible188


behaviors satisfying reasonable constraints, requires more bits of information that is189


contained in a handful of reinforcement trials.190


Most “animal training” games (e.g., Nintendogs may be considered as a reference191


case) work around this “hard problem” by not allowing teaching of novel behaviors.192


Instead, a behavior list is made up front by the game designers. The animals have193


preprogrammed procedures for carrying out the behaviors on the list. As training pro-194


ceeds they make fewer errors, till after enough training they converge “miraculously”195


on the pre-programmed plan.196


This approach only works, however, if all the behaviors the animals will ever learn197


have been planned and scripted in advance.198


The first key to making learning of non-pre-programmed behaviors work, without199


an excessive number of reinforcement trials, is in “fitness estimation”—code that200


guesses the fitness of a candidate procedure at fulfilling the teacher’s definition of201


a certain behavior, without actually having to try out the procedure and see how it202


works. This is where the I part of IRC learning comes in.203


At an early stage in designing the PetBrain application, we realized it would be204


best if the animals were instructed via a methodology where the same behaviors are205


defined by the teacher both by demonstration and by reinforcement signals. Learning206


based on reinforcement signals only can also be handled, but learning will be much207


slower.208


In evolutionary programming lingo, we have209


1. Procedures = genotypes210


2. Demonstrated exemplars, and behaviors generated via procedures = phenotypes211


3. Reinforcement signals from pet owner = fitness212


One method of imitation-based fitness estimation used in the PetBrain involves213


an internal simulation world which we’ll call CogSim, as discussed in Chap. 22.1214


CogSim can be visualized using a simple testing UI, but in the normal course of215


operations it doesn’t require a user interface; it is an internal simulation world,216


which allows the PetBrain to experiment and see what a certain procedure would be217


likely to do if enacted in the SL virtual world. Of course, the accuracy of this kind of218


simulation depends on the nature of the procedure. For procedures that solely involve219


moving around and interacting with inanimate objects, it can be very effective. For220


procedures involving interaction with human-controlled avatars, other animals, or221


1 The few readers familiar with obscure OpenCog documentation may remember that CogSim was
previously called “Third Life,” in reference to the Second Life virtual world that was being used to
embody the OpenCog virtual pets at the time.
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13.3 IRC Learning in the PetBrain 223


other complex objects, it may be unreliable—and making it even moderately reliable222


would require significant work that has not yet been done, in terms of endowing223


CogSim with realistic simulations of other agents and their internal motivational224


structures and so forth. But short of this, CogSim has nonetheless proved useful for225


estimating the fitness of simple behavioral procedures.226 AQ1


When a procedure is enacted in CogSim, this produces an object called a “behavior227


description” (BD), which is represented in the AtomSpace knowledge representa-228


tion format. The BD generated by the procedure is then compared with the BD’s229


corresponding to the “exemplar” behaviors that the teacher has generated, and that230


the student is trying to emulate. Similarities are calculated, which is a fairly subtle231


matter that involves some heuristic inferences. An estimate of the likelihood that the232


procedure, if executed in the world, will generate a behavior adequately similar to233


the exemplar behaviors.234


Furthermore, this process of estimation may be extended to make use of the235


animal’s long-term episodic memory. Suppose a procedure P is being evaluated in236


the context of exemplar-set E. Then237


1. The episodic memory is mined for pairs (P’, E’) that are similar to (P, E)238


2. The fitness of these pairs (P’, E’) is gathered from the experience base239


3. An estimate of the fitness of (P, E) is then formed240


Of course, if a behavior description corresponding to P has been generated via241


CogSim, this may also be used in the similarity matching against long-term memory.242


The tricky part here, of course, is the similarity measurement itself, which can be243


handled via simple heuristics, but if taken sufficiently seriously becomes a complex244


problem of uncertain inference.245


One thing to note here is that in the PetBrain context, although learning is done246


by each animal individually, this learning is subtly guided by collective knowledge247


within the fitness estimation process. Internally, we have a “borg mind” with multiple248


animal bodies, and an architecture designed to ensure the maintenance of unique249


personalities on the part of the individual animals in spite of the collective knowledge250


and learning underneath.251


At time of writing, we have just begun to experiment with the learning system252


as described above, and are using it to learn simple behaviors such as playing fetch,253


basic soccer skills, doing specific dances as demonstrated by the teacher, and so forth.254


We have not yet done enough experimentation to get a solid feel for the limitations255


of the methodology as currently implemented.256


Note also the possibility of using CogPrime’s PLN inference component to allow257


generalization of learned behaviors. For instance, with inference deployed appropri-258


ately, a pet that had learned how to play tag would afterwards have a relatively easy259


time learning to play “freeze tag.” A pet that had learned how to hunt for Easter eggs260


would have a relatively easy time learning to play hide-and-seek. Episodic memory261


can be very useful for fitness estimation here, but explicit use of inference may allow262


much more rapid and far-reaching inference capabilities.263
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224 13 Learning Procedures via Imitation, Reinforcement and Correction


13.3.1 Introducing Corrective Learning264


Next, how may corrections be utilized in the learning process we have described?265


Obviously, the corrected behavior description gets added into the knowledge base as266


an additional exemplar. And, the fact of the correction acts as a partial reinforcement267


(up until the time of the correction, what the animal was doing was correct). But268


beyond this, what’s necessary is to propagate the correction backward from the BD269


level to the procedure level. For instance, if the animal is supposed to be staying in one270


place, and it starts to get up but is corrected by the teacher (who says “sit” or physically271


pushes the animal back down), then the part of the behavior-generating procedure272


that directly generated the “sit” command needs to be “punished.” How difficult this273


is to do, depends on how complex the procedure is. It may be as simple as providing a274


negative reinforcement to a specific “program tree node” within the procedure, thus275


disincentivizing future procedures generated by the procedure learning algorithm276


from containing this node. Or it may be more complex, requiring the solution of an277


inference problem of the form “Find a procedure P” that is as similar as possible to278


procedure P, but that does not generate the corrected behavior, but rather generates279


the behavior that the teacher wanted instead.” This sort of “working backwards from280


the behavior description to the procedure” is never going to be perfect except in281


extremely simple cases, but it is an important part of learning. We have not yet282


experimented with this extensively in our virtual animals, but plan to do so as the283


project proceeds.284


There is also an interesting variant of correction in which the agent’s own memory285


serves implicitly as the teacher. That is, if a procedure generates a behavior that seems286


wrong based on the history of successful behavior descriptions for similar exemplars,287


then the system may suppress that particular behavior or replace it with another one288


that seems more appropriate—inference based on history thus serving the role of a289


correcting teacher.290


13.4 Applying A Similar IRC Methodology291


to Spontaneous Learning292


We have described the IRC teaching/learning methodology in the context of learning293


from a teacher—but in fact a similar approach can be utilized for purely unsupervised294


learning. In that case, the animal’s intrinsic goal system acts implicitly as a teacher.295


For instance, suppose the animal wants to learn how to better get itself fed. In this296


case,297


1. Exemplars are provided by instances in the animal’s history when it has success-298


fully gotten itself fed299


2. Reinforcement is provided by, when it is executing a certain procedure, whether300


or not it actually gets itself fed or not301
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13.4 Applying A Similar IRC Methodology to Spontaneous Learning 225


3. Correction as such doesn’t apply, but implicit correction may be used via302


deploying history-based inference. If a procedure generates a behavior that seems303


wrong based on the history of successful behavior descriptions for the goal of304


getting fed, then the system may suppress that particular behavior.305


The only real added complexity here lies in identifying the exemplars. In surveying306


its own history, the animal must look at each previous instance in which it got fed (or307


same sample thereof), and for each one recollect the series of N actions that it carried308


out prior to getting fed. It then must figure out how to set N— i.e. which of the actions309


prior to getting fed were part of the behavior that led up to getting fed, and which310


were just other things the animal happened to be doing a while before getting fed. To311


the extent that this exemplar mining problem can be solved adequately, innate-goal-312


directed spontaneous learning becomes closely analogous to teacher-driven learning313


as we’ve described it. Or in other words: Experience, as is well known, can serve as314


a very effective teacher.315
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Chapter 14
Procedure Learning via Adaptively
Biased Hillclimbing


14.1 Introduction0


Having chosen to represent procedures as programs, explicit procedure learning then1


becomes a matter of automated program learning. In its most general incarnation,2


automated program learning is obviously an intractable problem; so the procedure3


learning design problem then boils down to finding procedure learning algorithms4


that are effective on the class of problems relevant to CogPrime systems in prac-5


tice. This is a subtle matter because there is no straightforward way to map from the6


vaguely-defined category of real-world “everyday human world like” goals and envi-7


ronments to any formally-defined class of relevant objective functions for a program8


learning algorithm.9


However, this difficulty is not a particular artifact of the choice of programs to10


represent procedures; similar issues would arise with any known representational11


mechanism of suitable power. For instance, if procedures were represented as recur-12


rent neural nets, there would arise similar questions of how many layers to give13


the networks, how to determine the connection statistics, what sorts of neurons to14


use, which learning algorithm, etc. One can always push such problems to the meta15


level and use automated learning to determine which variety of learning algorithm16


to use—but then one has to make some decisions on the metalearning level, based17


on one’s understanding of the specific structure of the space of relevant program18


learning algorithms. In the fictitious work of unbounded computational resources no19


such judicious choices are necessary, but that’s not the world we live in, and it’s not20


relevant to the design of human-like AGI systems.21


At the moment, in CogPrime, we utilize two different procedure learning systems,22


which operate on the same knowledge representation and rely on much of the same23


internal code. One, which we roughly label “hill climbing”, is used for problems24


that are sufficiently “easy” in the sense that it’s possible for the system to solve25


Primary author: Nil Geisweiller.


B. Goertzel et al., Engineering General Intelligence, Part 2, 227
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_14,
© Atlantis Press and the authors 2014
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228 14 Procedure Learning via Adaptively Biased Hillclimbing


them using feasible resources without (implicitly or explicitly) building any kind of26


sophisticated model of the space of solutions to the problem. The other, MOSES, is27


used for problems that are sufficiently difficult that the right way to solve them is to28


progressively build a model of the program space as one tries out various solutions,29


and then use this model to guide ongoing search for better and better solutions.30


Hillclimbing is treated in this chapter; MOSES in the next.31


14.2 Hillclimbing32


“Hillclimbing”, broadly speaking, is not a specific algorithm but a category of algo-33


rithms. It applies in general to any search problem where there is a large space34


of possible solutions, which can be compared as to their solution quality. Here we35


are interested in applying it specifically to problems of search through spaces of36


programs.37


In hillclimbing, one starts with a candidate solution to a problem (often a random38


one, which may be very low-quality), and iteratively makes small changes to the39


candidate to generate new possibilities, hoping one of them will be a better solution.40


If a new possibility is better than the current candidate, then the algorithm adopts the41


new possibility as its new candidate solution. When the current candidate solution can42


no longer be improved via small changes, the algorithm terminates. Ideally, at that43


point the current candidate solution is close to optimal—but this is not guaranteed!44


Various tweaks to hillclimbing exist, including “restart” which means that one45


starts hillclimbing over and over again, taking the best solution from multiple trials;46


and “backtracking”, which means that if the algorithm terminates at a solution that47


seems inadequate, then the search can “backtrack” to a previously considered can-48


didate solution, and try to make different small changes to that candidate solution,49


trying previously unexplored possibilities in search of a new candidate. The value of50


these and other tweaks depends on the specific problem under consideration.51


In the specific approach to hillclimbing described here, we use a hillclimber52


with backtracking, applied to programs that are represented in the same hierarchical53


normal form used with MOSES (based on the program normalization ideas presented54


in Chap. 3). The basic pseudocode for the hillclimber may be given as:55


Let L be the list (initially empty) of programs explored so far in decreasing order56


with respect to their fitness. Let Np be the neighbors of program p.57


1. Take the best program p ∈ L58


2. Evaluate all programs of Np59


3. Merge Np in L60


4. Move p from L to the set of best programs found so far and repeat from step 161


until time runs out.62


In the following sections of this chapter, we show how to speed up the hillclimbing63


search for learning procedures via four optimizations, which have been tested fairly64


extensively. For concreteness we will refer often to the specific case of using the hill65
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14.2 Hillclimbing 229


climbing algorithm to control a virtual agent in a virtual world—and especially the66


case of teaching a virtual pet tricks via imitation learning (as in Chap. 13) but the67


ideas have more general importance. The four optimizations are:68


• reduce candidates to normal form to minimize over-representation and increase69


the syntactic semantic correlation (Chap. 3),70


• filter perceptions using an entropy criterion to avoid building candidates that71


involve nodes unlikely to be contained in the solution (Sect. 14.3),72


• use sequences of agent actions, observed during the execution of the program, as73


building blocks (Sect. 14.4),74


• choose and calibrate a simplicity measure to focus on simpler solutions (the75


“Occam bias”) first (Sect. 14.5).76


14.3 Entity and Perception Filters77


The number of program candidates of a given size increases exponentially with the78


alphabet of the language; therefore it is important to narrow that alphabet as much79


as possible. This is the role of the two filters explained below, the Entity and the80


Entropy filter.81


14.3.1 Entity Filter82


This filter is in charge of selecting the entities in the scene the pet should take83


into account during an imitation learning session. These entities can be any objects,84


avatars or other pets.85


In general this is a very hard problem, for instance if a bird is flying near the86


owner while teaching a trick, should the pet ignore it? Perhaps the owner wants to87


teach the pet to bark at them; if so they should not be ignored.88


In our current and prior work with OpenCog controlling virtual world agents, we89


have used some fairly crude heuristics for entity filtering, which must be hand-tuned90


depending on the properties of the virtual world. However, our intention is to replace91


these heuristics with entity filtering based on Economic Attention Networks (ECAN)92


as described in Chap. 5.93


14.3.2 Entropy Perception Filter94


The perception filter is in charge of selecting all perceptions in the scene that are95


reasonably likely to be part of the solution to the program learning problem posed.96


A “perception” in the virtual world context means the evaluation of one of a set of97
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230 14 Procedure Learning via Adaptively Biased Hillclimbing


pre-specified perception predicates, with an argument consisting of one of the entities98


in the observed environment.99


Given N entities (provided by the Entity filter), there are usually O(N 2) potential100


perceptions in the Atomspace due to binary perceptions like101


near(owner bird)102


inside(toy box)103


. . .104


The perception filter proceeds by computing the entropy of any potential percep-105


tions happening during a learning session. Indeed if the entropy of a given perception106


P is high that means that a conditional if(P B1 B2) has a rather balanced proba-107


bility of taking Branch B1 or B2. On the other hand if the entropy is low then the108


probability of taking these branches is unbalanced, for instance the probability of109


taking B1 may be significantly higher than the probability of taking B2, and therefore110


if(P B1 B2) could reasonably be substituted by B1.111


For example, assume that during the teaching sessions, the predicate near(owner112


bird) is false 99 % percent of the time; then near(owner bird) will have a low113


entropy and will possibly be discarded by the filter (depending on the threshold). If114


the bird is always far from the owner then it will have entropy 0 and will surely be115


discarded, but if the bird comes and goes it will have a high entropy and will pass the116


filter. Let P be such a perception and Pt returns 1 when the perception is true at time117


t or 0 otherwise, where t ranges over the set of instants, of size N , recorded between118


the beginning and the end of the demonstrated trick. The calculation goes as follows119


Entropy(P) = H


(∑
t Pt


N


)
120


where H(p) = −p log(p)−(1− p)log(1− p). There are additional subtleties when121


the perception involves random operators, like near(owner random_object) that122


is the entropy is calculated by taking into account a certain distribution over enti-123


ties grouped under the term random_object. The calculation is optimized to ignore124


instants when the perception relates to object that have not moved which makes the125


calculation efficient enough, but there is room to improve it in various ways; for126


instance it could be made to choose perceptions based not only on entropy but also127


inferred relevancy with respect to the context using PLN.128


14.4 Using Action Sequences as Building Blocks129


A heuristic that has been shown to work, in the “virtual pet trick” context,is to130


consider sequences of actions that are compatible with the behavior demonstrated by131


the avatar showing the trick as building blocks when defining the neighborhood of a132


candidate. For instance if the trick is to fetch a ball, compatible sequences would be133


goto(ball),grab(ball),goto(owner),drop134


goto(random_object),grab(nearest_object),goto(owner),drop135


. . .136
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14.4 Using Action Sequences as Building Blocks 231


Sub-sequences can be considered as well—though too many building blocks also137


increase the neighborhood exponentially, so one has to be careful when doing that. In138


practice using the set of whole compatible sequences worked well. This for instance139


can speed up many fold the learning of the trick triple_kick as shown in Sect. 14.6.140


14.5 Automatically Parametrizing the Program Size Penalty141


A common heuristic for program learning is an “Occam penalty” that penalizes large142


programs, hence biasing search toward compact programs. The function we use to143


penalize program size is inspired by Ray Solomonoff’s theory of optimal inductive144


inference [Sol64a, Sol64b]; simply said, a program is penalized exponentially with145


respect to its size. Also, one may say that since the number of program candidates146


grows exponentially with their size, exploring solutions with higher size must be147


exponentially worth the cost.148


In the next subsections we describe the particular penalty function we have used149


and how to tune its parameters.150


14.5.1 Definition of the Complexity Penalty151


Let p be a program candidate and penalty(p) a function with domain [0,1] measuring152


the complexity of p. If we consider the complexity penalty function penalty(p) as if153


it denotes the prior probability of p, and score(p) (the quality of p as utilized within154


the hill climbing algorithm) as denoting the conditional probability of the desired155


behavior knowing p, then Bayes rule1 tells us that156


fitness(p) = score(p) × penalty(p)157


denotes the conditional probability of p knowing the right behavior to imitate, the158


fitness function that we want to maximize.159


It happens that in the pet trick learning context which is our main example in160


this chapter, score(p) does not denote such a probability; instead it measures how161


similar the behavior generated by p and the behavior to imitate are. However, we162


utilize the above formula anyway, with a heuristic interpretation. One may construct163


assumptions under which score(p) does represent a probability but this would take164


us too far afield.165


1 Bayes rule as used here is P(M |D) = P(M)P(D|M)
P(D)


where M denotes the Model (the program)
and D denotes the data (the behavior to imitate), here P(D) is ignored, that is the data is assumed
to be distributed uniformly.
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232 14 Procedure Learning via Adaptively Biased Hillclimbing


The penalty function we use is then given by:166


penalty(p) = exp(−a × log(b × |A| + e) × |p|)167


where |p| is the program size, |A| its alphabet size and e = exp(1). The reason168


|A| enters into the equation is because the alphabet size varies from one problem169


to another due to the perception and action filters. Without that constraint the term170


log(b × |A| + e) could simply be included in a. The higher a the more intense the171


penalty is. The parameter b controls how that intensity varies with the alphabet size.172


It is important to remark the difference between such a penalty function and173


lexicographic parsimony pressure (literally said everything being equal, choose the174


shortest program). Because of the use of sequences as building blocks, without such175


a penalty function the algorithm may rapidly reach an optimal program (a mere long176


sequence of actions) and remain stuck in an apparent optimum while missing the177


very logic of the action sequence that the human wants to convey.178


14.5.2 Parameterizing the Complexity Penalty179


Due to the nature of the search algorithm (hill climbing with restart), the choice180


of the candidate used to restart the search is crucial. In our case we restart with181


the candidate with the best fitness so far which has not been yet used to restart.182


The danger of such an approach is that when the algorithm enters a region with183


local optima (like a plateau), it may basically stay there as long as there exist better184


candidates in that region than outside of it non used yet for restart. Longer programs185


tend to generate larger regions of local optima (because they have exponentially more186


syntactic variations that lead to close behaviors), so if the search enters such region187


via an overly complex program it is likely to take a very long time to get out of it.188


Introducing probability in the choice of the restart may help avoiding that sort of189


trap but having experimented with that it turned out not to be significantly better on190


average for learning relatively simple things (indeed although the restart choice is191


more diverse it still tends to occur in large region of local optima).192


However, a significant improvement we have found is to carefully choose the size193


penalty function so that the search will tend to restart on simpler programs even194


if they do not exhibit the best behaviors, but will still be able to reach the optimal195


solution even if it is a complex one.196


The solution we suggest is to choose a and b such that penalty(p) is:197


1. as penalizing as possible, to focus on simpler programs first (although that con-198


straint may possibly be lightened as the experimentation shows),199


2. but still correct in the sense that the optimal solution p maximizes fitness(p).200


And we want that to work for all problems we are interested in. That restriction201


is an important point because it is likely that in general the second constraint will be202


too strict to produce a good penalty function.203
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14.5 Automatically Parametrizing the Program Size Penalty 233


We will now formalize the above problem. Let i be an index that ranges over204


the set of problems of interest (in our case pet tricks to learn), scorei and fitnessi205


denotes the score and fitness functions of the i th problem. Let Θi (s) denote the set206


of programs of score s207


Θi (s) = {p|score(p) = s}208


Define a family of partial functions209


fi : [0, 1] �→ N210


so that211


fi (s) = argmin
p∈Θi (p)


|p|212


What this says is that for any given score s we want the size of the shortest program213


p with that score. And fi is partial because there may not be any program returning214


a given score.215


Let be the family of partial functions216


gi : [0, 1] �→ [0, 1]217


parametrized by a and b such that218


gi (s) = s × exp(−a × (log(b × |A| + e) × fi (s)).219


That is: given a score s, gi (s) returns the fitness fitness(p) of the shortest program220


p that marks that score.221


14.5.3 Definition of the Optimization Problem222


Let si be the highest score obtained for fitness function i (that is the score of the223


program chosen as the current best solution of i). Now the optimization problem224


consists of finding some a and b such that225


∀i argmax
s


gi (s) = si226


that is the highest score has also the highest fitness. We started by choosing a and b227


as high as possible, it is a good heuristic but not the best, the best one would be to228


choose a and b so that they minimize the number of iterations (number of restarts)229


to reach a global optimum, which is a harder problem.230


Also, regarding the resolution of the above equation, it is worth noting we do not231


need the analytical expression of score(p). Using past learning experiences we can232
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234 14 Procedure Learning via Adaptively Biased Hillclimbing


get a partial description of the fitness landscape of each problem just by looking at233


the traces of the search.234


Overall we have found this optimization works rather well; that is, tricks that would235


otherwise take several hours or days of computation can be learned in seconds or236


minutes. And the method also enables fast learning for new tricks, in fact all tricks we237


have experimented with so far could be learned reasonably fast (seconds or minutes)238


without the need to retune the penalty function.239


In the current CogPrime codebase, the algorithm in charge of calibrating the240


parameters of the penalty function has been written in Python. It takes in input the241


log of the imitation learning engine that contains the score, the size, the penalty242


and the fitness of all candidates explored for all tricks taken in consideration for the243


parameterizing. The algorithm proceeds in two steps:244


1. Reconstitute the partial functions fi for all fitness functions i already attempted,245


based on the traces of these previously optimized fitness functions.246


2. Try to find the highest a and b so that247


∀i argmax
s


gi (s) = si248


For step 2, since there are only two parameters to tune, we have used a 2D grid,249


enumerating all points (a, b) and zooming when necessary. So the speed of the250


process depends largely on the resolution of the grid but (on an ordinary 2009 PC251


processor) usually it does not require more than 20 minutes to both extract fi and252


find a and b with a satisfactory resolution.253


14.6 Some Simple Experimental Results254


To test the above ideas in a simple context, we initially used them to enable an255


OpenCog powered virtual world agent to learn a variety of simple “dog tricks” based256


on imitation and reinforcement learning in the Multiverse virtual world. We have257


since deployed them on a variety of other applications in various domains.258


We began these experiments by running learning on two tricks, fetch_ball and259


triple_kick to be described below, in order to calibrate the size penalty function:260


1. fetch_ball, which corresponds to the Combo program261


and_seq(goto(ball)262


grab(ball)263


goto(owner)264


drop)265


2. triple_kick, if the stick is near the ball then kick 3 times with the left leg and266


otherwise 3 times with the right leg. So for that trick the owner had to provide267


2 exemplars, one for kickL (with the stick near the ball) and one for kickR, and268


move away the ball from the stick before showing the second exemplar. Below269


is the Combo program of triple_kick270
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14.6 Some Simple Experimental Results 235


if(near(stick ball)271


and_seq(kickL kickL kickL)272


and_seq(kickR kickR kickR))273


Before choosing an exponential size penalty function and calibrating it fetch_ball274


would be learned rather rapidly in a few seconds, but triple_kick would take more275


than an hour. After calibration both fetch_ball and triple_kick would be learned276


rapidly, the later in less than a minute.277


Then we experimented with a new few tricks, some simpler, like sit_under_tree278


and_seq(goto(tree) sit)279


and others more complex like double_dance, where the trick consists of dancing until280


the owner emits the message “stop dancing”, and changing the dance upon owner’s281


actions282


while(not(says(owner ‘‘stop dancing’’))283


if(last_action(owner ‘‘kickL’’)284


tap_dance285


lean_rock_dance))286


That is the pet performs a tap_dance when the last action of the owner is kickL,287


and otherwise performs a lean_rock_dance.288


We tested learning for 3 tricks, fetch_ball, triple_kick and double_dance. Each289


trick was tested in 7 settings denoted conf1 to conf10 summarized in Table 14.1.290


• conf1 is the default configuration of the system, the parameters of the size penalty291


function are a = 0.03 and b = 0.34, which is actually not what is returned by the292


calibration technique but close to. That is because in practice we have found that293


on average learning is working slightly faster with these values.294


• conf2 is the configuration with the exact values returned by the calibration, that is295


a = 0.05, b = 0.94.296


• conf3 has the reduction engine disabled.297


• conf4 has the entropy filter disabled (threshold is null so all perceptions pass the298


filter).299


• conf5 has the intensity of the penalty function set to 0.300


• conf6 has the penalty function set with low intensity.301


• conf7 and conf8 have the penalty function set with high intensity.302


• conf9 has the action sequence building block enabled.303


• conf10 has the action sequence building block enabled but with a slightly lower304


intensity of the size penalty function than normal.305


Tables 14.2, 14.3 and 14.4 contain the results of the learning experiment for the306


three tricks, fetch_ball, triple_kick and double_dance. In each table the column Per-307


cept gives the number perceptions which is taken into account for the learning. Restart308


gives the number of restarts hill climbing had to do before reaching the solution. Eval309


gives the number of evaluations and Time the search time.310


In Table 14.2 and 14.4 we can see that fetch_ball or double_dance are learned311


in a few seconds both in conf1 and conf2. In 14.3 however learning is about five312
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236 14 Procedure Learning via Adaptively Biased Hillclimbing


Table 14.1 Settings for each
learning experiment


Reduct ActSeq Entropy a b Setting


On Off 0.1 0.03 0.34 conf1
On Off 0.1 0.05 0.94 conf2
Off Off 0.1 0.03 0.34 conf3
On Off 0 0.03 0.34 conf4
On Off 0.1 0 0.34 conf5
On Off 0.1 0.0003 0.34 conf6
On Off 0.1 0.3 0.34 conf7
On Off 0.1 3 0.34 conf8
On On 0.1 0.03 0.34 conf9
On On 0.1 0.025 0.34 conf10


Table 14.2 Learning time for
fetch_ball


Setting Percep Restart Eval Time


conf1 3 3 653 5s18
conf2 3 3 245 2s
conf3 3 3 1073 8s42
conf4 136 3 28287 4mn7s
conf5 3 >700 >500000 >1h
conf6 3 3 653 5s18
conf7 3 8 3121 23s42
conf8 3 147 65948 8mn10s
conf9 3 0 89 410ms
conf10 3 0 33 161ms


Table 14.3 Learning time for
triple_kick


Setting Percep Restart Eval Time


conf1 1 18 2783 21s47
conf2 1 110 11426 1mn53s
conf3 1 49 15069 2mn15s
conf4 124 ∞ ∞ ∞
conf5 1 >800 >200K >1h
conf6 1 7 1191 9s67
conf7 1 >2500 >200K >1h
conf8 1 >2500 >200K >1h
conf9 1 0 107 146ms
conf10 1 0 101 164ms


times faster with conf1 than with conf2, which was the motivation to go with conf2313


as default configuration, but conf2 still performs well.314


As Tables 14.2, 14.3 and 14.4 demonstrate for setting conf3, the reduction engine315


speeds the search up by less than twice for fetch_ball and double_dance, and many316


times for triple_kick.317
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14.6 Some Simple Experimental Results 237


Table 14.4 Learning time for
double_dance


Setting Percep Restart Eval Time


conf1 5 1 113 4s
conf2 5 1 113 4s
conf3 5 1 150 6s20ms
conf4 139 >4 >60K >1h
conf5 5 1 113 4s
conf6 5 1 113 4s
conf7 5 1 113 4s
conf8 5 >1000 >300K >1h
conf9 5 1 138 4s191ms
conf10 5 181 219K 56mn3s


The results for conf4 shows the importance of the filtering function, learning is318


dramatically slowed down without it. A simple trick like fetch_ball took few minutes319


instead of seconds, double_dance could not be learned after an hour, and triple_kick320


might never be learned because it did not focus on the right perception from the start.321


The results for conf5 shows that without any kind of complexity penalty learning322


can be dramatically slowed down, for the reasons explained in Sect. 14.5 that is323


the search loses itself in large regions of sub-optima. Only double_dance was not324


affected by that, which is probably explained by the fact that only one restart occurred325


in double_dance and it happened to be the right one.326


The results for conf6 show that when action sequence building-block is disabled327


the intensity of the penalty function could be set even lower. For instance triple_kick328


is learned faster (9s67 instead of 21s47 for conf1). Conversely the results for conf7329


show that when action sequence building-block is enabled, if the Occam’s razor is too330


weak it can dramatically slow down the search. That is because in this circumstance331


the search is misled by longer candidates that fit and takes a very cut before it can332


reach the optimal more compact solution.333


14.7 Conclusion334


In our experimentation with hillclimbing for learning pet tricks in a virtual world,335


we have shown that the combination of336


1. candidate reduction into normal form,337


2. filtering operators to narrow the alphabet,338


3. using action sequences that are compatible with the shown behavior as building339


blocks,340


4. adequately choosing and calibrating the complexity penalty function,341
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238 14 Procedure Learning via Adaptively Biased Hillclimbing


can speed up imitation learning so that moderately complex tricks can be learned342


within seconds to minutes instead of hours, using a simple “hill climbing with343


restarts” learning algorithm.344


While we have discussed these ideas in the context of pet tricks, they have of course345


been developed with more general applications in mind, and have been applied in346


many additional contexts. Combo can be used to represent any sort of procedure,347


and both the hillclimbing algorithm and the optimization heuristics described here348


appear broad in their relevance.349


Natural extensions of the approach described here include the following direc-350


tions:351


1. improving the Entity and Entropy filter using ECAN and PLN so that filtering352


is not only based on entropy but also relevancy with respect to the context and353


background knowledge,354


2. using transfer learning (see Sect. 15.5 of Chap. 15) to tune the parameters of355


algorithm using contextual and background knowledge.356


Indeed these improvements are under active investigation at time of writing, and357


some may well have been implemented and tested by the time you read this.358


319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030-0_15





Metadata of the chapter that will be visualized in
SpringerLink


Book Title Engineering General Intelligence, Part 2
Series Title 10077


Chapter Title Probabilistic Evolutionary Procedure Learning


Copyright Year 2014


Copyright HolderName Atlantis Press and the authors


Corresponding Author Family Name Goertzel
Particle


Given Name Ben
Suffix


Division


Organization


Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina


Email ben@goertzel.org


Author Family Name Pennachin
Particle


Given Name Cassio
Suffix


Division


Organization Igenesis Av. Prof. Mário


Address Belo Horizonte, Minas Gerais, Brazil


Email pennachin@gmail.com


Author Family Name Geisweiller
Particle


Given Name Nil
Suffix


Division


Organization


Address Samokov, Bulgaria


Email ngeiswei@gmail.com


Abstract A program evolution component is proposed for integrative artificial general intelligence. The system’s
deployment is intended to be comparable, on Marr’s level of computational theory, to evolutionary
mechanisms in human thought. The challenges of program evolution are described, along with the
requirements for a program evolution system to be competent- solving hard problems quickly, accurately,
and reliably. Meta-optimizing semantic evolutionary search (MOSES) is proposed to fulfill these
requirements.







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


Chapter 15
Probabilistic Evolutionary Procedure
Learning


15.1 Introduction0


The CogPrime architecture fundamentally requires, as one of its components, some1


powerful algorithm for automated program learning. This algorithm must be able to2


solve procedure learning problems relevant to achieving human-like goals in every-3


day human environments, relying on the support of other cognitive processes, and4


providing them with support in turn. The requirement is not that complex human5


behaviors need to be learnable via program induction alone, but rather that when the6


best way for the system to achieve a certain goal seems to be the acquisition of a7


chunk of procedural knowledge, the program learning component should be able to8


carry out the requisite procedural knowledge.9


As CogPrime is a fairly broadly-defined architecture overall, there are no extremely10


precise requirements for its procedure learning component. There could be variants11


of CogPrime in which procedure learning carried more or less weight, relative to12


other components.13


Some guidance here may be provided by looking at which tasks are generally14


handled by humans primarily using procedural learning, a topic on which cogni-15


tive psychology has a fair amount to say, and which is also relatively amenable to16


commonsense understanding based on our introspective and social experience of17


being human. When we know how to do something, but can’t explain very clearly18


to ourselves or others how we do it, the chances are high that we have acquired this19


knowledge using some form of “procedure learning” as opposed to declarative learn-20


ing. This is especially the case if we can do this same sort of thing in many different21


contexts, each time displaying a conceptually similar series of actions, but adapted22


to the specific situation. We would like CogPrime to be able to carry out procedural23


learning in roughly the same situations ordinary humans can (and potentially other24


Co-authored with Moshe Looks (First author).
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240 15 Probabilistic Evolutionary Procedure Learning


situations as well: maybe even at the start, and definitely as development proceeds),25


largely via action of its program learning component.26


In practical terms, our intuition (based on considerable experience with automated27


program learning, in OpenCog and other contexts) is that one requires a program28


learning component capable of learning programs with between dozens and hundreds29


of program tree nodes, in Combo or some similar representation—not able to learn30


arbitrary programs of this size, but rather able to solve problems arising in everyday31


human situations in which the simplest acceptable solutions involve programs of this32


size. We also suggest that the majority of procedure learning problems arising in33


everyday human situation can be solved via program with hierarchical structure, so34


that it likely suffices to be able to learn programs with between dozens and hundreds35


of program tree nodes, where the programs have a modular structure, consisting36


of modules each possessing no more than dozens of program tree nodes. Roughly37


speaking, with only a few dozen Combo tree nodes, complex behaviors seem only38


achievable via using very subtle algorithmic tricks that aren’t the sort of thing a39


human-like mind in the early stages of development could be expected to figure40


out; whereas, getting beyond a few hundred Combo tree nodes, one seems to get41


into the domain where an automated program learning approach is likely infeasible42


without rather strong restrictions on the program structure, so that a more appropriate43


approach within CogPrime would be to use PLN, concept creation or other methods44


to fuse together the results of multiple smaller procedure learning runs.45


While simple program learning techniques like hillclimbing (as discussed in46


Chap. 14) can be surprisingly powerful, they do have fundamental limitations, and47


our experience and intuition both indicate that they are not adequate for serving as48


CogPrime’s primary program learning component. This chapter describes an algo-49


rithm that we do believe is thus capable—CogPrime’s most powerful and general50


procedure learning algorithm, MOSES, an integrative probabilistic evolutionary pro-51


gram learning algorithm that was briefly overviewed in Chap. 1 of Vol. 5.52


While MOSES as currently designed and implemented embodies a number of53


specific algorithmic and structural choices, at bottom it embodies two fundamental54


insights that are critical to generally intelligent procedure learning:55


• Evolution is the right approach to the learning of difficult procedures56


• Enhancing evolution with probabilistic methods is necessary. Pure evolution, in57


the vein of the evolution of organisms and species, is too slow for broad use within58


cognition; so what is required is a hybridization of evolutionary and probabilistic59


methods, where probabilistic methods provide a more directed approach to gener-60


ating candidate solutions than is possible with typical evolutionary heuristics like61


crossover and mutation62


We summarize these insights in the phrase Probabilistic Evolutionary Program63


Learning (PEPL); MOSES is then one particular PEPL algorithm, and in our view a64


very good one. We have also considered other related algorithms such as the PLEA-65


SURE algorithm [Goe08a] (which may also be hybridized with MOSES), but for the66


time being it appears to us that MOSES satisfies CogPrime’s needs.67
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15.1 Introduction 241


Our views on the fundamental role of evolutionary dynamics in intelligence were68


briefly presented in Chap. 4 of Vol. 5. Terrence Deacon said it even more emphatically:69


“At every step the design logic of brains is a Darwinian logic: overproduction, varia-70


tion, competition, selection…it should not come as a surprise that this same logic is71


also the basis for the normal millisecond-by-millisecond information processing that72


continues to adapt neural software to the world” [Dea98]. He has articulated ways in73


which, during neurodevelopment, different computations compete with each other74


(e.g., to determine which brain regions are responsible for motor control). More gen-75


erally, he posits a kind of continuous flux as control shifts between competing brain76


regions, again, based on high-level “cognitive demand”.77


Deacon’s intuition is similar to the one that led Edelman to propose Neural78


Darwinism [Ede93], and Calvin and Bickerton [CB00] to pose the notion of79


mind as a “Darwin Machine”. The latter have given plausible neural mechanisms80


(“Darwin Machines”) for synthesizing short “programs”. These programs are for81


tasks such as rock throwing and sentence generation, which are represented as coher-82


ent firing patterns in the cerebral cortex. A population of such patterns, competing83


for neurocomputational territory, replicates with variations, under selection pressure84


to conform to background knowledge and constraints.85


To incorporate these insights, a system is needed that can recombine existing86


solutions in a non-local synthetic fashion, learning nested and sequential structures,87


and incorporate background knowledge (e.g. previously learned routines). MOSES88


is a particular kind of program evolution intended to satisfy these goals, using a89


combination of probability theory with ideas drawn from genetic programming, and90


also incorporating some ideas we have seen in previous chapters such as program91


normalization.92


The main conceptual assumption about CogPrime’s world, implicit in the sugges-93


tion of MOSES as the primary program learning component, is that the goal-relevant94


knowledge that cannot effectively be acquired by the other methods at CogPrime’s95


disposal (PLN, ECAN, etc.), forms a body of knowledge that can effectively be96


induced across via probabilistic modeling on the space of programs for controlling97


a CogPrime agent. If this is not true, then MOSES will provide no advantage over98


simple methods like well-tuned hillclimbing as described in Chap. 14. If it is true,99


then the effort of deploying a complicated algorithm like MOSES is worthwhile.100


In essence, the assumption is that there are relatively simple regularities among the101


programs implementing those procedures that are most critical for a human-like102


intelligence to acquire via procedure learning rather than other methods.103


15.1.1 Explicit Versus Implicit Evolution in CogPrime104


Of course, the general importance of evolutionary dynamics for intelligence does not105


imply the need to use explicit evolutionary algorithms in one’s AGI system. Evolution106


can occur in an intelligent system whether or not the low-level implementation layer107


of the system involves any explicitly evolutionary processes. For instance it’s clear108
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242 15 Probabilistic Evolutionary Procedure Learning


that the human mind/brain involves evolution in this sense on the emergent level—we109


create new ideas and procedures by varying and combining ones that we’ve found110


useful in the past, and this occurs on a variety of levels of abstraction in the mind. In111


CogPrime, however, we have chosen to implement evolutionary dynamics explicitly,112


as well as encouraging them to occur implicitly.113


CogPrime is intended to display evolutionary dynamics on the derived-hypergraph114


level, and this is intended to be a consequence of both explicitly-evolutionary and not-115


explicitly-evolutionary dynamics. Cognitive processes such as PLN inference may116


lead to emergent evolutionary dynamics (as useful logical relationships are reasoned117


on and combined, leading to new logical relationships in an evolutionary manner);118


even though PLN in itself is not explicitly evolutionary in character, it becomes119


emergently evolutionary via its coupling with CogPrime’s attention allocation sub-120


system, which gives more cognitive attention to Atoms with more importance, and121


hence creates an evolutionary dynamic with importance as the fitness criterion and the122


whole constellation of MindAgents as the novelty-generation mechanism. However,123


MOSES explicitly embodies evolutionary dynamics for the learning of new patterns124


and procedures that are too complex for hillclimbing or other simple heuristics to125


handle. And this evolutionary learning subsystem naturally also contributes to the126


creation of evolutionary patterns on the emergent, derived-hypergraph level.127


15.2 Estimation of Distribution Algorithms128


There is a long history in AI of applying evolution-derived methods to practical129


problem-solving; John Holland’s genetic algorithm [Hol75], initially a theoretical130


model, has been adapted successfully to a wide variety of applications (see e.g. the131


proceedings of the GECCO conferences). Briefly, the methodology applied is as132


follows:133


1. generate a random population of solutions to a problem134


2. evaluate the solutions in the population using a predefined fitness function135


3. select solutions from the population proportionate to their fitnesss136


4. recombine/mutate them to generate a new population137


5. go to step 2.138


Holland’s paradigm has been adapted from the case of fixed-length strings to the139


evolution of variable-sized and shaped trees (typically Lisp S-expressions), which in140


principle can represent arbitrary computer programs [Koz92, Koz94].141


Recently, replacements-for/extensions-of the genetic algorithm have been devel-142


oped (for fixed-length strings) which may be described as estimation-of-distribution143


algorithms (see [Pel05] for an overview). These methods, which outperform genetic144


algorithms and related techniques across a range of problems, maintain centralized145


probabilistic models of the population learned with sophisticated datamining tech-146


niques. One of the most powerful of these methods is the Bayesian optimization147


algorithm (BOA) [Pel05].148
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15.2 Estimation of Distribution Algorithms 243


The basic steps of the BOA are:149


1. generate a random population of solutions to a problem150


2. evaluate the solutions in the population using a predefined fitness function151


3. from the promising solutions in the population, learn a generative model152


4. create new solutions using the model, and merge them into the existing population153


5. go to step 2.154


The neurological implausibility of this sort of algorithm is readily apparent—yet155


recall that in CogPrime we are attempting to roughly emulate human cognition on156


the level of behavior not structure or dynamics.157


Fundamentally, the BOA and its ilk (the competent adaptive optimization algo-158


rithms) differ from classic selecto-recombinative search by attempting to dynamically159


learn a problem decomposition, in terms of the variables that have been pre-specified.160


The BOA represents this decomposition as a Bayesian network (directed acyclic161


graph with the variables as nodes, and an edge from x to y indicating that y is prob-162


abilistically dependent on x). An extension, the hierarchical Bayesian optimization163


algorithm (hBOA), uses a Bayesian network with local structure to more accurately164


represent hierarchical dependency relationships. The BOA and hBOA are scalable165


and robust to noise across the range of nearly decomposable functions. They are also166


effective, empirically, on real-world problems with unknown decompositions, which167


may or may not be effectively representable by the algorithms; robust, high-quality168


results have been obtained for Ising spin glasses and MaxSAT, as well as a variety169


of real-world problems.170


15.3 Competent Program Evolution via MOSES171


In this section we summarize meta-optimizing semantic evolutionary search172


(MOSES), a system for competent program evolution, described more thoroughly173


in [Loo06]. Based on the viewpoint developed in the previous section, MOSES is174


designed around the central and unprecedented capability of competent optimization175


algorithms such as the hBOA, to generate new solutions that simultaneously combine176


sets of promising assignments from previous solutions according to a dynamically177


learned problem decomposition. The novel aspects of MOSES described herein are178


built around this core to exploit the unique properties of program learning problems.179


This facilitates effective problem decomposition (and thus competent optimization).180


15.3.1 Statics181


The basic goal of MOSES is to exploit the regularities in program spaces outlined182


in the previous section, most critically behavioral decomposability and white box183


execution, to dynamically construct representations that limit and transform the184
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244 15 Probabilistic Evolutionary Procedure Learning


program space being searched into a relevant subspace with a compact problem185


decomposition. These representations will evolve as the search progresses.186


15.3.1.1 An Example187


Let’s start with an easy example. What knobs (meaningful parameters to vary) exist188


for the family of programs depicted in Fig. ?? on the left? We can assume, in accor-189


dance with the principle of white box execution, that all symbols have their standard190


mathematical interpretations, and that x, y, and z are real-valued variables.191


In this case, all three programs correspond to variations on the behavior repre-192


sented graphically on the right in the figure. Based on the principle of behavioral193


decomposability, good knobs should express plausible evolutionary variation and194


recombination of features in behavior space, regardless of the nature of the corre-195


sponding changes in program space. It’s worth repeating once more that this goal196


cannot be meaningfully addressed on a syntactic level—it requires us to leverage197


background knowledge of what the symbols in our vocabulary (cos, +, 0.35, etc.)198


actually mean.199


A good set of knobs will also be orthogonal. Since we are searching through the200


space of combinations of knob settings (not a single change at a time, but a set of201


changes), any knob whose effects are equivalent to another knob or combination of202


knobs is undesirable.1 Correspondingly, our set of knobs should span all of the given203


programs (i.e., be able to represent them as various knob settings).204


A small basis for these programs could be the 3-dimensional parameter space,205


x1 ∈ {x, z, 0} (left argument of the root node), x2 ∈ {y, x} (argument of cos), and206


x3 ∈ [0.3, 0.4] (multiplier for the cos-expression). However, this is a very limiting207


view, and overly tied to the particulars of how these three programs happen to be208


encoded. Considering the space behaviorally (right of Fig. ??), a number of additional209


knobs can be imagined which might be turned in meaningful ways, such as:210


1. numerical constants modifying the phase and frequency of the cosine expression,211


2. considering some weighted average of x and y instead of one or the other,212


3. multiplying the entire expression by a constant,213


4. adjusting the relative weightings of the two arguments to +.214


15.3.1.2 Syntax and Semantics215


This kind of representation-building calls for a correspondence between syntactic and216


semantic variation. The properties of program spaces that make this difficult are over-217


representation and chaotic execution, which lead to non-orthogonality, oversampling218


1 First because this will increase the number of samples needed to effectively model the structure
of knob-space, and second because this modeling will typically be quadratic with the number of
knobs, at least for the BOA or hBOA.


319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


15.3 Competent Program Evolution via MOSES 245


of distant behaviors, and undersampling of nearby behaviors, all of which can directly219


impede effective program evolution.220


Non-orthogonality is caused by over-representation. For example, based on the221


properties of commutativity and associativity, a1 + a2 + · · · + an may be expressed222


in exponentially many different ways, if + is treated as a non-commutative and223


non-associative binary operator. Similarly, operations such as addition of zero and224


multiplication by one have no effect, the successive addition of two constants is equiv-225


alent to the addition of their sum, etc. These effects are not quirks of real-valued226


expressions; similar redundancies appear in Boolean formulae (x AND x ≡ x),227


list manipulation (cdr(cons(x, L)) ≡ L), and conditionals (if x then y else z ≡228


if NOT x then z else y).229


Without the ability to exploit these identities, we are forced to work in a greatly230


expanded space which represents equivalent expression in many different ways, and231


will therefore be very far from orthogonality. Completely eliminating redundancy is232


infeasible, and typically NP-hard (in the domain of Boolean formulae it is reducible233


to the satisfiability problem, for instance), but one can go quite far with a heuristic234


approach.235


Oversampling of distant behaviors is caused directly by chaotic execution, as236


well as a somewhat subtle effect of over-representation, which can lead to simpler237


programs being heavily oversampled. Simplicity is defined relative to a given pro-238


gram space in terms of minimal length, the number of symbols in the shortest program239


that produces the same behavior.240


Undersampling of nearby behaviors is the flip side of the oversampling of241


distant behaviors. As we have seen, syntactically diverse programs can have the same242


behavior; this can be attributed to redundancy, as well as non-redundant programs243


that simply compute the same result by different means. For example, 3*x can also244


be computed as x + x + x; the first version uses less symbols, but neither contains245


any obvious “bloat” such as addition of zero or multiplication by one. Note however246


that the nearby behavior of 3.1*x, is syntactically close to the former, and relatively247


far from the latter. The converse is the case for the behavior of 2*x+y. In a sense,248


these two expressions can be said to exemplify differing organizational principles,249


or points of view, on the underlying function.250


Differing organizational principles lead to different biases in sampling nearby251


behaviors. A superior organizational principle (one leading to higher-fitness syntac-252


tically nearby programs for a particular problem) might be considered a metaptation253


(adaptation at the second tier). Since equivalent programs organized according to dif-254


ferent principles will have identical fitnesss, some methodology beyond selection for255


high fitnesss must be employed to search for good organizational principles. Thus, the256


resolution of undersampling of nearby behaviors revolves around the management257


of neutrality in search, a complex topic beyond the scope of this chapter.258


These three properties of program spaces greatly affect the performance of evo-259


lutionary methods based solely on syntactic variation and recombination operators,260


such as local search or genetic programming. In fact, when quantified in terms of261


various fitness-distance correlation measures, they can be effective predictors of262


algorithm performance, although they are of course not the whole story. A semantic263
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246 15 Probabilistic Evolutionary Procedure Learning


search procedure will address these concerns in terms of the underlying behavioral264


effects of and interactions between a language’s basic operators; the general scheme265


for doing so in MOSES is the topic of the next subsection.266


15.3.1.3 Neighborhoods and Normal Forms267


The procedure MOSES uses to construct a set of knobs for a given program (or268


family of structurally related programs) is based on three conceptual steps: reduction269


to normal form, neighborhood enumeration, and neighborhood reduction.270


Reduction to normal form271


Redundancy is heuristically eliminated by reducing programs to a normal form.272


Typically, this will be via the iterative application of a series of local rewrite rules273


(e.g., ∀x, x +0 → x), until the target program no longer changes. Note that the well-274


known conjunctive and disjunctive normal forms for Boolean formulae are generally275


unsuitable for this purpose; they destroy the hierarchical structure of formulae, and276


dramatically limit the range of behaviors (in this case Boolean functions) that can be277


expressed compactly. Rather, hierarchical normal forms for programs are required.278


Neighborhood enumeration279


A set of possible atomic perturbations is generated for all programs under con-280


sideration (the overall perturbation set will be the union of these). The goal is to281


heuristically generate new programs that correspond to behaviorally nearby varia-282


tions on the source program, in such a way that arbitrary sets of perturbations may283


be composed combinatorially to generate novel valid programs.284


Neighborhood reduction285


Redundant perturbations are heuristically culled to reach a more orthogonal set. A286


straightforward way to do this is to exploit the reduction to normal form outlined287


above; if multiple knobs lead to the same normal forms program, only one of them288


is actually needed. Additionally, note that the number of symbols in the normal form289


of a program can be used as a heuristic approximation for its minimal length—if290


the reduction to normal form of the program resulting from twiddling some knob291


significantly decreases its size, it can be assumed to be a source of oversampling,292


and hence eliminated from consideration. A slightly smaller program is typically a293


meaningful change to make, but a large reduction in complexity will rarely be useful294


(and if so, can be accomplished through a combination of knobs that individually295


produce small changes).296
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15.3 Competent Program Evolution via MOSES 247


At the end of this process, we will be left with a set of knobs defining a subspace297


of programs centered around a particular region in program space and heuristically298


centered around the corresponding region in behavior space as well. This is part of the299


meta aspect of MOSES, which seeks not to evaluate variations on existing programs300


itself, but to construct parameterized program subspaces (representations) containing301


meaningful variations, guided by background knowledge. These representations are302


used as search spaces within which an optimization algorithm can be applied.303


15.3.2 Dynamics304


As described above, the representation-building component of MOSES constructs a305


parameterized representation of a particular region of program space, centered around306


a single program family of closely related programs. This is consistent with the line of307


thought developed above, that a representation constructed across an arbitrary region308


of program space (e.g., all programs containing less than n symbols), or spanning309


an arbitrary collection of unrelated programs, is unlikely to produce a meaningful310


parameterization (i.e., one leading to a compact problem decomposition).311


A sample of programs within a region derived from representation-building312


together with the corresponding set of knobs will be referred to herein as a deme2; a set313


of demes (together spanning an arbitrary area within program space in a patchwork314


fashion) will be referred to as a metapopulation.3 MOSES operates on a metapop-315


ulation, adaptively creating, removing, and allocating optimization effort to various316


demes. Deme management is the second fundamental meta aspect of MOSES, after317


(and above) representation-building; it essentially corresponds to the problem of318


effectively allocating computational resources to competing regions, and hence to319


competing programmatic organizational- representational schemes.320


15.3.2.1 Algorithmic Sketch321


The salient aspects of programs and program learning lead to requirements for com-322


petent program evolution that can be addressed via a representation-building process323


such as the one shown above, combined with effective deme management. The fol-324


lowing sketch of MOSES, elaborating Fig. 15.1 repeated here from Chap. 8 of Vol. 5,325


presents a simple control flow that dynamically integrates these processes into an326


overall program evolution procedure:327


1. Construct an initial set of knobs based on some prior (e.g., based on an empty328


program) and use it to generate an initial random sampling of programs. Add this329


deme to the metapopulation.330


2 A term borrowed from biology, referring to a somewhat isolated local population of a species.
3 Another term borrowed from biology, referring to a group of somewhat separate populations (the
demes) that nonetheless interact.


319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-027-0_8





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


248 15 Probabilistic Evolutionary Procedure Learning


Fig. 15.1 The top-level architectural components of MOSES, with directed edges indicating the
flow of information and program control


2. Select a deme from the metapopulation and update its sample, as follows:331


a. Select some promising programs from the deme’s existing sample to use for332


modeling, according to the fitness function.333


b. Considering the promising programs as collections of knob settings, gen-334


erate new collections of knob settings by applying some (competent) opti-335


mization algorithm.336


c. Convert the new collections of knob settings into their corresponding pro-337


grams, reduce the programs to normal form, evaluate their fitnesss, and338


integrate them into the deme’s sample, replacing less promising programs.339


3. For each new program that meets the criteria for creating a new deme, if any:340


a. Construct a new set of knobs (via representation-building) to define a region341


centered around the program (the deme’s exemplar), and use it to generate342


a new random sampling of programs, producing a new deme.343


b. Integrate the new deme into the metapopulation, possibly displacing less344


promising demes.345


4. Repeat from step 2.346


The criterion for creating a new deme is behavioral non-dominance (programs347


which are not dominated by the exemplars of any existing demes are used as exem-348


plars to create new demes), which can be defined in a domain-specific fashion. As a349


default, the fitness function may be used to induce dominance, in which case the set350


of exemplar programs for demes corresponds to the set of top-fitness programs.351
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15.3 Competent Program Evolution via MOSES 249


15.3.3 Architecture352


The preceding algorithmic sketch of MOSES leads to the top-level architecture353


depicted in Fig. ??. Of the four top-level components, only the fitness function354


is problem-specific. The representation-building process is domain-specific, while355


the random sampling methodology and optimization algorithm are domain-general.356


There is of course the possibility of improving performance by incorporating domain357


and/or problem-specific bias into random sampling and optimization as well.358


15.3.4 Example: Artificial Ant Problem359


Let’s go through all of the steps that are needed to apply MOSES to a small problem,360


the artificial ant on the Santa Fe trail [Koz92], and describe the search process. The361


artificial ant domain is a two-dimensional grid landscape where each cell may or may362


not contain a piece of food. The artificial ant has a location (a cell) and orientation363


(facing up, down, left, or right), and navigates the landscape via a primitive sensor,364


which detects whether or not there is food in the cell that the ant is facing, and365


primitive actuators move (take a single step forward), right (rotate 90◦ clockwise),366


and left (rotate 90◦ counter-clockwise). The Santa Fe trail problem is a particular367


32×32 toroidal grid with food scattered on it (Fig. 4), and a fitness function counting368


the number of unique pieces of food the ant eats (by entering the cell containing the369


food) within 600 steps (movement and 90◦ rotations are considered single steps). AQ1370


Programs are composed of the primitive actions taking no arguments, a conditional371


(if-food-ahead),4 which takes two arguments and evaluates one or the other based372


on whether or not there is food ahead, and progn, which takes a variable number of373


arguments and sequentially evaluates all of them from left to right. To fitness a pro-374


gram, it is evaluated continuously until 600 time steps have passed, or all of the food375


is eaten (whichever comes first). Thus for example, the program if-food-ahead(m, r)376


moves forward as long as there is food ahead of it, at which point it rotates clockwise377


until food is again spotted. It can successfully navigate the first two turns of the378


placeSanta Fe trail, but cannot cross “gaps” in the trail, giving it a final fitness of 11.379


The first step in applying MOSES is to decide what our reduction rules should380


look like. This program space has several clear sources of redundancy leading to381


over-representation that we can eliminate, leading to the following reduction rules:382


1. Any sequence of rotations may be reduced to either a left rotation, a right rotation,383


or a reversal, for example:384


progn(left, left, left)385


reduces to386


right387


4 This formulation is equivalent to using a general three-argument if-then-else statement with a
predicate as the first argument, as there is only a single predicate (food-ahead) for the ant problem.


319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


250 15 Probabilistic Evolutionary Procedure Learning


1. Any if-food-ahead statement which is the child of an if-food-ahead statement388


may be eliminated, as one of its branches is clearly irrelevant, for example:389


if-food-ahead(m, if-food-ahead(l, r))390


reduces to391


if-food-ahead(m, r)392


1. Any progn statement which is the child of a progn statement may be eliminated393


and replaced by its children, for example:394


progn(progn(left, move), move)395


reduces to396


progn(left, move, move)397


The representation language for the ant problem is simple enough that these are the398


only three rules needed—in principle there could be many more. The first rule may399


be seen as a consequence of general domain-knowledge pertaining to rotation. The400


second and third rules are fully general simplification rules based on the semantics401


of if-then-else statements and associative functions (such as progn), respectively.402AQ2


These rules allow us to naturally parameterize a knob space corresponding to a403


given program (note that the arguments to the progn and if-food-ahead functions404


will be recursively reduced and parameterized according to the same procedure).405


Rotations will correspond to knobs with four possibilities (left, right, reversal, no406


rotation). Movement commands will correspond to knobs with two possibilities407


(move, no movement). There is also the possibility of introducing a new command408


in between, before, or after, existing commands. Some convention (a “canonical409


form”) for our space is needed to determine how the knobs for new commands will410


be introduced. A representation consists of a rotation knob, followed by a conditional411


knob, followed by a movement knob, followed by a rotation knob, etc.5412


The structure of the space (how large and what shape) and default knob values will413


be determined by the “exemplar” program used to construct it. The default values414


are used to bias the initial sampling to focus around the prototype associated to the415


exemplar: all of the n direct neighbors of the prototype are first added to the sample,416


followed by a random selection of n programs at a distance of two from the prototype,417


n programs at a distance of three, etc., until the entire sample is filled. Note that the418


hBOA can of course effectively recombine this sample to generate novel programs at419


any distance from the initial prototype. The empty program progn (which can be used420


as the initial exemplar for MOSES), for example, leads to the following prototype:421


progn(422


rotate? [default no rotation],423


if-food-ahead(424


progn(425


rotate? [default no rotation],426


5 That there is some fixed ordering on the knobs is important, so that two rotation knobs are not
placed next to each other (as this would introduce redundancy). In this case, the precise ordering
chosen (rotation, conditional, movement) does not appear to be critical.
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15.3 Competent Program Evolution via MOSES 251


move? [default no movement]),427


progn(428


rotate? [default no rotation],429


move? [default no movement])),430


move? [default no movement])431


432


There are six parameters here, three which are quaternary (rotate), and three which433


are binary (move). So the program434


progn(left, if-food-ahead(move, left))435


would be encoded in the space as436


[left, no rotation, move, left, no movement, no movement]437


with knobs ordered according to a pre-order left-to-right traversal of the program’s438


parse tree (this is merely for exposition; the ordering of the parameters has no effect439


on MOSES). For a prototype program already containing an if-food-ahead statement,440


nested conditionals would be considered (Fig. 15.2). AQ3441


Fig. 15.2 On the top, histogram of the number of global optima found after a given number of
program evaluations for 100 runs of MOSES on the artificial ant problem (each run is counted
once for the first global optimum reached). On the bottom, computational effort required to find an
optimal solution for various techniques with probability p = 0.99 (for MOSES p = 1, since an
optimal solution was found in all runs)
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252 15 Probabilistic Evolutionary Procedure Learning


A space with six parameters in it is small enough that MOSES can reliably find442


the optimum (the program progn(right, if-food-ahead(progn(), left), move)), with a443


very small population. After no further improvements have been made in the search444


for a specified number of generations (calculated based on the size of the space based445


on a model derived from [23] that is general to the hBOA, and not at all tuned for446


the artificial ant problem), a new representation is constructed centered around this447


program.6 Additional knobs are introduced “in between” all existing ones (e.g., an448


optional move in between the first rotation and the first conditional), and possible449


nested conditionals are considered (a nested conditional occurring in a sequence450


after some other action has been taken is not redundant). The resulting space has 39451


knobs, still quite tractable for hBOA, which typically finds a global optimum within452


a few generations. If the optimum were not to be found, MOSES would construct453


a new (possibly larger or smaller) representation, centered around the best program454


that was found, and the process would repeat.AQ4455


The artificial ant problem is well-studied, with published benchmark results avail-456


able for genetic programming as well as evolutionary programming based solely on457


mutation (i.e., a form of population-based stochastic hill climbing). Furthermore,458


an extensive analysis of the search space has been carried out by Langdon and Poli459


[LP02], with the authors concluding:460


1. The problem is “deceptive at all levels”, meaning that the partial solutions that461


must be recombined to solve the problem to optimality have lower average fitness462


than the partial solutions that lead to inferior local optima.463


2. The search space contains many symmetries (e.g., between left and right rota-464


tions),465


3. There is an unusually high density of global optima in the space (relative to other466


common test problems);467


4. even though current evolutionary methods can solve the problem, they are not sig-468


nificantly more effective (in terms of the number of program evaluations require)469


than random sample.470


5. “If real program spaces have the above characteristics (we expect them to do so but471


be still worse) then it is important to be able to demonstrate scalable techniques472


on such problem spaces”.473


15.3.4.1 Test Results474


Koza [Koz92] reports on a set of 148 runs of genetic programming with a popula-475


tion size of 500 which had a 16 % success rate after 51 generations when the runs476


were terminated (a total of 25,500 program evaluations per run). The minimal “com-477


putational effort” needed to achieve success with 99 % probability was attained by478


6 MOSES reduces the exemplar program to normal form before constructing the representation;
in this particular case however, no transformations are needed. Similarly, in general neighborhood
reduction would be used to eliminate any extraneous knobs (based on domain-specific heuristics).
For the ant domain however no such reductions are necessary.
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15.3 Competent Program Evolution via MOSES 253


processing through generation 14 was 450,000 (based on parallel independent runs).479


Chellapilla [Che97] reports 47 out of 50 successful runs with a minimal computa-480


tional effort (again, for success with 99 % probability) of 136,000 for his stochastic481


hill climbing method.482


In our experiment with the artificial ant problem, one hundred runs of MOSES483


were executed. Beyond the domain knowledge embodied in the reduction and knob484


construction procedure, the only parameter that needed to be set was the population485


scaling factor, which was set to 30 (MOSES automatically adjusts to generate a larger486


population as the size of the representation grows, with the base case determined by487


this factor). Based on these “factory” settings, MOSES found optimal solutions on488


every run out of 100 trials, within a maximum of 23,000 program evaluations (the489


computational effort figure corresponding to 100 % success). The average number490


of program evaluations required was 6,952, with 95 % confidence intervals of ±856491


evaluations.492


Why does MOSES outperform other techniques? One factor to consider first is493


that the language programs are evolved in is slightly more expressive than that used494


for the other techniques; specifically, a progn is allowed to have no children (if all495


of its possible children are “turned off”), leading to the possibility of if-food-ahead496


statements which do nothing if food is present (or not present). Indeed, many of497


the smallest solutions found by MOSES exploit this feature. This can be tested by498


inserting a “do nothing” operation into the terminal set for genetic programming (for499


example). Indeed, this reduces the computational effort to 272,000; an interesting500


effect, but still over an order of magnitude short of the results obtained with MOSES501


(the success rate after 50 generations is still only 20 %).502


Another possibility is that the reductions in the search space via simplification503


of programs alone are responsible. However, the results past attempts at introducing504


program simplification into genetic programming systems [27, 28] have been mixed;505


although the system may be sped up (because programs are smaller), there have been506


no dramatic improvement in results noted. To be fair, these results have been primarily507


focused on the symbolic regression domain; I am not aware of any results for the508


artificial ant problem.509


The final contributor to consider is the sampling mechanism (knowledge-driven510


knob-creation followed by probabilistic model-building). We can test to what extent511


model-building contributes to the bottom line by simply disabling it and assuming512


probabilistic independence between all knobs. The result here is of interest because513


model-building can be quite expensive (O(n2N) per generation, where n is the prob-514


lem size and N is the population size7). In 50 independent runs of MOSES with-515


out model-building, a global optimum was still discovered in all runs. However,516


the variance in the number of evaluations required was much higher (in two cases517


over 100,000 evaluations were needed). The new average was 26,355 evaluations518


to reach an optimum (about 3.5 times more than required with model-building).519


7 The fact that reduction to normal tends to reduce the problem size is another synergy between it
and the application of probabilistic model-building.
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254 15 Probabilistic Evolutionary Procedure Learning


The contribution of model-building to the performance of MOSES is expected to be520


even greater for more difficult problems.521


Applying MOSES without model-building (i.e., a model assuming no interac-522


tions between variables) is a way to test the combination of representation-building523


with an approach resembling the probabilistic incremental program learning (PIPE)524


algorithm [SS03], which learns programs based on a probabilistic model without any525


interactions. PIPE has now been shown to provide results competitive with genetic526


programming on a number of problems (regression, agent control, etc.).527


It is additionally possible to look inside the models that the hBOA constructs528


(based on the empirical statistics of successful programs) to see what sorts of linkages529


between knobs are being learned.8 For the 6-knob model given above for instance530


an analysis of the linkages learned shows that the three most common pairwise531


dependencies uncovered, occurring in over 90 % of the models across 100 runs, are532


between the rotation knobs. No other individual dependencies occurred in more than533


32 % of the models. This preliminary finding is quite significant given Landgon and534


Poli’s findings on symmetry, and their observation that “[t]hese symmetries lead to535


essentially the same solutions appearing to be the opposite of each other. E.g. either536


a pair of Right or pair of Left terminals at a particular location may be important”.537


In this relatively simple case, all of the components of MOSES appear to mesh538


together to provide superior performance—which is promising, though it of course539


does not prove that these same advantages will apply across the range of problems540


relevant to human-level AGI.541


15.3.5 Discussion542


The overall MOSES design is unique. However, it is instructive at this point to com-543


pare its two primary unique facets (representation-building and deme management)544


to related work in evolutionary computation.545


Rosca’s adaptive representation architecture [Ros99] is an approach to program546


evolution which also alternates between separate representation-building and opti-547


mization stages. It is based on Koza’s genetic programming, and modifies the rep-548


resentation based on a syntactic analysis driven by the fitness function, as well as a549


modularity bias. The representation-building that takes place consists of introduc-550


ing new compound operators, and hence modifying the implicit distance function in551


tree-space. This modification is uniform, in the sense that the new operators can be552


placed in any context, without regard for semantics.553


In contrast to Rosca’s work and other approaches to representation-building such554


as Koza’s automatically defined functions [KA95], MOSES explicitly addresses the555


underlying (semantic) structure of program space independently of the search for556


any kind of modularity or problem decomposition. This preliminary stage critically557


8 There is in fact even more information available in the hBOA models concerning hierarchy and
direction of dependence, but this is difficult to analyze.
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15.3 Competent Program Evolution via MOSES 255


changes neighborhood structures (syntactic similarity) and other aggregate properties558


of programs.559


Regarding deme management, the embedding of an evolutionary algorithm within560


a superordinate procedure maintaining a metapopulation is most commonly associ-561


ated with “island model” architectures [SWM90]. One of the motivations articulated562


for using island models has been to allow distinct islands to (usually implicitly)563


explore different regions of the search space, as MOSES does explicitly. MOSES564


can thus be seen as a very particular kind of island model architecture, where pro-565


grams never migrate between islands (demes), and islands are created and destroyed566


dynamically as the search progresses.567


In MOSES, optimization does not operate directly on program space, but rather568


on a subspace defined by the representation-building process. This subspace may be569


considered as being defined by a sort of template assigning values to some of the570


underlying dimensions (e.g., it restricts the size and shape of any resulting trees). The571


messy genetic algorithm [GKD89], an early competent optimization algorithm, uses a572


similar mechanism—a common “competitive template” is used to evaluate candidate573


solutions to the optimization problem which are themselves underspecified. Search574


consequently centers on the template(s), much as search in MOSES centers on the575


programs used to create new demes (and thereby new representations). The issue of576


deme management can thus be seen as analogous to the issue of template selection577


in the messy genetic algorithm.578


15.3.6 Conclusion579


Competent evolutionary optimization algorithms are a pivotal development, allowing580


encoded problems with compact decompositions to be tractably solved according581


to normative principles. We are still faced with the problem of representation-582


building—casting a problem in terms of knobs that can be twiddled to solve it.583


Hopefully, the chosen encoding will allow for a compact problem decomposition.584


Program learning problems in particular rarely possess compact decompositions,585


due to particular features generally present in program spaces (and in the mapping586


between programs and behaviors). This often leads to intractable problem formula-587


tions, even if the mapping between behaviors and fitness has an intrinsic separable or588


nearly decomposable structure. As a consequence, practitioners must often resort to589


manually carrying out the analogue of representation-building, on a problem-specific590


basis. Working under the thesis that the properties of programs and program spaces591


can be leveraged as inductive bias to remove the burden of manual representation-592


building, leading to competent program evolution, we have developed the MOSES593


system, and explored its properties.594


While the discussion above has highlighted many of the features that make595


MOSES uniquely powerful, in a sense it has told only half the story. Part of what596


makes MOSES valuable for CogPrime is that it’s good on its own; and the other597


part is that it cooperates well with the other cognitive processes within CogPrime.598
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256 15 Probabilistic Evolutionary Procedure Learning


We have discussed aspects of this already in Chap. 8 of Vol. 5, especially in regard to599


the MOSES/PLN relationship. In the following section we proceed further to explore600


the interaction of MOSES with other aspects of the CogPrime system—a topic that601


will arise repeatedly in later chapters as well.602


15.4 Integrating Feature Selection into the Learning Process603


In the typical workflow of applied machine learning, one begins with a large number604


of features, each applicable to some or all of the entities one wishes to learn about;605


then one applies some feature selection heuristics to whittle down the large set of606


features into a smaller one; then one applies a learning algorithm to the reduced set of607


features. The reason for this approach is that the more powerful among the existing608


machine learning algorithms tend to get confused when supplied with too many609


features. The problem with this approach is that sometimes one winds up throwing610


out potentially very useful information during the feature selection phase. This same611


sort of problem exists with MOSES in its simplest form, as described above.612


The human mind, as best we understand it, does things a bit differently than this613


standard “feature selection followed by learning” process. It does seem to perform614


operations analogous to feature selection, and operations analogous to the application615


of a machine learning algorithm to a reduced feature set—but then it also involves616


feedback from these “machine learning like” operations to the “feature selection like”617


operations, so that the intermediate results of learning can cause the introduction into618


the learning process of features additional to those initially selected, thus allowing619


the development of better learning results.620


Compositional spatiotemporal deep learning (CSDLN) architectures like HTM621


[HB06] or DeSTIN [ARC09a], as discussed in 9 incorporate this same sort of feed-622


back. The lower levels of such an architecture, in effect, carry out “feature selection”623


for the upper levels—but then feedback from the upper to the lower levels also624


occurs, thus in effect modulating the “feature selection like” activity at the lower lev-625


els based on the more abstract learning activity on the upper levels. However, such626


CSDLN architectures are specifically biased toward recognition of certain sorts of627


patterns—an aspect that may be considered a bug or a feature of this class of learning628


architecture, depending on the context. For visual pattern recognition, it appears to629


be a feature, since the hierarchical structure of such algorithms roughly mimics the630


architecture of visual cortex. For automated learning of computer programs carrying631


out symbolic tasks, on the other hand, CSDLN architectures are awkward at best632


and probably generally inappropriate. For cases like language learning or abstract633


conceptual inference, the jury is out.634


In this section we explore the question of: how to introduce an appropriate635


feedback between feature selection and learning in the case of machine learning636


algorithms with general scope and without explicit hierarchical structure—such as637


MOSES. We introduce a specific technique enabling this, which we call LIFES, short638


for Learning-Incorporated Feature Selection. We argue that LIFES is particularly639
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15.4 Integrating Feature Selection into the Learning Process 257


applicable to learning problems that possess the conjunction of two properties that640


we call data focusability and feature focusability. We illustrate LIFES in a MOSES641


context, via describing a specific incarnation of the LIFES technique that does fea-642


ture selection repeatedly during the MOSES learning process, rather than just doing643


it initially prior to MOSES learning.644


15.4.1 Machine Learning, Feature Selection and AGI645


The relation between feature selection and machine learning appears an excellent646


example of the way that, even when the same basic technique is useful in both narrow647


AI and AGI, the method of utilization is often quite different. In most applied machine648


learning tasks, the need to customize feature selection heuristics for each application649


domain (and in some cases, each particular problem) is not a major difficulty. This650


need does limit the practical utilization of machine learning algorithms, because it651


means that many ML applications require an expert user who understands something652


about machine learning, both to deal with feature selection issues and to interpret the653


results. But it doesn’t stand in the way of ML’s fundamental usability. On the other654


hand, in an AGI context, the situation is different, and the need for human-crafted,655


context-appropriate feature selection does stand in the way of the straightforward656


insertion of most ML algorithms into an integrative AGI systems.657


For instance, in the OpenCog integrative AGI architecture that we have co-658


architected [Gea13], the MOSES automated program learning algorithm plays a659


key role. It is OpenCog’s main algorithm for acquiring procedural knowledge, and660


is used for generating some sorts of declarative knowledge as well. However, when661


MOSES tasks are launched automatically via the OpenCog scheduler based on an662


OpenCog agent’s goals, there is no opportunity for the clever choice of feature selec-663


tion heuristics based on the particular data involved. And crude feature selection664


heuristics based on elementary statistics, are often insufficiently effective, as they665


rule out too many valuable features (and sometimes rule out the most critical fea-666


tures). In this context, having a variant of MOSES that can sift through the scope of667


possible features in the course of its learning is very important.668


An example from the virtual dog domain pursued in [GEA08] would be as follows.669


Each procedure learned by the virtual dog combines a number of different actions,670


such as “step forward”, “bark”, “turn around”, “look right”, “lift left front leg”, etc. In671


the virtual dog experiments done previously, the number of different actions permitted672


to the dog was less than 100, so that feature selection was not a major issue. However,673


this was an artifact of the relatively simplistic nature of the experiments conducted.674


For a real organism, or for a robot that learns its own behavioral procedures (say,675


via a deep learning algorithm) rather than using a pre-configured set of “animated”676


behaviors, the number of possible behavioral procedures to potentially be combined677


using a MOSES-learned program may be very large. In this case, one must either678


use some crude feature selection heuristic, have a human select the features, or use679


something like the LIFES approach described here. LIFES addresses a key problem680
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258 15 Probabilistic Evolutionary Procedure Learning


in moving from the relatively simple virtual dog work done before, to related work681


with virtual agents displaying greater general intelligence.682


As an other example, suppose an OpenCog-controlled agent is using MOSES to683


learn procedures for navigating in a dynamic environment. The features that candidate684


navigation procedures will want to pay attention to, may be different in a well-lit685


environment than in a dark environment. However, if the MOSES learning process686


is being launched internally via OpenCog’s goal system, there is no opportunity for687


a human to adjust the feature selection heuristics based on the amount of light in the688


environment. Instead, MOSES has got to figure out what features to pay attention689


to all by itself. LIFES is designed to allow MOSES (or other comparable learning690


algorithms) to do this.691


So far we have tested LIFES in genomics and other narrow-AI application areas,692


as a way of initially exploring and validating the technique. As our OpenCog work693


proceeds, we will explore more AGI-oriented applications of MOSES-LIFES. This694


will be relatively straightforward on a software level as MOSES is fully integrated695


with OpenCog.696


15.4.2 Data- and Feature- Focusable Learning Problems697


Learning-integrated feature selection as described here is applicable across multi-698


ple domain areas and types of learning problem—but it is not completely broadly699


applicable. Rather it is most appropriate for learning problems possessing two prop-700


erties we call data focusability and feature focusability. While these properties can701


be defined with mathematical rigor, here we will not be proving any theorems about702


them, so we will content ourselves with semi-formal definitions, sufficient to guide703


practical work.704


We consider a fitness function Φ, defined on a space of programs f whose inputs705


are features defined on elements of a reference dataset S, and whose outputs lie in706


the interval [0, 1]. The features are construed as functions mapping elements of S707


into [0, 1]. Where F(x) = (F1(x), . . . , Fn(x)) is the set of features evaluated on708


x ∈ S, we use f (x) as a shorthand for f (F(x)).709


We are specifically interested in Φ which are “data focusable”, in the sense that,710


for a large number of highly fit programs f , there is some subset S f on which f is711


highly concentrated (note that S f will be different for different f ). By “concentrated”712


it is meant that713 ∑
x∈S f


f (x)
∑


x∈S f (x)
714


is large. A simple case is where f is Boolean and f (x) = 1 ⇐⇒ x ∈ S f .715


One important case is where Φ is “property-based”, in the sense that each element716


x ∈ S has some Boolean or numeric property p(x), and the fitness function Φ( f )717


rewards f for predicting p(x) given x for x ∈ S f , where S f is some non-trivial718


subset of S. For example, each element of S might belong to some category, and the719
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15.4 Integrating Feature Selection into the Learning Process 259


fitness function might represent the problem of placing elements of S into the proper720


category—but with the twist that f gets rewarded if it accurately places some subset721


S f of elements in S into the proper category, even if it has nothing to say about all722


the elements in S but not S f .723


For instance, consider the case where S is a set of images. Suppose the function724


p(x) indicates whether the image x contains a picture of a cat or not. Then, a suitable725


fitness function Φ would be one measuring whether there is some non-trivially large726


set of images S f so that if x ∈ S f , then f can accurately predict whether x contains a727


picture of a cat or not. A key point is that the fitness function doesn’t care whether f728


can accurately predict whether x contains a picture of a cat or not, for x outside S f .729


Or, consider the case where S is a discrete series of time points, and p(x) indicates730


the value of some quantity (say, a person’s EEG) at a certain point in time. Then a731


suitable fitness function Φ might measure whether there is some non-trivially large732


set of time-points S f so that if x ∈ S f , then f can accurately predict whether x will733


be above a certain level L or not.734


Finally, in addition to the property of data-focusability introduced above, we will735


concern ourselves with the complementary property of “feature-focusability”. This736


means that, while the elements of S are each characterized by a potentially large set737


of features, there are many highly fit programs f that utilize only a small subset of738


this large set of features. The case of most interest here is where there are various739


highly fit programs f , each utilizing a different small subset of the overall large set of740


features. In this case one has (loosely speaking) a pattern recognition problem, with741


approximate solutions comprising various patterns that combine various different742


features in various different ways. For example, this would be the case if there743


were many different programs for recognizing pictures containing cats, each one744


utilizing different features of cats and hence applying to different subsets of the745


overall database of images.746


There may, of course, be many important learning problems that are neither data747


nor feature focusable. However, the LIFES technique presented here for integrat-748


ing feature selection into learning is specifically applicable to objective functions749


that are both data and feature focusable. In this sense, the conjunction of data and750


feature focusability appears to be a kind of “tractability” that allows one to bypass751


the troublesome separation of feature selection and learning, and straightforwardly752


combine the two into a single integrated process. Being property-based in the sense753


described above does not seem to be necessary for the application of LIFES, though754


most practical problems do seem to be property-based.755


15.4.3 Integrating Feature Selection into Learning756


The essential idea proposed here is a simple one. Suppose one has a learning problem757


involving a fitness function that is both data and feature focusable. And suppose that,758


in the course of learning according to some learning algorithm, one has a candidate759


program f , which is reasonably fit but merits improvement. Suppose that f uses a760
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subset F f of the total set F of possible input features. Then, one may do a special761


feature selection step, customized just for f . Namely, one may look at the total set F762


of possible features, and ask which features or small feature-sets display desirable763


properties on the set S f . This will lead to a new set of features potentially worthy764


of exploration; let’s call it F ′
f . We can then attempt to improve f by creating variants765


of f introducing some of the features in F ′
f —either replacing features in F f or766


augmenting them. The process of creating and refining these variants will then lead767


to new candidate programs g, potentially concentrated on sets Sg different from S f ,768


in which case the process may be repeated. This is what we call LIFES—Learning-769


Integrated Feature Selection.770


As described above the LIFES process is quite general, and applies to a variety of771


learning algorithms—basically any learning algorithm that includes the capability772


to refine a candidate solution via the introduction of novel features. The nature of773


the “desirable properties” used to evaluate candidate features or feature-sets on S f774


needs to be specified, but a variety of standard techniques may be used here (along775


with more advanced ideas)—for instance, in the case where the fitness function is776


defined in terms of some property mapping p as describe, above, then given a feature777


Fi , one can calculate the mutual information of Fi with p over S f . Other measures778


than mutual information may be used here as well.779


The LIFES process doesn’t necessarily obviate the need for up-front feature selec-780


tion. What it does, is prevent up-front feature selection from limiting the ultimate781


feature usage of the learning algorithm. It allows the initially selected features to be782


used as a rough initial guide to learning—and for the candidates learned using these783


initial features, to then be refined and improved using additional features chosen784


opportunistically along the learning path. In some cases, the best programs ulti-785


mately learned via this approach might not end up involving any of the initially786


selected features.787


15.4.4 Integrating Feature Selection into MOSES Learning788


The application of the general LIFES process in the MOSES context is relatively789


straightforward. Quite simply, given a reasonably fit program f produced within a790


deme, one then isolates the set S f on which f is concentrated, and identifies a set791


F ′
f of features within F that displays desirable properties relative to S f . One then792


creates a new deme f ∗, with exemplar f , and with a set of potential input features793


consisting of F f ∪ F ′
f .794


What does it mean to create a deme f ∗with a certain set of “potential input fea-795


tures” F f ∪ F ′
f ? Abstractly, it means that F f ∗ = F f ∪ F ′


f . Concretely, it means796


that the knobs in the deme’s exemplar f ∗ must be supplied with settings correspond-797


ing to the elements of F f ∪ F ′
f . The right way to do this will depend on the semantics798


of the features.799
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15.4 Integrating Feature Selection into the Learning Process 261


For instance, it may be that the overall feature space F is naturally divided into800


groups of features. In that case, each new feature Fi in F ′
f would be added, as a801


potential knob setting, to any knob in f corresponding to a feature in the same group802


as Fi .803


On the other hand, if there is no knob in f corresponding to features in Fi ’s knob804


group, then one has a different situation, and it is necessary to “mutate” f by adding805


a new node with a new kind of knob corresponding to Fi , or replacing an existing806


node with a new one corresponding to Fi .807


15.4.5 Application to Genomic Data Classification808


To illustrate the effectiveness of LIFES in a MOSES context, we now briefly describe809


an example application, in the genomics domain. The application of MOSES to gene810


expression data is described in more detail in [Loo07b], and is only very briefly sum-811


marized here. To obtain the results summarized here, we have used MOSES, with and812


without LIFES, to analyze two different genomics datasets: an Alzheimers SNP (sin-813


gle nucleotide polymorphism) dataset [Mea07] previously analyzed using ensemble814


genetic programming [CGPH09]. The dataset is of the form “Case versus Control”,815


where the Case category consists of data from individuals with Alzheimers and Con-816


trol consists of matched controls. MOSES was used to learn Boolean program trees817


embodying predictive models that take in a subset of the genes in an individual, and818


output a Boolean combination of their discretized expression values, that is inter-819


preted as a prediction of whether the individual is in the Case or Control category.820


Prior to feeding them into MOSES, expression values were first Q-normalized, and821


then discretized via comparison to the median expression measured across all genes822


on a per-individual basis (1 for greater than the median, 0 for less than). Fitness was823


taken as precision, with a penalty factor restriction attention to program trees with824


recall above a specified minimum level.825


These study was carried out, not merely for testing MOSES and LIFES, but as826


part of a practical investigation into which genes and gene combinations may be the827


best drug targets for Alzheimers Disease. The overall methodology for the biological828


investigation, as described in [GCPM06], is to find a (hopefully diverse) ensemble829


of accurate classification models, and then statistically observe which genes tend830


to occur most often in this ensemble, and which combinations of genes tend to co-831


occur most often in the models in the ensemble. These most frequent genes and832


combinations are taken as potential therapeutic targets for the Case category of the833


underlying classification problem (which in this case denotes inflammation). This834


methodology has been biologically validated by follow-up lab work in a number of835


cases; see e.g. [Gea05] where this approach resulted in the first evidence of a genetic836


basis for Chronic Fatigue Syndrome. A significant body of unpublished commercial837


work along these lines has been done by Biomind LLC [http://biomind.com] for its838


various customers.839
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262 15 Probabilistic Evolutionary Procedure Learning


Comparing MOSES-LIFES to MOSES with conventional feature selection, we840


find that the former finds model ensembles combining greater diversity with greater841


precision, and equivalent recall. This is because conventional feature selection elimi-842


nates numerous genes that actually have predictive value for the phenotype of inflam-843


mation, so that MOSES never gets to see them. LIFES exposes MOSES to a much844


greater number of genes, some of which MOSES finds useful. And LIFES enables845


MOSES to explore this larger space of genes without getting bollixed by the potential846


combinatorial explosion of possibilities (Table 15.1).847


Table 15.1 Impact of LIFES on MOSES classification of Alzheimers Disease SNP data


Algorithm Train. precision Train. recall Test precision Test recall


MOSES 0.81 0.51 0.65 0.42 Best training precision
MOSES 0.80 0.52 0.69 0.43 Best test precision
MOSES-LIFES 0.84 0.51 0.68 0.38 Best training precision
MOSES-LIFES 0.82 0.51 0.72 0.48 Best test precision


Fitness function sought to maximize precision consistent with a constraint of precision being at least
0.5. Precision and recall figures are average figures over tenfolds, using tenfold cross-validation.
The results shown here are drawn from a larger set of runs, and are selected according to two criteria:
best training precision (the fair way to do it) and best test precision (just for comparison). We see
that use of LIFES increases precision by around 3 % in these tests, which is highly statistically
significant according to permutation analysis


AQ5


The genomics example shows that LIFES makes sense and works in the context848


of MOSES, broadly speaking. It seems very plausible that LIFES will also work849


effectively with MOSES in an integrative AGI context, for instance in OpenCog850


deployments where MOSES is used to drive procedure learning, with fitness func-851


tions supplied by other OpenCog components. However, the empirical validation of852


this plausible conjecture remains for future work.853


15.5 Supplying Evolutionary Learning with Long-Term Memory854


This section introduces an important enhancement to evolutionary learning, which855


extends the basic PEPL framework, by forming an adaptive hybridization of PEPL856


optimization with PLN inference (rather than merely using PLN inference within857


evolutionary learning to aid with modeling).858


The first idea here is the use of PLN to supply evolutionary learning with a long-859


term memory. Evolutionary learning approaches each problem as an isolated entity,860


but in reality, a CogPrime system will be confronting a long series of optimization861


problems, with subtle interrelationships. When trying to optimize the function f,862


CogPrime may make use of its experience in optimizing other functions g.863


Inference allows optimizers of g to be analogically transformed into optimizers864


of f, for instance it allows one to conclude:865


Inheritance f g866


EvaluationLink f x867


EvaluationLink g x868
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15.5 Supplying Evolutionary Learning with Long-Term Memory 263


However, less obviously, inference also allows patterns in populations of optimizers869


of g to be analogically transformed into patterns in populations of optimizers of f.870


For example, if pat is a pattern in good optimizers of f, then we have:871


InheritanceLink f g872


ImplicationLink873


EvaluationLink f x874


EvaluationLink pat x875


ImplicationLink876


EvaluationLink g x877


EvaluationLink pat x878


(with appropriate probabilistic truth values), an inference which says that patterns879


in the population of f-optimizers should also be patterns in the population of g-880


optimizers).881


Note that we can write the previous example more briefly as:882


InheritanceLink f g883


ImplicationLink (EvaluationLink f) (EvaluationLink pat)884


ImplicationLink (EvaluationLink g) (EvaluationLink pat)885


A similar formula holds for SimilarityLinks.886


We may also infer:887


ImplicationLink (EvaluationLink g) (EvaluationLink pat_g)888


ImplicationLink (EvaluationLink f) (EvaluationLink pat_f)889


ImplicationLink890


(EvaluationLink (g AND f))891


(EvaluationLink (pat_g AND pat_f))892


and:893


894


ImplicationLink (EvaluationLink f) (EvaluationLink pat)895


ImplicationLink (EvaluationLink ~f) (EvaluationLink ~pat)896


Through these sorts of inferences, PLN inference can be used to give evolutionary897


learning a long-term memory, allowing knowledge about population models to be898


transferred from one optimization problem to another. This complements the more899


obvious use of inference to transfer knowledge about specific solutions from one900


optimization problem to another.901


For instance in the problem of finding a compact program generating some given902


sequences of bits the system might have noticed that when the number of 0 roughly903


balances the number of 1 (let us call this property STR_BALANCE) successful904


optimizers tend to give greater biases toward conditionals involving comparisons of905


the number of 0 and 1 inside the condition, let us call this property over optimizers906


COMP_CARD_DIGIT_BIAS. This can be expressed in PLN as follows907
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264 15 Probabilistic Evolutionary Procedure Learning


AverageQuantifierLink 〈tv〉
ListLink


$X
$Y


ImplicationLink
ANDLink


InheritanceLink
STR_BALANCE
$X


EvaluationLink
SUCCESSFUL_OPTIMIZER_OF
ListLink


$Y
$X


InheritanceLink
COMP_CARD_DIGIT_BIAS
$Y


908


which translates by, if the problem $X inherits from STR_BALANCE and $Y is a suc-909


cessful optimizer of $X then, with probability p calculated according to tv, $Y tends910


to be biased according to the property described by COMP_CARD_DIGIT_BIAS.911


15.6 Hierarchical Program Learning912


Next we discuss hierarchical program structure, and its reflection in probabilistic913


modeling, in more depth. This is a surprisingly subtle and critical topic, which may be914


approached from several different complementary angles. To an extent, hierarchical915


structure is automatically accounted for in MOSES, but it may also be valuable to916


pay more explicit mind to it.917


In human-created software projects, one common approach for dealing with the918


existence of complex interdependencies between parts of a program is to give the919


program a hierarchical structure. The program is then a hierarchical arrangement of920


programs within programs within programs, each one of which has relatively simple921


dependencies between its parts (however its parts may themselves be hierarchical922


composites). This notion of hierarchy is essential to such programming methodolo-923


gies as modular programming and object-oriented design.924


Pelikan and Goldberg discuss the hierarchal nature of human problem-solving, in925


the context of the hBOA (hierarchical BOA) version of BOA. However, the hBOA926


algorithm does not incorporate hierarchical program structure nearly as deeply and927


thoroughly as the hierarchical procedure learning approach proposed here. In hBOA928


the hierarchy is implicit in the models of the evolving population, but the popula-929


tion instances themselves are not necessarily explicitly hierarchical in structure. In930


hierarchical PEPL as we describe it here, the population consists of hierarchically931
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15.6 Hierarchical Program Learning 265


structured Combo trees, and the hierarchy of the probabilistic models corresponds932


directly to this hierarchical program structure.933


The ideas presented here have some commonalities to John Koza’s ADFs and934


related tricks for putting reusable subroutines in GP trees, but there are also some935


very substantial differences, which we believe will make the current approach far936


more effective (though also involving considerably more computational overhead).937


We believe that this sort of hierarchically-savvy modeling is what will be needed to938


get probabilistic evolutionary learning to scale to large and complex programs, just as939


hierarchy-based methodologies like modular and object-oriented programming are940


needed to get human software engineering to scale to large and complex programs.941


15.6.1 Hierarchical Modeling of Composite Procedures942


in the AtomSpace943


The possibility of hierarchically structured programs is (intentionally) present in the944


CogPrime design, even without any special effort to build hierarchy into the PEPL945


framework. Combo trees may contain Nodes that point to PredicateNodes, which946


may in turn contain Combo trees, etc. However, our current framework for learning947


Combo trees does not take advantage of this hierarchy. What is needed, in order to948


do so, is for the models used for instance generation to include events of the form:949


Combo tree Node at position x has type PredicateNode; and the PredicateNode950


at position x contains a Combo tree that possesses property P.951


where x is a position in a Combo tree and P is a property that may or may not952


be true of any given Combo tree. Using events like this, a relatively small program953


explicitly incorporating only short-range dependencies; may implicitly encapsulate954


long-range dependencies via the properties P.955


But where do these properties P come from? These properties should be pat-956


terns learned as part of the probabilistic modeling of the Combo tree inside the957


PredicateNode at position x. For example, if one is using a decision tree modeling958


framework, then the properties might be of the form decision tree D evaluates to959


True. Note that not all of these properties have to be statistically correlated with the960


fitness of the PredicateNode at position x (although some of them surely will be).961


Thus we have a multi-level probabilistic modeling strategy. The top-level Combo962


tree has a probabilistic model whose events may refer to patterns that are parts of the963


probabilistic models of Combo trees that occur within it and so on down.964


In instance generation, when a newly generated Combo tree is given a PredicateNode965


at position x, two possibilities exist:966


• There is already a model for PredicateNodes at position x in Combo trees in the967


given population, in which case a population of PredicateNodes potentially living968


at that position is drawn from the known model, and evaluated.969


• There is no such model (because it has never been tried to create a PredicateNode970


at position x in this population before), in which case a new population of Combo971


trees is created corresponding to the position, and evaluated.972
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266 15 Probabilistic Evolutionary Procedure Learning


Note that the fitness of a Combo tree that is not at the top level of the overall process,973


is assessed indirectly in terms of the fitness of the higher-level Combo tree in which974


it is embedded, due to the requirement of having certain properties, etc.975


Suppose each Combo tree in the hierarchy has on average R adaptable sub-976


programs (represented as Nodes pointing to PredicateNodes containing Combo trees977


to be learned). Suppose the hierarchy is K levels deep. Then we will have about R×K978


program tree populations in the tree. This suggests that hierarchies shouldn’t get too979


big, and indeed, they shouldn’t need to, for the same essential reason that human-980


created software programs, if well-designed, tend not to require extremely deep and981


complex hierarchical structures.982


One may also introduce a notion of reusable components across various program983


learning runs, or across several portions of the same hierarchical program. Here is984


one learning patterns of the form:985


If property P1(C, x) applies to a Combo tree C and a node x within it, then it986


is often good for node x to refer to a PredicateNode containing a Combo tree with987


property P2.988


These patterns may be assigned probabilities and may be used in instance genera-989


tion. They are general or specialized programming guidelines, which may be learned990


over time.991


15.6.2 Identifying Hierarchical Structure in Combo Trees992


Via MetaNodes and Dimensional Embedding993


One may also apply the concepts of the previous section to model a population of994


CTs that doesn’t explicitly have a hierarchical structure, via introducing the hierar-995


chical structure during the evolutionary process, through the introduction of special996


extra Combo tree nodes called MetaNodes. For instance MetaNodes may represent997


subtrees of Combo trees, which have proved useful enough that it seems justifiable998


to extract them as “macros”. This concept may be implemented in a couple different999


ways, here we will introduce a simple way of doing this based on dimensional embed-1000


ding, and then in the next section we will allude to a more sophisticated approach1001


that uses inference instead.1002


The basic idea is to couple decision tree modeling with dimensional embedding1003


of subtrees, a trick that enables small decision tree models to cover large regions of a1004


CT in an approximate way, and which leads naturally to a form of probabilistically-1005


guided crossover.1006


The approach as described here works most simply for CTs that have many sub-1007


trees that can be viewed as mapping numerical inputs into numerical outputs. There1008


are clear generalizations to other sorts of CTs, but it seems advisable to test the1009


approach on this relatively simple case first.1010


The first part of the idea is to represent subtrees of a CT as numerical vectors1011


in a relatively low-dimensional space (say N = 50 dimensions). This can be done1012


using our existing dimensional embedding algorithm, which maps any metric space1013
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15.6 Hierarchical Program Learning 267


of entities into a dimensional space. All that’s required is that we define a way of1014


measuring distance between subtrees. If we look at subtrees with numerical inputs1015


and outputs, this is easy. Such a subtree can be viewed as a function mapping Rn1016


into Rm; and there are many standard ways to calculate the distance between two1017


functions of this sort (for instance one can make a Monte Carlo estimate of the L p
1018


metric which is defined as:1019


[Sum{x} (f(x) - g(x))^p] ^ (1/p)1020


Of course, the same idea works for subtrees with non-numerical inputs and out-1021


puts, the tuning and implementation are just a little trickier.1022


Next, one can augment a CT with meta-nodes that correspond to subtrees. Each1023


meta-node is of a special CT node type MetaNode, and comes tagged with an N-1024


dimensional vector. Exactly which subtrees to replace with MetaNodes is an inter-1025


esting question that must be solved via some heuristics.1026


Then, in the course of executing the PEPL algorithm, one does decision tree1027


modeling as usual, but making use of MetaNodes as well as ordinary CT nodes.1028


The modeling of MetaNodes is quite similar to the modeling of Nodes representing1029


ConceptNodes and PredicateNodes using embedding vectors. In this way, one can use1030


standard, small decision tree models to model fairly large portions of CTs (because1031


portions of CTs are approximately represented by MetaNodes).1032


But how does one do instance generation, in this scheme? What happens when1033


one tries to do instance generation using a model that predicts a MetaNode existing1034


in a certain location in a CT? Then, the instance generation process has got to find1035


some CT subtree to put in the place where the MetaNode is predicted. It needs to find1036


a subtree whose corresponding embedding vector is close to the embedding vector1037


stored in the MetaNode. But how can it find such a subtree?1038


There seem to be two ways:1039


1. A reasonable solution is to look at the database of subtrees that have been seen1040


before in the evolving population, and choose one from this database, with the1041


probability of choosing subtree X being proportional to the distance between X’s1042


embedding vector and the embedding vector stored in the MetaNode.1043


2. One can simply choose good subtrees, where the goodness of a subtree is judged1044


by the average fitness of the instances containing the target subtree.1045


One can use a combination of both of these processes during instance generation.1046


But of course, what this means is that we’re in a sense doing a form of1047


crossover, because we’re generating new instances that combine subtrees from pre-1048


vious instances. But we’re combining subtrees in a judicious way guided by proba-1049


bilistic modeling, rather than in a random way as in GP-style crossover.1050


15.6.2.1 Inferential MetaNodes1051


MetaNodes are an interesting and potentially powerful technique, but we don’t1052


believe that they, or any other algorithmic trick, is going to be the solution to the1053
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268 15 Probabilistic Evolutionary Procedure Learning


problem of learning hierarchical procedures. We believe that this is a cognitive sci-1054


ence problem that probably isn’t amenable to a purely computer science oriented1055


solution. In other words, we suspect that the correct way to break a Combo tree1056


down into hierarchical components depends on context, algorithms are of course1057


required, but they’re algorithms for relating a CT to its context rather than pure CT-1058


manipulation algorithms. Dimensional embedding is arguably a tool for capturing1059


contextual relationships, but it’s a very crude one.1060


Generally speaking, what we need to be learning are patterns of the form “A subtree1061


meeting requirements X is often fit when linked to a subtree meeting requirements1062


Y, when solving a problem of type Z”. Here the context requirements Y will not1063


pertain to absolute tree position but rather to abstract properties of a subtree.1064


The MetaNode approach as outlined above is a kind of halfway measure toward1065


this goal, good because of its relative computational efficiency, but ultimately too1066


limited in its power to deal with really hard hierarchical learning problems. The rea-1067


son the MetaNode approach is crude is simply because it involves describing subtrees1068


via points in an embedding space. We believe that the correct (but computationally1069


expensive) approach is indeed to use MetaNodes—but with each MetaNode tagged,1070


not with coordinates in an embedding space, but with a set of logical relationships1071


describing the subtree that the MetaNode stands for. A candidate subtree’s similar-1072


ity to the MetaNode may then be determined by inference rather than by the simple1073


computation of a distance between points in the embedding space. (And, note that we1074


may have a hierarchy of MetaNodes, with small subtrees corresponding to MetaN-1075


odes, larger subtrees comprising networks of small subtrees also corresponding to1076


MetaNodes, etc.)1077


The question then becomes which logical relationships one tries to look for, when1078


characterizing a MetaNode. This may be partially domain-specific, in the sense that1079


different properties will be more interesting when studying motor-control procedures1080


than when studying cognitive procedures.1081


To intuitively understand the nature of this idea, let’s consider some abstract but1082


commonsense examples. Firstly, suppose one is learning procedures for serving a1083


ball in tennis. Suppose all the successful procedures work by first throwing the ball1084


up really high, then doing other stuff. The internal details of the different procedures1085


for throwing the ball up really high may be wildly different. What we need is to learn1086


the pattern1087


1088


Implication1089


Inheritance X ‘‘throwing the ball up really high ’’1090


‘‘X then Y’’ is fit1091


Here X and Y are MetaNodes. But the question is how do we learn to break trees1092


down into MetaNodes according to the formula “tree =‘X then Y’ where X inherits1093


from ‘throwing the ball up really high”’?1094


Similarly, suppose one is learning procedures to do first-order inference. What1095


we need is to learn a pattern such as:1096
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15.6 Hierarchical Program Learning 269


Implication1097


AND1098


F involves grabbing pairs from the AtomTable1099


G involves applying an inference rule to those each pair1100


H involves putting the results back in the AtomTable1101


‘‘F ( G (H)))’’ is fit1102


Here we need MetaNodes for F, G and H, but we need to characterize e.g. the1103


MetaNode F by a relationship such as “involves grabbing pairs from the AtomTable”.1104


Until we can characterize MetaNodes using abstract descriptors like this, one1105


might argue we’re just doing “statistical learning” rather than “general intelligence1106


style” procedure learning. But to do this kind of abstraction intelligently seems to1107


require some background knowledge about the domain.1108


In the “throwing the ball up really high” case the assignment of a descriptive1109


relationship to a subtree involves looking, not at the internals of the subtree itself,1110


but at the state of the world after the subtree has been executed.1111


In the “grabbing pairs from the AtomTable” case it’s a bit simpler but still requires1112


some kind of abstract model of what the subtree is doing, i.e. a model involving a1113


logic expression such as “The output of F is a set S so that if P belongs to S then P is1114


a set of two Atoms A1 and A2, and both A1 and A2 were produced via the getAtom1115


operator”.1116


How can this kind of abstraction be learned? It seems unlikely that abstractions1117


like this will be found via evolutionary search over the space of all possible predicates1118


describing program subtrees. Rather, they need to be found via probabilistic reasoning1119


based on the terms combined in subtrees, put together with background knowledge1120


about the domain in which the fitness function exists. In short, integrative cognition is1121


required to learn hierarchically structured programs in a truly effective way, because1122


the appropriate hierarchical breakdowns are contextual in nature, and to search for1123


appropriate hierarchical breakdowns without using inference to take context into1124


account, involves intractably large search spaces.1125


15.7 Fitness Function Estimation via Integrative Intelligence1126


If instance generation is very cheap and fitness evaluation is very expensive (as is the1127


case in many applications of evolutionary learning in CogPrime), one can accelerate1128


evolutionary learning via a “fitness function estimation” approach. Given a fitness1129


function embodied in a predicate P, the goal is to learn a predicate Q so that:1130


1. Q is much cheaper than P to evaluate, and1131


2. There is a high-strength relationship:1132


Similarity Q P1133


or else1134


ContextLink C (Similarity Q P)1135
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270 15 Probabilistic Evolutionary Procedure Learning


where C is a relevant context.1136


Given such a predicate Q, one could proceed to optimize P by ignoring evolution-1137


ary learning altogether and just repeatedly following the algorithm:1138


• Randomly generate N candidate solutions.1139


• Evaluate each of the N candidate solutions according to Q.1140


• Take the k�N solutions that satisfy Q best, and evaluate them according to P.1141


Improved based on the new evaluations of P that are done. Of course, this would not1142


be as good as incorporating fitness function estimation into an overall evolutionary1143


learning framework.1144


Heavy utilization of fitness function estimation may be appropriate, for example,1145


if the entities being evolved are schemata intended to control an agent’s actions1146


in a real or simulated environment. In this case the specification predicate P, in1147


order to evaluate P(S), has to actually use the schema S to control the agent in the1148


environment. So one may search for Q that do not involve any simulated environment,1149


but are constrained to be relatively small predicates involving only cheap-to-evaluate1150


terms (e.g. one may allow standard combinators, numbers, strings, ConceptNodes,1151


and predicates built up recursively from these). Then Q will be an abstract predictor1152


of concrete environment success.1153


We have left open the all-important question of how to find the “specification1154


approximating predicate” Q.1155


One approach is to use evolutionary learning. In this case, one has a population1156


of predicates, which are candidates for Q. The fitness of each candidate Q is judged1157


by how well it approximates P over the set of candidate solutions for P that have1158


already been evaluated. If one uses evolutionary learning to evolve Qs, then one is1159


learning a probabilistic model of the set of Qs, which tries to predict what sort of Qs1160


will better solve the optimization problem of approximating P’s behavior. Of course,1161


using evolutionary learning for this purpose potentially initiates an infinite regress,1162


but the regress can be stopped by, at some level, finding Qs using a non-evolutionary1163


learning based technique such as genetic programming, or a simple evolutionary1164


learning based technique like standard BOA programming.1165


Another approach to finding Q is to use inference based on background knowledge.1166


Of course, this is complementary rather than contradictory to using evolutionary1167


learning for finding Q. There may be information in the knowledge base that can1168


be used to “analogize” regarding which Qs may match P. Indeed, this will generally1169


be the case in the example given above, where P involves controlling actions in a1170


simulated environment but Q does not.1171


An important point is that, if one uses a certain Q1 within fitness estimation,1172


the evidence one gains by trying Q1 on numerous fitness cases may be utilized in1173


future inferences regarding other Q2 that may serve the role of Q. So, once inference1174


gets into the picture, the quality of fitness estimators may progressively improve1175


via ongoing analogical inference based on the internal structures of the previously1176


attempted fitness estimators.1177
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Chapter 16
Probabilistic Logic Networks


16.1 Introduction0


Now we turn to CogPrime’s methods for handling declarative knowledge—beginning1


with a series of chapters discussing the Probabilistic Logic Networks (PLN)2


[GMIH08] approach to uncertain logical reasoning, and then turning to chapters3


on pattern mining and concept creation. In this first of the chapters on PLN, we give4


a high-level overview, summarizing material given in the book Probabilistic Logic5


Networks [GMIH08] more compactly and in a somewhat differently-organized way.6


For a more thorough treatment of the concepts and motivations underlying PLN, the7


reader is encouraged to read [GMIH08].8


PLN is a mathematical and software framework for uncertain inference, operative9


within the CogPrime software framework and intended to enable the combination10


of probabilistic truth values with general logical reasoning rules. Some of the key11


requirements underlying the development of PLN were the following:12


• To enable uncertainty-savvy versions of all known varieties of logical reasoning,13


including for instance higher-order reasoning involving quantifiers, higher-order14


functions, and so forth15


• To reduce to crisp “theorem prover” style behavior in the limiting case where16


uncertainty tends to zero17


• To encompass inductive and abductive as well as deductive reasoning18


• To agree with probability theory in those reasoning cases where probability theory,19


in its current state of development, provides solutions within reasonable calcula-20


tional effort based on assumptions that are plausible in the context of real-world21


embodied software systems22


• To gracefully incorporate heuristics not explicitly based on probability theory, in23


cases where probability theory, at its current state of development, does not provide24


adequate pragmatic solutions25


Co-authored with Matthew Ikle.


B. Goertzel et al., Engineering General Intelligence, Part 2, 273
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_16,
© Atlantis Press and the authors 2014
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274 16 Probabilistic Logic Networks


• To provide “scalable” reasoning, in the sense of being able to carry out inferences26


involving billions of premises.27


• To easily accept input from, and send input to, natural language processing software28


systems.29


In practice, PLN consists of30


• A set of inference rules (e.g. deduction, Bayes rule, variable unification, modus31


ponens, etc.), each of which takes one or more logical relationships or terms32


(represented as CogPrime Atoms) as inputs, and produces others as outputs33


• Specific mathematical formulas for calculating the probability value of the con-34


clusion of an inference rule based on the probability values of the premises plus35


(in some cases) appropriate background assumptions.36


PLN also involves a particular approach to estimating the confidence values with37


which these probability values are held (weight of evidence, or second-order uncer-38


tainty). Finally, the implementation of PLN in software requires important choices39


regarding the structural representation of inference rules, and also regarding “infer-40


ence control”—the strategies required to decide what inferences to do in what order,41


in each particular practical situation. Currently PLN is being utilized to enable an42


animated agent to achieve goals via combining actions in a game world. For example,43


it can figure out that to obtain an object located on top of a wall, it may want to build44


stairs leading from the floor to the top of the wall. Earlier PLN applications have45


involved simpler animated agent control problems, and also other domains, such46


as reasoning based on information extracted from biomedical text using a language47


parser.48


For all its sophistication, however, PLN falls prey to the same key weakness as49


other logical inference systems: combinatorial explosion. In trying to find a logical50


chain of reasoning leading to a desired conclusion, or to evaluate the consequences51


of a given set of premises, PLN may need to explore an unwieldy number of possible52


combinations of the Atoms in CogPrime’s memory. For PLN to be practical beyond53


relatively simple and constrained problems (and most definitely, for it to be useful54


for AGI at the human level or beyond), it must be coupled with a powerful method55


for “inference tree pruning”—for paring down the space of possible inferences that56


the PLN engine must evaluate as it goes about its business in pursuing a given goal57


in a certain context. Inference control will be addressed in Chap. 18.58


16.2 A Simple Overview of PLN59


The key elements of PLN are its rules and Formulas. In general, a PLN rule has60


• Input: A tuple of Atoms (which must satisfy certain criteria, specific to the Rule)61


• Output: A tuple of Atoms.62


Actually, in nearly all cases, the output is a single Atom; and the input is a single63


Atom or a pair of Atoms.64
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16.2 A Simple Overview of PLN 275


The prototypical example is the DeductionRule. Its input must look like65


X_Link A B66


X_Link B C67


And its output then looks like68


X_Link A C69


Here, X_Link may be either InheritanceLink, SubsetLink, ImplicationLink or70


ExtensionalImplicationLink.71


A PLN formula goes along with a PLN rule, and tells the uncertain truth value of72


the output, based on the uncertain truth value of the input. For example, if we have73


X_Link A B <sAB >74


X_Link B C <sBC >75


then the standard PLN deduction formula tells us76


X_Link A C <sAC >77


with


sAC = sABsBC + (1 − sAB) (sC − sBsBC )


1 − sB


where e.g. sA denote the strength of the truth value of node A.78


In this example, the uncertain truth value of each Atom is given as a single79


“strength” number. In general, uncertain truth values in PLN may take multiple80


forms, such as81


• Single strength values like 0.8, which may indicate probability or fuzzy truth value,82


depending on the Atom type.83


• (Strength, confidence) pairs like (0.8, 0.4).84


• (Strength, count) pairs like (0.8, 15).85


• Indefinite probabilities like (0.6,. 0.9, 0.95) which indicate credible intervals of86


probabilities.87


16.2.1 Forward and Backward Chaining88


Typical patterns of usage of PLN are forward-chaining and backward-chaining89


inference.90


Forward chaining basically means:91


1. Given a pool (a list) of Atoms of interest.92


2. One applies PLN rules to these Atoms, to generate new Atoms, hopefully also93


of interest.94


3. Adding these new Atoms to the pool, one returns to Step 1.95


Example: “People are animals” and “animals breathe” are in the pool of Atoms.96


These are combined by the Deduction rule to form the conclusion “people breathe”.97


Backward chaining falls into two cases. First:98
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276 16 Probabilistic Logic Networks


• “Truth value query”. Given a target Atom whose truth value is not known (or is too99


uncertainly known), plus a pool of Atoms, find a way to estimate the truth value of100


the target Atom, via combining the Atoms in the pool using the inference Rules.101
AQ1


Example: The target is “do people breathe?” (InheritanceLink people breathe). The102


truth value of the target is estimated via doing the inference “People are animals,103


animals breathe, therefore people breathe.”104


Second:105


• “Variable fulfillment query”. Given a target Link (Atoms may be Nodes or Links)106


with one or more VariableAtoms among its targets, figure out what Atoms may be107


put in place of these VariableAtoms, so as to give the target Link a high strength*108


confidence (i.e. a “high truth value”).109


Example: The target is “what breathes?”, i.e. “InheritanceLink $X breathe”...110


Direct lookup into the Atomspace reveals the Atom “InheritanceLink animal breathe”,111


indicating that the slot $X may be filled by “animal”. Inference reveals that “Inheri-112


tance people breathe” , so that the slot $X may also be filled by “people”.113


Example: The target is “what breathes and adds”, ie “(InheritanceLink $X breathe)114


AND (InheritanceLink $X add)”. Inference reveals that the slot $X may be filled by115


“people” but not “cats” or “computers”.116


Common-sense inference may involve a combination of backward chaining and117


forward chaining.118


The hardest part of inference is “inference control”—that is, knowing which119


among the many possible inference steps to take, in order to obtain the desired120


information (in backward chaining) or to obtain interesting new information (in121


forward chaining). In an Atomspace with a large number of (often quite uncertain)122


Atoms, there are many, many possibilities and powerful heuristics are needed to123


choose between them. The best guide to inference control is some sort of induction124


based on the system’s past history of which inferences have been useful. But of course,125


a young system doesn’t have much history to go on. And relying on indirectly relevant126


history is, itself, an inference problem—which can be solved best by a system with127


some history to draw on!128


16.3 First Order Probabilistic Logic Networks129


We now review the essentials of PLN in a more formal way. PLN is divided into130


first-order and higher-order sub-theories (FOPLN and HOPLN). These terms are131


used in a nonstandard way drawn conceptually from NARS [Wan06]. We develop132


FOPLN first, and then derive HOPLN therefrom.133


FOPLN is a term logic, involving terms and relationships (links) between terms.134


It is an uncertain logic, in the sense that both terms and relationships are associated135


with truth value objects, which may come in multiple varieties ranging from single136


numbers to complex structures like indefinite probabilities. Terms may be either137


elementary observations, or abstract tokens drawn from a token-set T .138
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16.3 First Order Probabilistic Logic Networks 277


16.3.1 Core FOPLN Relationships139


“Core FOPLN” involves relationships drawn from the set: negation; Inheritance140


and probabilistic conjunction and disjunction; Member and fuzzy conjunction and141


disjunction. Elementary observations can have only Member links, while token terms142


can have any kinds of links. PLN makes clear distinctions, via link type semantics,143


between probabilistic relationships and fuzzy set relationships. Member semantics144


are usually fuzzy relationships (though they can also be crisp), whereas Inheritance145


relationships are probabilistic, and there are rules governing the interoperation of the146


two types.147


Suppose a virtual agent makes an elementary VisualObservation o of a creature148


named Fluffy. The agent might classify o as belonging, with degree 0.9, to the fuzzy149


set of furry objects. The agent might also classify o as belonging with degree 0.8150


to the fuzzy set of animals. The agent could then build the following links in its151


memory:152


Member o furry < 0.9 >


Member o animals < 0.8 >


The agent may later wish to refine its knowledge, by combining these Member-153


Links. Using the minimum fuzzy conjunction operator, the agent would conclude:154


fuzzyAND < 0.8 >


Member o furry
Member o animals


meaning that the observation o is a visual observation of a fairly furry, animal object.155


The semantics of (extensional) Inheritance are quite different from, though related156


to, those of the MemberLink. ExtensionalInheritance represents a purely conditional157


probabilistic subset relationship and is represented through the Subset relationship.158


If A is Fluffy and B is the set of cat, then the statement159


Subset < 0.9 >


A
B


means that
P(x is in the set B|x is in the set A) = 0.9.


16.3.2 PLN Truth Values160


PLN is equipped with a variety of different types of truth-value types. In order of161


increasing information about the full probability distribution, they are:162


• Strength truth-values, which consist of single numbers; e.g., < s > or < 0.8 >.163


Usually strength values denote probabilities but this is not always the case.164
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278 16 Probabilistic Logic Networks


• SimpleTruthValues, consisting of pairs of numbers. These pairs come in two forms:165


< s, w >, where s is a strength and w is a “weight of evidence” and < s, N >,166


where N is a “count”. “Weight of evidence” is a qualitative measure of belief,167


while “count” is a quantitative measure of accumulated evidence.168


• IndefiniteTruthValues, which quantify truth-values in terms of an interval [L , U ],169


a credibility level b, and an integer k (called the lookahead). IndefiniteTruthValues170


quantify the idea that after k more observations there is a probability b that the171


conclusion of the inference will appear to lie in [L , U ].172


• DistributionalTruthValues, which are discretized approximations to entire proba-173


bility distributions.174


16.3.3 Auxiliary FOPLN Relationships175


Beyond the core FOPLN relationships, FOPLN involves additional relationship types
of two varieties. There are simple ones like Similarity, defined by


Similari t y A B


We say a relationship R is simple if the truth value of R A B can be calculated solely in176


terms of the truth values of core FOPLN relationships between A and B. There are also177


complex “auxiliary” relationships like IntensionalInheritance, which as discussed in178


depth in the Appendix ??, measures the extensional inheritance between the set of179


properties or patterns associated with one term and the corresponding set associated180


with another.AQ2181


Returning to our example, the agent may observe that two properties of cats are182


that they are furry and purr. Since the Fluffy is also a furry animal, the agent might183


then obtain, for example184


IntensionalInheritance < 0.5 >


Fluffy
cat


meaning that the Fluffy shares about 50 % of the properties of cat. Building upon this185


relationship even further, PLN also has a mixed intensional/extensional Inheritance186


relationship which is defined simply as the disjunction of the Subset and Intension-187


alInheritance relationships.188


As this example illustrates, for a complex auxiliary relationship R, the truth value189


of R A B is defined in terms of the truth values of a number of different FOPLN190


relationships among different terms (others than A and B), specified by a certain191


mathematical formula.192
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16.3 First Order Probabilistic Logic Networks 279


16.3.4 PLN Rules and Formulas193


A distinction is made in PLN between rules and formulas. PLN logical inferences194


take the form of “syllogistic rules”, which give patterns for combining statements195


with matching terms. Examples of PLN rules include, but are not limited to,196


• Deduction ((A → B) ∧ (B → C) ⇒ (A → C)),197


• Induction ((A → B) ∧ (A → C) ⇒ (B → C)),198


• Abduction ((A → C) ∧ (B → C) ⇒ (A → C)),199


• Revision, which merges two versions of the same logical relationship that have200


different truth values201


• Inversion ((A → B) ⇒ (B → A)).202


The basic schematic of the first four of these rules is shown in Fig. 16.1. We can203


see that the first three rules represent the natural ways of doing inference on three204


interrelated terms. We can also see that induction and abduction can be obtained205


from the combination of deduction and inversion, a fact utilized in PLN’s truth value206


formulas.207


Related to each rule is a formula which calculates the truth value resulting from
application of the rule. As an example, suppose sA, sB , sC , sAB , and sBC represent
the truth values for the terms A, B, C , as well the truth values of the relationships
A → B and B → C , respectively. Then, under suitable conditions imposed upon
these input truth values, the formula for the deduction rule is given by:


sAC = sABsBC + (1 − sAB) (sC − sBsBC )


1 − sB
,


where sAC represents the truth value of the relationship A → C . This formula is208


directly derived from probability theory given the assumption that A → B and209


B → C are independent.210


Fig. 16.1 The four most basic
first-order PLN inference rules
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280 16 Probabilistic Logic Networks


For inferences involving solely fuzzy operators, the default version of PLN uses
standard fuzzy logic with min/max truth value formulas (though alternatives may also
be employed consistently with the overall PLN framework). Finally, the semantics of
combining fuzzy and probabilistic operators is hinted at in [GMIH08] but addressed
more rigorously in [GL10], which gives a precise semantics for constructs of the
form


I nheri tance A B


where A and B are characterized by relationships of the form Member C A,211


Member D B, etc. It is easy to see that, in the crisp case, where all MemberLinks212


and InheritanceLinks have strength 0 or 1, FOPLN reduces to standard propositional213


logic. Where inheritance is crisp but membership isn’t, FOPLN reduces to higher-214


order fuzzy logic (including fuzzy statements about terms or fuzzy statements, etc.).215


16.3.5 Inference Trails216


Inference trails are a mechanism used in some implementations of PLN, borrowed217


from the NARS inference engine [Wan06]. In this approach, each Atom contains218


a Trail structure, which keeps a record of which Atoms were used in deriving the219


given Atom’s TruthValue. In its simplest form, the Trail can just be a list of Atoms.220


The total set of Atoms involved in a given Trail, in principle, could be very large;221


but one can in practice cap Trail size at 50 or some other similar number. In a more222


sophisticated version, one can record the rules used with the Atoms in the Trail as223


well, allowing recapitulation of the whole inference history producing an Atom’s224


truth value. If the PLN MindAgents store all the inferences they do in some global225


inference history structure, then Trails are obviated, as the information in the Trail226


can be found via consulting this history structure.227


The purpose of keeping inference trails is to avoid errors due to double-counting228


of evidence. If links L1 and L2 are both derived largely based on link L0, and L1229


and L2 both lead to L4 as a consequence—do we want to count this as two separate,230


independent pieces of evidence about L4? Not really, because most of the information231


involved comes from the single Atom L0 anyway. If all the Atoms maintain Trails232


then this sort of overlapping evidence can be identified easily; otherwise it will be233


opaque to the reasoning system.234


While Trails can be a useful tool, there is reason to believe they’re not strictly235


necessary. If one just keeps doing probabilistic inference iteratively without using236


Trails, eventually the dependencies and overlapping evidence bases will tend to be237


accounted for, much as in a loopy Bayes net. The key question then comes down to:238


how long is “eventually” and can the reasoning system afford to wait? A reasonable239


strategy seems to be240


• Use Trails for high-STI Atoms that are being reasoned about intensively, to mini-241


mize the amount of error.242
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16.3 First Order Probabilistic Logic Networks 281


• For lower-STI Atoms that are being reasoned on more casually in the background,243


allow the double-counting to exist in the short term, figuring it will eventually244


“come out in the wash” so it’s not worth spending precious compute resources to245


more rigorously avoid it in the short term.246


16.4 Higher-Order PLN247


Higher-order PLN (HOPLN) is defined as the subset of PLN that applies to predicates248


(considered as functions mapping arguments into truth values). It includes mecha-249


nisms for dealing with variable-bearing expressions and higher-order functions.250


A predicate, in PLN, is a special kind of term that embodies a function mapping251


terms or relationships into truth-values. HOPLN contains several relationships that252


act upon predicates including Evaluation, Implication, and several types of quanti-253


fiers. The relationships can involve constant terms, variables, or a mixture.254


The Evaluation relationship, for example, evaluates a predicate on an input term.255


An agent can thus create a relationship of the form256


Evaluation
near
(Bob’s house, Fluffy)


or, as an example involving variables,257


Evaluation
near
(X, Fluffy)


The Implication relationship is a particularly simple kind of HOPLN relationship258


in that it behaves very much like FOPLN relationships, via substitution of predicates259


in place of simple terms. Since our agent knows, for example,260


Implication
is_Fluffy
AND is_furry purrs


and261


Implication
AND is_furry purrs
is_cat


the agent could then use the deduction rule to conclude262


Implication is_Fluffy is_cat


PLN supports a variety of quantifiers, including traditional crisp and fuzzy quan-
tifiers, plus the AverageQuantifier defined so that the truth value of
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282 16 Probabilistic Logic Networks


AverageQuanti f ier X F(X)


is a weighted average of F(X) over all relevant inputs X . AverageQuantifier is used263


implicitly in PLN to handle logical relationships between predicates, so that e.g. the264


conclusion of the above deduction is implicitly interpreted as265


AverageQuantifier X
Implication


Evaluation is_Fluffy X
Evaluation is_cat X


We can now connect PLN with the SRAM model (defined in Chap.7 of Vol. 5).AQ3266


Suppose for instance that the agent observes Fluffy from across the room, and that267


it has previously learned a Fetch procedure that tells it how to obtain an entity once it268


sees that entity. Then, if the agent has the goal of finding a cat, and it has concluded269


based on the above deduction that Fluffy is indeed a cat (since it is observed to270


be furry and purr), the cognitive schematic (knowledge of the form Context and271


Procedure → Goal as explained in Chap. 8 of Vol. 5) may suggest it to execute the272


Fetch procedure.273


16.4.1 Reducing HOPLN to FOPLN274


In [GMIH08] it is shown that in principle, over any finite observation set, HOPLN275


reduces to FOPLN. The key ideas of this reduction are the elimination of variables via276


use of higher-order functions, and the use of the set-theoretic definition of function277


embodied in the SatisfyingSet operator to map function-argument relationships into278


set-member relationships.279


As an example, consider the Implication link. In HOPLN, where X is a variable280


Implication
R1 A X
R2 B X


may be reduced to281


Inheritance
SatisfyingSet(R1 A X)
SatisfyingSet(R2 B X)


where e.g. Satis f yingSet (R1 A X) is the fuzzy set of all X satisfying the relationship282


R1(A, X).283


Furthermore in Appendix ??, we show how experience-based possible world284


semantics can be used to reduce PLN’s existential and universal quantifiers to stan-285


dard higher order PLN relationships using AverageQuantifier relationships. This286


completes the reduction of HOPLN to FOPLN in the SRAM context.287
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16.4 Higher-Order PLN 283


One may then wonder why it makes sense to think about HOPLN at all. The answer288


is that it provides compact expression of a specific subset of FOPLN expressions,289


which is useful in cases where agents have limited memory and these particular290


expressions provide agents practical value (it biases the agent’s reasoning ability to291


perform just as well as in first or higher orders).292


16.5 Predictive Implication and Attraction293


This section briefly reviews the notions of predictive implication and predictive294


attraction, which are critical to many aspects of CogPrime dynamics including goal-295


oriented behavior.296


Define297


Attraction A B <s>298


as P(B|A) - P(B|¬A) = s, or in node and link terms299


s = (Inheritance A B).s - (Inheritance ¬A B).s300


For instance301


(Attraction fat pig).s =302


(Inheritance fat pig).s - (Inheritance ¬fat pig).s303


Relatedly, in the temporal domain, we have the link type PredictiveImplication,304


where305


PredictiveImplication A B <s>306


roughly means that s is the probability that307


Implication A B <s>308


holds and also A occurs before B. More sophisticated versions of PredictiveImpli-309


cation come along with more specific information regarding the time lag between310


A and B: for instance a time interval T in which the lag must lie, or a probability311


distribution governing the lag between the two events.312


We may then introduce313


PredictiveAttraction A B <s>314


to mean315


s=(PredictiveImplication A B).s - (PredictiveImplication ¬A B).s316


For instance317


(PredictiveAttraction kiss_Ben be_happy).s =318


(PredictiveImplication kiss_Ben be_happy).s319


- (PredictiveImplication ¬kiss_Ben be_happy).s320


This is what really matters in terms of determining whether kissing Ben is worth321


doing in pursuit of the goal of being happy, not just how likely it is to be happy if322


you kiss Ben, but how differentially likely it is to be happy if you kiss Ben.323


Along with predictive implication and attraction, sequential logical operations324


are important, represented by operators such as SequentialAND, SimultaneousAND325


and SimultaneousOR. For instance:326
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284 16 Probabilistic Logic Networks


PredictiveAttraction327


SequentialAND328


Teacher says ’fetch ’329


I get the ball330


I bring the ball to the teacher331


I get a reward332


combines SequentialAND and PredictiveAttraction. In this manner, an arbitrarily333


complex system of serial and parallel temporal events can be constructed.334


16.6 Confidence Decay335


PLN is all about uncertain truth values, yet there is an important kind of uncertainty336


it doesn’t handle explicitly and completely in its standard truth value representations:337


the decay of information with time.338


PLN does have an elegant mechanism for handling this: in the < s, d > formalism339


for truth values, strength s may remain untouched by time (except as new evidence340


specifically corrects it), but d may decay over time. So, our confidence in our old341


observations decreases with time. In the indefinite probability formalism, what this342


means is that old truth value intervals get wider, but retain the same mean as they343


had back in the good old days.344


But the tricky question is: How fast does this decay happen?345


This can be highly context-dependent.346


For instance, 20 years ago we learned that the electric guitar is the most popular347


instrument in the world, and also that there are more bacteria than humans on Earth.348


The former fact is no longer true (keyboard synthesizers have outpaced electric349


guitars), but the latter is. And, if you’d asked us 20 years ago which fact would be350


more likely to become obsolete, we would have answered the former—because we351


knew particulars of technology would likely change far faster than basic facts of352


earthly ecology.353


On a smaller scale, it seems that estimating confidence decay rates for different354


sorts of knowledge in different contexts is a tractable data mining problem, that can355


be solved via the system keeping a record of the observed truth values of a random356


sampling of Atoms as they change over time. (Operationally, this record may be357


maintained in parallel with the SystemActivityTable and other tables maintained for358


purposes of effort estimation, attention allocation and credit assignment.) If the truth359


values of a certain sort of Atom in a certain context change a lot, then the confidence360


decay rate for Atoms of that sort should be increased.361


This can be quantified nicely using the indefinite probabilities framework.362


For instance, we can calculate, for a given sort of Atom in a given context, separate363


b-level credible intervals for the L and U components of the Atom’s truth value at364


time t−r, centered about the corresponding values at time t. (This would be computed365


by averaging over all t values in the relevant past, where the relevant past is defined366
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16.6 Confidence Decay 285


as some particular multiple of r; and over a number of Atoms of the same sort in the367


same context.)368


Since historically-estimated credible-intervals won’t be available for every exact369


value of r, interpolation will have to be used between the values calculated for specific370


values of r.371


Also, while separate intervals for L and U would be kept for maximum accuracy,372


for reasons of pragmatic memory efficiency one might want to maintain only a single373


number x, considered as the radius of the confidence interval about both L and U.374


This could be obtained by averaging together the empirically obtained intervals for375


L and U.376


Then, when updating an Atom’s truth value based on a new observation, one377


performs a revision of the old TV with the new, but before doing so, one first widens378


the interval for the old one by the amounts indicated by the above-mentioned credible379


intervals.380


For instance, if one gets a new observation about A with TV (Lnew, Unew), and381


the prior TV of A, namely (Lold , Uold), is 2 weeks old, then one may calculate that382


Lold should really be considered as:383


$(L_{old} - x, L_{old}+x)$384


and U_old should really be considered as:385


$(U_{old} - x, U_{old} + x)$386


so that (L_new, U_new) should actually be revised with:387


$(L_{old} - x, U_{old} + x)$388


to get the total:389


(L,U)390


for the Atom after the new observation.391


Note that we have referred fuzzily to “sort of Atom” rather than “type of Atom”392


in the above. This is because Atom type is not really the right level of specificity to393


be looking at. Rather—as in the guitar versus bacteria example above—confidence394


decay rates may depend on semantic categories, not just syntactic (Atom type) cate-395


gories. To give another example, confidence in the location of a person should decay396


more quickly than confidence in the location of a building. So ultimately confi-397


dence decay needs to be managed by a pool of learned predicates, which are applied398


periodically. These predicates are mainly to be learned by data mining, but inference399


may also play a role in some cases.400


The ConfidenceDecay MindAgent must take care of applying the confidence-401


decaying predicates to the Atoms in the AtomTable, periodically.402


The ConfidenceDecayUpdater MindAgent must take care of:403


• Forming new confidence-decaying predicates via data mining, and then revising404


them with the existing relevant confidence-decaying predicates.405


• Flagging confidence-decaying predicates which pertain to important Atoms but406


are unconfident, by giving them STICurrency, so as to make it likely that they will407


be visited by inference.408
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286 16 Probabilistic Logic Networks


16.6.1 An Example409


As an example of the above issues, consider that the confidence decay of:410


Inh Ari male411


should be low whereas that of:412


Inh Ari tired413


should be higher, because we know that for humans, being male tends to be a more414


permanent condition than being tired.415


This suggests that concepts should have context-dependent decay rates, e.g. in416


the context of humans, the default decay rate of maleness is low whereas the default417


decay rate of tired-ness is high.418


However, these defaults can be overridden. For instance, one can say “As he419


passed through his 80s, Grandpa just got tired, and eventually he died.” This kind420


of tiredness, even in the context of humans, does not have a rapid decay rate. This421


example indicates why the confidence decay rate of a particular Atom needs to be422


able to override the default.423


In terms of implementation, one mechanism to achieve the above example would424


be as follows. One could incorporate an interval confidence decay rate as an optional425


component of a truth value. As noted above one can keep two separate intervals for426


the L and U bounds; or to simplify things one can keep a single interval and apply it427


to both bounds separately.428


Then, e.g., to define the decay rate for tiredness among humans, we could say:429


ImplicationLink_HOJ430


InheritanceLink $X human431


InheritanceLink $X tired <confidenceDecay = [0,0.1]>432


or else (preferably):433


ContextLink434


human435


InheritanceLink $X tired <confidenceDecay = [0,0.1]>436


Similarly, regarding maleness we could say:437


ContextLink438


human439


Inh $X male <confidenceDecay = [0,0.00001]>440


Then one way to express the violation of the default in the case of grandpa’s tiredness441


would be:442


InheritanceLink443


grandpa tired <confidenceDecay = [0 ,0.001] >444


(Another way to handle the violation from default, of course, would be to create a445


separate Atom:446


tired_from_old_age447
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16.6 Confidence Decay 287


and consider this as a separate sense of “tired” from the normal one, with its own448


confidence decay setting.)449


In this example we see that, when a new Atom is created (e.g. I nheri tanceLink450


Ari tired), it needs to be assigned a confidence decay rate via inference based on451


relations such as the ones given above (this might be done e.g. by placing it on the452


queue for immediate attention by the ConfidenceDecayUpdater MindAgent). And453


periodically its confidence decay rate could be updated based on ongoing inferences454


(in case relevant abstract knowledge about confidence decay rates changes). Making455


this sort of inference reasonably efficient might require creating a special index456


containing abstract relationships that tell you something about confidence decay457


adjustment, such as the examples given above.458


16.7 Why is PLN a Good Idea?459


We have explored the intersection of the family of conceptual and formal struc-460


tures that is PLN, with a specific formal model of intelligent agents (SRAM) and its461


extension using the cognitive schematic. The result is a simple and explicit formu-462


lation of PLN as a system by which an agent can manipulate tokens in its memory,463


thus represent observed and conjectured relationships (between its observations and464


between other relationships), in a way that assists it in choosing actions according465


to the cognitive schematic.466


We have not, however, rigorously answered the question: What is the contribution467


of PLN to intelligence, within the formal agents framework introduced above? This468


is a quite subtle question, to which we can currently offer only an intuitive answer,469


not a rigorous one.470


Firstly, there is the question of whether probability theory is really the best way471


to manage uncertainty, in a practical context. Theoretical results like those of Cox472


[Cox61] and de Finetti [dF37] demonstrate that probability theory is the optimal473


way to handle uncertainty, if one makes certain reasonable assumptions. However,474


these reasonable assumptions don’t actually apply to real-world intelligent systems,475


which must operate with relatively severe computational resource constraints. For476


example, one of Cox’s axioms dictates that a reasoning system must assign the same477


truth value to a statement, regardless of the route it uses to derive the statement.478


This is a nice idealization, but it can’t be expected of any real-world, finite-resources479


reasoning system dealing with a complex environment. So an open question exists,480


as to whether probability theory is actually the best way for practical AGI systems481


to manage uncertainty. Most contemporary AI researchers assume the answer is yes,482


and probabilistic AI has achieved increasing popularity in recent years. However,483


there are also significant voices of dissent, such as Pei Wang [Wan06] in the AGI484


community, and many within the fuzzy logic community.485


PLN is not strictly probabilistic, in the sense that it combines formulas derived486


rigorously from probability theory with others that are frankly heuristic in nature.487


PLN was created in a spirit of open-mindedness regarding whether probability the-488
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288 16 Probabilistic Logic Networks


ory is actually the optimal approach to reasoning under uncertainty using limited489


resources, versus merely an approximation to the optimal approach in this case.490


Future versions of PLN might become either more or less strictly probabilistic, de-491


pending on theoretical and practical advances.492


Next, aside from the question of the practical value of probability theory, there493


is the question of whether PLN in particular is a good approach to carrying out494


significant parts of what an AGI system needs to do, to achieve human-like goals in495


environments similar to everyday human environments.496


Within a cognitive architecture where explicit utilization the cognitive schematic497


(Context and Procedure → Goal) is useful, clearly PLN is useful if it works reason-498


ably well—so this question partially reduces to: what are the environments in which499


agents relying on the cognitive schematic are intelligent according to formal intelli-500


gent measures like those defined in Chap. 7 of Vol. 5. And then there is the possibility501


that some uncertain reasoning formalism besides PLN could be even more useful in502


the context of the cognitive schematic.503


In particular, the question arises: What are the unique, peculiar aspects of PLN that504


makes it more useful in the context of the cognitive schematic, than some other, more505


straightforward approach to probabilistic inference? Actually there are multiple such506


aspects that we believe make it particularly useful. One is the indefinite probability507


approach to truth values, which we believe is more robust for AGI than known508


alternatives. Another is the clean reduction of higher order logic (as defined in PLN)509


to first-order logic (as defined in PLN), and the utilization of term logic instead of510


predicate logic wherever possible—these aspects make PLN inferences relatively511


simple in most cases where, according to human common sense, they should be512


simple.513


A relatively subtle issue in this regard has to do with PLN intension. The cog-514


nitive schematic is formulated in terms of PredictiveExtensionalImplication (or any515


other equivalent way like PredictiveExtensionalAttraction), which means that inten-516


sional PLN links are not required for handling it. The hypothesis of the usefulness of517


intensional PLN links embodies a subtle assumption about the nature of the environ-518


ments that intelligent agents are operating in. As discussed in [Goe06] it requires an519


assumption related to Peirce’s philosophical axiom of the “tendency to take habits”,520


which posits that in the real world, entities possessing some similar patterns have a521


probabilistically surprising tendency to have more similar patterns.522


Reflecting on these various theoretical subtleties and uncertainties, one may get the523


feeling that the justification for applying PLN in practice is quite insecure! However,524


it must be noted that no other formalism in AI has significantly better foundation, at525


present. Every AI method involves certain heuristic assumptions, and the applicabil-526


ity of these assumptions in real life is nearly always a matter of informal judgment527


and copious debate. Even a very rigorous technique like a crisp logic formalism or528


support vector machines for classification, requires non-rigorous heuristic assump-529


tions to be applied to the real world (how does sensation and actuation get translated530


into logic formulas, or SVM feature vectors)? It would be great if it were possible531


to use rigorous mathematical theory to derive an AGI design, but that’s not the case532


right now, and the development of this sort of mathematical theory seems quite a long533
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16.7 Why is PLN a Good Idea? 289


way off. So for now, we must proceed via a combination of mathematics, practice534


and intuition.535


In terms of demonstrated practical utility, PLN has not yet confronted any really536


ambitious AGI-type problems, but it has shown itself capable of simple practical537


problem-solving in areas such as virtual agent control and natural language based538


scientific reasoning [GIGH08]. The current PLN implementation within CogPrime539


can be used to learn to play fetch or tag, draw analogies based on observed objects,540


or figure out how to carry out tasks like finding a cat. We expect that further practical541


applications, as well as very ambitious AGI development, can be successfully under-542


taken with PLN without a theoretical understanding of exactly what are the properties543


of the environments and goals involved that allow PLN to be effective. However, we544


expect that a deeper theoretical understanding may enable various aspects of PLN to545


be adjusted in a more effective manner.546
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Chapter 17
Spatio-temporal Inference


17.1 Introduction0


Most of the problems and situations humans confront every day involve space and1


time explicitly and centrally. Thus, any AGI system aspiring to humanlike general2


intelligence must have some reasonably efficient and general capability to solve3


spatiotemporal problems. Regarding how this capability might get into the system,4


there is a spectrum of possibilities, ranging from rigid hard-coding to tabula rasa5


experiential learning. Our bias in this regard is that it’s probably sensible to somehow6


“wire into” CogPrime some knowledge regarding space and time—these being, after7


all, very basic categories for any embodied mind confronting the world.8


It’s arguable whether the explicit insertion of prior knowledge about spacetime9


is necessary for achieving humanlike AGI using feasible resources. As an argument10


against the necessity of this sort of prior knowledge, Ben Kuipers and his colleagues11


[SMK12] have shown that an AI system can learn via experience that its perceptual12


stream comes from a world with three, rather than two or four dimensions. There13


is a long way from learning the number of dimensions in the world to learning the14


full scope of practical knowledge needed for effectively reasoning about the world—15


but it does seem plausible, from their work, that a broad variety of spatiotemporal16


knowledge could be inferred from raw experiential data. On the other hand, it also17


seems clear that the human brain does not do it this way, and that a rich fund of18


spatiotemporal knowledge is “hard-coded” into the brain by evolution—often in19


ways so low-level that we take them for granted, e.g. the way some motion detection20


neurons fire in the physical direction of motion, and the way somatosensory cortex21


presents a distorted map of the body’s surface. On a psychological level, it is known22


that some fundamental intuition for space and time is hard-coded into the human23


infant’s brain [Joh05]. So while we consider the learning of basic spatiotemporal24


knowledge from raw experience a worthy research direction, and fully compatible25


with the CogPrime vision; yet for our main current research, we have chosen to26


hard-wire some basic spatiotemporal knowledge.27


B. Goertzel et al., Engineering General Intelligence, Part 2, 291
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_17,
© Atlantis Press and the authors 2014
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292 17 Spatio-temporal Inference


If one does wish to hard-wire some basic spatiotemporal knowledge into one’s AI28


system, multiple alternate or complementary methodologies may be used to achieve29


this, including spatiotemporal logical inference, internal simulation, or techniques30


like recurrent neural nets whose dynamics defy simple analytic explanation. Though31


our focus in this chapter is on inference, we must emphasize that inference, even32


very broadly conceived, is not the only way for an intelligent agent to solve spa-33


tiotemporal problems occurring in its life. For instance, if the agent has a detailed34


map of its environment, it may be able to answer some spatiotemporal questions by35


directly retrieving information from the map. Or, logical inference may be substituted36


or augmented by (implicitly or explicitly) building a model that satisfies the initial37


knowledge—either abstractly or via incorporating “visualization” connected to sen-38


sory memory—and then interpret new knowledge over that model instead of inferring39


it. The latter is one way to interpret what DeSTIN and other CSDLNs do; indeed,40


DeSTIN’s perceptual hierarchy is often referred to as a “state inference hierarchy”.41


Any CSDLN contains biasing toward the commonsense structure of space and time,42


in its spatiotemporal hierarchical structure. It seems plausible that the human mind43


uses a combination of multiple methods for spatiotemporal understanding, just as44


we intend CogPrime to do.45


In this chapter we focus on spatiotemporal logical inference, addressing the prob-46


lem of creating a spatiotemporal logic adequate for use within an AGI system that47


confronts the same sort of real-world problems that humans typically do. The idea48


is not to fully specify the system’s understanding of space and time in advance,49


but rather to provide some basic spatiotemporal logic rules, with parameters to be50


adjusted based on experience, and the opportunity for augmenting the logic over time51


with experientially-acquired rules. Most of the ideas in this chapter are reviewed in52


more detail, with more explanation, in the book Real World Reasoning [GGC+11];53


this chapter represent a concise summary, compiled with the AGI context specifically54


in mind.55


A great deal of excellent work has already been done in the areas of spatial,56


temporal and spatiotemporal reasoning; however, this work does not quite provide57


an adequate foundation for a logic-incorporating AGI system to do spatiotemporal58


reasoning, because it does not adequately incorporate uncertainty. Our focus here59


is to extend existing spatiotemporal calculi to appropriately encompass uncertainty,60


which we argue is sufficient to transform them into an AGI-ready spatiotemporal61


reasoning framework. We also find that a simple extension of the standard PLN62


uncertainty representations, inspired by P(Z)-logic [Yan10], allows more elegant63


expression of probabilistic fuzzy predicates such as arise naturally in spatiotemporal64


logic.65


In the final section of the chapter, we discuss the problem of planning, which has66


been considered extensively in the AI literature. We describe an approach to planning67


that incorporates PLN inference using spatiotemporal logic, along with MOSES as a68


search method, and some record-keeping methods inspired by traditional AI planning69


algorithms.70
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17.2 Related Work on Spatio-temporal Calculi 293


17.2 Related Work on Spatio-temporal Calculi71


We now review several calculi that have previously been introduced for representing72


and reasoning about space, time and space-time combined.73


Spatial Calculi74


Calculi dealing with space usually model three types of relationships between spatial75


regions: topological, directional and metric.76


The most popular calculus dealing with topology is the Region Connection Calcu-77


lus (RCC) [RCC93], relying on a base relationship C (for Connected) and building78


up other relationships from it, likeP (forPartOf), orO (forOverlap). For instance79


P(X, Y ), meaning X is a part of Y , can be defined using C as follows80


P(X, Y ) iff ∀Z ∈ U ,C(Z , X) =⇒ C(Z , Y ) (17.1)81


where U is the universe of regions. RCC-8 models eight base relationships, see82


Fig. 17.1. And it is possible, using the notion of convexity, to model more relation-83


ships such as inside, partially inside and outside, see Fig. 17.2. For instance RCC-2384


[Ben94] is an extension of RCC-8 using relationships based on the notion of convex-85


ity. The nine-intersection calculus [Win95, Kur09] is another calculus for reason-86


ing on topological relationships, but handling relationships between heterogeneous87


objects, points, lines, surfaces.88


Regarding reasoning about direction, the Cardinal Direction Calculus [GE01,89


ZLLY08] considers directional relationships between regions, to express proposi-90


tions such as “region A is to the north of region B”.91


And finally regarding metric reasoning, spatial reasoning involving qualitative dis-92


tance (such as close, medium, far) and direction combined is considered in [CFH97].93


EC(X, Y)


EQ(X, Y)


YX


YX Y
X


TPP(X, Y)


TPPi(X, Y)


Y


X


PO(X, Y)


Y X


Y X


DC(X, Y)


Y


X


NTPP(X, Y)


NTPPi(X, Y)


Y


X


Fig. 17.1 The eight base relationships of RCC-8
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294 17 Spatio-temporal Inference


XY


P−Inside(X, Y)


XY


Inside(X, Y)


Y X


Outside(X, Y)


Fig. 17.2 Additional relationships using convexity


Some work has also been done to extend and combine these various calculi, such94


as combining RCC-8 and the Cardinal Direction Calculus [LLR09], or using size95


[GR00] or shape [Coh95] information in RCC.96


Temporal Calculi97


The best known temporal calculus is Allen’s Interval Algebra [All83], which con-98


siders 13 relationships over time intervals, such as Before, During, Overlap,99


Meet, etc. For instance one can express that digestion occurs after or right after100


eating by101


Before(Eat, Digest) ∨ Meet(Eat, Digest)102


equivalently denoted Eat{Before,Meet}Digest. There also exists a generalization103


of Allen’s Interval Algebra that works on semi-intervals [FF92], that are intervals104


with possibly undefined start or end.105


There are modal temporal logics such as LTL and CTL, mostly used to check106


temporal constraints on concurrent systems such as deadlock or fairness using Model107


Checking [Mai00].108


Calculi with Space and Time Combined109


There exist calculi combining space and time, first of all those obtained by “tem-110


porizing” spatial calculus, that is tagging spatial predicates with timestamps or time111


intervals. For instance STCC (for Spatio-temporal Constraint Calculus) [GN02] is112


basically RCC-8 combined with Allen’s Algebra. With STCC one can express spa-113


tiotemporal propositions such as114


Meet(DC(Finger, Key),EC(Finger, Key))115


which means that the interval during which the finger is away from the key meets116


the interval during which the finger is against the key.117
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17.2 Related Work on Spatio-temporal Calculi 295


Another way to combine space and time is by modeling motion; e.g. the Qualitative118


Trajectory Calculus (QTC) [WKB05] can be used to express whether 2 objects are119


going forward/backward or left/right relative to each other.120


Uncertainty in Spatio-temporal Calculi121


In many situations it is worthwhile or even necessary to consider non-crisp extensions122


of these calculi. For example it is not obvious how one should consider in practice123


whether two regions are connected or disconnected. A desk against the wall would124


probably be considered connected to it even if there is a small gap between the wall125


and the desk. Or if A is not entirely part of B it may still be valuable to consider to126


which extent it is, rather than formally rejecting PartOf(A, B). There are several127


ways to deal with such phenomena; one way is to consider probabilistic or fuzzy128


extensions of spatiotemporal calculi.129


For instance in [SDCCK08b, SDCCK08a] the RCC relationship C (for130


Connected) is replaced by a fuzzy predicate representing closeness between131


regions and all other relationships based on it are extended accordingly. So e.g.132


DC (for Disconnected) is defined as follows133


DC(X, Y ) = 1 − C(X, Y ) (17.2)134


P (for PartOf) is defined as135


P(X, Y ) = inf
Z∈U


I (C(Z , X),C(Z , Y )) (17.3)136


where I is a fuzzy implication with some natural properties (usually I (x1, x2) =137


max(1 − x1, x2)). Or, EQ (for Equal) is defined as138


EQ(X, Y ) = min(P(X, Y ),P(Y, X)) (17.4)139


and so on.140


However the inference rules cannot determine the exact fuzzy values of the result-141


ing relationships but only a lower bound, for instance142


T (P(X, Y ),P(Y, Z)) ≤ P(X, Z) (17.5)143


where T (x1, x2) = max(0, x1 +x2 −1). This is to be expected since in order to know144


the resulting fuzzy value one would need to know the exact spatial configuration.145


For instance Fig. 17.3 depicts two possible configurations that would result in two146


different values of P(X, Z).147


One way to address this difficulty is to reason with interval-value fuzzy logic148


[DP09], with the downside of ending up with wide intervals. For example applying149


the same inference rule from Eq. 17.5 in the case depicted in Fig. 17.4 would result150
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296 17 Spatio-temporal Inference


X ZX ZY Y


(a) (b)


Fig. 17.3 Depending on where Z is, in dashline, P(X, Z) gets a different value


YX


Z


β


Y


Z


X


β


YX


Z


β


(a) (b) (c)


Fig. 17.4 dX Z , in dashline, for 3 different angles


in the interval [0, 1], corresponding to a state of total ignorance. This is the main151


reason why, as explained in the next section, we have decided to use distributional152


fuzzy values for our AGI-oriented spatiotemporal reasoning.153


There also exist attempts to use probability with RCC. For instance in [Win00],154


RCC relationships are extracted from computer images and weighted based on their155


likelihood as estimated by a shape recognition algorithm. However, to the best of156


our knowledge, no one has used distributional fuzzy values [Yan10] in the context157


of spatiotemporal reasoning; and we believe this is important for the adaptation of158


spatiotemporal calculi to the AGI context.159


17.3 Uncertainty with Distributional Fuzzy Values160


P(Z) [Yan10] is an extension of fuzzy logic that considers distributions of fuzzy161


values rather than mere fuzzy values. That is, fuzzy connectors are extended to apply162


over probability density functions of fuzzy truth value. For instance the connector163


¬ (often defined as ¬x = 1 − x) is extended such that the resulting distribution164


μ¬ : [0, 1] �→ R+ is165


μ¬(x) = μ(1 − x) (17.6)166


where μ is the probability density function of the unique argument. Similarly, one can167


define μ∧ : [0, 1] �→ R+ as the resulting density function of the connector x1 ∧ x2 =168


min(x1, x2) over the two arguments μ1 : [0, 1] �→ R+ and μ2 : [0, 1] �→ R+
169
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17.3 Uncertainty with Distributional Fuzzy Values 297


μ∧(x) = μ1(x)


∫ 1


x
μ2(x2)dx2


+μ2(x)


∫ 1


x
μ1(x1)dx1


(17.7)170


See [Yan10] for the justification of Eqs. 17.6 and 17.7.171


Besides extending the traditional fuzzy operators, one can also define a wider172


class of connectors that can fully modulate the output distribution. Let F : [0, 1]n �→173


([0, 1] �→ R
+) be a n-ary connector that takes n fuzzy values and returns a prob-174


ability density function. In that case the probability density function resulting from175


the extension of F over distributional fuzzy values is:176


μF =∫ 1


0
. . .


∫ 1


0︸ ︷︷ ︸
n


F(x1, . . . , xn)μ1(x1) . . . μn(xn)dx1 . . . dxn (17.8)177


where μ1, . . . ,μn are the n input arguments. That is, it is the average of all density178


functions output by F applied over all fuzzy input values. Let us call that type of179


connectors fuzzy-probabilistic.180


In the following we give an example of such a fuzzy-probabilistic connector.181


Example with PartOf182


Let us consider the RCC relationship PartOf (P for short as defined in Eq. 17.1).183


A typical inference rule in the crisp case would be:184


P(X, Y ) P(Y, Z)


P(X, Z)
(17.9)185


expressing the transitivity of P. But using a distribution of fuzzy values we would186


have the following rule187


P(X, Y ) 〈μ1〉 P(Y, Z) 〈μ2〉
P(X, Z) 〈μP OT 〉 (17.10)188


P OT stands for PartOf Transitivity. The definition of μP OT for that particular infer-189


ence rule may depend on many assumptions like the shapes and sizes of regions X, Y190


and Z . In the following we will give an example of a definition of μP OT with respect191


to some oversimplified assumptions chosen to keep the example short.192


Let us define the fuzzy variant of PartOf(X, Y ) as the proportion of X which193


is part of Y (as suggested in [Pal04]). Let us also assume that every region is a194


unitary circle. In this case, the required proportion depends solely on the distance
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298 17 Spatio-temporal Inference


dXY between the centers of X and Y , so we may define a function f that takes that195


distance and returns the according fuzzy value; that is, f (dXY ) = P(X, Y )196


f (dXY ) =
{ 4α − dXY sin (α)


2π
if 0 ≤ dXY ≤ 2


0 if dXY > 2
(17.11)197


where α = cos−1 (dXY /2).198


For 0 ≤ dXY ≤ 2, f (dXY ) is monotone decreasing, so the inverse of f (dXY ),199


that takes a fuzzy value and returns a distance, is a function declared as f −1(x) :200


[0, 1] �→ [0, 2].201


Let be xXY = P(X, Y ), xY Z = P(Y, Z), x = P(X, Z), dXY = f −1(xXY ), dY Z =202


f −1(xY Z ), l = |dXY − dY Z | and u = dXY + dY Z . For dXY and dY Z fixed, let203


g : [0,π] �→ [l, u] be a function that takes as input the angle β of the two lines from204


the center of Y to X and Y to Z (as depicted in Fig. 17.4) and returns the distance205


dX Z .g is defined as follows206


g(β) =
√


(dXY − dY Z sin (β))2 + (dY Z cos (β))2
207


So l ≤ dX Z ≤ u. It is easy to see that g is monotone increasing and surjective,208


therefore there exists a function inverse g−1 : [l, u] �→ [0,π]. Let h = f ◦ g, so209


h takes an angle as input and returns a fuzzy value, h : [0,π] �→ [0, 1]. Since f is210


monotone decreasing and g is monotone increasing, h is monotone decreasing. Note211


that the codomain of h is [0, f −1(l)] if l < 2 or {0} otherwise. Assuming that l < 2,212


then the inverse of h is a function with the following signature h−1 : [0, f −1(l)] �→213


[0,π]. Using h−1 and assuming that the probability of picking β ∈ [0,π] is uniform,214


we can define the binary connector POT. Let us define ν = POT(xXY , xY Z ), recalling215


that POT returns a density function and assuming x < f −1(l)216


ν(x) = 2 lim
δ→0


∫ h−1(x)


h−1(x+δ)


1


π
dβ


δ
217


= 2


π
lim
δ→0


h−1(x) − h−1(x + δ)


δ
218


= −2h−1′
(x)


π
(17.12)219


where h−1′
is the derivative of h−1. If x ≥ f −1(l) then ν(x) = 0. For sake of220


simplicity the exact expressions of h−1 andν(x)have been left out, and the case where221


one of the fuzzy arguments xXY , xY Z or both are null has not been considered but222


would be treated similarly assuming some probability distribution over the distances223


dXY and dX Z .224


It is now possible to define μP OT in rule 17.10 (following Eq. 17.8)225
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17.3 Uncertainty with Distributional Fuzzy Values 299


μP OT =∫ 1


0


∫ 1


0
P OT (x1, x2)μ1(x1)μ2(x2)dx1dx2


(17.13)226


Obviously, assuming that regions are unitary circles is crude; in practice, regions227


might be of very different shapes and sizes. In fact it might be so difficult to chose228


the right assumptions (and once chosen to define P OT correctly), that in a complex229


practical context it may be best to start with overly simplistic assumptions and then230


learn P OT based on the experience of the agent. So the agent would initially perform231


spatial reasoning not too accurately, but would improve over time by adjusting P OT ,232


as well as the other connectors corresponding to other inference rules.233


It may also be useful to have more premises containing information about the234


sizes (e.g Big(X)) and shapes (e.g Long(Y )) of the regions, like235


B(X) 〈μ1〉 L(Y ) 〈μ2〉 P(X, Y ) 〈μ3〉 P(Y, Z) 〈μ4〉
P(X, Z) 〈μ〉236


where B and L stand respectively for Big and Long.237


Simplifying Numerical Calculation238


Using probability density as described above is computationally expensive, and in239


many practical cases it’s overkill. To decrease computational cost, several cruder240


approaches are possible, such as discretizing the probability density functions with a241


coarse resolution, or restricting attention to beta distributions and treating only their242


means and variances (as in [Yan10]).243


The right way to simplify depends on the fuzzy-probabilistic connector involved244


and on how much inaccuracy can be tolerated in practice.245


17.4 Spatio-temporal Inference in PLN246


We have discussed the representation of spatiotemporal knowledge, including asso-247


ciated uncertainty. But ultimately what matters is what an intelligent agent can do248


with this knowledge. We now turn to uncertain reasoning based on uncertain spa-249


tiotemporal knowledge, using the integration of the above-discussed calculi into the250


Probabilistic Logic Networks reasoning system, an uncertain inference framework251


designed specifically for AGI and integrated into the OpenCog AGI framework.252


We give here a few examples of spatiotemporal inference rules coded in PLN.253


Although the current implementation of PLN incorporates both fuzziness and prob-254


ability it does not have a built-in truth value to represent distributional fuzzy values,255


or rather a distribution of distribution of fuzzy value, as this is how, in essence,256


confidence is represented in PLN. At that point, depending on design choice and257
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300 17 Spatio-temporal Inference


experimentation, it is not clear whether we want to use the existing truth values and258


treat them as distributional truth values or implement a new type of truth value ded-259


icated for that, so for our present theoretical purposes we will just call it DF Truth260


Value.261


Due to the highly flexible HOJ formalism (Higher Order Judgment, explained262


in the PLN book in detail) we can express the inference rule for the relationship263


PartOf directly as Nodes and Links as follows264


ForAllLink $X $Y $Z
ImplicationLink_HOJ


ANDLink
PartOf($X, $Y) 〈tv1〉
PartOf($Y, $Z) 〈tv2〉


ANDLink
tv3 = μP OT (tv1,tv2)
PartOf($X, $Z) 〈tv3〉


(17.14)265


where μP OT is defined in Eq. 17.13 but extended over the domain of PLN DF266


Truth Value instead of P(Z) distributional fuzzy value. Note that PartOf($X, $Y)267


〈tv〉 is a shorthand for268


EvaluationLink 〈tv〉
PartOf
ListLink


$X
$Y


(17.15)269


and ForAllLink $X $Y $Z is a shorthand for270


ForAllLink
ListLink


$X
$Y
$Z


(17.16)271


Of course one advantage of expressing the inference rule directly in Nodes and272


Links rather than a built-in PLN inference rule is that we can use OpenCog itself to273


improve and refine it, or even create new spatiotemporal rules based on its experience.274


In the next 2 examples the fuzzy-probabilistic connectors are ignored, (so no DF Truth275


Value is indicated) but one could define them similarly to μP OT .276


First consider a temporal rule from Allen’s Interval Algebra. For instance “if $I1277


meets $I2 and $I3 is during $I2 then $I3 is after $I1” would be expressed as278


319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


17.4 Spatio-temporal Inference in PLN 301


ForAllLink $I1 $I2 $I3
ImplicationLink


ANDLink
Meet($I1, $I2)
During($I3, $I2)


After($I3, $I1)


(17.17)279


and a last example with a metric predicate could be “if $X is near $Y and $X is far280


from $Z then $Y is far from $Y”281


ForAllLink $X $Y $Z
ImplicationLink_HOJ


ANDLink
Near($X, $Y)


Far($X, $Z)


Far($Y, $Z)


(17.18)282


that is only a small and partial illustrative example—for instance other rules may be283


used to specify that Near and Far and reflexive and symmetric.284


17.5 Examples285


The ideas presented here have extremely broad applicability; but for sake of concrete-286


ness, we now give a handful of examples illustrating applications to commonsense287


reasoning problems.288


17.5.1 Spatiotemporal Rules289


The rules provided here are reduced to the strict minimum needed for the examples:290


1. At $T, if $X is inside $Y and $Y is inside $Z then $X is inside $Z291


ForAllLink $T $X $Y $Z
ImplicationLink_HOJ


ANDLink
atTime($T,Inside($X, $Y))


atTime($T,Inside($Y, $Z))


atTime($T,Inside($X, $Z))


292


2. If a small object $X is over $Y and $Y is far from $Z then $X is far from $Z293
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302 17 Spatio-temporal Inference


ForAllLink
ImplicationLink_HOJ


ANDLink
Small($X)


Over($X, $Y)


Far($Y)


Far($X)


294


That rule is expressed in a crisp way but again is to be understood in an uncertain295


way, although we haven’t worked out the exact formulae.296


17.5.2 The Laptop Is Safe from the Rain297


A laptop is over the desk in the hotel room, the desk is far from the window and we298


want assess to what extent the laptop is far from the window, therefore same from299


the rain.300


Note that the truth values are ignored but each concept is to be understood as301


fuzzy, that is having a PLN Fuzzy Truth Value but the numerical calculation are left302


out.303


We want to assess how far the Laptop is from the window304


Far(Window,Laptop)305


Assuming the following306


1. The laptop is small307


Small(Laptop).308


2. The laptop is over the desk309


Over(Laptop,Desk).310


3. The desk is far from the window311


Far(Desk,Window).312


Now we can show an inference trail that lead to the conclusion, the numeric calcu-313


lation are let for later.314


1. using axioms 1, 2, 3 and PLN AND rule315


ANDLink
Small(Laptop)


Over(Laptop,Desk)


Far(Desk,Window)


316


2. using spatiotemporal rule 2, instantiated with $X = Laptop, $Y = Desk and317


$Z = Window318


ImplicationLink_HOJ
ANDLink


Small(Laptop)


Over(Laptop,Desk)


Far(Desk,Window)


Far(Laptop,Window)


319
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17.5 Examples 303


3. using the result of previous step as premise with PLN implication rule320


Far(Laptop,Window)321


17.5.3 Fetching the Toy Inside the Upper Cupboard322


Suppose we know that there is a toy in an upper cupboard and near a bag, and want323


to assess to which extent climbing on the pillow is going to bring us near the toy.324


Here are the following assumptions325


1. The toy is near the bag and inside the cupboard. The pillow is near and below the326


cupboard327


Near(toy,bag) 〈tv1〉
Inside(toy,cupboard) 〈tv2〉
Below(pillow,cupboard) 〈tv3〉
Near(pillow,cupboard) 〈tv4〉


328


2. The toy is near the bag inside the cupboard, how near is the toy to the edge of the329


cupboard?330


ImplicationLink_HOJ
ANDLink


Near(toy,bag) 〈tv1〉
Inside(toy,cupboard) 〈tv2〉


ANDLink
tv3 = μF1(tv1,tv2)
Near(toy,cupboard_edge) 〈tv3〉


331


3. If I climb on the pillow, then shortly after I’ll be on the pillow332


PredictiveImplicationLink
Climb_on(pillow)


Over(self,pillow)


333


4. If I am on the pillow near the edge of the cupboard how near am I to the toy?334


ImplicationLink_HOJ
ANDLink


Below(pillow,cupboard) 〈tv1〉
Near(pillow,cupboard) 〈tv2〉
Over(self,pillow) 〈tv3〉
Near(toy,cupboard_edge) 〈tv4〉


ANDLink
tv5 = μF2(tv1,tv2,tv3,tv4)
Near(self,toy) 〈tv5〉


335


The target theorem is “How near I am to the toy if I climb on the pillow.”336


PredictiveImplicationLink
Climb_on(pillow)


Near(self,toy) 〈?〉
337


And the inference chain as follows338
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304 17 Spatio-temporal Inference


1. Axiom 2 with axiom 1339


Near(toy,cupboard_edge) 〈tv6〉340


2. Step 1 with axiom 1 and 3341


PredictiveImplicationLink
Climb_on(pillow)


ANDLink
Below(pillow,cupboard) 〈tv3〉
Near(pillow,cupboard) 〈tv4〉
Over(self,pillow) 〈tv7〉
Near(toy,cupboard_edge) 〈tv6〉


342


3. Step 2 with axiom 4, target theorem: How near am I to the toy if I climb on the343


pillow344


PredictiveImplicationLink
Climb_on(pillow)


Near(self,toy) 〈tv9〉
345


17.6 An Integrative Approach to Planning346


Planning is a major research area in the mainstream AI community, and planning347


algorithms have advanced dramatically in the last decade. However, the best of348


breed planning algorithms are still not able to deal with planning in complex envi-349


ronments in the face of a high level of uncertainty, which is the sort of situation350


routinely faced by humans in everyday life. Really powerful planning, we suggest,351


requires an approach different than any of the dedicated planning algorithms, involv-352


ing spatiotemporal logic combined with a sophisticated search mechanism (such as353


MOSES).354


It may be valuable (or even necessary) for an intelligent system involved in355


planning-intensive goals to maintain a specialized planning-focused data structure356


to guide general learning mechanisms toward more efficient learning in a planning357


context. But even if so, we believe planning must ultimately be done as a case of358


more general learning, rather than via a specialized algorithm.359


The basic approach we suggest here is to360


• Use MOSES for the core plan learning algorithm. That is, MOSES would maintain361


a population of “candidate partial plans”, and evolve this population in an effort362


to find effective complete plans.363


• Use PLN to help in the fitness evaluation of candidate partial plans. That is, PLN364


would be used to estimate the probability that a partial plan can be extended into365


a high-quality complete plan. This requires PLN to make heavy use of spatiotem-366


poral logic, as described in the previous sections of this chapter.367


• Use a GraphPlan-style [BF97] planning graph, to record information about candi-368


date plans, and to propagate information about mutual exclusion between actions.369


The planning graph maybe be used to help guide both MOSES and PLN.370
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17.6 An Integrative Approach to Planning 305


In essence, the planning graph simply records different states of the world that may be371


achievable, with a high-strength PredictiveImplicationLink pointing between state X372


and Y if X can sensibly serve as a predecessor to X ; and a low-strength (but potentially373


high-confidence) PredictiveImplicationLink between X and Y if the former excludes374


the latter. This may be a subgraph of the Atomspace or it may be separately cached;375


but in each case it must be frequently accessed via PLN in order for the latter to avoid376


making a massive number of unproductive inferences in the course of assisting with377


planning.378


One can think of this as being a bit like PGraphPlan [BL99], except that379


• MOSES is being used in place of forward or backward chaining search, enabling380


a more global search of the plan space (mixing forward and backward learning381


freely)382


• PLN is being used to estimate the value of partial plans, replacing heuristic methods383


of value propagation384


Regarding PLN, one possibility would be to (explicitly, or in effect) create a385


special API function looking something like386


EstimateSuccessProbability(PartialPlan PP, Goal G)387


(assuming the goal statement contains information about the time allotted to388


achieve the goal). The PartialPlan is simply a predicate composed of predicates linked389


together via temporal links such as PredictiveImplication and SimultaneousAND. Of390


course, such a function could be used within many non-MOSES approaches to plan-391


ning also.392


Put simply, the estimation of the success probability is “just” a matter of asking the393


PLN backward-chainer to figure out the truth value of a certain ImplicationLink, i.e.394


PredictiveImplicationLink [time-lag T]395


EvaluationLink do PP396


G397


But of course, this may be a very difficult inference without some special guidance398


to help the backward chainer. The GraphPlan-style planning graph could be used by399


PLN to guide it in doing the inference, via telling it what variables to look at, in400


doing its inferences. This sort of reasoning also requires PLN to have a fairly robust401


capability to reason about time intervals and events occurring therein (i.e. basic402


temporal inference).403


Regarding MOSES, given a candidate plan, it could look into the planning graph404


to aid with program tree expansion. That is, given a population of partial plans,405


MOSES would progressively add new nodes to each plan, representing predecessors406


or successors to the actions already described in the plans. In choosing which nodes407


to add, it could be probabilistically biased toward adding nodes suggested by the408


planning graph.409
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306 17 Spatio-temporal Inference


So, overall what we have is an approach to doing planning via MOSES, with410


PLN for fitness estimation—but using a GraphPlan-style planning graph to guide411


MOSES’s exploration of the neighborhood of partial plans, and to guide PLN’s412


inferences regarding the success likelihood of partial plans.413AQ1
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Chapter 18
Adaptive, Integrative Inference Control


18.1 Introduction0


The subtlest and most difficult aspect of logical inference is not the logical rule-1


set nor the management of uncertainty, but the control of inference: the choice of2


which inference steps to take, in what order, in which contexts. Without effective3


inference control methods, logical inference is an unscalable and infeasible approach4


to learning declarative knowledge. One of the key ideas underlying the CogPrime5


design is that inference control cannot effectively be handled by looking at logic6


alone. Instead, effective inference control must arise from the intersection between7


logical methods and other cognitive processes. In this chapter we describe some of8


the general principles used for inference control in the CogPrime design.9


Logic itself is quite abstract and relatively (though not entirely) independent of10


the specific environment and goals with respect to which a system’s intelligence is11


oriented. Inference control, however, is (among other things) a way of adapting a12


logic system to operate effectively with respect to a specific environment and goal-13


set. So, the reliance of CogPrime’s inference control methods on the integration14


between multiple cognitive processes, is a reflection of the foundation of CogPrime15


on the assumption (articulated in Chap. 9 of Vol. 5) that the relevant environment and16


goals embody interactions between world-structures and interaction-structures best17


addressed by these various processes.18 AQ1


18.2 High-Level Control Mechanisms19


The PLN implementation in CogPrime is complex and lends itself to utilization via20


many different methods. However, a convenient way to think about it is in terms of21


three basic backward-focused query operations:22


• findtv, which takes in an expression and tries to find its truth value.23


B. Goertzel et al., Engineering General Intelligence, Part 2, 307
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_18,
© Atlantis Press and the authors 2014
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308 18 Adaptive, Integrative Inference Control


• findExamples, which takes an expression containing variables and tries to find24


concrete terms to fill in for the variables.25


• createExamples, which takes an expression containing variables and tries to cre-26


ate new Atoms to fill in for the variables, using concept creation heuristics as27


discussed in a Chap. 20, coupled with inference for evaluating the products of28


concept creation.29


and one forward-chaining operation:30


• findConclusions, which takes a set of Atoms and seeks to draw the most interesting31


possible set of conclusions via combining them with each other and with other32


knowledge in the AtomTable.33


These inference operations may of course call themselves and each other recursively,34


thus creating lengthy chains of diverse inference.35


Findtv is quite straightforward, at the high level of discussion adopted here. Vari-36


ous inference rules may match the Atom; in our current PLN implementation, loosely37


described below, these inference rules are executed by objects called Rules. In the38


course of executing findtv, a decision must be made regarding how much attention39


to allocate to each one of these Rule objects, and some choices must be made by the40


objects themselves - issues that involve processes beyond pure inference, and will be41


discussed later in this chapter. Depending on the inference rules chosen, findtv may42


lead to the construction of inferences involving variable expressions, which may then43


be evaluated via findExamples or createExamples queries.44


The findExamples operation sometimes reduces to a simple search through45


the AtomSpace. On the other hand, it can also be done in a subtler way. If the46


findExamples Rule wants to find examples of $X so that F($X), but can’t find any,47


then it can perform some sort of heuristic search, or else it can run another findEx-48


amples query, looking for $G so that49


Implication $G F50


and then running findExamples on G rather than F. But what if this findExamples51


query doesn’t come up with anything? Then it needs to run a createExamples query52


on the same implication, trying to build a $G satisfying the implication.53


Finally, forward-chaining inference (findConclusions) may be conceived of as a54


special heuristic for handling special kinds of findExample problems. Suppose we55


have K Atoms and want to find out what consequences logically ensue from these K56


Atoms, taken together. We can form the conjunction of the K Atoms (let’s call it C),57


and then look for $D so that58


Implication C $D59


Conceptually, this can be approached via findExamples, which defaults to create Ex-60


amples in cases where nothing is found. However, this sort of findExamples problem61


is special, involving appropriate heuristics for combining the conjuncts contained62


in the expression C, which embody the basic logic of forward-chaining rather than63


backward-chaining inference.AQ2 64
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18.2 High-Level Control Mechanisms 309


18.2.1 The Need for Adaptive Inference Control65


It is clear that in humans, inference control is all about context. We use different66


inference strategies in different contexts, and learning these strategies is most of67


what learning to think is all about. One might think to approach this aspect of68


cognition, in the CogPrime design, by introducing a variety of different inference69


control heuristics, each one giving a certain algorithm for choosing which inferences70


to carry out in which order in a certain context. (This is similar to what has been71


done within Cyc, for example http://www.cyc.com). However, in keeping with the72


integrated intelligence theme that pervades CogPrime, we have chosen an alternate73


strategy for PLN. We have one inference control scheme, which is quite simple, but74


which relies partially on structures coming from outside PLN proper. The requisite75


variety of inference control strategies is provided by variety in the non-PLN structures76


such as77


• HebbianLinks existing in the AtomTable.78


• Patterns recognized via pattern-mining in the corpus of prior inference trails.79


18.3 Inference Control in PLN80


We will now describe the basic “inference control” loop of PLN in CogPrime.81


Pre-2013 OpenCog versions used a somewhat different scheme, more similar to82


a traditional logic engine. The approach presented here is more cognitive synergy83


oriented, achieving PLN control via a combination of logic engine style methods and84


integration with attention allocation.85


18.3.1 Representing PLN Rules as GroundedSchemaNodes86


PLN inference rules may be represented as GroundedSchemaNodes. So for instance87


the PLN Deduction Rule, becomes a GroundedSchemaNode with the properties:88


• Input: a pair of links (L1, L2), where L1 and L2 are the same type, and must be one89


of InheritanceLink, ImplicationLink, SubsetLink or ExtensionalImplicationLink.90


• Output: a single link, of the same type as the input.91


The actual PLN Rules and Formulas are then packed into the internal execution92


methods of GroundedSchemaNodes.93


In the current PLN code, each inference rule has a Rule class and a separate94


Formula class. So then, e.g. the PLNDeductionRule GroundedSchemaNode, invokes95


a function of the general form96


Link PLNDeductionRule(Link L1, Link L2)97


319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard



http://www.cyc.com





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


310 18 Adaptive, Integrative Inference Control


which calculates the deductive consequence of two links. This function then invokes98


a function of the form99


TruthValue PLNDeductionFormula(TruthValue tAB, TruthValue tBC,100


TruthValue tA, TruthValue tB, TruthValue tC)101


which in turn invokes functions such as102


SimpleTruthValue SimplePLNDeductionFormula(SimpleTruthValue103


tAB,104


SimpleTruthValue tBC, SimpleTruthValue tA, SimpleTruthValue tB,105


SimpleTruthValue tC)106


107


IndefiniteTruthValue IndefinitePLNDeductionFormula108


(IndefiniteTruthValue tAB, IndefiniteTruthValue tBC,109


IndefiniteTruthValue tA, IndefiniteTruthValue tB,110


IndefiniteTruthValue tC)111


18.3.2 Recording Executed PLN Inferences in the Atomspace112


Once an inference has been carried out, it can be represented in the Atomspace, e.g.113


as114


ExecutionLink115


GroundedSchemaNode: PLNDeductionRule116


ListLink117


HypotheticalLink118


InheritanceLink people animal <tv1>119


HypotheticalLink120


InheritanceLink animal breathe <tv2>121


HypotheticalLink122


InheritanceLink people breathe <tv3>123


Note that a link such as124


InheritanceLink125


people breathe <.8, .2>126


will have its truth value stored as a truth value version within a CompositeTruthValue127


object). In the above, e.g.128


InheritanceLink people animal129


is used as shorthand for130


InheritanceLink C1 C2131


where C1 and C2 are ConceptNodes representing “people” and “animal” respec-132


tively.133


We can also have records of inferences involving variables, such as134
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18.3 Inference Control in PLN 311


ExecutionLink135


GroundedSchemaNode: PLNDeductionRule136


ListLink137


HypotheticalLink138


InheritanceLink $V1 animal <tv1>139


HypotheticalLink140


InheritanceLink animal breathe <tv2>141


HypotheticalLink142


InheritanceLink $V1 breathe <tv3>143


where $V1 is a specific VariableNode.144


18.3.3 Anatomy of a Single Inference Step145


A single inference step, then, may be viewed as follows:146


1. Choose an inference rule R and a tuple of Atoms that collectively match the input147


conditions of the rule.148


2. Apply the chosen rule R to the chosen input Atoms.149


3. Create an ExecutionLink recording the output found.150


4. In addition to retaining this ExecutionLink in the Atomspace, also save a copy of151


it to the InferenceRepository [this is not needed for the very first implementation,152


but will be very useful once PLN is in regular use].153


The InferenceRepository, referred to here, is a special Atomspace that exists just154


to save a record of PLN inferences. It can be mined, after the fact, to learn inference155


patterns, which can be used to guide future inferences.156


18.3.4 Basic Forward and Backward Inference Steps157


The choice of an inference step, at the microscopic level, may be done in a number158


of ways, of which perhaps the simplest are:159


• “Basic forward step”. Choose an Atom A1, then choose a rule R. If R only takes160


one input, then apply R to A1. If R applies to two Atoms, then find another Atom161


A2 so that (A1, A2) may be taken as the inputs of R.162


• “Basic backward step”. Choose an Atom A1, then choose a rule R. If R takes only163


one input, then find an Atom A2 so that applying R to A2, yields A1 as output. If164


R takes two inputs, then find two Atoms (A2, A3) so that applying R to (A2, A3)165


yields A1 as output.166


Given a target Atom such as167


A1 = Inheritance $V1 breathe168
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312 18 Adaptive, Integrative Inference Control


the VariableAbstractionRule will do inferences such as169


ExecutionLink170


VariableAbstractionRule171


HypotheticalLink172


Inheritance people breathe173


HypotheticalLink174


Inheritance $v1 breathe175


This allows the basic backward step to carry out variable fulfillment queries as well176


as truth value queries. We may encapsulate these processes in the Atomspace as177


GroundedSchemaNode: BasicForwardInferenceStep178


GroundedSchemaNode: BasicBackwardInferenceStep179


which take as input some Atom A1.180


and also as181


GroundedSchemaNode: AttentionalForwardInferenceStep182


GroundedSchemaNode: AttentionalBackwardInferenceStep183


which automatically choose the Atom A1 they start with, via choosing some Atom184


within the AttentionalFocus, with probability proportional to STI.185


Forward chaining, in its simplest form, then becomes: The process of repeatedly186


executing the AttentionalForwardInferenceStep SchemaNode.187


Backward chaining, in the simplest case (we will discuss more complex cases188


below), becomes the process of189


1. Repeatedly executing the BasicBackwardInferenceStep SchemaNode, starting190


from a given target Atom.191


2. Concurrently, repeatedly executing the AttentionalBackwardInferenceStep Sche-192


maNode, to ensure that backward inference keeps occurring, regarding Atoms193


that were created via Step 1.194


Inside the BasicForwardStep or BasicBackwardStep schema, there are two choices195


to be made: choosing a rule R, and then choosing additional Atoms A2 and possibly196


A3.197


The choice of the rule R should be made probabilistically, choosing each rule with198


probability proportional to a certain weight associated with each rule. Initially we can199


assign these weights generically, by hand, separately for each application domain.200


Later on they should be chosen adaptively, based on information mined from the201


InferenceRepository, regarding which rules have been better in which contexts.202


The choice of the additional Atoms A2 and A3 is subtler, and should be done203


using STI values as a guide:204


• First the AttentionalFocus is searched, to find all the Atoms there that fit the205


input criteria of the rule R. Among all the Atoms found, an Atom is chosen with206


probability proportional to STI.207
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18.3 Inference Control in PLN 313


• If the AttentionalFocus doesn’t contain anything suitable, then an effort may be208


made to search the rest of the Atomspace to find something suitable. If multiple209


candidates are found within the amount of effort allotted, then one should be210


chosen with probability proportional to STI.211


If an Atom A is produced as output of a forward inference step, or is chosen212


as the input of a backward inference step, then the STI of this Atom A should213


be incremented. This will increase the probability of A being chosen for ongoing214


inference. In this way, attention allocation is used to guide the course of ongoing215


inference.216


18.3.5 Interaction of Forward and Backward Inference217


Starting from a target, a series of backward inferences can figure out ways to estimate218


the truth value of that target, or fill in the variables within that target.219


However, once the backward-going chain of inferences is done (to some reason-220


able degree of satisfaction), there is still the remaining task of using all the conclusions221


drawn during the series of backward inferences, to actually update the target.222


Elegantly, this can be done via forward inference. So if forward and backward223


inference are both operating concurrently on the same pool of Atoms, it is forward224


inference that will propagate the information learned during backward chaining in-225


ference, up to the target of the backward chain.226


18.3.6 Coordinating Variable Bindings227


Probably the thorniest subtlety that comes up in a PLN implementation is the coordi-228


nation of the values assigned to variables, across different micro-level inferences that229


are supposed to be coordinated together as part of the same macro-level inference.230


For a very simple example, suppose we have a truth-value query with target231


A1 = InheritanceLink Bob rich232


Suppose the deduction rule R is chosen.233


Then if we can find (A2, A3) that look like, say,234


A2 = InheritanceLink Bob owns_mansion235


A3 = InheritanceLink owns_mansion rich236


our problem is solved.237


But what if there is no such simple solution in the Atomspace available? Then we238


have to build something like239


A2 = InheritanceLink Bob $v1240


A3 = InheritanceLink $v1 rich241


and try to find something that works to fill in the variable $v1.242
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314 18 Adaptive, Integrative Inference Control


But this is tricky, because $v1 now has two constraints (A2 and A3). So, suppose243


A2 and A3 are both created as a result of applying BasicBackwardInferenceStep to244


A1, and thus A2 and A3 both get high STI values. Then both A2 and A3 are going to245


be acted on by AttentionalBackwardInferenceStep. But as A2 and A3 are produced246


via other inputs using backward inference, it is necessary that the values assigned to247


$v1 in the context of A2 and A3 remain consistent with each other.248


Note that, according to the operation of the Atomspace, the same VariableAtom249


will be used to represent $v1 no matter where it occurs.250


For instance, it will be problematic if one inference rule schema tries to instan-251


tiate $v1 with “owns_mansion”, but another tries to instantiate $v1 with “lives_in252


_Manhattan”.253


That is, we don’t want to find254


InheritanceLink Bob lives_in_mansion255


InheritanceLink lives_in_mansion owns_mansion256


|-257


InheritanceLink Bob owns_mansion258


which binds $v1 to owns_mansion, and259


InheritanceLink lives_in_Manhattan lives_in_top_city260


InheritanceLink lives_in_top_city rich261


|-262


InheritanceLink lives_in_Manhattan rich263


which binds $v1 to lives_in_Manhattan264


We want A2 and A3 to be derived in ways that bind $v1 to the same thing.265


The most straightforward way to avoid confusion in this sort of context, is to266


introduce an addition kind of inference step,267


• “Variable-guided backward step”. Choose a set V of VariableNodes (which may268


just be a single VariableNode $v1), and identify the set S_V of all Atoms involving269


any of the variables in V.270


– Firstly: If V divides into two sets V1 and V2, so that no Atom contains variables271


in both V1 and V2, then launch separate variable-guided backwards steps for272


V1 and V2. [This step is “Problem Decomposition”]273


– Carry out the basic backward step for all the Atoms in S_V, but restricting274


the search for Atoms A2, A3 in such a way that each of the variables in V is275


consistently instantiated. This is a non-trivial optimization, and more will be276


said about this below.277


• “Variable-guided backward step, Atom-triggered”. Choose an Atom A1. Identify278


the set V of VariableNodes targeted by A1, and then do a variable-guided backward279


step starting from V.280


AQ3


This variable guidance may, of course, be incorporated into the AttentionalBack-281


wardInferenceStep as well. In this case, backward chaining becomes the process282


of283
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18.3 Inference Control in PLN 315


• Repeatedly executing the VariableGuidedBackwardInferenceStep SchemaNode,284


starting from a given target Atom.285


• Concurrently, repeatedly executing the AttentionalVariableGuidedBackwardInfer-286


enceStep SchemaNode, to ensure that backward inference keeps occurring, regard-287


ing Atoms that were created via Step 1.288


The hard work here is then done in Step 2 of the Variable Guided Backward289


Step, which has to search for multiple Atoms, to fulfill the requirements of multiple290


inference rules, in a way that keeps consistent variable instantiations. But this same291


difficulty exists in a conventional backward chaining framework, it’s just arranged292


differently, and not as neatly encapsulated.293


18.3.7 An Example of Problem Decomposition294


Illustrating a point raised above, we now give an example of a case where, given a295


problem of finding values to assign a set of variables to make a set of expressions296


hold simultaneously, the appropriate course is to divide the set of expressions into297


two separate parts.298


Suppose we have the six expressions299


300


E1 = Inheritance ( $v1, Animal)301


302


E2 = Evaluation( $v1, ($v2, Bacon) )303


304


E3 = Inheritance( $v2, $v3)305


306


E4 = Evaluation( Eat, ($v3, $v1) )307


308


E5 = Evaluation (Eat, ($v7, $v9) )309


310


E6 = Inheritance $v9 $v6311


312


Since the set {E1, E2, E3, E4} doesn’t share any variables with {E5, E6}, there is313


no reason to consider them all as one problem. Rather we will do better to decompose314


it into two problems, one involving {E1, E2, E3, E4} and one involving {E5, E6}.315


In general, given a set of expressions, one can divide it into subsets, where each316


subset S has the property that: for every variable v contained in S, all occurrences of317


v in the Atomspace, are in expressions contained in S.318


18.3.8 Example of Casting a Variable Assignment Problem319


as an Optimization Problem320


Suppose we have the four expressions321


319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


316 18 Adaptive, Integrative Inference Control


E1 = Inheritance ($v1, Animal)322


E2 = Evaluation( $v2, ($v1, Bacon) )323


E3 = Inheritance( $v2, $v3)324


E4 = Evaluation( Enjoy, ($v1, $v3) )325


where Animal, Bacon and Enjoy are specific Atoms.326


Suppose the task at hand is to find values for ($v1, $v2, $v3) that will make all of327


these expressions confidently true.328


If there is some assignment329


($v1, $v2, $v3) = (A1,A2, A3)330


ready to hand in the Atomspace, that fulfills the equations E1, E2, E3, E4, then the331


Atomspace API’s pattern matcher will find it. For instance,332


($v1, $v2, $v3) = (Cat, Eat, Chew)333


would work here, since334


E1 = Inheritance ( Cat, Animal)335


E2 = Evaluation( Eat, (Cat, Bacon))336


E3 = Inheritance( Eat, Chew)337


E4 = Evaluation( Enjoy, (Cat, Chew) )338


are all reasonably true.339


If there is no such assignment ready to hand, then one is faced with a search340


problem. This can can be approached as an optimization problem, e.g. one of maxi-341


mizing a function342


f($v1, $v2, $v3) = sc(E1) * sc(E2) * sc(E3)343


where344


sc(A) = A.strength * A.confidence345


The function f is then a function with signature346


f: Atomˆ4 ==> float347


f can then be optimized by a host of optimization algorithms. For instance a genetic348


algorithm approach might work, but a Bayesian Optimization Algorithm (BOA)349


approach would probably be better.350


In a GA approach, mutation would work as follows. Suppose one had a candidate351


($v1, $v2, $v3) = (A1,A2, A3)352


Then one could mutate this candidate by (for instance) replacing A1 with some353


other Atom that is similar to A1, e.g. connected to A1 with a high-weight Similarity354


Link in the Atomspace.355
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18.3 Inference Control in PLN 317


18.3.9 Backward Chaining via Nested Optimization356


Given this framework that does inference involving variables via using optimization357


to solve simultaneous equations of logical expressions with overlapping variables,358


“backward chaining” becomes the iterative launch of repeated optimization prob-359


lems, each one defined in terms of the previous ones. We will now illustrate this360


point via continuing with the {E1, E2, E3, E4)} example from above. Suppose one361


found an assignment362


($v1, $v2, $v3) = (A1,A2, A3)363


that worked for every equation except E3. Then there is the problem of finding some364


way to make365


E3 = Inheritance( A2, A3)366


work.367


For instance, what if we have found the assignment368


($v1, $v2, $v3) = (Cat, Eat, Chase)369


In this case, we have370


E1 = Inheritance ( Cat, Animal) -- YES371


E2 = Evaluation( Eat,(Cat,Bacon) ) -- YES372


E3 = Inheritance( Eat, Chase) -- NO373


E4 = Evaluation( Enjoy, (Cat, Chase) ) -- YES374


so the assignment works for every equation except E3. Then there is the problem of375


finding some way to make376


E3 = Inheritance( Eat, Chase)377


work. But if the truth value of378


Inheritance( Eat, Chase)379


has a low strength and high confidence, this may seem hopeless, so this assignment380


may not get followed up on.381


On the other hand, we might have the assignment382


($v1, $v2, $v3) = (Cat, Eat, SocialActivity)383


In this case, for a particular CogPrime instance, we might have384


E1 = Inheritance ( Cat, Animal) -- YES385


E2 = Evaluation( Eat, (Cat, Bacon) ) -- YES386


E3 = Inheritance( Eat, SocialActivity) -- UNKNOWN387


E4 = Evaluation( Enjoy, (Cat, SocialActivity) ) -- YES388


The above would hold if the reasoning system knew that cats enjoy social activities,389


but did not know whether eating is a social activity. In this case, the reasoning system390


would have reason to launch a new inference process aimed at assessing the truth391


value of392
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318 18 Adaptive, Integrative Inference Control


E3 = Inheritance( Eat, SocialActivity) --393


This is backward chaining: Launching a new inference process to figure out a question394


raised by another inference process.395


For instance, in this case the inference engine might: Choose an inference Rule396


(let’s say it’s Deduction, for simplicity), and then look for $v4 so that397


Inheritance Eat $v4398


Inheritance $v4 SocialActivity399


are both true. In this case one has spawned a new Variable-Guided Backward Infer-400


ence problem, which must be solved in order to make {A1, A2, A3} an OK solution401


for the problem of {E1, E2, E3, E4}.402


Or it might choose the Induction rule, and look for $v4 so that403


Inheritance $v4 Eat404


Inheritance $v4 SocialActivity405


Maybe then it would find that $v4=Dinner works, because it knows that406


Inheritance Dinner407


Eat Inheritance Dinner SocialActivity408


But maybe $v4=Dinner doesn’t boost the truth value of409


E3 = Inheritance( Eat, SocialActivity)410


high enough. In that case it may keep searching for more information about E4 in411


the context of this particular variable assignment. It might choose Induction again,412


and discover e.g. that413


Inheritance Lunch414


Eat Inheritance Lunch SocialActivity415


In this example, weve assumed that some non-backward-chaining heuristic search416


mechanism found a solution that almost works, so that backward chaining is only417


needed on E3. But of course, one could backward chain on all of E1, E2, E3, E4418


simultaneously—or various subsets thereof.419


For a simple example, suppose one backward chains on420


E1 = Inheritance ( $v1, Animal)421


E3 = Inheritance( $v2, SocialActivity)422


simultaneously. Then one is seeking, say, ($v4, $v5) so that423


Inheritance $v1 $v5424


Inheritance $v5 Animal425


Inheritance $v2 $v4426


Inheritance $v4 SocialActivity\427


This adds no complexity, as the four relations partition into two disjoint sets of two.428


Separate chaining processes may be carried out for E1 and E3.429


On the other hand, for a slightly more complex example, what if we backward430


chain on431
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18.3 Inference Control in PLN 319


E2 = Evaluation( $v2, ($v1, Bacon) )432


E3 = Inheritance( $v2, SocialActivity)433


simultaneously? (Assuming that a decision has already been made to explore the434


possibility $v3 = SocialActivity.) Then we have a somewhat more complex situation.435


We are trying to find $v2 that is a SocialActivity, so that $v1 likes to do $v2 in436


conjunction with Bacon.437


If the Member2Evaluation rule is chosen for E2 and the Deduction rule is chosen438


for E3, then we have439


E5 = Inheritance $v2 $v6440


E6 = Inheritance $v6 SocialActivity441


E7 = Member ($v1, Bacon) (SatisfyingSet $v2)442


and if the Inheritance2Member rule is then chosen for E7, we have443


E5 = Inheritance $v2 $v6444


E6 = Inheritance $v6 SocialActivity445


E8 = Inheritance ($v1, Bacon) (SatisfyingSet $v2)446


and if Deduction is then chosen for E8 then we have447


E5 = Inheritance $v2 $v6448


E6 = Inheritance $v6 SocialActivity449


E9 = Inheritance ($v1 , Bacon) $v8450


E10 = Inheritance $v8 (SatisfyingSet $v2)451


Following these steps expands the search to involve more variables and means the452


inference engine now gets to deal with453


E1 = Inheritance ( $v1, Animal)454


E4 = Evaluation( Enjoy, ($v1, SocialActivity) )455


E5 = Inheritance $v2 $v6456


E6 = Inheritance $v6 SocialActivity457


E9 = Inheritance ($v1 , Bacon) $v8458


E10 = Inheritance $v8 (SatisfyingSet $v2)459


or some such i.e. we have expanded our problem to include more and more simul-460


taneous logical equations in more and more variables! Which is not necessarily a461


terrible thing, but it does get complicated.462


We might find, for example, that $v=1 Pig, $v6=Dance, $v2=Waltz, $v8 =463


PiggyWaltz464


E1 = Inheritance ( Pig, Animal)465


E4 = Evaluation( Enjoy, (Pig, SocialActivity) )466


E5 = Inheritance Waltz Dance467


E6 = Inheritance Dance SocialActivity468


E9 = Inheritance (Pig , Bacon) PiggyWaltz469


E10 = Inheritance PiggyWaltz (SatisfyingSet Waltz)470


Here PiggyWaltz is a special dance that pigs do with their Bacon, as a SocialActivity!471


Of course, this example is extremely contrived. Real inference examples will472


rarely be this simple, and will not generally involve Nodes that have simple English473


names. This example is just for illustration of the concepts involved.474
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320 18 Adaptive, Integrative Inference Control


18.4 Combining Backward and Forward Inference Steps475


with Attention Allocation to Achieve the Same Effect476


as Backward Chaining (and Even Smarter Inference477


Dynamics)478


Backward chaining is a powerful heuristic, one can achieve the same effect—and479


even smarter inference dynamics—via a combination of480


• Heuristic search to satisfy simultaneous expressions481


• Boosting the STI of expressions being searched482


• Importance spreading (of STI)483


• Ongoing background forward inference484


can combine to yield the same basic effect as backward chaining, but without ex-485


plicitly doing backward chaining.486


The basic idea is: When system of expressions involving variables is explored487


using a GA or whatever other optimization process is deployed, these expressions488


also get their STI boosted.489


Then, the atoms with high STI, are explored by the forward inference process,490


which is always acting in the background on the atoms in the Atomspace. Other491


atoms related to these also get STI via importance spreading. And these other related492


Atoms are then acted on by forward inference as well.493


This forward chaining will then lead to the formation of new Atoms, which may494


make the solution of the system of expressions easier the next time it is visited by495


the backward inference process.496


In the above example, this means:497


• E1, E2, E3, E4 will all get their STI boosted.498


• Other Atoms related to these (Animal, Bacon and Enjoy) will also get their STI499


boosted.500


• These other Atoms will get forward inference done on them.501


• This forward inference will then yield new Atoms that can be drawn on when the502


solution of the expression-system E1, E2, E3, E4 is pursued the next time.503


So, for example, if the system did not know that eating is a social activity, it might504


learn this during forward inference on SocialActivity. The fact that SocialActivity505


has high STI would cause forward inferences such as506


Inheritance Dinner Eat507


Inheritance Dinner SocialActivity508


|-509


Inheritance Eat SocialActivity510


to get done. These forward inferences would then produce links that could simply511


be found by the pattern matcher when trying to find variable assignments to satisfy512


{E1, E2, E3, E4}.513
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18.4 Combining Backward and Forward Inference Steps 321


18.4.1 Breakdown into MindAgents514


To make this sort of PLN dynamic work, we require a number of MindAgents to be515


operating “ambiently” in the background whenever inference is occurring; to wit:516


• Attentional forward chaining (i.e. each time this MindAgent is invoked, it chooses517


high-STI Atoms and does basic forward chaining on them)518


• Attention allocation (importance updating is critical, Hebbian learning is also519


useful)520


• Attentional (variable guided) backward chaining.521


On top of this ambient inference, we may then have query-driven backward chaining522


inferences submitted by other processes (via these launching backward inference523


steps and giving the associated Atoms lots of STI). The ambient inference processes524


will help the query-driven inference processes to get fulfilled.525


18.5 Hebbian Inference Control526


A key aspect of the PLN control mechanism described here is the use of attention527


allocation to guide inference. A key aspect here is the use of attention allocation to528


guide Atom choice in the course of forward and backward inference. Figure 18.1 gives529


a simple illustrative example of the use of attention allocation, via HebbianLinks,530


for PLN backward chaining.531


The semantics of a HebbianLink between A and B is, intuitively: In the past, when532


A was important, B was also important. HebbianLinks are created via two basic533


mechanisms: pattern-mining of associations between importances in the system’s534


history, and PLN inference based on HebbianLinks created via pattern mining (and535


inference). Thus, saying that PLN inference control relies largely on HebbianLinks is536


in part saying that PLN inference control relies on PLN. There is a bit of a recursion537


here, but it’s not a bottomless recursion because it bottoms out with HebbianLinks538


learned via pattern mining.539


As an example of the Atom-choices to be made by a forward or backward inference540


agent in the course of doing inference, consider that to evaluate (Inheritance A C) via541


the deduction Rule, some collection of intermediate nodes for the deduction must be542


chosen. In the case of higher-order deduction, each deduction may involve a number543


of complicated subsidiary steps, so perhaps only a single intermediate node will be544


chosen. This choice of intermediate nodes must be made via context-dependent prior545


probabilities. In the case of other Rules besides deduction, other similar choices must546


be made.547


The basic means of using HebbianLinks in inferential Atom-choice is simple: If548


there are Atoms linked via HebbianLinks with the other Atoms in the inference tree,549


then these Atoms should be given preference in the selection process.550


319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


322 18 Adaptive, Integrative Inference Control


Fig. 18.1 The use of attention allocation for guiding backward chaining inference


Along the same lines but more subtly, another valuable heuristic for guiding551


inference control is “on-the-fly associatedness assessment”. If there is a chance to552


apply the chosen Rule via working with Atoms that are:553


• Strongly associated with the Atoms in the Atom being evaluated (via Hebbian-554


Links)555


• Strongly associated with each other via HebbianLinks (hence forming a cohesive556


set)557


then this should be ranked as a good thing.558


For instance, it may be the case that, when doing deduction regarding relationships559


between humans, using relationships involving other humans as intermediate nodes560


in the deduction is often useful. Formally this means that, when doing inference of561


the form:562
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18.5 Hebbian Inference Control 323


AND563


Inheritance A human564


Inheritance A B565


Inheritance C human566


Inheritance C B567


|-568


Inheritance A C569


then it is often valuable to choose B so that:570


HebbianLink B human571


has high strength. This would follow from the above-mentioned heuristic.572


Next, suppose one has noticed a more particular heuristic - that in trying to reason573


about humans, it is particularly useful to think about their wants. This suggests that574


in abductions of the above form it is often useful to choose B of the form:575


B = SatisfyingSet [ wants(human, $X) ]576


This is too fine-grained of a cognitive-control intuition to come from simple577


association-following. Instead, it requires fairly specific data-mining of the system’s578


inference history. It requires the recognition of “Hebbian predicates” of the form:579


HebbianImplication580


AND581


Inheritance $A human582


Inheritance $C human583


Similarity584


$B585


SatisfyingSet586


Evaluation wants (human, $X)587


AND588


Inheritance $A $B589


Inheritance $C $B590


The semantics of:591


HebbianImplication X Y592


is that when X is being thought about, it is often valuable to think about Y shortly593


thereafter.594


So what is required to do inference control according to heuristics like think595


about humans according to their wants is a kind of backward-chaining inference596


that combines Hebbian implications with PLN inference rules. PLN inference says597


that to assess the relationship between two people, one approach is abduction. But598


Hebbian learning says that when setting up an abduction between two people, one599


useful precondition is if the intermediate term in the abduction regards wants. Then600


a check can be made whether there are any relevant intermediate terms regarding601


wants in the system’s memory.602


What we see here is that the overall inference control strategy can be quite simple.603


For each Rule that can be applied, a check can be made for whether there is any604
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324 18 Adaptive, Integrative Inference Control


relevant Hebbian knowledge regarding the general constructs involved in the Atoms605


this Rule would be manipulating. If so, then the prior probability of this Rule is606


increased, for the purposes of the Rule-choice bandit problem. Then, if the Rule is607


chosen, the specific Atoms this Rule would involve in the inference can be summoned608


up, and the relevant Hebbian knowledge regarding these Atoms can be utilized.609


To take another similar example, suppose we want to evaluate:610


Inheritance pig dog611


via the deduction Rule (which also carries out induction and abduction). There are612


a lot of possible intermediate terms, but a reasonable heuristic is to ask a few basic613


questions about them: How do they move around? What do they eat? How do they614


reproduce? How intelligent are they? Some of these standard questions correspond615


to particular intermediate terms, e.g. the intelligence question partly boils down to616


computing:617


Inheritance pig intelligent618


and:619


Inheritance dog intelligent620


So a link:621


HebbianImplication animal intelligent622


may be all that’s needed to guide inference to asking this question. This HebbianLink623


says that when thinking about animals, it’s often interesting to think about intelli-624


gence. This should bias the system to choose “intelligent” as an intermediate node625


for inference.626


On the other hand, the what do they eat question is subtler and boils down to627


asking; Find $X so that when:628


R($X) = SatisfyingSet[$Y] eats ($Y,$X)629


holds (R($X) is a concept representing what eat $X), then we have:630


Inheritance pig R($X)631


and:632


Inheritance dog R($X)633


In this case, a HebbianLink from animal to eat would not really be fine-grained634


enough. Instead we want a link of the form:635


HebbianImplication636


Inheritance $X animal637


SatisfyingSet[$Y] eats ($X, $Y)638


This says that when thinking about an animal, it’s interesting to think about what639


that animal eats.640
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18.5 Hebbian Inference Control 325


The deduction Rule, when choosing which intermediate nodes to use, needs to641


look at the scope of available HebbianLinks and HebbianPredicates and use them to642


guide its choice. And if there are no good intermediate nodes available, it may report643


that it doesn’t have enough experience to assess with any confidence whether it can644


come up with a good conclusion. As a consequence of the bandit-problem dynamics,645


it may be allocated reduced resources, or another Rule is chosen altogether.646


18.6 Inference Pattern Mining647


Along with general-purpose attention spreading, it it very useful for PLN processes648


to receive specific guidance based on patterns mined from previously performed and649


storedife.650


This information is stored in CogPrime in a data repository called the Inference651


PatternRepository - which is, quite simply, a special “data table” containing inference652


trees extracted from the system’s inference history, and patterns recognized therein.653


An “inference tree” refers to a tree whose nodes, called InferenceTreeNodes, are654


Atoms (or generally Atom-versions, Atoms with truth value relative to a certain655


context), and whose links are inference steps (so each link is labeled with a certain656


inference rule).657


In a large CogPrime system it may not be feasible to store all inference trees; but658


then a wide variety of trees should still be retained, including mainly successful ones659


as well as a sampling of unsuccessful ones for purpose of comparison.660


The InferencePatternRepository may then be used in two ways:661


• An inference tree being actively expanded (i.e. utilized within the PLN inference662


system) may be compared to inference trees in the repository, in real time, for663


guidance. That is, if a node N in an inference tree is being expanded, then the664


repository can be searched for nodes similar to N, whose contexts (within their665


inference trees) are similar to the context of N within its inference tree. A study can666


then be made regarding which Rules and Atoms were most useful in these prior,667


similar inferences, and the results of this can be used to guide ongoing inference.668


• Patterns can be extracted from the store of inference trees in the InferencePattern-669


Repository, and stored separately from the actual inference trees (in essence, these670


patterns are inference subtrees with variables in place of some of their concrete671


nodes or links). An inference tree being expanded can then be compared to these672


patterns instead of, or in addition to, the actual trees in the repository. This provides673


greater efficiency in the case of common patterns among inference trees.674


A reasonable approach may be to first check for inference patterns and see if there675


are any close matches; and if there are not, to then search for individual inference676


trees that are close matches.677


Mining patterns from the repository of inference trees is a potentially highly678


computationally expensive operation, but this doesn’t particularly matter since it can679
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326 18 Adaptive, Integrative Inference Control


be run periodically in the background while inference proceeds at its own pace in680


the foreground, using the mined patterns. Algorithmically, it may be done either681


by exhaustive frequent-itemset-mining (as in deterministic greedy datamining algo-682


rithms), or by stochastic greedy mining. These operations should be carried out by683


an InferencePatternMiner MindAgent.684


18.7 Evolution as an Inference Control Scheme685


It is possible to use PEPL (Probabilistic Evolutionary Program Learning, such as686


MOSES) as, in essence, an InferenceControl scheme. Suppose we are using an evo-687


lutionary learning mechanism such as MOSES or PLEASURE [Goe08a] to evolve688


populations of predicates or schemata. Recall that there are two ways to evaluate689


procedures in CogPrime: by inference or by direct evaluation. Consider the case690


where inference is needed in order to provide high-confidence estimates of the eval-691


uation or execution relationships involved. Then, there is the question of how much692


effort to spend on inference, for each procedure being evaluated as part of the fit-693


ness evaluation process. Spending a small amount of effort on inference means that694


one doesn’t discover much beyond what’s immediately apparent in the AtomSpace.695


Spending a large amount of effort on inference means that one is trying very hard696


to use indirect evidence to support conjectures regarding the evaluation or execution697


Links involved.698


When one is evolving a large population of procedures, one can’t afford to do too699


much inference on each candidate procedure being evaluated. Yet, of course, doing700


more inference may yield more accurate fitness evaluations, hence decreasing the701


number of fitness evaluations required.702


Often, a good heuristic is to gradually increase the amount of inference effort703


spent on procedure evaluation, during the course of evolution. Specifically, one may704


make the amount of inference effort roughly proportional to the overall population705


fitness. This way, initially, evolution is doing a cursory search, not thinking too much706


about each possibility. But once it has some fairly decent guesses in its population,707


then it starts thinking hard, applying more inference to each conjecture.708


Since the procedures in the population are likely to be interrelated to each other,709


inferences done on one procedure are likely to produce intermediate knowledge710


that’s useful for doing inference on other procedures. Therefore, what one has in this711


scheme is evolution as a control mechanism for higher-order inference.712


Combined with the use of evolutionary learning to achieve memory across opti-713


mization runs, this is a very subtle approach to inference control, quite different from714


anything in the domain of logic-based AI. Rather than guiding individual inference715


steps on a detailed basis, this type of control mechanism uses evolutionary logic to716


guide the general direction of inference, pushing the vast mass of exploratory infer-717


ences in the direction of solving the problem at hand, based on a flexible usage of718


prior knowledge.719


319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


18.8 Incorporating Other Cognitive Processes into Inference 327


18.8 Incorporating Other Cognitive Processes into Inference720


Hebbian inference control and inference pattern mining are valuable and powerful721


processes, but they are not always going to be enough. The solution of some problems722


that CogPrime chooses to address via inference will ultimately require the use of723


other methods, too. In these cases, one workaround is for inference to call on other724


cognitive processes to help it out.725


This is done via the forward or backward chaining agents identifying specific726


Atoms deserving of attention by other cognitive processes, and then spawning Tasks727


executing these other cognitive processes on the appropriate Atoms.728


Firstly, which Atoms should be selected for this kind of attention? What we want729


are InferenceTreeNodes that:730


• Have high STI.731


• Have the impact to significantly change the overall truth value of the inference tree732


they are embedded in (something that can be calculated by hypothetically varying733


the truth value of the InferenceTreeNode and seeing how the truth value of the734


overall conclusion is affected).735


• Have truth values that are known with low confidence.736


Truth values meeting these criteria should be taken as strong candidates for attention737


by other cognitive processes.738


The next question is which other cognitive processes do we apply in which cases?739


MOSES in supervised categorization mode can be applied to a candidate In-740


ferenceTreeNode representing a CogPrime Node if it has a sufficient number of741


members (Atoms linked to it by MemberLinks); and, a sufficient number of new742


members have been added to it (or have had their membership degree significantly743


changed) since MOSES in supervised categorization mode was used on it last.744


Next, pattern mining can be applied to look for connectivity patterns elsewhere745


in the AtomTable, similar to the connectivity patterns of the candidate Atom, if the746


candidate Atom has changed significantly since pattern mining last visited it.747


More subtly, what if, we try to find whether “cross breed” implies “Ugliness”,748


and we know that “bad genes” implies Ugliness, but can’t find a way, by backward749


chaining, to prove that “cross breed” implies “bad genes”. Then we could launch750


a non-backward-chaining algorithm to measure the overlap of SatisfyingSet(cross751


breed) and SatisfyingSet(bad genes). Specifically, we could use MOSES in super-752


vised categorization mode to find relationships characterizing “cross breed” and other753


relationships characterizing “bad genes”, and then do some forward chaining infer-754


ence on these relationships. This would be a general heuristic for what to do when755


there’s a link with low confidence but high potential importance to the inference tree.756


SpeculativeConceptFormation (see Chap. 20) may also be used to create new con-757


cepts and attempt to link them to the Atoms involved in an inference (via subsidiary758


inference processes, or HebbianLink formation based on usage in learned procedures,759


etc.), so that they may be used in inference.760
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328 18 Adaptive, Integrative Inference Control


18.9 PLN and Bayes Nets761


Finally, we give some comments on the relationship between PLN and Bayes Nets762


[PJ88a]. We have not yet implemented such an approach, but it may well be that763


Bayes Nets methods can serve as a useful augmentation to PLN for certain sorts of764


inference (specifically, for inference on networks of knowledge that are relatively765


static in nature).766


We can’t use standard Bayes Nets as the primary way of structuring reasoning in767


CogPrime because CogPrime’s knowledge network is loopy. The peculiarities that768


allow standard Bayes net belief propagation to work in standard loopy Bayes nets,769


don’t hold up in CogPrime, because of the way you have to update probabilities770


when you’re managing a very large network in interaction with a changing world,771


so that different parts of which get different amounts of focus. So in PLN we use772


different mechanisms (the “inference trail” mechanism) to avoid “repeated evidence773


counting” whereas in loopy Bayes nets they rely on the fact that in the standard774


loopy Bayes net configuration, extra evidence counting occurs in a fairly constant775


way across the network.776


However, when you have within the AtomTable a set of interrelated knowledge777


items that you know are going to be static for a while, and you want to be able to778


query them probabilistically, then building a Bayes Net of some sort (i.e. “freezing”779


part of CogPrime’s knowledge network and mapping it into a Bayes Net) may be780


useful. I.e., one way to accelerate some PLN inference would be:781


1. Freeze a subnetwork of the AtomTable which is expected not to change a lot in782


the near future.783


2. Interpret this subnetwork as a loopy Bayes net, and use standard Bayesian belief784


propagation to calculate probabilities based on it.785


This would be a highly efficient form of “background inference” in certain contexts.786


(Note that this ideally requires an “indefinite Bayes net” implementation that propa-787


gates indefinite probabilities through the standard Bayes-net local belief propagation788


algorithms, but this is not mathematically problematic.)789


On the other hand, if you have a very important subset of the Atomspace, then it790


may be worthwhile to maintain a Bayes net modeling the conditional probabilities791


between these Atoms, but with a dynamically updated structure.792
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Chapter 19
Pattern Mining


19.1 Introduction0


Having discussed inference in depth we now turn to other, simpler but equally1


important approaches to creating declarative knowledge. This chapters deals with2


pattern mining—the creation of declarative knowledge representing patterns among3


other knowledge (which may be declarative, sensory, episodic, procedural, etc.)—4


and the following chapter deals with speculative concept creation.5


Within the scope of pattern mining, we will discuss two basic approaches:6


• Supervised learning: given a predicate, finding a pattern among the entities that7


satisfy that predicate.8


• Unsupervised learning: undirected search for “interesting patterns”.9


The supervised learning case is easier and we have done a number of experiments10


using MOSES for supervised pattern mining, on biological (microarray gene expres-11


sion and SNP) and textual data. In the CogPrime case, the “positive examples” are12


the elements of the SatisfyingSet of the predicate P, and the “negative examples”13


are everything else. This can be a relatively straight forward problem if there are14


enough positive examples and they actually share common aspects... but some trick-15


iness emerges, of course, when the common aspects are, in each example, complexly16


intertwined with other aspects.17


The unsupervised learning case is considerably trickier. The main problem issue18


here regards the definition of an appropriate fitness function. We are searching for19


“interesting patterns.” So the question is, what constitutes an interesting pattern?20


We will also discuss two basic algorithmic approaches:21


• Program learning, via MOSES or hillclimbing22


• Frequent subgraph mining, using greedy algorithms.23


Co-authored with Jade O’Neill.


B. Goertzel et al., Engineering General Intelligence, Part 2, 329
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_19,
© Atlantis Press and the authors 2014


319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


330 19 Pattern Mining


The value of these various approaches is contingent on the environment and goal24


set being such that algorithms of this nature can actually recognize relevant patterns25


in the world and mind. Fortunately, the everyday human world does appear to have the26


property of possessing multiple relevant patterns that are recognizable using varying27


levels of sophistication and effort. It has patterns that can be recognized via simple28


frequent pattern mining, and other patterns that are too subtle for this, and are better29


addressed by a search-based approach. In order for an environment and goal set to30


be appropriate for the learning and teaching of a human-level AI, it should have the31


same property of possessing multiple relevant patterns recognizable using varying32


levels of subtlety.33


19.2 Finding Interesting Patterns via Program Learning34


As one important case of pattern mining, we now discuss the use of program learning35


to find “interesting” patterns in sets of Atoms.36


Clearly, “interestingness” is a multidimensional concept. One approach to defining37


it is empirical, based on observation of which predicates have and have not proved38


interesting to the system in the past (based on their long-term importance values, i.e.39


LTI).40


In this approach, one has a supervised categorization problem: learn a rule pre-41


dicting whether a predicate will fall into the interesting category or the uninteresting42


category. Once one has learned this rule, which has expressed this rule as a predicate43


itself, one can then use this rule as the fitness function for evolutionary learning44


evolution.45


There is also a simpler approach, which defines an objective notion of interest-46


ingness. This objective notion is a weighted sum of two factors:47


• Compactness.48


• Surprisingness of truth value.49


Compactness is easy to understand: all else equal, a predicate embodied in a small50


Combo tree is better than a predicate embodied in a big one. There is some work51


hidden here in Combo tree reduction; ideally, one would like to find the smallest rep-52


resentation of a given Combo tree, but this is a computationally formidable problem,53


so one necessarily approaches it via heuristic algorithms.54


Surprisingness of truth value is a slightly subtler concept. Given a Boolean predi-55


cate, one can envision two extreme ways of evaluating its truth value (represented by56


two different types of Procedure Evaluator). One can use an Independence Assuming57


Procedure Evaluator, which deals with all AND and OR operators by assuming prob-58


abilistic independence. Or, one can use an ordinary Effort Based Procedure Evaluator,59


which uses dependency information wherever feasible to evaluate the truth values60


of AND and OR operators. These two approaches will normally give different truth61


values but, how different? The more different, the more surprising is the truth value62


of the predicate, and the more interesting may the predicate be.63
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19.2 Finding Interesting Patterns via Program Learning 331


In order to explore the power of this kind of approach in a simple context, we have64


tested pattern mining using MOSES on Boolean predicates as a data mining algorithm65


on a number of different datasets, including some interesting and successful work in66


the analysis of gene expression data, and some more experimental work analyzing67


sociological data from the National Longitudinal Survey of Youth (NLSY) (http://68


stats.bls.gov/nls/).69


A very simple illustrative result from the analysis of the NLSY data is the pattern:70


OR71


(NOT(MothersAge(X)) AND NOT(FirstSexAge(X)))72


(Wealth(X) AND PIAT(X))73


where the domain of X are individuals, meaning that:74


• Being the child of a young mother correlates with having sex at a younger age;75


• Being in a wealthier family correlates with better Math (PIAT) scores;76


• The two sets previously described tend to be disjoint.77


Of course, many data patterns are several times more complex than the simple78


illustrative pattern shown above. However, one of the strengths of the evolutionary79


learning approach to pattern mining is its ability to find simple patterns when they do80


exist, yet without (like some other mining methods) imposing any specific restrictions81


on the pattern format.82


19.3 Pattern Mining via Frequent/Surprising Subgraph Mining83


Probabilistic evolutionary learning is an extremely powerful approach to pattern84


mining, but, may not always be realistic due to its high computational cost. A cheaper,85


though also weaker, alternative, is to use frequent subgraph mining algorithms such86


as [HWP03, KK01], which may straightforwardly be adapted to hypergraphs such87


as the Atomspace.88


Frequent subgraph mining is a port to the graph domain of the older, simpler idea89


of frequent itemset mining, which we now briefly review. There are a number of90


algorithms in the latter category, the classic is Apriori [AS94], and an alternative is91


Relim [Bor05] which is conceptually similar but seems to give better performance.92


The basic goal of frequent itemset mining is to discover frequent subsets (“item-93


sets”) in a group of sets, whose members are all drawn from some base set of items.94


One knows that for a set of N items, there are 2N − 1 possible subgroups. The algo-95


rithm operates in several rounds. Round i heuristically computes frequent i-itemsets96


(i.e. frequent sets containing i items). A round has two steps: candidate generation97


and candidate counting. In the candidate generation step, the algorithm generates a98


set of candidate i-itemsets whose support—the percentage of events in which the item99


must appears—has not been yet been computed. In the candidate-counting step, the100


algorithm scans its memory database, counting the support of the candidate itemsets.101
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332 19 Pattern Mining


After the scan, the algorithm discards candidates with support lower than the spec-102


ified minimum (an algorithm parameter) and retains only the sufficiently frequent103


i-itemsets. The algorithm reduces the number of tested subsets by pruning apriori104


those candidate itemsets that cannot be frequent, based on the knowledge about infre-105


quent itemsets obtained from previous rounds. So for instance if {A, B} is a frequent106


2-itemset then {A, B, C} will be considered as a potential 3-itemset, on the contrary107


if {A, B} is not a frequent itemset then {A, B, C}, as well as any superset of {A, B},108


will be discarded. Although the worst case of this sort of algorithm is exponential,109


practical executions are generally fast, depending essentially on the support limit.110


Frequent subgraph mining follows the same pattern, but instead of a set of items it111


deals with a group of graphs. There are many frequent subgraph mining algorithms112


in the literature, but the basic concept underlying nearly all of them is the same:113


first find small frequent subgraphs. Then seek to find slightly larger frequent patterns114


encompassing these small ones. Then seek to find slightly larger frequent patterns115


encompassing these, etc. This approach is much faster than something like MOSES,116


although management of the large number of subgraphs to be searched through can117


require subtle design and implementation of data structures.118


If, instead of an ensemble of small graphs, one has a single large graph like the119


AtomSpace, one can follow the same approach, via randomly subsampling from the120


large graph to find the graphs forming the ensemble to be mined from; see [ZH10]121


for a detailed treatment of this sort of approach. The fact that the AtomSpace is122


a hypergraph rather than a graph doesn’t fundamentally affect the matter since a123


hypergraph may always be considered a graph via introduction of an additional node124


for each hyperedge (at the cost of a potentially great multiplication of the number of125


links).126


Frequent subgraph mining algorithms appropriately deployed can find subgraphs127


which occur repeatedly in the Atomspace, including subgraphs containing Atom-128


valued variables . Each such subgraph may be represented as a PredicateNode, and129


frequent subgraph mining will find such PredicateNodes that have surprisingly high130


truth values when evaluated across the Atomspace. But unlike MOSES when applied131


as described above, such an algorithm will generally find such predicates only in a132


“greedy” way.133


For instance, a greedy subgraph mining algorithm would be unlikely to find134


OR135


(NOT(MothersAge(X)) AND NOT(FirstSexAge(X)))136


(Wealth(X) AND PIAT(X))137


as a surprising pattern in an AtomSpace, unless at least one (and preferably both) of138


Wealth(X) AND PIAT(X)139


and140


NOT(MothersAge(X)) AND NOT(FirstSexAge(X))141


were surprising patterns in that Atomspace on their own.142
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19.4 Fishgram 333


19.4 Fishgram143


Fishgram is a simple example of an algorithm for finding patterns in an Atomspace,144


instantiating the general concepts presented in the previous section. It represents145


patterns as conjunctions (AndLink) of Links, which usually contain variables.146


It does a greedy search, so it can quickly find many patterns. In contrast, algorithms147


like MOSES are designed to find a small number of the best patterns. Fishgram works148


by finding a set of objects that have links in common, so it will be most effective if the149


AtomSpace has a lot of raw data, with simple patterns. For example, it can be used150


on the perceptions from the virtual world. There are predicates for basic perceptions151


(e.g. what kind of object something is, objects being near each other, types of blocks,152


and actions being performed by the user or the AI).153


The details of the Fishgram code and design are not sufficiently general or scalable154


to serve as a robust, omnipurpose pattern mining solution for CogPrime. However,155


Fishgram is nevertheless interesting, as an existent, implemented and tested prototype156


of a greedy frequent/interesting subhypergraph mining system. A more scalable157


analogous system, with a similar principle of operation, has been outlined and is in158


the process of being designed at time of writing, but will not be presented here.159


19.4.1 Example Patterns160


Here is some example output from Fishgram, when run on the virtual agent’s161


memories.162


(AndLink163


(EvaluationLink is_edible:PredicateNode (ListLink $1000041))164


(InheritanceLink $1000041 Battery:ConceptNode)165


)166


This means a battery which can be “eaten” by the virtual robot. The variable167


$1000041 refers to the object (battery).168


Fishgram can also find patterns containing a sequence of events. In this case, there169


is a list of EvaluationLinks or InheritanceLinks which describe the objects involved,170


followed by the sequence of events.171


(AndLink172


(InheritanceLink $1007703 Battery:ConceptNode)173


(SequentialAndLink174


(EvaluationLink isHolding:PredicateNode (ListLink $1008725 $1007703)))175


)176


)177


)178


This means the agent was holding a battery. $1007703 is the battery, and there is179


also a variable for the agent itself. Many interesting patterns involve more than one180


object. This pattern would also include the user (or another AI) holding a battery,181


because the pattern does not refer to the AI character specifically.182
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334 19 Pattern Mining


It can find patterns where it performs an action and achieves a goal. There is code183


to create implications based on these conjunctions. After finding many conjunctions,184


it can produce ImplicationLinks based on some of them. Here is an example where185


the AI-controlled virtual robot discovers how to get energy.186


(ImplicationLink187


(AndLink188


(EvaluationLink is_edible:PredicateNode189


(ListLink $1011619))190


(InheritanceLink $1011619 Battery:ConceptNode)191


)192


(PredictiveImplicationLink193


(EvaluationLink actionDone:PredicateNode194


(ListLink195


(ExecutionLink eat:GroundedSchemaNode196


(ListLink $1011619))))197


(EvaluationLink increased:PredicateNode198


(ListLink199


(EvaluationLink200


EnergyDemandGoal:PredicateNode)))201


)202


)203


19.4.2 The Fishgram Algorithm204


The core Fishgram algorithm, in pseudocode, is as follows:205


initial layer = every pair (relation, binding)206


207


while previous layer is not empty:208


foreach (conjunction, binding) in previous layer:209


let incoming = all (relation, binding) pairs210


containing an object in the conjunction211


let possible_next_events = all212


(event, binding) pairs where213


the event happens during or shortly214


after the last event in conjunction215


foreach (relation, relation_binding)216


in incoming217


and possible_next_events:218


(new_relation,219


new_conjunction_binding) =220


map_to_existing_variables221


(conjunction,222
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19.4 Fishgram 335


binding, relation,223


relation_binding)224


if new_relation is already in225


conjunction, skip it226


new_conjunction = conjunction227


+ new_relation228


if new_conjunction has been229


found already, skip it230


otherwise, add new_conjunction231


to the current layer232


233


map_to_existing_variables(conjunction,234


conjunction_binding,235


relation, relation_binding)236


r’, s’ = a copy of the relation and binding using237


new variables238


foreach variable v, object o in relation_binding:239


foreach variable v2, object o2 in240


conjunction_binding:241


if o == o2:242


change r’ and s’ to use v2 instead of v243


19.4.3 Preprocessing244


There are several preprocessing steps to make it easier for the main Fishgram search245


to find patterns. There is a list of things that have to be variables. For example, any246


predicate that refers to object (including agents) will be given a variable so it can247


refer to any object. Other predicates or InheritanceLinks can be added to a pattern,248


to restrict it to specific kinds of objects, as shown above. So there is a step which249


goes through all of the links in the AtomSpace, and records a list of predicates with250


variables. Such as “X is red” or “X eats Y”. This makes the search part simpler,251


because it never has to decide whether something should be a variable or a specific252


object.253


There is also a filter system, so that things which seem irrelevant can be excluded254


from the search. There is a combinatorial explosion as patterns become larger. Some255


predicates may be redundant with each other, or known not to be very useful. It can256


also try to find only patterns in the AI’s “attentional focus”, which is much smaller257


than the whole AtomSpace.258


The Fishgram algorithm cannot currently handle patterns involving numbers,259


although it could be extended to do so. The two options would be to either have260


a separate discretization step, creating predicates for different ranges of a value.261


Or alternatively, have predicates for mathematical operators. It would be possible to262


search for a “splitpoint” like in decision trees. So a number would be chosen, and only263
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336 19 Pattern Mining


things above that value (or only things below that value) would count for a pattern.264


It would also be possible to have multiple numbers in a pattern, and compare them265


in various ways. It is uncertain how practical this would be in Fishgram. MOSES is266


good for finding numeric patterns, so it may be better to simply use those patterns267


inside Fishgram.268


The “increased” predicate is added by a preprocessing step. The goals have a269


fuzzy TruthValue representing how well the goal is achieved at any point in time,270


so e.g. the EnergyDemandGoal represents how much energy the virtual robot has at271


some point in time. The predicate records times that a goal’s TruthValue increased.272


This only happens immediately after doing something to increase it, which helps273


avoid finding spurious patterns.274


19.4.4 Search Process275


Fishgram search is breadth-first. It starts with all predicates (or InheritanceLinks)276


found by the preprocessing step. Then it finds pairs of predicates involving the same277


variable. Then they are extended to conjunctions of three predicates, and so on. Many278


relations apply at a specific time, for example the agent being near an object, or an279


action being performed. These are included in a sequence, and are added in the order280


they occurred.281


Fishgram remembers the examples for each pattern. If there is only one variable282


in the pattern, an example is a single object; otherwise each example is a vector of283


objects for each variable in the pattern. Each time a relation is added to a pattern, if284


it has no new variables, some of the examples may be removed, because they don’t285


satisfy the new predicate. It needs to have at least one variable in common with the286


previous relations. Otherwise the patterns would combine many unrelated things.287


In frequent itemset mining (for example the APRIORI algorithm), there is ef-288


fectively one variable, and adding a new predicate will often decrease the number289


of items that match. It can never increase it. The number of possible conjunctions290


increases with the length, up to some point, after which it decreases. But when min-291


ing for patterns with multiple objects there is a much larger combinatorial explosion292


of patterns. Various criteria can be used to prune the search.293


The most basic criterion is the frequency. Only patterns with at least N examples294


will be included, where N is an arbitrary constant. You can also set a maximum295


number of patterns allowed for each length (number of relations), and only include296


the best ones. The next level of the breadth-first search will only search for extensions297


of those patterns.298


One can also use a measure of statistical interestingness, to make sure the relations299


in a pattern are correlated with each other. There are many spurious frequent patterns,300


because anything which is frequent will occur together with other things, whether301


they are relevant or not. For example “breathing while typing” is a frequent pattern,302


because people breathe at all times. But “moving your hands while typing” is a303


much more interesting pattern. As people only move their hands some of the time,304
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19.4 Fishgram 337


a measure of correlation would prefer the second pattern. The best measure may be305


interaction information, which is a generalisation of mutual information that applies306


to patterns with more than two predicates. An early-stage AI would not have much307


knowledge of cause and effect, so it would rely on statistical measures to find useful308


patterns.309


19.4.5 Comparison to Other Algorithms310


Fishgram is more suitable for OpenCogPrime’s purposes than existing graph mining311


algorithms, most of which were designed with molecular datasets in mind. The312


OpenCog AtomSpace is a different graph in various ways. For one, there are many313


possible relations between nodes (much like in a semantic network). Many relations314


involve more than two objects, and there are also properties predicates about a single315


object. So the relations are effectively directed links of varying arity. It also has316


events, and many states can change over time (e.g. an egg changes state while it’s317


cooking). Fishgram is designed for general knowledge in an embodied agent.318


There are other major differences. Fishgram uses a breadth-first search, rather than319


depth-first search like most graph mining algorithms. And it does an “embedding-320


based” search, searching for patterns that can be embedded multiple times in a large321


graph. Molecular datasets have many separate graphs for separate molecules, but the322


embodied perceptions are closer to a single, fairly well-connected graph. Depth-first323


search would be very slow on such a graph, as there are many very long paths through324


the graph, and the search would mostly find those. Whereas the useful patterns tend325


to be compact and repeated many times.326


Lastly the design of Fishgram makes it easy to experiment with multiple differ-327


ent scoring functions, from simple ones like frequency to much more sophisticated328


functions such as interaction information.329


As mentioned above, the current implementation of Fishgram is not sufficiently330


scalable to be utilized for general-purpose Atomspaces. The underlying data structure331


within Fishgram, used to store recognized patterns, would need to be replaced, which332


would lead to various other modifications within the algorithm. But, the general333


principle and approach illustrated by Fishgram will be persisted in any more scalable334


reimplementation.335 AQ1
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Chapter 20
Speculative Concept Formation


20.1 Introduction0


One of the hallmarks of general intelligence is its capability to deal with novelty1


in its environment and/or goal-set. And dealing with novelty intrinsically requires2


creating novelty. It’s impossible to efficiently handle new situations without creating3


new ideas appropriately. Thus, in any environment complex and dynamic enough to4


support human-like general intelligence (or any other kind of highly powerful general5


intelligence), the creation of novel ideas will be paramount. New idea creation takes6


place in OpenCog via a variety of methods—e.g. inside MOSES which creates new7


program trees, PLN which creates new logical relationships, ECAN which creates8


new associative relationships, etc. But there is also a role for explicit, purposeful9


creation of new Atoms representing new concepts, outside the scope of these other10


learning mechanisms.11


The human brain gets by, in adulthood, without creating that many new neurons—12


although neurogenesis does occur on an ongoing basis. But this is achieved only via13


great redundancy, because for the brain it’s cheaper to maintain a large number of14


neurons in memory at the same time, than to create and delete neurons. Things are15


different in a digital computer: memory is more expensive but creation and deletion of16


object is cheaper. Thus in CogPrime, forgetting and creation of Atoms is a regularly17


occurring phenomenon. In this chapter we discuss a key class of mechanisms for18


Atom creation, “speculative concept formation”. Further methods will be discussed19


in following chapters.20


The philosophy underlying CogPrime’s speculative concept formation is that new21


things should be created from pieces of good old things (a form of “evolution”,22


broadly construed), and that probabilistic extrapolation from experience should be23


used to guide the creation of new things (inference). It’s clear that these principles24


are necessary for the creation of new mental forms but it’s not obvious that they’re25


sufficient: this is a nontrivial hypothesis, which may also be considered a family26


of hypotheses since there are many different ways to do extrapolation and inter-27


combination. In the context of mind-world correspondence, the implicit assumption28


B. Goertzel et al., Engineering General Intelligence, Part 2, 339
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_20,
© Atlantis Press and the authors 2014
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340 20 Speculative Concept Formation


underlying this sort of mechanism is that the relevant patterns in the world can of-29


ten be combined to form other relevant patterns. The everyday human world does30


quite markedly display this kind of combinatory structure, and such a property seems31


basic enough that it’s appropriate for use as an assumption underlying the design of32


cognitive mechanisms.33


In CogPrime we have introduced a variety of heuristics for creating new Atoms—34


especially ConceptNodes—which may then be reasoned on and subjected to implicit35


(via attention allocation) and explicit (via the application of evolutionary learning to36


predicates obtained from concepts via “concept predicatization”) evolution. Among37


these are the node logical operators described in the book Probabilistic Logic Net-38


works, which allow the creation of new concepts via AND, OR, XOR and so forth.39


However, logical heuristics alone are not sufficient. In this chapter we will review40


some of the nonlogical heuristics that are used for speculative concept formation.41


These operations play an important role in creativity— to use cognitive-psychology42


language, they are one of the ways that CogPrime implements the process of blend-43


ing, which Falconnier and Turner (2003) have argued is key to human creativity44


on many different levels. Each of these operations may be considered as implicitly45


associated with a hypothesis that, in fact, the everyday human world tends to assign46


utility to patterns that are combinations of other patterns produced via said operation.47AQ1


An evolutionary perspective may also be useful here, on a technical level as well48


as philosophically. As noted in The Hidden Pattern and hinted at in Chap. 4 of Vol. 5,49


one way to think about an AGI system like CogPrime is as a huge evolving ecology.50


The AtomSpace is a biosphere of sorts, and the mapping from Atom types into species51


has some validity to it (though not complete accuracy: Atom types do not compete52


with each other; but they do reproduce with each other, and according to most of53


the reproduction methods in use, Atoms of differing type cannot cross-reproduce).54


Fitness is defined by importance. Reproduction is defined by various operators that55


produce new Atoms from old, including the ones discussed in this chapter, as well56


as other operators such as inference and explicit evolutionary operators.57AQ2


New ConceptNode creation may be triggered by a variety of circumstances. If58


two ConceptNodes are created for different purposes, but later the system finds that59


most of their meanings overlap, then it may be more efficient to merge the two into60


one. On the other hand, a node may become overloaded with different usages, and61


it is more useful to split it into multiple nodes, each with a more consistent content.62


Finally, there may be patterns across large numbers of nodes that merit encapsulation63


in individual nodes. For instance, if there are 1,000 fairly similar ConceptNodes, it64


may be better not to merge them all together, but rather to create a single node to65


which they all link, reifying the category that they collectively embody.66


In the following sections, we will begin by describing operations that create67


new ConceptNodes from existing ones on a local basis: by mutating individual68


ConceptNodes or combining pairs of ConceptNodes. Some of these operations are69


inspired by evolutionary operators used in the GA, others are based on the cognitive70


psychology concept of “blending”. Then we will turn to the use of clustering and for-71


mal concept analysis algorithms inside CogPrime to refine the system’s knowledge72


about existing concepts, and create new concepts.73
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20.2 Evolutionary Concept Formation 341


20.2 Evolutionary Concept Formation74


A simple and useful way to combine ConceptNodes is to use GA-inspired evolution-75


ary operators: crossover and mutation. In mutation, one replaces some number of a76


Node’s links with other links in the system. In crossover, one takes two nodes and77


creates a new node containing some links from one and some links from another.78


More concretely, to cross over two ConceptNodes X and Y, one may proceed as79


follows (in short clustering the union of X and Y):80


• Create a series of empty nodes Z1, Z2, . . . , Zk81


• Form a “link pool” consisting of all X’s links and all Y’s links, and then divide82


this pool into clusters (clustering algorithms will be described below).83


• For each cluster with significant cohesion, allocate the links in that cluster to one84


of the new nodes Zi .85


On the other hand, to mutate a ConceptNode, a number of different mutation86


processes are reasonable. For instance, one can87


• Cluster the links of a Node, and remove one or more of the clusters, creating a88


node with less links89


• Cluster the links, remove one or more clusters, and then add new links that are90


similar to the links in the remaining clusters.91


The EvolutionaryConceptFormation MindAgent selects pairs of nodes from the92


system, where the probability of selecting a pair is determined by93


• The average importance of the pair94


• The degree of similarity of the pair95


• The degree of association of the pair.96


(Of course, other heuristics are possible too). It then crosses over the pair, and mutates97


the result.98


Note that, unlike in some GA implementations, the parent node(s) are retained99


within the system; they are not replaced by the children. Regardless of how many100


offspring they generate by what methods, and regardless of their age, all Nodes101


compete and cooperate freely forever according to the fitness criterion defined by the102


importance updating function. The entire AtomSpace may be interpreted as a large103


evolutionary, ecological system, and the action of CogPrime dynamics, as a whole,104


is to create fit nodes.105


A more advanced variant of the EvolutionaryConceptFormation MindAgent106


would adapt its mutation rate in a context-dependent way. But our intuition is that107


it is best to leave this kind of refinement for learned cognitive schemata, rather than108


to hard-wire it into a MindAgent. To encourage the formation of such schemata,109


one may introduce elementary schema functions that embody the basic node-level110


evolutionary operators:111


ConceptNode ConceptCrossover(ConceptNode A, ConceptNode B)112


ConceptNode mutate(ConceptNode A, mutationAmount m)113
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342 20 Speculative Concept Formation


There will also be a role for more abstract schemata that utilize these. An example114


cognitive schema of this sort would be one that said: “When all my schema in a115


certain context seem unable to achieve their goals, then maybe I need new concepts116


in this context, so I should increase the rate of concept mutation and crossover, hoping117


to trigger some useful concept formation”.118


As noted above, this component of CogPrime views the whole AtomSpace as a119


kind of genetic algorithm—but the fitness function is “ecological” rather than fixed,120


and of course the crossover and mutation operators are highly specialized. Most of the121


concepts produced through evolutionary operations are going to be useless nonsense,122


but will be recognized by the importance updating process and subsequently forgotten123


from the system. The useful ones will link into other concepts and become ongoing124


aspects of the system’s mind. The importance updating process amounts to fitness125


evaluation, and it depends implicitly on the sum total of the cognitive processes going126


on in CogPrime.127


To ensure that importance updating properly functions as fitness evaluation, it is128


critical that evolutionarily-created concepts (and other speculatively created Atoms)129


always comprise a small percentage of the total concepts in the system. This guaran-130


tees that importance will serve as a meaningful “fitness function” for newly created131


ConceptNodes. The reason for this is that the importance measures how useful the132


newly created node is, in the context of the previously existing Atoms. If there are133


too many speculative, possibly useless new ConceptNodes in the system at once, the134


importance becomes an extremely noisy fitness measure, as it’s largely measuring135


the degree to which instances of new nonsense fit in with other instances of new136


nonsense. One may find interesting self-organizing phenomena in this way, but in an137


AGI context we are not interested in undirected spontaneous pattern-formation, but138


rather in harnessing self-organizing phenomena toward system goals. And the latter139


is achieved by having a modest but not overwhelming amount of speculative new140


nodes entering into the system.141


Finally, as discussed earlier, evolutionary operations on maps may occur naturally142


and automatically as a consequence of other cognitive operations. Maps are contin-143


ually mutated due to fluctuations in system dynamics; and maps may combine with144


other maps with which they overlap, as a consequence of the nonlinear properties145


of activation spreading and importance updating. Map-level evolutionary operations146


are not closely tied to their Atom-level counterparts (a difference from e.g. the close147


correspondence between map-level logical operations and underlying Atom-level148


logical operations).149


20.3 Conceptual Blending150


The notion of Conceptual Blending (aka Conceptual Integration) was proposed by151


Gilles Fauconnier and Mark Turner [FT02] as general theory of cognition. According152


to this theory, the basic operation of creative thought is the “blend” in which elements153


and relationships from diverse scenarios are merged together in a judicious way. As a154
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20.3 Conceptual Blending 343


very simple example, we may consider the blend of “tower” and “snake” to form a new155


concept of “snake tower” (a tower that looks somewhat like a snake). However, most156


examples of blends will not be nearly so obvious. For instance, the complex numbers157


could be considered a blend between 2D points and real numbers. Figure 20.1 gives158


a conceptual illustration of the blending process.159


The production of a blend is generally considered to have three key stages (elu-160


cidated via the example of building a snake-tower out of blocks):161


• composition: combining judiciously chosen elements from two or more concept162


inputs163


– Example: Taking the “buildingness“ and “verticalness” of a tower, and the164


“head” and “mouth” and “tail” of a snake165


• completion: adding new elements from implicit background knowledge about the166


concept inputs167


– Example: Perhaps a mongoose-building will be built out of blocks, poised in a168


position indicating it is chasing the snake-tower (incorporating the background169


knowledge that mongeese often chase snakes)170


Fig. 20.1 Conceptual illustration of conceptual blending
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344 20 Speculative Concept Formation


• elaboration: fine-tuning, which shapes the elements into a new concept, guided171


by the desire to optimize certain criteria172


– Example: The tail of the snake-tower is a part of the building that rests on the173


ground, and connects to the main tower. The head of the snake-tower is a portion174


that sits atop the main tower, analogous to the restaurant atop the Space Needle.175


The “judiciousness” in the composition phase may be partially captured in Cog-176


Prime via PLN inference, via introducing a “consistency criterion” that the elements177


chosen as part of the blend should not dramatically decrease in confidence after the178


blend’s relationships are submitted to PLN inference. One especially doesn’t want179


to choose mutually contradictory elements from the two inputs. For instance one180


doesn’t want to choose “alive” as an element of “snake”, and “non-living” as an ele-181


ment of “building”. This kind of contradictory choice can be ruled out by inference,182


because after very few inference steps, this choice would lead to a drastic confidence183


reduction for the InheritanceLinks to both “alive” and “non-living”.184


Aside from consistency, some other criteria considered relevant to evaluating the185


quality of a blend, are:186


• topology principle that relations in the blend should match the relations of their187


counterparts in other concepts related to the concept inputs188


• web principle that the representation in the blended space should maintain map-189


pings to the concept inputs190


• unpacking principle that, given a blended concept, the interpreter should be able191


to infer things about other related concepts192


• good reason principle that there should be simple explanations for the elements193


of the blend194


• metonymic tightening that when metonymically related elements are projected into195


the blended space, there is pressure to compress the “distance” between them.196


While vague-sounding in their verbal formulations, these criteria have been com-197


putationally implemented in the Sapper system, which uses blending theory to model198


analogy and metaphor [VK94, VO07]; and in a different form in [Car06]’s framework199


for computational creativity. In CogPrime terms, these various criteria essentially boil200


down to: the new, blended concept should get a lot of interesting links.201


One could implement blending in CogPrime very straightforwardly via an evolu-202


tionary approach: search the space of possible blends, evaluating each one according203


to its consistency but also the STI that it achieves when released into the Atomspace.204


However, this will be quite computationally expensive, so a wiser approach is to205


introduce heuristics aimed at increasing the odds of producing important blends.206


A simple heuristic is to calculate, for each candidate blend, the amount of STI that207


the blend would possess N cycles later if, at the current time, it was given a certain208


amount of STI. A blend that would accumulate more STI in this manner may be209


considered more promising, because this means that its components are more richly210


interconnected. Further, this heuristic may be used as a guide for greedy heuristics211


for creating blends: e.g. if one has chosen a certain element A of the first blend input,212
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20.3 Conceptual Blending 345


then one may seek an element B of the second blend input that has a strong Hebbian213


link to A (if such a B exists).214


However, it may also be interesting to pursue different sorts of heuristics, using215


information-theoretic or other mathematical criteria to preliminarily filter possible216


blends before they are evaluated more carefully via integrated cognition and impor-217


tance dynamics.218


20.3.1 Outline of a CogPrime Blending Algorithm219


A rough outline of a concept blending algorithm for CogPrime is as follows:220


• Choose a pair of concepts C1 and C2, which have a nontrivially-strong Hebbian-221


Link between them, but not an extremely high-strength SimilarityLink between222


them (i.e. the concepts should have something to do with each other, but not be223


extremely similar; blends of extremely similar things are boring). These parame-224


ters may be twiddled.225


• Form a new concept C3, which has some of C1’s links, and some of C2’s links.226


• If C3 has obvious contradictions, resolve them by pruning links. (For instance, if227


C1 inherits from alive to degree. 9 and C2 inherits from alive to degree. 1, then228


one of these two TruthValue versions for the inheritance link from alive, has got229


to be pruned...).230


• For each of C3’s remaining links L, make a vector indicating everything it or its231


targets are associated with (via HebbianLinks or other links). This is basically232


a list of “what’s related to L”. Then, assess whether there are a lot of common233


associations to the links L that came from C1 and the links L that came from C2.234


• If the filter in step 4 is passed, then let the PLN forward chainer derive some con-235


clusions about C3, and see if it comes up with anything interesting (e.g. anything236


with surprising truth value, or anything getting high STI, etc.).237


Steps 1 and 2 should be repeated over and over. Step 5 is basically “cognition as238


usual”—i.e. by the time the blended concept is thrown into the Atomspace and239


subjected to Step 5, it’s being treated the same as any other ConceptNode.240


The above is more of a meta-algorithm than a precise algorithm. Many avenues241


for variation exist, including242


• Step 1: heuristics for choosing what to try to blend.243


• Step 3: how far do we go here, at removing contradictions? Do we try simple PLN244


inference to see if contradictions are unveiled, or do we just limit the contradiction-245


check to seeing if the same exact link is given different truth-values?246


• Step 4: there are many different ways to build this association-vector. There are247


also many ways to measure whether a set of association-vectors demonstrates248


“common associations”. Interaction information [Bel03] is one fancy way; there249


are also simpler ones.250
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346 20 Speculative Concept Formation


• Step 5: there are various ways to measure whether PLN has come up with anything251


interesting.252


20.3.2 Another Example of Blending253


To illustrate these ideas further, consider the example of the SUV—a blend of “Car”254


and “Jeep”255


Among the relevant properties of Car are:256


• Appealing to ordinary consumers257


• Fuel efficient258


• Fits in most parking spots259


• Easy to drive260


• 2 wheel drive.261


Among the relevant properties of Jeep are:262


• 4 wheel drive263


• Rugged264


• Capable of driving off road265


• High clearance266


• Open or soft top.267


Obviously, if we want to blend Car and Jeep, we need to choose properties of each268


that don’t contradict each other. We can’t give the Car/Jeep both 2 wheel drive and269


4 wheel drive. Four wheel drive wins for Car/Jeep because sacrificing it would get rid270


of “capable of driving off road”, which is critical to Jeep-ness; whereas sacrificing271


2WD doesn’t kill anything that’s really critical to car-ness.272


On the other hand, having a soft top would really harm “appealing to consumers”,273


which from the view of car-makers is a big part of being a successful car. But getting274


rid of the hard top doesn’t really harm other aspects of jeep-ness in any series way.275


However, what really made the SUV successful was that “rugged” and “high276


clearance” turned out to make SUVs look funky to consumers, thus fulfilling the277


“appealing to ordinary consumers” feature of Car. In other words, the presence of278


the links279


• Looks funky → appealing to ordinary consumers280


• Rugged & high clearance → looks funky281


made a big difference. This is the sort of thing that gets figured out once one starts282


doing PLN inference on the links associated with a candidate blend.283


However, if one views each feature of the blend as a probability distribution over284


concept space—for instance indicating how closely associated each concept is with285


that feature (e.g. via HebbianLinks) then we see that the mutual information (and286


more generally interaction information) between the features of the blend, is a quick287


estimate of how likely it is that inference will lead to interesting conclusions via288


reasoning about the combination of features that the blend possesses.289
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20.4 Clustering 347


20.4 Clustering290


Next, a different method for creating new ConceptNodes in CogPrime is using clus-291


tering algorithms. There are many different clustering algorithms in the statistics and292


data mining literature, and no doubt many of them could have value inside CogPrime.293


We have experimented with several different clustering algorithms in the CogPrime294


context, and have selected one, which we call Omniclust [GCPM06], based on its295


generally robust performance on high-volume, noisy data. However, other methods296


such as EM (Expectation-Maximization) clustering [WF05] would likely serve the297


purpose very well also.298


In the above discussion on evolutionary concept creation, we mentioned the use299


of a clustering algorithm to cluster links. The same algorithm we describe here for300


clustering ConceptNodes directly and creating new ConceptNodes representing these301


clusters, can also be used for clustering links in the context of node mutation and302


crossover.303


The application of Omniclust or any other clustering algorithm for ConceptN-304


ode creation in CogPrime is simple. The clustering algorithm is run periodically,305


and the most significant clusters that it finds are embodied as ConceptNodes, with306


InheritanceLinks to their members. If these significant clusters have subclusters also307


identified by Omniclust, then these subclusters are also made into ConceptNodes,308


etc., with InheritanceLinks between clusters and subclusters.309


Clustering technology is famously unreliable, but this unreliability may be310


mitigated somewhat by using clusters as initial guesses at concepts, and using other311


methods to refine the clusters into more useful concepts. For instance, a cluster may312


be interpreted as a disjunctive predicate, and a search may be made to determine313


sub-disjunctions about which interesting PLN conclusions may be drawn.314


20.5 Concept Formation via Formal Concept Analysis315


Another approach to concept formation is an uncertain version of Formal Concept316


Analysis [GSW05]. There are many ways to create such a version, here we describe317


one approach we have found interesting, called Fuzzy Concept Formation (FCF).318


The general formulation of FCF begins with n objects O1, ..., On, m basic319


attributes a1, ..., am , and information that object Oi possesses attribute a j to degree320


wi j ∈ [0, 1]. In CogPrime, the objects and attributes are Atoms, and wi j is the321


strength of the InheritanceLink pointing from Oi to a j .322


In this context, we may define a concept as a fuzzy set of objects, and a derived323


attribute as a fuzzy set of attributes.324


Fuzzy concept formation (FCF) is, then, a process that produces N “concepts”325


Cn+1, ..., Cn+N and M “derived attributes” dm+1, ..., dm+M , based on the initial set326


of objects and attributes. We can extend the weight matrix wi j to include entries327
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348 20 Speculative Concept Formation


involving concepts and derived attributes as well, so that e.g. wn+3,m+5 indicates the328


degree to which concept Cn+3 possesses derived attribute dm+5.329


The learning engine underlying FCF is a clustering algorithm clust330


= clust (X1, ..., Xr ; b) which takes in r vectors Xr ∈ [0, 1]n and outputs b or331


fewer clusters of these vectors. The overall FCF process is independent of the par-332


ticular clustering algorithm involved, though the interestingness of the concepts and333


attributes formed will of course vary widely based on the specific clustering algo-334


rithm. Some clustering algorithms will work better with large values of b, others with335


smaller values of b.336


We then define the process f orm_concepts(b) to operate as follows. Given a337


set S = S1, ..., Sk containing objects, concepts, or a combination of objects and338


concepts, and an attribute vector wi of length h with entries in [0, 1] corresponding339


to each Si , one applies clust to find b clusters of attribute vectors wi : B1, ..., Bb.340


Each of these clusters may be considered as a fuzzy set, for instance by considering341


the membership of x in cluster B to be 2−d(x,centroid(B)) for an appropriate metric342


d. These fuzzy sets are the b concepts produced by f orm_concepts(b).343


20.5.1 Calculating Membership Degrees of New Concepts344


The degree to which a concept defined in this way possesses an attribute, may be345


defined in a number of ways, maybe the simplest is: weighted-summing the degree346


to which the members of the concept possess the attribute. For instance, to figure347


out the degree to which beautiful women (a concept) are insane (an attribute), one348


would calculate349


∑
w∈beauti f ul_women χbeauti f ul_women(w)χinsane(w)


∑
w∈beauti f ul_women χbeauti f ul_women(w)


where χX (w) denotes the fuzzy membership degree of w in X . One could probably350


also consider Extensional I nheri tancebeauti f ul_womeninsane.351


20.5.2 Forming New Attributes352


One may define an analogous process f orm_attributes(b) that begins with a set353


A = A1, ..., Ak containing (basic and/or derived) attributes, and a column vector354


⎛


⎝
w1i


...


whi


⎞


⎠
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20.5 Concept Formation via Formal Concept Analysis 349


of length h with entries in [0, 1] corresponding to each Ai (the column vector tells355


the degrees to which various objects possess the attributes Ai ). One applies clust to356


find b clusters of vectors vi : B1, ..., Bb. These clusters may be interpreted as fuzzy357


sets, which are derived attributes.358


20.5.2.1 Calculating Membership Degrees of New, Derived Attributes359


One must then defines the degree to which an object or concept possesses a derived360


attribute. One way to do this is using a geometric mean. For instance, suppose there361


is a derived attribute formed by combining the attributes vain, selfish and egocentric.362


Then, the degree to which the concept banker possesses this new derived attribute363


could be defined by364


∑
b∈banker χbanker(b)


(
χvain(b)χselfish(b)χegocentric(b)


)1/3


∑
b∈banker χbanker(b)


20.5.3 Iterating the Fuzzy Concept Formation Process365


Given a set S of concepts and/or objects with a set A of attributes, one may define366


• append_concepts(S′, S) as the result of adding the concepts in the set S′ to S,367


and evaluating all the attributes in A on these concepts, to get an expanded matrix368


w369


• append_attributes(A′, A) as the result of adding the attributes in the set A′ to370


A, and evaluating all the attributes in A′ on the concepts and objects in S, to get371


an expanded matrix w372


• collapse(S, A) is the result of taking (S, A) and eliminating any concept or373


attribute that has distance less than ε from some other concept or attribute that374


comes before it in the lexicographic ordering of concepts or attributes. I.e.,375


collapse removes near-duplicate concepts or attributes.376


Now, one may begin with a set S of objects and attributes, and iteratively run a377


process such as378


b = rˆc \\e.g. r=2, or r=1.5379


while(b>1) {380


S = append_concepts(S, form_concepts(S,b))381


S = collapse(S)382


S = append_attributes(S, form_attributes(S,b))383


S = collapse(S)384


b = b/r385


}386
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350 20 Speculative Concept Formation


with c corresponding to the number of iterations. This will terminate in finite time387


with a finitely expanded matrix w containing a number of concepts and derived388


attributes in addition to the original objects and basic attributes.389


Or, one may look at390


while(S is different from old_S) {391


old_S = S392


S = add_concepts(S, form_concepts(S,b))393


S = collapse(S)394


S = add_attributes(S, form_attributes(S,b))395


S = collapse(S)396


}397


This second version raises the mathematical question of the speed with which it398


will terminate (as a function of ε). I.e., when does the concept and attribute formation399


process converge, and how fast? This will surely depend on the clustering algorithm400


involved.401
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Chapter 21
Dimensional Embedding


21.1 Introduction0


Among the many key features of the human brain omitted by typical formal neural1


network models, one of the foremost is the brain’s three-dimensionality. The brain is2


not just a network of neurons arranged as an abstract graph; it’s a network of neurons3


arranged in three-dimensional space, and making use of this three-dimensionality4


directly and indirectly in various ways and for various purposes. The somatosensory5


cortex contains a geometric map reflecting, approximatively, the geometric structure6


of parts of the body. The Visual cortex uses the 2D layout of cortical sheets to reflect7


the geometric structure of perceived space; motion detection neurons often fire in8


the actual physical direction of motion, etc. The degree to which the brain uses 2D9


and 3D geometric structure to reflect conceptual rather than perceptual or motoric10


knowledge is unclear, but we suspect considerable. One well-known idea in this11


direction is the “self-organizing map” or Kohonen net [Koh01], a highly effective12


computer science algorithm that performs automated classification and clustering13


via projecting higher-dimensional (perceptual, conceptual or motoric) vectors into a14


simulated 2D sheet of cortex.15


It’s not clear that the exploitation of low-dimensional geometric structure is some-16


thing an AGI system necessarily must support—there are always many different17


approaches to any aspect of the AGI problem. However, the brain does make clear18


that exploitation of this sort of structure is a powerful way to integrate various useful19


heuristics. In the context of mind-world correspondence theory, there seems clear20


potential value in having a mind mirror the dimensional structure of the world, at21


some level of approximation.22


It’s also worth emphasizing that the brain’s 3D structure has minuses as well as23


plusses—one suspects it complexifies and constrains the brain, along with implicitly24


suggesting various useful heuristics. Any mathematical graph can be represented in25


3 dimensions without links crossing (unlike in 2 dimensions), but that doesn’t mean26


the representation will always be efficient or convenient—sometimes it may result27


in conceptually related, and/or frequently interacting, entities being positioned far28


B. Goertzel et al., Engineering General Intelligence, Part 2, 353
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_21,
© Atlantis Press and the authors 2014
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354 21 Dimensional Embedding


away from each other geometrically. Coupled with noisy signaling methods such as29


the brain uses, this sometime lack of alignment between conceptual/pragmatic and30


geometric structure can lead to various sorts of confusion (i.e. when neuron A sends31


a signal to physical distant neurons B, this may cause various side-effects along the32


path, some of which wouldn’t happen if A and B were close to each other).33


In the context of CogPrime, the most extreme way to incorporate a brain-like 3D34


structure would be to actually embed an Atomspace in a bounded 3D region. Then the35


Atomspace would be geometrically something like a brain, but with abstract nodes36


and links (some having explicit symbolic content) rather than purely sub symbolic37


neurons. This would not be a ridiculous thing to do, and could yield interesting38


results. However, we are unsure this would be an optimal approach. Instead we have39


opted for a more moderate approach: couple the non-dimensional Atomspace with a40


dimensional space, containing points corresponding to Atoms. That is, we perform41


an embedding of Atoms in the OpenCog AtomSpace into n-dimensional space—a42


judicious transformation of (hyper)graphs into vectors.43


This embedding has applications to PLN inference control, and to the guidance of44


instance generation in PEPL learning of Combo trees. It is also, in itself, a valuable45


and interesting heuristic for sculpting the link topology of a CogPrime AtomSpace.46


The basic dimensional embedding algorithm described here is fairly simple and not47


original to CogPrime, but it has not previously been applied in any similar context.48


The intuition underlying this approach is that there are some cases (e.g. PLN con-49


trol, and PEPL guidance) where dimensional geometry provides a useful heuristic50


for constraining a huge search space, via providing a compact way of storing a large51


amount of information. Dimensionally embedding Atoms lets CogPrime be dimen-52


sional like the brain when it needs to be, yet with the freedom of nondimensionality53


the rest of the time. This dual strategy is one that may be of value for AGI gener-54


ally beyond the CogPrime design, and is somewhat related to (though different in55


detail from) the way the CLARION cognitive architecture [SZ04] maps declarative56


knowledge into knowledge appropriate for its neural net layer.57


There is an obvious way to project CogPrime Atoms into n-dimensional space,58


by assigning each Atom a numerical vector based on the weights of its links. But this59


is not a terribly useful approach, because the vectors obtained in this way will live,60


potentially, in millions- or billions-dimensional space. The approach we describe61


here is a bit different. We are defining more specific embeddings, each one based62


on a particular link type or set of link types. And we are doing the embedding into63


a space whose dimensionality is high but not too high, e.g. n = 50. This moderate64


dimensional space could then be projected down into a lower dimensional space, like65


a 3D space, if needed.66


The philosophy underlying the ideas proposed here is similar to that underly-67


ing Principal Components Analysis (PCA) in statistics [Jol10]. The n-dimensional68


spaces we define here, like those used in PCA or LSI (for Latent Semantic Indexing69


[LMDK07]), are defined by sets of orthogonal concepts extracted from the original70


spaceof concepts. The difference is that PCA and LSI work on spaces of entities71
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21.1 Introduction 355


defined by feature vectors, whereas the methods described here work for entities72


defined as nodes in weighted graphs. There is no precise notion of orthogonality for73


nodes in a weighted graph, but one can introduce a reasonable proxy.74


21.2 Link Based Dimensional Embedding75


In this section we define the type of dimensional embedding that we will be talking76


about. For concreteness we will speak in terms of CogPrime nodes and links, but the77


discussion applies much more generally than that.78


A link based dimensional embedding is defined as a mapping that maps a set of79


CogPrime Atoms into points in an n-dimensional real space, by:80


• Mapping link strength into coordinate values in an embedding space, and81


• Representing nodes as points in this embedding space, using the coordinate values82


defined by the strengths of their links.83


In the usual case, a dimensional embedding is formed from links of a single type,84


or from links whose types are very closely related (e.g. from all symmetrical logical85


links).86


Mapping all the link strengths of the links of a given type into coordinate values87


in a dimensional space is a simple, but not a very effective strategy. The approach88


described here is based on strategically choosing a subset of particular links and89


forming coordinate values from them. The choice of links is based on the desire for a90


correspondence between the metric structure of the embedding space, and the metric91


structure implicit in the weights of the links of the type being embedded. The basic92


idea of metric preservation is depicted in Fig. 21.1.93


More formally, let proj (A) denote the point in Rn corresponding to the Atom A.94


Then if, for example, we are doing an embedding based on SimilarityLinks, we want95


there to be a strong correlation (or rather anticorrelation) between:96


(SimilarityLink A B).tv.s97


and
dE (proj (A), proj (B))


where dE denotes the Euclidean distance on the embedding space. This is a sim-98


ple case because SimilarityLink is symmetric. Dealing with asymmetric links like99


InheritanceLinks is a little subtler, and will be done below in the context of inference100


control.101


Larger dimensions generally allow greater correlation, but add complexity. If one102


chooses the dimensionality equal to the number of nodes in the graph, there is really103


no point in doing the embedding. On the other hand, if one tries to project a huge104


and complex graph into 1 or 2 dimensions, one is bound to lose a lot of important105


structure. The optimally useful embedding will be into a space whose dimension is106


large but not too large.107
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356 21 Dimensional Embedding


Fig. 21.1 Metric-preserving dimensional embedding. The basic idea of the sort of embedding
described here is to map Atoms into numerical vectors, in such a way that, on average, distance
between Atoms roughly correlates with distance between corresponding vectors. (The picture shows
a 3D embedding space for convenience, but in reality the dimension of the embedding space will
generally be much higher.)


For internal CogPrime inference purposes, we should generally use a moderately108


high-dimensional embedding space, say n = 50 or n = 100.109


21.3 Harel and Koren’s Dimensional Embedding Algorithm110


Our technique for embedding CogPrime Atoms into high-dimensional space is based111


on an algorithm suggested by David Harel and Yehuda Koren [HK02]. Their work112


is concerned with visualizing large graphs, and they propose a two-phase approach:113


1. Embed the graph into a high-dimensional real space.114


2. Project the high-dimensional points into 2D or 3D space for visualization.115


In CogPrime, we don’t always require the projection step (step 2); our focus is on116


the initial embedding step. Harel and Koren’s algorithm for dimensional embedding117


(step 1) is directly applicable to the CogPrime context.118
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21.3 Harel and Koren’s Dimensional Embedding Algorithm 357


Of course this is not the only embedding algorithm that would be reasonable to119


use in an CogPrime context; it’s just one possibility that seems to make sense.120


Their algorithm works as follows.121


Suppose one has a graph with symmetric weighted links. Further, assume that122


between any two nodes in the graph, there is a way to compute the weight that a link123


between those two nodes would have, even if the graph in fact doesn’t contain a link124


between the two nodes.125


In the CogPrime context, for instance, the nodes of the graph may be ConceptN-126


odes, and the links may be SimilarityLinks. We will discuss the extension of the127


approach to deal with asymmetric links like InheritanceLinks, later on.128


Let n denote the dimension of the embedding space (e.g. n = 50). We wish to129


map graph nodes into points in Rn , in such a way that the weight of the graph link130


between A and B correlates with the distance between proj (A) and proj (B) in Rn .131


21.3.1 Step 1: Choosing Pivot Points132


Choose n “pivot points” that are roughly uniformly distributed across the graph.133


To do this, one chooses the first pivot point at random and then iteratively chooses134


the i th point to be maximally distant from the previous (i − 1) points chosen.135


One may also use additional criteria to govern the selection of pivot points. In136


CogPrime, for instance, we may use long-term stability as a secondary criterion for137


selecting Atoms to serve as pivot points. Greater computational efficiency is achieved138


if the pivot-point Atoms don’t change frequently.139


21.3.2 Step 2: Similarity Estimation140


Estimate the similarity between each Atom being projected, and the n pivot Atoms.141


This is expensive. However, the cost is decreased somewhat in the CogPrime142


case by caching the similarity values produced in a special table (they may not be143


important enough otherwise to be preserved in CogPrime ). Then, in cases where144


neither the pivot Atom nor the Atom being compared to it have changed recently,145


the cached value can be reused.146


21.3.3 Step 3: Embedding147


Create an n-dimensional space by assigning a coordinate axis to each pivot Atom.148


Then, for an Atom i , the i th coordinate value is given by its similarity to the i th pivot149


Atom.150


After this step, one has transformed one’s graph into a collection of n-dimensional151


vectors. WIKISOURCE:EmbeddingBasedInference152
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358 21 Dimensional Embedding


21.4 Embedding Based Inference Control153


One important application for dimensional embedding in CogPrime is to help with154


the control of155


• Logical inference.156


• Direct evaluation of logical links.157


We describe how it can be used specifically to stop the CogPrime system from158


continually trying to make the same unproductive inferences.159


To understand the problem being addressed, suppose the system tries to evaluate160


the strength of the relationship161


SimilarityLink foot toilet162


Assume that no link exists in the system representing this relationship.163


Here “foot” and “toilet” are hypothetical ConceptNodes that represent aspects of164


the concepts of foot and toilet respectively. In reality these concepts might well be165


represented by complex maps rather than individual nodes.166


Suppose the system determines that the strength of this Link is very close to zero.167


Then (depending on a threshold in the MindAgent), it will probably not create a168


SimilarityLink between the “foot” and “toilet” nodes.169


Now, suppose that a few cycles later, the system again tries to evaluate the strength170


of the same Link,171


SimilarityLink foot toilet172


Again, very likely, it will find a low strength and not create the Link at all.173


The same problem may occur with InheritanceLinks, or any other (first or higher174


order) logical link type.175


Why would the system try, over and over again, to evaluate the strength of the176


same nonexistent relationship? Because the control strategies of the current forward-177


chaining inference and pattern mining MindAgents are simple by design. These178


MindAgents work by selecting Atoms from the AtomTable with probability pro-179


portional to importance, and trying to build links between them. If the foot and180


toilet nodes are both important at the same time, then these MindAgents will try to181


build links between them—regardless of how many times they’ve tried to build links182


between these two nodes in the past and failed.183


How do we solve this problem using dimensional embedding? Generally:184


• One will need a different embedding space for each link type for which one wants185


to prevent repeated attempted inference of useless relationships. Sometimes, very186


closely related link types might share the same embedding space; this must be187


decided on a case-by-case basis.188


• In the embedding space for a link type L, one only embeds Atoms of a type that189


can be related by links of type L.190


It is too expensive to create a new embedding very often. Fortunately, when a new191


Atom is created or an old Atom is significantly modified, it’s easy to reposition the192


Atom in the embedding space by computing its relationship to the pivot Atoms. Once193
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21.4 Embedding Based Inference Control 359


enough change has happened, however, new pivot Atoms will need to be recomputed,194


which is a substantial computational expense. We must update the pivot point set195


every N cycles, where N is large; or else, whenever the total amount of change in the196


system has exceeded a certain threshold.197


Now, how is this embedding used for inference control? Let’s consider the case of198


similarity first. Quite simply, one selects a pair of Atoms (A, B) for SimilarityMining199


(or inference of a SimilarityLink) based on some criterion such as, for instance:200


importance(A) * importance(B) * simproj(A,B)201


where202


distproj(A,B) = dE( proj(A) , proj(B) )203


204


simproj = 2-c*distproj205


and c is an important tunable parameter.206


What this means is that, if A and B are far apart in the SimilarityLink embedding207


space, the system is unlikely to try to assess their similarity.208


There is a tremendous space efficiency of this approach, in that, where there are209


N Atoms and m pivot Atoms, Nˆ2 similarity relationships are being approximately210


stored in m*N coordinate values. Furthermore, the cost of computation is m*N times211


the cost of assessing a single SimilarityLink. By accepting crude approximations of212


actual similarity values, one gets away with linear time and space cost.213


Because this is just an approximation technique, there are definitely going to214


be cases where A and B are not similar, even though they’re close together in the215


embedding space. When such a case is found, it may be useful for the AtomSpace216


to explicitly contain a low-strength SimilarityLink between A and B. This link will217


prevent the system from making false embedding-based decisions to explore (Sim-218


ilarityLink A B) in the future. Putting explicit low-strength SimilarityLinks in the219


system in these cases, is obviously much cheaper than using them for all cases.220


We’ve been talking about SimilarityLinks, but the approach is more broadly221


applicable. Any symmetric link type can be dealt with about the same way. For222


instance, it might be useful to keep dimensional embedding maps for223


• SimilarityLink224


• ExtensionalSimilarityLink225


• EquivalenceLink226


• ExtensionalEquivalenceLink.227


On the other hand, dealing with asymmetric links in terms of dimensional embedding228


requires more subtlety—we turn to this topic below.229


21.5 Dimensional Embedding and InheritanceLinks230


Next, how can we use dimensional embedding to keep an approximate record of231


which links do not inherit from each other? Because inheritance is an asymmetric232


relationship, whereas distance in embedding spaces is a symmetrical relationship,233


there’s no direct and simple way to do so.234
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360 21 Dimensional Embedding


However, there is an indirect approach that solves the problem, which involves235


maintaining two embedding spaces, and combining information about them in an236


appropriate way. In this subsection, we’ll discuss an approach that should work for237


InheritanceLink, SubsetLink, ImplicationLink, and ExtensionalImplicationLink and238


other related link types. But we’ll explicitly present it only for the InheritanceLink239


case.240


Although the embedding algorithm described above was intended for symmetric241


weighted graphs, in fact we can use it for asymmetric links in just about the same242


way. The use of the embedding graph for inference control differs, but not the basic243


method of defining the embedding.244


In the InheritanceLink case, we can define pivot Atoms in the same way, and then245


we can define two vectors for each Atom A:246


proj_{parent }(A)_i = (InheritanceLink A A_i).tv.s247


proj_{child}(A)_i = (InheritanceLink A_i A).tv.s248


where Ai is the i th pivot Atom.249


If generally projchild(A)i ≤ projchild(B)i then qualitatively “children of A are250


children of B”; and if generally projparent (A)i ≥ projparet (B)i then qualitatively251


“parents of B are parents of A”. The combination of these two conditions means252


heuristically that (I nheri tance A B) is likely. So, by combining the two embedding253


vectors assigned to each Atom, one can get heuristic guidance regarding inheritance254


relations, analogous to the case with similarity relationships. One may produce math-255


ematical formulas estimating the error of this approach under appropriate conditions,256


but in practice it will depend on the probability distribution of the vectors.AQ1257
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Chapter 22
Mental Simulation and Episodic Memory


22.1 Introduction0


This brief chapter deals with two important, coupled cognitive components of1


CogPrime: the component concerned with creating internal simulations of situa-2


tions and episodes in the external physical world, and the one concerned with storing3


and retrieving memories of situations and episodes.4


These are components that are likely significantly different in CogPrime from any-5


thing that exists in the human brain, yet, the functions they carry out are obviously6


essential to human cognition (perhaps more so to human cognition than to Cog-7


Prime’s cognition, because CogPrime is by design more reliant on formal reasoning8


than the human brain is).9


Much of human thought consists of internal, quasi-sensory “imaging” of the exter-10


nal physical world—and much of human memory consists of remembering autobi-11


ographical situations and episodes from daily life, or from stories heard from others12


or absorbed via media. Often this episodic remembering takes the form of visu-13


alization, but not always. Blind people generally think and remember in terms of14


non-visual imagery, and many sighted people think in terms of sounds, tastes or15


smells in addition to visual images.16


So far, the various mechanisms proposed as part of CogPrime do not have much17


to do with either internal imagery or episodic remembering, even though both seem18


to play a large role in human thought. This is OK, of course, since CogPrime is19


not intended as a simulacrum of human thought, but rather as a different sort of20


intelligence.21


However, we believe it will actually be valuable to CogPrime to incorporate both22


of these factors. And for that purpose, we propose23


• a novel mechanism: the incorporation within the CogPrime system of a 3D24


physical-world simulation engine.25


• an episodic memory store centrally founded on dimensional embedding, and linked26


to the internal simulation model.27


B. Goertzel et al., Engineering General Intelligence, Part 2, 361
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_22,
© Atlantis Press and the authors 2014
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362 22 Mental Simulation and Episodic Memory


22.2 Internal Simulations28


The current use of virtual worlds for OpenCog is to provide a space in which human-29


controlled agents and CogPrime -controlled agents can interact, thus allowing flexible30


instruction of the CogPrime system by humans, and flexible embodied, grounded31


learning by CogPrime systems. But this very same mechanism may be used internally32


to CogPrime, i.e. a CogPrime system may be given an internal simulation world,33


which serves as a sort of “mind’s eye”. Any sufficiently flexible virtual world software34


may be used for this purpose, for example OpenSim (http://opensim.org).35


Atoms encoding percepts may be drawn from memory and used to generate forms36


within the internal simulation world. These forms may then interact according to37


• The patterns via which they are remembered to act38


• The laws of physics, as embodied in the simulation world39


This allows a kind of “implicit memory”, in that patterns emergent from the world-40


embedded interaction of a number of entities need not explicitly be stored in memory,41


so long as they will emerge when the entities are re-awakened within the internal42


simulation world.43


The SimulatorMindAgent grabs important perceptual Atoms and uses them to44


generate forms within the internal simulation world, which then act according to45


remembered dynamical patterns, with the laws of physics filling in the gaps in mem-46


ory. This provides a sort of running internal visualization of the world. Just as impor-47


tant, however, are specific schemata that utilize visualization in appropriate contexts.48


For instance, if reasoning is having trouble solving a problem related to physical enti-49


ties, it may feed these entities to the internal simulation world to see what can be50


discovered. Patterns discovered via simulation can then be fed into reasoning for51


further analysis.52


The process of perceiving events and objects in the simulation world is essentially53


identical to the process of perceiving events and objects in the “actual” world.54


And of course, an internal simulation world may be used whether the CogPrime55


system in question is hooked up to a virtual world like OpenSim, or to a physical56


robot.57


Finally, perhaps the most interesting aspect of internal simulation is the genera-58


tion of “virtual perceptions” from abstract concepts. Analogical reasoning may be59


used to generate virtual perceptions that were never actually perceived, and these60


may then be visualized. The need for “reality discrimination” comes up here, and is61


easier to enforce in CogPrime than in humans. A PerceptNode that was never actually62


perceived may be explicitly embedded in a HypotheticalLink, thus avoiding the pos-63


sibility of confusing virtual percepts with actual ones. How useful the visualization64


of virtual perceptions will be to CogPrime cognition, remains to be seen. This kind65


of visualization is key to human imagination but this doesn’t mean it will play the66


same role in CogPrime’s quite different cognitive processes. But it is important that67


CogPrime has the power to carry out this kind of imagination.68
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22.3 Episodic Memory 363


22.3 Episodic Memory69


Episodic memory refers to the memory of our own “life history” that each of us has.70


Loss of this kind of memory is the most common type of amnesia in fiction—such71


amnesia is particularly dramatic because our episodic memories constitute so much72


of what we consider as our “selves”. To a significant extent, we as humans remember,73


reason and relate in terms of stories—and the centerpiece of our understanding of74


stories is our episodic memory. A CogPrime system need not be as heavily story-75


focused as a typical human being (though it could be, potentially)—but even so,76


episodic memory is a critical component of any CogPrime system controlling an77


agent in a world.78 AQ1


The core idea underlying CogPrime’s treatment of episodic memory is a sim-79


ple one: two dimensional embedding spaces dedicated to episodes. An episode—a80


coherent collection of happenings, often with causal interrelationships, often (but not81


always) occurring near the same spatial or temporal locations as each other—may be82


Fig. 22.1 Relationship between episodic, declarative and perceptual memory. The nodes and links
at the bottom depict declarative memory stored in the Atomspace; the picture at the top illustrates
an archetypal episode stored in episodic memory, and linked to the perceptual hierarchy enabling
imagistic simulation
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364 22 Mental Simulation and Episodic Memory


represented explicitly as an Atom, and implicitly as a map whose key is that Atom.83


These episode-Atoms may then be mapped into two dedicated embedding spaces:84


• One based on a distance metric determined by spatiotemporal proximity85


• One based on a distance metric determined by semantic similarity.86


A story is then a series of episodes—ideally one that, if the episodes in the series87


become important sequentially in the AtomSpace, causes a significant important-88


goal-related (ergo emotional) response in the system. Stories may also be represented89


as Atoms, in the simplest case consisting of SequentialAND links joining episode-90


Atoms. Stories then correspond to paths through the two episodic embedding spaces.91


Each path through each embedding space implicitly has a sort of “halo” in the space—92


visualizable as a tube snaking through the space, centered on the path. This tube93


Fig. 22.2 Relationship between episodic, declarative and perceptual memory. Another example
similar to the one in ??, but referring specifically to events occurring in an OpenCogPrime -controlled
agent’s virtual world
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22.3 Episodic Memory 365


contains other paths—other stories—that related to the given center story, either94


spatiotemporally or semantically.95


The familiar everyday human experience of episodic memory may then be approx-96


imatively emulated via the properties of the dimensional embedding space. For97


instance, episodic memory is famously associative—when we think of one episode98


or story, we think of others that are spatiotemporally or semantically associated with99


it. This emerges naturally from the embedding space approach, due to the natural100


emergence of distance-based associative memory in an embedding space.101


Figures 22.1 and 22.2 roughly illustrates the link between episodic/perceptual and102


declarative memory.103
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Chapter 23
Integrative Procedure Learning


23.1 Introduction0


“Procedure learning”—learning step-by-step procedures for carrying out internal1


or external operations—is a highly critical aspect of general intelligence, and is2


carried out in CogPrime via a complex combination of methods. This somewhat3


heterogeneous chapter reviews several advanced aspects of procedure learning in4


CogPrime, mainly having to do with the integration between different cognitive5


processes.6


In terms of general cognitive theory and mind-world correspondence, this is some7


of the subtlest material in the book. We are not concerned just with how the mind’s8


learning of one sort of knowledge correlated with the way this sort of knowledge is9


structured in the mind’s habitual environments, in the context of its habitual goals.10


Rather, we are concerned with how various sorts of knowledge intersect and inter-11


act with each other. The proposed algorithmic intersections between, for instance,12


declarative and procedural learning processes, are reflective of implicit assumptions13


about how declarative and procedural knowledge are presented in the world in the14


context of the system’s goals—but these implicit assumptions are not always easy15


to tease out and state in a compact way. We will do our best to highlight these16


assumptions as they arise throughout the chapter.17


Key among these assumptions, however, are that a human-like mind18


• Is presented with various procedure learning problems at various levels of difficulty19


(so that different algorithms may be appropriate depending on the difficulty level).20


This leads for instance to the possibility of using various different algorithms like21


MOSES or hillclimbing, for different procedure learning problems.22


• Is presented with some procedure learning problems that may be handled in a23


relatively isolated way, and others that are extremely heavily dependent on context,24


often in a way that recurs across multiple learning instances in similar contexts.25


This leads to a situations where the value of bringing declarative (PLN) and26


associative (ECAN) and episodic knowledge into the procedure learning process,27


has varying value depending on the situation.28


B. Goertzel et al., Engineering General Intelligence, Part 2, 367
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_23,
© Atlantis Press and the authors 2014
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368 23 Integrative Procedure Learning


• Is presented with a rich variety of procedure learning problems with complex29


interrelationships, including many problems that are closely related to previously30


solved problems in various ways. This highlights the value of using PLN analogical31


reasoning, and importance spreading along HebbianLinks learned by ECAN, to32


help guide procedure learning in various ways.33


• Needs to learn some procedures whose execution may be carried out in a relatively34


isolated way, and other procedures whose execution requires intensive ongoing35


interaction with other cognitive processes.36


The diversity of procedure learning situations reflected in these assumptions, leads37


naturally to the diversity of technical procedure learning approaches described in38


this chapter. Potentially one could have a single, unified algorithm covering all the39


different sorts of procedure learning, but instead we have found it more practical to40


articulate a small number of algorithms which are then combined in different ways41


to yield the different kinds of procedure learning.42


23.1.1 The Diverse Technicalities of Procedure Learning43


in CogPrime44


On a technical level, this chapter discusses two closely related aspects of CogPrime:45


schema learning and predicate learning, which we group under the general category46


of “procedure learning”.47


Schema learning—the learning of SchemaNodes and schema maps (explained48


further in the Chap. 24)—is CogPrime lingo for learning how to do things. Learning49


how to act, how to perceive, and how to think—beyond what’s explicitly encoded50


in the system’s MindAgents. As an advanced CogPrime system becomes more pro-51


foundly self-modifying, schema learning will drive more and more of its evolution.52


Predicate learning, on the other hand, is the most abstract and general man-53


ifestation of pattern recognition in the CogPrime system. PredicateNodes, along54


with predicate maps, are CogPrime’s way of representing general patterns (general55


within the constraints imposed by the system parameters, which in turn are governed56


by hardware constraints). Predicate evolution, predicate mining and higher-order57


inference—specialized and powerful forms of predicate learning—are the system’s58


most powerful ways of creating general patterns in the world and in the mind. Simpler59


forms of predicate learning are grist for the mill of these processes.60


It may be useful to draw an analogy with another (closely related) very hard prob-61


lem in CogPrime, discussed in the book Probabilistic Logic Networks: probabilistic62


logical unification, which in the CogPrime /PLN framework basically comes down63


to finding the Satisfying Sets of given predicates. Hard logical unification problems64


can often be avoided by breaking down large predicates into small ones in strategic65


ways, guided by non-inferential mind processes, and then doing unification only on66


the smaller predicates. Our limited experimental experience indicates that the same67


“hierarchical breakdown” strategy also works for schema and predicate learning,68
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23.1 Introduction 369


to an extent. But still, as with unification, even when one does break down a large69


schema or predicate learning problem into a set of smaller problems, one is still in70


most cases left with a set of fairly hard problems.71


More concretely, CogPrime procedure learning may be generally decomposed72


into three aspects:73


1. Converting back and forth between maps and ProcedureNodes (encapsulation74


and expansion)75


2. Learning the Combo Trees to be embedded in grounded ProcedureNodes76


3. Learning procedure maps (networks of grounded ProcedureNodes acting in a77


coordinated way to carry out procedures).78


Each of these three aspects of CogPrime procedure learning mentioned above may79


be dealt with somewhat separately, though relying on largely overlapping methods.80


CogPrime approaches these problems using a combination of techniques:81


• Evolutionary procedure learning and hillclimbing for dealing with brand new pro-82


cedure learning problems, requiring the origination of innovative, highly approx-83


imate solutions out of the blue84


• Inferential procedure learning for taking approximate solutions and making them85


exact, and for dealing with procedure learning problems within domains where86


closely analogous procedure learning problems have previously been solved87


• Heuristic, probabilistic data mining for the creation of encapsulated procedures88


(which then feed into inferential and evolutionary procedure learning), and the89


expansion of encapsulated procedures into procedure maps90


• PredictiveImplicationLink formation (augmented by PLN inference on such links)91


as a CogPrime version of goal-directed reinforcement learning.92


Using these different learning methods together, as a coherently-tuned whole, one93


arrives at a holistic procedure learning approach that combines speculation, system-94


atic inference, encapsulation and credit assignment in a single adaptive dynamic95


process.96


We are relying on a combination of techniques to do what none of the techniques97


can accomplish on their own. The combination is far from arbitrary, however. As we98


will see, each of the techniques involved plays a unique and important role.99


23.1.1.1 Comments on an Alternative Representational Approach100


We briefly pause to contrast certain technical aspects of the present approach to101


analogous aspects of the Webmind AI Engine (one of CogPrime’s predecessor AI102


systems, briefly discussed in Sect. 1.1). This predecessor system used a knowledge103


representation somewhat similar to the Atomspace, but with various differences; for104


instance the base types were Node and Link rather than Atom, and there was a Node105


type not used in CogPrime called the SchemaInstanceNode (each one corresponding106


to a particular instance of a SchemaNode, used within a particular procedure).107
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370 23 Integrative Procedure Learning


In this approach, complex, learned schema were represented as distributed net-108


works of elementary SchemaInstanceNodes, but these networks were not defined109


purely by function application—they involved explicit passing of variable values110


through VariableNodes. Special logic-gate-bearing objects were created to deal with111


the distinction between arguments of a SchemaInstanceNode, and predecessor tokens112


giving a SchemaInstanceNode permission to act.113


While this approach is in principle workable, it proved highly complex in prac-114


tice, and for the Novamente Cognition Engine and CogPrime we chose to store115


and manipulate procedural knowledge separately from declarative knowledge (via116


Combo trees).117


23.2 Preliminary Comments on Procedure Map Encapsulation118


and Expansion119


Like other knowledge in CogPrime, procedures may be stored in either a localized120


(Combo tree) or globalized (procedure map) manner, with the different approaches121


being appropriate for different purposes. Activation of a localized procedure may122


spur activation of a globalized procedure, and vice versa—so on the overall mind-123


network level the representation of procedures is heavily “glocal”.124


One issue that looms large in this context is the conversion between localized and125


globalized procedures—i.e., in CogPrime lingo, the encapsulation and expansion of126


procedure maps. This matter will be considered in more detail in Chap. 24 but here127


we briefly review some key ideas.128


Converting from grounded ProcedureNodes into maps is a relatively simple learn-129


ing problem: one enacts the procedure, observes which Atoms are active at what times130


during the enaction process, and then creating PredictiveImplicationLinks between131


the Atoms active at a certain time and those active at subsequent times. Generally it132


will be necessary to enact the procedure multiple times and with different inputs, to133


build up the appropriate library of PredictiveImplicationLinks.134


Converting from maps into ProcedureNodes is significantly trickier. First, it135


involves carrying out data mining over the network of ProcedureNodes, identifying136


subnetworks that are coherent schema or predicate maps. Then it involves translating137


the control structure of the map into explicit logical form, so that the encapsulated138


version will follow the same order of execution as the map version. This is an impor-139


tant case of the general process of map encapsulation, to be discussed in Chap. 24.140


Next, the learning of grounded ProcedureNodes is carried out by a synergis-141


tic combination of multiple mechanisms, including pure procedure learning meth-142


ods like hillclimbing and evolutionary learning, and logical inference. These two143


approaches have quite different characteristics. Evolutionary learning and hillclimb-144


ing excel at confronting a problem that the system has no clue about, and arriving at145


a reasonably good solution in the form of a schema or predicate. Inference excels at146


deploying the system’s existing knowledge to form useful schemata or predicates.147
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23.2 Preliminary Comments on Procedure Map Encapsulation and Expansion 371


The choice of the appropriate mechanism for a given problem instance depends148


largely on how much relevant knowledge is available.149


A relatively simple case of ProcedureNode learning is where one is given a Con-150


ceptNode and wants to find a ProcedureNode matching it. For instance, given a151


ConceptNode C, one may wish to find the simplest possible predicate whose corre-152


sponding PredicateNode P satisfies153


SatisfyingSet(P) = C154


On the other hand, given a ConceptNode C involved in inferred ExecutionLinks of155


the form156


ExecutionLink C Ai Bi157


i=1,...,n158


one may wish to find a SchemaNode so that the corresponding SchemaNode will159


fulfill this same set of ExecutionLinks. It may seem surprising at first that a Con-160


ceptNode might be involved with ExecutionLinks, but remember that a function can161


be seen as a set of tuples (ListLink in CogPrime) where the first elements, the inputs162


of the function, are associated with a unique output. These kinds of ProcedureNode163


learning may be cast as optimization problems, and carried out by hillclimbing or164


evolutionary programming. Once procedures are learned via evolutionary program-165


ming or other techniques, they may be refined via inference.166


The other case of ProcedureNode learning is goal-driven learning. Here one seeks167


a SchemaNode whose execution will cause a given goal (represented by a Goal Node)168


to be satisfied. The details of Goal Nodes have already been reviewed; but all we need169


to know here is simply that a Goal Node presents an objective function, a function170


to be maximized; and that it poses the problem of finding schemata whose enaction171


will cause this function to be maximized in specified contexts.172


The learning of procedure maps, on the other hand, is carried out by reinforcement173


learning, augmented by inference. This is a matter of the system learning Hebbian-174


Links between ProcedureNodes, as will be described below.175


23.3 Predicate Schematization176


Now we turn to the process called “predicate schematization”, by which declara-177


tive knowledge about how to carry out actions may be translated into Combo trees178


embodying specific procedures for carrying out actions. This process is straightfor-179


ward and automatic in some cases, but in other cases requires significant contextually-180


savvy inference. This is a critical process because some procedure knowledge—181


especially that which is heavily dependent on context in either its execution or its182


utility—will be more easily learned via inferential methods than via pure procedure-183


learning methods. But, even if a procedure is initially learned via inference (or is184


learned by inference based on cruder initial guesses produced by pure procedure185


learning methods), it may still be valuable to have this procedure in compact and186


rapidly executable form such as Combo provides.187
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372 23 Integrative Procedure Learning


To proceed with the technical description of predicate schematization in Cog-188


Prime, we first need the notion of an “executable predicate”. Some predicates are189


executable in the sense that they correspond to executable schemata, others are not.190


There are executable atomic predicates (represented by individual PredicateNodes),191


and executable predicates (which are link structures). In general, a predicate may be192


turned into a schema if it is an atomic executable predicate, or if it is a compound193


link structure that consists entirely of executable atomic predicates (e.g. pick_up,194


walk_to, can_do, etc.) and temporal links (e.g. SimultaneousAND, PredictiveImpli-195


cation, etc.).196


Records of predicate execution may then be made using ExecutionLinks, e.g.197


ExecutionLink pick_up ( me , ball_7)198


is a record of the fact that the schema corresponding to the pick_up predicate was199


executed on the arguments (me, ball_7).200


It is also useful to introduce some special (executable) predicates related to schema201


execution:202


• can_do, which represents the system’s perceived ability to do something203


• do, which denotes the system actually doing something; this is used to mark actions204


as opposed to perceptions205


• just_done, which is true of a schema if the schema has very recently been executed.206


The general procedure used in figuring out what predicates to schematize, in order207


to create a procedure achieving a certain goal, is: Start from the goal and work back-208


wards, following PredictiveImplications and EventualPredictiveImplications and209


treating can_do’s as transparent, stopping when you find something that can cur-210


rently be done, or else when the process dwindles due to lack of links or lack of211


sufficiently certain links.212


In this process, an ordered list of perceptions and actions will be created. The213


Atoms in this perception/action-series (PA-series) are linked together via temporal-214


logical links.215


The subtlety of this process, in general, will occur because there may be many216


different paths to follow. One has the familiar combinatorial explosion of backward-217


chaining inference, and it may be hard to find the best PA-series among all the mess.218


Experience-guided pruning is needed here just as with backward-chaining inference.219


Specific rules for translating temporal links into executable schemata, used in this220


process, are as follows. All these rule-statements assume that B is in the selected PA-221


series. All node variables not preceded by do or can_do are assumed to be perceptions.222


The → denotes the transformation from predicates to executable schemata.223


EventualPredictiveImplicationLink (do A) B224


→225


Repeat (do A) Until B226


EventualPredictiveImplicationLink (do A) (can_do B)227


→228
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23.3 Predicate Schematization 373


Repeat229


do A230


do B231


Until232


Evaluation just_done B233


the understanding being that the agent may try to do B and fail, and then try again234


the next time around the loop235


PredictiveImplicationLink (do A) (can_do B)<time -lag T>236


→237


do A238


wait T239


do B240


SimultaneousImplicationLink A (can_do B)241


→242


if A then do B243


SimultaneousImplicationLink (do A) (can_do B)244


→245


do A246


do B247


PredictiveImplicationLink A (can_do B)248


→249


if A then do B250


SequentialAndLink A1 ... An251


→252


A1253


...254


An255


SequentialAndLink A1 ... An <time_lag T>256


→257


A1258


Wait T259


A2260


Wait T261


...262


Wait T263


An264


SimultaneousANDLink A1 ? An265
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374 23 Integrative Procedure Learning


→266


A1267


...268


An269


Note how all instances of can_do are stripped out upon conversion from predicate to270


schema, and replaced with instances of do.271


23.3.1 A Concrete Example272


For a specific example of this process, consider the knowledge that: “If I walk to the273


teacher while whistling, and then give the teacher the ball, I’ll get rewarded.”274


This might be represented by the predicates275


walk to the teacher while whistling276


A_1 :=277


SimultaneousAND278


do Walk_to279


ExOutLink locate teacher280


EvaluationLink do whistle281


If I walk to the teacher while whistling, eventually I will be next to the teacher282


EventualPredictiveImplication283


A_1284


Evaluation next_to teacher285


While next to the teacher, I can give the teacher the ball286


SimultaneousImplication287


EvaluationLink next_to teacher288


can_do289


EvaluationLink give (teacher , ball)290


If I give the teacher the ball, I will get rewarded291


PredictiveImplication292


just_done293


EvaluationLink done give (teacher , ball)294


Evaluation reward295


Via goal-driven predicate schematization, these predicates would become the296


schemata297


walk toward the teacher while whistling298


Repeat:299


do WalkTo300


ExOut locate teacher301


do Whistle302


Until:303


next_to(teacher , ball)304
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23.3 Predicate Schematization 375


if next to the teacher, give the teacher the ball305


If:306


Evaluation next_to teacher307


Then308


do give(teacher , ball)309


Carrying out these two schemata will lead to the desired behavior of walking toward310


the teacher while whistling, and then giving the teacher the ball when next to the311


teacher.312


Note that, in this example:313


• The walk_to, whistle, locate and give used in the example schemata are procedures314


corresponding to the executable predicates walk_to, whistle, locate and give used315


in the example predicates316


• Next_to is evaluated rather than executed because (unlike the other atomic predi-317


cates in the overall predicate being made executable) it has no “do” or “can_do”318


next to it.319


23.4 Concept-Driven Schema and Predicate Creation320


In this section we will deal with the “conversion” of ConceptNodes into SchemaN-321


odes or PredicateNodes. The two cases involve similar but nonidentical methods;322


we will begin with the simpler PredicateNode case. Conceptually, the importance of323


this should be clear: sometimes knowledge may be gained via concept-learning or324


linguistic means, but yet may be useful to the mind in other forms, e.g. as executable325


schema or evaluable predicates. For instance, the system may learn conceptually326


about bicycle-riding, but then may also want to learn executable procedures allow-327


ing it to ride a bicycle. Or it may learn conceptually about criminal individuals, but328


may then want to learn evaluable predicates allowing it to quickly evaluate whether329


a given individual is a criminal or not.330


23.4.1 Concept-Driven Predicate Creation331


Suppose we have a ConceptNode C, with a set of links of the form332


MemberLink A_i C, i=1,...,n333


Our goal is to find a PredicateNode so that firstly,334


MemberLink X C335


336


is equivalent to337


338


X ’’within ’’ SatisfyingSet(P)339


and secondly,340
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376 23 Integrative Procedure Learning


P is as simple as possible341


This is related to the “Occam’s Razor”, Solomonoff induction related heuristic to342


be presented later in this chapter.343


We now have an optimization problem: search the space of predicates for P that344


maximize the objective function f(P,C), defined as for instance345


f (P, C) = cp(P) × r(C, P)


where cp(P), the complexity penalty of P , is a positive function that decreases when346


P gets larger and with r(C, P) =347


GetStrength348


SimilarityLink349


C350


SatisfyingSet(P)351


This is an optimization problem over predicate space, which can be solved in an352


approximate way by the evolutionary programming methods described earlier.353


The ConceptPredicatization MindAgent selects ConceptNodes based on354


• Importance355


• Total (truth value based) weight of attached MemberLinks and EvaluationLinks356


and launches an evolutionary learning or hillclimbing task focused on learning pred-357


icates based on the nodes it selects.358


23.4.2 Concept-Driven Schema Creation359


In the schema learning case, instead of a ConceptNode with MemberLinks and360


EvaluationLinks, we begin with a ConceptNode C with ExecutionLinks. These Exe-361


cutionLinks were presumably produced by inference (the only CogPrime cognitive362


process that knows how to create ExecutionLinks for non-ProcedureNodes).363


The optimization problem we have here is: search the space of schemata for S
that maximize the objective function f (S, C), defined as follows:


f (S, C) = cp(S) × r(S, C)


Let Q(C) be the set of pairs (X, Y ) so that ExecutionLink C X Y , and364


r(S,C) =365


366


GetStrength367


SubsetLink368


Q(C)369


Graph(S)370
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23.4 Concept-Driven Schema and Predicate Creation 377


where Graph(S) denotes the set of pairs (X, Y ) so that ExecutionLink S X Y ,371


where S has been executed over all valid inputs.372


Note that we consider a SubsetLink here because in practice C would have been373


observed on a partial set of inputs.374


Operationally, the situation here is very similar to that with concept predicati-375


zation. The ConceptSchematization MindAgent must select ConceptNodes based376


on:377


• Importance378


• Total (truth value based) weight of ExecutionLinks379


and then feed these to evolutionary optimization or hillclimbing.380


23.5 Inference-Guided Evolution of Pattern-Embodying381


Predicates382


Now we turn to predicate learning—the learning of PredicateNodes, in particular.383


Aside from logical inference and learning predicates to match existing concepts,384


how does the system create new predicates? Goal-driven schema learning (via evolu-385


tion or reinforcement learning) provides one alternate approach: create predicates in386


the context of creating useful schema. Pattern mining, discussed in Chap. 19, provides387


another. Here we will describe (yet) another complementary dynamic for predicate388


creation: pattern-oriented, inference-guided PredicateNode evolution.389


In most general terms, the notion pursued here is to form predicates that embody390


patterns in itself and in the world. This brings us straight back to the foundations of the391


patternist philosophy of mind, in which mind is viewed as a system for recognizing392


patterns in itself and in the world, and then embodying these patterns in itself. This393


general concept is manifested in many ways in the CogPrime design, and in this394


section we will discuss two of them:395


• Reward of surprisingly probable Predicates396


• Evolutionary learning of pattern-embodying Predicates.397


These are emphatically not the only way pattern-embodying PredicateNodes get into398


the system. Inference and concept-based predicate learning also create PredicateN-399


odes embodying patterns. But these two mechanisms complete the picture.400


23.5.1 Rewarding Surprising Predicates401


The TruthValue of a PredicateNode represents the expected TruthValue obtained by402


averaging its TruthValue over all its possible legal argument-values. Some Predicates,403


however, may have high TruthValue without really being worthwhile. They may not404


add any information to their components. We want to identify and reward those405
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378 23 Integrative Procedure Learning


Predicates whose TruthValues actually add information beyond what is implicit in406


the simple fact of combining their components.407


For instance, consider the PredicateNode408


AND409


InheritanceLink X man410


InheritanceLink X ugly411


If we assume the man and ugly concepts are independent, then this PredicateNode
will have the TruthValue


man.tv.s × ugly.tv.s


In general, a PredicateNode will be considered interesting if:412


1. Its Links are important413


2. Its TruthValue differs significantly from what would be expected based on inde-414


pendence assumptions about its components.415


It is of value to have interesting Predicates allocated more attention than uninteresting416


ones. Factor 1 is already taken into account, in a sense: if the PredicateNode is417


involved in many Links this will boost its activation which will boost its importance.418


On the other hand, Factor 2 is not taken into account by any previously discussed419


mechanisms.420


For instance, we may wish to reward a PredicateNode if it has a surprisingly large421


or small strength value. One way to do this is to calculate:422


sdi f f = |actual strength − strength predicted via independence assumptions|423


×weight_of _evidence424


425


and then increment the value:
K × sdi f f


onto the PredicateNode’s LongTermImportance value, and similarly increment STI426


using a different constant.427


Another factor that might usefully be caused to increment LTI is the simplicity428


of a PredicateNode. Given two Predicates with equal strength, we want the sys-429


tem to prefer the simpler one over the more complex one. However, the Occams430


Razor MindAgent, to be presented below, rewards simpler Predicates directly in431


their strength values. Hence if the latter is in use, it seems unnecessary to reward432


them for their simplicity in their LTI values as well. This is an issue that may require433


some experimentation as the system develops.434


Returning to the surprisingness factor, consider the PredicateNode representing435


AND436


InheritanceLink X cat437


EvaluationLink (eats X) fish438
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23.5 Inference-Guided Evolution of Pattern-Embodying Predicates 379


If this has a surprisingly high truth value, this means that there are more X known to439


(or inferred by) the system, that both inherit from cat and eat fish, than one would440


expect given the probabilities of a random X both inheriting from cat and eating fish.441


Thus, roughly speaking, the conjunction of inheriting from cat and eating fish may442


be a pattern in the world.443


We now see one very clear sense in which CogPrime dynamics implicitly leads to444


predicates representing patterns. Small predicates that have surprising truth values445


get extra activation, hence are more likely to stick around in the system. Thus the446


mind fills up with patterns.447


23.5.2 A More Formal Treatment448


It is worth taking a little time to clarify the sense in which we have a pattern in449


the above example, using the mathematical notion of pattern reviewed in Chap. 4 of450


Vol. 5.451 AQ1


Consider the predicate:452


pred1(T).tv453


equals454


>455


GetStrength456


AND457


Inheritance $X cat458


Evaluation eats ($X , fish)459


T460


where T is some threshold value (e.g. 0.8). Let B = SatisfyingSet(pred1(T)). B is the461


set of everything that inherits from cat and eats fish.462


Now we will make use of the notion of basic complexity. If one assumes the463


entire AtomSpace A constituting a given CogPrime system as given background464


information, then the basic complexity c(B||A) may be considered as the number of465


bits required to list the handles of the elements of B, for lookup in A; whereas c(B)466


is the number of bits required to actually list the elements of B. Now, the formula467


given above, defining the set B, may be considered as a process P whose output is the468


set B. The simplicity c(P||A) is the number of bits needed to describe this process,469


which is a fairly small number. We assume A is given as background information,470


accessible to the process.471


Then the degree to which P is a pattern in B is given by472


1 − c(P||A)/c(B||A)


which, if B is a sizable category, is going to be pretty close to 1.473


The key to there being a pattern here is that the relation:474


(Inheritance X cat) AND (eats X fish)475


has a high strength and also a high count. The high count means that B is a large476


set, either by direct observation or by hypothesis (inference). In the case where the477
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380 23 Integrative Procedure Learning


count represents actual pieces of evidence observed by the system and retained in478


memory, then quite literally and directly, the PredicateNode represents a pattern in a479


subset of the system (relative to the background knowledge consisting of the system480


as a whole). On the other hand, if the count value has been obtained indirectly by481


inference, then it is possible that the system does not actually know any examples482


of the relation. In this case, the PredicateNode is not a pattern in the actual memory483


store of the system, but it is being hypothesized to be a pattern in the world in which484


the system is embedded.485


23.6 PredicateNode Mining486


We have seen how the natural dynamics of the CogPrime system, with a little help487


from special heuristics, can lead to the evolution of Predicates that embody patterns488


in the system’s perceived or inferred world. But it is also valuable to more aggres-489


sively and directly create pattern-embodying Predicates. This does not contradict the490


implicit process, but rather complements it. The explicit process we use is called491


PredicateNode Mining and is carried out by a PredicateNodeMiner MindAgent.492


Define an Atom structure template as a schema expression corresponding to a493


CogPrime Link in which some of the arguments are replaced with variables. For494


instance,495


Inheritance X cat496


497


EvaluationLink (eats X) fish498


are Atom structure templates. (Recall that Atom structure templates are important in499


PLN inference control, as reviewed in Chap. 18 of Vol. 5)500


What the PredicateNodeMiner does is to look for Atom structure templates and501


logical combinations thereof which502


• Minimize PredicateNode size503


• Maximize surprisingness of truth value.504


This is accomplished by a combination of heuristics.505


The first step in PredicateNode mining is to find Atom structure templates with506


high truth values. This can be done by a fairly simple heuristic search process.507


First, note that if one specifies an (Atom, Link type), one is specifying a set of508


Atom structure templates. For instance, if one specifies509


(cat, InheritanceLink)510


then one is specifying the templates511


InheritanceLink $X cat512


and513


InheritanceLink cat $X514


319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-027_18





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


23.6 PredicateNode Mining 381


One can thus find Atom structure templates as follows. Choose an Atom with high515


truth value, and then, for each Link type, tabulate the total truth value of the Links of516


this type involving this Atom. When one finds a promising (Atom, Link type) pair,517


one can then do inference to test the truth value of the Atom structure template one518


has found.519 AQ2


Next, given high-truth-value Atom structure templates, the PredicateNodeMiner520


experiments with joining them together using logical connectives. For each potential521


combination it assesses the fitness in terms of size and surprisingness. This may be522


carried out in two ways:523


1. By incrementally building up larger combinations from smaller ones, at each524


incremental stage keeping only those combinations found to be valuable525


2. For large combinations, by evolution of combinations.526


Option 1 is basically greedy data mining (which may be carried out via various stan-527


dard algorithms, as discussed in Chap. 19), which has the advantage of being much528


more rapid than evolutionary programming, but the disadvantage that it misses large529


combinations whose subsets are not as surprising as the combinations themselves.530


It seems there is room for both approaches in CogPrime (and potentially many531


other approaches as well). The PredicateNodeMiner MindAgent contains a parame-532


ter telling it how much time to spend on stochastic pattern mining versus evolution,533


as well as parameters guiding the processes it invokes.534


So far we have discussed the process of finding single-variable Atom structure535


templates. But multivariable Atom structure templates may be obtained by combining536


single-variable ones. For instance, given537


eats $X fish538


539


lives_in $X Antarctica540


one may choose to investigate various combinations such as541


(eats $X $Y) AND (lives_in $X $Y)542


(this particular example will have a predictably low truth value). So, the introduction543


of multiple variables may be done in the same process as the creation of single-544


variable combinations of Atom structure templates.545


When a suitably fit Atom structure template or logical combination thereof is546


found, then a PredicateNode is created embodying it, and placed into the AtomSpace.547


WIKISOURCE:SchemaMaps.548


23.7 Learning Schema Maps549


Next we plunge into the issue of procedure maps—schema maps in particular.550


A schema map is a simple yet subtle thing—a subnetwork of the AtomSpace con-551


sisting of SchemaNodes, computing some useful quantity or carrying out some use-552


ful process in a cooperative way. The general purpose of schema maps is to allow553


319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030-0_19





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


382 23 Integrative Procedure Learning


schema execution to interact with other mental processes in a more flexible way554


than is allowed by compact Combo trees with internal hooks into the AtomSpace.555


I.e., to handle cases where procedure execution needs to be very highly interactive,556


mediated by attention allocation and other CogPrime dynamics in a flexible way.557


But how can schema maps be learned? The basic idea is simply reinforcement558


learning. In a goal-directed system consisting of interconnected, cooperative ele-559


ments, you reinforce those connections and/or those elements that have been helpful560


for achieving goals, and weaken those connections that haven’t. Thus, over time, you561


obtain a network of elements that achieves goals effectively.562


The central difficulty in all reinforcement learning approaches is the ‘assignment563


of credit’ problem. If a component of a system has been directly useful for achieving564


a goal, then rewarding it is easy. But if the relevance of a component to a goal is565


indirect, then things aren’t so simple. Measuring indirect usefulness in a large, richly566


connected system is difficult—inaccuracies creep into the process easily.567


In CogPrime, reinforcement learning is handled via HebbianLinks, acted on by a568


combination of cognitive processes. Earlier, in Chap. 5, we reviewed the semantics569


of HebbianLinks, and discussed two methods for forming HebbianLinks:570


1. Updating HebbianLink strengths via mining of the System Activity Table571


2. Logical inference on HebbianLinks, which may also incorporate the use of infer-572


ence to combine HebbianLinks with other logical links (for instance, in the573


reinforcement learning context, PredictiveImplicationLinks).574


We now describe how HebbianLinks, formed and manipulated in this manner, may575


play a key role in goal-driven reinforcement learning. In effect, what we will describe576


is an implicit integration of the bucket brigade with PLN inference. The addition of577


robust probabilistic inference adds a new kind of depth and precision to the rein-578


forcement learning process.579


Goal Nodes have an important ability to stimulate a lot of SchemaNode execution580


activity. If a goal needs to be fulfilled, it stimulates schemata that are known to make581


this happen. But how is it known which schemata tend to fulfill a given goal? A link:582


PredictiveImplicationLink S G583


means that after schema S has been executed, goal G tends to be fulfilled. If these584


links between goals and goal-valuable schemata exist, then activation spreading from585


goals can serve the purpose of causing goal-useful schemata to become active.586


The trick, then, is to use HebbianLinks and inference thereon to implicitly guess587


PredictiveImplicationLinks. A HebbianLink between S1 and S says that when think-588


ing about S1 was useful in the past, thinking about S was also often useful. This589


suggests that if doing S achieves goal G, maybe doing S1 is also a good idea. The590


system may then try to find (by direct lookup or reasoning) whether, in the cur-591


rent context, there is a PredictiveImplication joining S1 to S. In this way Hebbian592


reinforcement learning is being used as an inference control mechanism to aid in the593


construction of a goal-directed chain of PredictiveImplicationLinks, which may then594


be schematized into a contextually useful procedure.595
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23.7 Learning Schema Maps 383


Note finally that this process feeds back into itself in an interesting way, via596


contributing to ongoing HebbianLink formation. Along the way, while leading to the597


on-the-fly construction of context-appropriate procedures that achieve goals, it also598


reinforces the HebbianLinks that hold together schema maps, sculpting new schema599


maps out of the existing field of interlinked SchemaNodes.600


23.7.1 Goal-Directed Schema Evolution601


Finally, as a complement to goal-driven reinforcement learning, there is also a602


process of goal-directed SchemaNode learning. This combines features of the goal-603


driven reinforcement learning and concept-driven schema evolution methods dis-604


cussed above. Here we use a Goal Node to provide the fitness function for schema605


evolution.606


The basic idea is that the fitness of a schema is defined by the degree to which607


enactment of that schema causes fulfillment of the goal. This requires the introduction608


of CausalImplicationLinks, as defined in PLN. In the simplest case, a CausalImpli-609


cationLink is simply a PredictiveImplicationLink.610


One relatively simple implementation of the idea is as follows. Suppose we have
a Goal Node G, whose satisfaction we desire to have achieved by time T1. Suppose
we want to find a SchemaNode S whose execution at time T2 will cause G to be
achieved. We may define a fitness function for evaluating candidate S by:


f (S, G, T 1, T 2) = cp(S) × r(S, G, T 1, T 2)


r(S,G,T1 ,T2) =611


GetStrength612


CausalImplicationLink613


EvaluationLink614


AtTime615


T1616


ExecutionLink S X Y617


EvaluationLink AtTime (T2, G)618


Another variant specifies only a relative time lag, not two absolute times.


f (S, G, T ) = cp(S) × v(S, G, T )


619


v(S,G,T) =620


AND621


NonEmpty622


SatisfyingSet r(S,G,T1 ,T2)623


T1 > T2 - T624
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384 23 Integrative Procedure Learning


Using evolutionary learning or hillclimbing to find schemata fulfilling these fit-625


ness functions, results in SchemaNodes whose execution is expected to cause the626


achievement of given goals. This is a complementary approach to reinforcement-627


learning based schema learning, and to schema learning based on PredicateNode628


concept creation. The strengths and weaknesses of these different approaches need629


to be extensively experimentally explored. However, prior experience with the learn-630


ing algorithms involved gives us some guidance.631


We know that when absolutely nothing is known about an objective function,632


evolutionary programming is often the best way to proceed. Even when there is633


knowledge about an objective function, the evolution process can take it into account,634


because the fitness functions involve logical links, and the evaluation of these logical635


links may involve inference operations.636


On the other hand, when there’s a lot of relevant knowledge embodied in previ-637


ously executed procedures, using logical reasoning to guide new procedure creation638


can be cumbersome, due to the overwhelming potentially useful number of facts to639


choose when carrying inference. The Hebbian mechanisms used in reinforcement640


learning may be understood as inferential in their conceptual foundations (since a641


HebbianLink is equivalent to an ImplicationLink between two propositions about642


importance levels). But in practice they provide a much-streamlined approach to643


bringing knowledge implicit in existing procedures to bear on the creation of new644


procedures. Reinforcement learning, we believe, will excel at combining existing645


procedures to form new ones, and modifying existing procedures to work well in646


new contexts. Logical inference can also help here, acting in cooperation with rein-647


forcement learning. But when the system has no clue how a certain goal might be648


fulfilled, evolutionary schema learning provides a relatively time-efficient way for it649


to find something minimally workable.650


Pragmatically, the GoalDrivenSchemaLearning MindAgent handles this aspect651


of the system’s operations. It selects Goal Nodes with probability proportional to652


importance, and then spawns problems for the Evolutionary Optimization Unit Group653


accordingly. For a given Goal Node, PLN control mechanisms are used to study its654


properties and select between the above objective functions to use, on an heuristic655


basis.656


23.8 Occam’s Razor657


Finally we turn to an important cognitive process that fits only loosely into the658


category of “CogPrime Procedure learning”—it’s not actually a procedure learning659


process, but rather a process that utilizes the fruits of procedure learning.660


The well-known “Occam’s razor” heuristic says that all else being equal, simpler is661


better. This notion is embodied mathematically in the Solomonoff-Levin “universal662


prior”, according to which the a priori probability of a computational entity X is663


defined as a normalized version of:664
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23.8 Occam’s Razor 385


m(X) =
∑


p


2−l(p)
665


where:666


• The sum is taken over all programs p that compute X667


• l(p) denotes the length of the program p.668


Normalization is necessary because these values will not automatically sum to 1 over669


the space of all X.670


Without normalization, m is a semimeasure rather than a measure; with normal-671


ization it becomes the “Solomonoff-Levin measure” [Lev94].672


Roughly speaking, Solomonoff’s induction theorem [Sol64a, Sol64b] shows that,673


if one is trying to learn the computer program underlying a given set of observed674


data, and one does Bayesian inference over the set of all programs to try and obtain675


the answer, then if one uses the universal prior distribution one will arrive at the676


correct answer.677


CogPrime is not a Solomonoff induction engine. The computational cost of actu-678


ally applying Solomonoff induction is unrealistically large. However, as we have seen679


in this chapter, there are aspects of CogPrime that are reminiscent of Solomonoff680


induction. In concept-directed schema and predicate learning, in pattern-based pred-681


icate learning—and in causal schema learning, we are searching for schemata and682


predicates that minimize complexity while maximizing some other quality. These683


processes all implement the Occam’s Razor heuristic in a Solomonoffian style.684


Now we will introduce one more method of imposing the heuristic of algorithmic685


simplicity on CogPrime Atoms (and hence, indirectly, on CogPrime maps as well).686


This is simply to give a higher a priori probability to entities that are more simply687


computable.688


For starters, we may increase the node probability of ProcedureNodes proportion-689


ately to their simplicity. A reasonable formula here is simply:690


2−rc(P)
691


where P is the ProcedureNode and r > 0 is a parameter. This means that infinitely692


complex P have a priori probability zero, whereas an infinitely simple P has an a693


priori probability 1.694


This is not an exact implementation of the Solomonoff-Levin measure, but it’s695


a decent heuristic approximation. It is not pragmatically realistic to sum over the696


lengths of all programs that do the same thing as a given predicate P. Generally697


the first term of the Solomonoff-Levin summation is going to dominate the sum698


anyway, so if the ProcedureNode P is maximally compact, then our simplified formula699


will be a good approximation of the Solomonoff-Levin summation. These a priori700


probabilities may be merged with node probability estimates from other sources,701


using the revision rule.702


A similar strategy may be taken with ConceptNodes. We want to reward a Con-703


ceptNode C with a higher a priori probability if C ∈ SatisfyingSet(P) for a simple704
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386 23 Integrative Procedure Learning


PredicateNode P. To achieve this formulaically, let sim(X, Y ) denote the strength of705


the SimilarityLink between X and Y, and let:706


sim′(C, P) = sim(C, SatisfyingSet(P))707


We may then define the a priori probability of a ConceptNode as:708


pr(C) =
∑


P


sim′(C, P)2−rc(P)
709


where the sum goes over all P in the system. In practice of course it’s only necessary710


to compute the terms of the sum corresponding to P so that sim′(C, P) is large.711


As with the a priori PredicateNode probabilities discussed above, these a priori712


Concept Node probabilities may be merged with other node probability information,713


using the revision rule, and using a default parameter value for the weight of evi-714


dence. There is one pragmatic difference here from the PredicateNode case, though.715


As the system learns new PredicateNodes, its best estimate of pr(C) may change.716


Thus it makes sense for the system to store the a priori probabilities of ConceptN-717


odes separately from the node probabilities, so that when the a priori probability is718


changed, a two step operation can be carried out:719


• First, remove the old a priori probability from the node probability estimate, using720


the reverse of the revision rule721


• Then, add in the new a priori probability.722


Finally, we can take a similar approach to any Atom Y produced by a SchemaNode.723


We can construct:724


pr(Y ) =
∑


S,X


s(S, X, Y )2−r(c(S)+c(X))
725


where the sum goes over all pairs (S, X) so that:726


ExecutionLink S X Y727


and s(S, X, Y ) is the strength of this ExecutionLink. Here, we are rewarding Atoms728


that are produced by simple schemata based on simple inputs.729


The combined result of these heuristics is to cause the system to prefer simpler730


explanations, analysis, procedures and ideas. But of course this is only an Apriori731


preference, and if more complex entities prove more useful, these will quickly gain732


greater strength and importance in the system.733


Implementationally, these various processes are carried out by the Occams Razor734


MindAgent. This dynamic selects ConceptNodes based on a combination of:735
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23.8 Occam’s Razor 387


• Importance736


• Time since the a priori probability was last updated (a long time is preferred).737


It selects ExecutionLinks based on importance and based on the amount of time since738


they were last visited by the Occams Razor MindAgent. And it selects PredicateN-739


odes based on importance, filtering out PredicateNodes it has visited before.740
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Chapter 24
Map Formation


24.1 Introduction0


In Chap. 2 we distinguished the explicit versus implicit aspects of knowledge1


representation in CogPrime. The explicit level consists of Atoms with clearly com-2


prehensible meanings, whereas the implicit level consists of “maps”—collections of3


Atoms that become important in a coordinated manner, analogously to cell assem-4


blies in an attractor neural net. The combination of the two is valuable because the5


world-patterns useful to human-like minds in achieving their goals, involve varying6


degrees of isolation and interpenetration, and their effective goal-oriented process-7


ing involves both symbolic manipulation (for which explicit representation is most8


valuable) and associative creative manipulation (for which distributed, implicit rep-9


resentation is most valuable).10


The chapters since have focused primarily on explicit representation, comment-11


ing on the implicit “map” level only occasionally. There are two reasons for this:12


one theoretical, one pragmatic. The theoretical reason is that the majority of map13


dynamics and representations are implicit in Atom-level correlates. And the prag-14


matic reason is that, at this stage, we simply do not know as much about CogPrime15


maps as we do about CogPrime Atoms. Maps are emergent entities and, lacking16


a detailed theory of CogPrime dynamics, the only way we have to study them in17


detail is to run CogPrime systems and mine their System Activity Tables and logs18


for information. If CogPrime research goes well, then updated versions of this book19


may include more details on observed map dynamics in various contexts.20


In this chapter, however, we finally turn our gaze directly to maps and their21


relationships to Atoms, and discuss processes that convert Atoms into maps22


(expansion) and vice versa (encapsulation). These processes represent a bridge23


between the concretely-implemented and emergent aspects of CogPrime’s mind.24 AQ1


Map encapsulation is the process of recognizing Atoms that tend to become im-25


portant in a coordinated manner, and then creating new Atoms grouping these. As26


such it is essentially a form of AtomSpace pattern mining. In terms of patternist27


philosophy, map encapsulation is a direct incarnation of the so-called “cognitive28


B. Goertzel et al., Engineering General Intelligence, Part 2, 389
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_24,
© Atlantis Press and the authors 2014
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390 24 Map Formation


equation”; that is, the process by which the mind recognizes patterns in itself, and29


then embodies these patterns as new content within itself—an instance of what Hof-30


stadter famously labeled a “strange loop” [Hof79]. In SMEPH terms, the encapsu-31


lation process is how CogPrime explicitly studies its own derived hypergraph and32


then works to implement this derived hypergraph more efficiently by recapitulating33


it at the concretely-implemented-mind level. This of course may change the derived34


hypergraph considerably. Among other things, map encapsulation has the possibility35


of taking the things that were the most abstract, highest level patterns in the system36


and forming new patterns involving them and their interrelationships—thus building37


the highest level of patterns in the system higher and higher. Figures 24.1 and 24.238


illustrate concrete examples of the process.AQ2 39


Map expansion, on the other hand, is the process of taking knowledge that is ex-40


plicitly represented and causing the AtomSpace to represent it implicitly, on the map41


level. In many cases this will happen automatically. For instance, a ConceptNode C42


may turn into a concept map if the importance updating process iteratively acts in43


such a way as to create/reinforce a map consisting of C and its relata. Or, an Atom-44


level InheritanceLink may implicitly spawn a map-level InheritanceEdge (in SMEPH45


terms). However, there is one important case in which Atom-to-map conversion must46


occur explicitly: the expansion of compound ProcedureNodes into procedure maps.47


This must occur explicitly because the process graphs inside ProcedureNodes have48


Fig. 24.1 Illustration of the process of creating explicit Atoms corresponding to a pattern previously
represented as a distributed “map”


319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


24.1 Introduction 391


Fig. 24.2 Illustration of the process of creating explicit Atoms corresponding to a pattern previously
represented as a distributed “map”


no dynamics going on except evaluation; there is no opportunity for them to mani-49


fest themselves as maps, unless a MindAgent is introduced that explicitly does so.50


Of course, just unfolding a Combo tree into a procedure map doesn’t intrinsically51


make it a significant part of the derived hypergraph—but it opens the door for the52


inter-cognitive-process integration that may make this occur.53
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392 24 Map Formation


24.2 Map Encapsulation54


Returning to encapsulation: it may be viewed as a form of symbolization, in which55


the system creates concrete entities to serve as symbols for its own emergent patterns.56


It can then study an emergent pattern’s interrelationships by studying the interrela-57


tionships of the symbol with other symbols.58


For instance, suppose a system has three derived-hypergraph ConceptVertices59


A, B and C, and observes that:60


InheritanceEdge A B61


InheritanceEdge B C62


Then encapsulation may create ConceptNodes A′, B′ and C′ for A, B and C, and63


InheritanceLinks corresponding to the InheritanceEdges, where e.g. A′ is a set con-64


taining all the Atoms contained in the static map A. First-order PLN inference will65


then immediately conclude:66


InheritanceLink A’ C’67


and it may possibly do so with a higher strength than the strength corresponding to the68


(perhaps not significant) InheritanceEdge between A and C. But if the encapsulation69


is done right then the existence of the new InheritanceLink will indirectly cause the70


formation of the corresponding:71


InheritanceEdge A C72


via the further action of inference, which will use (InheritanceLink A′ C′) to trigger73


the inference of further inheritance relationships between members of A′ and mem-74


bers of C′, which will create an emergent inheritance between members of A (the75


map corresponding to A′) and C (the map corresponding to C′).76


The above example involved the conversion of static maps into ConceptNodes.77


Another approach to map encapsulation is to represent the fact that a set of Atoms78


constitutes a map as a predicate; for instance if the nodes A, B and C are habitually79


used together, then the predicate P may be formed, where:80


P =81


AND82


A is used at time T83


B is used at time T84


C is used at time T85


The habitualness of A, B and C being used together will be reflected in the fact86


that P has a surprisingly high truth value. By a simple concept formation heuristic,87


this may be used to form a link AND (A, B, C), so that:88


AND(A, B, C) is used at time T89


This composite link AND (A, B, C) is then an embodiment of the map in single-90


Atom form.91
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24.2 Map Encapsulation 393


Similarly, if a set of schemata is commonly used in a certain series, this may be92


recognized in a predicate, and a composite schema may then be created embodying93


the component schemata. For instance, suppose it is recognized as a pattern that:94


AND95


S1 is used at time T on input I1 producing96


output O197


S2 is used at time T+s on input O1 producing98


output O299


Then we may explicitly create a schema that consists of S1 taking input and feeding100


its output to S2. This cannot be done via any standard concept formation heuristic;101


it requires a special process.102


One might wonder why this Atom-to-map conversion process is necessary: Why103


not just let maps combine to build new maps, hierarchically, rather than artificially104


transforming some maps into Atoms and letting maps then form from these map-105


representing Atoms. It is all a matter of precision. Operations on the map level are106


fuzzier and less reliable than operations on the Atom level. This fuzziness has its posi-107


tive and its negative aspects. For example, it is good for spontaneous creativity, but bad108


for constructing lengthy, confident chains of thought. WIKISOURCE:ActivityTables109


24.3 Atom and Predicate Activity Tables110


A major role in map formation is played by a collection of special tables. Map111


encapsulation takes place, not by data mining directly on the AtomTable, but by data112


mining on these special tables constructed from the AtomTable, specifically with113


efficiency of map mining in mind.114


First, there is the Atom Utilization Table, which may be derived from the Sys-115


temActivityTable. The Atom Utilization Table, in its most simple possible version,116


takes the form shown in Table 24.1.117


The calculation of “utility” values for this purpose must be done in a “local” way by118


MindAgents, rather than by a global calculation of the degree to which utilizing a119


certain Atom has led to the achievement of a certain system goal (this kind of global120


calculation would be better in principle, but it would require massive computational121


effort to calculate for every Atom in the system at frequent intervals). Each Mind122


Agent needs to estimate how much utility it has obtained from a given Atom, as well123


as how much effort it has spent on this Atom, and report these numbers to the Atom124


Utilization Table.125


Table 24.1 Atom utilization
table


Time Atom Handle H


? ? ?
T ? (Effort spent on Atom H at time t, utility


derived from atom H at time t)
? ? ?
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394 24 Map Formation


The normalization of effort values is simple, since effort can be quantified in terms126


of time and space expended. Normalization of utility values is harder, as it is difficult127


to define a common scale to span all the different MindAgents, which in some cases128


carry out very different sorts of operations. One reasonably “objective” approach129


is to assign each MindAgent an amount of “utility credit”, at time T, equal to the130


amount of currency that the MindAgent has spent since it last disbursed its utility131


credits. It may then divide up its utility credit among the Atoms it has utilized. Other132


reasonable approaches may also be defined.133


The use of utility and utility credit for Atoms and MindAgents is similar to the134


stimulus used in the Attention allocation system. There, MindAgents reward Atoms135


with stimulus to indicate that their short and long term importance should be in-136


creased. Merging utility and stimulus is a natural approach to implementing utility137


in OpenCogPrime.138


Note that there are many practical manifestations that the abstract notion of an139


ActivityTable may take. It could be an ordinary row-and-column style table, but that140


is not the only nor the most interesting possibility. An ActivityTable may also be141


effectively stored as a series of graphs corresponding to time intervals—one graph142


for each interval, consisting of HebbianLinks formed solely based on importance143


during that interval. In this case it is basically a set of graphs, which may be stored144


for instance in an AtomTable, perhaps with a special index.145


Then there is the Procedure Activity Table, which records the inputs and outputs146


associated with procedures:147


Data mining on these tables may be carried out by a variety of algorithms (see148


MapMining)—the more advanced the algorithm, the fuller the transfer from the149


derived-hypergraph level to the concretely-implemented level. There is a tradeoff150


here similar to that with attention allocation—if too much time is spent studying151


the derived hypergraph, then there will not be any interesting cognitive dynamics152


going on anymore because other cognitive processes get no resources, so the map153


encapsulation process will fail because there is nothing to study!154


These same tables may be used in the attention allocation process, for assign-155


ing of MindAgent-specific AttentionValues to Atoms. WIKISOURCE:MapMining156


(Table 24.2)157AQ3


Table 24.2 Procedure
activity table for a particular
MindAgent


Time ProcedureNode Handle H


? ? ?
T ? (Inputs to H, Outputs from H)
? ? ?
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24.4 Mining the AtomSpace for Maps 395


24.4 Mining the AtomSpace for Maps158


Searching for general maps in a complex AtomSpace is an unrealistically difficult159


problem, as the search space is huge. So, the bulk of map-mining activity involves160


looking for the most simple and obvious sorts of maps. A certain amount of resources161


may also be allocated to looking for subtler maps using more resource-intensive162


methods.163


The following categories of maps can be searched for at relatively low cost:164


• Static maps165


• Temporal motif maps.166


Conceptually, a static map is simply a set of Atoms that all tend to be active at167


the same time.168


Next, by a “temporal motif map” we mean a set of pairs:169


(Ai , ti )170


of the type:171


(Atom, int)172


so that for many activation cycle indices T , Ai is highly active at some time very173


close to index T + ti . The reason both static maps and temporal motif maps are easy174


to recognize is that they are both simply repeated patterns.175


Perceptual context formation involves a special case of static and temporal motif176


mining. In perceptual context formation, one specifically wishes to mine maps in-177


volving perceptual nodes associated with a single interaction channel (see Chap. 8178


for interaction channel). These maps then represent real-world contexts, that may be179


useful in guiding real-world-oriented goal activity (via schema-context-goal triads).180


In CogPrime so far we have considered three broad approaches for mining static181


and temporal motif maps from AtomSpaces:182


• Frequent subgraph mining, frequent itemset mining, or other sorts of datamining183


on Activity Tables184


• Clustering on the network of HebbianLinks185


• Evolutionary Optimization based datamining on Activity Tables186


The first two approaches are significantly more time-efficient than the latter, but also187


significantly more limited in the scope of patterns they can find.188


Any of these approaches can be used to look for maps subject to several types of189


constraints, such as for instance:190


• Unconstrained: maps may contain any kinds of Atoms191


• Strictly constrained: maps may only contain Atom types contained on a certain192


list193
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396 24 Map Formation


• Probabilistically constrained: maps must contain Atom types contained on a194


certain list, as x % of their elements195


• Trigger-constrained: the map must contain an Atom whose type is on a certain196


list, as its most active element197


Different sorts of constraints will lead to different sorts of maps, of course. We don’t198


know at this stage which sorts of constraints will yield the best results. Some special199


cases, however, are reasonably well understood. For instance:200


• Procedure encapsulation, to be discussed below, involves searching for (strictly-201


constrained) maps consisting solely of ProcedureInstanceNodes.202


• To enhance goal achievement, it is likely useful to search for trigger-constrained203


maps triggered by Goal Nodes.204


What the MapEncapsulation CIM-Dynamic (Concretely-Implemented-Mind-205


Dynamic, see Chap. 1) does once it finds a map, is dependent upon the type of206


map it’s found. In the special case of procedure encapsulation, it creates a compound207


ProcedureNode (selecting SchemaNode or PredicateNode based on whether the out-208


put is a TruthValue or not). For static maps, it creates a ConceptNode, which links to209


all members of the map with MemberLinks, the weight of which is determined by210


the degree of map membership. For dynamic maps, it creates PredictiveImplication211


links depicting the pattern of change.212


24.4.1 Frequent Itemset Mining for Map Mining213


One class of technique that is useful here is frequent itemset mining (FIM), a process214


that looks to find all frequent combinations of items occurring in a set of data. Another215


useful class of algorithms is greedy or stochastic itemset mining, which does roughly216


the same thing as FIM but without being completely exhaustive (the advantage being217


greater execution speed). Here we will discuss FIM, but the basic concepts are the218


same if one is doing greedy or stochastic mining instead.219


The basic goal of frequent itemset mining is to discover frequent subsets in a group220


of items. One knows that for a set of N items, there are 2N−1 possible subgroups. To221


avoid the exponential explosion of subsets, one may compute the frequent itemsets222


in several rounds. Round i computes all frequent i-itemsets.223


A round has two steps: candidate generation and candidate counting. In the can-224


didate generation step, the algorithm generates a set of candidate i-itemsets whose225


support—a minimum percentage of events in which the item must appear—has not226


been yet been computed. In the candidate-counting step, the algorithm scans its227


memory database, counting the support of the candidate itemsets. After the scan, the228


algorithm discards candidates with support lower than the specified minimum (an229


algorithm parameter) and retains only the frequent i-itemsets. The algorithm reduces230


the number of tested subsets by pruning a priori those candidate itemsets that can-231


not be frequent, based on the knowledge about infrequent itemsets obtained from232
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24.4 Mining the AtomSpace for Maps 397


previous rounds. So for instance if {A, B} is a frequent 2-itemset then {A, B, C}233


may possibly be a 3-itemset, on the contrary if {A, B} is not a frequent itemset then234


{A, B, C}, as well as any super set of {A, B}, will be discarded. Although the worst235


case of this sort of algorithm is exponential, practical executions are generally fast,236


depending essentially on the support limit.237


To apply this kind of approach to search for static maps, one simply creates a238


large set of sets of Atoms—one set for each time-point. In the set S(t) corresponding239


to time t, we place all Atoms that were firing activation at time t. The itemset miner240


then searches for sets of Atoms that are subsets of many different S(t) corresponding241


to many different times t. These are Atom sets that are frequently co-active.242


Table ?? presents a typical example of data prepared for frequent itemset mining,243


in the context of context formation via static-map recognition. Columns represent244


important nodes and rows indicate time slices. For simplicity, we have thresholded245


the values and show only activity values; so that a one in a cell indicates that the246


Atom indicated by the column was being utilized at the time indicated by the row.247


In the example, if we assume minimum support as 50 %, the context nodes C1 =248


{Q, R}, and C2 = {Q, T, U} would be created.249


Using frequent itemset mining to find temporal motif maps is a similar, but slightly250


more complex process. Here, one fixes a time-window W. Then, for each activation251


cycle index t, one creates a set S(t) consisting of pairs of the form:252


(A, s)253


where A is an Atom and 0 ≤ s ≤ W is an integer temporal offset. We have:254


(A,s) ‘‘within ’’ S(t)255


if Atom A is firing activation at time t + s. Itemset mining is then used to search256


for common subsets among the S(t). These common subsets are common patterns of257


temporal activation, i.e. repeated temporal motifs.258


The strength of this approach is its ability to rapidly search through a huge space259


of possibly significant subsets. Its weakness is its restriction to finding maps that260


can be incrementally built up from smaller maps. How significant this weakness261


is, depends on the particular statistics of map occurrence in CogPrime. Intuitively,262


we believe frequent itemset mining can perform rather well in this context, and our263


preliminary experiments have supported this intuition.264


Frequent Subgraph Mining for Map Mining265


A limitation of FIM techniques, from a CogPrime perspective, is that they are266


intended for relational databases (RDBs); but the information about co-activity in a267


CogPrime instance is generally going to be more efficiently stored as graphs rather268


than RDB’s. Indeed an ActivityTable may be effectively stored as a series of graphs269


corresponding to time intervals—one graph for each interval, consisting of Hebbian-270


Links formed solely based on importance during that interval. From ActivityTable271


stores like this, the way to find maps is not frequent itemset mining but rather frequent272
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398 24 Map Formation


subgraph mining—a variant of FIM that is conceptually similar but algorithmically273


more subtle, and on which there has arisen a significant literature in recent years.274


We have already briefly discussed this technology in Chap. 19 on pattern mining275


the Atomspace—map mining being an important special case of Atomspace pattern276


mining. As noted there, some of the many approaches to frequent subgraph mining277


are described in [HWP03, KK01].278


24.4.2 Evolutionary Map Detection279


Just as general Atomspace pattern mining may be done via evolutionary learning as280


well as greedy mining, the same holds for the special case of map mining. Comple-281


mentary to the itemset mining approach, the CogPrime design also uses evolutionary282


optimization to find maps. Here the data setup is the same as in the itemset mining283


case, but instead of using an incremental search approach, one sets up a population284


of subsets of the sets S(t), and seeks to evolve the population to find an optimally285


fit S(t). Fitness is defined simply as high frequency—relative to the frequency one286


would expect based on statistical independence assumptions alone.287


In principle one could use evolutionary learning to do all map encapsulation, but288


this isn’t computationally feasible—it would limit too severely the amount of map en-289


capsulation that could be done. Instead, evolutionary learning must be supplemented290


by some more rapid, less expensive technique.291


24.5 Map Dynamics292


Assume one has a collection of Atoms, with:293


• Importance values I(A), assigned via the economic attention allocation294


mechanism.295


• HebbianLink strengths (HebbianLink A B).tv.s, assigned as (loosely speaking)296


the probability of B’s importance assuming A’s importance.297


Then, one way to search for static maps is to look for collections C of Atoms that are298


strong clusters according to HebbianLinks. That is, for instance, to find collections299


C so that:300


• The mean strength of (HebbianLink A B).tv.s, where A and B are in the collection301


C, is large.302


• The mean strength of (HebbianLink A Z).tv.s, where A is in the collection C and303


Z is not, is small.304


(this is just a very simple cluster quality measurement; there is a variety of other305


cluster quality measurements one might use instead.)306
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24.5 Map Dynamics 399


Dynamic maps may be more complex, for instance there might be two collections307


C1 and C2 so that:308


• Mean strength of (HebbianLink A B).s, where A is in C1 and B is in C2309


• Mean strength of (HebbianLink B A).s, where B is in C2 and A is in C1310


are both very large.311


A static map will tend to be an attractor for CogPrime’s attention-allocation-based312


dynamics, in the sense that when a few elements of the map are acted upon, it is likely313


that other elements of the map will soon also come to be acted upon. The reason314


is that, if a few elements of the map are acted upon usefully, then their importance315


values will increase. Node probability inference based on the HebbianLinks will then316


cause the importance values of the other nodes in the map to increase, thus increasing317


the probability that the other nodes in the map are acted upon. Critical here is that the318


HebbianLinks have a higher weight of evidence than the node importance values.319


This is because the node importance values are assumed to be ephemeral—they320


reflect whether a given node is important at a given moment or not—whereas the321


HebbianLinks are assumed to reflect longer-lasting information.322


A dynamic map will also be an attractor, but of a more complex kind. The example323


given above, with C1 and C2, will be a periodic attractor rather than a fixed-point324


attractor. WIKISOURCE:ProcedureEncapsulation.325


24.6 Procedure Encapsulation and Expansion326


One of the most important special cases of map encapsulation is procedure encapsu-327


lation. This refers to the process of taking a schema/predicate map and embodying it328


in a single ProcedureNode. This may be done by mining on the Procedure Activity329


Table, described in Activity Tables, using either:330


• A special variant of itemset mining that seeks for procedures whose outputs serve331


as inputs for other procedures.332


• Evolutionary optimization with a fitness function that restricts attention to sets of333


procedures that form a digraph, where the procedures lie at the vertices and an334


arrow from vertex A to vertex B indicates that the outputs of A become the inputs335


of B.336


The reverse of this process, procedure expansion, is also interesting, though337


algorithmically easier—here one takes a compound ProcedureNode and expands338


its internals into a collection of appropriately interlinked ProcedureNodes. The chal-339


lenge here is to figure out where to split a complex Combo tree into subtrees. But if340


the Combo tree has a hierarchical structure then this is very simple; the hierarchical341


subunits may simply be split into separate ProcedureNodes.342


These two processes may be used in sequence to interesting effect: expanding343


an important compound ProcedureNode so it can be modified via reinforcement344
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400 24 Map Formation


learning, then encapsulating its modified version for efficient execution, then perhaps345


expanding this modified version later on.346


To an extent, the existence of these two different representations of procedures is347


an artifact of CogPrime’s particular software design (and ultimately, a reflection of348


certain properties of the von Neumann computing architecture). But it also represents349


a more fundamental dichotomy, between:350


• Procedures represented in a way that allows them to be dynamically, improvisation-351


ally restructured via interaction with other mental processes during the execution352


process.353


• Procedures represented in a way that is relatively encapsulated and mechanical,354


allowing collaboration with other aspects of the mind during execution only in355


fairly limited ways.356


Conceptually, we believe that this is a very useful distinction for a mind to make.357


In nearly any reasonable cognitive architecture, it’s going to be more efficient to358


execute a procedure if that procedure is treated as something with a relatively rigid359


structure, so it can simply be executed without worrying about interactions except in360


a few specific regards. This is a strong motivation for an artificial cognitive system to361


have a dual (at least) representation of procedures, or else a subtle representation that362


is flexible regarding its degree of flexibility, and automagically translates constraint363


into efficiency.364


24.6.1 Procedure Encapsulation in More Detail365


A procedure map is a temporal motif: it is a set of Atoms (ProcedureNodes), which366


are habitually executed in a particular temporal order, and which implicitly pass367


arguments amongst each other. For instance, if procedure A acts to create node X,368


and procedure B then takes node X as input, then we may say that A has implicitly369


passed an argument to B.370


The encapsulation process can recognize some very subtle patterns, but a fair371


fraction of its activity can be understood in terms of some simple heuristics.372


For instance, the map encapsulation process will create a node373


h = B f g = f ◦ g = f composed with g374


(B as in combinatory logic) when there are many examples in the system of:375


ExecutionLink g x y376


ExecutionLink f y z377


The procedure encapsulation process will also recognize larger repeated subgraphs,378


and their patterns of execution over time. But some of its recognition of larger sub-379


graphs may be done incrementally, by repeated recognition of simple patterns like380


the ones just described.381
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24.6 Procedure Encapsulation and Expansion 401


24.6.2 Procedure Encapsulation in the Human Brain382


Finally, we briefly discuss some conceptual issues regarding the relation between383


CogPrime procedure encapsulation and the human brain. Current knowledge of the384


human brain is weak in this regard, but we won’t be surprised if, in time, it is revealed385


that the brain stores procedures in several different ways, that one distinction between386


these different ways has to do with degree of openness to interactions, and that the387


less open ways lead to faster execution.388


Generally speaking, there is good evidence for a neural distinction between proce-389


dural, episodic and declarative memory. But knowledge about distinctions between390


different kinds of procedural memory is scanter. It is known that procedural knowl-391


edge can be “routinized”—so that, e.g. once you get good at serving a tennis ball or392


solving a quadratic equation, your brain handles the process in a different way than393


before when you were learning. And it seems plausible that routinized knowledge,394


as represented in the brain, has fewer connections back to the rest of the brain than395


the pre-routinized knowledge. But there will be much firmer knowledge about such396


things in the coming years and decades as brain scanning technology advances.397


Overall, there is more knowledge in cognitive and neural science about motor398


procedures than cognitive procedures (see e.g. [SW05]. In the brain, much of motor399


procedural memory resides in the pre-motor area of the cortex. The motor plans400


stored here are not static entities and are easily modified through feedback, and401


through interaction with other brain regions. Generally, a motor plan will be stored402


in a distributed way across a significant percentage of the premotor cortex; and a403


complex or multipart actions will tend to involve numerous sub-plans, executed in404


both parallel and in serial. Often what we think of as separate/distinct motor-plans405


may in fact be just slightly different combinations of subplans (a phenomenon also406


occurring with schema maps in CogPrime ).407


In the case of motor plans, a great deal of the routinization process has to do with408


learning the timing necessary for correct coordination between muscles and motor409


subplans. This involves integration of several brain regions—for instance, timing410


is handled by the cerebellum to a degree, and some motor-execution decisions are411


regulated by the basal ganglia.412


One can think of many motor plans as involving abstract and concrete sub-plans.413


The abstract sub-plans are more likely to involve integration with those parts of the414


cortex dealing with conceptual thought. The concrete sub-plans have highly opti-415


mized timings, based on close integration with cerebellum, basal ganglia and so416


forth—but are not closely integrated with the conceptualization-focused parts of417


the brain. So, a rough CogPrime model of human motor procedures might involve418


schema maps coordinating the abstract aspects of motor procedures, triggering activ-419


ity of complex SchemaNodes containing precisely optimized procedures that interact420


carefully with external actuators. WIKISOURCE:MapsAndAttention.421
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402 24 Map Formation


24.7 Maps and Focused Attention422


The cause of map formation is important to understand. Formation of small maps423


seems to follow from the logic of focused attention, along with hierarchical maps of424


a certain nature. But the argument for this is somewhat subtle, involving cognitive425


synergy between PLN inference and economic attention allocation.426


The nature of PLN is that the effectiveness of reasoning is maximized by (among427


other strategies) minimizing the number of incorrect independence assumptions.428


If reasoning on N nodes, the way to minimize independence assumptions is to use the429


full inclusion-exclusion formula to calculate interdependencies between the N nodes.430


This involves 2N terms, one for each subset of the N nodes. Very rarely, in practical431


cases, will one have significant information about all these subsets. However, the432


nature of focused attention is that the system seeks to find out about as many of these433


subsets as possible, so as to be able to make the most accurate possible inferences,434


hence minimizing the use of unjustified independence assumptions. This implies that435


focused attention cannot hold too many items within it at one time, because if N is436


too big, then doing a decent sampling of the subsets of the N items is no longer437


realistic.438


So, suppose that N items have been held within focused attention, meaning that439


a lot of predicates embodying combinations of N items have been constructed and440


evaluated and reasoned on. Then, during this extensive process of attentional focus,441


many of the N items will be useful in combination with each other—because of442


the existence of predicates joining the items. Hence, many HebbianLinks will grow443


between the N items—causing the set of N items to form a map.444


By this reasoning, it seems that focused attention will implicitly be a map forma-445


tion process—even though its immediate purpose is not map formation, but rather446


accurate inference (inference that minimizes independence assumptions by com-447


puting as many cross terms as is possible based on available direct and indirect448


evidence). Furthermore, it will encourage the formation of maps with a small num-449


ber of elements in them (say, N<10). However, these elements may themselves be450


ConceptNodes grouping other nodes together, perhaps grouping together nodes that451


are involved in maps. In this way, one may see the formation of hierarchical maps,452


formed of clusters of clusters of clusters..., where each cluster has N<10 elements453


in it. These hierarchical maps manifest the abstract dual network concept that occurs454


frequently in CogPrime philosophy.455


It is tempting to postulate that any intelligent system must display similar456


properties—so that focused attention, in general, has a strictly limited scope and457


causes the formation of maps that have central cores of roughly the same size as458


its scope. If this is indeed a general principle, it is an important one, because it tells459


you something about the general structure of derived hypergraphs associated with460


intelligent systems, based on the computational resource constraints of the systems.461


The scope of an intelligent system’s attentional focus would seem to generally462


increase logarithmically with the system’s computational power. This follows im-463


mediately if one assumes that attentional focus involves free intercombination of464
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24.7 Maps and Focused Attention 403


the items within it. If attentional focus is the major locus of map formation, then—465


lapsing into SMEPH-speak—it follows that the bulk of the ConceptVertices in the466


intelligent system’s derived hypergraphs may correspond to maps focused on a fairly467


small number of other ConceptVertices. In other words, derived hypergraphs may468


tend to have a fairly localized structure, in which each ConceptVertex has very strong469


InheritanceEdges pointing from a handful of other ConceptVertices (corresponding470


to the other things that were in the attentional focus when that ConceptVertex was471


formed). WIKISOURCE:RecognizingAndCreatingSelfReferentialStructures.472


24.8 Recognizing and Creating Self-Referential Structures473


Finally, this brief section covers a large and essential topic: how CogPrime will be474


able to recognize and create large-scale self-referential structures.475


Some of the most essential structures underlying human-level intelligence are476


self-referential in nature. These include:477


• The phenomenal self (see Thomas Metzinger’s book “Being No One”)478


• The will479


• Reflective awareness480


These structures are arguably not critical for basic survival functionality in natural481


environments. However, they are important for adequate functionality within ad-482


vanced social systems, and for abstract thinking regarding science, humanities, arts483


and technology.484


Recall that in Chap. 4 of Vol. 5 these entities are formalized in terms of hypersets485


and, the following recursive definitions are given:486


• “S is conscious of X” is defined as: The declarative content that “S is conscious487


of X” correlates with “X is a pattern in S”488


• “S wills X” is defined as: The declarative content that “S wills X” causally implies489


“S does X”490


• “X is part of S’s self” is defined as: The declarative content that “X is a part of491


S’s self” correlates with “X is a persistent pattern in S over time”492


Relatedly, one may posit multiple similar processes that are mutually recursive, e.g.493


• S is conscious of T and U494


• T is conscious of S and U495


• U is conscious of S and T496


The cognitive importance of this sort of mutual recursion is further discussed in497


Appendix ??.498 AQ4


According to the philosophy underlying CogPrime, none of these are things that499


should be programmed into an artificial mind. Rather, they must emerge in the course500


of a mind’s self-organization in connection with its environment. However, a mind501


may be constructed so that, by design, these sorts of important self-referential struc-502


tures are encouraged to emerge.503
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404 24 Map Formation


24.8.1 Encouraging the Recognition of Self-Referential504


Structures in the AtomSpace505


How can we do this—encourage a CogPrime instance to recognize complex self-506


referential structures that may exist in its AtomTable? This is important, because,507


according to the same logic as map formation: if these structures are explicitly recog-508


nized when they exist, they can then be reasoned on and otherwise further refined,509


which will then cause them to exist more definitively, and hence to be explicitly510


recognized as yet more prominent patterns... etc. The same virtuous cycle via which511


ongoing map recognition and encapsulation is supposed to lead to concept formation,512


may be posited on the level of complex self-referential structures, leading to their513


refinement, development and ongoing complexity.514


One really simple way is to encode self-referential operators in the Combo vocab-515


ulary, that is used to represent the procedures grounding GroundedPredicateNodes.516


That way, one can recognize self-referential patterns in the AtomTable via standard517


CogPrime methods like MOSES and integrative procedure and predicate learning as518


discussed in Chap. 23, so long as one uses Combo trees that are allowed to include519


self-referential operators at their nodes. All that matters is that one is able to take one520


of these Combo trees, compare it to an AtomTable, and assess the degree to which521


that Combo tree constitutes a pattern in that AtomTable.522


But how can we do this? How can we match a self-referential structure like:523


EquivalenceLink524


EvaluationLink will (S,X)525


CausalImplicationLink526


EvaluationLink will (S,X)527


EvaluationLink do (S,X)528


against an AtomTable or portion thereof?529


The question is whether there is some “map” of Atoms (some set of Predicate530


Nodes) willMap, so that we may infer the SMEPH (see Chap. 14 of Vol. 5) relation-531


ship:532


EquivalenceEdge533


EvaluationEdge willMap (S,X)534


CausalImplicationEdge535


EvaluationEdge willMap (S,X)536


EvaluationEdge doMap (S,X)537


as a statistical pattern in the AtomTable’s history over the recent past. (Here, doMap538


is defined to be the map corresponding to the built-in “do” predicate.)539


If so, then this map willMap, may be encapsulated in a single new Node (call it540


willNode), which represents the system’s will. This willNode may then be explicitly541


reasoned upon, used within concept creation, etc. It will lead to the spontaneous542


formation of a more sophisticated, fully-fleshed-out will map. And so forth.543


Now, what is required for this sort of statistical pattern to be recognizable in544


the AtomTable’s history? What is required is that EquivalenceEdges (which, note,545


must be part of the Combo vocabulary in order for any MOSES-related algorithms546
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24.8 Recognizing and Creating Self-Referential Structures 405


to recognize patterns involving them) must be defined according to the logic of547


hypersets rather than the logic of sets. What is fascinating is that this is no big deal!548


In fact, the AtomTable software structures support this automatically; it’s just not549


the way most people are used to thinking about things. There is no reason, in terms550


of the AtomTable, not to create self-referential structures like the one given above.551


The next question, though, is how do we calculate the truth values of structures like552


those above. The truth value of a hyperset structure turns out to be an infinite order553


probability distribution, which a complex and peculiar entity [Goe10a]. Infinite-order554


probability distributions are partially-ordered, and so one can compare the extent to555


which two different self-referential structures apply to a given body of data (e.g. an556


AtomTable), via comparing the infinite-order distros that constitute their truth values.557


In this way, one can recognize self-referential patterns in an AtomTable, and carry out558


encapsulation of self-referential maps. This sounds very abstract and complicated,559


but the class of infinite-order distributions defined in the above-referenced papers560


actually have their truth values defined by simple matrix mathematics, so there is561


really nothing that abstruse involved in practice.562


Finally, there is the question of how these hyperset structures are to be logically563


manipulated within PLN. The answer is that regular PLN inference can be applied564


perfectly well to hypersets, but some additional hyperset operations may also be565


introduced; these are currently being researched.566


Clearly, with this subtle, currently unimplemented component of the CogPrime567


design we have veered rather far from anything the human brain could plausibly be568


doing in detail. But yet, some meaningful connections may be drawn. In Chap. 13 of569


Vol. 5 we have discussed how probabilistic logic might emerge from the brain, and570


also how the brain may embody self-referential structures like the ones considered571


here, via (perhaps using the hippocampus) encoding whole neural nets as inputs to572


other neural nets. Regarding infinite-order probabilities, it is certainly the case that573


the brain is efficient at carrying out operations equivalent to matrix manipulations574


(e.g. in vision and audition), and [Goe10a] reduced infinite-order probabilities to575


finite matrix manipulations, so that it’s not completely outlandish to posit the brain576


could be doing something mathematically analogous. Thus, all in all, it seems at least577


plausible that the brain could be doing something roughly analogous to what we’ve578


described here, though the details would obviously be very different.579
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Chapter 25
Communication Between Artificial Minds


25.1 Introduction0


Language is a key aspect of human intelligence, and seems to be one of two critical1


factors separating humans from other intelligent animals—the other being the ability2


to use tools. Steven Mithen [Mit96] argues that the key factor in the emergence of3


the modern human mind from its predecessors was the coming-together of formerly4


largely distinct mental modules for linguistic communication and tool making use.5


Other animals do appear to have fairly sophisticated forms of linguistic communica-6


tion, which we don’t understand very well at present; but as best we can tell, modern7


human language has many qualitatively different aspects from these, which enable8


it to synergize effectively with tool making and use, and which have enabled it to9


co-evolve with various aspects of tool-dependent culture.10


Some AGI theorists have argued that, since the human brain is largely the same11


as that of apes and other mammals without human-like language, the emulation of12


human-like language is not the right place to focus if one wants to build human-13


level AGI. Rather, this argument goes, one should proceed in the same order that14


evolution did—start with motivated perception and action, and then once these are15


mastered, human-like language will only be a small additional step. We suspect this16


would indeed be a viable approach—but may not be well suited for the hardware17


available today. Robot hardware is quite primitive compared to animal bodies, but18


the kind of motivated perception and action that non-human animals do is extremely19


body-centric (even more so than is the case in humans). On the other hand, mod-20


ern computing technology is quite sophisticated as regards language—we program21


computers (including AIs) using languages of a sort, for example. This suggests that22


on a pragmatic basis, it may make sense to start working with language at an earlier23


stage in AGI development, than the analogue with the evolution of natural organisms24


would suggest.25


The CogPrime architecture is compatible with a variety of different approaches26


to language learning and capability, and frankly at this stage we are not sure which27


approach is best. Our intention is to experiment with a variety of approaches and28


B. Goertzel et al., Engineering General Intelligence, Part 2, 409
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_25,
© Atlantis Press and the authors 2014
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410 25 Communication Between Artificial Minds


proceed pragmatically and empirically. One option is to follow the more “natural”29


course and let sophisticated non-linguistic cognition emerge first, before dealing with30


language in any serious way—and then encourage human-like language facility to31


emerge via experience. Another option is to integrate some sort of traditional com-32


putational linguistics system into CogPrime, and then allow CogPrime’s learning33


algorithms to modify this system based on its experience. Discussion of this latter34


option occupies most of this section of the book—involves many tricks and compro-35


mises, but could potentially constitute a faster route to success. Yet another option is36


to communicate with young CogPrime systems using an invented language halfway37


between the human-language and programming-language domains, such as Lojban38


(this possibility is discussed in Appendix E).39


In this initial chapter on communication, we will pursue a direction quite different40


from the latter chapters, and discuss a kind of communication that we think may be41


very valuable in the CogPrime domain, although it has no close analogue among42


human beings. Many aspects of CogPrime closely resemble aspects of the human43


mind; but in the end CogPrime is not intended as an emulation of human intelligence,44


and there are some aspects of CogPrime that bear no resemblance to anything in the45


human mind, but exploit some of the advantages of digital computing infrastructure46


over neural wetware. One of the latter aspects is Psynese, a word we have introduced47


to refer to direct mind-to-mind information transfer between artificial minds.48


Psynese has some relatively simple practical applications: e.g. it could aid with49


the use of linguistic resources and hand-coded or statistical language parsers within50


a learning-based language system, to be discussed in following chapters. In this use51


case, one sets up one CogPrime using the traditional NLP approaches, and another52


CogPrime using a purer learning-based approach, and lets the two systems share53


mind-stuff in a controlled way. Psynese may also be useful in the context of intelligent54


virtual pets, where one may wish to set up a CogPrime representing “collective55


knowledge” of multiple virtual pets.56


But it also has some grander potential implications, such as the ability to fuse57


multiple AI systems into “mindplexes” as discussed in Chap. 12 of Vol. 5.58


One might wonder why a community of two or more CogPrime s would need59


a language at all, in order to communicate. After all, unlike humans, CogPrime60


systems can simply exchange “brain fragments”—subspaces of their Atomspaces.61


One CogPrime can just send relevant nodes and links to another CogPrime (in binary62


form, or in an XML representation, etc.), bypassing the linear syntax of language.63


This is in fact the basis of Psynese: why transmit linear strings of characters when64


one can directly transit Atoms? But the details are subtler than it might at first seem.65


One CogPrime can’t simply “transfer a thought” to another CogPrime. The prob-66


lem is that the meaning of an Atom consists largely of its relationships with other67


Atoms, and so to pass a node to another CogPrime, it also has to pass the Atoms that68


it is related to, and so on. Atomspaces tend to be densely interconnected, and so to69


transmit one thought fully accurately, a CogPrime system is going to end up having70


to transmit a copy of its entire Atomspace! Even if privacy were not an issue, this71


form of communication (each utterance coming packaged with a whole mind-copy)72


would present rather severe processing load on the communicators involved.73
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25.1 Introduction 411


The idea of Psynese is to work around this interconnectedness problem by defin-74


ing a mechanism for CogPrime instances to query each others’ minds directly, and75


explicitly represent each others’ concepts internally. This doesn’t involve any unique76


cognitive operations besides those required for ordinary individual thought, but it77


requires some unique ways of wrapping up these operations and keeping track of78


their products.79


Another idea this leads to is the notion of a PsyneseVocabulary: a collection of80


Atoms, associated with a community of CogPrime s, approximating the most impor-81


tant Atoms inside that community. The combinatorial explosion of direct-Atomspace82


communication is then halted by an appeal to standardized Psynese Atoms. Prag-83


matically, a PsyneseVocabulary might be contained in a PsyneseVocabulary server,84


a special CogPrime instance that exists to mediate communications between other85


CogPrime s, and provide CogPrime s with information. Psynese makes sense both as86


a mechanism for peer-to-peer communication between CogPrime s, and as a mech-87


anism allowing standardized communication between a community of CogPrime s88


using a PsyneseVocabulary server.89


25.2 A Simple Example Using a PsyneseVocabulary Server90


Suppose CogPrime 1 wanted to tell CogPrime 2 that “Russians are crazy” (with the91


latter word meaning something inbetween “insane” and “impractical”); and suppose92


that both CogPrime s are connected to the same Psynese CogPrime with Psynese-93


Vocabulary PV. Then, for instance, it must find the Atom in PV corresponding to its94


concept “crazy.” To do this it must create an AtomStructureTemplate such as95


Pred1(C1)96


equals97


ThereExists98


W1 , C2 , C3 , W2 , W399


AND100


ConceptNode: C1101


ReferenceLink C1 W1102


WordNode: W1 #crazy103


ConceptNode: C2104


HebbianLink C1 C2105


ReferenceLink C2 W2106


WordNode: W2 #insane107


ConceptNode: C3108


HebbianLink C1 C3109


ReferenceLink C3 W3110


WordNode: W3 #impractical111


encapsulating relevant properties of the Atom it wants to grab from PV. In this112


example the properties specified are:113


• ConceptNode, linked via a ReferenceLink to the WordNode for “crazy”.114
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412 25 Communication Between Artificial Minds


• HebbianLinks with ConceptNodes linked via ReferenceLinks to the WordNodes115


for “insane” and “impractical”.116


So, what CogPrime 1 can do is fish in PV for “some concept that is denoted by the117


word ‘crazy’ and is associated with ‘insane’ and ‘impractical’.” The association with118


“insane” provides more insurance of getting the correct sense of the word “crazy” as119


opposed to e.g. the one in the phrase “He was crazy about her” or in “That’s crazy,120


man, crazy” (in the latter slang usage “crazy” basically means “excellent”). The121


association with “impractical” biases away from the interpretation that all Russians122


are literally psychiatric patients.1123


So, suppose that CogPrime 1 has fished the appropriate Atoms for “crazy” and124


“Russian” from PV. Then it may represent in its Atomspace something we may125


denote crudely (a better notation will be introduced later) as126


InheritanceLink PV :477335:1256953732 PV :744444:127


1256953735 <.8.,6>128


where e.g. “PV:744444” means “the Atom with Handle 744444 in CogPrime PV at129


time 1256953735,” and may also wish to store additional information such as130


PsyneseEvaluationLink <.9>131


PV132


Pred1133


PV :744444:1256953735134


meaning that Pred1(PV :744444 :1256953735) holds true with truth value < .9 > if135


all the Atoms referred to within Pred1 are interpreted as existing in PV rather than136


CogPrime 1.137


The InheritanceLink then means: “In the opinion of CogPrime 1, ‘Russian’ as de-138


fined by PV:477335:1256953732 inherits from ‘crazy’ as defined by PV:744444:125139


6953735 with truth value < .8, .6 >.”140


Suppose CogPrime 1 then sends the InheritanceLink to CogPrime 2. It is going141


to be meaningfully interpretable by CogPrime 2 to the extent that CogPrime 2 can142


interpret the relevant PV Atoms, for instance by finding Atoms of its own that cor-143


respond to them. To interpret these Atoms, CogPrime 2 must carry out the reverse144


process that CogPrime 1 did to find the Atoms in the first place. For instance, to fig-145


ure out what PV:744444:1256953735 means to it, CogPrime 2 may find some of the146


important links associated with the Node in PV, and make a predicate accordingly,147


e.g.:148


Pred2(C1)149


equals150


ThereExists151


W1 , C2 , C3 , W2 , W3152


AND153


1 A similar but perhaps more compelling example would be the interpretation of the phrase “the
accountant cooked the books.” In this case both “cooked” and “books” are used in atypical senses,
but specifying a HebbianLink to “accounting” would cause the right Nodes to get retrieved from
PV.
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25.2 A Simple Example Using a PsyneseVocabulary Server 413


ConceptNode: C1154


ReferenceLink C1 W1155


WordNode: W1 #crazy156


ConceptNode: C2157


HebbianLink C1 C2158


ReferenceLink C2 W2159


WordNode: W2 #lunatic160


ConceptNode: C3161


HebbianLink C1 C3162


ReferenceLink C3 W3163


WordNode: W3 #unrealistic164


On the other hand, if there is no PsyneseVocabulary involved, then CogPrime 1165


can submit the same query directly to CogPrime 2. There is no problem with this, but166


if there is a reasonably large community of CogPrime s it becomes more efficient for167


them all to agree on a standard vocabulary of Atoms to be used for communication—168


just as, at a certain point in human history, it was recognized as more efficient for169


people to use dictionaries rather than to rely on peer-to-peer methods for resolution170


of linguistic disagreements.171


The above examples involve human natural language terms, but this does not have172


to be the case. PsyneseVocabularies can contain Atoms representing quantitative or173


other types of data, and can also contain purely abstract concepts. The basic idea174


is the same. A CogPrime has some Atoms it wants to convey to another CogPrime,175


and it looks in a PsyneseVocabulary to see how easily it can approximate these176


Atoms in terms of “socially understood” Atoms. This is particularly effective if the177


CogPrime receiving the communication is familiar with the PsyneseVocabulary in178


question. Then the recipient may already know the PsyneseVocabulary Atoms it is179


being pointed to; it may have already thought about the difference between these180


consensus concepts and its own related concepts. Also, if the sender CogPrime is181


encapsulating maps for easy communication, it may specifically seek approximate182


encapsulations involving PsyneseVocabulary terms, rather than first encapsulating183


in its own terms and then translating into PsyneseVocabulary terms.184


25.2.1 The Psynese Match Schema185


One way to streamline the above operations is to introduce a Psynese Match Schema,186


with the property that187


ExOut188


PsyneseMatch PV A189


within CogPrime instance CP1, denotes the Atom within CogPrime instance PV190


that most closely matches the Atom A in CP1. Note that the PsyneseMatch schema191


implicitly relies on various parameters, because it must encapsulate the kind of192


process described explicitly in the above example. PsyneseMatch must, internally,193


decide how many and which Atoms related to A should be used to formulate a query194


to PV , and also how to rank the responses to the query (e.g. by strength×confidence).195
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414 25 Communication Between Artificial Minds


Using PsyneseMatch, the example written above as196


Inheritance PV :477335:1256953732 PV :744444:1256953735197


<.8.,6>198


could be rewritten as199


Inheritance <.8.,6>200


ExOut201


PsyneseMatch PV C1202


ExOut203


PsyneseMatch PV C2204


where C1 and C2 are the ConceptNodes in CP1 corresponding to the intended senses205


of “crazy” and “Russian.”206


25.3 Psynese as a Language207


The general definition of a psynese expression for CogPrime is a Set of Atoms that208


contains only:209


• Nodes from PsyneseVocabularies.210


• Perceptual nodes (numbers, words, etc.).211


• Relationships relating no nodes other than the ones in the above two categories,212


and relating no relationships except ones in this category.213


• Predicates or Schemata involving no relationships or nodes other than the ones in214


the above three categories, or in this category.215


The PsyneseEvaluationLink type indicated earlier forces interpretation of a predicate216


as a Psynese expression.217


In what sense is the use of Psynese expressions to communicate a language?218


Clearly it is a formal language in the mathematical sense. It is not quite a “human219


language” as we normally conceive it, but it is ideally suited to serve the same func-220


tions for CogPrime s as human language serves for humans. The biggest differences221


from human language are:222


• Psynese uses weighted, typed hypergraphs (i.e. Atomspaces) instead of linear223


strings of symbols. This eliminates the “parsing” aspect of language (syntax being224


mainly a way of projecting graph structures into linear expressions).225


• Psynese lacks subtle and ambiguous referential constructions like “this”, “it” and226


so forth. These are tools allowing complex thoughts to be compactly expressed in227


a linear way, but CogPrime s don’t need them. Atoms can be named and pointed228


to directly without complex, poorly-specified mechanisms mediating the process.229


• Psynese has far less ambiguity. There may be Atoms with more than one aspect230


to their meanings, but the cost of clarifying such ambiguities is much lower for231


CogPrime s than for humans using language, and so habitually there will not be232


the rampant ambiguity that we see in human expressions.233
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25.3 Psynese as a Language 415


On the other hand, mapping Psynese into Lojban—a syntactically formal, seman-234


tically highly precise language created for communication between humans—rather235


than a true natural language would be much more straightforward. Indeed, one could236


create a PsyneseVocabulary based on Lojban, which might be ideally suited to serve237


as an intermediary between different CogPrime s. And Lojban may be used to create238


a linearized version of Psynese that looks more like a natural language. We return to239


this point in Appendix ??. AQ1240


25.4 Psynese Mindplexes241


We now recall from Chap. 12 of Vol. 5 the notion of a mindplex: that is, an intelligent242


system that:243


1. Is composed of a collection of intelligent systems, each of which has its own244


“theater of consciousness” and autonomous control system, but which interact245


tightly, exchanging large quantities of information frequently.246


2. Has a powerful control system on the collective level, and an active “theater of247


consciousness” on the collective level as well.248


In informal discussions, we have found that some people, on being introduced to249


the mindplex concept, react by contending that either human minds or human social250


groups are mindplexes. However, I believe that, while there are significant similarities251


between mindplexes and minds, and between mindplexes and social groups, there252


are also major qualitative differences. It’s true that an individual human mind may253


be viewed as a collective, both from a theory-of-cognition perspective (e.g. Minsky’s254


“society of mind” theory [Min88]) and from a personality-psychology perspective255


(e.g. the theory of subpersonalities [Row90]). And it’s true that social groups dis-256


play some autonomous control and some emergent-level awareness. However, in257


a healthy human mind, the collective level rather than the cognitive-agent or sub-258


personality level is dominant, the latter existing in service of the former; and in a259


human social group, the individual-human level is dominant, the group-mind clearly260


“cognizing” much more crudely than its individual-human components, and exerting261


most of its intelligence via its impact on individual human minds. A mindplex is a262


hypothetical intelligent system in which neither level is dominant, and both levels263


are extremely powerful. A mindplex is like a human mind in which the subperson-264


alities are fully-developed human personalities, with full independence of thought,265


and yet the combination of subpersonalities is also an effective personality. Or, from266


the other direction, a mindplex is like a human society that has become so integrated267


and so cohesive that it displays the kind of consciousness and self-control that we268


normally associate with individuals.269


There are two mechanisms via which mindplexes may possibly arise in the270


medium-term future:271
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416 25 Communication Between Artificial Minds


1. Humans becoming more tightly coupled via the advance of communication tech-272


nologies, and a communication-centric AI system coming to embody the “emer-273


gent conscious theater” of a human-incorporating mindplex.274


2. A society of AI systems communicating amongst each other with a richness not275


possible for human beings, and coming to form a mindplex rather than merely a276


society of distinct AI’s.277


The former sort of mindplex relates to the concept of a “global brain” discussed278


in Chap. 12 of Vol. 5. Of course, these two sorts of mindplexes are not mutually279


contradictory, and may coexist or fuse. The possibility also exists for higher-order280


mindplexes, meaning mindplexes whose component minds are themselves mind-281


plexes. This would occur, for example, if one had a mindplex composed of a family282


of closely-interacting AI systems, which acted within a mindplex associated with the283


global communication network.284


Psynese, however, is more directly relevant to the latter form of mindplex. It gives285


a concrete mechanism via which such a mindplex might be sculpted.286


25.4.1 AGI Mindplexes287


How does one get from CogPrime s communicating via Psynese to CogPrime mind-288


plexes?289


Clearly, with the Psynese mode of communication, the potential is there for much290


richer communication than exists between humans. There are limitations, posed by291


the private nature of many concepts—but these limitations are much less onerous than292


for human language, and can be overcome to some extent by the learning of complex293


cognitive schemata for translation between the “private languages” of individual294


Atomspaces and the “public languages” of Psynese servers.295


But rich communication does not in itself imply the evolution of mindplexes. It296


is possible that a community of Psynese-communicating CogPrime s might spon-297


taneously evolve a mindplex structure—at this point, we don’t know enough about298


CogPrime individual or collective dynamics to say. But it is not necessary to rely299


on spontaneous evolution. In fact it is possible, and even architecturally simple, to300


design a community of CogPrime s in such a way as to encourage and almost force301


the emergence of a mindplex structure.AQ2302


The solution is simple: simply beef up PsyneseVocabulary servers. Rather than303


relatively passive receptacles of knowledge from the CogPrime s they serve, allow304


them to be active, creative entities, with their own feelings, goals and motivations.305


The PsyneseVocabulary servers serving a community of CogPrime’s are ab-306


solutely critical to these CogPrime s. Without them, high-level inter-CogPrime307


communication is effectively impossible. And without the concepts the PsyneseVo-308


cabularies supply, high-level individual CogPrime thought will be difficult, because309


CogPrime s will come to think in Psynese to at least the same extent to which humans310


think in language.311
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25.4 Psynese Mindplexes 417


Suppose each PsyneseVocabulary server has its own full CogPrime mind, its own312


“conscious theater”. These minds are in a sense “emergent minds” of the CogPrime313


community they serve—because their contents are a kind of “nonlinear weighted314


average” of the mind-contents of the community. Furthermore, the actions these315


minds take will feed back and affect the community in direct and indirect ways—by316


affecting the language by which the minds communicate. Clearly, the definition of a317


mindplex is fulfilled.318


But what will the dynamics of such a CogPrime mindplex be like? What will be319


the properties of its cognitive and personality psychology? We could speculate on320


this here, but would have very little faith in the possible accuracy of our speculations.321


The psychology of mindplexes will reveal itself to us experimentally as our work on322


AGI engineering, education and socialization proceeds.323


One major issue that arises, however, is that of personality filtering. Put simply:324


each intelligent agent in a mindplex must somehow decide for itself which knowl-325


edge to grab from available PsyneseVocabulary servers and other minds, and which326


knowledge to avoid grabbing from others in the name of individuality. Different327


minds may make different choices in this regard. For instance, one choice could be328


to, as a matter of routine, take only extremely confident knowledge from the Psynese-329


Vocabulary server. This corresponds roughly to ingesting “facts” from the collective330


knowledge pool, but not opinions or speculations. Less confident knowledge would331


then be ingested from the collective knowledge pool on a carefully calculated and332


as-needed basis. Another choice could be to accept only small networks of Atoms333


from the collective knowledge pool, on the principle that these can be reflectively334


understood as they are ingested, whereas large networks of Atoms are difficult to335


deliberate and reflect about. But any policies like this are merely heuristic ones.336


25.5 Psynese and Natural Language Processing337


Next we review a more near-term, practical application of the Psynese mechanism:338


the fusion of two different approaches to natural language processing in CogPrime,339


the experiential learning approach and the “engineered NLP subsystem” approach.340


In the former approach, language is not given any extremely special role, and341


CogPrime is expected to learn language much as it would learn any other complex342


sort of knowledge. There may of course be learning biases programmed into the343


system, to enable it to learn language based on its experience more rapidly. But there344


is no concrete linguistic knowledge programmed in.345


In the latter approach, one may use knowledge from statistical corpus analysis,346


one may use electronic resources like WordNet and FrameNet, and one may use347


sophisticated, specialized tools like natural language parsers with hand-coded gram-348


mars. Rather than trying to emulate the way a human child learns language, one is349


trying to emulate the way a human adult comprehends and generates language.350


Of course, there is not really a rigid dichotomy between these two approaches.351


Many linguistic theorists who focus on experiential learning also believe in some352
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418 25 Communication Between Artificial Minds


form of universal grammar, and would advocate for an approach where learning353


is foundational but is biased by in-built abstract structures representing universal354


grammar. There is of course very little knowledge (and few detailed hypotheses)355


about how universal grammar might be encoded in the human brain, though there356


is reason to think it may be at a very abstract level, due to the significant overlaps357


between grammatical structure, social role structure [CB00], and physical reasoning358


[Cas04].359


The engineered approach to NLP provides better functionality right “out of the360


box,” and enables the exploitation of the vast knowledge accumulated by com-361


putational linguists in the past decades. However, we suspect that computational362


linguistics may have hit a ceiling in some regards, in terms of the quality of the lan-363


guage comprehension and generation that it can deliver. It runs up against problems364


related to the disambiguation of complex syntactic constructs, which don’t seem to365


be resolvable using either a tractable number of hand-coded rules, or supervised or366


unsupervised learning based on a tractably large set of examples. This conclusion367


may be disputed, and some researchers believe that statistical computational linguis-368


tics can eventually provide human-level functionality, once the Web becomes a bit369


larger and the computers used to analyze it become a bit more powerful. But in our370


view it is interesting to explore hybridization between the engineered and experi-371


ential approaches, with the motivation that the experiential approach may provide a372


level of flexibility and insight at dealing with ambiguity that the engineered approach373


apparently lacks.374


After all, the way a human child deals with the tricky disambiguation problems375


that stump current computational linguistics systems is not via analysis of trillion-376


word corpuses, bur rather via correlating language with non-linguistic experience.377


One may argue that the genome implicitly contains a massive corpus of speech,378


but there it’s also to be noted that this is experientially contextualized speech. And379


it seems clear from the psycholinguistic evidence [Tom03] that for young human380


children, language is part and parcel of social and physical experience, learned in a381


manner that’s intricately tied up with the learning of many other sorts of skills.382


One interesting approach to this sort of hybridization, using Psynese, is to create383


multiple CogPrime instances taking different approaches to language learning, and384


let them communicate. Most simply one may create385


• A CogPrime instance that learns language mainly based on experience, with per-386


haps some basic in-built structure and some judicious biasing to its learning (let’s387


call this CPexp).388


• A CogPrime instance using an engineered NLP system (let’s call this CPeng).389


In this case, CPexp can use CPeng as a cheap way to test its ideas. For instance390


suppose, CPexp thinks it has correctly interpreted a certain sentence S into Atom-set391


A. Then it can send its interpretation A to CPeng and see whether CPeng thinks A is392


a good interpretation of S, by consulting CPeng the truth value of393


ReferenceLink394


ExOut395
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25.5 Psynese and Natural Language Processing 419


PsyneseMatch CPeng S396


ExOut397


PsyneseMatch CPeng A398


Similarly, if CPexp believes it has found a good way (S) to linguistically express a399


collection S of Atoms A, it can check whether these two match reasonably well in400


CPeng.401


Of course, this approach could be abused in an inefficient and foolish way, for402


instance if CPexp did nothing but randomly generate sentences and then test them403


against CPeng. In this case we would have a much less efficient approach than simply404


using CPeng directly. However, effectively making use of CPeng as a resource requires405


a different strategy: throwing CPeng only a relatively small selection of things that406


seem to make sense, and using CPeng as a filter to avoid trying out rough-draft guesses407


in actual human conversation.408


This hybrid approach, we suggest, may provide a way of getting the best of both409


worlds: the flexibility of a experiential-learning-based language approach, together410


with the exploitation of existing linguistic tools and resources. With this in mind, in411


the following chapters we will describe both engineering and experiential-learning412


based approaches to NLP.413


25.5.1 Collective Language Learning414


Finally we bring the language-learning and mindplex themes together, in the notion415


of collective language learning. One of the most interesting uses for a mindplex416


architecture is to allow multiple CogPrime agents to share the linguistic knowledge417


they gain. One may envision a PsyneseVocabulary server into which a population418


of CogPrime agents input their linguistic knowledge specifically, and which these419


agents then consult when they wish to comprehend or express something in language,420


and their individual NLP systems are not up to the task.421


This could be a very powerful approach to language learning, because it would422


allow a potentially very large number of AI systems to effectively act as a single423


language learning system. It is an especially appealing approach in the context of424


CogPrime systems used to control animated agents in online virtual worlds or mul-425


tiplayer games. The amount of linguistic experience undergone by, say, 100,000 vir-426


tually embodied CogPrime agents communicating with human virtual world avatars427


and game players, would be far more than any single human child or any single428


agent could undergo. Thus, to the extent that language learning can be accelerated429


by additional experience, this approach could enable language to be learned quite430


rapidly. AQ3431
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Chapter 26
Natural Language Comprehension


26.1 Introduction0


Two key approaches to endowing AGI systems with linguistic facility exist, as noted1


above:2


• “Experiential”—shorthand here for “gaining most of its linguistic knowledge from3


interactive experience, in such a way that language learning is not easily separable4


from generic learning how to survive and flourish”5


• “Engineered”—shorthand here for “gaining most of its linguistic knowledge from6


sources other than the system’s own experience in the world” (including learning7


language from resources like corpora).8


This dichotomy is somewhat fuzzy, since getting experiential language learning to9


work well may involve some specialized engineering, and engineered NLP systems10


may also involve some learning from experience. However, in spite of the fuzziness,11


the dichotomy is still real and important; there are concrete choices to be made in12


designing an NLP system and this dichotomy compactly symbolizes some of them.13


Much of this chapter and the next few will be focused on the engineering approach,14


but we will also devote some space to discussing the experience-based approach.15


Our overall perspective on the dichotomy is that16


• The engineering-based approach, on its own, is unlikely to take us to human-level17


NLP ... but this isn’t wholly impossible, if the engineering is done in a manner that18


integrates linguistic functionality richly with other kinds of experiential learning19


• Using a combination of experience-based and engineering-based approaches may20


be the most practical option21


• The engineering approach is useful for guiding the experiential approach, because22


it tells us a lot about what kinds of general structures and dynamics may be adequate23


for intelligent language processing. To simplify a bit, one can prepare an AGI sys-24


tem for experiential learning by supplying it with structures and dynamics capable25


of supporting the key components of an engineered NLP system—and biased to-26


ward learning things similar to known engineered NLP systems—but requiring27


B. Goertzel et al., Engineering General Intelligence, Part 2, 421
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_26,
© Atlantis Press and the authors 2014


319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


422 26 Natural Language Comprehension


all, or the bulk of, the actual linguistic content to be learned via experience. This28


approach may be preferable to requiring a system to learn language based on more29


abstract structures and dynamics, and may indeed be more comparable to what30


human brains do, given the large amount of linguistic biasing that is probably built31


into the human genome.32


Further distinctions, overlapping with this one, may also be useful. One may33


distinguish (at least) five modes of instructing NLP systems, the first three of which34


are valid only for engineered NLP systems, but the latter two of which are valid both35


for engineered and experiential NLP systems:36


• Hand-coded rules37


• Supervised learning on hand-tagged corpuses, or via other mechanisms of explicit38


human training39


• Unsupervised learning from static bodies of data40


• Unsupervised learning via interactive experience41


• Supervised learning via interactive experience.42


Note that, in principle, any of these modes may be used in a pure-language43


or a socially/physically embodied language context. Of course, there is also semi-44


supervised learning which may be used in place of supervised learning in the above45


list [CSZ06].46


Another key dichotomy related to linguistic facility is language comprehension47


versus language generation (each of which is typically divided into a number of dif-48


ferent subprocesses). In language comprehension, we have processes like stemming,49


part-of-speech tagging, grammar-based parsing, semantic analysis, reference reso-50


lution and discourse analysis. In language generation, we have semantic analysis,51


syntactic sentence generation, pragmatic discourse generation, reference-insertion,52


and so forth. In this chapter and the next two we will briefly review all these differ-53


ent topics and explain how they may be embodied in CogPrime. Then, in Chap. 1254


of Vol. 5 we present a complementary approach to linguistic interaction with AGI55


systems based on the invented language Lojban; and in Chap. 30 we discuss the use56


of CogPrime cognition to regulate the dialogue process.57AQ1


A typical, engineered computational NLP system involves hand-coded algorithms58


carrying out each of the specific tasks mentioned in the previous paragraph, some-59


times with parameters, rules or number tables that are tuned or learned statistically60


based on corpuses of data. In fact, most NLP systems handle only understanding or61


only generation; systems that cover both aspects in a unified way are quite rare. The62


human mind, on the other hand, carries out these tasks in a much more interconnected63


way—using separate procedures for the separate tasks, to some extent, but allowing64


each of these procedures to be deeply informed by the information generated by the65


other procedures. This interconnectedness is what allows the human mind to really66


understand language—specifically because human language syntax is complex and67


ambiguous enough that the only way to master it is to infuse one’s syntactic analyses68


with semantic (and to a lesser extent pragmatic) knowledge. In our treatment of NLP69


we will pay attention to connections between linguistic functionalities, as well as to70


linguistic functionalities in isolation.71
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26.1 Introduction 423


It’s worth emphasizing that what we mean by a “experience based” language sys-72


tem is quite different from corpus-based language systems as are commonplace in73


computational linguistics today [MS99] (and from the corpus-based learning algo-74


rithm to be discussed in Chap. 27). In fact, we feel the distinction between corpus-75


based and rule-based language processing systems is often overblown. Whether one76


hand-codes a set of rules, or carefully marks up a corpus so that rules can be induced77


from it, doesn’t ultimately make that much difference. For instance, OpenCogPrime’s78


RelEx system (to be described below) uses hand-coded rules to do much the same79


thing that the Stanford parser does using rules induced from a tagged corpus. But both80


systems do roughly the same thing. RelEx is currently faster due to using fewer rules,81


and it handles some complex cases like comparatives better (presumably because82


they were not well covered in the Stanford parser’s training corpus); but the Stanford83


parser may be preferable in other respects, for instance it’s more easily generalizable84


to languages beyond English (for a language with structure fairly similar to English,85


one just has to supply a new marked-up training corpus; whereas porting RelEx rules86


to other languages requires more effort).87


An unsupervised corpus-based learning system like the one to be described in88


Chap. 27 is a little more distinct from rule-based systems, in that it is based on89


inducing patterns from natural rather than specially prepared data. But still, it is90


learning language as a phenomenon unto itself, rather than learning language as part91


and parcel of a system’s overall experience in the world.92


The key distinction to be made, in our view, is between language systems that93


learn language in a social and physical context, versus those that deal with language94


in isolation. Dealing with language in context immediately changes the way the95


linguistics problem appears (to the AI system, and also to the researcher), and makes96


hand-coded rules and hand-tagged corpuses less viable, shifting attention toward97


experiential learning based approaches.98


Ultimately we believe that the “right” way to teach an AGI system language is99


via semi-supervised learning in a socially and physically embodied context. That100


is: talk to the system, and have it learn both from your reinforcement signals101


and from unsupervised analysis of the dialogue. However, we believe that other102


modes of teaching NLP systems can also contribute, especially if used in support103


of a system that also does semi-supervised learning based on embodied interactive104


dialogue. AQ2105


Finally, a note on one aspect of language comprehension that we don’t deal with106


here. We deal only with text processing, not speech understanding or generation. A107


CogPrime approach to speech would be quite feasible to develop, for instance using108


neural-symbolic hybridization with DeSTIN or a similar perceptual-motor hierarchy.109


However, this potential aspect of CogPrime has not been pursued in detail yet, and110


we won’t devote space to it here.111
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424 26 Natural Language Comprehension


26.2 Linguistic Atom Types112


Explicit representation of linguistic knowledge in terms of Atoms is not a deep issue,113


more of a “plumbing” type of issue, but it must be dealt with before moving on to114


subtler aspects.115


In principle, for dealing with linguistic information coming in through ASCII, all116


we need besides the generic CogPrime structures and dynamics are two node types117


and one relationship type:118


• CharacterNode119


• CharacterInstanceNode120


• A unary relationship concat denoting an externally-observed list of items.121


Sequences of characters may then be represented in terms of lists and the concat122


schema. For instance the word “pig” is represented by the list concat (# p, #i, #g).123


The concat operator can be used to help define special NL atom types, such as:124


• MorphemeNode/MorphemeInstanceNode125


• WordNode/WordInstanceNode126


• PhraseNode/PhraseInstanceNode127


• SentenceNode/SentenceInstanceNode128


• UtteranceNode/UtteranceInstanceNode.129


26.3 The Comprehension and Generation Pipelines130


Exactly how the “comprehension pipeline” is broken down into component trans-131


formations, depends on one’s linguistic theory of choice. The approach taken in132


OpenCogPrimes engineered NLP framework, in use from 2008 to 2012, looked like:133


Text --> Tokenizer --> Link Parser -->134


Syntactico-Semantic Relationship Extractor (RelEx) -->135


Semantic RelationshipExtractor (RelEx2Frame) -->136


SemanticNodes & Links137


In 2012–2013, a new approach has been undertaken, which simplifies things a138


little and looks like139


Text --> Tokenizer --> Link Parser -->140


Syntactico-Semantic Relationship Extractor (Syn2Sem) -->141


Semantic Nodes & Links142


Note that many other variants of the NL pipeline include a “tagging” stage, which143


assigns part of speech tags to words based on the words occurring around them. In144


our current approach, tagging is essentially subsumed within parsing; the choice of145


a POS (part-of-speech) tag for a word instance is carried out within the link parser.146


However, it may still be valuable to derive information about likely POS tags for147
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26.3 The Comprehension and Generation Pipelines 425


word instances from other techniques, and use this information within a link parsing148


framework by allowing it to bias the probabilities used in the parsing process.149


None of the processes in this pipeline are terribly difficult to carry out, if one150


is willing to use hand-coded rules within each step, or derive rules via supervised151


learning, to govern their operation. The truly tricky aspects of NL comprehension are:152


• Arriving at the rules used by the various subprocesses, in a way that naturally153


supports generalization and modification of the rules based on ongoing experience154


• Allowing semantic understanding to bias the choice of rules in particular contexts155


• Knowing when to break the rules and be guided by semantic intuition instead.156


Importing rules straight from linguistic databases results in a system that (like the157


current RelEx system) is reasonably linguistically savvy on the surface, but lacks the158


ability to adapt its knowledge effectively based on experience, and has trouble com-159


prehending complex language. Supervised learning based on hand-created corpuses160


tends to result in rule-bases with similar problems. This doesn’t necessarily mean161


that hand-coding or supervised learning of linguistic rules has no place in an AGI162


system, but it means that if one uses these methods, one must take extra care to make163


one’s rules modifiable and generalizable based on ongoing experience, because the164


initial version of one’s rules is not going to be good enough.165


Generation is the subject of the following chapter, but for comparison we give166


here a high-level overview of the generation pipeline, which may be conceived as:167


1. Content determination: figuring out what needs to be said in a given context168


2. Discourse planning: overall organization of the information to be communicated169


3. Lexicalization: assigning words to concepts170


4. Reference generation: linking words in the generated sentences using pronouns171


and other kinds of reference172


5. Syntactic and morphological realization: the generation of sentences via a173


process inverse to parsing, representing the information gathered in the above174


phases175


6. Phonological or orthographic realization: turning the above into spoken or writ-176


ten words, complete with timing (in the spoken case), punctuation (in the written177


case), etc.178


In Chap. 28 we explain how this pipeline is realized in OpenCogPrimes current179


engineered NL generation system.180


26.4 Parsing with Link Grammar181


Now we proceed to explain some of the details of OpenCogPrime’s engineered NL182


comprehension system. This section gives an overview of link grammar, a key part183


of the current OpenCog NLP framework, and explains what makes it different from184


other linguistic formalisms.185
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426 26 Natural Language Comprehension


We emphasize that this particular grammatical formalism is not, in itself, a critical186


part of the CogPrime design. In fact, it should be quite possible to create and teach a187


CogPrime AGI system without using any particular grammatical formalism—having188


it acquire linguistic knowledge in a purely experiential way. However, a great deal of189


insight into CogPrime-based language processing may be obtained by considering190


the relevant issues in the concrete detail that the assumption of a specific grammatical191


formalism provides. This insight is of course useful if one is building a CogPrime192


that makes use of that particular grammatical formalism, but it’s also useful to some193


degree even if one is building a CogPrime that deals with human language entirely194


experientially.195


This material will be more comprehensible to the reader who has some familiarity196


with computational linguistics, e.g. with notions such as parts of speech, feature197


structures, lexicons, dependency grammars, and so forth. Excellent references are198


[MS99, Jac03]. We will try to keep the discussion relatively elementary, but have199


opted not to insert a computational linguistics tutorial.200


The essential idea of link grammar is that each word comes with a feature structure201


consisting of a set of typed connectors. Parsing consists of matching up connectors202


from one word with connectors from another.203


To understand this in detail, the best course is to consider an example sentence.204


We will use the following example, drawn from the classic paper “Parsing with a205


Link Grammar” by Sleator and Temperley [ST93]:206


The cat chased a snake207


The link grammar parse structure for this sentence is:208


In phrase structure grammar terms, this corresponds loosely to209


(S (NP The cat)210


(VP chased211


(NP a snake))212


.)213


but the OpenCog linguistic pipeline makes scant use of this kind of phrase structure214


rendition (which is fine in this simple example; but in the case of complex sentences,215


construction of analogous mappings from link parse structures to phrase structure216


grammar parse trees can be complex and problematic). Currently the hierarchical217


view is used in OpenCog only within some reference resolution heuristics.218


There is a database called the “link grammar dictionary” which contains connec-219


tors associated with all common English words. The notation used to describe feature220


structures in this dictionary is quite simple. Different kinds of connectors are denoted221


by letters or pairs of letters like S or SX. Then if a word W1 has the connector S+,222


this means that the word can have an S link coming out to the right side. If a word223
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26.4 Parsing with Link Grammar 427


W2 has the connector S−, this means that the word can have an S link coming out to224


the left side. In this case, if W1 occurs to the left of W2 in a sentence, then the two225


words can be joined together with an S link.226


The features of the words in our example sentence, as given in the S&T paper, are:227


228


Words Formula


A, the D+
Snake, cat D− & (O− or S+)
Chased S− & O+


To illustrate the role of syntactic sense disambiguation, we will introduce alternate229


formulas for one of the words in the example: the verb sense of “snake”. We then230


have231


Words Formula


A, the D+
Snake_N, cat, ran_N D− & (O− or S+)
Chased S− & O+
Snake_V S−


The variables to be used in parsing this sentence are, for each word:232


1. The features in the Agreement structure of the word (for any of its senses)233


2. The words matching each of the connectors of the word.234


For example,235


1. For “snake”, there are features for “word that links to D−”, “word that links236


to O−” and “word that links to S+”. There are also features for “tense” and237


“person”.238


2. For “the”, the only feature is “word that links to D+”. No features for Agreement239


are needed.240


The nature of linkage imposes constraints on the variable assignments; for241


instance, if “the” is assigned as the value of the “word that links to D−” feature242


of “snake”, then “snake” must be assigned as the value of the “word that links to243


D+” feature of “the”.244


The rules of link grammar impose additional constraints—i.e. the planarity, con-245


nectivity, ordering and exclusion metarules described in Sleator and Temperley’s246


papers. Planarity means that links don’t cross—a rule that S&T’s parser enforces247


with absoluteness, whereas we have found it is probably better to impose it as a248


probabilistic constraint, since sometimes it’s really nice to let links cross (the rep-249


resentation of conjunctions is one example). Connectivity means that the links and250


words of a sentence must form a connected graph—all the words must be linked251


into the other words in the sentence via some path. Again connectivity is a valuable252


constraint but in some cases one wants to relax it—if one just can’t understand the253


whole sentence, one may wish to understand at least some parts of it, meaning that254
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428 26 Natural Language Comprehension


one has a disconnected graph whose components are the phrases of the sentence255


that have been successfully comprehended. Finally, linguistic transformations may256


potentially be applied while checking if these constraints are fulfilled (that is, instead257


of just checking if the constraints are fulfilled, one may check if the constraints are258


fulfilled after one or more transformations are performed.)259


We will use the term “Agreement” to refer to “person” values or ordered pairs260


(tense, person), and NAGR to refer to the number of agreement values (12–40,261


perhaps, in most realistic linguistic theories). Agreement may be dealt with alongside262


the connector constraints. For instance, “chased” has the Agreement values (past,263


third person), and it has the constraint that its S− argument must match the person264


component of its Agreement structure.265


Semantic restrictions may be imposed in the same framework. For instance, it266


may be known that the subject of “chased” is generally animate. In that case,267


we’d say268


Words Formula


A, the D+
Snake_N, cat D− & (O− or S+)
Chased (S−, C inheritance animate <0.8>) & O+
Snake_V S−


where we’ve added the modifier (C Inheritance animate) to the S− connector of269


the verb “chased”, to indicate that with strength 0.8, the word connecting to this270


S− connector should denote something inheriting from “animate”. In this example,271


“snake” and “cat” inherit from “animate”, so the probabilistic restriction doesn’t help272


the parser any. If the sentence were instead273


The snake in the hat chased the car274


then the “animate” constraint would tell the parsing process not to start out by trying275


to connect “hat” to “chased”, because the connection is semantically unlikely.276


26.4.1 Link Grammar Versus Phrase Structure Grammar277


Before proceeding further, it’s worth making a couple observations about the rela-278


tionship between link grammars and typical phrase structure grammars. These could279


also be formulated as observations about the relationship between dependency gram-280


mars and phrase structure grammars, but that gets a little more complicated as there281


are many kinds of dependency grammars with different properties; for simplicity we282


will restrict our discussion here to the link grammar that we actually use in OpenCog.283


Two useful observations may be:284


1. Link grammar formulas correspond to grammatical categories. For example, the285


link structure for “chased” is “S− & O+”. In categorical grammar, this would286


seem to mean that “‘chased’ belongs to the category of words with link structure287
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26.4 Parsing with Link Grammar 429


Fig. 26.1 Dependency and phrase-structure parses. A comparison of dependency (above) and
phrase-structure (below) parses. In general, one can be converted to the other (algorithmically);
dependency grammars tend to be easier understand. (Image taken from G. Schneider, “learning to
disambiguate syntactic relations” linguistik online 17, 5/03)


‘S− & O+”’. In other words, each “formula” in link grammar corresponds to a288


category of words attached to that formula.289


2. Links to words might as well be interpreted as links to phrases headed by those290


words. For example, in the sentence “the cat chased a snake”, there’s an O-link291


from “chased” to “snake”. This might as well be interpreted as “there’s an O-292


link from the phrase headed by ‘chased’ to the phrase headed by ‘snake”’. Link293


grammar simplifies things by implicitly identifying each phrase by its head.294


Based on these observations, one could look at phrase structure as implicit in a link295


parse; and this does make sense, but also leads to some linguistic complexities that296


we won’t enter into here (Fig. 26.1).297 AQ3


26.5 The RelEx Framework for Natural Language298


Comprehension299


Now we move forward in the pipeline from syntax toward semantics. The NL com-300


prehension framework provided with OpenCog at its inception in 2008 is RelEx,301


an English-language semantic relationship extractor, which consists of two main302


components: the dependency extractor and the relationship extractor. It can identify303


subject, object, indirect object and many other dependency relationships between304


words in a sentence; it generates dependency trees, resembling those of dependency305


grammars. In 2012 we are in the process of replacing RelEx with a different approach306
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430 26 Natural Language Comprehension


Fig. 26.2 A overview of the RelEx architecture for language comprehension


that we believe will be more amenable to generalization based on experience. Here307


we will describe both approaches.308


The overall processing scheme of RelEx is shown in Fig. 26.2.309


The dependency extractor component carries out dependency grammar parsing310


via a customized version of the open-source Sleator and Temperley’s link parser, as311


reviewed above. The link parser outputs several parses, and the dependencies of the312


best one are taken. The relationship extractor component is composed of a number313


of template matching algorithms that act upon the link parser’s output to produce a314


semantic interpretation of the parse. It contains three steps:315


1. Convert the Link Parser output to a feature structure representation316


2. Execute the Sentence Algorithm Applier, which contains a series of Sentence317


Algorithms, to modify the feature structure.318


3. Extract the final output representation by traversing the feature structure.319


A feature structure, in the RelEx context, is a directed graph in which each node320


contains either a value, or an unordered list of features. A feature is just a labeled321


link to another node. Sentence Algorithm Applier loads a list of SentenceAlgorithms322


from the algorithm definition file, and the SentenceAlgorithms are executed in the323


order they are listed in the file. RelEx iterates through every single feature node in the324


feature structure, and attempts to apply the algorithm to each node. Then the modified325


feature structures are used to generate the final RelEx semantic relationships.326
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26.5 The RelEx Framework for Natural Language Comprehension 431


26.5.1 RelEx2Frame: Mapping Syntactico-Semantic Relationships327


into FrameNet Based Logical Relationships328


Next in the current OpenCog NL comprehension pipeline, the RelEx2Frame com-329


ponent uses hand-coded rules to map RelEx output into sets of relationships uti-330


lizing FrameNet and other similar semantic resources. This is definitively viewed331


as a “stopgap” without a role in a human-level AGI system, but it’s described here332


because it’s part of the current OpenCog system and is now being used together with333


other OpenCog components in practical projects, including those with proto-AGI334


intentions.335


The syntax currently used for describing semantic relationships drawn from336


FrameNet and other sources is exemplified by the example337


ˆ1_Benefit:Benefitor(give,$var1)338


The 1 indicates the data source, where 1 is a number indicating that the resource339


is FrameNet. The “give” indicates the word in the original sentence from which340


the relationship is drawn, that embodies the given semantic relationship. So far the341


resources we’ve utilized are:342


1. FrameNet343


2. Custom relationship names344


but using other resources in future is quite possible.345


An example using a custom relationship would be:346


ˆ2_inheritance($var1,$var2)347


which defines an inheritance relationship: something that is part of CogPrime’s348


ontology but not part of FrameNet.349


The “Benefit” part of the first example indicates the frame indicated, and the350


“Benefitor” indicates the frame element indicated. This distinction (frame vs. frame351


element) is particular to FrameNet; other knowledge resources might use a different352


sort of identifier. In general, whatever lies between the underscore and the initial353


parenthese should be considered as particular to the knowledge-resource in question,354


and may have different format and semantics depending on the knowledge resource355


(but shouldn’t contain parentheses or underscores unless those are preceded by an356


escape character).357


As an example, consider:358


Put the ball on the table359


Here the RelEx output is:360


imperative (Put) [1]361


_obj(Put, ball) [1]362


on(Put, table) [1]363


singular (ball) [1]364


singular (table) [1]365
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432 26 Natural Language Comprehension


The relevant FrameNet Mapping Rules are:366


$var0 = ball367


$var1 = table368


# IF imperative(put) THEN ˆ1_Placing:Agent(put,you)369


# IF _obj(put,$var0) THEN ˆ1_Placing:Theme(put,$var0)370


# IF on(put,$var1) & _obj(put,$var0) THEN ˆ1_Placing:Goal(put,$var1) \371


ˆ1_Locative_relation:Figure($var0) ˆ1_Locative_relation:Ground($var1)372


Finally, the output FrameNet Mapping is:373


ˆ1_Placing:Agent(put,you)374


ˆ1_Placing:Theme(put,ball)375


ˆ1_Placing:Goal(put,table)376


ˆ1_Locative_relation:Figure(put,ball)377


ˆ1_Locative_relation:Ground(put,table)378


The textual syntax used for the hand-coded rules mapping RelEx to FrameNet, at379


the moment, looks like:380


# IF imperative(put) THEN ˆ1_Placing:Agent(put,you)381


# IF _obj(put,$var0) THEN ˆ1_Placing:Theme(put,$var0)382


# IF on(put,$var1) & _obj(put,$var0) THEN ˆ1_Placing:Goal(put,$var1) \383


ˆ1_Locative_relation:Figure($var0) ˆ1_Locative_relation:Ground($var1)384


Basically, this means each rule looks like385


# IF condition THEN action386


where the condition is a series of RelEx relationships, and the action is a series of387


FrameNet relationships. The arguments of the relationships may be words or may be388


variables in which case their names must start with $.1 The only variables appearing389


in the action should be ones that appeared in the condition.390


26.5.2 A Priori Probabilities for Rules391


It can be useful to attach a priori, heuristic probabilities to RelEx2Frame rules, say392


# IF _obj(put,$var0) THEN ˆ1_Placing:Theme(put,$var0) <.5>393


to denote that the a priori probability for the rule is 0.5.394


This is a crude mechanism because the probability of a rule being useful, in reality,395


depends so much on context; but it still has some nonzero value.396


1 An escape character “\” must be used to handle cases where the character “$” starts a word.
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26.5 The RelEx Framework for Natural Language Comprehension 433


26.5.3 Exclusions Between Rules397


It may be also useful to specify that two rules can’t semantically-consistently be398


applied to the same RelEx relationship. To do this, we need to associate rules with399


labels, and then specify exclusion relationships such as400


# IF on(put,$var1) & _obj(put,$var0) THEN ˆ1_Placing:Goal(put,$var1) \401


ˆ1_Locative_relation:Figure($var0) ˆ1_Locative_relation:Ground($var1) [1]402


# IF on(put,$var1) & _subj(put,$var0) THEN \403


ˆ1_Performing_arts:Performance(put,$var1) \404


ˆ1_Performing_arts:Performer(put,$var0) [2]405


# EXCLUSION 1 2406


In this example, Rule 1 would apply to “He put the ball on the table”, whereas407


Rule 2 would apply to “He put on a show”. The exclusion says that generally these408


two rules shouldn’t be applied to the same situation. Of course some jokes, poetic409


expressions, etc., may involve applying excluded rules in parallel.410


26.5.4 Handling Multiple Prepositional Relationships411


Finally, one complexity arising in such rules is exemplified by the sentence:412


“Bob says killing for the Mafia beats killing for the government”413


whose RelEx mapping looks like414


uncountable(Bob) [6]415


present(says) [6]416


_subj(says, Bob) [6]417


_that(says, beats) [3]418


uncountable(killing) [6]419


for(killing, Mafia) [3]420


singular(Mafia) [6]421


definite(Mafia) [6]422


hyp(beats) [3]423


present(beats) [5]424


_subj(beats, killing) [3]425


_obj(beats, killing_1) [5]426


uncountable(killing_1) [5]427


for(killing_1, government) [2]428


definite(government) [6]429


In this case there are two instances of “for”. The output of RelEx2Frame must thus430


take care to distinguish the two different for’s (or we might want to modify RelEx431


to make this distinction). The mechanism currently used for this is to subscript the432


for’s, as in433
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434 26 Natural Language Comprehension


uncountable(Bob) [6]434


present(says) [6]435


_subj(says, Bob) [6]436


_that(says, beats) [3]437


uncountable(killing) [6]438


for(killing, Mafia) [3]439


singular(Mafia) [6]440


definite(Mafia) [6]441


hyp(beats) [3]442


present(beats) [5]443


_subj(beats, killing) [3]444


_obj(beats, killing_1) [5]445


uncountable(killing_1) [5]446


for_1(killing_1, government) [2]447


definite(government) [6]448


so that upon applying the rule:449


# IF for($var0,$var1) ˆ {present($var0) OR past($var0) OR future($var0)} \450


THEN ˆ2_Benefit:Benefitor(for,$var1) ˆ2_Benefit:Act(for,$var0)451


we obtain452


ˆ2_Benefit:Benefitor(for,Mafia)453


ˆ2_Benefit:Act(for,killing)454


455


ˆ2_Benefit:Benefitor(for_1,government)456


ˆ2_Benefit:Act(for_1,killing_1)457


Here the first argument of the output relationships allows us to correctly associate458


the different acts of killing with the different benefitors.459


26.5.5 Comparatives and Phantom Nodes460


Next, a bit of subtlety is needed to deal with sentences like461


Mike eats more cookies than Ben.462


which RelEx handles via463


_subj(eat, Mike)464


_obj(eat, cookie)465


more(cookie, $cVar0)466


$cVar0(Ben)467
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26.5 The RelEx Framework for Natural Language Comprehension 435


Then a RelEx2FrameNet mapping rule such as:468


IF469


_subj(eat,$var0)470


_obj(eat,$var1)471


more($var1,$cVar0)472


$cVar0($var2)473


THEN474


ˆ2_AsymmetricEvaluativeComparison:ProfiledItem(more, $var1)475


ˆ2_AsymmetricEvaluativeComparison:StandardItem(more, $var1_1)476


ˆ2_AsymmetricEvaluativeComparison:Valence(more, more)477


ˆ1_Ingestion:Ingestor(eat,$var0)478


ˆ1_Ingestion:Ingested(eat,$var1)479


ˆ1_Ingestion:Ingestor(eat_1,$var2)480


ˆ1_Ingestion:Ingested(eat_1,$var1_1)481


applies, which embodies the commonsense intuition about comparisons regarding482


eating. (Note that we have introduced a new frame AsymmetricEvaluativeCompari-483


son here, by analogy to the standard FrameNet frame Evaluative_comparison.)484


Note also that the above rule may be too specialized, though it’s not incorrect.485


One could also try more general rules like486


IF487


%Agent($var0)488


%Agent($var1)489


_subj($var3,$var0)490


_obj($var3,$var1)491


more($var1,$cVar0)492


$cVar0($var2)493


THEN494


ˆ2_AsymmetricEvaluativeComparison:ProfiledItem(more, $var1)495


ˆ2_AsymmetricEvaluativeComparison:StandardItem(more, $var1_1)496


ˆ2_AsymmetricEvaluativeComparison:Valence(more, more)497


_subj($var3,$var0)498


_obj($var3,$var1)499


_subj($var3_1,$var2)500


_obj($var3_1,$var1_1)501


However, this rule is a little different than most RelEx2Frame rules, in that it produces502


output that then needs to be processed by the RelEx2Frame rule-base a second time.503


There’s nothing wrong with this, it’s just an added layer of complexity.504


26.6 Frame2Atom505


The next step in the current OpenCog NLP comprehension pipeline is to translate506


the output of RelEx2Frame into Atoms. This may be done in a variety of ways; the507


current Frame2Atom script embodies one approach that has proved workable, but is508


certainly not the only useful one.509
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436 26 Natural Language Comprehension


The Node types currently used in Frame2Atom are:510


• WordNode511


• ConceptNode512


– DefinedFrameNode513


– DefinedLinguisticConceptNode514


• PredicateNode515


– DefinedFrameElementNode516


– DefinedLinguisticRelationshipNode517


• SpecificEntityNode518


The special node types519


• DefinedFrameNode520


• DefinedFrameElementNode521


have been created to correspond to FrameNet frames and elements respectively (or522


frames and elements drawn from similar resources to FrameNet, such as our own523


frame dictionary).524


Similarly, the special node types525


• DefinedLinguisticConceptNode526


• DefinedLinguisticRelationshipNode527


have been created to correspond to RelEx unary and binary relationships respectively.528


The “defined” is in the names because once we have a more advanced CogPrime529


system, it will be able to learn its own frames, frame elements, linguistic concepts530


and relationships. But what distinguishes these “defined” Atoms is that they have531


names which correspond to specific external resources.532


The Link types we need for Frame2Atom are:533


• InheritanceLink534


• ReferenceLink (current using WRLink aka “word reference link”)535


• FrameElementLink.536


ReferenceLink is a special link type for connecting concepts to the words that537


they refer to. (This could be eliminated via using more complex constructs, but it’s538


a very common case so for practical purposes it makes sense to define it as a link539


type.)540


FrameElementLink is a special link type connecting a frame to its element. Its541


semantics (and how it could be eliminated at cost of increased memory and com-542


plexity) will be explained below.543
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26.6 Frame2Atom 437


26.6.1 Examples of Frame2Atom544


Below follow some examples to illustrate the nature of the mapping intended. The545


examples include a lot of explanatory discussion as well.546


Note that, in these examples, [n] denotes an Atom with AtomHandle n. All Atoms547


have Handles, but Handles are only denoted in cases where this seems useful. (In the548


XML representation used in the current OpenCogPrime impelmentation, these are549


replaced by UUID’s).550


The notation
W ord Node# pig


denotes a WordNode with name pig, and a similar convention is used for other551


AtomTypes whose names are useful to know.552


These examples pertain to fragments of the parse553


Ben slowly ate the fat chickens.554


555


A:_advmod:V(slowly:A, eat:V)556


N:_nn:N(fat:N, chicken:N)557


N:definite(Ben:N)558


N:definite(chicken:N)559


N:masculine(Ben:N)560


N:person(Ben:N)561


N:plural(chicken:N)562


N:singular(Ben:N)563


V:_obj:N(eat:V, chicken:N)564


V:_subj:N(eat:V, Ben:N)565


V:past(eat:V)566


567


^1 _Ingestion:Ingestor(eat ,Ben)568


^1 _Temporal_colocation:Event(past ,eat)569


^1 _Ingestion:Ingestibles(eat ,chicken)570


^1 _Activity:Agent(subject ,Ben)571


^1 _Activity:Activity(verb ,eat)572


^1 _Transitive_action:Event(verb ,eat)573


^1 _Transitive_action:Patient(object ,chicken)574


Example1575
_obj (eat, chicken)


would map into576


EvaluationLink577


DefinedLinguisticRelationshipNode #_obj578


ListLink579


ConceptNode [2]580


ConceptNode [3]581


InheritanceLink582


[2]583


ConceptNode [4]584
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438 26 Natural Language Comprehension


585


InheritanceLink586


[3]587


ConceptNode [5]588


589


ReferenceLink [6]590


WordNode #eat [8]591


[4]592


593


ReferenceLink [7]594


WordNode #chicken [9]595


[5]596


Please note that the Atoms labeled 4, 5, 6, 7, 8, 9 would not normally have to be
created when entering the relationship


_obj (eat, chicken)


into the AtomTable. They should already be there, assuming the system already597


knows about the concepts of eating and chickens. These would need to be newly598


created only if the system had never seen these words before.599


For instance, the Atom [2] represents the specific instance of “eat” involved in600


the relationship being entered into the system. The Atom [4] represents the general601


concept of “eat”, which is what is linked to the word “eat”.602


Note that a very simple step of inference, from these Atoms, would lead to the603


conclusion604


EvaluationLink605


DefinedLinguisticRelationshipNode #_obj606


ListLink607


ConceptNode [4]608


ConceptNode [5]609


which represents the general statement that chickens are eaten. This is such an obvious610


and important step, that perhaps as soon as the relationship _obj (eat, chicken) is611


entered into the system, it should immediately be carried out (i.e. that link if not612


present should be created, and if present should have its truth value updated). This is613


a choice to be implemented in the specific scripts or schema that deal with ingestion614


of natural language text.615
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26.6 Frame2Atom 439


Example2616


masculine(Ben)


would map into617


InheritanceLink618


SpecificEntityNode [40]619


DefinedLinguisticConceptNode #masculine620


621


InheritanceLink622


[40]623


[10]624


625


ReferenceLink626


WordNode #Ben627


[10]628


Example3629


The mapping of the RelExToFrame output


I ngestion : I ngestor(eat, Ben)


would use the existing Atoms630


DefinedFrameNode #Ingestion [11]631


DefinedFrameElementNode #Ingestion:Ingestor [12]632


which would be related via633


FrameElementLink [11] [12]634


(Note that FrameElementLink may in principle be reduced to more elementary635


PLN link types.)636


Note that each FrameNet frame contains some core elements and some optional637


elements. This may be handled by giving core elements links such as638


FrameElementLink F E <1>639


and optional ones links such as640


FrameElementLink F E <.7>641


Getting back to the example at hand, we would then have642


InheritanceLink [2] [11]643


(recall [2], is the instance of eating involved in Example 1; and [11], is the Ingestion644


frame), which says that this instance of eating is an instance of ingestion. (In principle,645


some instances of eating might not be instances of ingestion—or more generally, we646


can’t assume that all instances of a given concept will always associate with the647
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440 26 Natural Language Comprehension


same FrameNodes. This could be assumed only if we assumed all word-associated648


concepts were disambiguated to a single known FrameNet frame, but this can’t649


be assumed, especially if later on we want to use cognitive processes to do sense650


disambiguation.)651


We would then also have links denoting the role of Ben as an Ingestor in the652


frame-instance [2], i.e.653


EvaluationLink654


DefinedFrameElementNode #Ingestion:Ingestor [12]655


ListLink656


[2]657


[40]658


This says that the specific instance of Ben observed in that sentence ([4]) served659


the role of Ingestion:Ingestor in regard to the frame-instance [2] (which is an instance660


of eating, which is known to be an instance of the frame of Ingestion).661


26.6.2 Issues Involving Disambiguation662


Right now, OpenCogPrime’s RelEx2Frame rulebase is far from adequately large663


(there are currently around 5,000 rules) and the link parser and RelEx are also664


imperfect. The current OpenCog NLP system does work, but for complex sentences665


it tends to generate too many interpretations of each sentence—“parse selection”666


or more generally “interpretation selection” is not yet adequately addressed. This is667


a tricky issue that can be addressed to some extent via statistical linguistics meth-668


ods, but we believe that to solve it convincingly and thoroughly will require more669


cognitively sophisticated methods.670


The most straightforward way to approach it statistically is to process a large671


number of sentences, and then tabulate co-occurrence probabilities of different rela-672


tionships across all the sentences. This allows one to calculate the probability of a673


given interpretation conditional on the corpus, via looking at the probabilities of the674


combinations of relationships in the interpretation. This may be done using a Bayes675


Net or using PLN—in any case the problem is one of calculating the probability of676


a conjunction of terms based on knowledge regarding the probabilities of various677


sub-conjunctions. As this method doesn’t require marked-up training data, but is678


rather purely unsupervised, it’s feasible to apply it to a very large corpus of text—the679


only cost is computer time.680


What the statistical approach won’t handle, though, are the more conceptually681


original linguistic constructs, containing combinations that didn’t occur frequently in682


the system’s training corpus. It will rate innovative semantic constructs as unlikely,683


which will lead it to errors sometimes—errors of choosing an interpretation that684


seems odd in terms of the sentence’s real-world interpretation, but matches well685


with things the system has seen before. The only way to solve this is with genuine686


understanding—with the system reasoning on each of the interpretations and seeing687
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26.7 Syn2Sem: A Semi-Supervised Alternative to RelEx and RelEx2Frame 441


which one makes more sense. And this kind of reasoning generally requires some688


relevant commonsense background knowledge—which must be gained via experi-689


ence, reading and conversing, or from a hand-coded knowledge base, or via some690


combination of the above.691


Related issues also involving disambiguation include word sense disambiguation692


(words with multiple meanings) and anaphor resolution (recognizing the referents693


of pronouns, and of nouns that refer to other nouns, etc.).694


The current RelEx system contains a simple statistical parse ranker (which rates695


a parse higher if the links it includes occur more frequently in a large parsed corpus),696


statistical methods for word sense disambiguation [Mih07] inspired by those in Rada697


Mihalcea’s work [SM09], and an anaphor resolution algorithm based on the classic698


Hobbs Algorithm (customized to work with the link parser) [Hob78]. While reason-699


ably effective in many cases, from an AGI perspective these must all be considered700


“stopgaps” to be replaced with code that handles these tasks using probabilistic in-701


ference. It is conceptually straightforward to replace statistical linguistic algorithms702


with comparable PLN-based methods, however significant attention must be paid to703


code optimization as using a more general algorithm is rarely as efficient as using a704


specialized one. But once one is handling things in PLN and the Atomspace rather705


than in specialized computational linguistics code, there is the opportunity to use a706


variety of inference rules for generalization, analogy and so forth, which enables a707


radically more robust form of linguistic intelligence.708


26.7 Syn2Sem: A Semi-Supervised Alternative to RelEx709


and RelEx2Frame710


This section describes an alternative approach to the RelEx/RelEx2Frame approach711


described above, which is in the midst of implementation at time of writing. This alter-712


native represents a sort of midway point between the rule-based RelEx/RelEx2Frame713


approach, and a conceptually ideal fully experiential learning based approach.714


The motivations underlying this alternative approach have been to create an715


OpenCog NLP system with the capability to:716


• Support simple dialogue in a video game like world, and a robot system717


• Leverage primarily semi-supervised experiential learning718


• Replace the RelEx2Frame rules, which are currently problematic, with a different719


way of mapping syntactic relationships into Atoms, that is still reasoning and720


learning friendly721


• Require only relatively modest effort for implementation (not multiple human-722


years).723


The latter requirement ruled out a pure “learn language from experience with no724


aid from computational linguistics tools” approach, which may well happen within725


OpenCog at some point.726
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442 26 Natural Language Comprehension


26.8 Mapping Link Parses into Atom Structures727


The core idea of the new approach is to learn “Syn2Sem” rules that map link728


parses into Atom structures. These rules may then be automatically reversed to form729


Sem2Syn rules, which may be used in language generation.730


Note that this is different from the RelEx approach as currently pursued (the “old731


approach”), which contains732


• One set of rules (the RelEx rules) mapping link parses into semantic relation-sets733


(“RelEx relation-sets” or rel-sets)734


• Another set of rules (the RelEx2Frame rules) mapping rel-sets into FrameNet-735


based relation-sets736


• Another set of rules (the Frame2Atom rules) mapping FrameNet-based relation-737


sets into Atom-sets.738


In the old approach, all the rules were hand-coded. In the new approach739


• Nothing needs to be hand-coded (except the existing link parser dictionary); the740


rules can be learned from a corpus of (link-parse, Atom-set) pairs. This corpus741


may be human-created; or may be derived via a system’s experience in some742


domain where sentences are heard or read, and can be correlated with observed743


nonlinguistic structures that can be described by Atoms.744


• In practice, some hand-coded rules are being created to map RelEx rel-sets into745


Atom-sets directly (bypassing RelEx2Frame) in a simple way. These rules will be746


used, together with RelEx, to create a large corpus of (link parse, Atom-set) pairs,747


which will be used as a training corpus. This training corpus will have more errors748


than a hand-created corpus, but will have the compensating advantage of being749


significantly larger than any hand-created corpus would feasibly be.750


In the old approach, NL generation was done by using a pattern-matching751


approach, applied to a corpus of (link parse, rel-set) pairs, to mine rules mapping rel-752


sets to sets of link parser links. This worked to an extent, but the process of piecing753


together the generated sets of link parser links to form coherent “sentence parses”754


(that could then be turned into sentences) turned out to be subtler than expected, and755


appeared to require an escalatingly complex set of hand-coded rules, to be extended756


beyond simple cases.757


In the new approach, NL generation is done by explicitly reversing the mapping758


rules learned for mapping link parses into Atom sets. This is possible because the rules759


are explicitly given in a form enabling easy reversal; whereas in the old approach,760


RelEx transformed link parses into rel-sets using a process of successively apply-761


ing many rules to an ornamented tree, each rule acting on variables (“ornaments”)762


deposited by previous rules. Put simply, RelEx transformed link parses into rel-sets763


via imperative programming, whereas in the new approach, link parses are trans-764


formed into Atom-sets using learned rules that are logical in nature. The movement765


from imperative to logical style dramatically eases automated rule reversal.766
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26.8 Mapping Link Parses into Atom Structures 443


26.8.1 Example Training Pair767


For concreteness, an example (link parse, Atom-set) pair would be as follows. For768


the sentence “Trains move quickly”, the link parse looks like769


Sp(trains, move)770


MVa(move, quickly)771


whereas the Atom-set looks like772


Inheritance773


move_1774


move775


776


Evaluation777


move_1778


train779


780


Inheritance781


move_1782


quick783


Rule learning proceeds, in the new approach, from a corpus consisting of such784


pairs.785


26.9 Making a Training Corpus786


26.9.1 Leveraging RelEx to Create a Training Corpus787


To create a substantial training corpus for the new approach, we are leveraging the788


existence of RelEx. We have a large corpus of sentences parsed by the link parser and789


then processed by RelEx. A new collection of rules is being created, RelEx2Atom,790


that directly translates RelEx parses into Atoms, in a simple way, embodying the791


minimal necessary degree of disambiguation (in a sense to be described just below).792


Using these RelEx2Atom rules, one can transform a corpus of (link parse, RelEx793


rel-set) triples into a corpus of (link parse, Atom-set) pairs—which can then be used794


as training data for learning Syn2Sem rules.795
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444 26 Natural Language Comprehension


26.9.2 Making an Experience Based Training Corpus796


An alternate approach to making a training corpus would be to utilize a virtual world797


such as the Unity3D world now being used for OpenCog game AI research and798


development.799


A human game-player could create a training corpus by repeated:800


• Typing in a sentence801


• Indicating, via the graphic user interface, which entities or events in the virtual802


world were referred to by the sentence.803


Since OpenCog possesses code for transforming entities and events in the virtual804


world into Atom-sets, this would implicitly produce a training corpus of (sentence,805


Atom-set) pairs, which using the link parser could then be transformed into (link806


parse, Atom-set) pairs.807


26.9.3 Unsupervised, Experience Based Corpus Creation808


One could also dispense with the explicit reference-indication GUI, and just have a809


user type sentences to the AI agent as the latter proceeds through the virtual world.810


The AI agent would then have to figure out what specifically the sentences were811


referring to—maybe the human-controlled avatar is pointing at something; maybe812


one thing recently changed in the game world and nothing else did; etc. This mode813


of corpus creation would be reasonably similar to human first language learning814


in format (though of course there are many differences from human first language815


learning in the overall approach, for instance we are assuming the link parser, whereas816


a human language learner has to learn grammar for themselves, based on complex817


and ill-understood genetically encoded prior probabilistic knowledge regarding the818


likely aspects of the grammar to be learned).819


This seems a very interesting direction to explore later on, but at time of writing820


we are proceeding with the RelEx-based training corpus, for sake of simplicity and821


speed of development.822


26.10 Limiting the Degree of Disambiguation Attempted823


The old approach is in a sense more ambitious than the new approach, because the824


RelEx2Frame rules attempt to perform a deeper and more thorough level of semantic825


disambiguation than the new rules. However, the RelEx2Frame rule-set in its current826


state is too “noisy” to be really useful; it would need dramatic improvement to be827


helpful in practice. The key difference is that,828
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26.10 Limiting the Degree of Disambiguation Attempted 445


• In the new approach, the syntax-to-semantics mapping rules attempt only the829


disambiguation that needs to be done to get the structure of the resultant Atom-set830


correct. Any further disambiguation is left to be done later, by MindAgents acting831


on the Atom-sets after they’ve already been placed in the AtomSpace.832


• In the old approach, the RelEx2Frame rules attempted, in many cases, to disam-833


biguate between different meanings beyond the level needed to disambiguate the834


structure of the Atom-set.835


To illustrate the difference, consider the sentences836


• Love moves quickly.837


• Trains move quickly.838


These sentences involve different senses of “move”—change in physical location,839


versus a more general notion of progress. However, both sentences map to the same840


basic conceptual structure, e.g.841


Inheritance842


move_1843


move844


845


Evaluation846


move_1847


train848


849


Inheritance850


move_1851


quick852


versus853


Inheritance854


move_2855


move856


857


Evaluation858


move_2859


love860


861


Inheritance862


move_2863


quick864


The RelEx2Frame rules try to distinguish between these cases via, in effect,865


associating the two instances move_1 and move_2 with different frames, using hand-866


coded rules that map RelEx rel-sets into appropriate Atom-sets defined in terms of867


FrameNet relations. This is not a useless thing to do; however, doing it well requires868


a very large and well-honed rule-base. Cyc’s natural language engine attempts to869


319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


446 26 Natural Language Comprehension


do something similar, though using a different parser than the link parser and a870


different ontology than FrameNet; it does a much better job than the current version of871


RelEx2Frame, but still does a surprisingly incomplete job given the massive amount872


of effort put into sculpting the relevant rule-sets.873


The new approach does not try to perform this kind of disambiguation prior874


to mapping things into Atom-sets. Rather, this kind of disambiguation is left for875


inference to do, after the relevant Atoms have already been placed in the AtomSpace.876


The rule of thumb is: Do precisely the disambiguation needed to map the parse into877


a compact, simple Atom-set, whose component nodes correspond to English words.878


Let the disambiguation of the meaning of the English words be done by some other879


process acting on the AtomSpace.880


26.11 Rule Format881


To represent Syn2Sem rules, it is convenient to represent link parses as Atom-sets.882


Each element of the training corpus will then be of the form (Atom set representing883


link parse, Atom-set representing semantic interpretation). Syn2Sem rules are then884


rules mapping Atom-sets to Atom-sets.885


Broadly speaking, the format of a Syn2Sem rule is then886


Implication887


Atom-set representing portion of link parse888


Atom-set representing portion of semantic interpretation889


26.11.1 Example Rule890


A simple example rule would be891


Implication892


Evaluation893


Predicate: Sp894


\$V1895


\$V2896


Evaluation897


\$V2898


\$V1899


This rule, in essence, maps verbs into predicates that take their subjects as argu-900


ments.901


On the other hand, an Sem2Syn rule would look like the reverse:902


Implication903


Atom-set representing portion of link parse904
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26.11 Rule Format 447


Atom-set representing portion of semantic interpretation905


Our currentapproach is to begin with Syn2Sem rules, because, due to the nature906


of natural language, these rules will tend to be more certain. That is: it is more907


strongly the case in natural languages that each syntactic construct maps into a small908


set of semantic structures, than that each semantic structure is realizable only via a909


small set of syntactic constructs. There are usually more ways structurally different,910


reasonably sensible ways to say an arbitrary thought, than there are structurally911


different, reasonably sensible ways to interpret an arbitrary sentence. Because of this912


fact about language, the design of the Atom-sets in the corpus is based on the principle913


of finding an Atom structure that most simply represents the meaning of the sentence914


corresponding to each given link parse. Thus, there will be many Syn2Sem rules with915


a high degree of certitude attached to them. On the other hand, the Sem2Syn rules916


will tend to have less certitude, because there may be many different syntactic ways917


to realize a given semantic expression.918


26.12 Rule Learning919


Learning of Syn2Sem rules may be done via any algorithm that is able to search rule920


space for rules of the proper format with high truth value as evaluated across the921


training set. Currently we are experimenting with using OpenCogPrime’s frequent922


subgraph mining algorithm in this context. MOSES could also potentially be used to923


learn Syn2Sem rules. One suspects that MOSES might be better than frequent sub-924


graph mining for learning complex rules, but based on preliminary experimentation,925


frequent subgraph mining seems fine for learning the simple rules involved in simple926


sentences.927


PLN inference may also be used to generate new rules by combining previous928


ones, and to generalize rules into more abstract forms.929


26.13 Creating a Cyc-Like Database Via Text Mining930


The discussion of these NL comprehension mechanisms leads naturally to one in-931


teresting potential application of the OpenCog NL comprehension pipeline—which932


is only indirectly related to CogPrime, but would create a valuable resource for use933


by CogPrime if implemented. The possibility exists to use the OpenCog NL com-934


prehension system to create a vaguely Cyc-like database of common-sense rules.935


The approach would be as follows:936


1. Get a corpus of text937


2. Parse the text using OpenCog (RelEx or Syn2Sem)938


3. Mine logical relationships among Atomrelationships from the data thus pro-939


duced, using greedy data-mining, MOSES, or other methods.940
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448 26 Natural Language Comprehension


These mined logical relationships will then be loosely analogous to the rules the941


Cyc team have programmed in. For instance, there will be many rules like:942


# IF _subj(understand,$var0) THEN ˆ1_Grasp:Cognizer(understand,$var0)943


# IF _subj(know,$var0) THEN ˆ1_Grasp:Cognizer(understand,$var0)944


So statistical mining would learn rules like945


IF ˆ1_Mental_property(stupid) & ˆ1_Mental_property:Protagonist($var0)946


THEN ˆ1_Grasp:Cognizer(understand,$var0) <.3>947


IF ˆ1_Mental_property(smart) & ˆ1_Mental_property:Protagonist($var0)948


THEN ˆ1_Grasp:Cognizer(understand,$var0) <.8>949


which means that stupid people mentally grasp less than smart people do.950


Note that these commonsense rules would come out automatically probabilisti-951


cally quantified.952


Note also that to make such rules come out well, one needs to do some (proba-953


bilistic) synonym-matching on nouns, adverbs and adjectives, e.g. so that mentions954


of “smart”, “intelligent”, “clever”, etc. will count as instances of955


ˆ1_Mental_property(smart)956


By combining probabilistic synonym matching on words, with mapping RelEx957


output into FrameNet input, and doing statistical mining, it should be possible to958


build a database like Cyc but far more complete and with coherent probabilistic959


weightings.960


Although this way of building a commonsense knowledge base requires a lot of961


human engineering, it requires far less than something like Cyc. One “just” needs962


to build the RelEx2FrameNet mapping rules, not all the commonsense knowledge963


relationships directly—those come from text. We do not advocate this as a solution964


to the AGI problem, but merely suggest that it could produce a large amount of useful965


knowledge to feed into an AGI’s brain.966


And of course, the better an AI one has, the better one can do the step labeled “Rank967


the parses and FrameNet interpretations using inference or heuristics or both”. So968


there is a potential virtuous cycle here: more commonsense knowledge mined helps969


create a better AI mind, which helps mine better commonsense knowledge, etc.970


26.14 PROWL Grammar971


We have described the crux of the NL comprehension pipeline that is currently in972


place in the OpenCog codebase, plus some ideas for fairly moderate modifications973


or extensions. This section is a little more speculative, and describes an alternative974


approach that fits better with the overall CogPrime design, which however has not975


yet been implemented. The ideas given here lead more naturally to a design for976


experience-based language learning and processing, a connection that will be pointed977


out in a later section.978
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26.14 PROWL Grammar 449


What we describe here is a partially-new theory of language formed via combining979


ideas from three sources: Hudson’s Word Grammar [Hud90, Hud07a], Sleator and980


Temperley’s link grammar, and Probabilistic Logic Networks. Reflecting its origin981


in these three sources, we have named the new theory PROWL grammar, meaning982


PRObabilistic Word Link Grammar. We believe PROWL has value purely as a con-983


ceptual approach to understanding language; however, it has been developed largely984


from the standpoint of computational linguistics—as part of an attempt to create a985


framework for computational language understanding and generation that both986


1. Yields broadly adequate behavior based on hand-coding of “expert rules” such987


as grammatical rules, combined with statistical corpus analysis988


2. Integrates naturally with a broader AI framework that combines language with989


embodied social, experiential learning, that ultimately will allow linguistic rules990


derived via expert encoding and statistical corpus analysis to be replaced with991


comparable, more refined rules resulting from the system’s own experience.992


PROWL has been developed as part of the larger CogPrime project; but, it is993


described in this section mostly in a CogPrime-independent way, and is intended to994


be independently evaluable (and, hopefully, valuable).995


As an integration of three existing frameworks, PROWL could be presented in996


various different ways. One could choose any one of the three components as an initial997


foundation, and then present the combined theory as an expansion/modification of998


this component. Here we choose to present it as an expansion/modification of Word999


Grammar, as this is the way it originated, and it is also the most natural approach1000


for readers with a linguistics background. From this perspective, to simplify a fair1001


bit, one may describe PROWL as consisting of Word Grammar with three major1002


changes:1003


1. Word Grammar’s network knowledge representation is replaced with a richer1004


PLN-based network knowledge representation.1005


a. This includes, for instance, the replacement of Word Grammar’s single “isa”1006


relationship type with a more nuanced collection of logically distinct prob-1007


abilistic inheritance relationship types1008


2. Going along with the above, Word Grammar’s “default inheritance” mechanism1009


is replaced by an appropriate PLN control mechanism that guides the use of1010


standard PLN inference rules1011


a. This allows the same default-inheritance based inferences that Word Gram-1012


mar relies upon, but embeds these inferences in a richer probabilistic frame-1013


work that allows them to be integrated with a wide variety of other inferences1014


3. Word Grammar’s small set of syntactic link types is replaced with a richer set1015


of syntactic link types as used in Link Grammar1016


a. The precise optimal set of link types is not clear; it may be that the link1017


grammar’s syntactic link type vocabulary is larger than necessary, but we1018


also find it clear that the current version of Word Grammar’s syntactic link1019
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450 26 Natural Language Comprehension


type vocabulary is smaller than feasible (at least, without the addition of1020


large, new, and as yet unspecified ideas to Word Grammar).1021


In the following subsections we will review these changes in a little more detail.1022


Basic familiarity with Word Grammar, Link Grammar and PLN is assumed.1023


Note that in this section we will focus mainly on those issues that are somehow1024


nonobvious. This means that a host of very important topics that come along with the1025


Word Grammar/PLN integration are not even mentioned. The way Word Grammar1026


deals with morphology, semantics and pragmatics, for instance, seems to us quite1027


sensible and workable—and doesn’t really change at all when you integrate Word1028


Grammar with PLN, except that Word Grammar’s crisp isa links become PLN-style1029


probabilistic Inheritance links.1030


26.14.1 Brief Review of Word Grammar1031


Word Grammar is a theory of language structure which Richard Hudson began devel-1032


oping in the early 1980s [Hud90]. While partly descended from Systemic Functional1033


Grammar, there are also significant differences. The main ideas of Word Grammar1034


are as follows2:1035


• It presents language as a network of knowledge, linking concepts about words,1036


their meanings, etc.—e.g. the word “dog” is linked to the meaning ‘dog’, to the1037


form /dog/, to the word-class ‘noun’, etc.1038


• If language is a network, then it is possible to decide what kind of network it is1039


(e.g. it seems to be a scale-free small-world network)1040


• It is monostratal—only one structure per sentence, no transformations.1041


• It uses word-word dependencies—e.g. a noun is the subject of a verb.1042


• It does not use phrase structure—e.g. it does not recognise a noun phrase as the1043


subject of a clause, though these phrases are implicit in the dependency structure.1044


• It shows grammatical relations/functions by explicit labels—e.g. ‘subject’ and1045


‘object’.1046


• It uses features only for inflectional contrasts that are mentioned in agreement1047


rules—e.g. number but not tense or transitivity.1048


• It uses default inheritance, as a very general way of capturing the contrast be-1049


tween ‘basic’ or ‘underlying’ patterns and ‘exceptions’ or ‘transformations’—e.g.1050


by default, English words follow the word they depend on, but exceptionally sub-1051


jects precede it; particular cases ‘inherit’ the default pattern unless it is explicitly1052


overridden by a contradictory rule.1053


• It views concepts as prototypes rather than ‘classical’ categories that can be defined1054


by necessary and sufficient conditions. All characteristics (i.e. all links in the1055


2 The following list is paraphrased with edits from http://www.phon.ucl.ac.uk/home/dick/wg.htm
downloaded on June 27, 2010.
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26.14 PROWL Grammar 451


network) have equal status, though some may for pragmatic reasons be harder to1056


override than others.1057


• In this network there are no clear boundaries between different areas of1058


knowledge—e.g. between ‘lexicon’ and ‘grammar’, or between ‘linguistic mean-1059


ing’ and ‘encyclopedic knowledge’; language is not a separate module of cognition.1060


• In particular, there is no clear boundary between ‘internal’ and ‘external’ facts1061


about words, so a grammar should be able to incorporate sociolinguistic facts—1062


e.g. the speaker of “sidewalk” is an American.1063


26.14.2 Word Grammar’s Logical Network Model1064


Word Grammar presents an elegant framework in which all the different aspects of1065


language are encompassed within a single knowledge network. Representationally,1066


this network combines two key aspects:1067


1. Inheritance (called is-a) is explicitly represented1068


2. General relationships between n-ary predicates and their arguments, including1069


syntactic relationships, are explicitly represented.1070


Dynamically, the network contains two key aspects:1071


1. An inference rule called “default inheritance”1072


2. Activation-spreading, similar to that in a neural network or standard semantic1073


network.1074


The similarity between Word Grammar and CogPrime is fairly strong. In the latter,1075


inheritance and generic predicate-argument relationships are explicitly represented;1076


and, a close analogue of activation spreading is present in the “attention allocation”1077


subsystem. As in Word Grammar, important cognitive phenomena are grounded in1078


the symbiotic combination of logical-inference and activation-spreading dynamics.1079


At the most general level, the reaction of the Word Grammar network to any1080


situation is proposed to involve three stages:1081


1. Node creation and identification: of nodes representing the situation as under-1082


stood, in its most relevant aspects1083


2. Where choices need to be made (e.g. where an identified predicate needs to1084


choose which other nodes to bind to as arguments), activation spreading is used,1085


and the most active eligible argument is utilized (this is called “best fit binding”)1086


3. Default inheritance is used to supply new links to the relevant nodes as necessary.1087


Default inheritance is a process that relies on the placement of each node in a1088


directed acyclic graph hierarchy (dag) of isa links. The basic idea is as follows.1089


Suppose one has a node N, and a predicate f(N,L), where L is another argument1090


or list of arguments. Then, if the truth value of f(N,L) is not explicitly stored in1091


the network, N inherits the value from any ancestor A in the dag so that: f(A,L) is1092


explicitly stored in the network; and there is not any node P inbetween N and A1093
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452 26 Natural Language Comprehension


for which f(P,L) is explicitly stored in the network. Note that multiple inheritance is1094


explicitly supported, and in cases where this leads to multiple assignments of truth1095


values to a predicate, confusion in the linguistic mind may ensue. In many cases the1096


option coming from the ancestor with the highest level of activity may be selected.1097


Our suggestion is that Word Grammar’s network representation may be replaced1098


with PLN’s logical network representation without any loss, and with significant gain.1099


Word Grammar’s network representation has not been fleshed out as thoroughly as1100


that of PLN, it does not handle uncertainty, and it is not associated with general1101


mechanisms for inference. The one nontrivial issue that must be addressed in porting1102


Word Grammar to the PLN representation is the role of default inheritance in Word1103


Grammar. This is covered in the following subsection.1104


The integration of activation spreading and default inheritance proposed in Word1105


Grammar, should be easily achievable within CogPrime assuming a functional at-1106


tention allocation subsystem.1107


26.14.3 Link Grammar Parsing Versus Word Grammar Parsing1108


From a CogPrime/PLN point of view, perhaps the most striking original contribution1109


of Word Grammar is in the area of syntax parsing. Word Grammar’s treatment of mor-1110


phology and semantics is, basically, exactly what one would expect from representing1111


such things in a richly structured semantic network. PLN adds much additional rich-1112


ness to Word Grammar via allowing nuanced representation of uncertainty, which1113


is critical on every level of the linguistic hierarchy—but this doesn’t change the1114


fundamental linguistic approach of Word Grammar. Regarding syntax processing,1115


however, Word Grammar makes some quite specific and unique hypotheses, which1116


if correct are very valuable contributions.1117


The conceptual assumption we make here is that syntax processing, while carried1118


out using generic cognitive processes for uncertain inference and activation spread-1119


ing, also involves some highly specific constraints on these processes. The extent1120


to which these constraints are learned versus inherited is yet unknown, and for the1121


subtleties of this issue the reader is referred to [EBJ+97]. Word Grammar and Link1122


Grammar are then understood as embodying different hypotheses regarding what1123


these constraints actually are.1124


It is interesting to consider the contributions of Word Grammar to syntax parsing1125


via comparing it to Link Grammar.1126


Note that Link Grammar, while a less comprehensive conceptual theory than1127


Word Grammar, has been used to produce a state-of-the-art syntax parser, which1128


has been incorporated into a number of other software systems including OpenCog.1129


So it is clear that the Link Grammar approach has a great deal of pragmatic value.1130


On the other hand, it also seems clear that Link Grammar has certain theoretical1131


shortcomings. It deals with many linguistic phenomena very elegantly, but there are1132


other phenomena for which its approach can only be described as “hacky”.1133
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26.14 PROWL Grammar 453


Word Grammar contains fewer hacks than Link Grammar, but has not yet been1134


put to the test of large-scale computational implementation, so it’s not yet clear how1135


many hacks would need to be added to give it the relatively broad coverage that Link1136


Grammar currently has. Our own impression is that to make Word Grammar actually1137


work as the foundation for a broad-coverage grammar parser (whether standalone, or1138


integrated into a broader artificial cognition framework), one would need to move it1139


somewhat in the direction of link grammar, via adding a greater number of specialized1140


syntactic link types (more on this shortly). There are in fact concrete indications of1141


this in [Hud07a].1142


The Link Grammar framework may be decomposed into three aspects:1143


1. The link grammar dictionary, which for each word in English, contains a number1144


of links of different types. Some links point left, some point right, and each link1145


is labeled. Furthermore, some links are required and others are optional.1146


2. The “no-links-cross” constraint, which states that the correct parse of a sentence1147


will involve drawing links between words, in such a way that all the required1148


links of each word are fulfilled, and no two links cross when the links are depicted1149


in two dimensions1150


3. A processing algorithm, which involves first searching the space of all possi-1151


ble linkages among the words in a sentence to find all complete linkages that1152


obey the no-links-cross constraint; and then applying various postprocessing1153


rules to handle cases (such as conjunctions) that aren’t handled properly by this1154


algorithm.1155


In PROWL, what we suggest is that1156


1. The link grammar dictionary is highly valuable and provides a level of linguistic1157


detail that is not present in Word Grammar; and, we suggest that in order to turn1158


Word Grammar into a computationally tractable system, one will need something1159


at least halfway between the currently minimal collection of syntactic link types1160


used in Word Grammar and the much richer collection used in Link Grammar1161


2. The no-links-cross constraint is an approximation of a deeper syntactic constraint1162


(“landmark transitivity”) that has been articulated in the most recent formulations1163


of Word Grammar. Specifically: when a no-links-crossing parse is found, it is1164


correct according to Word Grammar; but Word Grammar correctly recognizes1165


some parses that violate this constraint1166


3. The Link Grammar parsing algorithm is not cognitively natural, but is effective1167


in a standalone-parsing framework. The Word Grammar approach to parsing1168


is cognitively natural, but as formulated could only be computationally imple-1169


mented in the context of an already-very-powerful general intelligence system.1170


Fortunately, various intermediary approaches to parsing seem possible.1171


26.14.3.1 Using Landmark Transitivity with the Link Grammar Dictionary1172


An earlier version of Word Grammar utilized a constraint called “no tangled links”1173


which is equivalent to the link parser’s “no links cross” constraint. In the new version1174
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454 26 Natural Language Comprehension


of Word Grammar this is replaced with a subtler and more permissive constraint called1175


“landmark transitivity”. While in Word Grammar, landmark transitivity is used with a1176


small set of syntactic link types, there is no reason why it can’t be used with the richer1177


set of link types that Link Grammar provides. In fact, this seems to us a probably1178


effective method of eliminating most or all of the “postprocessing rules” that exist1179


in the link parser, and that constitute the least elegant aspect of the Link Grammar1180


framework.1181


The first foundational concept, on the path to the notion of landmark transitivity,1182


is the notion of a syntactic parent. In Word Grammar each syntactic link has a parent1183


end and a child end. In a dependency grammar context, the notion is that the child1184


depends upon the parent. For instance, in Word Grammar, in the link between a noun1185


and an adjective, the noun is the parent.1186


To apply landmark transitivity in the context of the Link Grammar, one needs1187


to provide some additional information regarding each link in the Link Grammar1188


dictionary. One needs to specify which end of each of the link grammar links is the1189


“parent” and which is the “child”. Examples of this kind of markup are as follows1190


(with P shown by the parent):1191


S link: subject-noun ------- finite verb (P)1192


1193


O link: transitive verb (P) ----- direct or indirect object1194


1195


D link: determiner ----- noun (P)1196


1197


MV link: verb (P) ----- verb modifier1198


1199


J link: preposition ----- object (P)1200


1201


ON link: on ----- time-expression [P]1202


1203


M link: noun [P]----- modifiers1204


1205


In some cases a word may have more than one parent. In this case, the rule is that1206


the landmark is the one that is superordinate to all the other parents. In the rare case1207


that two words are each others’ parents, then either may serve as the landmark.1208


The concept of a parent leads naturally into that of a landmark. The first rule1209


regarding landmarks is that a parent is a landmark for its child. Next, two kinds1210


of landmarks are introduced: Before landmarks (in which the child is before the1211


parent) and After landmarks (in which the child is after the parent). The Before/After1212


distinction should be obvious in the Link Grammar examples given above.1213


The landmark transitivity rule, then, has two parts. If A is a landmark for B, of1214


subtype L (where L is either Before or After), then1215


1. Subordinate transitivity says that if B is a landmark for C, then A is also a1216


type-L landmark for C1217


2. Sister transitivity says that if A is a landmark for C, then B is also a landmark1218


for C.1219
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26.14 PROWL Grammar 455


Finally, there are some special link types that cause a word to depend on its1220


grandparents or higher ancestors as well as its parents. I note that these are not treated1221


thoroughly in (Hudson 2007); one needs to look to the earlier, longer and rarer work1222


[Hud90]. Some questions are dealt with this way. Another example is what in Word1223


Grammar is called a “proxy link”, as occurs between “with” and “whom” in1224 AQ4


The person with whom she works1225


The link parser deals with this particular example via a Jw link1226


1227


1228


so to apply landmark transitivity in the context of the Link Grammar, in this case, it1229


seems one would need to implement the rule that in the case of two words connected1230


by a Jw-link, the child of one of the words is also the child of the other. Handling1231


other special cases like this in the context of Link Grammar seems conceptually1232


unproblematic, though naturally some hidden rocks may appear. Basically a list1233


needs to be made of which kinds of link parser links embody proxy relationships for1234


which other kinds of link parser links.1235


According to the landmark transitivity approach, then, the criterion for syntactic1236


correctness of a parse is that, if one takes the links in the parse and applies the1237


landmark transitivity rule (along with the other special-case “raising” rules we’ve1238


discussed), one does not arrive at any contradictions (i.e. no situations where A is a1239


Before landmark of B, and1240 AQ5


The main problem with the landmark-transitivity constraint seems to be compu-1241


tational tractability. The problem exists for both comprehension and generation, but1242


we’ll focus on comprehension here.1243


To find all possible parses of a sentence using Hudson’s landmark-transitivity-1244


based approach, one needs to find all linkages that don’t lead to contradictions when1245


used as premises for reasoning based on the landmark-transitivity axioms. This ap-1246


pears to be extremely computationally intensive! So, it seems that Word Grammar1247


style parsing is only computationally feasible for a system that has extremely strong1248


semantic understanding, so as to be able to filter out the vast majority of possible1249


parses on semantic rather than purely syntactic grounds.1250


On the other hand, it seems possible to apply landmark-transitivity together with1251


no-links-cross, to provide parsing that is both efficient and general. If applying the1252


no-links-cross constraint finds a parse in which no links cross, without using post-1253


processing rules, then this will always be a legal parse according to the landmark-1254


transitivity rule.1255


However, landmark-transitivity also allows a lot of other parses that link grammar1256


either needs postprocessing rules to handle, or can’t find even with postprocessing1257


rules. So, it would make sense to apply no-links-cross parsing first, but then if this1258
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456 26 Natural Language Comprehension


fails, apply landmark-transitivity parsing starting from the partial parses that the1259


former stage produced. This is the approach suggested in PROWL, and a similar1260


approach may be suggested for language generation.1261


26.14.3.2 Overcoming the Current Limitations of Word Grammar1262


Finally, it is worth noting that expanding the Word Grammar parsing framework to1263


include the link grammar dictionary, will likely allow us to solve some unsolved prob-1264


lems in Word Grammar. For instance [Hud07a]. notes that the current formulation1265


of Word Grammar has no way to distinguish the behavior of last versus this in1266


I ate last night1267


I ate this ham1268


The issue he sees is that in the first case, night should be considered the parent of1269


last; whereas in the second case, this should be considered the parent of ham.1270


The current link parser also fails to handle this issue according to Hudson’s intu-1271


ition:1272


1273


1274


1275


1276


However, the link grammar framework gives us a clear possibility for allow-1277


ing the kind of interpretation Hudson wants: just allow this to take a left-going1278


O-link, and (in PROWL) let it optionally assume the parent role when involved in a1279


D-link relationship. There are no funky link-crossing or semantic issues here; just a1280


straightforward link-grammar dictionary edit.1281


This illustrates the syntactic flexibility of the link parsing framework, and also the1282


inelegance—adding new links to the dictionary generally solves syntactic problems,1283


but at the cost of creating more complexity to be dealt with further down the pipeline,1284


when the various link types need to be compressed into a smaller number of semantic1285


relationship types for purposes of actual comprehension (as is done in RelEx, for1286


example). However, as far as we can tell, this seems to be a necessary cost for1287


adequately handling the full complexity of natural language syntax. Word Grammar1288


holds out the hope of possibly avoiding this kind of complexity, but without filling1289


in enough details to allow a clear estimate of whether this hope can ever be fulfilled.1290
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26.14 PROWL Grammar 457


26.14.4 Contextually Guided Greedy Parsing and Generation1291


Using Word Link Grammar1292


Another difference between Link Grammar and currently utilized, and Word Gram-1293


mar as described, is the nature of the parsing algorithm. Link Grammar operates in1294


a manner that is fairly traditional among contemporary parsing algorithms: given1295


a sentence, it produces a large set of possible parses, and then it is left to other1296


methods/algorithms to select the right parse, and to form a semantic interpretation1297


of the selected parse. Parse selection may of course involve semantic interpretation:1298


one way to choose the right parse is to choose the one that has the most contex-1299


tually sensible semantic interpretation. We may call this approach whole-sentence1300


purely-syntactic parsing, or WSPS parsing.1301


One of the nice things about Link Grammar, as compared to many other compu-1302


tational parsing frameworks, is that it produces a relatively small number of parses,1303


compared for instance to typical head-driven phrase-structure grammar parsers. For1304


simple sentences the link parser generally produces only handful of parses. But for1305


complex sentences the link parser can produce hundreds of parses, which can be1306


computationally costly to sift through.1307


Word Grammar, on the other hand, presents far fewer constraints regarding which1308


words may link to other words. Therefore, to apply parsing in the style of the cur-1309


rent link parser, in the context of Word Grammar, would be completely infeasible.1310


The number of possible parses would be tremendous. The idea of Word Grammar1311


is to pare down parses via semantic/pragmatic sensibleness, during the course of1312


the syntax parsing process, rather than breaking things down into two phases (pars-1313


ing followed by semantic/pragmatic interpretation). Parsing is suggested to proceed1314


forward through a sentence: when a word is encountered, it is linked to the words1315


coming before it in the sentence, in a way that makes sense. If this seems impossible,1316


consistently with the links that have already been drawn in the course of the parsing1317


process, then some backtracking is done and prior choices may be revisited. This1318


approach is more like what humans do when parsing a sentence, and does not have1319


the effect of producing a large number of syntactically possible, semantically/prag-1320


matically absurd parses, and then sorting through them afterwards. It is what we call1321


a contextually-guided greedy parsing (CGGP) approach.1322


For language generation, the link parser and Word Grammar approaches also1323


suggest different strategies. Link Grammar suggests taking a semantic network,1324


then searching holistically for a linear sequence of words that, when link-parsed,1325


would give rise to that semantic network as the interpretation. On the other hand,1326


Word Grammar suggests taking that same semantic network and iterating through1327


it progressively, verbalizing each node of the network as one walks through it, and1328


backtracking if one reaches a point where there is no way to verbalize the current1329


node consistently with how one has already verbalized the previous nodes.1330


The main observation we want to make here is that, while Word Grammar by its1331


nature (due to the relative paucity of explicit constraints on which syntactic links may1332


be formed), can operate with CGGP but not WSPS parsing. On the other hand, while1333
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458 26 Natural Language Comprehension


Link Grammar is currently utilized with WPSP parsing, there is no reason one can’t1334


use it with CGGP parsing just as well. There is no objection to using CGGP parsing1335


together with the link-parser dictionary, nor with the no-links cross constraint rather1336


than the landmark-transitivity constraint (in fact, as noted above, earlier versions of1337


Word Grammar made use of the no-links-cross constraint).1338


What we propose in PROWL is to use the link grammar dictionary together with1339


the CGGP parsing approach. The WSPS parsing approach may perhaps be useful1340


as a fallback for handling extremely complex and perverted sentences where CGGP1341


takes too long to come to an answer—it corresponds to sentences that are so obscure1342


one has to do really hard, analytical thinking to figure out what they mean.1343


Regarding constraints on link structure, the suggestion in PROWL is to use the1344


no-links-cross constraint as a first approximation. In comprehension, if no sufficiently1345


high-probability interpretation obeying the no-links-cross constraint is found, then1346


the scope of investigation should expand to include link-structures obeying landmark-1347


transitivity but violating no-links-cross. In generation, things are a little subtler: a list1348


should be kept of link-type combinations that often correctly violate no-links-cross,1349


and when these combinations are encountered in the generation process, then con-1350


structs that satisfy landmark-transitivity but not no-links-cross should be considered.1351


Arguably, the PROWL approach is less elegant than either Link Grammar or Word1352


Grammar considered on its own. However, we are dubious of the proposition that1353


human syntax processing, with all its surface messiness and complexity, is really1354


generated by a simple, unified, mathematically elegant underlying framework. Our1355


goal is not to find a maximally elegant theoretical framework, but rather one that1356


works both as a standalone computational-linguistics system, and as an integrated1357


component of an adaptively-learning AGI system.1358


26.15 Aspects of Language Learning1359


Now we finally turn to language learning—a topic that spans the engineered and1360


experiential approaches to NLP. In the experiential approach, learning is required1361


to gain even simple linguistic functionality. In the engineered approach, even if a1362


great deal of linguistic functionality is built in, learning may be used for adding1363


new functionality and modifying the initially given functionality. In this section1364


we will focus on a few aspects of language learning that would be required even1365


if the current engineered OpenCog comprehension pipeline were completed to a1366


high level of functionality. The more thoroughgoing language learning required for1367


the experiential approach will then be discussed in the following section. Further,1368


Chap. 27 will dig in depth into an aspect of language learning that to some extent cuts1369


across the engineered/experiential dichotomy—unsupervised learning of linguistic1370


structures from large corpora of text.1371
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26.15 Aspects of Language Learning 459


26.15.1 Word Sense Creation1372


In our examples above, we’ve frequently referred to ReferenceLinks between1373


WordNodes and ConceptNodes. But, how do these links get built? One aspect of1374


this is the process of word sense creation.1375


Suppose we have a WordNode W that has ReferenceLinks to a number of dif-1376


ferent ConceptNodes. A common case is that these ConceptNodes fall into clusters,1377


each one denoting a “sense” of the word. The clusters are defined by the following1378


relationships:1379


1. ConceptNodes within a cluster have high-strength SimilarityLinks to each other1380


2. ConceptNodes in different clusters have low-strength (i.e. dissimilarity-denoting)1381


SimilarityLinks to each other.1382


When a word is first learned, it will normally be linked only to mutually agree-1383


able ConceptNodes, i.e. there will only be one sense of the word. As more and1384


more instances of the word are seen, however, eventually the WordNode will gather1385


more than one sense. Sometimes different senses are different syntactically, other1386


times they are different only semantically, but are involved in the same syntactic1387


relationships. In the case of a word with multiple senses, most of the relevant feature1388


structure information will be attached to word-sense-representing ConceptNodes,1389


not to WordNodes themselves.1390


The formation of sense-representing ConceptNodes may be done by the standard1391


clustering and predicate mining processes, which will create such ConceptNodes1392


when there are adequately many Atoms in the system satisfying the criteria represent.1393


It may also be valuable to create a particular SenseMining CIM-Dynamic, which uses1394


the same criteria for node formation as the clustering and predicate mining CIM-1395


Dynamics, but focuses specifically on creating predicates related to WordNodes and1396


their nearby ConceptNodes.1397


26.15.2 Feature Structure Learning1398


We’ve mentioned above the obvious fact that, to intelligently use a feature-structure1399


based grammar, the system needs to be capable of learning new linguistic feature1400


structures. Probing into this in more detail, we see that there are two distinct but1401


related kinds of feature structure learning:1402


1. Learning the values that features have for particular word senses.1403


2. Learning new features altogether.1404


Learning the values that features have for particular word senses must be done1405


when new senses are created; and even for features imported from resources like the1406


link grammar, the possibility of corrections must obviously be accepted. This kind of1407


learning can be done by straightforward inference—inference from examples of word1408
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460 26 Natural Language Comprehension


usage, and by analogy from features for similar words. A simple example to think1409


about, e.g., is learning the verb sense of “fax” when only the noun sense is known.1410


Next, the learning of new features can be viewed as a reasoning problem, in1411


that inference can learn new relations applied to nodes representing syntactic senses1412


of words. In principle, these “features” may be very general or very specialized,1413


depending on the case. New feature learning, in practice, requires a lot of examples,1414


and is a more fundamental but less common kind of learning than learning feature1415


values for known word senses. A good example would be the learning of “third1416


person” by an agent that knows only first and second person.1417


In this example, it’s clear that information from embodied experience would be1418


extremely helpful. In principle, it could be learned from corpus analysis alone—but1419


the presence of knowledge that certain words (“him”, “her”, “they”, etc.) tend to1420


occur in association with observed agents different from the speaker or the hearer,1421


would certainly help a lot with identifying “third person” as a separate construct. It1422


seems that either a very large number of un-embodied examples or a relatively small1423


number of embodied examples would be needed to support the inference of the “third1424


person” feature. And we suspect this example is typical—i.e. that the most effective1425


route to new feature structure learning involves both embodied social experience and1426


rather deep commonsense knowledge about the world.1427


26.15.3 Transformation and Semantic Mapping Rule Learning1428


Word sense learning and feature structure learning are important parts of language1429


learning, but they’re far from the whole story. An equally important role is played1430


by linguistic transformations, such as the rules used in RelEx and RelEx2Frame. At1431


least some of these must be learned based on experience, for human-level intelligent1432


language processing to proceed.1433


Each of these transformations can be straightforwardly cast as an ImplicationLink1434


between PredicateNodes, and hence formalistically can be learned by PLN inference,1435


combined with one or another heuristic methods for compound predicate creation.1436


The question is what knowledge exists for PLN to draw on in assessing the strengths1437


of these links, and more critically, to guide the heuristic predicate formation meth-1438


ods. This is a case that likely requires the full complexity of “integrative predicate1439


learning” as discussed in Chap. 23. And, as with feature structure learning, it’s a case1440


that will be much more effectively handled using knowledge from social embodied1441


experience alongside purely linguistic knowledge.1442


26.16 Experiential Language Learning1443


We have talked a great deal about “engineered” approaches to NL comprehension and1444


only peripherally about experiential approaches. But there has been a not-so-secret1445


plan underlying this approach. There are many approaches to experiential language1446
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26.16 Experiential Language Learning 461


learning, ranging from a “tabula rasa” approach in which language is just treated as1447


raw data, to an approach where the whole structure of a language comprehension1448


system is programmed in, and “merely” the content remains to be learned. There isn’t1449


much to say about the tabula rasa approach—we have already discussed CogPrime’s1450


approach to learning, and in principle it is just as applicable to language learning as1451


to any other kind of learning. The more structured approach has more unique aspects1452


to it, so we will turn attention to it here. Of course, various intermediate approaches1453


may be constructed by leaving out various structures.1454


The approach to experiential language learning we consider most promising is1455


based on the PROWL approach, discussed above. In this approach one programs1456


in a certain amount of “universal grammar”, and then allows the system to learn1457


content via experience that obeys this universal grammar. In a PROWL approach,1458


the basic linguistic representational infrastructure is given by the Atomspace that1459


already exists in OpenCog, so the content of “universal grammar” is basically1460


• The propensity to identify words1461


• The propensity to create a small set of asymmetric (i.e. parent/child) labeled re-1462


lationship types, to use to label relationships between semantically related word-1463


instances. These are “syntactic link types.”1464


• The set of constraints on syntactic links implicit in word grammar, e.g. landmark1465


transitivity or no-links-cross.1466


Building in the above items, without building in any particular syntactic links,1467


seems enough to motivate a system to learn a grammar resembling that of human1468


languages.1469


Of course, experiential language learning of this nature is very, very different from1470


“tabula rasa” experiential language learning. But we note that, while PROWL style1471


experiential language learning seems like a difficult problem given existing AI tech-1472


nologies, tabula rasa language learning seems like a nearly unapproachable problem.1473


One could infer from this that current AI technologies are simply inadequate to ap-1474


proach the problem that the young human child mind solves. However, there seems1475


to be some solid evidence that the young human child mind does contain some form1476


of universal grammar guiding its learning. Though we don’t yet know what form this1477


universal prior linguistic knowledge takes in the human mind or brain, the evidence1478


regarding common structures arising spontaneously in various unrelated Creole lan-1479


guages is extremely compelling [Bic08], supporting ideas presented previously based1480


on different lines of evidence. So we suggest that PROWL based experiential lan-1481


guage learning is actually conceptually closer to human child language learning than1482


a tabula rasa approach—although we certainly don’t claim that the PROWL based1483


approach builds in the exact same things as the human genome does.1484


What we need to make experiential language learning work, then, is a language-1485


focused inference-control mechanism that includes, e.g.1486


• A propensity to look for syntactic link types, as outlined just above1487


• A propensity to form new word senses, as outlined earlier1488


• A propensity to search for implications of the general form of RelEx and1489


RelEx2Frame or Syn2Sem rules.1490
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462 26 Natural Language Comprehension


Given these propensities, it seems reasonable to expect a PLN inference system to1491


be able to “fill in the linguistic content” based on its experience, using links between1492


linguistic and other experiential content as its guide. This is a very difficult learning1493


problem, to be sure, but it seems in principle a tractable one, since we have broken it1494


down into a number of interrelated component learning problems in a manner guided1495


by the structure of language.1496


Other aspects of language comprehension, such as word sense disambiguation and1497


anaphor resolution, seem to plausibly follow from applying inference to linguistic1498


data in the context of embodied experiential data, without requiring especial attention1499


to inference control or supplying prior knowledge.1500


Chapter 27 presents an elaboration of this sort of perspective, in a limited case1501


which enables greater clarity: the learning of linguistic content from an unsupervised1502


corpus, based on the assumption of linguistic infrastructure s just summarized above.1503


26.17 Which Path(s) Forward?1504


We have discussed a variety of approaches to achieving human-level NL compre-1505


hension in the CogPrime framework. Which approach do we think is best? All things1506


considered, we suspect that a tabula rasa experiential approach is impractical, whereas1507


a traditional computational linguistics approach (whether based on hand-coded rules,1508


corpus analysis, or a combination thereof) will reach an intelligence ceiling well short1509


of human capability. On the other hand we believe that all of these options1510


1. The creation of an engineered NL comprehension system (as we have already1511


done), and the adaptation and enhancement of this system using learning that1512


incorporates knowledge from embodied experience1513


2. The creation of an engineered NL comprehension system via unsupervised learn-1514


ing from a large corpus, as described in Chap. 271515


3. The creation of an experiential learning based NL comprehension system using1516


in-built structures, such as the PROWL based approach described above1517


4. The creation of an experiential learning based system as described above, using1518


an engineered system (like the current one) as a “fitness estimation” resource in1519


the manner described at the end of Chap. 251520


have significant promise and are worthy of pursuit. Which of these approaches we fo-1521


cus on in our ongoing OpenCogPrime implementation work will depend on logistical1522


issues as much as on theoretical preference.1523
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Chapter 27
Language Learning via Unsupervised
Corpus Analysis


27.1 Introduction0


The approach taken to NLP in the OpenCog project up through 2013, in practice,1


has involved engineering and integrating rule-based NLP systems as “scaffolding”,2


with a view toward later replacing the rule content with alternative content learned3


via an OpenCog system’s experience.4


In this chapter we present a variant on this approach, in which the rule content5


of the existing rule-based NLP system is replaced with new content learned via6


unsupervised corpus analysis. This content can then be modified and improved via7


an OpenCog system’s experience, embodied and otherwise, as needed.8


This unsupervised corpus analysis based approach deviates fairly far from human9


cognitive science. However, as discussed above, language processing is one of those10


areas where the pragmatic differences between young humans and early-stage AGI11


systems may be critical to consider. The automated learning of language from embod-12


ied, social experience is a key part of the path to AGI, and is one way that CogPrimes13


and other AGI systems should learn language. On the other hand, unsupervised cor-14


pus based language learning, may perhaps also have a significant role to play in the15


path to linguistically savvy AGI, leveraging some advantages that AGIs have that16


humans do not, such as direct access to massive amounts of online text (without the17


need to filter the text through slow-paced sense-perception systems like eyes).18


The learning of language from unannotated text corpora is not a major pur-19


suit within the computational linguistics community currently. Supervised learning20


of linguistic structures from expert-annotated corpora plays a large role, but this21


is a wholly different sort of pursuit, more analogous to rule-based NLP, in that it22


involves humans explicitly specifying formal linguistic structures (e.g. parse trees23


Co-authored with Linas Vepstas: Dr. Vepstas would properly be listed as the first author of
this chapter; this material was developed in a collaboration between Vepstas and Goertzel.
However, as with all the co-authored chapters in this book, final responsibility for any flaws in
the presentation of the material lies with Ben Goertzel, the chief author of the book.
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464 27 Language Learning via Unsupervised Corpus Analysis


for sentences in a corpus). However, we hypothesize that unsupervised corpus-based24


language learning can be carried out by properly orchestrating the use of some fairly25


standard machine learning algorithms (already included in OpenCog/CogPrime),26


within an appropriate structured framework (such as OpenCog’s current NLP frame-27


work).28


The review of [KM04] provides a summary of the state of the art in automatic29


grammar induction (the third alternative listed above), as it stood a decade ago: it30


addresses a number of linguistic issues and difficulties that arise in actual imple-31


mentations of algorithms. It is also notable in that it builds a bridge between phrase-32


structure grammars and dependency grammars, essentially pointing out that these33


are more or less equivalent, and that, in fact, significant progress can be achieved by34


taking on both points of view at once. Grammar induction has progressed somewhat35


since this review was written, and we will mention some of the more recent work36


below; but yet, it is fair to say that there has been no truly dramatic progress in this37


direction.38


In this chapter we describe a novel approach to achieving automated grammar39


induction, i.e. to machine learning of linguistic content from a large, unannotated40


text corpus. The methods described may also be useful for language learning based41


on embodied experience; and may make use of content created using hand-coded42


rules or machine learning from annotated corpora. But our focus in this chapter will43


be on learning linguistic content from a large, unannotated text corpus.44


The algorithmic approach given in this chapter is wholly in the spirit of the45


“PROWL” approach reviewed above in Chap. 26. However, PROWL is a quite gen-46


eral idea. Here we present a highly specific PROWL-like algorithm, which is focused47


on learning from a large unannotated corpus rather than from embodied experience.48


Because of the corpus-oriented focus, it is possible to tie the algorithm of this chapter49


in with the statistical language learning literature, more tightly than is possible with50


PROWL language learning in general. Yet, the specifics presented here could largely51


be generalized to a broader PROWL context.52


We consider the approach described here as “deep learning” oriented because it53


is based on hierarchical pattern recognition in linguistic data: identifying patterns,54


then patterns among these patterns, etc., in a hierarchy that allows “higher level”55


(more abstract) patterns to feed back down the hierarchy and affect the recognition56


of lower level patterns. Our approach does not use conventional deep learning archi-57


tectures like Deep Boltzmann machines or recurrent neural networks. Conceptually,58


our approach is based on a similar intuition to these algorithms, in that it relies on the59


presence of hierarchical structure in its input data, and utilizes a hierarchical pattern60


recognition structure with copious feedback to adaptively identify this hierarchical61


structure. But the specific pattern recognition algorithms we use, and the specific62


nature of the hierarchy we construct, are guided by existing knowledge about what63


works and what doesn’t in (both statistical and rule-based) computational linguistics.64


While the overall approach presented here is novel, most of the detailed ideas are65


extensions and generalizations of the prior work of multiple authors, which will be66


referenced and in some cases discussed below. In our view, the body of ideas needed67


to enable unsupervised learning of language from large corpora has been gradually68
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27.1 Introduction 465


emerging during the last decade. The approach given here has unique aspects, but69


also many aspects already validated by the work of others.70


For sake of simplicity, we will deal here only with learning from written text here.71


We believe that conceptually very similar methods can be applied to spoken language72


as well, but this brings extra complexities that we will avoid for the purpose of the73


present document. (In short: Below we represent syntactic and semantic learning as74


separate but similarly structured and closely coupled learning processes. To handle75


speech input thoroughly, we would suggest phonological learning as another separate,76


similarly structured and closely coupled learning process).77


Finally, we stress that the algorithms presented here are intended to be used in78


conjunction with a large corpus, and a large amount of processing power. Without a79


very large corpus, some of the feedbacks required for the learning process described80


would be unlikely to happen (e.g. the ability of syntactic and semantic learning to81


guide each other). We have not yet sought to estimate exactly how large a corpus82


would be required, but our informal estimate is that Wikipedia might or might not83


be large enough, and the Web is certainly more than enough.84


We don’t pretend to know just how far this sort of unsupervised, corpus based85


learning can be pushed. To what extent can the content of a natural language like86


English be learned this way. How much, if any, ambiguity will be left over once87


this kind of learning has been thoroughly done—only pragmatically disambiguable88


via embodied social learning? Strong opinions on these sorts of issues abound in89


the cognitive science, linguistics and AI communities; but the only apparent way to90


resolve these questions is empirically.91


27.2 Assumed Linguistic Infrastructure92


While the approach outlined in this chapter aims to learn the linguistic content of93


a language from textual data, it does not aim to learn the idea of language. Implic-94


itly, we assume a model in which a learning system begins with a basic “linguistic95


infrastructure” indicating the various parts of a natural language and how they gen-96


erally interrelate; and it then learns the linguistic content characterizing a particular97


language. In principle, it would also be possible to have an AI system to learn the98


very concept of a language and build its own linguistic infrastructure. However, that99


is not the problem we address here; and we suspect such an approach would require100


drastically more computational resources.101


The basic linguistic infrastructure assumed here includes:102


• A formalism for expressing grammatical (dependency) rules is assumed.103


– The ideas given here are not tied to any specific grammatical formalism, but104


as in Chap. 26 we find it convenient to make use of a formalism in the style105


of dependency grammar [Tes59]. Taking a mathematical perspective, different106


grammar formalisms can be translated into one-another, using relatively simple107


rules and algorithms [KM04]. The primary difference between them is more108
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466 27 Language Learning via Unsupervised Corpus Analysis


a matter of taste, perceived linguistic ‘naturalness’, adaptability, and choice109


of parser algorithm. In particular, categorial grammars can be converted into110


link grammars in a straight-forward way, and vice versa, but link grammars111


provide a more compact dictionary. Link grammars [ST91, ST93] are a type112


of dependency grammar; these, in turn, can be converted to and from phrase-113


structure grammars. We believe that dependency grammars provide a more114


simple and natural description of linguistic phenomena. We also believe that115


dependency grammars have a more natural fit with maximum-entropy ideas,116


where a dependency relationship can be literally interpreted as the mutual infor-117


mation between word-pairs [Yur98]. Dependency grammars also work well with118


Markov119


models; dependency parsers can be implemented as Viterbi decoders. Figure 26.1120


illustrates two different formalisms.121


– The discussion below assumes the use of a formalism similar that of Link Gram-122


mar, as described above. In this theory, each word is associated with a set of123


‘connector disjuncts’, each connector disjunct controlling the possible linkages124


that the word may take part in. A disjunct can be thought of as a jig-saw puzzle-125


piece; valid syntactic word orders are those for which the puzzle-pieces can be126


validly connected. A single connector can be thought of as a single tab on a127


puzzle-piece (shown in Fig. 26.2). Connectors are thus ’types’ X with a + or −128


sign indicating that they connect to the left or right. For example, a typical verb129


disjunct might be S− and O+ indicating that a subject (a noun) is expected on130


the left, and an object (also a noun) is expected on the right.131


– Some of the discussion below assumes select aspects of (Dick Hudson’s) Word132


Grammar [Hud84, Hud07b]. As reviewed above, Word Grammar theory (implic-133


itly) uses connectors similar to those of Link Grammar, but allows each connec-134


tor to be marked as the head of a link or not. A link then becomes an arrow from135


a head word to the dependent word. (Somewhat confusingly, the head of the136


arrow points at the dependent word; this means the tail of the arrow is attached137


to the head word).138


– Each word is associated with a “lexical entry”; in Link Grammar, this is the139


set of connector disjuncts for that word. It is usually the case that many words140


share a common lexical entry; for example, most common nouns are syntacti-141


cally similar enough that they can all be grouped under a single lexical entry.142


Conversely, a single word is allowed to have multiple lexical entries; so, for143


example, “saw”, the noun, will have a different lexical entry from “saw”, the144


past tense of the verb “to see”. That is, lexical entries can loosely correspond145


to traditional dictionary entries. Whether or not a word has multiple lexical146


entries is a matter of convenience, rather than a fundamental aspect. Curiously,147


a single Link Grammar connector disjunct can be viewed as a very fine-grained148


part-of-speech. In this way, it is a stepping stone to the semantic meaning of a149


word.150
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27.2 Assumed Linguistic Infrastructure 467


• A parser, for extracting syntactic structure from sentences, is assumed. What’s151


more, it is assumed that the parser is capable of using semantic relationships to152


guide parsing.153


– A paradigmatic example of such a parser is the “Viterbi Link Parser”, currently154


under development for use with the Link Grammar. This parser is currently155


operational in a simple form. The name refers to its use of a the general ideas156


of the Viterbi algorithm. This algorithm seems biologically plausible, in that it157


applies only a local analysis of sentence structure, of limited scope, as opposed158


to a global optimization, thus roughly emulating the process of human listening.159


The current set of legal parses of a sentence is pruned incrementally and prob-160


abilistically, based on flexible criteria. These potentially include the semantic161


relationships extractable from the partial parse obtained at a given point in time.162


It also allows for parsing to be guided by inter-sentence relationships, such as163


pronoun resolution, to disambiguate otherwise ambiguous sentences.164


• A formalism for expressing semantic relationships is assumed.165


– A semantic relationship generalizes the notion of a lexical entry to allow for166


changes of word order, paraphrasing, tense, number, the presence or absence of167


modifiers, etc. An example of such a relationship would be eat(X, Y)—indicating168


the eating of some entity Y by some entity X. This abstracts into common form169


several different syntactic expressions: “Ben ate a cookie”, “A cookie will be170


eaten by Ben”, “Ben sat, eating cookies”.171


– Nothing particularly special is assumed here regarding semantic relationships,172


beyond a basic predicate-argument structure. It is assumed that predicates can173


have arguments that are other predicates, and not just atomic terms; this has an174


explicit impact on how predicates and arguments are represented. A “semantic175


representation” of a sentence is a network of arrows (defining predicates and176


arguments), each arrow or a small subset of arrows defining a “semantic rela-177


tionship”. However, the beginning or end of an arrow is not necessarily a single178


node, but may land on a subgraph.179


– Type constraints seem reasonable, but its not clear if these must be made explicit,180


or if they are the implicit result of learning. Thus, eat(X, Y) requires that X and181


Y both be entities, and not, for example, actions or prepositions.182


– We have not yet thought through exactly how rich the semantic formalism183


should be for handling the full variety of quantifier constructs in complex nat-184


ural language. But we suspect that it’s OK to just use basic predicate-argument185


relationships and not build explicit quantification into the formalism, allowing186


quantifiers to be treated like other predicates.187


– Obviously, CogPrime’s formalism for expressing linguistic structures in terms188


of Atoms, presented in Chap. 26, fulfills the requirements of the learning scheme189


presented in this chapter. However, we wish to stress that the learning scheme190


presented her does not depend on the particulars of CogPrime’s representation191


scheme, though it is very compatible with them.192
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468 27 Language Learning via Unsupervised Corpus Analysis


27.3 Linguistic Content to be Learned193


Given the above linguistic infrastructure, what remains for a language learning system194


to learn is the linguistic content that characterizes a particular language. Everything195


included in OpenCog’s existing “scaffolding” rule-based NLP system would, in this196


approach, be learned to first approximation via unsupervised corpus analysis.197


Specifically, given the assumed framework, key things to be learned include:198


• A list of ‘link types’ that will be used to form ‘disjuncts’ must be learned.199


– An example of a link type is the ’subject’ link S. This link typically connects the200


subject of a sentence to the head verb. Given the normal English subject-verb201


word order, nouns will typically have an S+ connector, indicating that an S link202


may be formed only when the noun appears to the left of a word bearing an203


S− connector. Likewise, verbs will typically be associated with S− connectors.204


The current Link Grammar contains roughly one hundred different link-types,205


with additional optional subtypes that are used to further constrain syntactic206


structure. This number of different link types seems required simply because207


there are many relationships between words: there is not just a subject-verb or208


verb-object relationship, but also rather fine distinctions, such as those needed209


to form grammatical time, date, money, and measurement expressions, punctu-210


ation use, including street-addresses, cardinal and ordinal relationships, proper211


(given) names, titles and suffixes, and other highly constrained grammatical212


constructions. This is in addition to the usual linguistic territory of needing to213


indicate dependent clauses, comparatives, subject-verb inversion, and so on. It214


is expected that a comparable number of link types will need to be learned.215


– Some link types are rather strict, such as those connect verb subjects and objects,216


while other types are considerably more ambiguous, such as those involving217


prepositions. This reflects the structure of English, where subject-verb-object218


order is fairly rigorously enforced, but the ordering and use of prepositions is219


considerably looser. When considering the looser cases, it becomes clear that220


there is no single, inherent ‘right answer’ for the creation and assignment of link221


types, and that several different, yet linguistically plausible linkage assignments222


may be made.223


– The definition of a good link-type is one that leads the parser— applied across224


the whole corpus—to allow parsing to be successful for almost all sentences, and225


yet not to be so broad as to enable parsing of word-salads. Significant pressure226


must be applied to prevent excess proliferation of link types, yet no so much as227


to over-simplify things, and provide valid parses for unobserved, ungrammatical228


sentences.229


• Lexical entries for different words must be learned.230


– Typically, multiple connectors are needed to define how a word can link syntac-231


tically to others. Thus, for example, many verbs have the disjunct S− and O+232


indicating that they need a subject noun to the left, and an object to the right.233
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27.3 Linguistic Content to be Learned 469


All words have at least a handful of valid disjuncts that they can be used with,234


and sometimes hundreds or even more. Thus, a “lexical entry” must be learned235


for each word, the lexical entry being a set of disjuncts that can be used with236


that word.237


– Many words are syntactically similar; most common nouns can share a single238


lexical entry. Yet, there are many exceptions. Thus, during learning, there is a239


back-and forth process of grouping and ungrouping words; clustering them so240


that they share lexical entries, but also splitting apart clusters when its realized241


that some words behave differently. Thus for example, the words “sing” and242


“apologize” are both verbs, and thus share some linguistic structure, but one243


cannot say “I apologized a song to Vicky”; if these two verbs were initially244


grouped together into a common lexical entry, they must later be split apart.245


– The definition of a good lexical entry is much the same as that for a good link246


type: observed sentences must be parsable; random sentences mostly must not247


be, and excessive proliferation and complexity must be prevented.248


• Semantic relationships must be learned.249


– The semantic relationship eat(X,Y) is prototypical. Foundationally, such a250


semantic relationship may be represented as a set whose elements consist of251


syntactico-semantic subgraphs. For the relation eat(X,Y), a subgraph may be as252


simple as a single (syntactic) disjunct S− and O+ for the normal word order253


“Ben ate a cookie”, but it may also be a more complex set needed to repre-254


sent the inverted word order in “a cookie was eaten by Ben”. The set of all255


of these different subgraphs defines the semantic relationship. The subgraphs256


themselves may be syntactic (as in the example above), or they may be other257


semantic relationships, or a mixture thereof.258


– Not all re-phrasings are semantically equivalent. “Mr. Smith is late” has a rather259


different meaning from “The late Mr. Smith”.260


– In general, place-holders like X and Y may be words or category labels. In early261


stages of learning, it is expected that X and Y are each just sets of words. At262


some point, though, it should become clear that these sets are not specific to263


this one relationship, but can appropriately take part in many relationships. In264


the above example, X and Y must be entities (physical objects), and, as such,265


can participate in (most) any other relationships where entities are called for.266


More narrowly, X is presumably a person or animal, while Y is a foodstuff. Fur-267


thermore, as entities, it might be inferred when these refer to the same physical268


object (see the section ‘reference resolution’ below).269


– Categories can be understood as sets of synonyms, including hyponyms (thus,270


“grub” is a synonym for “food”, while “cookie” is a hyponym.271


• Idioms and set phrases must be learned.272


– English has a large number of idiomatic expressions whose meanings cannot273


be inferred from the constituent words (such as “to pull one’s leg”). In this way,274


idioms present a challenge: their sometimes complex syntactic constructions275


belie their often simpler semantic content. On the other hand, idioms have a276
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470 27 Language Learning via Unsupervised Corpus Analysis


very rigid word-choice and word order, and are highly invariant. Set phrases277


take a middle ground: word-choice is not quite as fixed as for idioms, but,278


none-the-less, there is a conventional word order that is usually employed. Not279


that the manually-constructed Link Grammar dictionaries contain thousands280


of lexical entries for idiomatic constructions. In essence, these are multi-word281


constructions that are treated as if they were a single word.282


Each of the above tasks have already been accomplished and described in the liter-283


ature; for example, automated learning of synonymous words and phrases has been284


described by Lin [LP01] and Poon and Domingos [PD09]. The authors are not aware285


of any attempts to learn all of these, together, in one go, rather than presuming the286


pre-existance of dependent layers.287


27.3.1 Deeper Aspects of Comprehension288


While the learning of the above aspects of language is the focus of our discussion here,289


the search for semantic structure does not end there; more is possible. In particular,290


natural language generation has a vital need for lexical functions, so that appropriate291


word-choice can be made when vocalizing ideas. In order to truly understand text, one292


also needs, as a minimum, to discern referential structure, and sophisticated under-293


standing requires discerning topics. We believe automated, unsupervised learning of294


these aspects is attainable, but is best addressed after the ‘simpler’ language learning295


described above. We are not aware of any prior work aimed at automatically learning296


these, aside from relatively simple, unsophisticated (bag-of-words style) efforts at297


topic categorization.298


27.4 A Methodology for Unsupervised Language Learning299


from a Large Corpus300


The language learning approach presented here is novel in its overall nature. Each301


part of it, however, draws on prior experimental and theoretical research by others on302


particular aspects of language learning, as well as on our own previous work building303


computational linguistic systems. The goal is to assemble a system out of parts that304


are already known to work well in isolation.305


Prior published research, from a multitude of authors over the last few decades,306


has already demonstrated how many of the items listed above can be learnt in an307


unsupervised setting (see e.g. [Yur98, KM04, LP01, CS10, PD09, Mih07, KSPC13]308


for relevant background). All of the previously demonstrated results, however, were309


obtained in isolation, via research that assumed the pre-existence of surrounding310


infrastructure far beyond what we assume above. The approach proposed here may311


be understood as a combination, generalization and refinement these techniques, to312
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 471


create a system that can learn, more or less ab initio from a large corpus, with a final313


result of a working, usable natural language comprehension system.314


However, we must caution that the proposed approach is in no way a haphazard315


mash-up of techniques. There is a deep algorithmic commonality to the different prior316


methods we combine, which has not always been apparent in the prior literature due317


to the different emphases and technical vocabularies used in the research papers in318


question. In parallel with implementing the ideas presented here, we intend to workin319


fully formalizing the underlying mathematics of the undertaking, so that it becomes320


clear what approximations are being taken, and what avenues remain unexplored.321


Some fairly specific directions in this regard suggest themselves.322


All of the prior research alluded to above invokes some or another variation of323


maximum entropy principles, sometimes explicitly, but usually implicitly. In general,324


entropy maximization principles provide the foundation for learning systems such as325


(hidden) Markov models, Markov networks and Hopfield neural networks, and they326


connect indirectly with Bayesian probability based analyses. However, the actual327


task of maximizing the entropy is an NP-hard problem; forward progress depends328


on short-cuts, approximations and clever algorithms, some of which are of general329


nature, and some domain-dependent. Part of the task of refining the details of the330


language learning methodology presented here, is to explore various short-cuts and331


approximations to entropy maximization, and discover new, clever algorithms of332


this nature that are relevant to the language learning domain. As has been the case in333


physics and other domains, we suspect that progress here will be best achieved via a334


coupled exploration of experimental and mathematical aspects of the subject matter.335


27.4.1 A High Level Perspective on Language Learning336


On an abstract conceptual level, the approach proposed here depicts language learn-337


ing as an instance of a general learning loop such as:338


1. Group together linguistic entities (i.e. words or linguistic relationships, such339


as those described in the previous section) that display similar usage patterns340


(where one is looking at usage patterns that are compactly describable given341


one’s meta-language). Many but not necessarily all usage patterns for a given342


linguistic entity, will involve its use in conjunction with other linguistic entities.343


2. For each such grouping make a category label.344


3. Add these category labels to one’s meta-language345


4. Return to Step 1.346


It stands to reason that the result of this sort of learning loop, if successful, will be a347


hierarchically composed collection linguistic relationships possessing the following348


Linguistic Coherence Property: Linguistic entities are reasonably well char-
acterizable in terms of the compactly describable patterns observable in their
relationship with with other linguistic entities.


349
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472 27 Language Learning via Unsupervised Corpus Analysis


Note that there is nothing intrinsically “deep” or hierarchical in this sort of linguis-350


tic coherence. However, the ability to learn the patterns relating linguistic entities351


with others, via a recursive hierarchical learning loop such as described above, is352


contingent on the presence of a fairly marked hierarchical structure in the linguis-353


tic data being studied. There is much evidence that such hierarchical structure does354


indeed exist in natural languages. The “deep learning” in our approach is embedded355


in the repeated cycles through the loop given above—each time one goes through356


the loop, the learning gets one level deeper.357


This sort of property has observed to hold for many linguistic entities, an obser-358


vation dating back at least to Saussure [dS77] and the start of structuralist linguistics.359


It is basically a fancier way of saying that the meanings of words and other linguistic360


constructs, may be found via their relationships to other words and linguistic con-361


structs. We are not committed to structuralism as a theoretical paradigm, and we362


have considerable respect for the aid that non-linguistic information—such as the363


sensorimotor data that comes from embodiment—can add to language, as should be364


apparent from the overall discussion in this book. However, the potential dramatic365


utility of non-linguistic information for language learning does not imply the impos-366


sibility or infeasibility of learning language from corpus data alone. It is inarguable367


that non-linguistic relationships comprise a significant portion of the everyday mean-368


ing of linguistic entities; but yet, redundancy is prevalent in natural systems, and we369


believe that purely linguistic relationships may well provide sufficient data for learn-370


ing of natural languages. If there are some aspects of natural language that cannot371


be learned via corpus analysis, it seems difficult to identify what these aspects are372


via armchair theorizing, and likely that they will only be accurately identified via373


pushing corpus linguistics as far as it can go.374


This generic learning process is a special case of the general process of symbol-375


ization, described in Chaotic Logic [Goe94] and elsewhere as a key aspect of general376


intelligence. In this process, a system finds patterns in itself and its environment, and377


then symbolizes these patterns via simple tokens or symbols that become part of the378


system’s native knowledge representation scheme (and hence parts of its “metalan-379


guage” for describing things to itself). Having represented a complex pattern as a380


simple symbolic token, it can then easily look at other patterns involving this patterns381


as a component.382


Note that in its generic format as stated above, the “language learning loop” is383


not restricted to corpus based analysis, but may also include extralinguistic aspects384


of usage patterns, such as gestures, tones of voice, and the physical and social con-385


text of linguistic communication. Linguistic and extra-linguistic factors may come386


together to comprise “usage patterns”. However, the restriction to corpus data does387


not necessarily denude the language learning loop of its power; it merely restricts one388


to particular classes of usage patterns, whose informativeness must be empirically389


determined.390


In principle, one might be able to create a functional language learning system391


based only on a very generic implementation of the above learning loops. In practice,392


however, biases toward particular sorts of usage patterns can be very valuable in393


guiding language learning. In a computational language learning context, it may be394
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 473


worthwhile to break down the language learning process into multiple instances of395


the basic language learning loops, each focused on different sorts of usage patterns,396


and coupled with each other in specific ways. This is in fact what we will propose397


here.398


Specifically, the language learning process proposed here involves:399


• One language learning loop for learning purely syntactic linguistic relationships400


(such as link types and lexical entries, described above), which are then used to401


provide input to a syntax parser.402


• One language learning loop for learning higher-level “syntactico-semantic” lin-403


guistic relationships (such as semantic relationships, idioms, and lexical functions,404


described above), which are extracted from the output of the syntax parser.405


These two loops are not independent of one-another; the second loop can provide406


feedback to the first, regarding the correctness of the extracted structures; then as407


the first loop produces more correct, confident results, the second loop can in turn408


become more confident in it’s output. In this sense, the two loops attack the same409


sort of slow-convergence issues that ‘deep learning’ tackles in neural-net training.410


The syntax parser itself, in this context, is used to extract directed acyclic graphs411


(dags), usually trees, from the graph of syntactic relationships associated with a sen-412


tence. These dags represent parses of the sentence. So the overall scope of the learning413


process proposed here is to learn a system of syntactic relationships that displays414


appropriate coherence and that, when fed into an appropriate parser, will yield415


parse trees that give rise to a system of syntactico-semantic relationships that416


displays appropriate coherence.417


27.4.2 Learning Syntax418


The process of learning syntax from a corpus may be understood fairly directly in419


terms of entropy maximization. As a simple example, consider the measurement of420


the entropy of the arrangement of words in a sentence. To a fair degree, this can421


be approximated by the sum of the mutual entropy between pairs of words. Yuret422


showed that by searching for and maximizing this sum of entropies, one obtains a423


tree structure that closely resembles that of a dependency parse [Yur98]. That is,424


the word pairs with the highest mutual entropy are more or less the same as the425


arrows in a dependency parse, such as that shown in Fig. 26.1. Thus, an initial task426


is to create a catalog of word-pairs with a large mutual entropy (mutual information,427


or MI) between them. This catalog can then be used to approximate the most-likely428


dependency parse of a sentence, although, at this stage, the link-types are as yet429


unknown.430


Finding dependency links using mutual information is just the first step to building431


a practical parser. The generation of high-MI word-pairs works well for isolating432


which words should be linked, but it does have several major drawbacks. First and433


foremost, the word-pairs do not come with any sort of classification; there is no link434
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474 27 Language Learning via Unsupervised Corpus Analysis


type describing the dependency relationship between two words. Secondly, most435


words fall into classes (e.g. nouns, verbs, etc.), but the high-MI links do not tell436


us what these are. A compact, efficient parser appears to require this sort of type437


information.438


To discover syntactic link types, it is necessary to start grouping together words439


that appear in similar contexts. This can be done with clustering and similarity tech-440


niques, which appears to be sufficient to discover not only basic parts of speech441


(verbs, nouns, modifiers, determiners), but also link types. So, for example, the com-442


putation of word-pair MI is likely to reveal the following high-MI word pairs: “big443


car”, “fast car”, “expensive car”, “red car”. It is reasonable to group together the444


words big, expensive, fast and red into a single category, interpreted as modifiers to445


car. The grouping can be further refined if these same modifiers are observed with446


other words (e.g. “big bicycle”, “fast bicycle”, etc.). This has two effects: it not only447


reinforces the correctness of the original grouping of modifiers, but also suggests448


that perhaps cars and bicycles should be grouped together. Thus, one has discovered449


two classes of words: modifiers and nouns. In essence, one has crudely discovered450


parts of speech.451


The link between these two classes carries a type; the type of that link is defined452


by these two classes. The use of a pair of word classes to define a link type is a basic453


premise of categorial grammar [KSPC13]. In this example, a link between a modifier454


and a noun would be a type denoted as M\N in categorial grammar, M denoting the455


class of modifiers, and N the class of nouns. In the system of Link Grammar, this is456


replaced by a simple name, but its really one and the same thing. (In this case, the457


existing dictionaries use the A link for this relation, with A conjuring up ‘adjective’458


as a mnemonic). The simple-name is a boon for readability, as categorial grammars459


usually have very complex-looking link-type names: e.g. (NP\S)/NP for the simplest460


transitive verbs. Typing seems to be an inherent part of language; types must be461


extracted durng the learning process.462


The introduction of types here has mathematical underpinnings provided by type463


theory. An introduction to type theory can be found in [Pro13], and an application of464


type theory to linguistics can be found in [KSPC13]. This is a rather abstract work,465


but it sheds light on the nature of link types, word-classes, parts-of-speech and the466


like as formal types of type theory. This is useful in dispelling the seeming taint of467


ad hoc arbitrariness of clustering: in a linguistic context, it is not so much ad hoc468


as it is a way of guaranteeing that only certain words can appear in certain positions469


in grammatically correct sentences, a sort of constraint that seems to be an inherent470


part of language, and seems to be effectively formalizable via type theory.471


Word-clustering, as worked in the above example, can be viewed as another472


entropy-maximization technique. It is essentially a kind of factorization of depen-473


dent probabilities into most likely factors. By classifying a large number of words474


as ‘modifiers of nouns’, one is essentially admitting that they are equi-probable in475


that role, in the Markovian sense [Ash65] (equivalently, treating them as equally-476


weighted priors, in the Bayesian probability sense). That is, given the word “car”,477


we should treat big, fast, expensive and red as being equi-probable (in the absence of478


other information). Equi-probability is an axiom in Bayesian probability (the axiom479
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 475


of priors), but it derives from the principle of maximum entropy (as any other prob-480


ability assignment would have a lower entropy).481


We have described how link types may be learned in an unsupervised setting.482


Connector types are then trivially assigned to the left and right words of a word-pair.483


The dependency graph, as obtained by linking only those word pairs with a high484


MI, then allows disjuncts to be easily extracted, on a sentence-by-sentence basis. At485


this point, another stage of pattern recognition may be applied: Given a single word,486


appearing in many different sentences, one should presumably find that this word487


only makes use of a relatively small, limited set of disjuncts. It is then a counting488


exercise to determine which disjuncts are occurring the most often for this word:489


these then form this word’s lexical entry. (This “counting exercise” may also be490


thought of as an instance of frequent subgraph mining, as will be elaborated below).491


A second clustering step may then be applied: it’s presumably noticeable that492


many words use more-or-less the same disjuncts in syntactic constructions. These493


can then be grouped into the same lexical entry. However, we previously generated a494


different set of word groupings (into parts of speech), and one may ask: how does that495


grouping compare to this grouping? Is it close, or can the groupings be refined? If the496


groupings cannot be harmonized, then perhaps there is a certain level of detail that497


was previously missed: perhaps one of the groups should be split into several parts.498


Conversely, perhaps one of the groupings was incomplete, and should be expanded499


to include more words. Thus, there is a certain back-and-forth feedback between500


these different learning steps, with later steps reinforcing or refining earlier steps,501


forcing a new revision of the later steps.502


27.4.2.1 Loose Language503


A recognized difficulty with the direct application of Yuret’s observation (that the504


high-MI word-pair tree is essentially identical to the dependency parse tree) is the505


flexibility of the preposition in the English language [KM04]. The preposition is506


so widely used, in such a large variety of situations and contexts, that the mutual507


information between it, and any other word or word-set, is rather low (is unlikely508


and thus carries little information). The two-point, pair-wise mutual entropy provides509


a poor approximation to what the English language is doing in this particular case.510


It appears that the situation can be rescued with the use of a three-point mutual511


information (a special case of interaction information [Bel03]).512


The discovery and use of such constructs is described in [PD09]. A similar, related513


issue can be termed “the richness of the MV link type in Link Grammar”. This one514


link type, describing verb modifiers (which includes prepositions) can be applied in515


a very large class of situations; as a result, discovering this link type, while at the516


same time limiting its deployment to only grammatical sentences, may prove to be517


a bit of a challenge. Even in the manually maintained Link Grammar dictionaries, it518


can present a parsing challenge because so many narrower cases can often be treated519


with an MV link. In summary, some constructions in English are so flexible that520
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476 27 Language Learning via Unsupervised Corpus Analysis


it can be difficult to discern a uniform set of rules for describing them; certainly,521


pair-wise mutual information seems insufficient to elucidate these cases.522


Curiously, these more challenging situations occur primarily with more complex523


sentence constructions. Perhaps the flexibility is associated with the difficulty that524


humans have with composing complex sentences; short sentences are almost ‘set525


phrases’, while longer sentences can be a semi-grammatical jumble. In any case, some526


of the trouble might be avoided by limiting the corpus to smaller, easier sentences at527


first, perhaps by working with children’s literature at first.528


27.4.2.2 Elaboration of the Syntactic Learning Loop529


We now reiterate the syntactic learning process described above in a more systematic530


way. By getting more concrete, we also make certain assumptions, and restrictions,531


some of which may end up getting changed or lifted in the course of implementation532


and detailed exploration of the overall approach. What is discussed in this section is533


merely one simple, initial approach to concretizing the core language learning loop534


we envision in a syntactic context.535


Syntax, as we consider it here, involves the following basic entities:536


• Words537


• Categories of words538


• “co-occurrence links”, each one defined as (in the simplest case) an ordered pair539


or triple of words, labeled with an uncertain truth value540


• “syntactic link types”, each one defined as a certain set of ordered pairs of words541


• “disjuncts”, each one associated with a particular word w, and consisting of an542


ordered set of link types involving the word w. That is, each of these links contains543


at least one word-pair containing w as first or second argument. (This nomencla-544


ture here comes from Link Grammar; each disjunct is a conjunction of link types.545


A word is associated with a set of disjuncts. In the course of parsing, one must546


choose between the multiple disjuncts associated with a word, to fulfill the con-547


straints required of an appropriate parse structure).548


An elementary version of the basic syntactic language learning loop described above549


would take the form.550


1. Search for high-MI word pairs. Define one’s usage links as the given co-551


occurrence links552


2. Cluster words into categories based on the similarity of their associated usage553


links554


• Note that this will likely be a tricky instance of clustering, and classical cluster-555


ing algorithms may not perform well. One interesting, less standard approach556


would be to use OpenCog’s MOSES algorithm [Loo06, Loo07c] to learn an557


array of program trees, each one serving as a recognizer for a single cluster,558


in the same general manner done with Genetic Programming in [BE07].559
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 477


3. Define initial syntactic link types from categories that are joined by large bundles560


of usage links561


• That is, if the words in category C1 have a lot of usage links to the words in562


category C2, then create a syntactic link type whose elements are (w1, w2),563


for all w1 ∈ C1, w2 ∈ C2.564


4. Associate each word with an extended set of usage links, consisting of: its existing565


usage links, plus the syntactic links that one can infer for it based on the categories566


the word belongs to. One may also look at chains of (e.g.) 2 syntactic links567


originating at the word.568


• For example, suppose cat ∈ C1 and C1 has syntactic link L1. Suppose569


(cat, eat) and (dog, run) are both in L1. Then if there is a sentence “The570


cat likes to run”, the link L1 lets one infer the syntactic link cat
L1→ run. The571


frequency of this syntactic link in a relevant corpus may be used to assign it572


an uncertain truth value.573


• Given the sentence “The cat likes to run in the park”, a chain of syntactic links574


such as cat
L1→ run


L2→ park may be constructed.575


5. Return to Step 2, but using the extended set of usage links produced in576


Step 4, with the goal of refining both clusters and the set of link types for accuracy.577


Initially, all categories contain one word each, and there is a unique link type for578


each pair of categories. This is an inefficeint representation of language, and so579


the goal of clustering is to have a relatively small set of clusters and link types,580


with many words/word-pairs assigned to each. This can be done by maximizing581


the sum of the logarithms of the sizes of the clusters and link types; that is, by582


maximing entropy. Since the category assignments depend on the link types, and583


vice versa, a very large number of iterations of the loop are likely to be required.584


Based on the current Link Grammar English dictionaries, one expects to discover585


hundreds of link types (or more, depending on how subtypes are counted), and586


perhaps a thousand word clusters (most of these corresponding to irregular verbs587


and idiomatic phrases).588


Many variants of this same sort of process are conceivable, and it’s currently unclear589


what sort of variant will work best. But this kind of process is what one obtains590


when one implements the basic language learning loop described above on a purely591


syntactic level.592


How might one integrate semantic understanding into this syntactic learning loop?593


Once one has semantic relationships associated with a word, one uses them to gen-594


erate new “usage links” for the word, and includes these usage links in the algorithm595


from Step 1 onwards. This may be done in a variety of different ways, and one may596


give different weightings to syntactic versus semantic usage links, resulting in the597


learning of different links.598


The above process would produce a large set of syntactic links between words.599


We then find a further series of steps. These may be carried out concurrently with600


the above steps, as soon as Step 4 has been reached for the first time.601
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478 27 Language Learning via Unsupervised Corpus Analysis


1. This syntactic graph (with nodes as words and syntactic links joining them)602


may then be mined, using a variety of graph mining tools, to find common603


combinations of links. This gives the “disjuncts” mentioned above.604


2. Given the set of disjuncts, one carries out parsing using a process such as link605


parsing or word grammar parsing, thus arriving at a set of parses for the sentences606


in one’s reference corpus. Depending on the nature of one’s parser, these parses607


may be ranked according to semantic plausibility. Each parse may be viewed608


as a directed acyclic graph (dag), usually a tree, with words at the nodes and609


syntactic-link type labels on the links.610


3. One can now define new usage links for each word: namely, the syntactic links611


occurring in sentence parses, containing the word in question. These links may612


be weighted based on the weights of the parses they occur in.613


4. One can now return to Step 2 using the new usage links, alongside the previous614


ones. Weighting these usage links relative to the others may be done in various615


ways.616


Several subtleties have been ignored in the above, such as the proper discovery and617


treatment of idomatic phrases, the discovery of sentence boundaries, the handling of618


embedded data (price quotes, lists, chapter titles, etc.) as well as the potential speed619


bump that are prepositions. Fleshing out the details of this loop into a workable,620


efficient design is the primary engineering challenge. This will take significant time621


and effort.622


27.4.3 Learning Semantics623


Syntactic relationships provide only the shallowest interpretation of language;624


semantics comes next. One may view semantic relationships (including semantic625


relationships close to the syntax level, which we may call “syntactico-semantic” rela-626


tionships) as ensuing from syntactic relationships, via a similar but separate learning627


process to the one proposed above. Just as our approach to syntax learning is heavily628


influenced by our work with Link Grammar, our approach to semantics is heavily629


influenced by our work on the RelEx system [RVG05, LGE10, GPPG06, LGK+12],630


which maps the output of the Link Grammar parser into a more abstract, semantic631


form. Prototype systems [Goe10b, LGK+12] have also been written mapping the632


output of RelEx into even more abstract semantic form, consistent with the seman-633


tics of the Probabilistic Logic Networks [GIGH08] formalism as implemented in634


CogPrime. These systems are largely based on hand-coded rules, and thus not in the635


spirit of language learning pursued in this proposal. However, they display the same636


structure that we assume here; the difference being that here we specify a mechanism637


for learning the linguistic content that fills in the structure via unsupervised corpus638


learning, obviating the need for hand-coding.639


Specifically, we suggest that discovery of semantic relations requires the imple-640


mentation of something similar to [LP01], except that this work needs to be641
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 479


generalized from 2-point relations to 3-point and N-point relations, roughly as642


described in [PD09]. This allows the automatic, unsupervised recognition of synony-643


mous phrases, such as “Texas borders on Mexico” and “Texas is next to Mexico”, to644


extract the general semantic relation next_to(X,Y), and the fact that this relation can645


be expressed in one of several different ways.646


At the simplest level, in this approach, semantic learning proceeds by scanning647


the corpus for sentences that use similar or the same words, yet employ them in648


a different order, or have point substitutions of single words, or of small phrases.649


Sentences which are very similar, or identical, save for one word, offer up candi-650


dates for synonyms, or sometimes antonyms. Sentences which use the same words,651


but in seemingly different syntactic constructions, are candidates for synonymous652


sentences. These may be used to extract semantic relations: the recognition of sets653


of different syntactic constructions that carry the same meaning.654


In essence, similar contexts must be recognized, and then word and word-order655


differences between these other-wise similar contexts must be compared. There are656


two primary challenges: how to recognize similar contexts, and how to assign prob-657


abilities.658


The work of [PD09] articulates solutions to both challenges. For the first, it659


describes a general framework in which relations such as next_to(X,Y)can be under-660


stood as lambda-expressions λxλy.next_to(x, y), so that one can employ first-order661


logic constructions in place of graphical representations. This is partly a notational662


trick; it just shows how to split up input syntactic constructions into atoms and663


terms, for which probabilities can be assigned. For the second challenge, they show664


how probabilities can be assigned to these expressions, by making explicit use of665


the notions of conditional random fields (or rather, a certain special case, termed666


Markov Logic Networks). Conditional random fields, or Markov networks, are a667


certain mathematical formalism that provides the most general framework in which668


entropy maximization problems can be solved: roughly speaking, it can be understood669


as a means of properly distributing probabilities across networks. Unfortunately, this670


work is quite abstract and rather dense. Thus, a much easier understanding to the671


general idea can be obtained from [LP01]; unfortunately, the later fails to provide672


the general N-point case needed for semantic relations in general, and also fails to673


consider the use of maximum entropy principles to obtain similarity measures.674


The above can be used to extract synonymous constructions, and, in this way,675


semantic relations. However, neither of the above references deal with distinguishing676


different meanings for a given word. That is, while eats(X,Y) might be a learnable677


semantic relation, the sentence “He ate it” does not necessarily justify its use. Of678


course: “He ate it” is an idiomatic expression meaning “he crashed”, which should679


be associated with the semantic relation crash(X), not eat(X,Y). There are global680


textual clues that this may be the case: trouble resolving the reference “it”, and a681


lack of mention of foodstuffs in neighboring sentences. A viable yet simple algorithm682


for the disambiguation of meaning is offered by the Mihalcea algorithm [MTF04,683


Mih05, SM07]. This is an application of the (google) PageRank algorithm to word684


senses, taken across words appearing in multiple sentences. The premise is that the685


correct word-sense is the one that is most strongly supported by senses of nearby686
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480 27 Language Learning via Unsupervised Corpus Analysis


words; a graph between word senses is drawn, and then solved as a Markov chain.687


In the original formulation, word senses are defined by appealing to WordNet, and688


affinity between word-senses is obtained via one of several similarity measures.689


Neither of these can be applied in learning a language de novo. Instead, these must690


both be deduced by clustering and splitting, again. So, for example, it is known that691


word senses correlate fairly strongly with disjuncts (based on authors unpublished692


experiments), and thus, a reasonable first cut is to presume that every different disjunct693


in a lexical entry conveys a different meaning, until proved otherwise. The above-694


described discovery of synonymous phrases can then be used to group different695


disjuncts into a single “word sense”. Disjuncts that remain ungrouped after this696


process are already considered to have distinct senses, and so can be used as distinct697


senses in the Mihalcea network.698


Sense similarity measures can then be developed by using the above-discovered699


senses, and measuring how well they correlate across different texts. That is, if the700


word “bell” occurs multiple times in a sequence of paragraphs, it is reasonable to701


assume that each of these occurrences are associated with the same meaning. Thus,702


each distinct disjunct for the word “bell” can then be presumed to still convey the703


same sense. One now asks, what words co-occur with the word “bell”? The frequent704


appearance of “chime” and “ring” can and should be noted. In essence, one is once-705


again computing word-pair mutual information, except that now, instead of limiting706


word-pairs to be words that are near each other, they can instead involve far-away707


words, several sentences apart. One can then expand the word sense of “bell” to708


include a list of co-occurring words (and indeed, this is the slippery slope leading to709


set phrases and eventually idioms).710


Failures of co-occurrences can also further strengthen distinct meanings. Con-711


sider “he chimed in” and “the bell chimed”. In both cases, chime is a verb. In the712


first sentence, chime carries the disjunct S-4 & K+ (here, K+ is the standard Link713


Grammar connector to particles) while the second has only the simpler disjunct S-.714


Thus, based on disjunct usage alone, one already suspects that these two have a715


different meaning. This is strengthened by the lack of occurrence of words such as716


“bell” or “ring” in the first case, with a frequent observation of words pertaining to717


talking.718


There is one final trick that must be applied in order to get reasonably rapid719


learning; this can be loosely thought of as “the sigmoid function trick of neural net-720


works”, though it may also be manifested in other ways not utilizing specific neural721


net mathematics. The key point is that semantics intrinsically involves a variety of722


uncertain, probabilistic and fuzzy relationships; but in order to learn a robust hierar-723


chy of semantic structures, one needs to iteratively crispen these fuzzy relationships724


into strict ones.725


In much of the above, there is a recurring need to categorize, classify and discover726


similarity. The naivest means of doing so is by counting, and applying basic proba-727


bility (Bayesian, Markovian) to the resulting counts to deduce likelihoods. Unfortu-728


nately, such formulas distribute probabilities in essentially linear ways (i.e. form a729


linear algebra), and thus have a rather poor ability to discriminate or distinguish (in730


the sense of receiver operating characteristics, of discriminating signal from noise).731
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 481


Consider the last example: the list of words co-occurring with chime, over the space732


of a few paragraphs, is likely to be tremendous. Most of this is surely noise. There is733


a trick to over-coming this that is deeply embedded in the theory of neural networks,734


and yet completely ignored in probabilistic (Bayesian, Markovian) networks: the735


sigmoid function. The sigmoid function serves to focus in on a single stimulus, and736


elevate its importance, and, at the same time, strongly suppress all other stimuli. In737


essence, the sigmoid function looks at two probabilities, say 0.55 and 0.45, and says738


“let’s pretend the first one is 0.9 and the second one is 0.1, and move forward from739


there”. It builds in a strong discrimination to all inputs. In the language of standard,740


text-book probability theory, such discrimination is utterly unwarranted; and indeed,741


it is. However, applying strong discrimination to learning can help speed learning by742


converting certain vague impressions into certainties. These certainties can then be743


built upon to obtain additional certainties, or to be torn apart, as needed.744


Thus, in all of the above efforts to gauge the similarity between different things, it745


is useful to have a sharp yes/no answer, rather than a vague muddling with likelihoods.746


In some of the above-described algorithms, this sharpness is already built in: so, Yuret747


approximates the mutual information of an entire sentence as the sum of mutual748


information between word pairs: the smaller, unlikely corrections are discarded.749


Clearly, they must also be revived in order to handle prepositions. Something similar750


must also be done in the extraction of synonymous phrases, semantic relations,751


and meaning; the domain is that much likelier to be noisy, and thus, the need to752


discriminate signal from noise that much more important.753


27.4.3.1 Elaboration of the Semantic Learning Loop754


We now provide a more detailed elaboration of a simple version of the general755


semantic learning process described above. The same caveat applies here as in our756


elaborated description of syntactic learning above: the specific algorithmic approach757


outlined here is a simple instantiation of the general approach we have in mind, which758


may well require refinement based on lessons learned during experimentation and759


further theoretical analysis.760


One way to do semantic learning, according to the approach outlined above, is as761


follows:762


1. An initial semantic corpus is posited, whose elements are parse graphs produced763


by the syntactic process described earlier764


2. A semantic relationship set (or rel-set) is computed from the semantic corpus,765


via calculating the frequent (or otherwise statistically informative) subgraphs766


occurring in the elements of the corpus. Each node of such a subgraph may767


contain a word, a category or a variable; the links of the subgraph are labeled768


with (syntactic, or semantic) link types. Each parse graph is annotated with the769


semantic graphs associated with the words it contains (explicitly: each word in770


a parse graph may be linked via a ReferenceLink to each variable or literal with771


a semantic graph that corresponds to that word in the context of the sentence772


underlying the parse graph.)773
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482 27 Language Learning via Unsupervised Corpus Analysis


• For instance, the link combination v1
S→ v2


O→ v3 may commonly occur774


(representing the standard Subject-Verb-Object (SVO) structure)775


• In this case, for the sentence “The rock broke the window”, we would have776


links such as rock
Ref erenceLink→ v1 connecting the nodes (such as the “rock”777


node) in the parse structure with nodes (such as v1) in this associated semantic778


subgraph.779


3. Rel-sets are divided into categories based on the similarities of their associated780


semantic graphs.781


• This division into categories manifests the sigmoid-function-style crispening782


mentioned above. Each rel-set will have similarities to other rel-sets, to varying783


fuzzy degrees. Defining specific categories turns a fuzzy web of similarities784


into crisp categorial boundaries; which involves some loss of information, but785


also creates a simpler platform for further steps of learning.786


• Two semantic graphs may be called “associated” if they have a nonempty787


intersection. The intersection determines the type of association involved.788


Similarity assessment between graphs G and H may involve estimation of789


which graphs G and H are associated with in which ways.790


• For instance, “The cat ate the dog” and “The frog was eaten by the walrus”791


represent the semantic structure eat(cat,dog) in two different ways. In link792


parser terminology, they do so respectively via the subgraphs G1 = v1
S→793


v2
O→ v3 and G2 = v1


S→ v2
P→ v3


MV→ v4
J→ v5. These two semantic794


graphs will have a lot of the same associations. For instance, in our corpus795


we may have “The big cat ate the dog in the morning” (including big
A→ cat)796


and also “The big frog was eaten by the walrus in the morning” (including797


big
A→ frog), meaning that big


A→ v5 is a graph commonly associated with798


both G1 and G2. Due to having many commonly associated graphs like this,799


G1 and G2 are likely to be associated to a common cluster.800


4. Nodes referring to these categories are added to the parse graphs in the semantic801


corpus. Most simply, a category node C is assigned a link of type L pointing to802


another node x , if any element of C has a link of type L pointing to x . (More803


sophisticated methods of assigning links to category nodes may also be worth804


exploring.)805


• If G1 and G2 have been assigned to a common category C , then “I believe the806


pig ate the horse” and “I believe the law was invalidated by the revolution”807


will both appear as instantiations of the graph G3 = v1
S→ believe


CV→ C.808


This G3 is compact because of the recognition of C as a cluster, leading to its809


representation as a single symbol. The recognition of G3 will occur in Step 2810


the next time around the learning loop.811


5. Return to Step 2, with the newly enriched semantic corpus. As before, one wants812


to discover not too many and not too few categories; again, the appropriate813
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27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 483


solution to this problem appears to be entropy maximization. That is, during the814


frequent subgraph mining stages, one maintains counts of how often these occur815


in the corpus; from these, one constructs the equivalent of the mutual information816


associated with the subgraphs; categorization requires maximizing the sum of the817


log of the sizes of the categories.818


As noted earlier, these semantic relationships may be used in the syntactic phase of819


language understanding in two ways:820


• Semantic graphs associated with words may be considered as “usage links” and821


thus included as part of the data used for syntactic category formation.822


• During the parsing process, full or partial parses leading to higher-probability823


semantic graphs may be favored.824


27.5 The Importance of Incremental Learning825


The learning process described here builds up complex syntactic and semantic struc-826


tures from simpler ones. To start it, all one needs are basic before and after relation-827


ships derived from a corpus. Everything else is built up from there, given the assump-828


tion of appropriate syntactic and semantic formalisms and a semantics-guided syntax829


parser.830


As we have noted, the series of learning steps we propose falls into the broad831


category of “deep learning”, or of hierarchical modeling. That is, learning must occur832


at several levels at once, each reinforcing, and making use of results from another.833


Link types cannot be identified until word clusters are found, and word clusters cannot834


be found until word-pair relationships are discovered. However, once link-types are835


known, these can be then used to refine clusters and the selected word-pair relations.836


Further, the process of finding word clusters—both pre and post parsing—relies on837


a hierarchical build-up of clusters, each phase of clustering utilizing results of the838


previous “lower level” phrase.839


However, for this bootstrapping learning to work well, one will likely need to840


begin with simple language, so that the semantic relationships embodied in the text841


are not that far removed from the simple before/after relationships. The complexity842


of the texts may then be ramped up gradually. For instance, the needed effect might843


be achieved via sorting a very large corpus in order of increasing reading level.844


27.6 Integrating Language Learned via Corpus Analysis into845


CogPrime’s Experiential Learning846


Supposing everything in this chapter were implemented and tested and worked rea-847


sonably well as envisioned. What would this get us in terms of progress toward848


AGI?849
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484 27 Language Learning via Unsupervised Corpus Analysis


Arguably, with a relatively modest additional effort, it could get us a natural850


language question answering system, answering a variety of questions based on the851


text corpus available to it. One would have to use the learned rules for language852


generation, but the methods of Chap. 28 would likely suffice for that.853


Such a dialogue system would be a valuable achievement in its own right, of854


scientific, commercial and humanistic interest—but of course, it wouldn’t be AGI.855


To get something approaching AGI from this sort of effort, one would have to uti-856


lize additional reasoning and concept creation algorithms to enable the answering857


of questions based on knowledge not stored explicitly in the provided corpus. The858


dialogue system would have to be able to piece together new answers from various859


fragmentary, perhaps contradictory pieces of information contain in the corpus. Ulti-860


mately, we suspect, one would need something like the CogPrime architecture, or861


something else with a comparable level of sophistication, to appropriately leverage862


the information extracted from texts via the learned language rules.863


An open question, as indicated above, is how much of language itself would a864


corpus based language learning system like the one outlined here miss, assuming a865


massive but realistic corpus (say, a significant fraction of the Web). This is unresolved866


and ultimately will only be determined via experiment. Our suspicion is that a very867


large percentage of language can be understood via these corpus-based methods. But868


there may be exceptions that would require an unrealistically large corpus size.869


As a simple example, consider the ability to interpret vaguely given spatial direc-870


tions like “Go right out the door, past a few curves in the road, then when you get871


to a hill with a big red house on it (well not that big, but bigger than most of the872


others you’ll see on the walk), start heading down toward the water, till the brush gets873


thick, then start heading left.... Follow the ground as it rises and eventually you’ll874


see the lake”. Of course, it is theoretically possible for an AGI system to learn to875


interpret directions like this purely via corpus analysis. But it seems the task would876


be a lot easier for an AGI endowed with a body so that it could actually experience877


routes like the one being described. And space and time are not the only source of878


relevant examples; social and emotional reasoning have a similar property. Learning879


to interpret language about these from reading is certainly possible, but one will have880


an easier time and do a better job if one is out in the world experiencing social and881


emotional life oneself.882


Even if there turn out to be significant limitations regarding what can be learned883


in practice about language via corpus analysis, though, it may still prove a valuable884


contributor to the mind of a CogPrime system. As compared to hand-coded rules,885


comparably abstract linguistic knowledge achieved via statistical corpus analysis886


should be much easier to integrate with the results of probabilistic inference and887


embodied learning, due to its probabilistic weighting and its connection with the888


specific examples that gave rise to it.889
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Chapter 28
Natural Language Generation


28.1 Introduction0


Language generation, unsurprisingly, shares most of the key features of language1


comprehension discussed in Chap. 26—after all, the division between generation2


and comprehension is to some extent an artificial convention, and the two functions3


are intimately bound up both in the human mind and in the CogPrime architecture.4


In this chapter we discuss language generation, in a manner similar to the previ-5


ous chapter’s treatment of language comprehension. First we discuss our currently6


implemented, “engineered” language generation system, and then we discuss some7


alternative approaches:8


• How a more experiential-learning based system might be made by retaining the9


basic structure of the engineered system but removing the “pre-wired” contents.10


• How a “Sem2Syn” system might be made, via reversing the Syn2Sem system11


described in Chap. 26. This is the subject of implementation effort, at time of12


writing.13


At the start of Chap. 26 we gave a high-level overview of a typical NL generation14


pipeline. Here we will focus largely but not entirely on the “syntactic and morpho-15


logical realization” stage, which we refer to for simplicity as “sentence generation”16


(taking a slight terminological liberty, as “sentence fragment generation” is also17


included here). All of the stages of language generation are important, and there is18


a nontrivial amount of feedback among them. However, there is also a significant19


amount of autonomy, such that it often makes sense to analyze each one separately20


and then tease out its interactions with the other stages.21


Co-authored with Ruiting Lian and Rui Liu.
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486 28 Natural Language Generation


28.2 SegSim for Sentence Generation22


The sentence generation approach currently taken in OpenCog (from 2009 to early23


2012), which we call SegSim, is relatively simple and is depicted in Fig. 28.1 and24


described as follows:25


1. The NL generation system stores a large set of pairs of the form (semantic struc-26


ture, syntactic/morphological realization).27


2. When it is given a new semantic structure to express, it first breaks this semantic28


structure into natural parts, using a set of simple syntactic-semantic rules.29


3. For each of these parts, it then matches the parts against its memory to find relevant30


pairs (which may be full or partial matches), and uses these pairs to generate a31


set of syntactic realizations (which may be sentences or sentence fragments).32


4. If the matching has failed, then (a) it returns to Step 2 and carries out the breakdown33


into parts again. But if this has happened too many times, then (b) it recourses to34


a different algorithm (most likely a search or optimization based approach, which35


is more computationally costly) to determine the syntactic realization of the part36


in question.37


5. If the above step generated multiple fragments, they are pieced together, and a38


certain rating function is used to judge if this has been done adequately (using39


criteria of grammaticality and expected comprehensibility, among others). If this40


fails, then Step 3 is tried again on one or more of the parts; or Step 2 is tried again.41


(Note that one option for piecing the fragments together is to string together a42


number of different sentences; but this may not be judged optimal by the rating43


function).44


6. Finally, a “cleanup” phase is conducted, in which correct morphological forms45


are inserted, and articles and certain other “function words” are inserted.46


The specific OpenCog software implementing the SegSim algorithm is called47


“NLGen”; this is an implementation of the SegSim concept that focuses on sentence48


generation from RelEx semantic relationship. In the current (early 2012) NLGen49


version, Step 1 is handled in a very simple way using a relational database; but this50


will be modified in future so as to properly use the AtomSpace. Work is currently51


underway to replace NLGen with a different “Sem2Syn” approach, that will be52


described at the end of this chapter. But discussion of NLGen is still instructive53


regarding the intersection of language generation concepts with OpenCog concepts.54


The substructure currently used in Step 2 is defined by the predicates of the55


sentence, i.e. we define one substructure for each predicate, which can be described56


as follows:57


Predicate(Argumenti (Modify j ))58


where59


• 1 ≤ i ≤ m and 0 ≤ j ≤ n and m, n are integers60


• “Predicate” stands for the predicate of the sentence, corresponding to the variable61


$0 of the RelEx relationship _subj($0, $1) or _obj($0, $1)62
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28.2 SegSim for Sentence Generation 487


Fig. 28.1 A overview of the SegSim architecture for language generation


• Argumenti is the i-th semantic parameter related with the predicate63


• Modify j is the j-th modifier of the Argumenti .64


If there is more than one predicate, then multiple subnets are extracted analogously.65


For instance, given the sentence “I happily study beautiful mathematics in beau-66


tiful China with beautiful people”. The substructure can be defined as Fig. 28.2.67


For each of these substructures, Step 3 is supposed to match the substructures of68


a sentence against its global memory [which contains a large body of previously69


encountered (semantic structure, syntactic/morphological realization) pairs] to find70


the most similar or same substructures and the relevant syntactic relations to generate71
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488 28 Natural Language Generation


Fig. 28.2 Example of a substructure


Fig. 28.3 Linkage of an example


a set of syntactic realizations, which may be sentences or sentence fragments. In our72


current implementation, a customized subgraph matching algorithm has been used73


to match the subnets from the parsed corpus at this step.74


If Step 3 generated multiple fragments, they must be pieced together. In Step 4, the75


Link Parser’s dictionary has been used for detecting the dangling syntactic links cor-76


responding to the fragments, which can be used to integrate the multiple fragments.77


For instance, in the example of Fig. 28.3, according to the last 3 steps, SegSim would78


generate two fragments: “the parser will ignore the sentence” and “whose length is79


too long”. Then it consults the Link Parser’s dictionary, and finds that “whose” has80


a connector “Mr-”, which is used for relative clauses involving “whose”, to connect81


to the previous noun “sentence”. Analogously, we can integrate the other fragments82


into a whole sentence.83AQ1


For instance, in the example of Fig. 28.3, according to the last 3 steps, SegSim84


would generate two fragments: “the parser will ignore the sentence” and “whose85


length is too long”. Then it consults the Link Parser’s dictionary, and finds that86


“whose” has a connector “Mr-”, which is used for relative clauses involving “whose”,87


to connect to the previous noun “sentence”. Analogously, we can integrate the other88


fragments into a whole sentence.89


Finally, a “cleanup” or “post-processing” phase is conducted, applying the cor-90


rect inflections to each word depending on the word properties provided by the91
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28.2 SegSim for Sentence Generation 489


input RelEx relations. For example, we can use the RelEx relation “DEFINITE-92


FLAG(cover, T)” to insert the article “the” in front of the word “cover”. We have93


considered five factors in this version of NLGen: article, noun plural, verb intense,94


possessive and query type (the latter which is only for interrogative sentences).95


In the “cleanup” step, we also use the chunk parser tool from OpenNLP1 for96


adjusting the position of an article being inserted. For instance, consider the proto-97


sentence “I have big red apple”. If we use the RelEx relation “noun_number(apple,98


singular)” to inflect the word “apple” directly, the final sentence will be “I have big99


red an apple”, which is not well-formed. So we use the chunk parser to detect the100


phrase “big red apple” first, then apply the article rule in front of the noun phrase.101


This is a pragmatic approach which may be replaced with something more elegant102


and principled in later revisions of the NLGen system.103


28.2.1 NLGen: Example Results104


NLGen is currently in a relatively early stage of development, and does not handle105


the full range of linguistic and semantic phenomena that it will when it’s completed.106


However, it can already express a variety of sentences encapsulating a variety of syn-107


tactic and semantic phenomena; in this section we will give some specific examples108


of what it can do.109


The SegSim approach performs sentence generation by matching portions of110


propositional input to a large corpus of parsed sentences, therefore, when the success-111


ful matches can be found in the corpus, it can generate some similar and well-formed112


sentences via the relevant syntactic structures.113


There currently do not exist any authoritative evaluation criteria for Natural Lan-114


guage Generation systems. Among many complicating factors here is the fact that115


different language generation systems have different kinds of inputs, depending on116


many things including their application area. So it’s complicated to compare the117


results of NLGen with those obtained by other systems.118


It is easier however to test whether NLGen is implementing SegSim successfully.119


One approach is to take a sentence, run it through RelEx to generate a set of relation-120


ships, and see if NLGen can regenerate the sentence from the relationship. We show121


here the results of some simple tests of this nature, performed with the current version122


of the system using a very small test corpus for similarity matching. Note: In each123


of these example results, the input of NLGen is the RelEx relationships produced by124


the sentence before “==>”; and the sentence to the right side of “==>” was one of125


the sentences generated by NLGen.126


Example 1:127


I study mathematics at Xiamen University.128


==> I study mathematics at Xiamen\_University.129


1 http://opennlp.sourceforge.net/
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490 28 Natural Language Generation


Example 2:130


The red block is next to the blue cup.131


==> The red block is next\_to the blue cup.132


Example 3:133


Ruiting walked from the table to the door.134


==> Ruiting walked to the door from the table.135


Example 4:136


I intend to walk very slowly from Ben to Ruiting,137


with Hugo’s pencil in my hand.138


==> With Hugo’s pencil in my hand,139


I intend to walk very slowly from Ben to Ruiting.140


Example 5:141


I’d like you to tell me where the red ball is.142


==> I tell like you to ’d me where the red ball is.143


Example 6:144


I study at Xiamen University, which is located in China.145


==> I study at Xiamen\_University.146


Example 7:147


What is next to the tree?148


==> What is next to the tree?149


Example 8:150


Where is the red ball?151


==> Where is the red ball?152


Example 9:153


Pass me the ball.154


==> Pass me the ball.155


Example 10:156


Tell Ben where the red ball is.157


==> Tell Ben where the red ball is.158
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28.2 SegSim for Sentence Generation 491


Fig. 28.4 RelEx relationships for Example 1


To make the process clearer, for Example 1 we also show the RelEx relationships159


produced from the sentence before the “==>”:160


For instance, in the example of Fig. 28.3, according to the last 3 steps, SegSim161


would generate two fragments: “the parser will ignore the sentence” and “whose162


length is too long”. Then it consults the Link Parser’s dictionary, and finds that163


“whose” has a connector “Mr-”, which is used for relative clauses involving “whose”,164


to connect to the previous noun “sentence”. Analogously, we can integrate the other165


fragments into a whole sentence.166


Figure 28.4 shows the relationships of Example 1 fed to NLGen as input. The167


types of the semantic relationships are documented in the RelEx’s wiki pages.2168


These examples illustrate some key points about the current version of NLGen. It169


works well on simple, commonplace sentences (Example 1, 2), though it may reorder170


the sentence fragments sometimes (Example 3, 4). On the other hand, because of its171


reliance on matching against a corpus, NLGen is incapable of forming good sentences172


with syntactic structures not found in the corpus (Example 5, 6). On a larger corpus173


these examples would have given successful results. In Example 5, the odd error is174


due to the presence of too many “_subj” RelEx relationships in the relationship-set175


corresponding to the sentence, which distracts the matching process when it attempts176


to find similar substructures in the small test corpus. Then from Example 7 to 10, we177


can see NLGen still works well for question sentences and imperative sentence if the178


substructures we extract can be matched, but the substructures may be similar with179


the assertive sentence, so we need to refine it in the “cleanup” step. For example:180


the substructures we extracted for the sentence “are you a student?” are the same as181


the ones for “you are a student?”, since the two sentences both have the same binary182


RelEx relationships:183


2 http://opencog.org/wiki/RelEx#Relations_and_Features
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492 28 Natural Language Generation


_subj(be, you)184


_obj(be, student)185


which are used to guide the extraction of the substructures. So we need to refine the186


sentence via some grammatical rules in the post-processing phase, using the word187


properties from RelEx, like “TRUTH-QUERY-FLAG(be, T)” which means if that188


the referent “be” is a verb/event and the event is involved is a question.189


The particular shortcomings demonstrated in these examples are simple to remedy190


within the current NLGen framework, via simply expanding the corpus. However,191


to get truly general behavior from NLGen it will be necessary to insert some other192


generation method to cover those cases where similarity matching fails, as discussed193


above. The NLGen2 system created by Blake Lemoine [Lem10] is one possibility in194


this regard: based on RelEx and the link parser, it carries out rule-based generation195


using an implementation of Chomsky’s Merge operator. Integration of NLGen with196


NLGen2 is currently being considered. We note that the Merge operator is compu-197


tationally inefficient by nature, so that it will likely never be suitable for the primary198


sentence generation method in a language generation system. However, pairing NL-199


Gen for generation of familiar and routine utterances with a Merge-based approach200


for generation of complex or unfamiliar utterances, may prove a robust approach.201


28.3 Experiential Learning of Language Generation202


As in the case of language comprehension, there are multiple ways to create an203


experiential learning based language generation system, involving various levels of204


“wired in” knowledge. Our best guess is that for generation as for comprehension, a205


“tabula rasa” approach will prove computationally intractable for quite some time to206


come, and an approach in which some basic structures and processes are provided,207


and then filled out with content learned via experience, will provide the greatest odds208


of success.209


A highly abstracted version of SegSim may be formulated as follows:210


1. The AI system stores semantic and syntactic structures, and its control mechanism211


is biased to search for, and remember, linkages between them.212


2. When it is given a new semantic structure to express, it first breaks this semantic213


structure into natural parts, using inference based on whatever implications it has214


in its memory that will serve this purpose.215


3. Its inference control mechanism is biased to carry out inferences with the fol-216


lowing implication: For each of these parts, match it against its memory to find217


relevant pairs (which may be full or partial matches), and use these pairs to gener-218


ate a set of syntactic realizations (which may be sentences or sentence fragments).219


4. If the matching has failed to yield results with sufficient confidence, then (a) it220


returns to Step 2 and carries out the breakdown into parts again. But if this has221


happened too many times, then (b) it uses its ordinary inference control routine222


to try to determine the syntactic realization of the part in question.223
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28.3 Experiential Learning of Language Generation 493


5. If the above step generated multiple fragments, they are pieced together, and an224


attempt is made to infer, based on experience, whether the result will be effectively225


communicative. If this fails, then Step 3 is tried again on one or more of the parts;226


or Step 2 is tried again.227


6. Other inference-driven transformations may occur at any step of the process, but228


are particularly likely to occur at the end. In some languages these transformations229


may result in the insertion of correct morphological forms or other “function230


words”.231


What we suggest is that it may be interesting to supply a CogPrime system with this232


overall process, and let it fill in the rest by experiential adaptation. In the case that233


the system is learning to comprehend at the same time as it’s learning to generate,234


this means that its early-stage generations will be based on its rough, early-stage235


comprehension of syntax—but that’s OK. Comprehension and generation will then236


“grow up” together.237


28.4 Sem2Syn238


A subject of current research is the extension of the Syn2Sem approach mentioned239


above into a reverse-order, Sem2Syn system for language generation.240


Given that the Syn2Sem rules are expressed as ImplicationLinks, they can be241


reversed automatically and immediately—although, the reversed versions will not242


necessarily have the same truth values. So if a collection of Syn2Sem rules are learned243


from a corpus, then they can be used to automatically generate a set of Sem2Syn244


rules, each tagged with a probabilistic truth value. Application of the whole set of245


Sem2Syn rules to a given Atom-set in need of articulation, will result in a collection246


of link-parse links.247


To produce a sentence from such a collection of link-parse links, another process248


is also needed, which will select a subset of the collection that corresponds to a249


complete sentence, legally parsable via the link parser. The overall collection might250


naturally break down into more than one sentence.251


In terms of the abstracted version of SegSim given above, the primary difference252


between NLGen and SegSim lies in Step 3. Syn2Sem replaces the SegSim “data-store253


matching” algorithm with inference based on implications obtained from reversing254


the implications used for language comprehension.255


28.5 Conclusion256


There are many different ways to do language generation within OpenCog, ranging257


from pure experiential learning to a database-driven approach like NLGen. Each of258


these different ways may have value for certain applications, and it’s unclear which259
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494 28 Natural Language Generation


ones may be viable in a human-level AGI context. Conceptually we would favor a260


pure experiential learning approach, but, we are currently exploring a “compromise”261


approach based on Sem2Syn. This is an area where experimentation is going to tell262


us more than abstract theory.263
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Abstract “Language” is an important abstraction—but one should never forget that it’s an abstraction. Language
evolved in the context of embodied action, and even the most abstract language is full of words and
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Chapter 29
Embodied Language Processing


29.1 Introduction0


“Language” is an important abstraction—but one should never forget that it’s an1


abstraction. Language evolved in the context of embodied action, and even the most2


abstract language is full of words and phrases referring to embodied experience.3


Even our mathematics is heavily based on our embodied experience—geometry is4


about space; calculus is about space and time; algebra is a sort of linguistic manipu-5


lation generalized from experience-oriented language, etc. (see [LN00] for detailed6


arguments in this regard). To consider language in the context of human-like general7


intelligence, one needs to consider it in the context of embodied experience.8


There is a large literature on the importance of embodiment for child language9


learning, but perhaps the most eloquent case has been made by Michael Tomasello,10


in his excellent book Constructing a Language [Tom03]. Citing a host of relevant11


research by himself and others, Tomasello gives a very clear summary of the value12


of social interaction and embodiment for language learning in human children. And13


while he doesn’t phrase it in these terms, the picture he portrays includes central roles14


for reinforcement, imitative and corrective learning. Imitative learning is obvious: so15


much of embodied language learning has to do with the learner copying what it has16


heard other say in similar contexts. Corrective learning occurs every time a parent17


or peer rephrases something for a child.18


In this chapter, after some theoretical discussion of the nature of symbolism and19


the role of gesture and sound in language, we describe some computational exper-20


iments run with OpenCog controlling virtual pets in a virtual world, regarding the21


use of embodied experience for anaphor resolution and question-answering. These22


comprise an extremely simplistic example of the interplay between language and23


embodiment, but have the advantage of concreteness, since they were actually imple-24


mented and experimented with. Some of the specific OpenCog tools used in these25
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496 29 Embodied Language Processing


experiments are no longer current (e.g. the use of RelEx2Frame, which is now26


deprecated in favor of alternative approaches to mapping parses into more abstract27


semantic relationships); but the basic principles and flow illustrated here are still28


relevant to current and future work.AQ1 29


29.2 Semiosis30


The foundation of communication is semiosis—the representation between the sig-31


nifier and the signified. Often the signified has to do with the external world or the32


communicating agent’s body; hence the critical role of embodiment in language.33


Thus, before turning to the topic of embodied language use and learning per se,34


we will briefly treat the related topic of how an AGI system may learn semiosis35


itself via its embodied experience. This is a large and rich topic, but we will restrict36


ourselves to giving a few relatively simple examples intended to make the principles37


clear. We will structure our discussion of semiotic learning according to Charles38


Sanders Peirce’s theory of semiosis [Pei34], in which there are three basic types of39


signs: icons, indices and symbols.40


In Peirce’s ontology of semiosis, an icon is a sign that physically resembles what41


it stands for. Representational pictures, for example, are icons because they look42


like the thing they represent. Onomatopoeic words are icons, as they sound like43


the object or fact they signify. The iconicity of an icon need not be immediate to44


appreciate. The fact that “kirikiriki” is iconic for a rooster’s crow is not obvious to45


English-speakers yet it is to many Spanish-speakers; and the the converse is true for46


“cock-a-doodle-doo.”47


Next, an index is a sign whose occurrence probabilistically implies the occurrence48


of some other event or object (for reasons other than the habitual usage of the sign49


in connection with the event or object among some community of communicating50


agents). The index can be the cause of the signified thing, or its consequence, or51


merely be correlated to it. For example, a smile on your face is an index of your happy52


state of mind. Loud music and the sound of many people moving and talking in a53


room is an index for a party in the room. On the whole, more contextual background54


knowledge is required to appreciate an index than an icon.55


Finally, any sign that is not an icon or index is a symbol. More explicitly, one may56


say that a symbol is a sign whose relation to the signified thing is conventional or57


arbitrary. For instance, the stop sign is a symbol for the imperative to stop; the word58


“dog” is a symbol for the concept it refers to.59


The distinction between the various types of signs is not always obvious, and some60


signs may have multiple aspects. For instance, the thumbs-up gesture is a symbol for61


positive emotion or encouragement. It is not an index—unlike a smile which is an62


index for happiness because smiling is intrinsically biologically tied to happiness,63


there is no intrinsic connection between the thumbs-up signal and positive emotion64


or encouragement. On the other hand, one might argue that the thumbs-up signal is65


very weakly iconic, in that its up-ness resembles the subjective up-ness of a positive66


emotion (note that in English an idiom for happiness is “feeling up”).67


319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


29.2 Semiosis 497


Teaching an embodied virtual agent to recognize simple icons is a relatively68


straightforward learning task. For instance, suppose one wanted to teach an agent69


that in order to get the teacher to give it a certain type of object, it should go to a70


box full of pictures and select a picture of an object of that type, and bring it to the71


teacher. One way this may occur in an OpenCog-controlled agent is for the agent to72


learn a rule of the following form:73


ImplicationLink
ANDLink


ContextLink
Visual
SimilarityLink $X $Y


PredictiveImplicationLink
SequentialANDLink


ExecutionLinkgoto box
ExecutionLinkgrab$X
ExecutionLinkgoto teacher


EvaluationLinkgive me teacher$Y


74


While not a trivial learning problem, this is straightforward to a75


CogPrime-controlled agent that is primed to consider visual similarities as signifi-76


cant (i.e. is primed to consider the visual-appearance context within its search for77


patterns in its experience).78


Next, proceeding from icons to indices: Suppose one wanted to teach an agent79


that in order to get the teacher to give it a certain type of object, it should go to a80


box full of pictures and select a picture of an object that has commonly been used81


together with objects of that type, and bring it to the teacher. This is a combination82


of iconic and indexical semiosis, and would be achieved via the agent learning a rule83


of the form84


Implication85


AND86


Context87


Visual88


Similarity $X $Z89


Context90


Experience91


SpatioTemporalAssociation $Z $Y92


PredictiveImplication93


SequentialAnd94


Execution goto box95


Execution grab $X96


Execution goto teacher97


Evaluation give me teacher $Y98
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498 29 Embodied Language Processing


Symbolism, finally, may be seen to emerge as a fairly straightforward extension99


of indexing. After all, how does an agent come to learn that a certain symbol refers100


to a certain entity? An advanced linguistic agent can learn this via explicit verbal101


instruction, e.g. one may tell it “The word ‘hideous’ means ‘very ugly’.” But in the102


early stages of language learning, this sort of instructional device is not available,103


and so the way an agent learns that a word is associated with an object or an action104


is through spatiotemporal association. For instance, suppose the teacher wants to105


teach the agent to dance every time the teacher says the word “dance”—a very106


simple example of symbolism. Assuming the agent already knows how to dance,107


this merely requires the agent learn the implication108


PredictiveImplication109


SequentialAND110


Evaluation say teacher me "dance"111


Execution dance112


give teacher me Reward113


And, once this has been learned, then simultaneously the relationship114


SpatioTemporalAssociation dance "dance"115


will be learned. What’s interesting is what happens after a number of associations of116


this nature have been learned. Then, the system may infer a general rule of the form117


Implication118


AND119


SpatioTemporalAssociation \$X \$Z120


HasType \$X GroundedSchema121


PredictiveImplication122


SequentialAND123


Evaluation say teacher me \$Z124


Execution \$X125


Evaluation give teacher me Reward126


This implication represents the general rule that if the teacher says a word corre-127


sponding to an action the agent knows how to do, and the agent does it, then the128


agent may get a reward from the teacher. Abstracting this from a number of pertinent129


examples is a relatively straightforward feat of probabilistic inference for the PLN130


inference engine.131


Of course, the above implication is overly simplistic, and would lead an agent to132


stupidly start walking every time its teacher used the word “walk” in conversation133


and the agent overheard it. To be useful in a realistic social context, the implication134


must be made more complex so as to include some of the pragmatic surround in135


which the teacher utters the word or phrase $Z.136
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29.3 Teaching Gestural Communication 499


29.3 Teaching Gestural Communication137


Based on the ideas described above, it is relatively straightforward to teach virtually138


embodied agents the elements of gestural comunication. This is important for two139


reasons: gestural communication is extremely useful unto itself, as one sees from140


its role in communication among young children and primates [22]; and, gestural141


communication forms a foundation for verbal communication, during the typical142


course of human language learning [23]. Note for instance the study described in143


[22], which “reports empirical longitudinal data on the early stages of language144


development,” concluding that145


...the output systems of speech and gesture may draw on underlying brain mech-146


anisms common to both language and motor functions. We analyze the spontaneous147


interaction with their parents of three typically-developing children (2 M, 1 F) video-148


taped monthly at home between 10 and 23 months of age. Data analyses focused149


on the production of actions, representational and deictic gestures and words, and150


gesture-word combinations. Results indicate that there is a continuity between the151


production of the first action schemes, the first gestures and the first words pro-152


duced by children. The relationship between gestures and words changes over time.153


The onset of two-word speech was preceded by the emergence of gesture-word154


combinations.155


If young children learn language as a continuous outgrowth of gestural commu-156


nication, perhaps the same approach may be effective for (virtually or physically)157


embodied AI’s.158


An example of an iconic gesture occurs when one smiles explicitly to illustrate159


to some other agent that one is happy. Smiling is a natural expression of happiness,160


but of course one doesn’t always smile when one’s happy. The reason that explicit161


smiling is iconic is that the explicit smile actually resembles the unintentional smile,162


which is what it “stands for.”163


This kind of iconic gesture may emerge in a socially-embedded learning agent164


through a very simple logic. Suppose that when the agent is happy, it benefits from its165


nearby friends being happy as well, so that they may then do happy things together.166


And suppose that the agent has noticed that when it smiles, this has a statistical167


tendency to make its friends happy. Then, when it is happy and near its friends, it168


will have a good reason to smile. So through very simple probabilistic reasoning, the169


use of explicit smiling as a communicative tool may result. But what if the agent is170


not actually happy, but still wants some other agent to be happy? Using the reasoning171


from the prior paragraph, it will likely figure out to smile to make the other agent172


happy—even though it isn’t actually happy.173


Another simple example of an iconic gesture would be moving one’s hands174


towards one’s mouth, mimicking the movements of feeding oneself, when one wants175


to eat. Many analogous iconic gestures exist, such as doing a small solo part of a176


two-person dance to indicate that one wants to do the whole dance together with177


another person. The general rule an agent needs to learn in order to generate iconic178
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500 29 Embodied Language Processing


gestures of this nature is that, in the context of shared activity, mimicking part of a179


process will sometimes serve the function of evoking that whole process.180


This sort of iconic gesture may be learned in essentially the same way as an181


indexical gesture such as a dog repeatedly drawing the owner’s attention to the182


owner’s backpack, when the dog wants to go outside. The dog doesn’t actually care183


about going outside with the backpack—he would just as soon go outside without184


it—but he knows the backpack is correlated with going outside, which is his actual185


interest.186


The general rule here is187


R :=188


Implication189


SimultaneousImplication190


Execution $X $Y191


PredictiveImplication $X $Y192


i.e. if doing $X often correlates with $Y, then maybe doing $X will bring about $Y.193


This sort of rule can bring about a lot of silly “superstitious” behavior but also can194


be particularly effective in social contexts, meaning in formal terms that195


Context196


near_teacher197


R198


holds with a higher truth value than R itself. This is a very small conglomeration199


of semantic nodes and links yet it encapsulates a very important communicational200


pattern: that if you want something to happen, and act out part of it—or something201


historically associated with it—around your teacher, then the thing may happen.202


Many other cases of iconic gesture are more complex and mix iconic with symbolic203


aspects. For instance, one waves one hand away from oneself, to try to get someone204


else to go away. The hand is moving, roughly speaking, in the direction one wants205


the other to move in. However, understanding the meaning of this gesture requires a206


bit of savvy or experience. One one does grasp it, however, then one can understand207


its nuances: For instance, if I wave my hand in an arc leading from your direction208


toward the direction of the door, maybe that means I want you to go out the door.209


Purely symbolic (or nearly so) gestures include the thumbs-up symbol mentioned210


above, and many others including valence-indicating symbols like a nodded head211


for YES, a shaken-side-to-side head for NO, and shrugged shoulders for “I don’t212


know.” Each of these valence-indicating symbols actually indicates a fairly complex213


concept, which is learned from experience partly via attention to the symbol itself.214


So, an agent may learn that the nodded head corresponds with situations where the215


teacher gives it a reward, and also with situations where the agent makes a request and216


the teacher complies. The cluster of situations corresponding to the nodded-head then217


forms the agent’s initial concept of “positive valence,” which encompasses, loosely218


speaking, both the good and the true.219


Summarizing our discussion of gestural communication: An awful lot of language220


exists between intelligent agents even if no word is ever spoken. And, our belief is221
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29.3 Teaching Gestural Communication 501


that these sorts of non-verbal semiosis form the best possible context for the learning222


of verbal language, and that to attack verbal language learning outside this sort of223


context is to make an intrinsically-difficult problem even harder than it has to be.224


And this leads us to the final part of the chapter, which is a bit more speculative225


and adventuresome. The material in this section and the prior ones describes experi-226


ments of the sort we are currently carrying out with our virtual agent control software.227


We have not yet demonstrated all the forms of semiosis and non-linguistic commu-228


nication described in the last section using our virtual agent control system, but we229


have demonstrated some of them and are actively working on extending our sys-230


tem’s capabilities. In the following section, we venture a bit further into the realm of231


hypothesis and describe some functionalities that are beyond the scope of our current232


virtual agent control software, but that we hope to put into place gradually during233


the next 1–2 years. The basic goal of this work is to move from non-verbal to verbal234


communication.235


It is interesting to enumerate the aspects in which each of the above components236


appears to be capable of tractable adaptation via experiential, embodied learning:237


• Words and phrases that are found to be systematically associated with particular238


objects in the world, may be added to the “gazeteer list” used by the entity extractor.239


• The link parser dictionary may be automatically extended. In cases where the agent240


hears a sentence that is supposed to describe a certain situation, and realizes that241


in order for the sentence to be mapped into a set of logical relationships accurately242


describing the situation, it would be necessary for a certain word to have a certain243


syntactic link that it doesn’t have, then the link parser dictionary may be modified244


to add the link to the word. (On the other hand, creating new link parser link types245


seems like a very difficult sort of learning—not to say it is unaddressable, but it246


will not be our focus in the near term.)247


• Similar to with the link parser dictionary, if it is apparent that to interpret an248


utterance in accordance with reality a RelEx rule must be added or modified,249


this may be automatically done. The RelEx rules are expressed in the format of250


relatively simple logical implications between Boolean combinations of syntactic251


and semantic relationships, so that learning and modifying them is within the scope252


of a probabilistic logic system such as OpenCogPrime’s PLN inference engine.253


• The rules used by RelEx2Frame may be experientially modified quite analogously254


to those used by RelEx.255


• Our current statistical parse ranker ranks an interpretation of a sentence based256


on the frequency of occurrence of its component links across a parsed corpus.257


A deeper approach, however, would be to rank an interpretation based on its258


commonsensical plausibility, as inferred from experienced-world-knowledge as259


well as corpus-derived knowledge. Again, this is within the scope of what an260


inference engine such as PLN should be able to do.261


• Our word sense disambiguation and reference resolution algorithms involve prob-262


abilistic estimations that could be extended to refer to the experienced world as263


well as to a parsed corpus. For example, in assessing which sense of the noun264


“run” is intended in a certain context, the system could check whether stockings,265
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502 29 Embodied Language Processing


or sports-events or series-of-events, are more prominent in the currently-observed266


situation. In assessing the sentence “The children kicked the dogs, and then they267


laughed,” the system could map “they” into “children” via experientially-acquired268


knowledge that children laugh much more often than dogs.269


• NLGen uses the link parser dictionary, treated above, and also uses rules analo-270


gous to (but inverse to) RelEx rules, mapping semantic relations into brief word-271


sequences. The “gold standard” for NLGen is whether, when it produces a sentence272


S from a set R of semantic relationships, the feeding of S into the language com-273


prehension subsystem produces R (or a close approximation) as output. Thus, as274


the semantic mapping rules in RelEx and RelEx2Frame adapt to experience, the275


rules used in NLGen must adapt accordingly, which poses an inference problem276


unto itself.277


All in all, when one delves in detail into the components that make up our hybrid278


statistical/rule-based NLP system, one sees there is a strong opportunity for expe-279


riential adaptive learning to substantially modify nearly every aspect of the NLP280


system, while leaving the basic framework intact.281


This approach, we suggest, may provide means of dealing with a number of282


problems that have systematically vexed existing linguistic approaches. One example283


is parse ranking for complex sentences: this seems almost entirely a matter of the284


ability to assess the semantic plausibility of different parses, and doing this based on285


statistical corpus analysis seems unreasonable. One needs knowledge about a world286


to ground reasoning about plausiblity.287


Another example is preposition disambiguation, a topic that is barely dealt with288


at all in the computational linguistics literature (see e.g. [33] for an indication of289


the state of the art). Consider the problem of assessing which meaning of “with” is290


intended in sentences like “I ate dinner with a fork”, “I ate dinner with my sister”, “I291


ate dinner with dessert.” In performing this sort of judgment, an embodied system292


may use knowledge about which interpretations have matched observed reality in293


the case of similar utterances it has processed in the past, and for which it has294


directly seen the situations referred to by the utterances. If it has seen in the past,295


through direct embodied experience, that when someone said “I ate cereal with a296


spoon,” they meant that the spoon was their tool not part of their food or their297


eating-partner; then when it hears “I ate dinner with a fork,” it may match “cereal”298


to “dinner” and “spoon” to “fork” (based on probabilistic similarity measurement)299


and infer that the interpretation of “with” in the latter sentence should also be to300


denote a tool. How does this approach to computational language understanding tie301


in with gestural and general semiotic learning as we discussed earlier? The study302


of child language has shown that early language use is not purely verbal by any303


means, but is in fact a complex combination of verbal and gestural communication304


[23]. With the exception of first bullet point (entity extraction) above, every one of305


our instances of experiential modification of our language framework listed above306


involves the use of an understanding of what situation actually exists in the world,307


to help the system identify what the logical relationships output by the NLP system308


are supposed to be in a certain context. But a large amount of early-stage linguistic309
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29.3 Teaching Gestural Communication 503


communication is social in nature, and a large amount of the remainder has to do310


with the body’s relationship to physical objects. And, in understanding “what actually311


exists in the world” regarding social and physical relationships, a full understanding312


of gestural communication is important. So, the overall pathway we propose for313


achieving robust, ultimately human-level NLP functionality is as follows:314


• The capability for learning diverse instances of semiosis is established315


• Gestural communication is mastered, via nonverbal imitative/reinforcement/316


corrective learning mechanisms such as we utilized for our embodied virtual agents317


• Gestural communication, combined with observation of and action in the world318


and verbal interaction with teachers, allows the system to adapt numerous aspects319


of its initial NLP engine to allow it to more effectively interpret simple sentences320


pertaining to social and physical relationships321


• Finally, given the ability to effectively interpret and produce these simple and322


practical sentences, probabilistic logical inference allows the system to gradually323


extend this ability to more and more complex and abstract senses, incrementally324


adapting aspects of the NLP engine as its scope broadens.325


In this brief section we will mention another potentially important factor that we326


have intentionally omitted in the above analysis—but that may wind up being very327


important, and that can certainly be taken into account in our framework if this proves328


necessary. We have argued that gesture is an important predecessor to language in329


human children, and that incorporating it in AI language learning may be valuable.330


But there is another aspect of early language use that plays a similar role to gesture,331


which we have left out in the above discussion: this is the acoustic aspects of speech.332


Clearly, pre-linguistic children make ample use of communicative sounds of var-333


ious sorts. These sounds may be iconic, indexical or symbolic; and they may have a334


great deal of subtlety. Steven Mithen [Mit96] has argued that non-verbal utterances335


constitute a kind of proto-language, and that both music and language evolved out of336


this. Their role in language learning is well-known. We are uncertain as to whether337


an exclusive focus on text rather than speech would critically impair the language338


learning process of an AI system. We are fairly strongly convinced of the importance339


of gesture because it seems bound up with the importance of semiosis—gesture, it340


seems, is how young children learn flexible semiotic communication skills, and then341


these skills are gradually ported from the gestural to the verbal domain. Semiotically,342


on the other hand, phonology doesn’t seem to give anything special beyond what343


gesture gives. What it does give is an added subtlety of emotional expressiveness—344


something that is largely missing from virtual agents as implemented today, due to345


the lack of really fine-grained facial expressions. Also, it provides valuable clues346


to parsing, in that groups of words that are syntactically bound together are often347


phrased together acoustically.348


If one wished to incorporate acoustics into the framework described above, it349


would not be objectionably difficult on a technical level. Speech-to-text and text-to-350


speech software both exist, but neither have been developed with a view specifically351


toward conveyance of emotional information. One could approach the problem of352
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504 29 Embodied Language Processing


assessing the emotional state of an utterance based on its sound as a supervised353


categorization problem, to be solved via supplying a machine learning algorithm with354


training data consisting of human-created pairs of the form (utterance, emotional355


valence). Similarly, one could tune the dependence of text-to-speech software for356


appropriate emotional expressiveness based on the same training corpus.357


29.4 Simple Experiments with Embodiment and Anaphor358


Resolution359


Now we turn to some fairly simple practical work that was done in 2008 with the360


OpenCog-based PetBrain software, involving the use of virtually embodied experi-361


ence to help with interpretation of linguistic utterances. This work has been super-362


seded somewhat by more recent work using OpenCog to control virtual agents; but363


the PetBrain work was especially clear and simple, so suitable in an expository sense364


for in-depth discussion here.365


One of the two ways the PetBrain related language processing to embodied expe-366


rience was via using the latter to resolve anaphoric references in text produced by367


human-controlled avatars.368


The PetBrain controlled agent lived in a world with many objects, each one with369


their own characteristics. For example, we could have multiple balls, with varying370


colors and sizes. We represent this in the OpenCog Atomspace via using multiple371


nodes: a single ConceptNode to represent the concept “ball”, a WordNode associated372


with the word “ball”, and numerous SemeNodes representing particular balls. There373


may of course also be ConceptNodes representing ball-related ideas not summarized374


in any natural language word, e.g. “big fat squishy balls,” “balls that can usefully be375


hit with a bat”, etc.376


As the agent interacts with the world, it acquires information about the objects377


it finds, through perceptions. The perceptions associated with a given object are378


stored as other nodes linked to the node representing the specific object instance. All379


this information is represented in the Atomspace using FrameNet-style relationships380


(exemplified in the next section).381


When the user says, e.g. “Grab the red ball”, the agent needs to figure out which382


specific ball the user is referring to—i.e. it needs to invoke the Reference Resolution383


(RR) process. RR uses the information in the sentence to select instances and also384


a few heuristic rules. Broadly speaking, Reference Resolution maps nouns in the385


user’s sentences to actual objects in the virtual world, based on world-knowledge386


obtained by the agent through perceptions.387


In this example, first the brain selects the ConceptNodes related to the word “ball”.388


Then it examines all individual instances associated with these concepts, using the389


determiners in the sentence along with other appropriate restrictions (in this example390


the determiner is the adjective “red”; and since the verb is “grab” it also looks for391
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29.4 Simple Experiments with Embodiment and Anaphor Resolution 505


objects that can be fetched). If it finds more than one “fetchable red ball”, a heuristic392


is used to select one (in this case, it chooses the nearest instance).393


The agent also needs to map pronouns in the sentences to actual objects in the394


virtual world. For example, if the user says “I like the red ball. Grab it.”, the agent395


must map the pronoun “it” to a specific red ball. This process is done in two stages:396


first using anaphor resolution to associate the pronoun “it” with the previously heard397


noun “ball”; then using reference resolution to associate the noun “ball” with the398


actual object.399


The subtlety of anaphor resolution is that there may be more than one plausi-400


ble “candidate” noun corresponding to a given pronouns. As noted above, at time401


writing RelEx’s anaphor resolution system is somewhat simplistic and is based on402


the classical Hobbs algorithm [Hob78]. Basically, when a pronoun (it, he, she, they403


and so on) is identified in a sentence, the Hobbs algorithm searches through recent404


sentences to find the nouns that fit this pronoun according to number, gender and405


other characteristics. The Hobbs algorithm is used to create a ranking of candidate406


nouns, ordered by time (most recently mentioned nouns come first).407


We improved the Hobbs algorithm results by using the agent’s world-knowledge408


to help choose the best candidate noun. Suppose the agent heard the sentences:409


"The ball is red."410


"The stick is brown."411


and then it receives a third sentence412


"Grab it.".413


The anaphor resolver will build a list containing two options for the pronoun “it”414


of the third sentence: ball and stick. Given that the stick corresponds to the most415


recently mentioned noun, the agent will grab it instead of (as Hobbs would suggest)416


the ball.417


Similarly, if the agent’s history contains418


"From here I can see as tree and a ball."419


"Grab it."420


Hobbs algorithm returns as candidate nouns “tree” and “ball”, in this order. But421


using our integrative Reference Resolution process, the agent will conclude that a422


tree cannot be grabbed, so this candidate is discarded and “ball” is chosen.423


29.5 Simple Experiments with Embodiment and Question424


Answering425


The PetBrain was also capable of answering simple questions about its feel-426


ings/emotions (happiness, fear, etc.) and about the environment in which it lives.427


After a question is asked to the agent, it is parsed by RelEx and classified as either428
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506 29 Embodied Language Processing


a truth question or a discursive one. After that, RelEx rewrites the given question as429


a list of Frames (based on FrameNet1 with some customizations), which represent430


its semantic content. The Frames version of the question is then processed by the431


agent and the answer is also written in Frames. The answer Frames are then sent432


to a module that converts it back to the RelEx format. Finally the answer, in RelEx433


format, is processed by the NLGen module, that generates the text of the answer434


in English. We will discuss this process here in the context of the simple question435


“What is next to the tree?”, which in an appropriate environment receives the answer436


“The red ball is next to the tree.”437


Question answering (QA) of course has a long history in AI [May04], and our438


approach fits squarely into the tradition of “deep semantic QA systems”; however it is439


innovative in its combination of dependency parsing with FrameNet and most impor-440


tantly in the manner of its integration of QA with an overall cognitive architecture441


for agent control.442


29.5.1 Preparing/Matching Frames443


In order to answer an incoming question, the agent tries to match the Frames list,444


created by RelEx, against the Frames stored in its own memory. In general these445


Frames could come from a variety of sources, including inference, concept creation446


and perception; but in the current PetBrain they primarily come from perception, and447


simple transformations of perceptions.448


However, the agent cannot use the incoming perceptual Frames in their origi-449


nal format because they lack grounding information (information that connects the450


mentioned elements to the real elements of the environment). So, two steps are then451


executed before trying to match the Frames: Reference Resolution (described above)452


and Frames Rewriting. Frames Rewriting is a process that changes the values of the453


incoming Frames elements into grounded values. Here is an example:454


Incoming Frame (Generated by RelEx)455


EvaluationLink456


DefinedFrameElementNode Color:Color457


WordInstanceNode ‘‘red@aaa’’458


EvaluationLink459


DefinedFrameElementNode Color:Entity460


WordInstanceNode ‘‘ball@bbb’’461


ReferenceLink462


WordInstanceNode ‘‘red@aaa’’463


WordNode ‘‘red’’464


1 http://framenet.icsi.berkeley.edu
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29.5 Simple Experiments with Embodiment and Question Answering 507


After Reference Resolution465


ReferenceLink466


WordInstanceNode ‘‘ball@bbb’’467


SemeNode ‘‘ball_99’’468


Grounded Frame (After Rewriting)469


EvaluationLink470


DefinedFrameElementNode Color:Color471


ConceptNode ‘‘red’’472


EvaluationLink473


DefinedFrameElementNode Color:Entity474


SemeNode ‘‘ball_99’’475


Frame Rewriting serves to convert the incoming Frames to the same structure476


used by the Frames stored into the agent’s memory. After Rewriting, the new Frames477


are then matched against the agent’s memory and if all Frames were found in it, the478


answer is known by the agent, otherwise it is unknown.479


In the PetBrain system, if a truth question was posed and all Frames were matched480


successfully, the answer would be be “yes”; otherwise the answer is “no”. Mapping481


of ambiguous matching results into ambiguous responses were not handled in the482


PetBrain.483


If the question requires a discursive answer the process is slightly different.484


For known answers the matched Frames are converted into RelEx format by485


Frames2RelEx and then sent to NLGen, which prepares the final English text to486


be answered. There are two types of unknown answers. The first one is when at487


least one Frame cannot be matched against the agent’s memory and the answer is “I488


don’t know”. And the second type of unknown answer occurs when all Frames were489


matched successfully but they cannot be correctly converted into RelEx format or490


NLGen cannot identify the incoming relations. In this case the answer is “I know the491


answer, but I don’t know how to say it”.492


29.5.2 Frames2RelEx493


As mentioned above, this module is responsible for receiving a list of grounded494


Frames and returning another list containing the relations, in RelEx format, which495


represents the grammatical form of the sentence described by the given Frames. That496


is, the Frames list represents a sentence that the agent wants to say to another agent.497


NLGen needs an input in RelEx Format in order to generate an English version of498


the sentence; Frames2RelEx does this conversion.499


Currently, Frames2RelEx is implemented as a rule-based system in which the500


preconditions are the required frames and the output is one or more RelEx relations501


e.g.502
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508 29 Embodied Language Processing


Fig. 29.1 Overview of current PetBrain language comprehension process


#Color(Entity,Color) =>503


present($2) .a($2) adj($2) _predadj($1, $2)504


definite($1) .n($1) noun($1) singular($1)505


.v(be) verb(be) punctuation(.) det(the)506


where the precondition comes before the symbol => and Color is a frame which has507


two elements: Entity and Color. Each element is interpreted as a variable Enti t y = $1508


and Color = $2. The effect, or output of the rule, is a list of RelEx relations. As509


in the case of RelEx2Frame, the use of hand-coded rules is considered a stopgap,510


and for a powerful AGI system based on this framework such rules will need to be511


learned via experience.512


29.5.3 Example of the Question Answering Pipeline513


Turning to the example “What is next to the tree?”, Fig. 29.1 illustrates the processes514


involved.515


The question is parsed by RelEx, which creates the frames indicating that the516


sentence is a question regarding a location reference (next) relative to an object517


(tree). The frame that represents questions is called Questioning and it contains the518


elements Manner that indicates the kind of question (truth-question, what, where,519


and so on), Message that indicates the main term of the question and Addressee520


that indicates the target of the question. To indicate that the question is related to521


a location, the Locative_relation frame is also created with a variable inserted in522
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29.5 Simple Experiments with Embodiment and Question Answering 509


its element Figure, which represents the expected answer (in this specific case, the523


object that is next to the tree).524


The question-answer module tries to match the question frames in the Atomspace525


to fit the variable element. Suppose that the object that is next to the tree is the red526


ball. In this way, the module will match all the frames requested and realize that the527


answer is the value of the element Figure of the frame Locative_relation stored in528


the Atom Table. Then, it creates location frames indicating the red ball as the answer.529


These frames will be converted into RelEx format by the RelEx2Frames rule based530


system as described above, and NLGen will generate the expected sentence “the red531


ball is next to the tree”.532


29.5.4 Example of the PetBrain Language Generation Pipeline533


To illustrate the process of language generation using NLGen, as utilized in the534


context of PetBrain query response, consider the sentence “The red ball is near the535


tree”. When parsed by RelEx, this sentence is converted to:536


_obj(near, tree)537


_subj(near, ball)538


imperative(near)539


hyp(near)540


definite(tree)541


singular(tree)542


_to-do(be, near)543


_subj(be, ball)544


present(be)545


definite(ball)546


singular(ball)547


So, if sentences with this format are in the system’s experience, these relations are548


stored by NLGen and will be used to match future relations that must be converted549


into natural language. NLGen matches at an abstract level, so sentences like “The550


stick is next to the fountain” will also be matched even if the corpus contain only the551


sentence “The ball is near the tree”.552


If the agent wants to say that “The red ball is near the tree”, it must invoke553


NLGen with the above RelEx contents as input. However, the knowledge that the554


red ball is near the tree is stored as frames, and not as RelEx format. More specifi-555


cally, in this case the related frame stored is the Locative_relation one, containing556


the following elements and respective values: Figure → red ball, Ground → tree,557


Relation_t ype → near.558


So we must convert these frames and their elements’ values into the RelEx format559


accept by NLGen. For AGI purposes, a system must learn how to perform this560


conversion in a flexible and context-appropriate way. In our current system, however,561
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510 29 Embodied Language Processing


we have implemented a temporary short-cut: a system of hand-coded rules, in which562


the preconditions are the required frames and the output is the corresponding RelEx563


format that will generate the sentence that represents the frames. The output of a564


rule may contains variables that must be replaced by the frame elements’ values.565


For the example above, the output _subj (be, ball) is generated from the rule output566


_subj (be, $var1) with the $var1 replaced by the Figure element value.567


Considering specifically question-answering (QA), the PetBrain’s Language568


Comprehension module represents the answer to a question as a list of frames. In569


this case, we may have the following situations:570


• The frames match a precondition and the RelEx output is correctly recognized by571


NLGen, which generates the expected sentence as the answer;572


• The frames match a precondition, but NLGen did not recognize the RelEx output573


generated. In this case, the answer will be “I know the answer, but I don’t know how574


to say it”, which means that the question was answered correctly by the Language575


Comphrehension, but the NLGen could not generate the correct sentence;576


• The frames didn’t match any precondition; then the answer will also be “I know577


the answer, but I don’t know how to say it”.578


• Finally, if no frames are generated as answer by the Language Comprehension579


module, the agent’s answer will be “I don’t know”.580


If the question is a truth-question, then NLGen is not required. In this case, the581


creation of frames as answer is considered as a “Yes”, otherwise, the answer will be582


“No” because it was not possible to find the corresponding frames as the answer.583


29.6 The Prospect of Massively Multiplayer Language Teaching584


Now we tie in the theme of embodied language learning with more general consid-585


erations regarding embodied experiential learning.586


Potentially, this may provide a means to facilitate robust language learning on the587


part of virtually embodied agents, and lead to an experientially-trained AGI language588


facility that can then be used to power other sorts of agents such as virtual babies,589


and ultimately virtual adult-human avatars that can communicate with experientially-590


grounded savvy rather than in the manner of chat-bots.591


As one concrete, evocative example, imagine millions of talking parrots spread592


across different online virtual worlds—all communicating in simple English. Each593


parrot has its own local memories, its own individual knowledge and habits and likes594


and dislikes—but there’s also a common knowledge-base underlying all the parrots,595


which includes a common knowledge of English.596


The interest of many humans in interacting with chatbots suggests that virtual597


talking parrots or similar devices would be likely to meet with a large and enthusiastic598


audience.599


Yes, humans interacting with parrots in virtual worlds can be expected to try to600


teach the parrots ridiculous things, obscene things, and so forth. But still, when it601
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29.6 The Prospect of Massively Multiplayer Language Teaching 511


comes down to it, even pranksters and jokesters will have more fun with a parrot that602


can communicate better, and will prefer a parrot whose statements are comprehen-603


sible.604


And for a virtual parrot, the test of whether it has used English correctly, in a given605


instance, will come down to whether its human friends have rewarded it, and whether606


it has gotten what it wanted. If a parrot asks for food incoherently, it’s less likely to607


get food—and since the virtual parrots will be programmed to want food, they will608


have motivation to learn to speak correctly. If a parrot interprets a human-controlled609


avatar’s request “Fetch my hat please” incorrectly, then it won’t get positive feedback610


from the avatar—and it will be programmed to want positive feedback.611


And of course parrots are not the end of the story. Once the collective wisdom of612


throngs of human teachers has induced powerful language understanding in the col-613


lective bird-brain, this language understanding (and the commonsense understanding614


coming along with it) will be useful for many, many other purposes as well. Humanoid615


avatars—both human-baby avatars that may serve as more rewarding virtual compan-616


ions than parrots or other virtual animals; and language-savvy human-adult avatars617


serving various useful and entertaining functions in online virtual worlds and games.618


Once AIs have learned enough that they can flexibly and adaptively explore online619


virtual worlds and gather information from human-controlled avatars according to620


their own goals using their linguistic facilities, it’s easy to envision dramatic accel-621


eration in their growth and understanding.622


A baby AI has numerous disadvantages compared to a baby human being: it lacks623


the intricate set of inductive biases built into the human brain, and it also lacks a624


set of teachers with a similar form and psyche to it…and for that matter, it lacks625


a really rich body and world. However, the presence of thousands to millions of626


teachers constitutes a large advantage for the AI over human babies. And a flexible627


AGI framework will be able to effectively exploit this advantage. If nonlinguistic628


learning mechanisms like the ones we’ve described here, utilized in a virtually-629


embodied context, can go beyond enabling interestingly trainable virtual animals630


and catalyze the process of language learning—then, within a few years time, we631


may find ourselves significantly further along the path to AGI than most observers632


of the field currently expect.633
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Chapter 30
Natural Language Dialogue


30.1 Introduction0


Language evolved for dialogue—not for reading, writing or speechifying. So it’s1


natural that dialogue is broadly considered a critical aspect of humanlike AGI—even2


to the extent that (for better or for worse) the conversational “Turing Test” is the3


standard test of human-level AGI.4 AQ1


Dialogue is a high-level functionality rather than a foundational cognitive process,5


and in the CogPrime approach it is something that must largely be learned via experi-6


ence rather than being programmed into the system. In that sense, it may seem odd to7


have a chapter on dialogue in a book section focused on engineering aspects of gen-8


eral intelligence. One might think: Dialogue is something that should emerge from an9


intelligent system in conjunction with other intelligent systems, not something that10


should need to be engineered. And this is certainly a reasonable perspective! We do11


think that, as a CogPrime system develops, it will develop its own approach to natural12


language dialogue, based on its own embodiment, environment and experience—with13


similarities and differences to human dialogue.14


However, we have also found it interesting to design a natural language dialogue15


system based on CogPrime, with the goal not of emulating human conversation, but16


rather of enabling interesting and intelligent conversational interaction with Cog-17


Prime systems. We call this system “ChatPrime” and will describe its architecture18


in this chapter. The components used in ChatPrime may also be useful for enabling19


CogPrime systems to carry out more humanlike conversation, via their incorpora-20


tion in learned schemata; but we will not focus on that aspect here. In addition to21


its intrinsic interest, consideration of ChatPrime sheds much light on the conceptual22


relationship between NLP and other aspects of CogPrime.23


We are very aware that there is an active subfield of computational linguistics24


focused on dialogue systems [Wah06, LDA05], however we will not draw signif-25


icantly on that literature here. Making practical dialogue systems in the absence26


of a generally functional cognitive engine is a subtle and difficult art, which has


B. Goertzel et al., Engineering General Intelligence, Part 2, 513
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_30,
© Atlantis Press and the authors 2014
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514 30 Natural Language Dialogue


been addressed in a variety of ways; however, we have found that designing a27


dialogue system within the context of an integrative cognitive engine like CogPrime28


is a somewhat different sort of endeavor.29


30.1.1 Two Phases of Dialogue System Development30


In practical terms, we envision the ChatPrime system as possessing two phases of31


development:32


1. Phase 1:33


• “Lower levels” of NL comprehension and generation executed by a relatively34


traditional approach incorporating statistical and rule-based aspects (the RelEx35


and NLGen systems)36


• Dialogue control utilizes hand-coded procedures and predicates (SpeechAct-37


Schema and SpeechActTriggers) corresponding to fine-grained types of speech38


act39


• Dialogue control guided by general cognitive control system (OpenPsi, run-40


ning within OpenCog)41


• SpeechActSchema and SpeechActTriggers, in some cases, will internally con-42


sult probabilistic inference, thus supplying a high degree of adaptive intelli-43


gence to the conversation44


2. Phase 2:45


• “Lower levels” of NL comprehension and generation carried out within pri-46


mary cognition engine, in a manner enabling their underlying rules and prob-47


abilities to be modified based the system’s experience. Concretely, one way48


this could be done in OpenCog would be via49


– Implementing the RelEx and RelEx2Frame rules as PLN implications in50


the Atomspace51


– Implementing parsing via expressing the link parser dictionary as Atoms in52


the Atomspace, and using the SAT link parser to do parsing as an example53


of logical unification (carried out by a MindAgent wrapping an SAT solver)54


– Implementing NLGen within the OpenCog core, via making NLGen’s sen-55


tence database a specially indexed Atomspace, and wrapping the NLGen56


operations in a MindAgent57


• Reimplement the SpeechActSchema and SpeechActTriggers in an appropriate58


combination of Combo and PLN logical link types, so they are susceptible to59


modification via inference and evolution60


It’s worth noting that the work required to move from Phase 1 to Phase 2 is essen-61


tially software development and computer science algorithm optimization work,62


rather than computational linguistics or AI theory. Then after the Phase 2 system is63


built there will, of course, be significant work involved in “tuning” PLN, MOSES64
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30.1 Introduction 515


and other cognitive algorithms to experientially adapt the various portions of the65


dialogue system that have been moved into the OpenCog core and refactored for66


adaptiveness.67


30.2 Speech Act Theory and its Elaboration68


We review here the very basics of speech act theory, and then the specific variant of69


speech act theory that we feel will be most useful for practical OpenCog dialogue70


system development.71


The core notion of speech act theory is to analyze linguistic behavior in terms of72


discrete speech acts aimed at achieving specific goals. This is a convenient theoretical73


approach in an OpenCog context, because it pushes us to treat speech acts just like74


any other acts that an OpenCog system may carry out in its world, and to handle75


speech acts via the standard OpenCog action selection mechanism.76


Searle, who originated speech act theory, divided speech acts according to the77


following (by now well known) ontology:78


• Assertives : The speaker commits herself to something being true. The sky is blue.79


• Directives: The speaker attempts to get the hearer to do something. Clean your80


room!81


• Commissives: The speaker commits to some future course of action. I will do it.82


• Expressives: The speaker expresses some psychological state. I’m sorry.83


• Declarations: The speaker brings about a different state of the world. The meeting84


is adjourned.85


Inspired by this ontology, Twitchell and Nunamaker (in their 2004 paper “Speech86


Act Profiling: A Probabilistic Method for Analyzing Persistent Conversations and87


Their Participants”) created a much more fine-grained ontology of 42 kinds of speech88


acts, called SWBD-DAMSL (DAMSL = Dialogue Act Markup in Several Layers).89


Nearly all of their 42 speech act types can be neatly mapped into one of Searle’s five90


high level categories, although a handful don’t fit Searle’s view and get categorized91


as “other”. Figures 30.1 and 30.2 depict the 42 acts and their relationship to Searle’s92


categories.93


30.3 Speech Act Schemata and Triggers94


In the suggested dialogue system design, multiple SpeechActSchema would be95


implemented, corresponding roughly to the 42 SWBD-DAMSL speech acts. The96


correspondence is “rough” because97


• We may wish to add new speech acts not in their list.98
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516 30 Natural Language Dialogue


Fig. 30.1 The 42 DAMSL speech act categories


Fig. 30.2 Connecting the 42 DAMSL speech act categories to Searle’s five higher-level categories
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30.3 Speech Act Schemata and Triggers 517


• Sometimes it may be most convenient to merge two or more of their speech acts into99


a single SpeechActSchema. For instance, it’s probably easiest to merge their YES100


ANSWER and NO ANSWER categories into a single TRUTH VALUE ANSWER101


schema, yielding affirmative, negative, and intermediate answers like “probably”,102


“probably not”, “I’m not sure”, etc.103


• Sometimes it may be best to split one of their speech acts into several, e.g. to sep-104


arately consider STATEMENTs which are responses to statements, versus state-105


ments that are unsolicited disbursements of “what’s on the agent’s mind”.106


Overall, the SWBD-DAMSL categories should be taken as guidance rather than107


doctrine. However, they are valuable guidance due to their roots in detailed analysis of108


real human conversations, and their role as a bridge between concrete conversational109


analysis and the abstractions of speech act theory.110


Each SpeechActSchema would take in an input consisting of a DialogueNode, a111


Node type possessing a collection of links to112


• A series of past statements by the agent and other conversation participants, with113


– each statement labeled according to the utterer114


– each statement uttered by the agent, labeled according to which SpeechAct-115


Schema was used to produce it, plus (see below) which SpeechActTrigger and116


which response generator was involved117


• A set of Atoms comprising the context of the dialogue. These Atoms may option-118


ally be linked to some of the Atoms representing some of the past statements. If119


they are not so linked, they are considered as general context.120


The enaction of SpeechActSchema would be carried out via PredictiveImplica-121


tionLinks embodying “Context AND Schema → Goal” schematic implications, of122


the general form123


PredictiveImplication124


AND125


Evaluation126


SpeechActTrigger T127


DialogueNode D128


Execution129


SpeechActSchema S130


DialogueNode D131


Evaluation132


Evaluation133


Goal G134


with135


ExecutionOutput136


SpeechActSchema S137


DialogueNode D138


UtteranceNode U139
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518 30 Natural Language Dialogue


being created as a result of the enaction of the SpeechActSchema. (An UtteranceNode140


is a series of one or more SentenceNodes.)141


A single SpeechActSchema may be involved in many such implications, with142


different probabilistic weights, if it naturally has many different Trigger contexts.143


Internally each SpeechActSchema would contain a set of one or more response144


generators, each one of which is capable of independently producing a response145


based on the given input. These may also be weighted, where the weight determines146


the probability of a given response generation process being chosen in preference147


to the others, once the choice to enact that particular SpeechActSchema has already148


been made.149


30.3.1 Notes Toward Example SpeechActSchema150


To make the above ideas more concrete, let’s consider a few specific SpeechAct-151


Schema. We won’t fully specify them here, but will outline them sufficiently to152


make the ideas clear.153


30.3.1.1 TruthValueAnswer154


The TruthValueAnswer SpeechActSchema would encompass SWBD-DAMSL’s155


YES ANSWER and NO ANSWER, and also more flexible truth value based156


responses.157


Trigger context when the conversation partner produces an utterance that RelEx158


maps into a truth-value query (this is simple as truth-value-query is one of RelEx’s159


relationship types).160


Goal the simplest goal relevant here is pleasing the conversation partner, since the161


agent may have noticed in the past that other agents are pleased when their questions162


are answers. (More advanced agents may of course have other goals for answering163


questions, e.g. providing the other agent with information that will let it be more164


useful in future).165


Response generation schema for starters, this SpeechActSchema could simply oper-166


ate as follows. It takes the relationship (Atom) corresponding to the query, and uses167


it to launch a query to the pattern matcher or PLN backward chainer. Then based on168


the result, it produces a relationship (Atom) embodying the answer to the query, or169


else updates the truth value of the existing relationship corresponding to the answer170


to the query. This “answer” relationship has a certain truth value. The schema could171


then contain a set of rules mapping the truth values into responses, with a list of172


possible responses for each truth value range. For example a very high strength and173


high confidence truth value would be mapped into a set of responses like {definitely,174


certainly, surely, yes, indeed}.175


This simple case exemplifies the overall Phase 1 approach suggested here. The176


conversation will be guided by fairly simple heuristic rules, but with linguistic sophis-177
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30.3 Speech Act Schemata and Triggers 519


tication in the comprehension and generation aspects, and potentially subtle inference178


invoked within the SpeechActSchema or (less frequently) the Trigger contexts. Then179


in Phase 2 these simple heuristic rules will be refactored in a manner rendering them180


susceptible to experiential adaptation.181


30.3.1.2 Statement: Answer182


The next few SpeechActSchema (plus maybe some similar ones not given here)183


are intended to collectively cover the ground of SWBD-DAMSL’s STATEMENT184


OPINION and STATEMENT NON-OPINION acts.185


Trigger context The trigger is that the conversation partner asks a wh-question.186


Goal Similar to the case of a TruthValueAnswer, discussed above.187


Response generation schema When a wh-question is received, one reasonable188


response is to produce a statement comprising an answer. The question Atom is189


posed to the pattern matcher or PLN, which responds with an Atom-set comprising190


a putative answer. The answer Atoms are then pared down into a series of sentence-191


sized Atom-sets, which are articulated as sentences by NLGen. If the answer Atoms192


have very low-confidence truth values, or if the Atomspace contains knowledge that193


other agents significantly disagree with the agent’s truth value assessments, then the194


answer Atom-set may have Atoms corresponding to “I think” or “In my opinion”195


etc. added onto it (this gives an instance of the STATEMENT NON-OPINION act).196


30.3.1.3 Statement: Unsolicited Observation197


Trigger context when in the presence of another intelligent agent (human or AI) and198


nothing has been said for a while, there is a certain probability of choosing to make199


a “random” statement.200


Goal 1 Unsolicited observations may be made with a goal of pleasing the other agent,201


as it may have been observed in the past that other agents are happier when spoken202


to.203


Goal 2 Unsolicited observations may be made with goals of increasing the agent’s204


own pleasure or novelty or knowledge—because it may have been observed that205


speaking often triggers conversations, and conversations are often more pleasurable206


or novel or educational than silence.207


Response generation schema: One option is a statement describing something in the208


mutual environment, another option is a statement derived from high-STI Atoms in209


the agent’s Atomspace. The particulars are similar to the “Statement: Answer” case.210
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520 30 Natural Language Dialogue


30.3.1.4 Statement: External Change Notification211


Trigger context when in a situation with another intelligent agent, and something212


significant changes in the mutually perceived situation, a statement describing it213


may be made.214


Goal 1 External change notification utterances may be made for the same reasons as215


Unsolicited Observations, described above.216


Goal 2 The agent may think a certain external change is important to the other agent217


it is talking to, for some particular reason. For instance, if the agent sees a dog steal218


Bob’s property, it may wish to tell Bob about this.219


Goal 3 The change may be important to the agent itself—and it may want its conver-220


sation partner to do something relevant to an observed external change ... so it may221


bring the change to the partner’s attention for this reason. For instance, “Our friends222


are leaving. Please try to make them come back”.223


Response generation schema The Atom-set for expression characterizes the change224


observed. The particulars are similar to the “Statement: Answer” case.225


30.3.1.5 Statement: Internal Change Notification226


Trigger context 1 when the importance level of an Atom increases dramatically while227


in the presence of another intelligent agent, a statement expressing this Atom (and228


some of its currently relevant surrounding Atoms) may be made.229


Trigger context 2 when the truth value of a reasonably important Atom changes230


dramatically while in the presence of another intelligent agent, a statement expressing231


this Atom and its truth value may be made.232


Goal Similar goals apply here as to External Change Notification, considered above.233


Response generation schema Similar to the “Statement: External Change Notifica-234


tion” case.235


30.3.1.6 WHQuestion236


Trigger context being in the presence of an intelligent agent thought capable of237


answering questions.238


Goal 1 the general goal of increasing the agent’s total knowledge.239


Goal 2 the agent notes that, to achieve one of its currently important goals, it would240


be useful to possess a Atom fulfilling a certain specification.241


Response generation schema: Formulate a query whose answer would be an Atom242


fulfilling that specification, and then articulate this logical query as an English ques-243


tion using NLGen.244
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30.4 Probabilistic Mining of Trigger Contexts 521


30.4 Probabilistic Mining of Trigger Contexts245


One question raised by the above design sketch is where the Trigger contexts come246


from. They may be hand-coded, but this approach may suffer from excessive brittle-247


ness. The approach suggested by Twitchell and Nunamaker’s work (which involved248


modeling human dialogues rather than automatically generating intelligent dia-249


logues) is statistical. That is, they suggest marking up a corpus of human dialogues250


with tags corresponding to the 42 speech acts, and learning from this annotated cor-251


pus a set of Markov transition probabilities indicating which speech acts are most252


likely to follow which others. In their approach the transition probabilities refer only253


to series of speech acts.254


In an OpenCog context one could utilize a more sophisticated training corpus in a255


more sophisticated way. For instance, suppose one wants to build a dialogue system256


for a game character conversing with human characters in a game world. Then one257


could conduct experiments in which one human controls a “human” game character,258


and another human puppeteers an “AI” game character. That is, the puppeteered char-259


acter funnels its perceptions to the AI system, but has its actions and verbalizations260


controlled by the human puppeteer. Given the dialogue from this sort of session, one261


could then perform markup according to the 42 speech acts.262


As a simple example, consider the following brief snippet of annotated263


conversation:


Speaker Utterance Speech act type


Ben Go get me the ball ad
AI Where is it? qw
Ben Over there [points] sd
AI By the table? qy
Ben Yeah ny
AI Thanks ft
AI I’ll get it now. commits


264


A DialogueNode object based on this snippet would contain the information in the265


table, plus some physical information about the situation, such as, in this case: predi-266


cates describing the relative locations of the two agents, the ball an the table (e.g. the267


two agents are very near each other, the ball and the table are very near each other,268


but these two groups of entities are only moderately near each other); and, predicates269


involving270


Then, one could train a machine learning algorithm such as MOSES to predict the271


probability of speech act type S1 occurring at a certain point in a dialogue history,272


based on the prior history of the dialogue. This prior history could include percepts273


and cognitions as well as utterances, since one has a record of the AI system’s274


perceptions and cognitions in the course of the marked-up dialogue.275


One question is whether to use the 42 SWBD-DAMSL speech acts for the creation276


of the annotated corpus, or whether instead to use the modified set of speech acts277
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522 30 Natural Language Dialogue


created in designing SpeechActSchema. Either way could work, but we are mildly278


biased toward the former, since this specific SWBD-DAMSL markup scheme has279


already proved its viability for marking up conversations. It seems unproblematic to280


map probabilities corresponding to these speech acts into probabilities corresponding281


to a slightly refined set of speech acts. Also, this way the corpus would be valuable282


independently of ongoing low-level changes in the collection of SpeechActSchema.283


In addition to this sort of supervised training in advance, it will be important284


to enable the system to learn Trigger contexts online as a consequence of its life285


experience. This learning may take two forms:286


1. Most simply, adjustment of the probabilities associated with the PredictiveImpli-287


cationLinks between SpeechActTriggers and SpeechActSchema.288


2. More sophisticatedly, learning of new SpeechActTrigger predicates, using an289


algorithm such as MOSES for predicate learning, based on mining the history of290


actual dialogues to estimate fitness.291


In both cases the basis for learning is information regarding the extent to which292


system goals were fulfilled by each past dialogue. PredictiveImplications that corre-293


spond to portions of successful dialogues will be have their truth values increased,294


and those corresponding to portions of unsuccessful dialogues will have their truth295


values decreased. Candidate SpeechActTriggers will be valued based on the observed296


historical success of the responses they would have generated based on historically297


perceived utterances; and (ultimately) more sophisticatedly, based on the estimated298


success of the responses they generate. Note that, while somewhat advanced, this299


kind of learning is much easier than the procedure learning required to learn new300


SpeechActSchema.301


30.5 Conclusion302


While the underlying methods are simple, the above methods appear capable of303


producing arbitrarily complex dialogues about any subject that is represented by304


knowledge in the AtomSpace. There is no reason why dialogue produced in this305


manner should be indistinguishable from human dialogue; but it may nevertheless306


be humanly comprehensible, intelligent and insightful. What is happening in this sort307


of dialogue system is somewhat similar to current natural language query systems308


that query relational databases, but the “database” in question is a dynamically self-309


adapting weighted labeled hypergraph rather than a static relational database, and310


this difference means a much more complex dialogue system is required, as well as311


more flexible language comprehension and generation components.312


Ultimately, a CogPrime system—if it works as desired—will be able to learn313


increased linguistic functionality, and new languages, on its own. But this is not a314


prerequisite for having intelligent dialogues with a CogPrime system. Via building315


a ChatPrime type system, as outlined here, intelligent dialogue can occur with a316


CogPrime system while it is still at relatively early stages of cognitive development,317
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30.5 Conclusion 523


and even while the underlying implementation of the CogPrime design is incomplete.318


This is not closely analogous to human cognitive and linguistic development, but, it319


can still be pursued in the context of a CogPrime development plan that follows the320


overall arc of human developmental psychology.321
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Chapter 31
Summary of Argument for the CogPrime
Approach


31.1 Introduction0


By way of conclusion, we now return to the “key claims” that were listed at the1


end of Chap. 3 of Vol. 5. Quite simply, this is a list of claims such that—roughly2


speaking—if the reader accepts these claims, they should accept that the CogPrime3


approach to AGI is a viable one. On the other hand if the reader rejects one or more4


of these claims, they may well find one or more aspects of CogPrime unacceptable5


for some related reason. In Chap. 3 of Vol. 5 we merely listed these claims; here we6


briefly discuss each one in the context of the intervening chapters, giving each one7


its own section or subsection.8


As we clarified at the start of Vol. 5, we don’t fancy that we have provided an9


ironclad argument that the CogPrime approach to AGI is guaranteed to work as10


hoped, once it’s fully engineered, tuned and taught. Mathematics isn’t yet adequate11


to analyze the real-world behavior of complex systems like these; and we have12


not yet implemented, tested and taught enough of CogPrime to provide convincing13


empirical validation. So, most of the claims listed here have not been rigorously14


demonstrated, but only heuristically argued for. That is the reality of AGI work right15


now: one assembles a design based on the best combination of rigorous and heuristic16


arguments one can, then proceeds to create and teach a system according to the17


design, adjusting the details of the design based on experimental results as one goes18


along.For an uncluttered list of the claims, please refer back to Chap. 3 of Vol. 5; here19


we will review the claims integrated into the course of discussion.20


The following chapter, aimed at the more mathematically-minded reader, gives a21


list of formal propositions echoing many of the ideas in the chapter—propositions22


such that, if they are true, then the success of CogPrime as an architecture for general23


intelligence is likely.24 AQ1


B. Goertzel et al., Engineering General Intelligence, Part 2, 527
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_31,
© Atlantis Press and the authors 2014
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528 31 Summary of Argument for the CogPrime Approach


31.2 Multi-Memory Systems25


The first of our key claims is that to achieve general intelligence in the context of26


human-intelligence-friendly environments and goals using feasible computational27


resources, it’s important that an AGI system can handle different kinds of memory28


(declarative, procedural, episodic, sensory, intentional, attentional) in customized29


but interoperable ways. The basic idea is that these different kinds of knowledge30


have very different characteristics, so that trying to handle them all within a single31


approach, while surely possible, is likely to be unacceptably inefficient.32


The tricky issue in formalizing this claim is that “single approach” is an ambiguous33


notion: for instance, if one has a wholly logic-based system that represents all forms of34


knowledge using predicate logic, then one may still have specialized inference control35


heuristics corresponding to the different kinds of knowledge mentioned in the claim.36


In this case one has “customized but interoperable ways” of handling the different37


kinds of memory, and one doesn’t really have a “single approach” even though38


one is using logic for everything. To bypass such conceptual difficulties, one may39


formalize cognitive synergy using a geometric framework as discussed in Appendix40


B, in which different types of knowledge are represented as metrized categories,41


and cognitive synergy becomes a statement about paths to goals being shorter in42


metric spaces combining multiple knowledge types than in those corresponding to43


individual knowledge types.44


In CogPrime we use a complex combination of representations, including the45


Atomspace for declarative, attentional and intentional knowledge and some episodic46


and sensorimotor knowledge, Combo programs for procedural knowledge, simula-47


tions for episodic knowledge, and hierarchical neural nets for some sensorimotor48


knowledge (and related episodic, attentional and intentional knowledge). In cases49


where the same representational mechanism is used for different types of knowl-50


edge, different cognitive processes are used, and often different aspects of the rep-51


resentation (e.g. attentional knowledge is dealt with largely by ECAN acting on52


AttentionValues and HebbianLinks in the Atomspace; whereas declarative knowl-53


edge is dealt with largely by PLN acting on TruthValues and logical links, also in the54


AtomSpace). So one has a mix of the “different representations for different memory55


types” approach and the “different control processes on a common representation56


for different memory types” approach.57


It’s unclear how closely dependent the need for a multi-memory approach is on58


the particulars of “human-friendly environments.” We argued in Chap. 9 of Vol. 559


that one factor militating in favor of a multi-memory approach is the need for multi-60


modal communication: declarative knowledge relates to linguistic communication;61


procedural knowledge relates to demonstrative communication; attentional knowl-62


edge relates to indicative communication; and so forth. But in fact the multi-memory63


approach may have a broader importance, even to intelligences without multimodal64


communication. This is an interesting issue but not particularly critical to the devel-65


opment of human-like, human-level AGI, since in the latter case we are specifically66


concerned with creating intelligences that can handle multimodal communication.67
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31.2 Multi-Memory Systems 529


So if for no other reason, the multi-memory approach is worthwhile for handling68


multi-modal communication.69


Pragmatically, it is also quite clear that the human brain takes a multi-memory70


approach, e.g. with the cerebellum and closely linked cortical regions containing71


special structures for handling procedural knowledge, with special structures for han-72


dling motivational (intentional) factors, etc. And (though this point is certainly not73


definitive, it’s meaningful in the light of the above theoretical discussion) decades74


of computer science and narrow-AI practice strongly suggest that the “one mem-75


ory structure fits all” approach is not capable of leading to effective real-world76


approaches.77


31.3 Perception, Action and Environment78


The more we understand of human intelligence, the clearer it becomes how closely it79


has evolved to the particular goals and environments for which the human organism80


evolved. This is true in a broad sense, as illustrated by the above issues regarding81


multi-memory systems, and is also true in many particulars, as illustrated e.g. by82


Changizi’s [Cha09] evolutionary analysis of the human visual system. While it might83


be possible to create a human-like, human-level AGI by abstracting the relevant84


biases from human biology and behavior and explicitly encoding them in one’s AGI85


architecture, it seems this would be an inordinately difficult approach in practice,86


leading to the claim that to achieve human-like general intelligence, it’s important87


for an intelligent agent to have sensory data and motoric affordances that roughly88


emulate those available to humans. We don’t claim this is a necessity—just a dramatic89


convenience. And if one accepts this point, it has major implications for what sorts90


of paths toward AGI it makes most sense to follow.91


Unfortunately, though, the idea of a “human-like” set of goals and environments92


is fairly vague; and when you come right down to it, we don’t know exactly how93


close the emulation needs to be to form a natural scenario for the maturation of94


human-like, human-level AGI systems. One could attempt to resolve this issue via a95


priori theory, but given the current level of scientific knowledge it’s hard to see how96


that would be possible in any definitive sense... which leads to the conclusion that97


our AGI systems and platforms need to support fairly flexible experimentation with98


virtual-world and/or robotic infrastructures.99


Our own intuition is that currently neither current virtual world platforms, nor100


current robotic platforms, are quite adequate for the development of human-level,101


human-like AGI. Virtual worlds would need to become a lot more like robot simu-102


lators, allowing more flexible interaction with the environment, and more detailed103


control of the agent. Robots would need to become more robust at moving and104


grabbing—e.g. with Big Dog’s movement ability but the grasping capability of the105


best current grabber arms. We do feel that development of adequate virtual world or106


robotics platforms is quite possible using current technology, and could be done at107


fairly low cost if someone were to prioritize this. Even without AGI-focused prior-108


itization, it seems that the needed technological improvements are likely to happen109


319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


530 31 Summary of Argument for the CogPrime Approach


during the next decade for other reasons. So at this point we feel it makes sense for110


AGI researchers to focus on AGI and exploit embodiment-platform improvements111


as they come along—at least, this makes sense in the case of AGI approaches (like112


CogPrime ) that can be primarily developed in an embodiment-platform-independent113


manner.114


31.4 Developmental Pathways115


But if an AGI system is going to live in human-friendly environments, what should it116


do there? No doubt very many pathways leading from incompetence to adult-human-117


level general intelligence exist, but one of them is much better understood than any118


of the others, and that’s the one normal human children take. Of course, given their119


somewhat different embodiment, it doesn’t make sense to try to force AGI systems120


to take exactly the same path as human children, but having AGI systems follow a121


fairly close approximation to the human developmental path seems the smoothest122


developmental course... a point summarized by the claim that: To work toward adult123


human-level, roughly human-like general intelligence, one fairly easily comprehen-124


sible path is to use environments and goals reminiscent of human childhood, and125


seek to advance one’s AGI system along a path roughly comparable to that followed126


by human children.127


Human children learn via a rich variety of mechanisms; but broadly speaking one128


conclusion one may drawn from studying human child learning is that it may make129


sense to teach an AGI system aimed at roughly human-like general intelligence via130


a mix of spontaneous learning and explicit instruction, and to instruct it via a com-131


bination of imitation, reinforcement and correction, and a combination of linguistic132


and nonlinguistic instruction. We have explored exactly what this means in Chap. 13133


and others, via looking at examples of these types of learning in the context of virtual134


pets in virtual worlds, and exploring how specific CogPrime learning mechanisms135


can be used to achieve simple examples of these types of learning.136


One important case of learning that human children are particularly good at is137


language learning; and we have argued that this is a case where it may pay for AGI138


systems to take a route somewhat different from the one taken by human children.139


Humans seem to be born with a complex system of biases enabling effective language140


learning, and it’s not yet clear exactly what these biases are nor how they’re incorpo-141


rated into the learning process. It is very tempting to give AGI systems a “short cut”142


to language proficiency via making use of existing rule-based and statistical-corpus-143


analysis-based NLP systems; and we have fleshed out this approach sufficiently to144


have convinced ourselves it makes practical as well as conceptual sense, in the con-145


text of the specific learning mechanisms and NLP tools built into OpenCog. Thus146


we have provided a number of detailed arguments and suggestions in support of147


our claim that one effective approach to teaching an AGI system human language148


is to supply it with some in-built linguistic facility, in the form of rule-based and149


statistical-linguistics-based NLP systems, and then allow it to improve and revise150


this facility based on experience.151


319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030_13





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


31.5 Knowledge Representation 531


31.5 Knowledge Representation152


Many knowledge representation approaches have been explored in the AI literature,153


and ultimately many of these could be workable for human-level AGI if coupled154


with the right cognitive processes. The key goal for a knowledge representation155


for AGI should be naturalness with respect to the AGI’s cognitive processes—i.e.156


the cognitive processes shouldn’t need to undergo complex transformative gym-157


nastics to get information in and out of the knowledge representation in order to158


do their cognitive work. Toward this end we have come to a similar conclusion to159


some other researchers (e.g. Joscha Bach and Stan Franklin), and concluded that160


given the strengths and weaknesses of current and near-future digital computers,161


a (loosely) neural-symbolic network is a good representation for directly storing162


many kinds of memory, and interfacing between those that it doesn’t store directly.163


CogPrime’s AtomSpace is a neural-symbolic network designed to work nicely with164


PLN, MOSES, ECAN and the other key CogPrime cognitive processes; it supplies165


them with what they need without causing them undue complexities. It provides166


a platform that these cognitive processes can use to adaptively, automatically con-167


struct specialized knowledge representations for particular sorts of knowledge that168


they encounter.169


31.6 Cognitive Processes170


The crux of intelligence is dynamics, learning, adaptation; and so the crux of an AGI171


design is the set of cognitive processes that the design provides. These processes must172


collectively allow the AGI system to achieve its goals in its environments using the173


resources at hand. Given CogPrime’s multi-memory design, it’s natural to consider174


CogPrime’s cognitive processes in terms of which memory subsystems they focus175


on (although, this is not a perfect mode of analysis, since some of the cognitive176


processes span multiple memory types).177


31.6.1 Uncertain Logic for Declarative Knowledge178


One major decision made in the creation of CogPrime was that given the strengths and179


weaknesses of current and near-future digital computers, uncertain logic is a good180


way to handle declarative knowledge. Of course this is not obvious nor is it the only181


possible route. Declarative knowledge can potentially be handled in other ways; e.g.182


in a hierarchical network architecture, one can make declarative knowledge emerge183


automatically from procedural and sensorimotor knowledge, as is the goal in the184


Numenta and DeSTIN designs reviewed in Chap. 5 of Vol. 5. It seems clear that the185


human brain doesn’t contain anything closely parallel to formal logic—even though186
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532 31 Summary of Argument for the CogPrime Approach


one can ground logic operations in neural-net dynamics as explored in Chap. 16 this187


sort of grounding leads to “uncertain logic enmeshed with a host of other cognitive188


dynamics” rather than “uncertain logic as a cleanly separable cognitive process.”189


But contemporary digital computers are not brains—they lack the human brain’s190


capacity for cheap massive parallelism, but have a capability for single-operation191


speed and precision far exceeding the brain’s. In this way computers and formal192


logic are a natural match (a fact that’s not surprising given that Boolean logic lies193


at the foundation of digital computer operations). Using uncertain logic is a sort of194


compromise between brainlike messiness and fuzziness, and computerlike precision.195


An alternative to using uncertain logic is using crisp logic and incorporating uncer-196


tainty as content within the knowledge base—this is what SOAR does, for example,197


and it’s not a wholly unworkable approach. But given that the vast mass of knowl-198


edge needed for confronting everyday human reality is highly uncertain, and that199


this knowledge often needs to be manipulated efficiently in real-time, it seems to us200


there is a strong argument for embedding uncertainty in the logic.201


Many approaches to uncertain logic exist in the literature, including probabilistic202


and fuzzy approaches, and one conclusion we reached in formulating CogPrime is203


that none of them was adequate on its own—leading us, for example, to the conclusion204


that to deal with the problems facing a human-level AGI, an uncertain logic must205


integrate imprecise probability and fuzziness with a broad scope of logical constructs.206


The arguments that both fuzziness and probability are needed seem hard to counter—207


these two notions of uncertainty are qualitatively different yet both appear cognitively208


necessary.209


The argument for using probability in an AGI system is assailed by some AGI210


researchers such as Pei Wang, but we are swayed by the theoretical arguments in favor211


of probability theory’s mathematically fundamental nature, as well as the massive212


demonstrated success of probability theory in various areas of narrow AI and applied213


science. However, we are also swayed by the arguments of Pei Wang, Peter Walley214


and others that using single-number probabilities to represent truth values leads to215


untoward complexities related to the tabulation and manipulation of amounts of evi-216


dence. This has led us to an imprecise probability based approach; and then technical217


arguments regarding the limitations of standard imprecise probability formalisms has218


led us to develop our own “indefinite probabilities” formalism.219


The PLN logic framework is one way of integrating imprecise probability and220


fuzziness in a logical formalism that encompasses a broad scope of logical constructs.221


It integrates term logic and predicate logic—a feature that we consider not necessary,222


but very convenient, for AGI. Either predicate or term logic on its own would suffice,223


but each is awkward in certain cases, and integrating them as done in PLN seems to224


result in more elegant handling of real-world inference scenarios. Finally, PLN also225


integrates intensional inference in an elegant manner that demonstrates integrative226


intelligence—it defines intension using pattern theory, which binds inference to pat-227


tern recognition and hence to other cognitive processes in a conceptually appropriate228


way.229


Clearly PLN is not the only possible logical formalism capable of serving a human-230


level AGI system; however, we know of no other existing, fleshed-out formalism231
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31.6 Cognitive Processes 533


capable of fitting the bill. In part this is because PLN has been developed as part of an232


integrative AGI project whereas other logical formalisms have mainly been developed233


for other purposes, or purely theoretically. Via using PLN to control virtual agents,234


and integrating PLN with other cognitive processes, we have tweaked and expanded235


the PLN formalism to serve all the roles required of the “declarative cognition”236


component of an AGI system with reasonable elegance and effectiveness.237


31.6.2 Program Learning for Procedural Knowledge238


Even more so than declarative knowledge, procedural knowledge is represented in239


many different ways in the AI literature. The human brain also apparently uses240


multiple mechanisms to embody different kinds of procedures. So the choice of241


how to represent procedures in an AGI system is not particularly obvious. However,242


there is one particular representation of procedures that is particularly well-suited for243


current computer systems, and particularly well-tested in this context: programs. In244


designing CogPrime, we have acted based on the understanding that programs are245


a good way to represent procedures—including both cognitive and physical-action246


procedures, but perhaps not including low-level motor-control procedures.247


Of course, this begs the question of programs in what programming language,248


and in this context we have made a fairly traditional choice, using a special language249


called Combo that is essentially a minor variant of LISP, and supplying Combo with250


a set of customized primitives intended to reduce the length of the typical programs251


CogPrime needs to learn and use. What differentiates this use of LISP from many252


traditional uses of LISP in AI is that we are only using the LISP-ish representational253


style for procedural knowledge, rather than trying to use it for everything.254


One test of whether the use of Combo programs to represent procedural knowl-255


edge makes sense is whether the procedures useful for a CogPrime system in every-256


day human environments have short Combo representations. We have worked with257


Combo enough to validate that they generally do in the virtual world environment—258


and also in the physical-world environment if lower-level motor procedures are sup-259


plied as primitives. That is, we are not convinced that Combo is a good representation260


for the procedure a robot needs to do to move its fingers to pick up a cup, coordinating261


its movements with its visual perceptions. It’s certainly possible to represent this sort262


of thing in Combo, but Combo may be an awkward tool. However, if one represents263


low-level procedures like this using another method, e.g. learned cell assemblies in a264


hierarchical network like DeSTIN, then it’s very feasible to make Combo programs265


that invoke these low-level procedures, and encode higher-level actions like “pick up266


the cup in front of you slowly and quietly, then hand it to Jim who is standing next267


to you”.268


Having committed to use programs to represent many procedures,the next ques-269


tion is how to learn programs. One key conclusion we have come to via our empirical270


work in this area is that some form of powerful program normalization is essential.271


Without normalization, it’s too hard for existing learning algorithms to generalize272
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from known, tested programs and draw useful uncertain conclusions about untested273


ones. We have worked extensively with a generalization of Holman’s “Elegant Nor-274


mal Form” in this regard.275


For learning normalized programs, we have come to the following conclusions:276


• For relatively straightforward procedure learning problems, hillclimbing with ran-277


dom restart and a strong Occam bias is an effective method278


• For more difficult problems that elude hillclimbing, probabilistic evolutionary279


program learning is an effective method.280


The probabilistic evolutionary program learning method we have worked with most281


in OpenCog is MOSES, and significant evidence has been gathered showing it to be282


dramatically more effective than genetic programming on relevant classes of prob-283


lems. However, more work needs to be done to evaluate its progress on complex and284


difficult procedure learning problems. Alternate, related probabilistic evolutionary285


program learning algorithms such as PLEASURE have also been considered and286


may be implemented and tested as well.287


31.6.3 Attention Allocation288


There is significant evidence that the brain uses some sort of “activation spread-289


ing” type method to allocate attention, and many algorithms in this spirit have been290


implemented and utilized in the AI literature. So, we find ourselves in agreement291


with many others that activation spreading is a reasonable way to handle attentional292


knowledge (though other approaches, with greater overhead cost, may provide bet-293


ter accuracy and may be appropriate in some situations). We also agree with many294


others who have chosen Hebbian learning as one route of learning associative295


relationships, with more sophisticated methods such as information-geometric ones296


potentially also playing a role.297


Where CogPrime differs from standard practice is in the use of an economic298


metaphor to regulate activation spreading. In this matter CogPrime is broadly in299


agreement with Eric Baum’s arguments about the value of economic methods in AI,300


although our specific use of economic methods is very different from his. Baum’s301


work (e.g. Hayek [Bau04]) embodies more complex and computationally expen-302


sive uses of artificial economics, whereas we believe that in the context of a neural-303


symbolic network, artificial economics is an effective approach to activation spread-304


ing; and CogPrime’s ECAN framework seeks to embody this idea. ECAN can also305


make use of more sophisticated and expensive uses of artificial currency when large306


amount of system resources are involved in a single choice, rendering the cost appro-307


priate.308


One major choice made in the CogPrime design is to focus on two kinds of atten-309


tion: processor (represented by ShortTermImportance) and memory (represented310


by LongTermImportance). This is a direct reflection of one of the key differences311


between the von Neumann architecture and the human brain: in the former but not312
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31.6 Cognitive Processes 535


the latter, there is a strict separation between memory and processing in the underly-313


ing compute fabric. We carefully considered the possibility of using a larger variety314


of attention values, and in Chap. 5 we presented some mathematics and concepts that315


could be used in this regard, but for reasons of simplicity and computational efficiency316


we are currently using only STI and LTI in our OpenCogPrime implementation, with317


the possibility of extending further if experimentation proves it necessary.318


31.6.4 Internal Simulation and Episodic Knowledge319


For episodic knowledge, as with declarative and procedural knowledge, CogPrime320


has opted for a solution motivated by the particular strengths of contemporary digital321


computers. When the human brain runs through a “mental movie” of past experiences,322


it doesn’t do any kind of accurate physical simulation of these experiences. But that’s323


not because the brain wouldn’t benefit from such—it’s because the brain doesn’t know324


how to do that sort of thing! On the other hand, any modern laptop can run a reasonable325


Newtonian physics simulation of everyday events, and more fundamentally can recall326


and manage the relative positions and movements of items in an internal 3D landscape327


paralleling remembered or imagined real-world events. With this in mind, we believe328


that in an AGI context, simulation is a good way to handle episodic knowledge;329


and running an internal “world simulation engine” is an effective way to handle330


simulation.331


CogPrime can work with many different simulation engines; and since simulation332


technology is continually advancing independently of AGI technology, this is an area333


where AGI can buy some progressive advancement for free as time goes on. The334


subtle issues here regard interfacing between the simulation engine and the rest of335


the mind: mining meaningful information out of simulations using pattern mining336


algorithms; and more subtly, figuring out what simulations to run at what times in337


order to answer the questions most relevant to the AGI system in the context of338


achieving its goals. We believe we have architected these interactions in a viable339


way in the CogPrime design, but we have tested our ideas in this regard only in340


some fairly simple contexts regarding virtual pets in a virtual world, and much more341


remains to be done here.342


31.6.5 Low-Level Perception and Action343


The centrality or otherwise of low-level perception and action in human intelligence344


is a matter of ongoing debate in the AI community. Some feel that the essence of345


intelligence lies in cognition and/or language, with perception and action having346


the status of “peripheral devices.” Others feel that modeling the physical world and347


one’s actions in it is the essence of intelligence, with cognition and language emerging348


as side-effects of these more fundamental capabilities. The CogPrime architecture349


319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030_5





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F
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doesn’t need to take sides in this debate. Currently we are experimenting both in350


virtual worlds, and with real-world robot control. The value added by robotic versus351


virtual embodiment can thus be explored via experiment rather than theory, and may352


reveal nuances that no one currently foresees.353


As noted above, we are unconfident of CogPrime’s generic procedure learning or354


pattern recognition algorithms in terms of their capabilities to handle large amounts355


of raw sensorimotor data in real time, and so for robotic applications we advocate356


hybridizing CogPrime with a separate (but closely cross-linked) system better cus-357


tomized for this sort of data, in line with our general hypothesis that Hybridization of358


one’s integrative neural-symbolic system with a spatiotemporally hierarchical deep359


learning system is an effective way to handle representation and learning of low-360


level sensorimotor knowledge. While this general principle doesn’t depend on any361


particular approach, DeSTIN is one example of a deep learning system of this nature362


that can be effective in this context.363


We have not yet done any sophisticated experiments in this regard – our current364


experiments using OpenCog to control robots involve cruder integration of OpenCog365


with perceptual and motor subsystems, rather than the tight hybridization described366


in Chap. 8. Creating such a hybrid system is “just” a matter of software engineering,367


but testing such a system may lead to many surprises!368


31.6.6 Goals369


Given that we have characterized general intelligence as “the ability to achieve com-370


plex goals in complex environments,” it should be plain that goals play a central role371


in our work. However, we have chosen not to create a separate subsystem for inten-372


tional knowledge, and instead have concluded that one effective way to handle goals373


is to represent them declaratively, and allocate attention among them economically.374


An advantage of this approach is that it automatically provides integration between375


the goal system and the declarative and attentional knowledge systems.376


Goals and subgoals are related using logical links as interpreted and manipulated377


by PLN, and attention is allocated among goals using the STI dynamics of ECAN,378


and a specialized variant based on RFS’s (requests for service). Thus the mechanics379


of goal management is handled using uncertain inference and artificial economics,380


whereas the figuring-out of how to achieve goals is done integratively, relying heavily381


on procedural and episodic knowledge as well as PLN and ECAN.382


The combination of ECAN and PLN seems to overcome the well-known short-383


comings found with purely neural-net or purely inferential approaches to goals.384


Neural net approaches generally have trouble with abstraction, whereas logical385


approaches are generally poor at real-time responsiveness and at tuning their details386


quantitatively based on experience. At least in principle, our hybrid approach over-387


comes all these shortcomings; though of current, it has been tested only in fairly388


simple cases in the virtual world.389
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31.7 Fulfilling the “Cognitive Equation”390


A key claim based on the notion of the “Cognitive Equation”posited in Chaotic391


Logic [Goe94] is that it is important for an intelligent system to have some way392


of recognizing large-scale patterns in itself, and then embodying these patterns as393


new, localized knowledge items in its memory. This dynamic introduces a feedback394


dynamic between emergent pattern and substrate, which is hypothesized to be crit-395


ical to general intelligence under feasible computational resources. It also ties in396


nicely with the notion of “glocal memory”—essentially positing a localization of397


some global memories, which naturally will result in the formation of some glocal398


memories. One of the key ideas underlying the CogPrime design is that given the use399


of a neural-symbolic network for knowledge representation, a graph-mining based400


“map formation” heuristic is one good way to do this.401


Map formation seeks to fulfill the Cognitive Equation quite directly, probably more402


directly than happens in the brain. Rather than relying on other cognitive processes403


to implicitly recognize overall system patterns and embody them in the system as404


localized memories (though this implicit recognition may also happen), the MapFor-405


mation MindAgent explicitly carries out this process. Mostly this is done using fairly406


crude greedy pattern mining heuristics, though if really subtle and important patterns407


seem to be there, more sophisticated methods like evolutionary pattern mining may408


also be invoked.409


It seems possible that this sort of explicit approach could be less efficient than410


purely implicit approaches; but, there is no evidence for this, and it may actually411


provide increased efficiency. And in the context of the overall CogPrime design, the412


explicit MapFormation approach seems most natural.413


31.8 Occam’s Razor414


The key role of “Occam’s Razor” or the urge for simplicity in intelligence has been415


observed by many before (going back at least to Occam himself, and probably ear-416


lier!), and is fully embraced in the CogPrime design. Our theoretical analysis of intel-417


ligence, presented in Chap. 3 of vol. 5 and elsewhere, portrays intelligence as closely418


tied to the creation of procedures that achieve goals in environments in the simplest419


possible way. And this quest for simplicity is present in many places throughout the420


CogPrime design, for instance421


• In MOSES and hillclimbing, where program compactness is an explicit component422


of program tree fitness423


• In PLN, where the backward and forward chainers explicitly favor shorter proof424


chains, and intensional inference explicitly characterizes entities in terms of their425


patterns (where patterns are defined as compact characterizations)426


• In pattern mining heuristics, which search for compact characterizations of data427
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• In the forgetting mechanism, which seeks the smallest set of Atoms that will allow428


the regeneration of a larger set of useful Atoms via modestly-expensive application429


of cognitive processes430


• Via the encapsulation of procedural and declarative knowledge in simulations,431


which in many cases provide a vastly compacted form of storing real-world expe-432


riences.433


Like cognitive synergy and emergent networks, Occam’s Razor is not something that434


is implemented in a single place in the CogPrime design, but rather an overall design435


principle that underlies nearly every part of the system.436


31.8.1 Mind Geometry437


We now refer to the three mind-geometric principles outlined in Appendix B (part438


of the additional online appendices to the book), which are:439


• Syntax-semantics correlation440


• Cognitive geometrodynamics441


• Cognitive synergy.442


443


The key role of syntax-semantics correlation in CogPrime is clear. It plays an444


explicit role in MOSES. In PLN, it is critical to inference control, to the extent that445


inference control is based on the extraction of patterns from previous inferences. The446


syntactic structures are the inference trees, and the semantic structures are the infer-447


ential conclusions produced by the trees. History-guided inference control assumes448


that prior similar trees will be a good starting-point for getting results similar to prior449


ones—i.e. it assumes a reasonable degree of syntax-semantics correlation. Also,450


without a correlation between the core elements used to generate an episode, and451


the whole episode, it would be infeasible to use historical data mining to understand452


what core elements to use to generate a new episode—and creation of compact, easily453


manipulable seeds for generating episodes would not be feasible.454


Cognitive geometrodynamics is about finding the shortest path from the current455


state to a goal state, where distance is judged by an appropriate metric including var-456


ious aspects of computational effort. The ECAN and effort management frameworks457


attempt to enforce this, via minimizing the amount of effort spent by the system458


in getting to a certain conclusion. MindAgents operating primarily on one kind of459


knowledge (e.g. MOSES, PLN) may for a time seek to follow the shortest paths460


within their particular corresponding memory spaces; but then when they operate461


more interactively and synergetically, it becomes a matter of finding short paths in462


the composite mindspace corresponding to the combination of the various memory463


types.464


Finally, cognitive synergy is thoroughly and subtly interwoven throughout Cog-465


Prime. In a way the whole design is about cognitive synergy—it’s critical for the466
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design’s functionality that it’s important that the cognitive processes associated with467


different kinds of memory can appeal to each other for assistance in overcoming468


bottlenecks in a manner that: (a) works in “real time,” i.e. on the time scale of the469


cognitive processes internal processes; (b) enables each cognitive process to act in a470


manner that is sensitive to the particularities of each others’ internal representations.471


Recapitulating in a bit more depth, recall that another useful way to formulate472


cognitive synergy as follows. Each of the key learning mechanisms underlying Cog-473


Prime is susceptible to combinatorial explosions. As the problems they confront474


become larger and larger, the performance gets worse and worse at an exponential475


rate, because the number of combinations of items that must be considered to solve476


the problems grows exponentially with the problem size. This could be viewed as a477


deficiency of the fundamental design, but we don’t view it that way. Our view is that478


combinatorial explosion is intrinsic to intelligence. The task at hand is to dampen479


it sufficiently that realistically large problems can be solved, rather than to elimi-480


nate it entirely. One possible way to dampen it would be to design a single, really481


clever learning algorithm—one that was still susceptible to an exponential increase482


in computational requirements as problem size increases, but with a surprisingly483


small exponent. Another approach is the mirrorhouse approach: Design a bunch of484


learning algorithms, each focusing on different aspects of the learning process, and485


design them so that they each help to dampen each others’ combinatorial explosions.486


This is the approach taken within CogPrime. The component algorithms are clever487


on their own—they are less susceptible to combinatorial explosion than many com-488


peting approaches in the narrow-AI literature. But the real meat of the design lies in489


the intended interactions between the components, manifesting cognitive synergy.490


31.9 Cognitive Synergy491


To understand more specifically how cognitive synergy works in CogPrime, in the492


following subsections we will review some synergies related to the key compo-493


nents of CogPrime as discussed above. These synergies are absolutely critical to the494


proposed functionality of the CogPrime system. Without them, the cognitive mech-495


anisms are not going to work adequately well, but are rather going to succumb to496


combinatorial explosions. The other aspects of CogPrime - the cognitive architecture,497


the knowledge representation, the embodiment framework and associated develop-498


mental teaching methodology—are all critical as well, but none of these will yield499


the critical emergence of intelligence without cognitive mechanisms that effectively500


scale. And, in the absence of cognitive mechanisms that effectively scale on their501


own, we must rely on cognitive mechanisms that effectively help each other to scale.502


The reasons why we believe these synergies will exist are essentially qualitative:503


we have not proved theorems regarded these synergies, and we have observed them504


in practice only in simple cases so far. However, we do have some ideas regarding505


how to potentially prove theorems related to these synergies, and some of these are506


described in Appendix H.507
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540 31 Summary of Argument for the CogPrime Approach


31.9.1 Synergies that Help Inference508


The combinatorial explosion in PLN is obvious: forward and backward chaining509


inference are both fundamentally explosive processes, reined in only by pruning510


heuristics. This means that for nontrivial complex inferences to occur, one needs511


really, really clever pruning heuristics. The CogPrime design combines simple512


heuristics with pattern mining, MOSES and economic attention allocation as pruning513


heuristics. Economic attention allocation assigns importance levels to Atoms, which514


helps guide pruning. Greedy pattern mining is used to search for patterns in the stored515


corpus of inference trees, to see if there are any that can be used as analogies for516


the current inference. And MOSES comes in when there is not enough information517


(from importance levels or prior inference history) to make a choice, yet exploring518


a wide variety of available options is unrealistic. In this case, MOSES tasks may be519


launched, pertinently to the leaves at the fringe of the inference tree, under consid-520


eration for expansion. For instance, suppose there is an Atom A at the fringe of the521


inference tree, and its importance hasn’t been assessed with high confidence, but a522


number of items B are known so that:523


MemberLink A B524


Then, MOSES may be used to learn various relationships characterizing A, based on525


recognizing patterns across the set of B that are suspected to be members of A. These526


relationships may then be used to assess the importance of A more confidently, or527


perhaps to enable the inference tree to match one of the patterns identified by pattern528


mining on the inference tree corpus. For example, if MOSES figures out that:529


SimilarityLink G A530


then it may happen that substituting G in place of A in the inference tree, results in531


something that pattern mining can identify as being a good (or poor) direction for532


inference.533


31.10 Synergies that Help MOSES534


MOSES’s combinatorial explosion is obvious: the number of possible programs of535


size N increases very rapidly with N. The only way to get around this is to utilize prior536


knowledge, and as much as possible of it. When solving a particular problem, the537


search for new solutions must make use of prior candidate solutions evaluated for that538


problem, and also prior candidate solutions (including successful and unsuccessful539


ones) evaluated for other related problems.540


But, extrapolation of this kind is in essence a contextual analogical inference541


problem. In some cases it can be solved via fairly straightforward pattern mining; but542


in subtler cases it will require inference of the type provided by PLN. Also, attention543


allocation plays a role in figuring out, for a given problem A, which problems B are544


likely to have the property that candidate solutions for B are useful information when545


looking for better solutions for A.546
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31.10 Synergies that Help MOSES 541


31.10.1 Synergies that Help Attention Allocation547


Economic attention allocation, without help from other cognitive processes, is just a548


very simple process analogous to “activation spreading” and “Hebbian learning” in a549


neural network. The other cognitive processes are the things that allow it to more sen-550


sitively understand the attentional relationships between different knowledge items551


(e.g. which sorts of items are often usefully thought about in the same context, and552


in which order).553


31.10.2 Further Synergies Related to Pattern Mining554


Statistical, greedy pattern mining is a simple process, but it nevertheless can be biased555


in various ways by other, more subtle processes.556


For instance, if one has learned a population of programs via MOSES, addressing557


some particular fitness function, then one can study which items tend to be utilized558


in the same programs in this population. One may then direct pattern mining to559


find patterns combining these items found to be in the MOSES population. And560


conversely, relationships denoted by pattern mining may be used to probabilistically561


bias the models used within MOSES.562


Statistical pattern mining may also help PLN by supplying it with information to563


work on. For instance, conjunctive pattern mining finds conjunctions of items, which564


may then be combined with each other using PLN, leading to the formation of more565


complex predicates. These conjunctions may also be fed to MOSES as part of an566


initial population for solving a relevant problem.567


Finally, the main interaction between pattern mining and MOSES/PLN is that the568


former may recognize patterns in links created by the latter. These patterns may then569


be fed back into MOSES and PLN as data. This virtuous cycle allows pattern mining570


and the other, more expensive cognitive processes to guide each other. Attention571


allocation also gets into the game, by guiding statistical pattern mining and telling it572


which terms (and which combinations) to spend more time on.573


31.10.3 Synergies Related to Map Formation574


The essential synergy regarding map formation is obvious: Maps are formed based575


on the HebbianLinks created via PLN and simpler attentional dynamics, which are576


based on which Atoms are usefully used together, which is based on the dynamics of577


the cognitive processes doing the “using”. On the other hand, once maps are formed578


and encapsulated, they feed into these other cognitive processes. This synergy in579


particular is critical to the emergence of self and attention.580
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542 31 Summary of Argument for the CogPrime Approach


What has to happen, for map formation to work well, is that the cognitive processes581


must utilize encapsulated maps in a way that gives rise overall to relatively clear clus-582


ters in the network of HebbianLinks. This will happen if the encapsulated maps are583


not too complex for the system’s other learning operations to understand. So, there584


must be useful coordinated attentional patterns whose corresponding encapsulated-585


map Atoms are not too complicated. This has to do with the system’s overall para-586


meter settings, but largely with the settings of the attention allocation component.587


For instance, this is closely tied in with the limited size of “attentional focus” (the588


famous 7± 2 number associated with humans’ and other mammals short term mem-589


ory capacity). If only a small number of Atoms are typically very important at a given590


point in time, then the maps formed by grouping together all simultaneously highly591


important things will be relatively small predicates, which will be easily reasoned592


about - thus keeping the “virtuous cycle” of map formation and comprehension going593


effectively.594


31.11 Emergent Structures and Dynamics595


We have spent much more time in this book on the engineering of cognitive processes596


and structures, than on the cognitive processes and structures that must emerge in an597


intelligent system for it to display human-level AGI. However, this focus should not598


be taken to represent a lack of appreciation for the importance of emergence. Rather,599


it represents a practical focus: engineering is what we must do to create a software600


system potentially capable of AGI, and emergence is then what happens inside the601


engineered AGI to allow it to achieve intelligence. Emergence must however be taken602


carefully into account when deciding what to engineer!603


One of the guiding ideas underlying the CogPrime design is that an AGI system604


with adequate mechanisms for handling the key types of knowledge mentioned above,605


and the capability to explicitly recognize large-scale pattern in itself, should upon606


sustained interaction with an appropriate environment in pursuit of appropri-607


ate goals, emerge a variety of complex structures in its internal knowledge network,608


including (but not limited to): a hierarchical network, representing both a spatiotem-609


poral hierarchy and an approximate “default inheritance” hierarchy, cross-linked;610


a heterarchical network of associativity, roughly aligned with the hierarchical net-611


work; a self network which is an approximate micro image of the whole network;612


and inter-reflecting networks modeling self and others, reflecting a “mirrorhouse”613


design pattern.614


The dependence of these posited emergences on the environment and goals of the615


AGI system should not be underestimated. For instance, PLN and pattern mining616


don’t have to lead to a hierarchical structured Atomspace, but if the AGI system617


is placed in an environment which is itself hierarchically structured, then they very618


likely will do so. And if this environment consists of hierarchically structured lan-619


guage and culture, then what one has is a system of minds with hierarchical networks,620


each reinforcing the hierarchality of each others’ networks. Similarly, integrated cog-621
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31.11 Emergent Structures and Dynamics 543


nition doesn’t have to lead to mirrorhouse structures, but integrated cognition about622


situations involving other minds studying and predicting and judging each other, is623


very likely to do so. What is needed for appropriate emergent structures to arise in624


a mind, is mainly that the knowledge representation is sufficiently flexible to allow625


these structures, and the cognitive processes are sufficiently intelligent to observe626


these structures in the environment and then mirror them internally. Of course, it also627


doesn’t hurt if the internal structures and processes are at least slightly biased toward628


the origination of the particular high-level emergent structures that are characteristic629


of the system’s environment/goals; and this is indeed the case with CogPrime—630


biases toward hierarchical, heterarchical, dual and mirrorhouse networks are woven631


throughout the system design, in a thoroughgoing though not extremely systematic632


way.633


31.12 Ethical AGI634


Creating an AGI with guaranteeably ethical behavior seems an infeasible task; but635


of course, no human is guaranteeably ethical either, and in fact it seems almost636


guaranteed that in any moderately large group of humans there are going to be some637


with strong propensities for extremely unethical behaviors, according to any of the638


standard human ethical codes. One of our motivations in developing CogPrime has639


been the belief that an AGI system, if supplied with a commonsensically ethical goal640


system and an intentional component based on rigorous uncertain inference, should641


be able to reliably achieve a much higher level of commonsensically ethical behavior642


than any human being.643


Our explorations in the detailed design of CogPrime’s goal system have done644


nothing to degrade this belief. While we have not yet developed any CogPrime645


system to the point where experimenting with its ethics is meaningful, based on our646


understanding of the current design it seems to us that647


• A typical CogPrime system will display a much more consistent and less con-648


flicted and confused motivational system than any human being, due to its explicit649


orientation toward carrying out actions that (based on its knowledge) rationally650


seem most likely to lead to achievement of its goals651


• If a CogPrime system is given goals that are consistent with commonsensical652


human ethics (say, articulated in natural language), and then educated in an ethics-653


friendly environment such as a virtual or physical school, then it is reasonable to654


expect the CogPrime system will ultimately develop an advanced (human adult655


level or beyond) form of commmonsensical human ethics.656


Human ethics is itself wracked with inconsistencies, so one cannot expect a657


rationality-based AGI system to precisely mirror the ethics of any particular human658


individual or cultural system. But given the degree to which general intelligence rep-659


resents adaptation to its environment, and interpretation of natural language depends660


on life history and context, it seems very likely to us that a CogPrime system, if661
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544 31 Summary of Argument for the CogPrime Approach


supplied with a human-commonsense-ethics based goal system and then raised by662


compassionate and intelligent humans in a school-type environment, would arrive at663


its own variant of human-commonsense-ethics. The AGI system’s ethics would then664


interact with human ethical systems in complex ways, leading to ongoing evolution665


of both systems and the development of new cultural and ethical patterns. Predicting666


the future is difficult even in the absence of radical advanced technologies, but our667


intuition is that this path has the potential to lead to beneficial outcomes for both668


human and machine intelligence.669


31.13 Toward Superhuman General Intelligence670


Human-level AGI is a difficult goal, relative to the current state of scientific under-671


standing and engineering capability, and most of this book has been focused on our672


ideas about how to achieve it. However, we also suspect the CogPrime architecture673


has the ultimate potential to push beyond the human level in many ways. As part674


of this suspicion we advance the claim that once sufficiently advanced, a CogPrime675


system should be able to radically self-improve via a variety of methods, including676


supercompilation and automated theorem-proving.677


Supercompilation allows procedures to be automatically replaced with equivalent678


but massively more time-efficient procedures. This is particularly valuable in that it679


allows AI algorithms to learn new procedures without much heed to their efficiency,680


since supercompilation can always improve the efficiency afterwards. So it is a real681


boon to automated program learning.682


Theorem-proving is difficult for current narrow-AI systems, but for an AGI system683


with a deep understanding of the context in which each theorem exists, it should be684


much easier than for human mathematicians. So we envision that ultimately an AGI685


system will be able to design itself new algorithms and data structures via proving686


theorems about which ones will best help it achieve its goals in which situations, based687


on mathematical models of itself and its environment. Once this stage is achieved,688


it seems that machine intelligence may begin to vastly outdo human intelligence,689


leading in directions we cannot now envision.690


While such projections may seem science-fictional, we note that the CogPrime691


architecture explicitly supports such steps. If human-level AGI is achieved within692


the CogPrime framework, it seems quite feasible that profoundly self-modifying693


behavior could be achieved fairly shortly thereafter. For instance, one could take a694


human-level CogPrime system and teach it computer science and mathematics, so695


that it fully understood the reasoning underlying its own design, and the whole math-696


ematics curriculum leading up the algorithms underpinning its cognitive processes.697
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31.13 Toward Superhuman General Intelligence 545


31.13.1 Conclusion698


What we have sought to do in these pages is, mainly,699


• To Articulate a theoretical perspective on general intelligence, according to which700


the creation of a human-level AGI doesn’t require anything that extraordinary, but701


“merely” an appropriate combination of closely interoperating algorithms operat-702


ing on an appropriate multi-type memory system, utilized to enable a system in703


an appropriate body and environment to figure out how to achieve its given goals704


• To Describe a software design (CogPrime) that, according to this somewhat mun-705


dane but theoretically quite well grounded vision of general intelligence, appears706


likely (according to a combination of rigorous and heuristic arguments) to be able707


to lead to human-level AGI using feasible computational resources708


• To Describe some of the preliminary lessons we’ve learned via implementing and709


experimenting with aspects of the CogPrime design, in the OpenCog system.710


In this concluding chapter we have focused on the “combination of rigorous and711


heuristic arguments” that lead us to consider it likely that CogPrime has the potential712


to lead to human-level AGI using feasible computational resources.713


We also wish to stress that not all of our arguments and ideas need to be 100%714


correct in order for the project to succeed. The quest to create AGI is a mix of theory,715


engineering, and scientific and unscientific experimentation. If the current CogPrime716


design turns out to have significant shortcomings, yet still brings us a significant717


percentage of the way toward human-level AGI, the results obtained along the path718


will very likely give us clues about how to tweak the design to more effectively get the719


rest of the way there. And the OpenCog platform is extremely flexible and extensible,720


rather than being tied to the particular details of the CogPrime design. While we do721


have faith that the CogPrime design as described here has human-level AGI potential,722


we are also pleased to have a development strategy and implementation platform that723


will allow us to modify and improve the design in whatever suggestions are made724


by our ongoing experimentation.725


Many great achievements in history have seemed more magical before their first726


achievement than afterwards. Powered flight and spaceflight are the most obvious727


examples, but there are many others such as mobile telephony, prosthetic limbs, elec-728


tronically deliverable books, robotic factory workers, and so on. We now even have729


wireless transmission of power (one can recharge cellphones via wifi), though not730


yet as ambitiously as Tesla envisioned. We very strongly suspect that human-level731


AGI is in the same category as these various examples: an exciting and amazing732


achievement, which however is achievable via systematic and careful application of733


fairly mundane principles. We believe computationally feasible human-level intelli-734


gence is both complicated (involving many interoperating parts, each sophisticated735


in their own right) and complex (in the sense of involving many emergent dynam-736


ics and structures whose details are not easily predictable based on the parts of the737


system) ... but that neither the complication nor the complexity is an obstacle to738


engineering human-level AGI.739
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546 31 Summary of Argument for the CogPrime Approach


Furthermore, while ethical behavior is a complex and subtle matter for humans740


or machines, we believe that the production of human-level AGIs that are not only741


intelligent but also beneficial to humans and other biological sentiences, is something742


that is probably tractable to achieve based on a combination of careful AGI design743


and proper AGI education and “parenting.” One of the motivations underlying our744


design has been to create an artificial mind that has broadly human-like intelligence,745


yet has a more rational and self-controllable motivational system than humans, thus746


ultimately having the potential for a greater-than-human degree of ethical reliability747


alongside its greater-than-human intelligence.748


In our view, what is needed to create human-level AGI is not a new scientific749


breakthrough, nor a miracle, but “merely” a sustained effort over a number of years750


by a moderate-sized team of appropriately-trained professionals, completing the751


implementation of the design in this book and then parenting and educating the752


resulting implemented system. CogPrime is by no means the only possible path to753


human-level AGI, but we believe it is considerably more fully thought-through and754


fleshed-out than any available alternatives. Actually, we would love to see CogPrime755


and a dozen alternatives simultaneously pursued – this may seem ambitious, but it756


would cost a fraction of the money currently spent on other sorts of science or engi-757


neering, let alone the money spent on warfare or decorative luxury items. We strongly758


suspect that, in hindsight, our human and digital descendants will feel amazed that759


their predecessors allocated so few financial and attentional resources to the creation760


of powerful AGI, and consequently took so long to achieve such a fundamentally761


straightforward thing.762
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