
EGI_vol2..pdf

Metadata of the book that will be visualized in
SpringerLink

Publisher Name Atlantis Press
Publisher Location Paris

Series ID 10077

SeriesTitle Atlantis Thinking Machines

Book ID 319613_1_En

Book Title Engineering General Intelligence, Part 2

Book DOI 10.2991/978-94-6239-030-0

Copyright Holder Name Atlantis Press and the authors

Copyright Year 2014

Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization G/F 51C Lung Mei Village

Address Tai Po, Hong Kong, People's Republic of China

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. M´ario

Address Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Atlantis Thinking Machines

2 Volume 6
3

4

5
6 Series Editor
7

8 Kai-Uwe Kühnberger, Osnabrück, Germany

9 For further volumes:
10 http://www.atlantis-press.com

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 1/22

http://www.atlantis-press.com

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

Aims and Scope of the Series

This series publishes books resulting from theoretical research on and reproduc-
tions of general Artificial Intelligence (AI). The book series focuses on the
establishment of new theories and paradigms in AI. At the same time, the series
aims at exploring multiple scientific angles and methodologies, including results
from research in cognitive science, neuroscience, theoretical and experimental AI,
biology and from innovative interdisciplinary methodologies.

For more information on this series and our other book series, please visit our
website at:

www.atlantis-press.com/publications/books

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 2/22

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

11 Ben Goertzel • Cassio Pennachin
12 Nil Geisweiller

13
Engineering General

14
Intelligence, Part 2

15 The CogPrime Architecture for Integrative,
16 Embodied AGI

17 With contributions by the OpenCog Team

18

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 3/22

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

20 Ben Goertzel
21 Tai Po
22 Hong Kong, People’s Republic of China

23 Cassio Pennachin
24 Igenesis
25 Belo Horizonte, Minas Gerais
26 Brazil

27 Nil Geisweiller
28 Samokov
29 Bulgaria

30

31

32 ISSN 1877-327333

34 ISBN 978-94-6239-029-435 ISBN 978-94-6239-030-0 (eBook)
36 DOI 10.2991/978-94-6239-030-0
37

38 Library of Congress Control Number: 2013953280

39 � Atlantis Press and the authors 2014
40 This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any
41 means, electronic or mechanical, including photocopying, recording or any information storage and
42 retrieval system known or to be invented, without prior permission from the Publisher.
43

44 Printed on acid-free paper

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 4/22

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

45 Preface

46 Welcome to the second volume of Engineering General Intelligence! This is the
47 second half of a two-part technical treatise aimed at outlining a practical approach
48 to engineering software systems with general intelligence at the human level and
49 ultimately beyond.
50 Our goal here is an ambitious one and not a modest one: machines with flexible
51 problem-solving ability, open-ended learning capability, creativity and eventually,
52 their own kind of genius.
53 Part 1 set the stage, dealing with a variety of general conceptual issues related
54 to the engineering of advanced AGI, as well as presenting a brief overview of the
55 CogPrime design for Artificial General Intelligence. Now here in Part 2 we plunge
56 deep into the nitty-gritty, and describe the multiple aspects of the CogPrime with a
57 fairly high degree of detail.
58 First we describe the CogPrime software architecture and knowledge repre-
59 sentation in detail; then we review the ‘‘cognitive cycle’’ via which CogPrime
60 perceives and acts in the world and reflects on itself. We then turn to various forms
61 of learning: procedural, declarative (e.g., inference), simulative, and integrative.
62 Methods of enabling natural language functionality in CogPrime are then dis-
63 cussed; and the volume concludes with a chapter summarizing the argument that
64 CogPrime can lead to human-level (and eventually perhaps greater) AGI, and a
65 chapter giving a ‘‘thought experiment’’ describing the internal dynamics via which
66 a completed CogPrime system might solve the problem of obeying the request
67 ‘‘Build me something with blocks that I haven’t seen before.’’
68 Reading this book before Engineering General Intelligence, Part 1 first is not
69 especially recommended, since the prequel not only provides the context for this
70 one, but also defines a number of specific terms and concepts that are used here
71 without explanation (for example, Part 1 has an extensive Glossary). However, the
72 impatient reader who has not mastered Part 1, or the reader who has finished Part 1
73 but is tempted to hop through Part 2 nonlinearly, might wish to first skim the final
74 chapter, and then return to reading in linear order.
75 While the majority of the text here was written by the lead Author Ben Go-
76 ertzel, the overall work and underlying ideas have been very much a team effort,
77 with major input from the secondary authors Cassio Pennachin and Nil

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 5/22

v

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

78 Geisweiller, and large contributions from various other contributors as well. Many
79 chapters have specifically indicated Co-authors; but the contributions from various
80 collaborating researchers and engineers go far beyond these. The creation of the
81 AGI approach and design presented here is a process that has occurred over a long
82 period of time among a community of people; and this book is in fact a quite
83 partial view of the existent body of knowledge and intuition regarding CogPrime.
84 For example, beyond the ideas presented here, there is a body of work on the
85 OpenCog wiki site, and then the OpenCog codebase itself.
86 More extensive introductory remarks may be found in the Preface of Part 1,
87 including a brief history of the book and acknowledgements to some of those who
88 helped inspire it.
89 Also, one brief comment from the Preface of Part 1 bears repeating: At several
90 places in this volume, as in its predecessor, we will refer to the ‘‘current’’ Cog-
91 Prime implementation (in the OpenCog framework); in all cases this refers to the
92 OpenCog software system as of late 2013.
93 We fully realize that this book is not ‘‘easy reading,’’ and that the level and
94 nature of exposition varies somewhat from chapter to chapter. We have done our
95 best to present these very complex ideas as clearly as we could, given our own
96 time constraints, and the lack of commonly understood vocabularies for discussing
97 many of the concepts and systems involved. Our hope is that the length of the
98 book, and the conceptual difficulty of some portions, will be considered as com-
99 pensated by the interest of the ideas we present. For, make no mistake—for all

100 their technicality and subtlety, we find the ideas presented here incredibly exciting.
101 We are talking about no less than the creation of machines with intelligence,
102 creativity, and genius equaling and ultimately exceeding that of human beings.
103 This is, in the end, the kind of book that we (the authors) all hoped to find when
104 we first entered the AI field: a reasonably detailed description of how to go about
105 creating thinking machines. The fact that so few treatises of this nature, and so few
106 projects explicitly aimed at the creation of advanced AGI, exist, is something that
107 has perplexed us since we entered the field. Rather than just complain about it, we
108 have taken matters into our own hands, and worked to create a design and a
109 codebase that we believe capable of leading to human-level AGI and beyond.
110 We feel tremendously fortunate to live in times when this sort of pursuit can be
111 discussed in a serious, scientific way.

112 Online Appendices

113 Just one more thing before getting started! This book originally had even more
114 chapters than the ones currently presented in Parts 1 and 2. In order to decrease
115 length and increase focus, however, a number of chapters dealing with periphe-
116 ral—yet still relevant and interesting—matters were moved to online appendices.

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 6/22

vi Preface

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

117 These may be downloaded in a single PDF file at http://goertzel.org/engineering_
118 general_Intelligence_appendices_B-H.pdf. The titles of these appendices are:

119 • Appendix A: Possible Worlds Semantics and Experiential Semantics
120 • Appendix B: Steps Toward a Formal Theory of Cognitive Structure and
121 Dynamics
122 • Appendix C: Emergent Reflexive Mental Structures
123 • Appendix D: GOLEM: Toward an AGI Meta-Architecture Enabling Both Goal
124 Preservation and Radical Self-Improvement
125 • Appendix E: Lojban??: A Novel Linguistic Mechanism for Teaching AGI
126 Systems
127 • Appendix F: Possible Worlds Semantics and Experiential Semantics
128 • Appendix G: PLN and the Brain
129 • Appendix H: Propositions About Environments in Which CogPrime Compo-
130 nents Are Useful

131 None of these are critical to understanding the key ideas in the book, which is
132 why they were relegated to online appendices. However, reading them will deepen
133 your understanding of the conceptual and formal perspectives underlying the
134 CogPrime design. These appendices are referred to here and there in the text of the
135 main book.

136 September 2013 Ben Goertzel
137

138

139

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 7/22

Preface vii

http://goertzel.org/engineering_general_Intelligence_appendices_B-H.pdf

http://goertzel.org/engineering_general_Intelligence_appendices_B-H.pdf

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

141 Contents

Part I Architectural and Representational Mechanisms

142 1 The OpenCog Framework . 3
143 1.1 Introduction . 3
144 1.1.1 Layers of Abstraction in Describing
145 Artificial Minds . 3
146 1.1.2 The OpenCog Framework 4
147 1.2 The OpenCog Architecture . 6
148 1.2.1 OpenCog and Hardware Models 6
149 1.2.2 The Key Components of the OpenCog
150 Framework . 7
151 1.3 The AtomSpace . 8
152 1.3.1 The Knowledge Unit: Atoms 8
153 1.3.2 AtomSpace Requirements and Properties 9
154 1.3.3 Accessing the Atomspace. 10
155 1.3.4 Persistence . 11
156 1.3.5 Specialized Knowledge Stores 12
157 1.4 MindAgents: Cognitive Processes . 15
158 1.4.1 A Conceptual View of CogPrime
159 Cognitive Processes. 15
160 1.4.2 Implementation of MindAgents. 17
161 1.4.3 Tasks. 18
162 1.4.4 Scheduling of MindAgents and Tasks in a Unit . . . 18
163 1.4.5 The Cognitive Cycle . 19
164 1.5 Distributed AtomSpace and Cognitive Dynamics 20
165 1.5.1 Distributing the AtomSpace 21
166 1.5.2 Distributed Processing . 26

167 2 Knowledge Representation Using the Atomspace 31
168 2.1 Introduction . 31
169 2.2 Denoting Atoms . 32
170 2.2.1 Meta-Language .
171 2.2.2 Denoting Atoms . 32

ix

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 9/22

http://dx.doi.org/10.2991/978-94-6239-030-0_1

http://dx.doi.org/10.2991/978-94-6239-030-0_1

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_1#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_2

http://dx.doi.org/10.2991/978-94-6239-030-0_2

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec4

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

172 2.3 Representing Functions and Predicates 34
173 2.3.1 Execution Links . 42
174 2.3.2 Denoting Schema and Predicate Variables 45
175 2.3.3 Variable and Combinator Notation 47
176 2.3.4 Inheritance Between Higher-Order Types. 49
177 2.3.5 Advanced Schema Manipulation 51

178 3 Representing Procedural Knowledge . 55
179 3.1 Introduction . 55
180 3.2 Representing Programs . 56
181 3.3 Representational Challenges . 58
182 3.4 What Makes a Representation Tractable? 60
183 3.5 The Combo Language . 62
184 3.6 Normal Forms Postulated to Provide Tractable
185 Representations . 62
186 3.6.1 A Simple Type System . 63
187 3.6.2 Boolean Normal Form . 64
188 3.6.3 Number Normal Form . 64
189 3.6.4 List Normal Form . 64
190 3.6.5 Tuple Normal Form . 64
191 3.6.6 Enum Normal Form . 65
192 3.6.7 Function Normal Form . 65
193 3.6.8 Action Result Normal Form 65
194 3.7 Program Transformations. 66
195 3.7.1 Reductions . 66
196 3.7.2 Neutral Transformations. 68
197 3.7.3 Non-Neutral Transformations 69
198 3.8 Interfacing Between Procedural and Declarative
199 Knowledge. 70
200 3.8.1 Programs Manipulating Atoms 71
201 3.9 Declarative Representation of Procedures 71

Part II The Cognitive Cycle

202 4 Emotion, Motivation, Attention and Control 75
203 4.1 Introduction . 75
204 4.2 A Quick Look at Action Selection 76
205 4.3 Psi in CogPrime . 78
206 4.4 Implementing Emotion Rules atop Psi’s Emotional
207 Dynamics. 81
208 4.4.1 Grounding the Logical Structure of Emotionsin
209 the Psi Model .

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 10/22

x Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_2#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_3

http://dx.doi.org/10.2991/978-94-6239-030-0_3

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_3#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_4

http://dx.doi.org/10.2991/978-94-6239-030-0_4

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

210 4.5 Goals and Contexts . 83
211 4.5.1 Goal Atoms . 85
212 4.6 Context Atoms . 85
213 4.7 Ubergoal Dynamics. 87
214 4.7.1 Implicit Ubergoal Pool Modification 87
215 4.7.2 Explicit Ubergoal Pool Modification 87
216 4.8 Goal Formation . 88
217 4.9 Goal Fulfillment and Predicate Schematization. 88
218 4.10 Context Formation . 89
219 4.11 Execution Management . 90
220 4.12 Goals and Time . 91

221 5 Attention Allocation . 93
222 5.1 Introduction . 93
223 5.2 Semantics of Short and Long Term Importance 96
224 5.2.1 The Precise Semantics of STI and LTI 97
225 5.2.2 STI, STIFund, and Juju . 99
226 5.2.3 Formalizing LTI . 100
227 5.2.4 Applications of LTIburst Versus LTIcont 101
228 5.3 Defining Burst LTI in Terms of STI 103
229 5.4 Valuing LTI and STI in Terms of a Single Currency 103
230 5.5 Economic Attention Networks . 105
231 5.5.1 Semantics of Hebbian Links
232 5.5.2 Explicit and Implicit Hebbian Relations. 106
233 5.6 Dynamics of STI and LTI Propagation 107
234 5.6.1 ECAN Update Equations 107
235 5.6.2 ECAN as Associative Memory 113
236 5.7 Glocal Economic Attention Networks 114
237 5.7.1 Experimental Explorations 114
238 5.8 Long-Term Importance and Forgetting 115
239 5.9 Attention Allocation via Data Mining 115
240 5.10 Schema Credit Assignment . 117
241 5.11 Interaction Between ECANs and Other CogPrime
242 Components . 119
243 5.11.1 Use of PLN and Procedure Learning
244 to Help ECAN . 119
245 5.11.2 Use of ECAN to Help Other Cognitive
246 Processes . 119
247 5.12 MindAgent Importance and Scheduling 120
248 5.13 Information Geometry for Attention Allocation 121
249 5.13.1 Brief Review of Information Geometry 121
250 5.13.2 Information-Geometric Learning for Recurrent
251 Networks: Extending the ANGL Algorithm 123
252 5.13.3 Information Geometry for Economic Attention
253 Allocation: A Detailed Example 124

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 11/22

Contents xi

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_4#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_5

http://dx.doi.org/10.2991/978-94-6239-030-0_5

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec30

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec30

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec31

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec31

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec32

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec32

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec33

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec33

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec33

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec34

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec34

http://dx.doi.org/10.2991/978-94-6239-030-0_5#Sec34

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

254 6 Economic Goal and Action Selection . 127
255 6.1 Introduction . 127
256 6.2 Transfer of STI ‘‘Requests for Services’’ Between Goals 128
257 6.3 Feasibility Structures . 130
258 6.4 GoalBasedSchemaSelection . 131
259 6.4.1 A Game-Theoretic Approach
260 to Action Selection . 132
261 6.5 Schema Activation . 133
262 6.6 GoalBasedSchemaLearning . 134

263 7 Integrative Procedure Evaluation . 135
264 7.1 Introduction . 135
265 7.2 Procedure Evaluators. 135
266 7.2.1 Simple Procedure Evaluation 136
267 7.2.2 Effort Based Procedure Evaluation 136
268 7.2.3 Procedure Evaluation with Adaptive
269 Evaluation Order. 137
270 7.3 The Procedure Evaluation Process 138
271 7.3.1 Truth Value Evaluation . 138
272 7.3.2 Schema Execution. 139

Part III Perception and Action

273 8 Perceptual and Motor Hierarchies . 143
274 8.1 Introduction . 143
275 8.2 The Generic Perception Process . 144
276 8.2.1 The ExperienceDB .
277 8.3 Interfacing CogPrime with a Virtual Agent 146
278 8.3.1 Perceiving the Virtual World 146
279 8.3.2 Acting in the Virtual World 148
280 8.4 Perceptual Pattern Mining . 148
281 8.4.1 Input Data . 149
282 8.4.2 Transaction Graphs . 149
283 8.4.3 Spatiotemporal Conjunctions 150
284 8.4.4 The Mining Task . 151
285 8.5 The Perceptual-Motor Hierarchy. 152
286 8.6 Object Recognition from Polygonal Meshes. 153
287 8.6.1 Algorithm Overview . 153
288 8.6.2 Recognizing PersistentPolygonNodes
289 from PolygonNodes. 154
290 8.6.3 Creating Adjacency Graphs from PPNodes 154
291 8.6.4 Clustering in the Adjacency Graph 155
292 8.6.5 Discussion . 155

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 12/22

xii Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_6

http://dx.doi.org/10.2991/978-94-6239-030-0_6

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_6#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_7

http://dx.doi.org/10.2991/978-94-6239-030-0_7

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_7#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_8

http://dx.doi.org/10.2991/978-94-6239-030-0_8

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec20

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

293 8.7 Interfacing the Atomspace with a Deep Learning Based
294 Perception-Action Hierarchy . 156
295 8.7.1 Hierarchical Perception Action Networks 156
296 8.7.2 Declarative Memory . 157
297 8.7.3 Sensory Memory. 158
298 8.7.4 Procedural Memory . 158
299 8.7.5 Episodic Memory . 159
300 8.7.6 Action Selection and Attention Allocation 160
301 8.8 Multiple Interaction Channels. 160

302 9 Integrating CogPrime with a Compositional Spatiotemporal
303 Deep Learning Network . 163
304 9.1 Introduction . 163
305 9.2 Integrating CSDLNs with Other AI Frameworks 165
306 9.3 Semantic CSDLN for Perception Processing 166
307 9.4 Semantic CSDLN for Motor and Sensorimotor Processing. . . 169
308 9.5 Connecting the Perceptual and Motoric Hierarchies
309 with a Goal Hierarchy . 171

310 10 Making DeSTIN Representationally Transparent. 173
311 10.1 Introduction . 173
312 10.2 Review of DeSTIN Architecture and Dynamics 174
313 10.2.1 Beyond Gray-Scale Vision 175
314 10.3 Uniform DeSTIN . 176
315 10.3.1 Translation-Invariant DeSTIN. 176
316 10.3.2 Mapping States of Translation-Invariant
317 DeSTIN into the Atomspace. 178
318 10.3.3 Scale-Invariant DeSTIN . 179
319 10.3.4 Rotation Invariant DeSTIN. 180
320 10.3.5 Temporal Perception . 181
321 10.4 Interpretation of DeSTIN’s Activity 181
322 10.4.1 DeSTIN’s Assumption of Hierarchical
323 Decomposability . 182
324 10.4.2 Distance and Utility . 182
325 10.5 Benefits and Costs of Uniform DeSTIN 183
326 10.6 Imprecise Probability as a Tool for Linking CogPrime
327 and DeSTIN. 184
328 10.6.1 Visual Attention Focusing 184
329 10.6.2 Using Imprecise Probabilities to Guide Visual
330 Attention Focusing . 185
331 10.6.3 Sketch of Application to DeSTIN 187

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 13/22

Contents xiii

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_8#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_9

http://dx.doi.org/10.2991/978-94-6239-030-0_9

http://dx.doi.org/10.2991/978-94-6239-030-0_9

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_9#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_10

http://dx.doi.org/10.2991/978-94-6239-030-0_10

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_10#Sec19

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

332 11 Bridging the Symbolic/Subsymbolic Gap 189
333 11.1 Introduction . 189
334 11.2 Simplified OpenCog Workflow . 192
335 11.3 Integrating DeSTIN and OpenCog 193
336 11.3.1 Mining Patterns from DeSTIN States 193
337 11.3.2 Probabilistic Inference on Mined Hypergraphs 195
338 11.3.3 Insertion of OpenCog-Learned Predicates
339 into DeSTIN’s Pattern Library 196
340 11.4 Multisensory Integration, and Perception-Action
341 Integration . 197
342 11.4.1 Perception-Action Integration 198
343 11.4.2 Thought-Experiment: Eye-Hand Coordination. 200
344 11.5 A Practical Example: Using Subtree Mining to Bridge
345 the Gap Between DeSTIN and PLN 201
346 11.5.1 The Importance of Semantic Feedback 203
347 11.6 Some Simple Experiments with Letters 204
348 11.6.1 Mining Subtrees from DeSTIN States
349 Induced via Observing Letterforms 204
350 11.6.2 Mining Subtrees from DeSTIN States
351 Induced via Observing Letterforms 207
352 11.7 Conclusion. 209

Part IV Procedure Learning

353 12 Procedure Learning as Program Learning 213
354 12.1 Introduction . 213
355 12.1.1 Program Learning . 213
356 12.2 Representation-Building. 215
357 12.3 Specification Based Procedure Learning 216

358 13 Learning Procedures via Imitation, Reinforcement
359 and Correction . 217
360 13.1 Introduction . 217
361 13.2 IRC Learning . 217
362 13.2.1 A Simple Example of Imitation/Reinforcement
363 Learning . 218
364 13.2.2 A Simple Example of Corrective Learning. 220
365 13.3 IRC Learning in the PetBrain. 221
366 13.3.1 Introducing Corrective Learning 224
367 13.4 Applying A Similar IRC Methodology to Spontaneous
368 Learning . 224

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 14/22

xiv Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_11

http://dx.doi.org/10.2991/978-94-6239-030-0_11

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_11#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_12

http://dx.doi.org/10.2991/978-94-6239-030-0_12

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_12#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_13

http://dx.doi.org/10.2991/978-94-6239-030-0_13

http://dx.doi.org/10.2991/978-94-6239-030-0_13

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_13#Sec7

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

369 14 Procedure Learning via Adaptively Biased Hillclimbing. 227
370 14.1 Introduction . 227
371 14.2 Hillclimbing. 228
372 14.3 Entity and Perception Filters . 229
373 14.3.1 Entity Filter . 229
374 14.3.2 Entropy Perception Filter 229
375 14.4 Using Action Sequences as Building Blocks 230
376 14.5 Automatically Parametrizing the Program Size Penalty 231
377 14.5.1 Definition of the Complexity Penalty 231
378 14.5.2 Parameterizing the Complexity Penalty 232
379 14.5.3 Definition of the Optimization Problem 233
380 14.6 Some Simple Experimental Results. 234
381 14.7 Conclusion. 237

382 15 Probabilistic Evolutionary Procedure Learning 239
383 15.1 Introduction . 239
384 15.1.1 Explicit Versus Implicit Evolution in CogPrime . . . 241
385 15.2 Estimation of Distribution Algorithms 242
386 15.3 Competent Program Evolution via MOSES 243
387 15.3.1 Statics . 243
388 15.3.2 Dynamics . 247
389 15.3.3 Architecture . 249
390 15.3.4 Example: Artificial Ant Problem. 249
391 15.3.5 Discussion . 254
392 15.3.6 Conclusion . 255
393 15.4 Integrating Feature Selection into the Learning Process. 256
394 15.4.1 Machine Learning, Feature Selection and AGI 257
395 15.4.2 Data- and Feature- Focusable Learning
396 Problems . 258
397 15.4.3 Integrating Feature Selection into Learning 259
398 15.4.4 Integrating Feature Selection into MOSES
399 Learning . 260
400 15.4.5 Application to Genomic Data Classification 261
401 15.5 Supplying Evolutionary Learning
402 with Long-Term Memory . 262
403 15.6 Hierarchical Program Learning. 264
404 15.6.1 Hierarchical Modeling of Composite Procedures
405 in the AtomSpace . 265
406 15.6.2 Identifying Hierarchical Structure in Combo
407 Trees via MetaNodes and Dimensional
408 Embedding . 266
409 15.7 Fitness Function Estimation via Integrative Intelligence 269

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 15/22

Contents xv

http://dx.doi.org/10.2991/978-94-6239-030-0_14

http://dx.doi.org/10.2991/978-94-6239-030-0_14

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_14#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_15

http://dx.doi.org/10.2991/978-94-6239-030-0_15

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec30

http://dx.doi.org/10.2991/978-94-6239-030-0_15#Sec30

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

Part V Declarative Learning

410 16 Probabilistic Logic Networks . 273
411 16.1 Introduction . 273
412 16.2 A Simple Overview of PLN. 274
413 16.2.1 Forward and Backward Chaining 275
414 16.3 First Order Probabilistic Logic Networks. 276
415 16.3.1 Core FOPLN Relationships 277
416 16.3.2 PLN Truth Values . 277
417 16.3.3 Auxiliary FOPLN Relationships 278
418 16.3.4 PLN Rules and Formulas 279
419 16.3.5 Inference Trails. 280
420 16.4 Higher-Order PLN . 281
421 16.4.1 Reducing HOPLN to FOPLN 282
422 16.5 Predictive Implication and Attraction 283
423 16.6 Confidence Decay. 284
424 16.6.1 An Example . 286
425 16.7 Why is PLN a Good Idea?. 287

426 17 Spatio-Temporal Inference . 291
427 17.1 Introduction . 291
428 17.2 Related Work on Spatio-Temporal Calculi. 293
429 17.3 Uncertainty with Distributional Fuzzy Values 296
430 17.4 Spatio-Temporal Inference in PLN 299
431 17.5 Examples . 301
432 17.5.1 Spatiotemporal Rules. 301
433 17.5.2 The Laptop Is Safe from the Rain. 302
434 17.5.3 Fetching the Toy Inside the Upper Cupboard 303
435 17.6 An Integrative Approach to Planning 304

436 18 Adaptive, Integrative Inference Control 307
437 18.1 Introduction . 307
438 18.2 High-Level Control Mechanisms . 307
439 18.2.1 The Need for Adaptive Inference Control 309
440 18.3 Inference Control in PLN . 309
441 18.3.1 Representing PLN Rules as
442 GroundedSchemaNodes . 309
443 18.3.2 Recording Executed PLN Inferences
444 in the Atomspace . 310
445 18.3.3 Anatomy of a Single Inference Step 311
446 18.3.4 Basic Forward and Backward Inference Steps 311
447 18.3.5 Interaction of Forward and Backward Inference . . . 313
448 18.3.6 Coordinating Variable Bindings 313
449 18.3.7 An Example of Problem Decomposition 315

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 16/22

xvi Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_16

http://dx.doi.org/10.2991/978-94-6239-030-0_16

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_16#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_17

http://dx.doi.org/10.2991/978-94-6239-030-0_17

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_17#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_18

http://dx.doi.org/10.2991/978-94-6239-030-0_18

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec11

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

450 18.3.8 Example of Casting a Variable Assignment
451 Problem as an Optimization Problem. 315
452 18.3.9 Backward Chaining via Nested Optimization 317
453 18.4 Combining Backward and Forward Inference Steps
454 with Attention Allocation to Achieve the Same Effect
455 as Backward Chaining (and Even Smarter
456 Inference Dynamics) . 320
457 18.4.1 Breakdown into MindAgents 321
458 18.5 Hebbian Inference Control . 321
459 18.6 Inference Pattern Mining . 325
460 18.7 Evolution as an Inference Control Scheme. 326
461 18.8 Incorporating Other Cognitive Processes into Inference 327
462 18.9 PLN and Bayes Nets . 328

463 19 Pattern Mining . 329
464 19.1 Introduction . 329
465 19.2 Finding Interesting Patterns via Program Learning 330
466 19.3 Pattern Mining via Frequent/Surprising Subgraph Mining . . . 331
467 19.4 Fishgram . 333
468 19.4.1 Example Patterns . 333
469 19.4.2 The Fishgram Algorithm 334
470 19.4.3 Preprocessing . 335
471 19.4.4 Search Process . 336
472 19.4.5 Comparison to Other Algorithms 337

473 20 Speculative Concept Formation. 339
474 20.1 Introduction . 339
475 20.2 Evolutionary Concept Formation . 341
476 20.3 Conceptual Blending . 342
477 20.3.1 Outline of a CogPrime Blending Algorithm 345
478 20.3.2 Another Example of Blending 346
479 20.4 Clustering . 347
480 20.5 Concept Formation via Formal Concept Analysis 347
481 20.5.1 Calculating Membership Degrees
482 of New Concepts . 348
483 20.5.2 Forming New Attributes 348
484 20.5.3 Iterating the Fuzzy Concept Formation Process . . . 349

Part VI Integrative Learning

485 21 Dimensional Embedding . 353
486 21.1 Introduction . 353
487 21.2 Link Based Dimensional Embedding. 355

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 17/22

Contents xvii

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_18#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_19

http://dx.doi.org/10.2991/978-94-6239-030-0_19

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_19#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_20

http://dx.doi.org/10.2991/978-94-6239-030-0_20

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_20#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_21

http://dx.doi.org/10.2991/978-94-6239-030-0_21

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec2

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

488 21.3 Harel and Koren’s Dimensional Embedding Algorithm 356
489 21.3.1 Step 1: Choosing Pivot Points 357
490 21.3.2 Step 2: Similarity Estimation 357
491 21.3.3 Step 3: Embedding . 357
492 21.4 Embedding Based Inference Control 358
493 21.5 Dimensional Embedding and InheritanceLinks 359

494 22 Mental Simulation and Episodic Memory 361
495 22.1 Introduction . 361
496 22.2 Internal Simulations . 362
497 22.3 Episodic Memory . 363

498 23 Integrative Procedure Learning . 367
499 23.1 Introduction . 367
500 23.1.1 The Diverse Technicalities of Procedure
501 Learning in CogPrime . 368
502 23.2 Preliminary Comments on Procedure Map Encapsulation
503 and Expansion . 370
504 23.3 Predicate Schematization . 371
505 23.3.1 A Concrete Example . 374
506 23.4 Concept-Driven Schema and Predicate Creation 375
507 23.4.1 Concept-Driven Predicate Creation 375
508 23.4.2 Concept-Driven Schema Creation 376
509 23.5 Inference-Guided Evolution of Pattern-Embodying
510 Predicates . 377
511 23.5.1 Rewarding Surprising Predicates 377
512 23.5.2 A More Formal Treatment 379
513 23.6 PredicateNode Mining . 380
514 23.7 Learning Schema Maps . 381
515 23.7.1 Goal-Directed Schema Evolution 383
516 23.8 Occam’s Razor . 384

517 24 Map Formation . 389
518 24.1 Introduction . 389
519 24.2 Map Encapsulation . 392
520 24.3 Atom and Predicate Activity Tables 393
521 24.4 Mining the AtomSpace for Maps . 395
522 24.4.1 Frequent Itemset Mining for Map Mining 396
523 24.4.2 Evolutionary Map Detection. 398
524 24.5 Map Dynamics . 398
525 24.6 Procedure Encapsulation and Expansion 399
526 24.6.1 Procedure Encapsulation in More Detail 400
527 24.6.2 Procedure Encapsulation in the Human Brain 401
528 24.7 Maps and Focused Attention . 402

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 18/22

xviii Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_21#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_22

http://dx.doi.org/10.2991/978-94-6239-030-0_22

http://dx.doi.org/10.2991/978-94-6239-030-0_22#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_22#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_22#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_22#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_22#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_22#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_23

http://dx.doi.org/10.2991/978-94-6239-030-0_23

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_23#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_24

http://dx.doi.org/10.2991/978-94-6239-030-0_24

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec11

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

529 24.8 Recognizing and Creating Self-Referential Structures 403
530 24.8.1 Encouraging the Recognition of Self-Referential
531 Structures in the AtomSpace 404

Part VII Communication Between Human and Artificial Minds

532 25 Communication Between Artificial Minds 409
533 25.1 Introduction . 409
534 25.2 A Simple Example Using a PsyneseVocabulary Server 411
535 25.2.1 The Psynese Match Schema 413
536 25.3 Psynese as a Language . 414
537 25.4 Psynese Mindplexes . 415
538 25.4.1 AGI Mindplexes . 416
539 25.5 Psynese and Natural Language Processing 417
540 25.5.1 Collective Language Learning 419

541 26 Natural Language Comprehension . 421
542 26.1 Introduction . 421
543 26.2 Linguistic Atom Types . 424
544 26.3 The Comprehension and Generation Pipelines 424
545 26.4 Parsing with Link Grammar . 425
546 26.4.1 Link Grammar Versus Phrase Structure
547 Grammar . 428
548 26.5 The RelEx Framework for Natural Language
549 Comprehension. 429
550 26.5.1 RelEx2Frame: Mapping Syntactico-Semantic
551 Relationships into FrameNet Based Logical
552 Relationships . 431
553 26.5.2 A Priori Probabilities for Rules. 432
554 26.5.3 Exclusions Between Rules 433
555 26.5.4 Handling Multiple Prepositional Relationships 433
556 26.5.5 Comparatives and Phantom Nodes 434
557 26.6 Frame2Atom . 435
558 26.6.1 Examples of Frame2Atom 437
559 26.6.2 Issues Involving Disambiguation. 440
560 26.7 Syn2Sem: A Semi-Supervised Alternative to RelEx
561 and RelEx2Frame . 441
562 26.8 Mapping Link Parses into Atom Structures 442
563 26.8.1 Example Training Pair . 443
564 26.9 Making a Training Corpus . 443
565 26.9.1 Leveraging RelEx to Create a Training Corpus. . . . 443
566 26.9.2 Making an Experience Based Training Corpus 444
567 26.9.3 Unsupervised, Experience Based
568 Corpus Creation . 444

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 19/22

Contents xix

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_24#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_25

http://dx.doi.org/10.2991/978-94-6239-030-0_25

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_25#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_26

http://dx.doi.org/10.2991/978-94-6239-030-0_26

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec21

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

569 26.10 Limiting the Degree of Disambiguation Attempted 444
570 26.11 Rule Format . 446
571 26.11.1 Example Rule . 446
572 26.12 Rule Learning . 447
573 26.13 Creating a Cyc-Like Database via Text Mining 447
574 26.14 PROWL Grammar . 448
575 26.14.1 Brief Review of Word Grammar. 450
576 26.14.2 Word Grammar’s Logical Network Model 451
577 26.14.3 Link Grammar Parsing Versus Word
578 Grammar Parsing . 452
579 26.14.4 Contextually Guided Greedy Parsing
580 and Generation Using Word Link Grammar 457
581 26.15 Aspects of Language Learning . 458
582 26.15.1 Word Sense Creation. 459
583 26.15.2 Feature Structure Learning 459
584 26.15.3 Transformation and Semantic Mapping
585 Rule Learning. 460
586 26.16 Experiential Language Learning . 460
587 26.17 Which Path(s) Forward? . 462

588 27 Language Learning via Unsupervised Corpus Analysis 463
589 27.1 Introduction . 463
590 27.2 Assumed Linguistic Infrastructure. 465
591 27.3 Linguistic Content to be Learned . 468
592 27.3.1 Deeper Aspects of Comprehension 470
593 27.4 A Methodology for Unsupervised Language Learning
594 from a Large Corpus . 470
595 27.4.1 A High Level Perspective on Language
596 Learning . 471
597 27.4.2 Learning Syntax . 473
598 27.4.3 Learning Semantics . 478
599 27.5 The Importance of Incremental Learning 483
600 27.6 Integrating Language Learned via Corpus Analysis
601 into CogPrime’s Experiential Learning 483

602 28 Natural Language Generation . 485
603 28.1 Introduction . 485
604 28.2 SegSim for Sentence Generation. 486
605 28.2.1 NLGen: Example Results 489
606 28.3 Experiential Learning of Language Generation. 492
607 28.4 Sem2Syn . 493
608 28.5 Conclusion. 493

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 20/22

xx Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec26

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec27

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec28

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec29

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec30

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec30

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec30

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec33

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec33

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec33

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec34

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec34

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec35

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec35

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec36

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec36

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec37

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec37

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec37

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec38

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec38

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec39

http://dx.doi.org/10.2991/978-94-6239-030-0_26#Sec39

http://dx.doi.org/10.2991/978-94-6239-030-0_27

http://dx.doi.org/10.2991/978-94-6239-030-0_27

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_27#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_28

http://dx.doi.org/10.2991/978-94-6239-030-0_28

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_28#Sec6

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

609 29 Embodied Language Processing . 495
610 29.1 Introduction . 495
611 29.2 Semiosis . 496
612 29.3 Teaching Gestural Communication 499
613 29.4 Simple Experiments with Embodiment
614 and Anaphor Resolution . 504
615 29.5 Simple Experiments with Embodiment
616 and Question Answering . 505
617 29.5.1 Preparing/Matching Frames 506
618 29.5.2 Frames2RelEx . 507
619 29.5.3 Example of the Question Answering Pipeline 508
620 29.5.4 Example of the PetBrain Language
621 Generation Pipeline . 509
622 29.6 The Prospect of Massively Multiplayer
623 Language Teaching . 510

624 30 Natural Language Dialogue . 513
625 30.1 Introduction . 513
626 30.1.1 Two Phases of Dialogue System Development 514
627 30.2 Speech Act Theory and its Elaboration 515
628 30.3 Speech Act Schemata and Triggers 515
629 30.3.1 Notes Toward Example SpeechActSchema. 518
630 30.4 Probabilistic Mining of Trigger Contexts 521
631 30.5 Conclusion. 522

Part VIII From Here to AGI

632 31 Summary of Argument for the CogPrime Approach 527
633 31.1 Introduction . 527
634 31.2 Multi-Memory Systems . 528
635 31.3 Perception, Action and Environment 529
636 31.4 Developmental Pathways . 530
637 31.5 Knowledge Representation. 531
638 31.6 Cognitive Processes . 531
639 31.6.1 Uncertain Logic for Declarative Knowledge. 531
640 31.6.2 Program Learning for Procedural Knowledge 533
641 31.6.3 Attention Allocation . 534
642 31.6.4 Internal Simulation and Episodic Knowledge 535
643 31.6.5 Low-Level Perception and Action 535
644 31.6.6 Goals. 536
645 31.7 Fulfilling the ‘‘Cognitive Equation’’ 537
646 31.8 Occam’s Razor . 537
647 31.8.1 Mind Geometry . 538

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 21/22

Contents xxi

http://dx.doi.org/10.2991/978-94-6239-030-0_29

http://dx.doi.org/10.2991/978-94-6239-030-0_29

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_29#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_30

http://dx.doi.org/10.2991/978-94-6239-030-0_30

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_30#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_31

http://dx.doi.org/10.2991/978-94-6239-030-0_31

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec1

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec2

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec3

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec4

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec5

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec6

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec7

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec8

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec9

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec10

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec11

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec12

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec13

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec14

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec15

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec15

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

648 31.9 Cognitive Synergy . 539
649 31.9.1 Synergies that Help Inference 540
650 31.10 Synergies that Help MOSES . 540
651 31.10.1 Synergies that Help Attention Allocation 541
652 31.10.2 Further Synergies Related to Pattern Mining 541
653 31.10.3 Synergies Related to Map Formation. 541
654 31.11 Emergent Structures and Dynamics. 542
655 31.12 Ethical AGI . 543
656 31.13 Toward Superhuman General Intelligence 544
657 31.13.1 Conclusion . 545

658 References . 547

659 Index . 555
660

Layout: T1 Standard SC Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Chapter No.: FM Date: 1-11-2013 Page: 22/22

xxii Contents

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec16

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec17

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec18

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec19

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec20

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec21

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec22

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec23

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec24

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec25

http://dx.doi.org/10.2991/978-94-6239-030-0_31#Sec25

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part I
2 Architectural and Representational
3 Mechanisms

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part I Date: 29-10-2013 Page: 1/1

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title The OpenCog Framework

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po, Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract The primary burden of this book is to explain the CogPrime architecture for AGI—the broad outline of the
design, the main dynamics it’s intended to display once complete, and the reasons why we believe it will
be capable of leading to general intelligence at the human level and beyond.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 1
The OpenCog Framework

AQ1

1.1 Introduction0

The primary burden of this book is to explain the CogPrime architecture for AGI—1

the broad outline of the design, the main dynamics it’s intended to display once2

complete, and the reasons why we believe it will be capable of leading to general3

intelligence at the human level and beyond.4

The crux of CogPrime lies in its learning algorithms and how they are intended to5

interact together synergetically, making use of CogPrime’s knowledge representation6

and other tools. Before we can get to this, however, we need to elaborate some of7

the “plumbing” within which this learning dynamics occurs. We will start out with a8

brief description of the OpenCog framework in which implementation of CogPrime9

has been, gradually and incrementally, occurring for the last few years.10

1.1.1 Layers of Abstraction in Describing Artificial Minds11

There are multiple layers intervening between a conceptual theory of mind and a12

body of source code. How many layers to explicitly discuss is a somewhat arbitrary13

decision, but one way to picture it is exemplified in Table 1.1.14

In Vol. 5 of this work we have concerned ourselves mainly with levels 5 and15

6 in the table: mathematical/conceptual modeling of cognition and philosophy of16

mind (with occasional forays into levels 3 and 4). Most of Vol. 6, on the other hand,17

deals with level 4 (mathematical/conceptual AI design), verging into level 3 (high-18

level software design). This chapter however will focus on somewhat lower-level19

material, mostly level 3 with some dips into level 2. We will describe the basic20

architecture of CogPrime as a software system, implemented as “OpenCogPrime”21

within the OpenCog Framework (OCF). The reader may want to glance back at22

Chap. 1 of Vol. 5 before proceeding through this one, to get a memory-refresh on23

basic CogPrime terminology. Also, OpenCog and OpenCogPrime are open-source,24

B. Goertzel et al., Engineering General Intelligence, Part 2, 3
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_1,
© Atlantis Press and the authors 2014

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4 1 The OpenCog Framework

Table 1.1 Levels of abstractions in CogPrime’s implementation and design

Level of abstraction Description/example

1 Source code
2 Detailed software design
3 Software architecture Largely programming-language-independent, but

not hardware-architecture-independent: much of
the material in this chapter, for example, and most
of the OpenCog framework

4 Mathematical and conceptual AI design e.g., The sort of characterization of CogPrime
given in most of this volume of this book

5 Abstract mathematical modeling of cognition e.g., The SRAM model discussed in Chap. 7 of
Vol. 5, which could be used to inspire or describe
many different AI systems

6 Philosophy of mind e.g. Patternism, the Mind-World Correspondence
Principle

so the reader who wishes to dig into the source code (mostly C++, some Python and25

Scheme) is welcome to; directions to find the code are on the http://www.opencog.26

org website.27

1.1.2 The OpenCog Framework28

The OpenCog Framework forms a bridge between the mathematical structures and29

dynamics of CogPrime’s concretely implemented mind, and the nitty-gritty realities30

of modern computer technology. While CogPrime could in principle be implemented31

in a quite different infrastructure, in practice the CogPrime design has been developed32

closely in conjunction with OpenCog, so that a qualitative understanding of the nature33

of the OCF is fairly necessary for an understanding of how CogPrime is intended to34

function, and a detailed understanding of the OCF is necessary for doing concrete35

implementation work on CogPrime.36

Marvin Minsky, in a personal conversation with one of the authors (Goertzel),37

once expressed the opinion that a human-level general intelligence could probably38

be implemented on a 486 PC, if we just knew the algorithm. We doubt this is the39

case—at least not unless the 486 PC were supplied with masses of external memory40

and allowed to proceed much, much slower than any human being—and it is certainly41

not the case for CogPrime. By current computing hardware standards, a CogPrime42

system is a considerable resource hog. And it will remain so for a number of years,43

even considering technology progress.44

It is one of the jobs of the OCF to manage the system’s gluttonous behavior. It is45

the software layer that abstracts the real world efficiency compromises from the rest46

of the system; this is why we call it a “Mind OS”: it provides services, rules, and47

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_7

http://www.opencog.org

http://www.opencog.org

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.1 Introduction 5

protection to the Atoms and cognitive processes (see Sect. 1.4) that live on top of it,48

which are then allowed to ignore the software architecture they live on.49

And so, the nature of the OCF is strongly influenced by the quantitative require-50

ments imposed on the system, as well as the general nature of the structure and51

dynamics that it must support. The large number and great diversity of Atoms needed52

to create a significantly intelligent CogPrime, demands that we pay careful attention53

to such issues as concurrent, distributed processing, and scalability in general. The54

number of Nodes and Links that we will need in order to create a reasonably com-55

plete CogPrime is still largely unknown. But our experiments with learning, natural56

language processing, and cognition over the past few years have given us an intuition57

for the question. We currently believe that we are likely to need billions—but prob-58

ably not trillions, and almost surely not quadrillions—of Atoms in order to achieve59

a high degree of general intelligence. Hundreds of millions strikes us as possible but60

overly optimistic. In fact we have already run CogPrime systems utilizing hundreds61

of millions of Atoms, though in a simplified dynamical regime with only a couple62

very simple processes acting on most of them.63

The operational infrastructure of the OCF is an area where pragmatism must reign64

over idealism. What we describe here is not the ultimate possible “mind operating65

system” to underlie a CogPrime system, but rather a workable practical solution66

given the hardware, networking and software infrastructure readily available today67

at reasonable prices. Along these lines, it must be emphasized that the ideas pre-68

sented in this chapter are the result of over a decade of practical experimentation by69

the authors and their colleagues with implementations of related software systems.70

The journey began in earnest in 1997 with the design and implementation of the71

Webmind AI Engine at Intelligenesis Corp., which itself went through a few major72

design revisions; and then in 2001–2002 the Novamente Cognition Engine was archi-73

tected and implemented, and evolved progressively until 2008, when a subset of it74

was adapted for open-sourcing as OpenCog. Innumerable mistakes were made, and75

lessons learned, along this path. The OCF as described here is significantly different,76

and better, than these previous architectures, thanks to these lessons, as well as to the77

changing landscape of concurrent, distributed computing over the past few years.78

The design presented here reflects a mix of realism and idealism, and we haven’t79

seen fit here to describe all the alternatives that were pursued on the route to what80

we present. We don’t claim the approach we’ve chosen is ideal, but it’s in use now81

within the OpenCog system, and it seems both workable in practice and capable of82

effectively supporting the entire CogPrime design. No doubt it will evolve in some83

respects as implementation progresses; one of the principles kept in mind during the84

design and development of OpenCog was modularity, enabling substantial modifi-85

cations to particular parts of the framework to occur without requiring wholesale86

changes throughout the codebase.87

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6 1 The OpenCog Framework

1.2 The OpenCog Architecture88

1.2.1 OpenCog and Hardware Models89

The job of the OCF is closely related to the nature of the hardware on which it runs.90

The ideal hardware platform for CogPrime would be a massively parallel hardware91

architecture, in which each Atom was given its own processor and memory. The92

closest thing would have been the Connection Machine [Hil89]: a CM5 was once93

built with 64000 processors and local RAM for each processor. But even 6400094

processors wouldn’t be enough for a highly intelligent CogPrime to run in a fully95

parallelized manner, since we’re sure we need more than 64000 Atoms.96

Connection Machine style hardware seems to have perished in favor of more97

standard SMP (Symmetric Multi-Processing) machines. It is true that each year we98

see SMP machines with more and more processors on the market, and more and99

more cores per processor. However, the state of the art is still in the hundreds of100

cores range, many orders of magnitude from what would be necessary for a one101

Atom per processor CogPrime implementation.102

So, at the present time, technological and financial reasons have pushed us to103

implement the OpenCog system using a relatively mundane and standard hardware104

architecture. If the CogPrime project is successful in the relatively near term, the first105

human-level OpenCogPrime system will most likely live on a network of high-end106

commodity SMP machines. These are machines with dozens of gigabytes of RAM107

and several processor cores, perhaps dozens but not thousands. A highly intelligent108

CogPrime would require a cluster of dozens and possibly hundreds or thousands of109

such machines. We think it’s unlikely that tens of thousands will be required, and110

extremely unlikely that hundreds of thousands will be.111

Given this sort of architecture, we need effective ways to swap Atoms back and112

forth between disk and RAM, and carefully manage the allocation of processor time113

among the various cognitive processes that demand it. The use of a widely-distributed114

network of weaker machines for peripheral processing is a serious possibility, and we115

have some detailed software designs addressing this option; but for the near future116

we believe that this can best be used as augmentation to core CogPrime processing,117

which must remain on a dedicated cluster.118

Of course, the use of specialized hardware is also a viable possibility, and we have119

considered a host of possibilities such as120

• True supercomputers like those created by IBM or Cray (which these days are121

distributed systems, but with specialized, particularly efficient interconnection122

frameworks and overall control mechanisms).123

• GPU supercomputers such as the Nvidia Tesla (which are currently being used124

for vision processing systems considered for hybridization with OCP), such as125

DeSTIN and Hugo de Garis’s Parcone.126

• Custom chips designed to implement the various CogPrime algorithms and data127

structures in hardware.128

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.2 The OpenCog Architecture 7

• More speculatively, it might be possible to use evolutionary quantum computing or129

adiabatic quantum computing a la Dwave (http://www.dwave.com) to accelerate130

CogPrime procedure learning.131

All these possibilities and many more are exciting to envision, but the CogPrime132

architecture does not require any of them in order to be successful.133

1.2.2 The Key Components of the OpenCog Framework134

Given the realities of implementing CogPrime on clustered commodity servers, as135

we have seen above, the three key questions that have to be answered in the OCF136

design are:137

1. How do we store CogPrime’s knowledge?138

2. How do we enable cognitive processes to act on that knowledge, refining and139

improving it?140

3. How do we enable scalable, distributed knowledge storage and cognitive process-141

ing of that knowledge?142

The remaining sections of this chapter are dedicated to answering each of these143

questions in more detail.144

While the basic landscape of concurrent, distributed processing is largely the145

same as it was a decade ago—we’re still dealing with distributed networks of multi-146

processor von Neumann machines—we can draw on advancements in both computer147

architecture and software. The former is materialized on the increasing availability148

of multiple real and virtual cores in commodity processors. The latter reflects the149

emergence of a number of tools and architectural patterns, largely thanks to the rise150

of “big data” problems and businesses. Companies and projects dealing with massive151

datasets face challenges that aren’t entirely alike those of building CogPrime, but152

which share many useful similarities.153

These advances are apparent mostly in the architectute of the AtomSpace, a distrib-154

uted knowledge store for efficient storage of hypergraphs and its use by CogPrime’s155

cognitive dynamics. The AtomSpace, like many NoSQL datastores, is heavily dis-156

tributed, utilizing local caches for read and write operations, and a special purpose157

design for eventual consistency guarantees.158

We also attempt to minimize the complexities of multi-threading in the scheduling159

of cognitive dynamics, by allowing those to be deployed either as agents sharing a160

single OS process, or, preferably, as processes of their own. Cognitive dynamics161

communicate through message queues, which are provided by a sub-system that162

hides the deployment decision, so the messages exchanged are the same whether163

delivered within a process, to another process in the same machine, or to a process164

in another machine in the cluster.165

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://www.dwave.com

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8 1 The OpenCog Framework

1.3 The AtomSpace166

As alluded to above and in Chap. 13 of Vol. 5, and discussed more fully in Chap. 2167

below, the foundation of CogPrime’s knowledge representation is the Atom, an object168

that can be either a Node or a Link. CogPrime’s hypergraph is implemented as169

the AtomSpace, a specialized datastore that comes along with an API designed170

specifically for CogPrime’s requirements.171

1.3.1 The Knowledge Unit: Atoms172

Atoms are used to represent every kind of knowledge in the system’s memory in one173

way or another. The particulars of Atoms and how they represent knowledge will be174

discussed in later chapters; here we present only a minimal description in order to175

motivate the design of the AtomSpace. From that perspective, the most important176

properties of Atoms are:177

• Every Atom has an AtomHandle, which is a universal ID across a CogPrime178

deployment (possibly involving thousands of networked machines). The Atom-179

Handles are the keys for acessing Atoms in the AtomSpace, and once a handle is180

assigned to an Atom it can’t be changed or reused.181

• Atoms have TruthValue and AttentionValue entities associated with them, each182

of which are small collections of numbers; there are multiple versions of truth183

values, with varying degrees of detail. TruthValues are context-dependent, and184

useful Atoms will typically have multiple TruthValues, indexed by context.185

• Some Atoms are nodes, and may have names.186

• Atoms that are links will have a list of targets, of variable size (as in CogPrime’s187

hypergraph links may connect more than two nodes).188

Some Atom attributes are immutable, such as Node names and, most importantly,189

Link targets, called outgoing sets in AtomSpace lingo. One can remove a Link, but190

not change its targets. This enables faster implementation of some neighborhood191

searches, as well as indexing. Truth and attention values, on the other hand, are192

mutable, an essential requirement for CogPrime.193

For performance reasons, some types of knowledge have alternative represen-194

tations. These alternative representations are necessary for space or speed reasons,195

but knowledge stored that way can always be translated back into Atoms in the196

AtomSpace as needed. So, for instance, procedures are represented as program trees197

in a ProcedureRepository, which allows for faster execution, but the trees can be198

expanded into a set of Nodes and Links if one wants to do reasoning on a specific199

program.200

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-13

http://dx.doi.org/10.2991/978-94-6239-030-0_2

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.3 The AtomSpace 9

1.3.2 AtomSpace Requirements and Properties201

The major high-level requirements for the AtomSpace are the following ones:202

• Store Atoms indexed by their immutable AtomHandles as compactly as possible,203

while still enabling very efficient modification of the mutable properties of an204

Atom (TruthValues and AttentionValues).205

• Perform queries as fast as possible.206

• Keep the working set of all Atoms currently being used by CogPrime’s cognitive207

dynamics in RAM.208

• Save and restore hypergraphs to disk, a more traditional SQL or non-SQL database,209

or other structure such as binary files, XML, etc.210

• Hold hypergraphs consisting of billions or trillions of Atoms, scaling up to211

petabytes of data.212

• Be transparently distributable across a cluster of machines.213

The design trade-offs in the AtomSpace implementation are driven by the needs214

of CogPrime. The datastore is implemented in a way that maximizes the perfor-215

mance of the cognitive dynamics running on top of it. From this perspective, the216

AtomSpace differs from most datastores, as the key decisions aren’t made in terms217

of flexibility, consistency, reliability and other common criteria for databases. It is a218

very specialized database. Among the factors that motivate the AtomSpace’s design,219

we can highlight a few:220

1. Atoms tend to be small objects, with very few exceptions (links with many targets221

or Atoms with many different context-derived TruthValues).222

2. Atom creation and deletion are common events, and occur according to complex223

patterns that may vary a lot over time, even for a particular CogPrime instance.224

3. Atoms involved in CogPrime’s cognitive dynamics at any given time need to live225

in RAM. However, the system still needs the ability to save sets of Atoms to disk226

in order to preserve RAM, and then retrive those later when they get contextually227

relevant.228

4. Some Atoms will remain around for a really long time, others will be ephemeral229

and get removed shortly after they’re created. Removal may be to disk, as outlined230

above, or plain deletion.231

Besides storing Atoms, the AtomSpace also contains a number of indices for232

fast Atom retrieval according to several criteria. It can quickly search for Atoms233

given their type, importance, truth value, arity, targets (for Links), name (for Nodes),234

and any combination of the above. These are built-in indexes. The AtomSpace also235

allows cognitive processes to create their own indexes, based on the evaluation of a236

Procedure over the universe of Atoms, or a subset of that universe specified by the237

process responsible for the index.238

The AtomSpace also allows pattern matching queries for a given Atom structure239

template, which allows for fast search for small subgraphs displaying some desir-240

able properties. In addition to pattern matching, it provides neighborhood searches.241

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 1 The OpenCog Framework

Although it doesn’t implement any graph-traversal primitives, it’s easy for cognitive242

processes to do so on top of the pattern matching and neighborhood primitives.243

Note that, since CogPrime’s hypergraph is quite different from a regular graph,244

using a graph database without modification would probably be inadequate. While245

it’s possible to automatically translate a hypergraph into a regular graph, that process246

is expensive for large knowledge bases, and leads to higher space requirements,247

reducing the overall system’s scalability.248

In terms of database taxonomy, the AtomSpace lies somewhere between a key-249

value store and a document store, as there is some structure in the contents of each250

value (an Atom’s properties are well defined, and listed above), but no built-in flex-251

ibility to add more contents to an existing Atom.252

We will now discuss the above requirements in more detail, starting with querying253

the AtomSpace, followed by persistence to disk, and then handling of specific forms254

of knowledge that are best handled by specialized stores.255

1.3.3 Accessing the Atomspace256

The AtomSpace provides an API, which allows the basic operations of creating new257

Atoms, updating their mutable properties, searching for Atoms and removing Atoms.258

More specifically, the API supports the following operations:259

• Create and store a new Atom. There are special methods for Nodes and Links,260

in the latter case with multiple convenience versions depending on the number of261

targets and other properties of the link.262

• Remove an Atom. This requires the validation that no Links currently point to that263

Atom, otherwise they’d be left dangling.264

• Look up one or more Atoms. This includes several variants, such as:265

– Look up an Atom by AtomHandle;266

– Look up a Node by name;267

– Find links with an Atom as target;268

– Pattern matching, i.e., find Atoms satisfying some predicate, which is designed269

as a “search criteria” by some cognitive process, and results in the creation of a270

specific index for that predicate;271

– Neighborhood search, i.e., find Atoms that are within some radius of a given272

centroid Atom;273

– Find Atoms by type (this can be combined with the previous queries, resulting274

in type specific versions);275

– Find Atoms by some AttentionValue criteria, such as the top N most important276

Atoms, or those with importance above some threshold (can also be combined277

with previous queries);278

– Find Atoms by some TruthValue criteria, similar to the previous one (can also279

be combined with other queries);280

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.3 The AtomSpace 11

– Find Atoms based on some temporal or spatial association, a query that relies281

on the specialized knowledge stores mentioned below;282

Queries can be combined, and the Atom type, AttentionValue and TruthValue283

criteria are often used as filters for other queries, preventing the result set size284

from exploding.285

• Manipulate an Atom, retrieving or modifying its AttentionValue and TruthValue.286

In the modification case, this causes the respective indexes to be updated.287

1.3.4 Persistence288

In many planned CogPrime deployment scenarios, the amount of knowledge that289

needs to be stored is too vast to fit in RAM, even if one considers a large cluster of290

machines hosting the AtomSpace and the cognitive processes. The AtomSpace must291

then be able to persist subsets of that knowledge to disk, and reload them later when292

necessary.293

The decision of whether to keep an Atom in RAM or remove it is made based on its294

AttentionValue, through the process of economic attention allocation that is the topic295

of Chap. 5. AttentionValue determines how important an Atom is to the system, and296

there are multiple levels of importance. For the persistence decisions, the ones that297

matter are Long Term Importance (LTI) and Very Long Term Importance (VLTI).298

LTI is used to estimate the probability that the Atom will be necessary or useful299

in the not too distant future. If this value is low, below a threshold i1, then it is safe300

to remove the Atom from RAM, a process called forgetting. When the decision to301

forget an Atom has been made, VLTI enters the picture. VLTI is used to estimate302

the probability that the Atom will be useful eventually at some distant point in the303

future. If VLTI is high enough, the forgotten Atom is persisted to disk so it can be304

reloaded. Otherwise, the Atom is permanently forgotten.305

When an Atom has been forgotten, a proxy is kept in its place. The proxy is more306

compact than the original Atom, preserving only a crude measure of its LTI. When307

the proxy’s LTI increases above a second threshold i2, the system understands that308

the Atom has become relevant again, and loads it from disk.309

Eventually, it may happen that the proxy doesn’t become important enough over a310

very long period of time. In this case, the system should remove even the proxy, if its311

Long Term Importance (LTI) is below a third threshold i3. Other actions, usually taken312

by the system administrator, can cause the removal of Atoms and their proxies from313

RAM. For instance, in a CogPrime system managing information about a number314

of users of some information system, the deletion of a user from the system would315

cause all that user’s specific Atoms to be removed.316

When Atoms are saved to disk and have no proxies in RAM, they can only be317

reloaded by the system administrator. When reloaded, they will be disconnected from318

the rest of the AtomSpace, and should be given special attention in order to pursue319

the creation of new Links with the other Atoms in the system.320

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

12 1 The OpenCog Framework

It’s important that the values of i1, i2, and i3 be set correctly. Otherwise, one or321

more of the following problems may arise:322

• If i1 and i2 are too close, the system may spend a lot of resources with saving and323

loading Atoms.324

• If i1 is set too high, important Atoms will be excluded from the system’s dynamics,325

decreasing its intelligence.326

• If i3 is set too high, the system will forget very quickly and will have to spend327

resources re-creating necessary but no longer available evidence.328

• If either i1 or i3 is set too low, the system will consume significantly more resources329

than it needs to with knowledge store, sacrificing cognitive processes.330

Generally, we want to enforce a degree of hysteresis for the freezing and defrosting331

process. What we mean is that:332

i2 − i1 > c1 > 0333

334

i1 − i3 > c2 > 0335

This ensures that when Atoms are reloaded, their importance is still above the thresh-336

old for saving, so they will have a chance to be part of cognitive dynamics and become337

more important, and won’t be removed again too quickly. It also ensures that saved338

Atoms stay in the system for a period of time before their proxies are removed and339

they’re definitely forgotten.340

Another important consideration is that forgetting individual Atoms makes little341

sense, because, as pointed out above, Atoms are relatively small objects. So the342

forgetting process should prioritize the removal of clusters of highly interconnected343

Atoms whenever possible. In that case, it’s possible that a large subset of those344

Atoms will only have relations within the cluster, so their proxies aren’t needed and345

the memory savings are maximized.346

1.3.5 Specialized Knowledge Stores347

Some specific kinds of knowledge are best stored in specialized data structures, which348

allow big savings in space, query time, or both. The information provided by these349

specialized stores isn’t as flexible as it would be if the knowledge were stored in full350

fledged Node and Link form, but most of the time CogPrime doesn’t need the fully351

flexible format. Translation between the specialized formats and Nodes and Links is352

always possible, when necessary.353

We note that the ideal set of specialized knowledge stores is application domain354

specific. The stores we have deemed necessary reflect the pre-school based roadmap355

towards AGI, and are likely sufficient to get us through most of that roadmap, but356

not sufficient nor particularly adequate for an architecture where self-modification357

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.3 The AtomSpace 13

plays a key role. These specialized stores are a pragmatic compromise between358

performance and formalism, and their existence and design would need to be revised359

once CogPrime is mostly functional.360

1.3.5.1 Procedure Repository361

Procedural knowledge, meaning knowledge that can be used both for the selection362

and execution of actions, has a specialized requirement—this knowledge needs to be363

executable by the system. While it will be possible, and conceptually straightforward,364

to execute a procedure that is stored as a set of Atoms in the AtomSpace, it is much365

simpler, faster, and safer to rely on a specialized repository.366

Procedural knowledge in CogPrime is stored as programs in a special-purpose367

LISP-like programming language called Combo. The motivation and details of this368

language are the subject of Chap. 3.369

Each Combo program is associated with a Node (a GroundedProcedureNode, to370

be more precise), and the AtomHandle of that Node is used to index the procedure371

repository, where the executable version of the program is kept, along with specifi-372

cations of the necessary inputs for its evaluation and what kind of output to expect.373

Combo programs can also be saved to disk and loaded, like regular Atoms. There is374

a text representation of Combo for this purpose.375

Program execution can be very fast, or, in cognitive dynamics terms, very slow, if376

it involves interacting with the external world. Therefore, the procedure repository377

should also facilitate the storage of program states during the execution of procedures.378

Concurrent execution of many procedures is possible with no significant overhead.379

1.3.5.2 3D Space Map380

In the AGI Preschool setting, CogPrime is embodied in a three-dimensional world381

(either a real one, in which it controls a robot, or a virtual one, in which it controls382

an avatar). This requires the efficient storage and querying of vast amounts of spatial383

data, including very specialized queries about the spacial interrelationship between384

entities. This spatial data is a key form of knowledge for CogPrime’s world percep-385

tion, and it also needs to be accessible during learning, action selection, and action386

execution.387

All spatial knowledge is stored in a 3D Space Map, which allows for fast queries388

about specific regions of the world, and for queries about the proximity and relative389

placement of objects and entities. It can be used to provide a coarse-grained object390

level perception for the AtomSpace, or it can be instrumental in supporting a lower391

level vision layer in which pixels or polygons are used as the units of perception.392

In both cases, the knowledge stored in the 3D Space Map can be translated into393

full-fledged Atoms and Links through the AtomHandles.394

One characteristic feature of spatial perception is that vast amounts of data are395

generated constantly, but most of it is very quickly forgotten. The mind abstracts the396

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_3

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14 1 The OpenCog Framework

perceptual data into the relevant concepts, which are linked with other Atoms, and397

most of the underlying information can then be discarded. The process is repeated398

at a high frequency as long as something novel is being perceived in the world. 3D399

Space Map is then optimized for quick inserts and deletes.400

1.3.5.3 Time Server401

Similarly to spatial information, temporal information poses challenges for a402

hypergraph-based storage. It can be much more compactly stored in specific data403

structures, which also allow for very fast querying. The Time Server is the special-404

ized structure for storing and querying temportal data in CogPrime.405

Temporal information can be stored by any cognitive process, based on its own406

criteria for determining that some event should be remembered in a specific temporal407

context in the future. This can include the perception of specific events, or the agents408

participation in those, such as the first time it meets a new human teacher. It can409

also include a collection of concepts describing specific contexts in which a set of410

actions has been particularly useful. The possibilities are numerous, but from the411

Time Server perspective, all equivalent. They add up to associating a time point or412

time interval with a set of Atoms.413

The Time Server is a bi-directional storage, as AtomHandles can be used as keys,414

but also as objects indexed by time points or time intervals. In the former case, the415

Time Server tells us when an Atom was associated with temporal data. In the latter416

case, it tells us, for a given time point or interval, which Atoms have been marked as417

relevant.418

Temporal indexing can be based on time points or time intervals. A time point419

can be at any granularity: from years to sub-seconds could be useful. A time interval420

is simply a set of two points, the second being necessary after the first one, but their421

granularities not necessarily the same. The temporal indexing inside the Time Server422

is hierarchical, so one can query for time points or intervals in granularities other423

than the ones originally used when the knowledge was first stored.424

1.3.5.4 System Activity Table Set425

The last relevant specialized store is the System Activity Table Set, which is described426

in more detail in Chap. 5. This set of tables records, with fine-grained temporal427

associations, the most important activities that take place inside CogPrime. There are428

different tables for recording cognitive process activity (at the level of MindAgents, to429

be described in the next section), for maintaining a history of the level of achievement430

of each important goal in the system, and for recording other important aspects of431

the system state, such as the most important Atoms and contexts.432

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.4 MindAgents: Cognitive Processes 15

1.4 MindAgents: Cognitive Processes433

The AtomSpace holds the system’s knowledge, but those Atoms are inert. How is434

that knowledge used and useful? That is the province of cognitive dynamics. These435

dynamics, in a CogPrime system, can be considered on two levels.436

First, we have the cognitive processes explicitly programmed into CogPrime’s437

source code. These are what we call Concretely-Implemented Mind Dynamics, or438

CIM-Dynamics. Their implementation in software happens through objects called439

MindAgents. We use the term CIM-Dynamic to discuss a conceptual cognitive440

process, and the term MindAgents for its actual implementation and execution441

dynamics.442

The second level corresponds to the dynamics that emerge through the system’s443

self-organizing dynamics, based on the cooperative activity of the CIM-Dynamics444

on the shared AtomSpace.445

Most of the material in the following chapters is concerted with particular CIM-446

Dynamics in the CogPrime system. In this section we will simply give some gen-447

eralities about the CIM-Dynamics as abstract processes and as software processes,448

which are largely independent of the actual AI contents of the CIM-Dynamics. In449

practice the CIM-Dynamics involved in a CogPrime system are fairly stereotyped in450

form, although diverse in the actual dynamics they induce.451

1.4.1 A Conceptual View of CogPrime Cognitive Processes452

We return now to the conceptual trichotomy of cognitive processes presented in453

Chap.4 of Vol. 5, according to which CogPrime cognitive processes may be divided454

into:455

• Control processes;456

• Global cognitive processes;457

• Focused cognitive processes.458

In practical terms, these may be considered as three categories of CIM-Dynamic.459

Control Process CIM-Dynamics are hard to stereotype. Examples are the process460

of homeostatic parameter adaptation of the parameters associated with the various461

other CIM-Dynamics, and the CIM-Dynamics concerned with the execution of pro-462

cedures, especially those whose execution is made lengthy by the interactions with463

the external world.464

Control Processes tend to focus on a limited and specialized subset of Atoms or465

other entities, and carry out specialized mechanical operations on them (e.g. adjusting466

parameters, interpreting procedures). To an extent, this may be considered a “grab467

bag” category containing CIM-Dynamics that are not global or focused cognitive468

processes according to the definitions of the latter two categories. However, it is a469

nontrivial observation about the CogPrime system that the CIM-Dynamics that are470

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_4

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16 1 The OpenCog Framework

not global or focused cognitive processes are all explicitly concerned with system471

control in some way or another, so this grouping makes sense.472

Global and Focused Cognitive Process CIM-Dynamics all have a common aspect473

to their structure. Then, there are aspects in which Global versus Focused CIM-474

Dynamics diverge from each other in stereotyped ways.475

In most cases, the process undertaken by a Global or Focused CIM-Dynamic476

involves two parts: a selection process and an actuation process. Schematically, such477

a CIM-Dynamic typically looks something like this:478

1. Fetch a set of Atoms that it is judged will be useful to process, according to some479

selection process.480

2. Operate on these Atoms, possibly together with previously selected ones (this is481

what we sometimes call the actuation process of the CIM-Dynamic).482

3. Go back to step 1.483

The major difference between Global and Focused cognitive processes lies in the484

selection process. In the case of a Global process, the selection process is very broad,485

sometimes yielding the whole AtomSpace, or a significant subset of it. This means486

that the actuation process must be very simple, or the activation of this CIM-Dynamic487

must be very infrequent.488

On the other hand, in the case of a Focused process, the selection process is very489

narrow, yielding only a small number of Atoms, which can then be processed more490

intensively and expensively, on a per-Atom basis.491

Common selection processes for Focused cognitive processes are fitness-oriented492

selectors, which pick one or a set of Atoms from the AtomSpace with a probability493

based on some numerical quantity associated with the atom, such as properties of494

TruthValue or AttentionValue.495

There are also more specific selection processes, which choose for example496

Atoms obeying some particular combination of relationships in relation to some497

other Atoms; say choosing only Atoms that inherit from some given Atom already498

being processed. There is a notion, described in the PLN book, of an Atom Structure499

Template; this is basically just a predicate that applies to Atoms, such as500

P(X).tv501

equals502

((InheritanceLink X cat)AND (EvaluationLink eats(X,cheese)).tv503

which is a template that matches everything that inherits from cat and eats cheese.504

Templates like this allow a much more refined selection than the above fitness-505

oriented selection process.506

Selection processes can be created by composing a fitness-oriented process with507

further restrictions, such as templates, or simpler type-based restrictions.508

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.4 MindAgents: Cognitive Processes 17

1.4.2 Implementation of MindAgents509

MindAgents follow a very simple design. They need to provide a single method510

through which they can be enacted, and they should execute their actions in atomic,511

incremental steps, where each step should be relatively quick. This design enables512

collaborative scheduling of MindAgents, at the cost of allowing “opportunistic”513

agents to have more than their fair share of resources. We rely on CogPrime devel-514

opers to respect the above guidelines, instead of trying to enforce exact resource515

allocations on the software level.516

Each MindAgent can have a set of system parameters that guide its behavior.517

For instance, a MindAgent dedicated to inference can provide drastically different518

conclusions if its parameters tell it to select a small set of Atoms for processing each519

time, but to spend significant time on each Atom, rather than selecting many Atoms520

and doing shallow inferences on each one. It’s expected that multiple copies of the521

same MindAgent will exist in the cluster, but delivering different dynamics thanks522

to those parameters.523

In addition to their main action method, MindAgents can also communicate with524

other MindAgents through message queues. CogPrime has, in its runtime configura-525

tion, a list of avaliable MindAgents and their locations in the cluster. Communications526

between MindAgents typically take the form of specific, one-time requests, which527

we call Tasks.528

The default action of MindAgents and the processing of Tasks constitute the529

cognitive dynamics of CogPrime. Nearly everything that takes place within a Cog-530

Prime deployment is done by either a MindAgent (including the control processes),531

a Task, or specialized code handling AtomSpace internals or communications with532

the external world. We now talk about how those dynamics are scheduled.533

MindAgents live inside a process called a CogPrime Unit. One machine in a534

CogPrime cluster can contain one or more Units, and one Unit can contain one or535

more MindAgents. In practice, given the way the AtomSpace is distributed, which536

requires a control process in each machine, it typically makes more sense to have537

a single Unit per machine, as this enables all MindAgents in that machine to make538

direct function calls to the AtomSpace, instead of using more expensive inter-process539

communication.540

There are exceptions to the above guideline, to accommodate various situations:541

1. Very specific MindAgents may not need to communicate with other agents, or542

only do so very rarely, so it makes sense to give them their own process.543

2. MindAgents whose implementation is a poor fit for the collaborative processing in544

small increments design described above also should be given their own process,545

so they don’t interfere with the overall dynamics in that machine.546

3. MindAgents whose priority is either much higher or much lower than that of547

other agents in the same machine should be given their own process, so operating548

system-level scheduling can be relied upon to reflect those very different priority549

levels.550

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18 1 The OpenCog Framework

1.4.3 Tasks551

It is not convenient for CogPrime to do all its work directly via the action of MindA-552

gent objects embodying CIM-Dynamics. This is especially true for MindAgents553

embodying focused cognitive processes. These have their selection algorithms, which554

are ideally suited to guarantee that, over the long run, the right Atoms get selected555

and processed. This, however, doesn’t address the issue that, on many occasions, it556

may be necessary to quickly process a specific set of Atoms in order to execute an557

action or rapidly respond to some demand. These actions tend to be one-time, rather558

than the recurring patterns of mind dynamics.559

While it would be possible to design MindAgents so that they could both cover560

their long term processing needs and rapidly respond to urgent demands, we found it561

much simpler to augment the MindAgent framework with an additional scheduling562

mechanism that we call the Task framework. In essence, this is a ticketing system,563

designed to handle cases where MindAgents or Schema spawn one—off tasks to be564

executed—things that need to be done only once, rather that repeatedly and iteratively565

as with the things embodied in MindAgents.566

For instance, grab the most important Atoms from the AtomSpace and do shallow567

PLN reasoning to derive immediate conclusions from them is a natural job for a568

MindAgent. But do search to find entities that satisfy this particular predicate P is569

a natural job for a Task.570

Tasks have AttentionValues and target MindAgents. When a Task is created it571

is submitted to the appropriate Unit and then put in a priority queue. The Unit will572

schedule some resources to processing the more important Tasks, as we’ll see next.573

1.4.4 Scheduling of MindAgents and Tasks in a Unit574

Within each Unit we have one or more MindAgents, a Task queue and, optionally,575

a subset of the distributed AtomSpace. If that subset isn’t held in the unit, it’s held576

in another process running on the same machine. If there is more than one Unit per577

machine, their relative priorities are handled by the operating system’s scheduler.578

In addition to the Units, CogPrime has an extra maintenance process per machine,579

whose job is to handle changes in those priorities as well as reconfigurations caused580

by MindAgent migration, and machines joining or leaving the CogPrime cluster.581

So, at the Unit level, attention allocation in CogPrime has two aspects: how582

MindAgents and Tasks receive attention from CogPrime, and how Atoms receive583

attention from different MindAgents and Tasks. The topic of this section is the for-584

mer. The latter is dealt with elsewhere, in two ways:585

• In Chap. 5, which discusses the dynamic updating of the AttentionValue structures586

associated with Atoms, and how these determine how much attention various587

focused cognitive processes MindAgents pay to them.588

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.4 MindAgents: Cognitive Processes 19

• In the discussion of various specific CIM-Dynamics, each of which may make589

choices of which Atoms to focus on in its own way (though generally making use590

of AttentionValue and TruthValue in doing so).591

The attention allocation subsystem is also pertinent to MindAgent scheduling,592

because it discusses dynamics that update ShortTermImportance (STI) values asso-593

ciated with MindAgents, based on the usefulness of MindAgents for achieving system594

goals. In this chapter, we will not enter into such cognitive matters, but will merely595

discuss the mechanics by which these STI values are used to control processor allo-596

cation to MindAgents.597

Each instance of a MindAgent has its own AttentionValue, which is used to sched-598

ule processor time within the Unit. That scheduling is done by a Scheduler object599

which controls a collection of worker threads, whose size is a system parameter. The600

Scheduler aims to allocate worker threads to the MindAgents in a way that’s roughly601

proportional to their STI, but it needs to account for starvation, as well as the need602

to process the Tasks in the task queue.603

This is an area in which we can safely borrow from reasonably mature computer604

science research. The requirements of cognitive dynamics scheduling are far from605

unique, so this is not a topic where new ideas need to be invented for OpenCog;606

rather, designs need to be crafted meeting CogPrime’s specific requirements based607

on state-of-the-art knowledge and experience.608

One example scheduler design has two important inputs: the STI associated with609

each MindAgent, and a parameter determining how much resources should go to610

the MindAgents vs the Task queue. In the CogPrime implementation, the Scheduler611

maps the MindAgent STIs to a set of priority queues, and each queue is run a number612

of times per cycle. Ideally one wants to keep the number of queues small, and rely on613

multiple Units and the OS-level scheduler to handle widely different priority levels.614

When the importance of a MindAgent changes, one just has to reassign it to a615

new queue, which is a cheap operation that can be done between cycles. MindAgent616

insertions and removals are handled similarly.617

Finally, Task execution is currently handled via allocating a certain fixed percent-618

age of processor time, each cycle, to executing the top Tasks on the queue. Adaptation619

of this percentage may be valuable in the long term but was not yet implemented.620

Control processes are also implemented as MindAgents, and processed in the621

same way as the other kinds of CIM-Dynamics, although they tend to have fairly622

low importance.623

1.4.5 The Cognitive Cycle624

We have mentioned the concept of a “cycle” in the discussion about scheduling,625

without explaining what we mean. Let’s address that now. All the Units in a CogPrime626

cluster are kept in sync by a global cognitive cycle, whose purpose is described in627

Sect. II.628

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20 1 The OpenCog Framework

We mentioned above that each machine in the CogPrime cluster has a housekeep-629

ing process. One of its tasks is to keep track of the cognitive cycle, broadcasting630

when the machine has finished its cycle, and listening to similar broadcasts from its631

counterparts in the cluster. When all the machines have completed a cycle, a global632

counter is updated, and each machine is then free to begin the next cycle.633

One potential annoyance with this global cognitive cycle is that some machines634

may complete their cycle much faster than others, and then sit idly while the stragglers635

finish their jobs. CogPrime addresses this issue in two ways:636

• Over the long run, a load balancing process will assign MindAgents from over-637

burdened machines to underutilized ones. The MindAgent migration process is638

described in the next section.639

• In a shorter time horizon, during which a machine’s configuration is fixed, there640

are two heuristics to minimize the waste of processor time without breaking the641

overall cognitive cycle coordination:642

– The Task queue in each of the machine’s Units can be processed more extensively643

than it would by default; in extreme cases, the machine can go through the whole644

queue.645

– Background process MindAgents can be given extra activations, as their activity646

is unlikely to throw the system out of sync, unlike with more focused and goal-647

oriented processes.648

Both heuristics are implemented by the scheduler inside each unit, which has one649

boolean trigger for each heuristic. The triggers are set by the housekeeping process650

when it observes that the machine has been frequently idle over the recent past,651

and then reset if the situation changes.652

1.5 Distributed AtomSpace and Cognitive Dynamics653

As hinted above, realistic CogPrime deployments will be spread around reason-654

ably large clusters of co-located machines. This section describes how this distrib-655

uted deployment scenario is planned for in the design of the AtomSpace and the656

MindAgents, and how the cognitive dynamics take place in such a scenario.657

We won’t review the standard principles of distributed computing here, but we658

will focus on specific issues that arise when the CogPrime is spread across a relatively659

large number of machines. The two key issues that need to be handled are:660

• How to distribute knowledge (i.e., the AtomSpace) in a way that doesn’t impose661

a large performance penalty?662

• How to allocate resources (i.e., machines) to the different cognitive processes663

(MindAgents) in a way that’s flexible and dynamic?664

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.5 Distributed AtomSpace and Cognitive Dynamics 21

1.5.1 Distributing the AtomSpace665

The design of a distributed AtomSpace was guided by the following high level666

requirements:667

1. Scale up, transparently, to clusters of dozens to hundreds of machines, without668

requiring a single central master server.669

2. The ability to store portions of an Atom repository on a number of machines670

in a cluster, where each machine also runs some MindAgens. The distribution671

of Atoms across the machines should benefit from the fact that the cognitive672

processes on one machine are likely to access local Atoms more often than remote673

ones.674

3. Provide transparent access to all Atoms in RAM to all machines in the cluster,675

even if at different latency and performance levels.676

4. For local access to Atoms in the same machine, performance should be as close677

as possible to what one would have in a similar, but non-distributed AtomSpace.678

5. Allow multiple copies of the same Atom to exist in different machines of the679

cluster, but only one copy per machine.680

6. As Atoms are updated fairly often by cognitive dynamics, provide a mechanism681

for eventual consistency. This mechanism needs not only to propagate changes to682

the Atoms, but sometimes to reconcile incompatible changes, such as when two683

cognitive processes update an Atom’s TruthValue in opposite ways. Consistency684

is less important than efficiency, but should be guaranteed eventually.685

7. Resolution of inconsistencies should be guided by the importance of the Atoms686

involved, so the more important ones are more quickly resolved.687

8. System configuration can explicitly order the placement of some Atoms to specific688

machines, and mark a subset of those Atoms as immovable, which should ensure689

that local copies are always kept.690

9. Atom placement across machines, aside from the immovable Atoms, should be691

dynamic, rebalancing based on frequency of access to the Atom by the different692

machines.693

The first requirement follows obviously from our estimates of how many machines694

CogPrime will require to display advanced intelligence.695

The second requirement above means that we don’t have two kinds of machines696

in the cluster, where some are processing servers and some are database servers.697

Rather, we prefer each machine to store some knowledge and host some processes698

acting on that knowledge. This design assumes that there are simple heuristic ways699

to partition the knowledge across the machines, resulting in allocations that, most of700

the time, give the MindAgents local access to the Atoms they need most often.701

Alas, there will always be some cases in which a MindAgent needs an Atom that702

isn’t available locally. In order to keep the design on the MindAgents simple, this703

leads to the third requirement, transparency, and to the fourth one, performance.704

This partition design, on the other hand, means that there must be some repli-705

cation of knowledge, as there will always be some Atoms that are needed often by706

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22 1 The OpenCog Framework

MindAgents on different machines. This leads to requirement five (allow redundant707

copies of an Atom). However, as MindAgents frequently update the mutable com-708

ponents of Atoms, requirements six and seven are needed, to minimize the impact709

of conflicts on system performance while striving to guarantee that conflicts are710

eventually solved, and with priority proportional to the importance of the impacted711

Atoms.712

1.5.1.1 Mechanisms of Managing Distributed Atomspaces713

When one digs into the details of distributed AtomSpaces, a number of subtleties714

emerge. Going into these in full detail here would not be appropriate, but we will715

make a few comments, just to give a flavor of the sorts of issues involved.716

To discuss these issues clearly, some special terminology is useful. In this context,717

it is useful to reserve the word “Atom” for its pure, theoretical definition, viz: “a Node718

is uniquely determined by its name. A Link is uniquely determined by its outgoing719

set”. Atoms sitting in RAM may then be called “Realized Atoms”. Thus, given720

a single, pure “abstract/theoretical” Atom, there might be two different Realized721

Atoms, on two different servers, having the same name/outgoing-set. It’s OK to722

think of a RealizedAtom as a clone of the pure, abstract Atom, and to talk about723

it that way. Analogously, we might call atoms living on disk, or flying on a wire,724

“Serialized Atoms”; and, when need be, use specialized terms like “ZMQ-serialized725

atoms”, or “BerkeleyDB-serialized Atoms”, etc.726

An important and obvious coherency requirement is: “If a MindAgent asks for727

the Handle of an Atom at time A, and then asks, later on, for the Handle of the same728

Atom, it should receive the same Handle.”729

By the “AtomSpace”, in general, we mean the container(s) that are used to store730

the set of Atoms used in an OpenCog system, both in RAM and on disk. In the case731

of an Atom space that is distributed across multiple machines or other data stores,732

we will call each of these an “Atom space portion”.733

Atoms and Handles734

Each OpenCog Atom is associated with a Handle object, which is used to identify735

the Atom uniquely. The Handle is a sort of “key” used, at the infrastructure level, to736

compactly identify the Atom. In a single-machine, non-distributed Atomspace, one737

can effectively just use long ints as Handles, and assign successive ints as Handles738

to successively created new Atoms. In a distributed Atomspace, it’s a little subtler.739

Perhaps the cleanest approach in this case is to use a hash of the serialized Atom740

data as the handle for an Atom. That way, if an Atom is created in any portion, it will741

inherently have the same handle as any of its clones.742

The issue of Handle collisions then occurs—it is possible, though it will be rare,743

that two different Atoms will be assigned the same Handle via the hashing function.744

This situation can be identified via checking, when an Atom is imported into a portion,745

whether there is already some Atom in that portion with the same Handle but different746

fundamental aspects. In the rare occasion where this situation does occur, one of the747

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.5 Distributed AtomSpace and Cognitive Dynamics 23

Atoms must then have its Handle changed. Changing an Atom’s handle everywhere748

it’s referenced in RAM is not a big deal, so long as it only happens occasionally.749

However, some sort of global record of Handle changes should be kept, to avoid750

confusion in the process of loading saved Atoms from disk. If a loaded Atomspace751

contains Atoms that have changed Handle since the file was saved, the Atom loading752

process needs to know about this.753

The standard mathematics of hash functions collisions, shows that if one has a754

space of H possible Handles, one will get two Atoms with the same Handle after755

1.25 × √
(H) tries, on average.... Rearranging this, it means we’d need a space of756

around N 2 Handles to have a space of Handles for N possible Atoms, in which one757

collision would occur on average.... So to have a probability of one collision, for N758

possible Atoms, one would have to use a handle range up to N 2. The number of bits759

needed to encode N 2 is twice as many as the number needed to encode N . So, if760

one wants to minimize collisions, one may need to make Handles twice as long, thus761

taking up more memory.762

However, this memory cost can be palliated via introducing “local Handles” sep-763

arate from the global, system-wide Handles. The local Handles are used internally764

within each local Atomspace, and then each local Atomspace contains a translation765

table going back and forth between local and global Handles. Local handles may be766

long ints, allocated sequentially to each new Atom entered into a portion. Persistence767

to disk would always use the global Handles.768

To understand the memory tradeoffs involved in these solutions, assume that the
global Handles were k times as long as the local handles... and suppose that the
average Handle occurred r times in the local Atomspace. Then the memory inflation
ratio of the local/global solution as opposed to a solution using only the shorter local
handles, would be

(1 + k + r)/r = 1 + (k + 1)/r

if k = 2 and r = 10 (each handle is used 10 times on average, which is realistic based769

on current real-world OpenCog Atomspaces), then the ratio is just 1.3×—suggesting770

that using hash codes for global Handles, and local Handles to save memory in each771

local AtomSpace, is acceptable memory-wise.772

1.5.1.2 Distribution of Atoms773

Given the goal of maximizing the probability that an Atom will be local to the774

machines of the MindAgents that need it, the two big decisions are how to allocate775

Atoms to machines, and then how to reconcile the results of MindAgents actuating776

on those Atoms.777

The initial allocation of Atoms to machines may be done via explicit system778

configuration, for Atoms known to have different levels of importance to specific779

MindAgents. That is, after all, how MindAgents are initially allocated to machines780

as well.781

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24 1 The OpenCog Framework

One may, for instance, create a CogPrime cluster where one machine (or group)782

focuses on visual perception, one focuses on language processing, one focuses on783

abstract reasoning, etc. In that case one can hard-wire the location of Atoms.784

What if one wants to have three abstract-reasoning machines in one’s cluster?785

Then one can define an abstract-reasoning zone consisting of three Atom repository786

portions. One can hard-wire that Atoms created by MindAgents in the zone must787

always remain in that zone—but can potentially be moved among different portions788

within that zone, as well as replicated across two or all of the machines, if need be.789

By default they would still initially be placed in the same portion as the MindAgent790

that created them.791

However Atoms are initially placed in portions, sometimes it will be appropriate792

to move them. And sometimes it will be appropriate to clone an Atom, so there’s a793

copy of it in a different portion from where it exists. Various algorithms could work794

for this, but the following is one simple mechanism:795

• When an Atom A in machine M1 is requested by a MindAgent in machine M2,796

then a clone of A is temporarily created in M2.797

• When an Atom is forgotten (due to low LTI), then a check is made if it has any798

clones, and any links to it are changed into links to its clones.799

• The LTI of an Atom may get a boost if that Atom has no clones (the amount of800

this boost is a parameter that may be adjusted).801

1.5.1.3 MindAgents and the Distributed AtomSpace802

In the context of a distributed AtomSpace, the interactions between MindAgents and803

the knowledge store become subtler, as we’ll now discuss.804

When a MindAgent wants to create an Atom, it will make this request of the local805

AtomSpace process, which hosts a subset of the whole AtomSpace. It can, on Atom806

creation, specify whether the Atom is immovable or not. In the former case, it will807

initially only be accessible by the MindAgents in the local machine.808

The process of assigning the new Atom an AtomHandle needs to be taken care of,809

in a way that doesn’t introduce a central master. One way to achieve that is to make810

handles hierarchical, so the higher order bits indicate the machine. This, however,811

means that AtomHandles are no longer immutable. A better idea is to automatically812

allocate a subset of the AtomHandle universe to each machine. The initial use of813

those AtomHandles is the privilege of that machine but, as Atoms migrate or are814

cloned, the handles can move through the cluster.815

When a MindAgent wants to retrieve one or more Atoms, it will perform a query816

on the local AtomSpace subset, just as it would with a single machine repository.817

Along with the regular query parameters, it may specify whether the request should818

be processed locally only, or globally. Local queries will be fast, but may fail to819

retrieve the desired Atoms, while global queries may take a while to return. In the820

approach outlined above for MindAgent dynamics and scheduling, this would just821

cause the MindAgent to wait until results are available.822

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.5 Distributed AtomSpace and Cognitive Dynamics 25

Queries designed to always return a set of Atoms can have a third mode, which823

is “prioritize local Atoms”. In this case, the AtomSpace, when processing a query824

that looks for Atoms that match a certain pattern would try to find all local responses825

before asking other machines.826

1.5.1.4 Conflict Resolution827

A key design decision when implementing a distributed AtomSpace is the trade-off828

between consistency and efficiency. There is no universal answer to this conflict,829

but the usage scenarios for CogPrime, current and planned, tend to fall on the same830

broad category as far consistency goes. CogPrime’s cognitive processes are relatively831

indifferent to conflicts and capable of working well with outdated data, especially if832

the conflicts are temporary. For applications such as the AGI Preschool, it is unlikely833

that outdated properties of single Atoms will have a large, noticeable impact on834

the system’s behavior; even if that were to happen on rare occasions, this kind of835

inconsistency is often present in human behavior as well.836

On the other hand, CogPrime assumes fairly fast access to Atoms by the cognitive837

processes, so efficiency shouldn’t be too heavily penalized. The robustness against838

mistakes and the need for performance mean that a distributed AtomSpace should839

follow the principle of “eventual consistency”. This means that conflicts are allowed840

to arise, and even to persist for a while, but a mechanism is needed to reconcile them.841

Before describing conflict resolution, which in CogPrime is a bit more complicated842

than in most applications, we note that there are two kinds of conflicts. The simple one843

happens when an Atom that exists in multiple machines is modified in one machine,844

and that change isn’t immediately propagated. The less obvious one happens when845

some process creates a new Atom in its local AtomSpace repository, but that Atom846

conceptually “already exists” elsewhere in the system. Both scenarios are handled847

in the same way, and can become complicated when, instead of a single change or848

creation, one needs to reconcile multiple operations.849

The way to handle conflicts is to have a special purpose control process, a rec-850

onciliation MindAgent, with one copy running on each machine in the cluster. This851

MindAgent keeps track of all recent write operations in that machine (Atom creations852

or changes).853

Each time the reconciliation MindAgent is called, it processes a certain number854

of Atoms in the recent writes list. It chooses the Atoms to process based on a com-855

bination of their STI, LTI and recency of creation/change. Highest priority is given856

to Atoms with higher STI and LTI that have been around longer. Lowest priority is857

given to Atoms with low STI or LTI that have been very recently changed—both858

because they may change again in the very near future, and because they may be859

forgotten before it’s worth solving any conflicts. This will be the case with most860

perceptual Atoms, for instance.861

By tuning how many Atoms this reconciliation MindAgent processes each time862

it’s activated we can tweak the consistency versus efficiency trade-off.863

When the AtomReconciliation agent processes an Atom, what it does is:864

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26 1 The OpenCog Framework

• Searches all the machines in the cluster to see if there are other equivalent Atoms865

(for Nodes, these are Atoms with the same name and type; for Links, these are866

Atoms with the same type and targets).867

• If it finds equivalent Atoms, and there are conflicts to be reconciled, such as dif-868

ferent TruthValues or AttentionValues, the decision of how to handle the conflicts869

is made by a special probabilistic reasoning rule, called the Rule of Choice (see870

Chap. 16). Basically, this means:871

– It decided whether to merge the conflicting Atoms. We always merge Links, but872

some Nodes may have different semantics, such as Nodes representing different873

procedures that have been given the same name.874

– In the case that the two Atoms A and B should be merged, it creates a new875

Atom C that has all the same immutable properties as A and B. It merges their876

TruthValues according to the probabilistic revision rule (see Chap. 16). The877

AttentionValues are merged by prioritizing the higher importances.878

– In the case that two Nodes should be allowed to remain separate, it allocates879

one of them (say, B) a new name. Optionally, it also evaluates whether a Simi-880

larityLink should be created between the two different Nodes.881

Another use for the reconcilitation MindAgent is maintaining approximate con-882

sistency between clones, which can be created by the AtomSpace itself, as described883

above in Sect. 1.5.1.2. When the system knows about the multiple clones of an Atom,884

it keeps note of these versions in a list, which is processed periodically by a conflict885

resolution MindAgent, in order to prevent the clones from drifting too far apart by886

the actions of local cognitive processes in each machine.887

1.5.2 Distributed Processing888

The OCF infrastructure as described above already contains a lot of distributed889

processing implicit in it. However, it doesn’t tell you how to make the complex cogni-890

tive processes that are part of the CogPrime design distributed unto themselves—say,891

how to make PLN or MOSES themselves distributed. This turns out to be quite pos-892

sible, but becomes quite intricate and specific depending on the particular algorithms893

involved. For instance, the current MOSES implementation is now highly amenable894

to distributed and multiprocessor implementation, but in a way that depends subtly895

on the specifics of MOSES and has little to do with the role of MOSES in CogPrime896

as a whole. So we will not delve into these topics here.897

Another possibility worth mentioning is broadly distributed processing, in which898

CogPrime intelligence is spread across thousands or millions of relatively weak899

machines networked via the Internet. Even if none of these machines is exclusively900

devoted to CogPrime, the total processing power may be massive, and massively901

valuable. The use of this kind of broadly distributed computing resource to help902

CogPrime is quite possible, but involves numerous additional control problems which903

we will not address here.904

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_16

http://dx.doi.org/10.2991/978-94-6239-030-0_16

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.5 Distributed AtomSpace and Cognitive Dynamics 27

A simple case is massive global distribution of MOSES fitness evaluation. In905

the case where fitness evaluation is isolated and depends only on local data, this is906

extremely straightforward. In the more general case where fitness evaluation depends907

on knowledge stored in a large AtomSpace, it requires a subtler design, wherein908

each globally distributed MOSES subpopulation contains a pool of largely similar909

genotypes and a cache of relevant parts of the AtomSpace, which is continually910

refreshed during the fitness evaluation process. This can work so long as each globally911

distributed lobe has a reasonably reliable high bandwidth, low latency connection to912

a machine containing a large AtomSpace.913

On the more mundane topic of distributed processing within the main CogPrime914

cluster, three points are worth discussing:915

• Distributed communication and coordination between MindAgents.916

• Allocation of machines to functional groups, and MindAgent migration.917

• Machines entering and leaving the cluster.918

1.5.2.1 Distributed Communication and Coordination919

Communications between MindAgents, Units and other CogPrime components are920

handled by a message queue subsystem. This subsystem provides a unified API, so921

the agents involved are unaware of the location of their partners: distributed messages,922

inter-process messages in the same machine, and intra-process messages in the same923

Unit are sent through the same API, and delivered to the same target queues. This924

design enables transparent distribution of MindAgents and other components.925

In the simplest case, of MindAgents within the same Unit, messages are delivered926

almost immediately, and will be available for processing by the target agent the927

next time it’s enacted by the scheduler. In the case of messages sent to other Units or928

other machines, they’re delivered to the messaging subsystem component of that unit,929

which has a dedicated thread for message delivery. That subsystem is scheduled for930

processing just like any other control process, although it tends to have a reasonably931

high importance, to ensure speedy delivery.932

The same messaging API and subsystem is used for control-level communications,933

such as the coordination of the global cognitive cycle. The cognitive cycle completion934

message can be used for other housekeeping contents as well.935

1.5.2.2 Functional Groups and MindAgent Migration936

A CogPrime cluster is composed of groups of machines dedicated to various937

high-level cognitive tasks: perception processing, language processing, background938

reasoning, procedure learning, action selection and execution, goal achievement plan-939

ning, etc. Each of these high-level tasks will probably require a number of machines,940

which we call functional groups.941

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28 1 The OpenCog Framework

Most of the support needed for functional groups is provided transparently by942

the mechanisms for distributing the AtomSpace and by the communications layer.943

The main issue is how much resources (i.e., how many machines) to allocate to944

each functional group. The initial allocation is determined by human administrators945

via the system configuration—each machine in the cluster has a local configura-946

tion file which tells it exactly which processes to start, along with the collection of947

MindAgents to be loaded onto each process and their initial AttentionValues.948

Over time, however, it may be necessary to modify this allocation, adding949

machines to overworked or highly important functional groups. For instance, one950

may add more machines to the natural language and perception processing groups951

during periods of heavy interaction with humans in the preschool environment, while952

repurposing those machines to procedure learning and background inference during953

periods in which the agent controlled by CogPrime is resting or “sleeping”.954

This allocation of machines is driven by attention allocation in much the same way955

that processor time is allocated to MindAgents. Functional groups can be represented956

by Atoms, and their importance levels are updated according to the importance of957

the system’s top level goals, and the usefulness of each functional group to their958

achievement. Thus, once the agent is engaged by humans, the goals of pleasing them959

and better understanding them would become highly important, and would thus drive960

the STI of the language understanding and language generation functional groups.961

Once there is an imbalance between a functional group’s STI and its share of the962

machines in the cluster, a control process CIM-Dynamic is triggered to decide how963

to reconfigure the cluster. This CIM-Dynamic works approximately as follows:964

• First, it decides how many extra machines to allocate to each sub-represented965

functional group.966

• Then, it ranks the machines not already allocated to those groups based on a967

combination of their workload and the aggregate STI of their MindAgents and968

Units. The goal is to identify machines that are both relatively unimportant and969

working under capacity.970

• It will then migrate the MindAgents of those machines to other machines in the971

same functional group (or just remove them if clones exist), freeing them up.972

• Finally, it will decide how best to allocate the new machines to each functional973

group. This decision is heavily dependent on the nature of the work done by974

the MindAgents in that group, so in CogPrime these decisions will be somewhat975

hardcoded, as is the set of functional groups. For instance, background reasoning976

can be scaled just by adding extra inference MindAgents to the new machines977

without too much trouble, but communicating with humans requires MindAgents978

responsible for dialog management, and it doesn’t make sense to clone those, so979

it’s better to just give more resources to each MindAgent without increasing their980

numbers.981

The migration of MindAgents becomes, indirectly, a key driver of Atom migration.982

As MindAgents move or are cloned to new machines, the AtomSpace repository in983

the source machine should send clones of the Atoms most recently used by these984

MindAgents to the target machine(s), anticipating a very likely distributed request985

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

1.5 Distributed AtomSpace and Cognitive Dynamics 29

that would create those clones in the near future anyway. If the MindAgents are986

moved but not cloned, the local copies of those Atoms in the source machine can987

then be (locally) forgotten.988

1.5.2.3 Adding and Removing Machines989

Given the support for MindAgent migration and cloning outlined above, the issue of990

adding new machines to the cluster becomes a specific application of the heuristics991

just described. When a new machine is added to the cluster, CogPrime initially992

decides on a functional group for it, based both on the importance of each functional993

group and on their current performance—if a functional group consistently delays994

the completion of the cognitive cycle, it should get more machines, for instance.995

When the machine is added to a functional group, it is then populated with the most996

important or resource starved MindAgents in that group, a decision that is taken by997

economic attention allocation.998

Removal of a machine follows a similar process. First the system checks if the999

machine can be safely removed from its current functional group, without greatly1000

impacting its performance. If that’s the case, the non-cloned MindAgents in that1001

machine are distributed among the remaining machines in the group, following the1002

heuristic described above for migration. Any local-only Atoms in that machine’s1003

AtomSpace container are migrated as well, provided their LTI is high enough.1004

In the situation in which removing a machine M1 would have an intolerable impact1005

on the functional group’s performance, a control process selects another functional1006

group to lose a machine M2. Then, the MindAgents and Atoms in M1 are migrated1007

to M2, which goes through the regular removal process first.1008

In principle, one might use the insertion or removal of machines to perform a1009

global optimization of resource allocation within the system, but that process tends1010

to be much more expensive than the simpler heuristics we just described. We believe1011

these heuristics can give us most of the benefits of global re-allocation at a fraction1012

of the disturbance for the system’s overall dynamics during their execution.1013

319613_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 29 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 1

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5, and amend if neccessary.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Knowledge Representation Using the Atomspace

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo, Hong Kong, People’s Republic of China

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract CogPrime’s knowledge representation must be considered on two levels: implicit and explicit. This chapter
considers mainly explicit knowledge representation, with a focus on representation of declarative
knowledge.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 2
Knowledge Representation Using the Atomspace

2.1 Introduction0

CogPrime’s knowledge representation must be considered on two levels: implicit1

and explicit. This chapter considers mainly explicit knowledge representation, with2

a focus on representation of declarative knowledge. We will describe the Atom knowl-3

edge representation, a generalized hypergraph formalism which comprises a specific4

vocabulary of Node and Link types, used to represent declarative knowledge but also,5

to a lesser extent, other types of knowledge as well. Other mechanisms of represent-6

ing procedural, episodic, attentional, and intentional knowledge will be handled in7

later chapters, as will the subtleties of implicit knowledge representation.8

The AtomSpace Node and Link formalism is the most obviously distinctive aspect9

of the OpenCog architecture, from the point of view of a software developer building10

AI processes in the OpenCog framework. But yet, the features of CogPrime that11

are most important, in terms of our theoretical reasons for estimating it likely to12

succeed as an advanced AGI system, are not really dependent on the particulars of13

the AtomSpace representation.14

What’s important about the AtomSpace knowledge representation is mainly that15

it provides a flexible means for compactly representing multiple forms of knowledge,16

in a way that allows them to interoperate—where by “interoperate” we mean that e.g.17

a fragment of a chunk of declarative knowledge can link to a fragment of a chunk of18

attentional or procedural knowledge; or a chunk of knowledge in one category can19

overlap with a chunk of knowledge in another category (as when the same link has20

both a (declarative) truth value and an (attentional) importance value). In short, any21

representational infrastructure sufficiently flexible to support22

• compact representation of all the key categories of knowledge playing dominant23

roles in human memory24

• the flexible creation of specialized sub-representations for various particular sub-25

types of knowledge in all these categories, enabling compact and rapidly manip-26

ulable expression of knowledge of these subtypes27

B. Goertzel et al., Engineering General Intelligence, Part 2, 31
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_2,
© Atlantis Press and the authors 2014

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

32 2 Knowledge Representation Using the Atomspace

• the overlap and interlinkage of knowledge of various types, including that repre-28

sented using specialized sub-representations29

will probably be acceptable for CogPrime’s purposes. However, precisely formulat-30

ing these general requirements is tricky, and is significantly more difficult than simply31

articulating a single acceptable representational scheme, like the current OpenCog32

Atom formalism. The Atom formalism satisfies the relevant general requirements33

and has proved workable from a practical software perspective.34

In terms of the Mind-World Correspondence Principle introduced in Chap. 1035

of Vol. 5, the important point regarding the Atom representation is that it must be36

flexible enough to allow the compact and rapidly manipulable representation of37

knowledge that has aspects spanning the multiple common human knowledge cat-38

egories, in a manner that allows easy implementation of cognitive processes that39

will manifest the Mind-World Correspondence Principle in everyday human-like sit-40

uations. The actual manifestation of mind-world correspondence is the job of the41

cognitive processes acting on the AtomSpace—the job of the AtomSpace is to be an42

efficient and flexible enough representation that these cognitive processes can man-43

ifest mind-world correspondence in everyday human contexts given highly limited44

computational resources.45

2.2 Denoting Atoms46

First we describe the textual notation we’ll use to denote various sorts of Atoms47

throughout the following chapters. The discussion will also serve to give some par-48

ticular examples of cognitively meaningful Atom constructs.49

2.2.1 Meta-Language50

As always occurs when discussing (even partially) logic-based systems, when dis-51

cussing CogPrime there is some potential for confusion between logical relationships52

inside the system, and logical relationships being used to describe parts of the sys-53

tem. For instance, we can state as observers that two Atoms inside CogPrime are54

equivalent, and this is different from stating that CogPrime itself contains an Equiv-55

alence relation between these two Atoms. Our formal notation needs to reflect this56

difference.57

Since we will not be doing any fancy mathematical analyses of CogPrime struc-58

tures or dynamics here, there is no need to formally specify the logic being used for59

the metalanguage. Standard predicate logic may be assumed.60

So, for example, we will say things like61

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_10

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.2 Denoting Atoms 33

(IntensionalInheritanceLink Ben monster).TruthValue.strength = .562

This is a metalanguage statement, which means that the strength field of the63

TruthValue object associated with the link (IntensionalInheritance Ben monster) is64

equal to .5. This is different than saying65

EquivalenceLink66

ExOutLink67

GetStrength68

ExOutLink69

GetTruthValue70

IntensionalInheritanceLink Ben monster71

NumberNode 0.572

which refers to an equivalence relation represented inside CogPrime. The former73

refers to an equals relationship observed by the authors of the book, but perhaps74

never represented explicitly inside CogPrime.75

In the first example above we have used the C++ convention76

structure_variable_name.field_name77

for denoting elements of composite structures; this convention will be stated formally78

below.79

In the second example we have used schema corresponding to TruthValue and80

Strength; these schema extract the appropriate fields from the Atoms they’re applied81

to, so that e.g.82

ExOutLink83

GetTruthValue84

A85

returns the number86

A.TruthValue87

Following a convention from mathematical logic, we will also sometimes use the special symbol88

|-89

to mean “implies in the metalanguage”. For example, the first-order PLN deductive90

inference strength rule may be written91

InheritanceLink A B <sAB>92

InheritanceLink B C <sBC>93

|-94

InheritanceLink A C <sAC>95

where96

sAC = sAB sBC + (1-sAB) (sC - sB sBC) / (1- sB)97

This is different from saying98

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 2 Knowledge Representation Using the Atomspace

ForAll $A, $B, $C, $sAB, $sBC, $sAC99

100

ExtensionalImplicationLink_HOJ101

AND102

InheritanceLink $A $B <$sAB>103

InheritanceLink $B $C <$sBC>104

AND105

InheritanceLink $A $C <$sAC>106

$sAC = $sAB $sBC + (1-$sAB) ($sC - $sB $sBC) / (1- $sB)107

which is the most natural representation of the independence-based PLN deduction108

rule (for strength-only truth values) as a logical statement within CogPrime. In the109

latter expression the variables $A, $sAB, and so forth represent actual Variable Atoms110

within CogPrime. In the former expression the variables represent concrete, non-111

Variable Atoms within CogPrime, which however are being considered as variables112

within the metalanguage.113

(As explained in the PLN book, a link labeled with “HOJ” refers to a “higher114

order judgment”, meaning a relationship that interprets its relations as entities with115

particular truth values. For instance,116

ImplicationLink_HOJ117

Inh $X stupid <.9>118

Inh $X rich <.9>119

means that if (Inh $X stupid) has a strength of .9, then (Inh $X rich) has a strength120

of .9). WIKISOURCE:AtomNotation121

2.2.2 Denoting Atoms122

Atoms are the basic objects making up CogPrime knowledge. They come in vari-123

ous types, and are associated with various dynamics, which are embodied in Mind124

Agents. Generally speaking Atoms are endowed with TruthValue and AttentionValue125

objects. They also sometimes have names, and other associated Values as previously126

discussed. In the following subsections we will explain how these are notated, and127

then discuss specific notations for Links and Nodes, the two types of Atoms in the128

system.129

2.2.2.1 Names130

In order to denote an Atom in discussion, we have to call it something. Relatedly but131

separately, Atoms may also have names within the CogPrime system. (As a matter132

of implementation, in the current OpenCog version, no Links have names; whereas,133

all Nodes have names, but some Nodes have a null name, which is conceptually the134

same as not having a name.)135

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.2 Denoting Atoms 35

(name, type) pairs must be considered as unique within each Unit within a136

OpenCog system, otherwise they can’t be used effectively to reference Atoms. It’s137

OK if two different OpenCog Units both have SchemaNodes named “+”, but not if138

one OpenCog Unit has two SchemaNodes both named “+”—this latter situation is139

disallowed on the software level, and is assumed in discussions not to occur.140

Some Atoms have natural names. For instance, the SchemaNode correspond-141

ing to the elementary schema function + may quite naturally be named “+”. The142

NumberNode corresponding to the number .5 may naturally be named “.5”, and143

the CharacterNode corresponding to the character c may naturally be named “c”.144

These cases are the minority, however. For instance, a SpecificEntityNode represent-145

ing a particular instance of + has no natural name, nor does a SpecificEntityNode146

representing a particular instance of c.147

Names should not be confused with Handles. Atoms have Handles, which are148

unique identifiers (in practice, numbers) assigned to them by the OpenCog core149

system; and these Handles are how Atoms are referenced internally, within OpenCog,150

nearly all the time. Accessing of Atoms by name is a special case—not all Atoms151

have names, but all Atoms have Handles. An example of accessing an Atom by name152

is looking up the CharacterNode representing the letter “c” by its name “c”. There153

would then be two possible representations for the word “cat”:154

1. this word might be associated with a ListLink—and the ListLink corresponding155

to “cat” would be a list of the Handles of the Atoms of the nodes named “c”, “a”,156

and “t”.157

2. for expedience, the word might be associated with a WordNode named “cat”.158

In the case where an Atom has multiple versions, this may happen for instance if the159

Atom is considered in a different context (via a ContextLink), each version has a Ver-160

sionHandle, so that accessing an AtomVersion requires specifying an AtomHandle161

plus a VersionHandle. See Chap. 1 for more information on Handles.162

OpenCog never assigns Atoms names on its own; in fact, Atom names are assigned163

only in the two sorts of cases just mentioned:164

1. Via preprocessing of perceptual inputs (e.g. the names of NumberNode, Charac-165

terNodes).166

2. Via hard-wiring of names for SchemaNodes and PredicateNodes corresponding167

to built-in elementary schema (e.g. +, AND, Say).168

If an Atom A has a name n in the system, we may write169

A.name = n170

On the other hand, if we want to assign an Atom an external name, we may make171

a meta-language assertion such as172

L1 := (InheritanceLink Ben animal)173

indicating that we decided to name that link L1 for our discussions, even though174

inside OpenCog it has no name.175

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

36 2 Knowledge Representation Using the Atomspace

In denoting (nameless) Atoms we may use arbitrary names like L1. This is more176

convenient than using a Handle based notation which Atoms would be referred to as177

1, 3433322, etc.; but sometimes we will use the Handle notation as well.178

Some ConceptNodes and conceptual PredicateNode or SchemaNodes may cor-179

respond with human-language words or phrases like cat, bite, and so forth. This will180

be the minority case; more such nodes will correspond to parts of human-language181

concepts or fuzzy collections of human-language concepts. In discussions in this182

book, however, we will often invoke the unusual case in which Atoms correspond to183

individual human-language concepts. This is because such examples are the easiest184

ones to write about and discuss intuitively. The preponderance of named Atoms in185

the examples in the book implies no similar preponderance of named Atoms in the186

real OpenCog system. It is merely easier to talk about a hypothetical Atom named187

“cat” than it is about a hypothetical Atom with Handle 434. It is not impossible that188

a OpenCog system represents “cat” as a single ConceptNode, but it is just as likely189

that it will represent “cat” as a map composed of many different nodes without any190

of these having natural names. Each OpenCog works out for itself, implicitly, which191

concepts to represent as single Atoms and which in distributed fashion.192

For another example,193

ListLink194

CharacterNode "c"195

CharacterNode "a"196

CharacterNode "t"197

corresponds to the character string198

("c", "a", "t")199

and would naturally be named using the string cat. In the system itself, however, this200

ListLink need not have any name.201

2.2.2.2 Types202

Atoms also have types. When it is necessary to explicitly indicate the type of an203

atom, we will use the keyword Type, as in204

A.Type = InheritanceLink205

206

N_345.Type = ConceptNode207

On the other hand, there is also a built-in schema HasType which lets us say208

EvaluationLink HasType A InheritanceLink209

210

EvaluationLink HasType N_345 ConceptNode211

This covers the case in which type evaluation occurs explicitly in the system,212

which is useful if the system is analyzing its own emergent structures and dynamics.213

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.2 Denoting Atoms 37

Another option currently implemented in OpenCog is to explicitly restrict the214

type of a variable using TypedVariableLink such as follows215

TypedVariableLink216

VariableNode $X217

VariableTypeNode "ConceptNode"218

Note also that we will frequently remove the suffix Link or Node from their219

type name, such as220

Inheritance221

Concept A222

Concept B223

instead of224

InheritanceLink225

ConceptNode A226

ConceptNode B227

2.2.2.3 Truth Values228

The truth value of an atom is a bundle of information describing how true the Atom229

is, in one of several different senses depending on the Atom type. It is encased in a230

TruthValue object associated with the Atom. Most of the time, we will denote the231

truth value of an atom in <>’s following the expression denoting the atom. This232

very handy notation may be used in several different ways.233

A complication is that some Atoms may have CompositeTruthValues, which con-234

sist of different estimates of their truth value made by different sources, which for235

whatever reason have not been reconciled (maybe no process has gotten around to236

reconciling them, maybe they correspond to different truth values in different con-237

texts and thus logically need to remain separate, maybe their reconciliation is being238

delayed pending accumulation of more evidence, etc.). In this case we can still assume239

that an Atom has a default truth value, which corresponds to the highest-confidence240

truth value that it has, in the Universal Context.241

Most frequently, the notation is used with a single number in the brackets, e.g.242

A <.4>243

to indicate that the atom A has truth value .4; or244

IntensionalInheritanceLink Ben monster <.5>245

to indicate that the IntensionalInheritance relation between Ben and monster has truth246

value strength .5. In this case, <tv> indicates (roughly speaking) that the truth value247

of the atom in question involves a probability distribution with a mean of tv. The248

precise semantics of the strength values associated with OpenCog Atoms is described249

in Probabilistic Logic Networks (see Chap. 16). Please note, though: This notation250

does not imply that the only data retained in the system about the distribution is the251

single number .5.252

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_16

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

38 2 Knowledge Representation Using the Atomspace

If we want to refer to the truth value of an Atom A in the context C, we can use253

the construct254

ContextLink <truth value>255

C256

A257

Sometimes, Atoms in OpenCog are labeled with two truth value components as258

defined by PLN: strength and weight-of-evidence. To denote these two components,259

we might write260

IntensionalInheritanceLink Ben scary <.9,.1>261

indicating that there is a relatively small amount of evidence in favor of the proposition262

that Ben is very scary.263

We may also put the TruthValue indicator in a different place, e.g. using indent264

notation,265

IntensionalInheritanceLink <.9,.1>266

Ben267

scary268

This is mostly useful when dealing with long and complicated constructions.269

If we want to denote a composite truth value (whose components correspond to270

different “versions” of the Atom), we can use a list notation, e.g.271

IntensionalInheritance (<.9,.1>, <.5,.9> [h,123],<.6,.7> [c,655])272

Ben273

scary274

where e.g.275

<.5,.9> [h,123]276

denotes the TruthValue version of the Atom indexed by Handle 123. The h denotes277

that the AtomVersion indicated by the VersionHandle h,123 is a Hypothetical Atom,278

in the sense described in the PLN book. Some versions may not have any index279

Handles.280

The semantics of composite TruthValues are described in the PLN book, but281

roughly they are as follows. Any version not indexed by a VersionHandle is a “primary282

TruthValue” that gives the truth value of the Atom based on some body of evidence. A283

version indexed by a VersionHandle is either contextual or hypothetical, as indicated284

notationally by the c or h in its VersionHandle. So, for instance, if a TruthValue285

version for Atom A has VersionHandle h,123 that means it denotes the truth value286

of Atom A under the hypothetical context represented by the Atom with handle 123.287

If a TruthValue version for Atom A has VersionHandle c,655 this means it denotes288

the truth value of Atom A in the context represented by the Atom with Handle 655.289

Alternately, truth values may be expressed sometimes in <L,U,b> or <L,U,b,N>290

format, defined in terms of indefinite probability theory as defined in the PLN book291

and recalled in Chap. 16. For instance,292

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_16

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.2 Denoting Atoms 39

IntensionalInheritanceLink Ben scary <.7,.9,.8,20>293

has the semantics that There is an estimated 80 % chance that after 20 more294

observations have been made, the estimated strength of the link will be in the interval295

(.7, .9).296

The notation may also be used to specify a TruthValue probability distribution, e.g.297

A <g(5,7,12)>298

would indicate that the truth value of A is given by distribution g with parameters299

(5, 7, 12), or300

A <M>301

where M is a table of numbers, would indicate that the truth value of A is approximated302

by the table M.303

The <> notation for truth value is an unabashedly incomplete and ambiguous304

notation, but it is very convenient. If we want to specify, say, that the truth value305

strength of IntensionalInheritanceLink Ben monster is in fact the number .5, and no306

other truth value information is retained in the system, then we need to say307

(Intensional Inheritance Ben monster).TruthValue308

= [(strength, .5)]309
310

(where a hashtable form is assumed for TruthValue objects, i.e. a list of name-value311

pairs). But this kind of issue will rarely arise here and the <> notation will serve312

us well.313

2.2.2.4 Attention Values314

The AttentionValue object associated with an Atom does not need to be notated315

nearly as often as truth value. When it does however we can use similar notational316

methods.317

AttentionValues may have several components, but the two critical ones are called318

short-term importance (STI) and long-term importance (LTI). Furthermore, multiple319

STI values are retained: for each (Atom, MindAgent) pair there may be a Mind-320

Agent-specific STI value for that Atom. The pragmatic import of these values will321

become clear in a later chapter when we discuss attention allocation.322

Roughly speaking, the long-term importance is used to control memory usage:323

when memory gets scarce, the atoms with the lowest LTI value are removed. On324

the other hand, the short-term importance is used to control processor time alloca-325

tion: MindAgents, when they decide which Atoms to act on, will generally, but not326

only, choose the ones that have proved most useful to them in the recent past, and327

additionally those that have been useful for other MindAgents in the recent past.328

We will use the double bracket <<>> to denote attention value (in the rare cases329

where such denotation is necessary). So, for instance,330

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

40 2 Knowledge Representation Using the Atomspace

Cow_7 <<.5>>331

will mean the node Cow_7 has an importance of .5; whereas,332

Cow_7 <<STI=.1, LTI = .8>>333

or simply334

Cow_7 <<.1, .8>>335

will mean the node Cow_7 has short-term importance = .1 and long-term impor-336

tance= .8 .337

Of course, we can also use the style338

(Intensional InheritanceLink Ben monster).AttentionValue339

= [(STI,.1), (LTI, .8)]340
341

where appropriate.342

2.2.2.5 Links343

Links are represented using a simple notation that has already occurred many times in this book.344

For instance,345

Inheritance A B346

347

Similarity A B348

Note that here the symmetry or otherwise of the link is not implicit in the notation.349

SimilarityLinks are symmetrical, InheritanceLinks are not. When this distinction is350

necessary, it will be explicitly made. WIKISOURCE:FunctionNotation351

2.3 Representing Functions and Predicates352

SchemaNodes and PredicateNodes contain functions internally; and Links may also353

usefully be considered as functions. We now briefly discuss the representations and354

notations we will use to indicate functions in various contexts.355

Firstly, we will make some use of the currying notation drawn from combinatory356

logic, in which adjacency indicates function application. So, for instance, using357

currying,358

f x359

means the function f evaluated at the argument x; and (f x y) means (f(x))(y). If360

we want to specify explicitly that a block of terminology is being specified using361

currying we will use the notation @[expression], for instance362

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 41

@[f x y z]363

means364

((f(x))(y))(z)365

We will also frequently use conventional notation to refer to functions, such as366

f(x,y). Of course, this is consistent with the currying convention if (x,y) is interpreted367

as a list and f is then a function that acts on 2-element lists. We will have many other368

occasions than this to use list notation.369

Also, we will sometimes use a non-curried notation, most commonly with Links,370

so that e.g.371

InheritanceLink x y372

does not mean a curried evaluation but rather means InheritanceLink(x,y).373

2.3.0.6 Execution Output Links374

In the case where f refers to a schema, the occurrence of the combination f x in the375

system is represented by376

ExOutLink f x377

or graphically378

@379

/ \380

f x381

Note that, just as when we write382

f (g x)383

we mean to apply f to the result of applying g to x, similarly when we write384

ExOutLink f (ExOutLink g x)385

we mean the same thing. So for instance386

EvaluationLink (ExOutLink g x) y <.8>387

means that the result of applying g to x is a predicate r, so that r(y) evaluates to True388

with strength .8.389

This approach, in its purest incarnation, does not allow multi-argument schemata.390

Now, multi-argument schemata are never actually necessary, because one can use391

argument currying to simulate multiple arguments. However, this is often awkward,392

and things become simpler if one introduces an explicit tupling operator, which we393

call ListLink. Simply enough,394

ListLink A1 ... An395

denotes an ordered list (A1, …, An)396

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

42 2 Knowledge Representation Using the Atomspace

2.3.1 Execution Links397

ExecutionLinks give the system an easy way to record acts of schema execution.398

These are ternary links of the form:399

SchemaNode: S400

401

Atom: A, B402

403

ExecutionLink S A B404

In words, this says the procedure represented by SchemaNode S has taken input405

A and produced output B.406

There may also be schemata that do not take output, or do not take input. But407

these are treated as PredicateNodes, to be discussed below; their activity is recorded408

by EvaluationLinks, not ExecutionLinks.409

The TruthValue of an ExecutionLink records how frequently the result encoded410

in the ExecutionLink occurs. Specifically,411

• the TruthValue of (ExecutionLink S A B) tells you the probability of getting B as412

output, given that you have run schema S on input A413

• the TruthValue of (ExecutionLink S A) tells you the probability that if S is run, it414

is run on input A.415

Often it is useful to record the time at which a given act of schema execution was416

carried out; in that case one uses the atTime link, writing e.g.417

atTimeLink418

T419

ExecutionLink S A B420

where T is a TimeNode, or else one uses an implicit method such as storing the time-421

stamp of the ExecutionLink in a core-level data-structure called the TimeServer. The422

implicit method is logically equivalent to explicitly using atTime, and is treated the423

same way by PLN inference, but provides significant advantages in terms of memory424

usage and lookup speed.425

For purposes of logically reasoning about schema, it is useful to create binary426

links representing ExecutionLinks with some of their arguments fixed. We name427

these as follows:428

ExecutionLink1 A B means: X so that ExecutionLink X A B429

430

ExecutionLink2 A B means: X so that ExecutionLink A X B431

432

ExecutionLink3 A B means: X so that ExecutionLink A B X433

Finally, a SchemaNode may be associated with a structure called a Graph.434

Where S is a SchemaNode,435

Graph(S) = { (x,y): ExecutionLink S x y }436

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 43

Sometimes, the graph of a SchemaNode may be explicitly embodied as a Con-437

ceptNode; other times, it may be constructed implicitly by a MindAgent in analyzing438

the SchemaNode (e.g. the inference MindAgent).439

Note that the set of ExecutionLinks describing a SchemaNode may not define440

that SchemaNode exactly, because some of them may be derived by inference. This441

means that the model of a SchemaNode contained in its ExecutionLinks may not442

actually be a mathematical function, in the sense of assigning only one output to443

each input. One may have444

ExecutionLink S X A <.5>445

446

ExecutionLink S X B <.5>447

meaning that the system does not know whether S(X) evaluates to A or to B. So448

the set of ExecutionLinks modeling a SchemaNode may constitute a non-function449

relation, even if the schema inside the SchemaNode is a function.450

Finally, what of the case where f x represents the action of a built-in system func-451

tion f on an argument x? This is an awkward case that would not be necessary if452

the CogPrime system were revised so that all cognitive functions were carried out453

using SchemaNodes. However, in the current CogPrime version, where most cogni-454

tive functions are carried out using C++ MindAgent objects, if we want CogPrime to455

study its own cognitive behavior in a statistical way, we need BuiltInSchemaNodes456

that refer to MindAgents rather than to ComboTrees (or else, we need to represent457

MindAgents using ComboTrees, which will become practicable once we have a suf-458

ficiently efficient Combo interpreter). The semantics here is thus basically the same459

as where f refers to a schema. For instance we might have460

ExecutionLink FirstOrderInferenceMindAgent (L1, L2) L3461

where L1, L2 and L3 are links related by462

L1463

L2464

|-465

L3466

according to the first-order PLN deduction rules.467

2.3.1.1 Predicates468

Predicates are related but not identical to schema, both conceptually and notation-469

ally. PredicateNodes involve predicate schema which output TruthValue objects. But470

there is a difference between a SchemaNode embodying a predicate schema and a471

PredicateNode, which is that a PredicateNode doesn’t output a TruthValue, it adjusts472

its own TruthValue as a result of the output of its own internal predicate schema.473

The record of the activity of a PredicateNode is given not by an ExecutionLink474

but rather by an:475

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

44 2 Knowledge Representation Using the Atomspace

EvaluationLink P A <tv>476

where P is a PredicateNode, A is its input, and <tv> is the truth value assumed by477

the EvaluationLink corresponding to the PredicateNode being fed the input A. There478

is also the variant479

EvaluationLink P <tv>480

for the case where the PredicateNode P embodies a schema that takes no inputs.1481

A simple example of a PredicateNode is the predicate GreaterThan. In this case482

we have, for instance483

EvaluationLink GreaterThan 5 6 <0>484

485

EvaluationLink GreaterThan 5 3 <1>486

and we also have:487

EquivalenceLink488

GreaterThan489

ExOutLink490

And491

ListLink492

ExOutLink493

Not494

LessThan495

ExOutLink496

Not497

EqualTo498

Note how the variables have been stripped out of the expression, see the PLN book for499

more explanation about that. We will also encounter many commonsense-semantics500

predicates such as isMale, with e.g.501

EvaluationLink isMale Ben_Goertzel <1>502

Schemata that return no outputs are treated as predicates, and handled using503

EvaluationLinks. The truth value of such a predicate, as a default, is considered504

as True if execution is successful, and False otherwise.505

And, analogously to the Graph operator for SchemaNodes, we have for Predi-506

cateNodes the SatisfyingSet operator, defined so that the SatisfyingSet of a predicate507

is the set whose members are the elements that satisfy the predicate. Formally, that508

is:509

S = SatisfyingSet P510

1 Actually, if P does take some inputs, EvaluationLink P <tv> is defined too and tv cor-
responds to the average of P(X) over all inputs X, this is explained in more depth in the PLN
book.

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 45

means511

TruthValue(MemberLink X S)512

equals513

TruthValue(EvaluationLink P X)514

This operator allows the system to carry out advanced logical operations like higher-515

order inference and unification.516

2.3.2 Denoting Schema and Predicate Variables517

CogPrime sometimes uses variables to represent the expressions inside schemata and518

predicates, and sometimes uses variable-free, combinatory-logic-based representa-519

tions. There are two sorts of variables in the system, either of which may exist either520

inside compound schema or predicates, or else in the AtomSpace as VariableNodes:521

It is important to distinguish between two sorts of variables that may exist in522

CogPrime:523

• Variable Atoms, which may be quantified (bound to existential or universal quan-524

tifiers) or unquantified.525

• Variables that are used solely as function-arguments or local variables inside the526

“Combo tree” structures used inside some ProcedureNodes (PredicateNodes or527

SchemaNodes) (to be described below), but are not related to Variable Atoms.528

Examples of quantified variables represented by Variable Atoms are $X and $Y in:529

ForAll $X <.0001>530

ExtensionalImplicationLink531

ExtensionalInheritanceLink $X human532

ThereExists $Y533

AND534

ExtensionalInheritanceLink $Y human535

EvaluationLink parent_of ($X, $Y)536

An example of an unquantified Variable Atom is $X in537

ExtensionalImplicationLink <.3>538

ExtensionalInheritanceLink $X human539

ThereExists $Y540

AND541

ExtensionalInheritanceLink $Y human542

EvaluationLink parent_of ($X, $Y)543

This ImplicationLink says that 30 % of humans are parents: a more useful state-544

ment than the ForAll Link given above, which says that it is very very unlikely to be545

true that all humans are parents.546

We may also say, for instance,547

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

46 2 Knowledge Representation Using the Atomspace

SatisfyingSet(EvaluationLink eats (cat, $X))548

to refer to the set of X so that eats(cat, X).549

On the other hand, suppose we have the implication550

Implication551

Evaluation f $X552

Evaluation553

f554

ExOut reverse $X555

where f is a PredicateNode embodying a mathematical operator acting on pairs of556

NumberNodes, and reverse is an operator that reverses a list. So, this implication says557

that the f predicate is commutative. Now, suppose that f is grounded by the formula558

f(a,b) = (a > b - 1)559

embodied in a Combo Tree object (which is not commutative but that is not the560

point), stored in the ProcedureRepository and linked to the PredicateNode for f.561

These f-internal variables, which are expressed here using the letters a and b, are not562

VariableNodes in the CogPrime AtomTable. The notation we use for these within563

the textual Combo language, that goes with the Combo Tree formalism, is to replace564

a and b in this example with #1 and #2, so the above grounding would be denoted565

f -> (#1 > #2 - 1)566

version, it is assumed that type restrictions are always crisp, not probabilistically567

truth-valued. This assumption may be revisited in a later version of the system.568

2.3.2.1 Links as Predicates569

It is conceptually important to recognize that CogPrime link types may be interpreted570

as predicates. For instance, when one says571

InheritanceLink cat animal <.8>572

indicating an Inheritance relation between cat and animal with a strength .8, effec-573

tively one is declaring that one has a predicate giving an output of .8. Depending on574

the interpretation of InheritanceLink as a predicate, one has either the predicate575

InheritanceLink cat $X576

acting on the input577

animal578

or the predicate579

InheritanceLink $X animal580

acting on the input581

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 47

cat582

or the predicate583

InheritanceLink $X $Y584

acting on the list input585

(cat, animal)586

This means that, if we wanted to, we could do away with all Link types except587

OrderedLink and UnorderedLink, and represent all other Link types as PredicateN-588

odes embodying appropriate predicate schema.589

This is not the approach taken in the current codebase. However, the situation is590

somewhat similar to that with CIM-Dynamics:591

• In future we will likely create a revision of CogPrime that regularly revises its own592

vocabulary of Link types, in which case an explicit representation of link types as593

predicate schema will be appropriate.594

• In the shorter term, it can be useful to treat link types as virtual predicates, meaning595

that one lets the system create SchemaNodes corresponding to them, and hence596

do some meta level reasoning about its own link types.597

2.3.3 Variable and Combinator Notation598

One of the most important aspects of combinatory logic, from a CogPrime perspec-599

tive, is that it allows one to represent arbitrarily complex procedures and patterns600

without using variables in any direct sense. In CogPrime, variables are optional, and601

the choice of whether or how to use them may be made (by CogPrime itself) on a602

contextual basis.603

This section deals with the representation of variable expressions in a variable-604

free way, in a CogPrime context. The general theory underlying this is well-known,605

and is usually expressed in terms of the elimination of variables from lambda calculus606

expressions (lambda lifting). Here we will not present this theory but will restrict607

ourselves to presenting a simple, hopefully illustrative example, and then discussing608

some conceptual implications.609

2.3.3.1 Why Eliminating Variables is So Useful610

Before launching into the specifics, a few words about the general utility of variable-611

free expression may be worthwhile.612

Some expressions look simpler to the trained human eye with variables, and some613

look simpler without them. However, the main reason why eliminating all variables614

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

48 2 Knowledge Representation Using the Atomspace

from an expression is sometimes very useful, is that there are automated program-615

manipulation techniques that work much more nicely on programs (schemata, in616

CogPrime lingo) without any variables in them.617

As will be discussed later (e.g. Chap. 15 on evolutionary learning, although the618

same process is also useful for supporting probabilistic reasoning on procedures), in619

order to mine patterns among multiple schema that all try to do the same (or related)620

things, we want to put schema into a kind of “hierarchical normal form”. The normal621

form we wish to use generalizes Holman’s Elegant Normal Form (which is discussed622

in Moshe Looks’ PhD thesis) to program trees rather than just Boolean trees.623

But, putting computer programs into a useful, nicely-hierarchically-structured624

normal form is a hard problem—it requires one to have a pretty nice and compre-625

hensive set of program transformations.626

But the only general, robust, systematic program transformation methods that627

exist in the computer science literature require one to remove the variables from628

one’s programs, so that one can use the theory of functional programming (which629

ties in with the theory of monads in category theory, and a lot of beautiful related630

math).631

In large part, we want to remove variables so we can use functional programming632

tools to normalize programs into a standard and pretty hierarchical form, in order to633

mine patterns among them effectively.634

However, we don’t always want to be rid of variables, because sometimes, from a635

logical reasoning perspective, theorem-proving is easier with the variables in there.636

(Sometimes not.)637

So, we want to have the option to use variables, or not.638

2.3.3.2 An Example of Variable Elimination639

Consider the PredicateNode640

AND641

InheritanceLink X cat642

eats X mice643

Here we have used a syntactically sugared representation involving the variable X.644

How can we get rid of the X?645

Recall the C combinator (from combinatory logic), defined by646

C f x y = f y x647

Using this tool,648

InheritanceLink X cat649

becomes650

C InheritanceLink cat X651

and652

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_15

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 49

eats X mice653

becomes654

C eats mice X655

so that overall we have656

AND657

C InheritanceLink cat658

C eats mice659

where the C combinators essentially give instructions as to where the virtual argument660

X should go.661

In this case the variable-free representation is basically just as simple as the662

variable-based representation, so there is nothing to lose and a lot to gain by getting663

rid of the variables. This won’t always be the case—sometimes execution efficiency664

will be significantly enhanced by use of variables.665

WIKISOURCE:TypeInheritance666

2.3.4 Inheritance Between Higher-Order Types667

Next, this section deals with the somewhat subtle matter of Inheritance between668

higher-order types. This is needed, for example, when one wants to cross over or669

mutate two complex schemata, in an evolutionary learning context. One encounters670

questions like: When mutation replaces a schema that takes integer input, can it671

replace it with one that takes general numerical input? How about vice versa? These672

questions get more complex when the inputs and outputs of schema may themselves673

be schema with complex higher-order types. However, they can be dealt with ele-674

gantly using some basic mathematical rules.675

Denote the type of a mapping from type T to type S, asT -> S. Use the shorthand676

inh to mean inherits from. Then the basic rule we use is that677

T1 -> S1 inh T2 -> S2678

iff679

T2 inh T1680

S1 inh S2681

In other words, we assume higher-order type inheritance is countervariant. The682

reason is that, if R1 = T1 -> S1 is to be a special case of R2 = T2 -> S2, then one683

has to be able to use the latter everywhere one uses the former. This means that any684

input R2 takes, has to also be taken by R1 (hence T2 inherits from T1). And it means685

that the outputs R2 gives must be able to be accepted by any function that accepts686

outputs of R1 (hence S1 inherits from S2).687

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

50 2 Knowledge Representation Using the Atomspace

This type of issue comes up in programming language design fairly frequently, and688

there are a number of research papers debating the pros and cons of countervariance689

versus covariance for complex type inheritance. However, for the purpose of schema690

type inheritance in CogPrime, the greater logical consistency of the countervariance691

approach holds sway.AQ1692

For instance, in this approach, INT -> INT is not a subtype of NO -> INT693

(where NO denotes FLOAT), because NO -> INT is the type that includes all func-694

tions which take a real and return an int, and an INT -> INT does not take a real.695

Rather, the containment is the other way around: every NO -> INT function is an696

example of an INT -> INT function. For example, consider the NO -> INT that697

takes every real number and rounds it up to the nearest integer. Considered as an698

INT -> INT function, this is simply the identity function: it is the function that699

takes an integer and rounds it up to the nearest integer.700

Of course, tupling of types is different, it’s covariant. If one has an ordered pair701

whose elements are of different types, say (T1, T2), then we have702

(T1 , S1) inh (T2, S2)703

iff704

T1 inh T2705

S1 inh S2706

As a mnemonic formula, we may say707

(general -> specific) inherits from (specific -> general)708

709

(specific, specific) inherits from (general, general)710

In schema learning, we will also have use for abstract type constructions, such as711

(T1, T2) where T1 inherits from T2712

Notationally, we will refer to variable types as Xv1, Xv2, etc., and then denote713

the inheritance relationships by using numerical indices, e.g. using714

[1 inh 2]715

to denote that716

Xv1 inh Xv2717

So for example,718

(INT, VOID) inh (Xv1, Xv2)719

is true, because there are no restrictions on the variable types, and we can just assign720

Xv1 = INT, Xv2 = VOID.721

On the other hand,722

(INT, VOID) inh (Xv1, Xv2), [1 inh 2]723

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 51

is false because the restriction Xv1 inh Xv2 is imposed, but it’s not true that INT inh724

VOID.725

The following list gives some examples of type inheritance, using the elementary726

types INT, FLOAT (FL), NUMBER (NO), CHAR and STRING (STR), with the727

elementary type inheritance relationships728

• INT inh NUMBER729

• FLOAT inh NUMBER730

• CHAR inh STRING731

• (NO -> FL) inh (INT -> FL)732

• (FL -> INT) inh (FL -> NO)733

• ((INT -> FL) -> (FL -> INT)) inh ((NO -> FL) -> (FL -> NO))734

WIKISOURCE:AbstractSchemaManipulation.735

2.3.5 Advanced Schema Manipulation736

Now we describe some special schema for manipulating schema, which seem to be737

very useful in certain contexts.738

2.3.5.1 Listification739

First, there are two ways to represent n-ary relations in CogPrime’s Atom level740

knowledge representation language: using lists as in741

f_list (x1, ..., xn)742

or using currying as in743

f_curry x1 ... xn744

To make conversion between list and curried forms easier, we have chosen to745

introduce special schema (combinators) just for this purpose:746

listify f = f_list so that f_list (x1, ..., xn) = f x1 ... xn747

748

unlistify listify f = f749

For instance750

kick_curry Ben Ken751

denotes752

(kick_curry Ben) Ken753

which means that kick is applied to the argument Ben to yield a predicate schema754

applied to Ken. This is the curried style. The list style is755

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

52 2 Knowledge Representation Using the Atomspace

kick_List (Ben, Ken)756

where kick is viewed as taking as an argument the List (Ben, Ken). The conversion757

between the two is done by758

listify kick_curry = kick_list759

760

unlistify kick_list = kick_curry761

As a more detailed example of unlistification, let us utilize a simple mathemat-762

ical example, the function (X − 1)2. If we use the notations—and pow to denote763

SchemaNodes embodying the corresponding operations, then this formula may be764

written in variable-free node-and-link form as765

ExOutLink766

pow767

ListLink768

ExOutLink769

-770

ListLink771

X772

1773

2774

But to get rid of the nasty variable X, we need to first unlistify the functions pow775

and—, and then apply the C and B combinators a couple times to move the variable776

X to the front. The B combinator (see Combinatory Logic REF) is recalled below:777

B f g h = f (g h)778

This is accomplished as follows (using the standard convention of left-associativity779

for the application operator, denoted @ in the tree representation given in Sect. Execution780

Output Links)781

pow(-(x, 1), 2)782

unlistify pow (-(x, 1) 2)783

C (unlistify pow) 2 (-(x,1))784

C (unlistify pow) 2 ((unlistify -) x 1)785

C (unlistify pow) 2 (C (unlistify -) 1 x)786

B (C (unlistify pow) 2) (C (unlistify -) 1) x787

yielding the final schema788

B (C (unlistify pow) 2) (C (unlistify -) 1)789

By the way, a variable-free representation of this schema in CogPrime would look790

like791

ExOutLink792

ExOutLink793

B794

ExOutLink795

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2.3 Representing Functions and Predicates 53

ExOutLink796

C797

ExOutLink798

unlistify799

pow800

2801

ExOutLink802

ExOutLink803

C804

ExOutLink805

unlistify806

-807

1808

The main thing to be observed is that the introduction of these extra schema lets809

us remove the variable X. The size of the schema is increased slightly in this case,810

but only slightly—an increase that is well—justified by the elimination of the many811

difficulties that explicit variables would bring to the system. Furthermore, there is a812

shorter rendition which looks like813

ExOutLink814

ExOutLink815

B816

ExOutLink817

ExOutLink818

C819

pow_curried820

2821

ExOutLink822

ExOutLink823

C824

-_curried825

1826

This rendition uses alternate variants of—and pow schema, labeled—_curried827

and pow_curried, which do not act on lists but are curried in the manner of828

combinatory logic and Haskell. It is 13 lines whereas the variable-bearing version is829

9 lines, a minor increase in length that brings a lot of operational simplification.830

2.3.5.2 Argument Permutation831

In dealing with List relationships, there will sometimes be use for an argument-832

permutation operator, let us call it P, defined as follows833

(P p f) (v1, ..., vn) = f (p (v1, ..., vn))834

where p is a permutation on n letters. This deals with the case where we want to say,835

for instance that836

Equivalence parent(x,y) child(y,x)837

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

54 2 Knowledge Representation Using the Atomspace

Instead of positing variable names x and y that span the two relations parent838

(x, y) and child (y, x), what we can instead say in this example is839

Equivalence parent (P {2,1} child)840

For the case of two-argument functions, argument permutation is basically doing841

on the list level what the C combinator does in the curried function domain. On the842

other hand, in the case of n-argument functions with n > 2, argument permutation843

doesn’t correspond to any of the standard combinators.844AQ2

Finally, let’s conclude with a similar example in a more standard predicate logic845

notation, involving both combinators and the permutation argument operator intro-846

duced above. We will translate the variable-laden predicate847

likes(y,x) AND likes(x,y)848

into the equivalent combinatory logic tree. Let us first recall the combinator S whose849

function is to distribute an argument over two terms.850

S f g x = (f x) (g x)851

Assume that the two inputs are going to be given to us as a list. Now, the combi-852

natory logic representation of this is853

S (B AND (B (P {2,1} likes))) likes854

We now show how this would be evaluated to produce the correct expression:855

S (B AND (B (P {2,1} likes))) likes (x,y)856

S gets evaluated first, to produce857

(B AND (B (P {2,1} likes)) (x,y)) (likes (x,y))858

now the first B859

AND ((B (P {2,1} likes)) (x,y)) (likes (x,y))860

now the second one861

AND ((P {2,1} likes) (x,y)) (likes (x,y))862

now P863

AND (likes (y,x)) (likes (x,y))864

which is what we wanted.865

319613_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 2

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly note that, due to some technical reasons citation of
Sect. 20.3.0.6 has been changed to ‘Execution Output Links’.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Representing Procedural Knowledge

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo, Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract We now turn to CogPrime’s representation and manipulation of procedural knowledge.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 3
Representing Procedural Knowledge

3.1 Introduction0

We now turn to CogPrime’s representation and manipulation of procedural1

knowledge. In a sense this is the most fundamental kind of knowledge—since intel-2

ligence is most directly about action selection, and it is procedures which generate3

actions.4

CogPrime involves multiple representations for procedures, including procedure5

maps and (for sensorimotor procedures) neural nets or similar structures. Its most6

basic procedural knowledge representation, however, is the program. The choice to7

use programs to represent procedures was made after considerable reflection—they8

are not of course the only choice, as other representations such as recurrent neural9

networks possess identical representational power, and are preferable in some regards10

(e.g. resilience with respect to damage). Ultimately, however, we chose programs11

due to their consilience with the software and hardware underlying CogPrime (and12

every other current AI program). CogPrime is a program, current computers and13

operating systems are optimized for executing and manipulating programs; and we14

humans now have many tools for formally and informally analyzing and reasoning15

about programs. The human brain probably doesn’t represent most procedures as16

programs in any simple sense, but CogPrime is not intended to be an emulation of17

the human brain. So, the representation of programs as procedures is one major case18

where CogPrime deviates from the human cognitive architecture in the interest of19

more effectively exploiting its own hardware and software infrastructure.20

CogPrime represents procedures as programs in an internal programming lan-21

guage called “Combo.” While Combo has a textual representation, described online22

at the OpenCog wiki, this isn’t one of its more important aspects (and may be23

redesigned slightly or wholly without affecting system intelligence or architecture);24

the essence of Combo programs lies in their tree representation not their text repre-25

sentation. One could fairly consider Combo as a dialect of LISP, although it’s not26

equivalent to any standard dialect, and it hasn’t particularly been developed with this27

in mind. In this chapter we discuss the key concepts underlying the Combo approach28

to program representation, seeking to make clear at each step the motivations for29

doing things in the manner proposed.30

B. Goertzel et al., Engineering General Intelligence, Part 2, 55
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_3,
© Atlantis Press and the authors 2014

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

56 3 Representing Procedural Knowledge

In terms of the overall CogPrime architecture diagram given in Chap. 1 of Vol. 5,31

this chapter is about the box labeled “Procedure Repository.” The latter, in OpenCog,32

is a specialized component connected to the AtomSpace, storing Combo tree repre-33

sentations of programs; each program in the repository is linked to a SchemaNode34

in the AtomSpace, ensuring full connectivity between procedural and declarative35

knowledge.36

3.2 Representing Programs37

What is a “program” anyway? What distinguishes a program from an arbitrary rep-38

resentation of a procedure?39

The essence of programmatic representations is that they are well-specified, com-40

pact, combinatorial, and hierarchical:41

• Well-specified: unlike sentences in natural language, programs are unambiguous;42

two distinct programs can be precisely equivalent.43

• Compact: programs allow us to compress data on the basis of their regularities.44

Accordingly, for the purposes of this chapter, we do not consider overly constrained45

representations such as the well-known conjunctive and disjunctive normal forms46

for Boolean formulae to be programmatic. Although they can express any Boolean47

function (data), they dramatically limit the range of data that can be expressed48

compactly, compared to unrestricted Boolean formulae.49

• Combinatorial: programs access the results of running other programs (e.g. via50

function application), as well as delete, duplicate, and rearrange these results (e.g.51

via variables or combinators).52

• Hierarchical: programs have intrinsic hierarchical organization, and may be53

decomposed into subprograms.54

Eric Baum has advanced a theory “under which one understands a problem when55

one has mental programs that can solve it and many naturally occurring varia-56

tions” [Bau06]. In this perspective—which we find an agreeable way to think about57

procedural knowledge, though perhaps an overly limited perspective on mind as a58

whole—one of the primary goals of artificial general intelligence is systems that59

can represent, learn, and reason about such programs [Bau06, Bau04]. Furthermore,60

integrative AGI systems such as CogPrime may contain subsystems operating on61

programmatic representations. Would-be AGI systems with no direct support for62

programmatic representation will clearly need to represent procedures and proce-63

dural abstractions somehow. Alternatives such as recurrent neural networks have64

serious downsides, including opacity and inefficiency, but also have their advantages65

(e.g. recurrent neural nets can be robust with regard to damage, and learnable via66

biologically plausible algorithms).67

Note that the problem of how to represent programs for an AGI system dissolves in68

the unrealistic case of unbounded computational resources. The solution is algorith-69

mic information theory [Cha08], extended recently to the case of sequential decision70

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.2 Representing Programs 57

theory [Hut05a]. The latter work defines the universal algorithmic agent AIXI, which71

in effect simulates all possible programs that are in agreement with the agent’s set72

of observations. While AIXI is uncomputable, the related agent AIXItl may be com-73

puted, and is superior to any other agent bounded by time t and space l [Hut05b].74

The choice of a representational language for programs1 is of no consequence, as75

it will merely introduce a bias that will disappear within a constant number of time76

steps.277

Our goal in this chapter is to provide practical techniques for approximating78

the ideal provided by algorithmic probability, based on what Pei Wang has termed79

the assumption of insufficient knowledge and resources [Wan06], and assuming an80

AGI architecture that’s at least vaguely humanlike in nature, and operates largely81

in everyday human environments, but uses programs to represent many procedures.82

Given these assumptions, how programs are represented is of paramount importance,83

as we shall see in Sects. 3.3 and 3.4, where we give a conceptual formulation of what84

we mean by tractable program representations, and introduce tools for formalizing85

such representations. Section 3.4 delves into effective techniques for representing86

programs. A key concept throughout is syntactic–semantic correlation, meaning87

that programs which are similar on the syntactic level, within certain constraints88

will tend to also be similar in terms of their behavior (i.e. on the semantic level).89

Lastly, Sect. 3.5 changes direction a bit and discusses the translation of programmatic90

structure into declarative form for the purposes of logical inference.91 AQ1

In the future, we will experimentally validate that these normal forms and heuris-92

tic transformations do in fact increase the syntactic–semantic correlation in program93

spaces, as has been shown so far only in the Boolean case. We would also like94

to explore the extent to which even stronger correlation, and additional tractabil-95

ity properties, can be observed when realistic probabilistic constraints on “natural”96

environment and task spaces are imposed.97

The importance of a good programmatic representation of procedural knowledge98

becomes quite clear when one thinks about it in terms of the Mind-World Corre-99

spondence Principle introduced in Chap. 10 of Vol. 5. That principle states, roughly,100

that transition paths between world-states should map naturally onto transition paths101

between mind-states. This suggests that there should be a natural, smooth mapping102

between real-world action series and the corresponding series of internal states.103

Where internal states are driven by explicitly given programs, this means that the104

transitions between internal program states should nicely mirror transitions between105

the states of the real world as it interacts with the system controlled by the program.106

The extent to which this is true will depend on the specifics of the programming107

language—and it will be true for a much greater extent, on the whole, if the pro-108

gramming language displays high syntactic–semantic correlation for behaviors that109

commonly occur when the program is used to control the system in the real world.110

So, the various technical issues mentioned above and considered below, regarding111

the qualities desired in a programmatic representation, are merely the manifestation112

1 As well as a language for proofs in the case of AIXItl .
2 The universal distribution converges quickly.

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_10

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

58 3 Representing Procedural Knowledge

of the general Mind-World Correspondence Principle in the context of procedural113

knowledge, under the assumption that procedures are represented as programs. The114

material in this chapter may be viewed as an approach to ensuring the validity of the115

Mind-World Correspondence principle for programmatically-represented procedural116

knowledge, for CogPrime systems concerned with achieving humanly meaningful117

goals in everyday human environments.118

3.3 Representational Challenges119

Despite the advantages outlined in Sect. 3.2 there are a number of challenges in120

working with programmatic representations:121

• Open-endedness—in contrast to some other knowledge representations current122

in machine learning, programs vary in size and “shape”, and there is no obvious123

problem-independent upper bound on program size. This makes it difficult to124

represent programs as points in a fixed-dimensional space, or to learn programs125

with algorithms that assume such a space.126

• Over-representation—often, syntactically distinct programs will be semantically127

identical (i.e. represent the same underlying behavior or functional mapping).128

Lacking prior knowledge, many algorithms will inefficiently sample semantically129

identical programs repeatedly [Loo07a, GBK04].130

• Chaotic execution—programs that are very similar, syntactically, may be very131

different, semantically. This presents difficulties for many heuristic search algo-132

rithms, which require syntactic and semantic distance to be correlated [Loo07b,133

TVCC05].134

• High resource-variance—programs in the same space vary greatly in the space135

and time they require to execute.136

It’s easy to see how the latter two issues may present a challenge for mind-137

world correspondence! Chaotic execution makes it hard to predict whether a pro-138

gram will indeed manifest state-sequences mapping nicely to a corresponding world-139

sequences; and high resource-variance makes it hard to predict whether, for a given140

program, this sort of mapping can be achieved for relevant goals given available141

resources.142

Based on these concerns, it is no surprise that search over program spaces quickly143

succumbs to combinatorial explosion, and that heuristic search methods are some-144

times no better than random sampling [LP02]. However, alternative representations145

of procedures also have their difficulties, and so far we feel the thornier aspects of146

programmatic representation are generally an acceptable price to pay in light of the147

advantages.148

For some special cases in CogPrime we have made a different choice—e.g. when149

we use DeSTIN for sensory perception (see Chap. 10) we utilize a more specialized150

representation comprising a hierarchical network of more specialized elements. DeS-151

TIN doesn’t have problems with resource variance or chaotic execution, though it152

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_10

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.3 Representational Challenges 59

does suffer from over-representation. It is not very open-ended, which helps increase153

its efficiency in the perceptual processing domain, but may limit its applicability to154

more abstract cognition. In short we feel that, for general representation of cognitive155

procedures, the benefits of programmatic representation outweigh the costs; but for156

some special cases such as low-level perception and motor procedures, this may not157

be true and one may do better to opt for a more specialized, more rigid but less158

problematic representation.159

It would be possible to modify CogPrime to use, say, recurrent neural nets for160

procedure representation, rather than programs in an explicit language. However,161

this would rate as a rather major change in the architecture, and would cause multi-162

ple problems in other aspects of the system. For example, programs are reasonably163

straightforward to reason about using PLN inference, whereas reasoning about the164

internals of recurrent neural nets is drastically more problematic, though not impossi-165

ble. The choice of a procedure representation approach for CogPrime has been made166

considering not only procedural knowledge in itself, but the interaction of procedural167

knowledge with other sorts of knowledge. This reflects the general synergetic nature168

of the CogPrime design.169

There are also various computation-theoretic issues regarding programs; however,170

we suspect these are not particularly relevant to the task of creating human-level AGI,171

though they may rear their heads when one gets into the domain of super-human,172

profoundly self-modifying AGI systems. For instance, in the context of the the diffi-173

culties caused by over-representation and high resource-variance, one might observe174

that determinations of e.g. programmatic equivalence for the former, and e.g. halting175

behavior for the latter, are uncomputable. But we feel that, given the assumption of176

insufficient knowledge and resources, these concerns dissolve into the larger issue177

of computational intractability and the need for efficient heuristics. Determining the178

equivalence of two Boolean formulae over 500 variables by computing and compar-179

ing their truth tables is trivial from a computability standpoint, but, in the words of180

Leonid Levin, “only math nerds would call 2500 finite” [Lev94]. Similarly, a pro-181

gram that never terminates is a special case of a program that runs too slowly to be182

of interest to us.183

One of the key ideas underlying our treatment of programmatic knowledge is184

that, in order to tractably learn and reason about programs, an AI system must have185

prior knowledge of programming language semantics. That is, in the approach we186

advocate, the mechanism whereby programs are executed is assumed known a priori,187

and assumed to remain constant across many problems. One may then craft AI188

methods that make specific use of the programming language semantics, in various189

ways. Of course in the long run a sufficiently powerful AGI system could modify190

these aspects of its procedural knowledge representation; but in that case, according191

to our approach, it would also need to modify various aspects of its procedure learning192

and reasoning code accordingly.193

Specifically, we propose to exploit prior knowledge about program structure via194

enforcing programs to be represented in normal forms that preserve their hierarchical195

structure, and to be heuristically simplified based on reduction rules. Accordingly,196

one formally equivalent programming language may be preferred over another by197

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

60 3 Representing Procedural Knowledge

virtue of making these reductions and transformations more explicit and concise198

to describe and to implement. The current OpenCogPrime system uses a simple199

LISP-like language called Combo (which takes both tree form and textual form) to200

represent procedures, but this is not critical; the main point is using some language201

or language variant that is “tractable” in the sense of providing a context in which202

the semantically useful reductions and transformations we’ve identified are naturally203

expressible and easily usable.204

3.4 What Makes a Representation Tractable?205

Creating a comprehensive formalization of the notion of a tractable program rep-206

resentation would constitute a significant achievement; and we will not answer that207

summons here. We will, however, take a step in that direction by enunciating a set208

of positive principles for tractable program representations, corresponding closely209

to the list of representational challenges above. While the discussion in this section210

is essentially conceptual rather than formal, we will use a bit of notation to ensure211

clarity of expression; S to denote a space of programmatic functions of the same type212

(e.g. all pure Lisp λ-expressions mapping from lists to numbers), and B to denote213

a metric space of behaviors.214

In the case of a deterministic, side-effect-free program, execution maps from pro-215

grams in S to points in B, which will have separate dimensions for the function’s216

output across various inputs of interest, as well as dimensions corresponding to the217

time and space costs of executing the program. In the case of a program that interacts218

with an external environment, or is intrinsically nondeterministic, execution will map219

from S to probability distributions over points in B, which will contain additional220

dimensions for any side-effects of interest that programs in S might have. Note the221

distinction between syntactic distance, measured as e.g. tree-edit distance between222

programs in S, and semantic distance, measured between program’s corresponding223

points in or probability distributions over B. We assume that semantic distance accu-224

rately quantifies our preferences in terms of a weighting on the dimensions of B;225

i.e. if variation along some axis is of great interest, our metric for semantic distance226

should reflect this.227

Let P be a probability distribution over B that describes our knowledge of what228

sorts of problems we expect to encounter, let R(n) ⊆ S be all the programs in229

our representation with (syntactic) size no greater than n. We will say that R(n)230

d-covers the pair (B,P) to extent p if the probability that, for a random behavior231

b ∈ B chosen according to P , there is some program in R whose behavior is within232

semantic distance d of b, is greater than or equal to p. Then, some among the various233

properties of tractability that seem important based on the above discussion are as234

follows:235

• for fixed d, p quickly goes to 1 as n increases,236

• for fixed p, d quickly goes to 0 as n increases,237

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.4 What Makes a Representation Tractable? 61

• for fixed d and p, the minimal n needed for R(n) to d-cover (B,P) to extent p238

should be as small as possible,239

• ceteris paribus, syntactic and semantic distance (measured according to P) are240

highly correlated.241

This is closely related to the Mind-Brain Correspondence Principle articulated242

in Chap. 10 of Vol. 5, and to the geometric formulation of cognitive synergy posited243

in Appendix ??. Syntactic distance has to do with distance along paths in mind-244

space related to formal program structures, and semantic distance has to do with245

distance along paths in mind-space and world-space corresponding to the record246

of the program’s actual behavior. If syntax–semantics correlation failed, then there247

would be paths through mind-space (related to formal program structures) that were248

poorly matched to their closest corresponding paths through the rest of mind-space249

and world-space, hence causing a failure (or significant diminution) of cognitive250

synergy and mind-world correspondence.251 AQ2

Since execution time and memory usage considerations may be incorporated into252

the definition of program behavior, minimizing chaotic execution and managing253

resource variance emerges conceptually here as subcases of maximizing correlation254

between syntactic and semantic distance. Minimizing over-representation follows255

from the desire for small program size: roughly speaking the less over-representation256

there is, the smaller average program size can be achieved.257 AQ3

In some cases one can achieve fairly strong results about tractability of repre-258

sentations without any special assumptions about P: for example in prior work we259

have shown that adoption of an appropriate hierarchical normal form can generically260

increase correlation between syntactic and semantic distance in the space of Boolean261

functions [?, Loo07b]. In this case we may say that we have a generically tractable262

representation. However, to achieve tractable representation of more complex pro-263

grams, some fairly strong assumptions about P will be necessary. This should not be264

philosophically disturbing, since it’s clear that human intelligence has evolved in a265

manner strongly conditioned by certain classes of environments; and similarly, what266

we need to do to create a viable program representation system for pragmatic AGI267

usage, is to achieve tractability relative to the distribution P corresponding to the268

actual problems the AGI is going to need to solve. Formalizing the distributions P269

of real-world interest is a difficult problem, and one we will not address here (recall270

the related, informal discussions of Chap. 9 of Vol. 5 where we considered the vari-271

ous important peculiarities of the human everyday world). However, we hypothesize272

that the representations presented in Sect. 3.5 may be tractable to a significant extent273

irrespective of P ,3 and even more powerfully tractable with respect to this as-yet274

unformalized distribution. As weak evidence in favor of this hypothesis, we note that275

many of the representations presented have proved useful so far in various narrow276

problem-solving situations.277

3 Specifically, with only weak biases that prefer smaller and faster programs with hierarchical
decompositions.

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_10

http://dx.doi.org/10.2991/978-94-6239-027-0_9

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

62 3 Representing Procedural Knowledge

3.5 The Combo Language278

The current version of OpenCogPrime uses a simple language called Combo, which279

is an example of a language in which the transformations we consider important280

for AGI-focused program representation are relatively simple and natural. Here we281

illustrate the Combo language by example, referring the reader to the OpenCog wiki282

site for a formal presentation.283

The main use of the Combo language in OpenCog is behind-the-scenes, i.e. using284

tree representations of Combo programs; but there is also a human-readable syn-285

tax, and an interpreter that allows humans to write Combo programs when needed.286

The main use of Combo, however, is not for human-coded programs, but rather for287

programs that are learned via various AI methods.288

In Combo all expressions are in prefix form like LISP, but the left parenthesis is289

placed after the operator instead of before, for example:290

• +(4 5)291

is a 0-ari expression that returns 4 + 5292

• and(#1 0<(#2))293

is a binary expression of type bool × f loat �→ bool that returns true if and only294

if the first input is true and the second input positive. #n designates the n-th input.295

• fact(1) := if(0<(#1) *(#1 fact(+(#1 -1))) 1)296

is a recursive definition of factorial.297

• and_seq(goto(stick) grab(stick) goto(owner) drop)298

is a 0-ari expression with side effects, it evaluates a sequence of actions until299

completion or failure of one of them. Each action is executed in the environ-300

ment the agent is connected to and returns action_success upon success or301

action_ f ailure otherwise. The action sequence returns action_success if it302

completes or action_ f ailure if it does not.303

• if(near(owner self)304

lick(owner)305

and_seq(goto(owner) wag)306

is a 0-ary expression with side effects; it means that if at the time of its evaluation307

the agent referred as self (here a virtual pet) is near its owner then lick him/her,308

otherwise go to the owner and wag the tail.309

3.6 Normal Forms Postulated to Provide Tractable310

Representations311

We now present a series of normal forms for programs, postulated to provide tractable312

representations in the contexts relevant to human-level, roughly human-like general313

intelligence.314

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.6 Normal Forms Postulated to Provide Tractable Representations 63

3.6.1 A Simple Type System315

We use a simple type system to distinguish between the various normal forms intro-316

duced below. This is necessary to convey the minimal information needed to correctly317

apply the basic functions in our canonical forms. Various systems and applications318

may of course augment these with additional type information, up to and including319

the satisfaction of arbitrary predicates (e.g. a type for prime numbers). This can be320

overlaid on top of our minimalist system to convey additional bias in selecting which321

transformations to apply, and introducing constraints as necessary. For instance, a322

call to a function expecting a prime number, called with a potentially composite argu-323

ment, may be wrapped in a conditional testing the argument’s primality. A similar324

technique is used in the normal form for functions to deal with list arguments that325

may be empty.326

Normal forms are provided for Boolean and number primitive types, and the327

following parametrized types:328

• list types, listT , where T is any type,329

• tuple types, tupleT1,T2,...TN , where all Ti are types, and N is a positive natural330

number,331

• enum types, {s1, s2, . . . sN }, where N is a positive number and all si are unique332

identifiers,333

• function types T1, T2, . . . TN → O , where O and all Ti are types,334

• action result types.335

A list of type listT is an ordered sequence of any number of elements, all of which336

must have type T . A tuple of type tupleT1,T2,...TN is an ordered sequence of exactly337

N elements, where every i th element is of type Ti . An enum of type {s1, s2, . . . sN } is338

some element si from the set. Action result types concern side-effectful interaction339

with some world external to the system (but perhaps simulated, of course), and will340

be described in detail in Sect. 3.6.2. Other types may certainly be added at a later341

date, but we believe that those listed above provide sufficient expressive power to342

conveniently encompass a wide range of programs, and serve as a compelling proof of343

concept. The normal form for a type T is a set of elementary functions with codomain344

T, a set of constants of type T, and a tree grammar. Internal nodes for expressions345

described by the grammar are elementary functions, and leaves are either Uvar or346

Uconstant , where U is some type (often U = T).347

Sentences in a normal form grammar may be transformed into normal form expres-348

sions. The set of expressions that may be generated is a function of a set of bound349

variables and a set of external functions that must be provided (both bound variables350

and external functions are typed). The transformation is as follows:351

• Tconstant leaves are replaced with constants of type T,352

• Tvar leaves are replaced with either bound variables matching type T, or expres-353

sions of the form f (expr1, expr2, . . . exprM), where f is an external function of354

type T1, T2, . . . TM → T , and each expri is a normal form expression of type Ti355

(given the available bound variables and external functions).356

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

64 3 Representing Procedural Knowledge

3.6.2 Boolean Normal Form357

The elementary functions are and, or , and not . The constants are {true, f alse}.358

The grammar is:359

bool_root = or_form | and_form | literal | bool_constant360

literal = bool_var | not(bool_var)361

or_form = or({and_form | literal}{2,})362

and_form = and({or_form | literal}{2,}) .363

The construct foo{x,} refers to x or more matches of foo (e.g. {x | y }{2,}364

is two or more items in sequences where each item is either an x or a y).365

3.6.3 Number Normal Form366

The elementary functions are ∗ (times) and + (plus). The constants are some subset367

of the rationals (e.g. those with IEEE single-precision floating-point representations).368

The grammar is:369

num_root = times_form | plus_form | num_constant | num_var370

times_form = *({num_constant | plus_form} plus_form{1,})371

| num_var372

plus_form = +({num_constant | times_form} times_form{1,})373

| num_var374

3.6.4 List Normal Form375

For list types listT , the elementary functions are list (an n-ary list constructor) and376

append. The only constant is the empty list (nil). The grammar is:377

list_T_root = append_form | list_form | list_T_var378

| list_T_constant379

append_form = append({list_form | list_T_var}{2,})380

list_form = list(T_root{1,})381

3.6.5 Tuple Normal Form382

For tuple types tupleT1,T2,...TN , the only elementary function is the tuple constructor383

(tuple). The constants are384

T1_constant×T2_constant× · · · × TN_constant385

The normal form is either a constant, a var, or386

tuple(T1_root T2_root . . . TN_root)387

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.6 Normal Forms Postulated to Provide Tractable Representations 65

3.6.6 Enum Normal Form388

Enums are atomic tokens with no internal structure—accordingly, there are no389

elementary functions. The constants for the enum {s1, s2, . . . sN } are the si s. The390

normal form is either a constant or a variable.391

3.6.7 Function Normal Form392

For T1, T2, . . . TN → O , the normal form is a lambda-expression of arity N whose393

body is of type O . The list of variable names for the lambda-expression is not a394

“proper” argument—it does not have a normal form of its own. Assuming that none395

of the Ti s is a list type, the body of the lambda-expression is simply in the normal396

form for type O (with the possibility of the lambda-expressions arguments appearing397

with their appropriate types). If one or more Ti s are list types, then the body is a call398

to the spli t function with all arguments in normal form.399

Spli t is a family of functions with type signatures400

(T1, listT1 , T2, listT2 , . . . Tk, listTk → O),401

tuplelistT1 ,O , tuplelistT2 ,O , . . . tuplelistTk ,O → O.402
403

To evaluate spli t (f, tuple(l1, o1), tuple(l2, o2), . . . tuple(lk, ok)), the list argu-404

ments l1, l2, . . . lk are examined sequentially. If some li is found that is empty, then405

the result is the corresponding value oi . If all li are nonempty, we deconstruct each406

of them into xi : xsi , where xi is the first element of the list and xsi is the rest.407

The result is then f (x1, xs1, x2, xs2, . . . xk, xsk). The spli t function thus acts as an408

implicit case statement to deconstruct lists only if they are nonempty.409

3.6.8 Action Result Normal Form410

An action result type act corresponds to the result of taking an action in some world.411

Every action result type has a corresponding world type, world. Associated with412

action results and worlds are two special sorts of functions.413

• Perceptions—functions that take a world as their first argument and regular (non-414

world and non-action-result) types as their remaining arguments, and return regular415

types. Unlike other function types, the result of evaluating a perception call may416

be different at different times, because the world will have different configurations417

at different times.418

• Actions—functions that take a world as their first argument and regular types as419

their remaining arguments, and return action results (of the type associated with420

the type of their world argument). As with perceptions, the result of evaluating an421

action call may be different at different times. Furthermore, actions may have side422

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

66 3 Representing Procedural Knowledge

effects in the associated world that they are called in. Thus, unlike any other sort423

of function, actions must be evaluated, even if their return values are ignored.424

Other sorts of functions acting on worlds (e.g. ones that take multiple worlds as425

arguments) are disallowed.426

Note that an action result expression cannot appear nested inside an expression427

of any other type. Consequently, there is no way to convert e.g. an action result428

to a Boolean, although conversion in the opposite direction is permitted. This is429

required because mathematical operations in our language have classical mathemat-430

ical semantics; x and y must equal y and x, which will not generally be the case if431

x or y can have side-effects. Instead, there are special sequential versions of logical432

functions which may be used instead.433

The elementary functions for action result types are andseq (sequential and,434

equivalent to C’s short-circuiting &&), orseq (sequential or, equivalent to C’s short-435

circuiting ||), and f ails (negates success to failure and vice versa). The constants436

may vary from type to type but must at least contain success and f ailure, indicating437

absolute success/failure in execution.4 The normal form is as follows:438

act_root = orseq_form |andseq_form | seqlit439

seqlit = act | fails(act)440

act = act_constant | act_var441

orseq_form = orseq({andseq_form | seqlit}{2,})442

andseq_form = andseq({orseq_form | seqlit}{2,})443

3.7 Program Transformations444

A program transformation is any type-preserving mapping from expressions to445

expressions. Transformations may be guaranteed to preserve semantics. When doing446

program evolution there is an intermediate category of fitness preserving transfor-447

mations that may alter semantics, but not fitness. In general, the only way that fitness448

preserving transformations will be uncovered is by scoring programs that have had449

their semantics potentially transformed to determine their fitness, which is what most450

fitness function does. On the other hand if the fitness function is encompassed in the451

program itself, so a candidate directly outputs the fitness itself, then only preserving452

semantics transformations are needed.453

3.7.1 Reductions454

These are semantics preserving transformations that do not increase some size mea-455

sure (typically number of symbols), and are idempotent. For example, and(x, x, y)456

4 A do(arg1, arg2, . . . argN) statement (known as progn in Lisp), which evaluates its argu-
ments sequentially regardless of success or failure, is equivalent to andseq (orseq (arg1, success),
orseq (arg2, success), . . . orseq (argN , success)).

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.7 Program Transformations 67

→ and(x, y) is a reduction for Boolean expressions. A set of canonical reductions is457

defined for every type that has a normal form. For numerical functions, the simplifier458

in a computer algebra system may be used. The full list of reductions is omitted in for459

brevity. An expression is reduced if it maps to itself under all canonical reductions460

for its type, and all of its children are reduced.461

Another important set of reductions are the compressive abstractions, which462

reduce or keep constant the size of expressions by introducing new functions. Con-463

sider464

list(*(+(a p q) r)465

*(+(b p q) r)466

*(+(c p q) r))467

which contains 19 symbols. Transforming this to468

f(x) = *(+(x p q) r)469

list(f(a) f(b) f(c))470

reduces the total number of symbols to 15. One can generalize this notion to consider471

compressive abstractions across a set of programs. Compressive abstractions appear472

to be rather expensive to uncover, although not prohibitively so, the computation473

may easily be parallelized and may rely heavily on subtree mining [TODO REF].474

3.7.1.1 A Simple Example of Reduction475

We now give a simple example of how CogPrime’s reduction engine can transform476

a program into a semantically equivalent but shorter one.477

Consider the following program and the chain of reduction:478

1. We start with the expression479

if(P and_seq(if(P A B) B) and_seq(A B))480

2. A reduction rule permits to reduce the conditional if(P A B) to if(true A B).481

Indeed if P is true, then the first branch is evaluated and P must still be true.482

if(P and_seq(if(true A B) B) and_seq(A B))483

3. Then a rule can reduce if(true A B) to A.484

if(P and_seq(A B) and_seq(A B))485

4. And finally another rule replaces the conditional by one of its branches since they486

are identical487

and_seq(A B)488

Note that the reduced program is not only smaller (3 symbols instead of 11) but a489

bit faster too. Of course it is not generally true that smaller programs are faster but490

in the restricted context of our experiments it has often been the case.491

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

68 3 Representing Procedural Knowledge

3.7.2 Neutral Transformations492

Semantics preserving transformations that are not reductions are not useful on their493

own—they can only have value when followed by transformations from some other494

class. They are thus more speculative than reductions, and more costly to consider.495

I will refer to these as neutral transformations [Ols95].496

• Abstraction—given an expression E containing non-overlapping subexpressions497

E1, E2, …EN , let E ′ be E with all Ei replaced by the unbound variables vi .498

Define the function f (v1, v2, . . . v3) = E ′, and replace E with f (E1, E2, . . . EN).499

Abstraction is distinct from compressive abstraction because only a single call to500

the new function f is introduced.5501

• Inverse abstraction—replace a call to a user-defined function with the body of the502

function, with arguments instantiated (note that this can also be used to partially503

invert a compressive abstraction).504

• Distribution—let E be a call to some function f , and let E ′ be an expression505

of E’s i th argument that is a call to some function g, such that f is distributive506

over g’s arguments, or a subset thereof. We shall refer to the actual arguments to507

g in these positions in E ′ as x1, x2, . . . xn . Now, let D(F) be the function that is508

obtained by evaluating E with its i th argument (the one containing E ′) replaced509

with the expression F . Distribution is replacing E with E ′, and then replacing each510

x j (1 ≤ j ≤ n) with D(x j). For example, consider511

+(x *(y if(cond a b)))512

Since both + and * are distributive over the result branches of if, there are two513

possible distribution transformations, giving the expressions514

if(cond +(x *(y a)) +(x *(y b)))515

+(x(if(cond *(y a) *(y b))))516

• Inverse distribution (factorization)—the opposite of distribution. This is nearly517

a reduction; the exceptions are expressions such as f (g(x)), where f and g are518

mutually distributive.519

• Arity broadening—given a function f , modify it to take an additional argument520

of some type. All calls to f must be correspondingly broadened to pass it an521

additional argument of the appropriate type.522

• List broadening6—given a function f with some i th argument x of type T, modify523

f to instead take an argument y of type listT , which gets split into x : xs. All524

calls to f with i th argument x ′ must be replaced by corresponding calls with i th525

argument list (x ′).526

• Conditional insertion—an expression x is replaced by if(true, x, y), where y is527

some expression of the same type of x .528

5 In compressive abstraction there must be at least two calls in order to avoid increasing the number
of symbols.
6 Analogous tuple-broadening transformations may be defined as well, but are omitted for brevity.

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.7 Program Transformations 69

As a technical note, action result expressions (which may cause side-effects) com-529

plicate neutral transformations. Specifically, abstractions and compressive abstrac-530

tions must take their arguments lazily (i.e. not evaluate them before the function531

call itself is evaluated), in order to be neutral. Furthermore, distribution and inverse532

distribution may only be applied when f has no side-effects that will vary (e.g. be533

duplicated or halved) in the new expression, or affect the nested computation (e.g.534

change the result of a condition within a conditional). Another way to think about535

this issue is to consider the action result type as a lazy domain-specific language536

embedded within a pure functional language (where evaluation order is unspeci-537

fied). Spector has performed an empirical study of the tradeoffs in lazy versus eager538

function abstraction for program evolution [Spe96].539

The number of neutral transformations applicable to any given program grows540

quickly with program size.7 Furthermore, synthesis of complex programs and541

abstractions does not seem to be possible without them. Thus, a key hypothesis542

of any approach to AGI requiring significant program synthesis, without assuming543

the currently infeasible computational capacities required to brute-force the prob-544

lem, is that the inductive bias to select promising neutral transformations can be545

learned and/or programmed. Referring back to the initial discussion of what con-546

stitutes a tractable representation, we speculate that perhaps, whereas well-chosen547

reductions are valuable for generically increasing program representation tractability,548

well-chosen neutral transformations will be valuable for increasing program repre-549

sentation tractability relative to distributions P to which the transformations have550

some (possibly subtle) relationship.551

3.7.3 Non-Neutral Transformations552

Non-neutral transformations are the general class defined by removal, replacement,553

and insertion of subexpressions, acting on expressions in normal form, and preserving554

the normal form property. Clearly these transformations are sufficient to convert555

any normal form expression into any other. What is desired is a subclass of the556

non-neutral transformations that is combinatorially complete, where each individual557

transformation is nonetheless a semantically small step.558

The full set of transformations for Boolean expressions is given in [Loo06]. For559

numerical expressions, the transcendental functions sin, log, and ex are used to560

construct transformations. These obviate the need for division (a/b = elog(a)−log(b)),561

and subtraction (a−b = a+−1∗b). For lists, transformations are based on insertion562

of new leaves (e.g. to append function calls), and “deepening” of the normal form by563

insertion of subclauses (see [Loo06] for details). For tuples, we take the union of the564

transformations of all the subtypes. For other mixed-type expressions the union of the565

non-neutral transformations for all types must be considered as well. For enum types566

the only transformation is replacing one symbol with another. For function types, the567

transformations are based on function composition. For action result types, actions568

7 Exact calculations are given by Olsson [Ols95].

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

70 3 Representing Procedural Knowledge

are inserted/removed/altered, akin to the treatment of Boolean literals for the Boolean569

type.570

We propose an additional class of non-neutral transformations based on the mar-571

velous fold function:572

fold(f, v, l) = i f (empty(l), v, f (first(l), fold(f, v, rest(l))))573

With fold we can express a wide variety of iterative constructs, with guaranteed574

termination and a bias towards low computational complexity. In fact, fold allows us575

to represent exactly the primitive recursive functions [Hut99].576

Even considering only this reduced space of possible transformations, in many577

cases there are still too many possible programs “nearby” some target to effectively578

consider all of them. For example many probabilistic model-building algorithms,579

such as learning the structure of a Bayesian network from data, can require time580

cubic in the number of variables (in this context each independent non-neutral trans-581

formation can correspond to a variable). Especially as the size of the programs we582

wish to learn grows, and as the number of typologically matching functions increases,583

there will be simply too many variables to consider each one intensively, let alone584

apply a quadratic-time algorithm.585

To alleviate this scaling difficulty, we propose three techniques.586

The first is to consider each potential variable (i.e. independent non-neutral587

transformation) to heuristically determine its usefulness in expressing constructive588

semantic variation. For example, a Boolean transformation that collapses the overall589

expression into a tautology is assumed to be useless.8590

The second is heuristic coupling rules that allow us to calculate, for a pair of591

transformations, the expected utility of applying them in conjunction.592

Finally, while fold is powerful, it may need to be augmented by other methods in593

order to provide tractable representation of complex programs that would normally594

be written using numerous variables with diverse scopes. One approach that we have595

explored involves application of [SMI97]’s ideas about director strings as combina-596

tors. In Sinot’s approach, special program tree nodes are labeled with director strings,597

and special algebraic operators interrelate these strings. One then achieves the rep-598

resentational efficiency of local variables with diverse scopes, without needing to do599

any actual variable management. Reductions and other (non-)neutral transformation600

rules related to broadening and reducing variable scope may then be defined using601

the director string algebra.602

3.8 Interfacing Between Procedural and Declarative Knowledge603

Finally, another critical aspect of procedural knowledge is its interfacing with declar-604

ative knowledge. We now discuss the referencing of declarative knowledge within605

procedures, and the referencing of the details of procedural knowledge within Cog-606

Prime’s declarative knowledge store.607

8 This is heuristic because such a transformation might be useful together with other transformations.

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

3.8 Interfacing Between Procedural and Declarative Knowledge 71

3.8.1 Programs Manipulating Atoms608

Above we have used Combo syntax implicitly, referring to Appendix ?? for the formal609

definitions. Now we introduce one additional, critical element of Combo syntax: the610

capability to explicitly reference declarative knowledge within procedures.611

For this purpose Combo must contain the following types:612

Atom, Node, Link, T ruthV alue, AtomT ype, AtomT able613

Atom is the union of Node and Link.614

So a type Node within a Combo program refers to a Node in CogPrime’s Atom-615

Table. The mechanisms used to evaluate these entities during program evaluation are616

discussed in Chap. 7.617

For example, suppose one wishes to write a Combo program that creates Atoms618

embodying the predicate-argument relationship eats(cat, f ish), represented619

Evaluation eats (cat, fish)620

aka621

Evaluation622

eats623

List624

cat625

fish626

To do this, one could say for instance,627

new-link(EvaluationLink628

new-node(PredicateNode ‘‘eats’’)629

new-link(ListLink630

new-node(ConceptNode ‘‘cat’’)631

new-node(ConceptNode ‘‘fish’’))632

(new-stv .99 .99))633

3.9 Declarative Representation of Procedures634

Next, we consider the representation of program tree internals using declarative data635

structures. This is important if we want OCP to inferentially understand what goes on636

inside programs. In itself, it is more of a “bookkeeping” issue than a deep conceptual637

issue, however.638

First, note that each of the entities that can live at an internal node of a program,639

can also live in its own Atom. For example, a number in a program tree corresponds640

to a NumberNode; an argument in a Combo program already corresponds to some641

Atom; and an operator in a program can be wrapped up in a SchemaNode all its own,642

and considered as a one-leaf program tree.643

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_7

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

72 3 Representing Procedural Knowledge

Thus, one can build a kind of virtual, distributed program tree by linking a num-644

ber of ProcedureNodes (i.e. PredicateNodes or SchemaNodes) together. All one645

needs in order to achieve this is an analogue of the @ symbol (as defined in Sect. 2.3646

of Chap. 2) for relating ProcedureNodes. This is provided by the ExecutionLink type,647

where648

(ExecutionLink f g)649

essentially means the same as650

f g651

in curried notation or652

@653

/ \654

f g655

The same generalized evaluation rules used inside program trees may be thought656

of in terms of ExecutionLinks; formally, they are crisp ExtensionalImplicationLinks657

among ExecutionLinks.658

Note that we are here using ExecutionLink as a curried function; that is, we are659

looking at (ExecutionLink f g) as a function that takes an argument x, where the truth660

value of661

(ExecutionLink f g) x662

represents the probability that executing f, on input g, will give output x.663

One may then construct combinator expressions linking multiple ExecutionLinks664

together; these are the analogues of program trees.665

For example, using ExecutionLinks, one equivalent of y = x + xˆ2 is:666

Hypothetical667

SequentialAND668

ExecutionLink669

pow670

List v1 2671

v2672

ExecutionLink673

+674

List v1 v2675

v3676

Here the v1, v2, v3 are variables which may be internally represented via com-677

binators. This AND is sequential in case the evaluation order inside the program678

interpreter makes a difference.679

As a practical matter, it seems there is no purpose to explicitly storing program680

trees in conjunction-of-ExecutionLinks form. The information in the ExecutionLink681

conjunct is already there in the program tree. However, the PLN reasoning system,682

when reasoning on program trees, may carry out this kind of expansion internally as683

part of its analytical process.684

319613_1_En_3_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 72 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_2

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 3

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly specify the respective citation number for Appendix at
wherever ?? appears as its citation.

AQ3 Please check the ‘?’ present in the reference citation in the sentence
‘...the space of Boolean functions [?, Loo07b].

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part II
2 The Cognitive Cycle

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part II Date: 29-10-2013 Page: 73/73

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Emotion, Motivation, Attention and Control

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo, Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract This chapter begins the heart of the book: the part that explains how the CogPrime design aims to
implement roughly human-like general intelligence, at the human level and ultimately beyond.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 4
Emotion, Motivation, Attention and Control

4.1 Introduction0

This chapter begins the heart of the book: the part that explains how the CogPrime1

design aims to implement roughly human-like general intelligence, at the human2

level and ultimately beyond. First, here in Sect. 4.2 we explain how CogPrime can3

be used to implement a simplistic animal-like agent without much learning: an agent4

that perceives, acts and remembers, and chooses actions that it thinks will achieve its5

goals; but doesn’t do any sophisticated learning or reasoning or pattern recognition6

to help it better perceive, act, remember or figure out how to achieve its goals. We’re7

not claiming CogPrime is the best way to implement such an animal-like agent,8

though we suggest it’s not a bad way and depending on the complexity and nature9

of the desired behaviors, it could be the best way. We have simply chosen to split10

off the parts of CogPrime needed for animal-like behavior and present them first,11

prior to presenting the various “knowledge creation” (learning, reasoning and pattern12

recognition) methods that constitute the more innovative and interesting part of the13

design.14

In Stan Franklin’s terms, what we explain here in Sect. 4.2 is how a basic cognitive15

cycle may be achieved within CogPrime. In that sense, the portion of CogPrime16

explained in this section is somewhat similar to the parts of Stan’s LIDA architecture17

that have currently been worked out in detail, and that. However, while LIDA has18

not yet been extended in detail (in theory or implementation) to handle advanced19

learning, cognition and language, those aspects of CogPrime have been developed20

and in fact constitute the largest portion of this book.21

Looking back to the integrative diagram from Chap. 6 of Vol. 5, the cognitive22

cycle is mainly about integrating vaguely LIDA-like structures and mechanisms with23

heavily Psi-like structures and mechanisms—but doing so in a way that naturally links24

Co-authored with Zhenhua Cai.

B. Goertzel et al., Engineering General Intelligence, Part 2, 75
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_4,
© Atlantis Press and the authors 2014

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_6

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

76 4 Emotion, Motivation, Attention and Control

in with perception and action mechanisms “below,” and more abstract and advanced25

learning mechanisms “above”.AQ1 26

In terms of the general theory of general intelligence, the basic CogPrime cognitive27

cycle can be seen to have a foundational importance in biasing the CogPrime system28

toward the problem of controlling an agent in an environment requiring a variety29

of real-time and near-real-time responses based on a variety of kinds of knowledge.30

Due to its basis in human and animal cognition, the CogPrime cognitive cycle likely31

incorporates many useful biases in ways that are not immediately obvious, but that32

would become apparent if comparing intelligent agents controlled by such a cycle33

versus intelligent agents controlled via other means.34

The cognitive cycle also provides a framework in which other cognitive processes,35

relating to various aspects of the goals and environments relevant to human-level gen-36

eral intelligence, may conveniently dynamically interoperate. The “Mind OS” aspect37

of the CogPrime architecture provides general mechanisms in which various cogni-38

tive processes may interoperate on a common knowledge store; the cognitive cycle39

goes further and provides a specific dynamical pattern in which multiple cognitive40

processes may intersect. Its effective operation places strong demands on the cogni-41

tive synergy between the various cognitive processes involved, but also provides a42

framework that encourages this cognitive synergy to develop and persist.43

Finally, it should be stressed that the cognitive cycle is not all-powerful nor wholly44

pervasive in CogPrime’s dynamics. It’s critical for the real-time interaction of a45

CogPrime-controlled agent with a virtual or physical world; but there may be many46

processes within CogPrime that most naturally operate outside such a cycle. For47

instance, humans will habitually do deep intellectual thinking (even something so48

abstract as mathematical theorem proving) within a cognitive cycle somewhat similar49

to the one they use for practical interaction with the external world. But, there’s no50

reason that CogPrime systems need to be constrained in this way. Deviating from a51

cognitive cycle based dynamic may cause a CogPrime system to deviate further from52

human-likeness in its intelligence, but may also help it to perform better than humans53

on some tasks, e.g. tasks like scientific data analysis or mathematical theorem proving54

that benefit from styles of information processing that humans aren’t particularly55

good at.56

4.2 A Quick Look at Action Selection57

We will begin our exposition of CogPrime’s cognitive cycle with a quick look at58

action selection. As Stan Franklin likes to point out, the essence of an intelligent59

agent is that it does things; it takes actions. The particular mechanisms of action60

selection in CogPrime are a bit involved and will be given in Chap. 6; in this chapter61

we will give the basic idea of the action selection mechanism and then explain62

how a variant of the Psi model (described in Chap. 5 of Vol. 5) is used to handle63

motivation (emotions, drives, goals, etc.) in CogPrime, including the guidance of64

action selection.65

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_6

http://dx.doi.org/10.2991/978-94-6239-027-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.2 A Quick Look at Action Selection 77

The crux of CogPrime’s action selection mechanism is as follows66

• the action selector chooses procedures that seem likely to help achieve important67

goals in the current context68

– Example: If the goal is to create a block structure that will surprise Bob, and69

there is plenty of time, one procedure worth choosing might be a memory search70

procedure for remembering situations involving Bob and physical structures.71

Alternately, if there isn’t much time, one procedure worth choosing might be a72

procedure for building the base of a large structure—as this will give something73

to use as part of whatever structure is eventually created. Another procedure74

worth choosing might be one that greedily assembles structures from blocks75

without any particular design in mind.76

• to support the action selector, the system builds implications of the form Context77

and Procedure → Goal, where Context is a predicate evaluated based on the78

agent’s situation79

– Example: If Bob has asked the agent to do something, and it knows that Bob is80

very insistent on being obeyed, then implications such as81

· “Bob instructed to do X” and “do X” → “please Bob” < 0.9, 0.9 >82

will be utilized83

– Example: If the agent wants to make a tower taller, then implications such as84

· “T is a blocks structure” and “place block atop T” → “make T taller”85

< 0.9, 0.9 > will be utilized86

• the truth values of these implications are evaluated based on experience and infer-87

ence88

– Example: The above implication involving Bob could be evaluated based on89

experience, by assessing it against remembered episodes involving Bob giving90

instructions91

– Example: The same implication could be evaluated based on inference, using92

analogy to experiences with instructions from other individuals similar to Bob;93

or using things Bob has explicitly said, combined with knowledge that Bob’s94

self-descriptions tend to be reasonably accurate95

• Importance values are propagated between goals using economic attention alloca-96

tion (and, inference is used to learn subgoals from existing goals)97

– Example: If Bob has told the agent to do X, and the agent has then derived (from98

the goal of pleasing Bob) the goal of doing X, then the “please Bob” goal will99

direct some of its currency to the “do X” goal (which the latter goal can then100

pass to its subgoals, or spend on executing procedures)101

These various processes are carried out in a manner orchestrated by Dorner’s Psi102

model as refined by Joscha Bach (as reviewed in Chap. 5 of Vol. 5), which supplies103

(among other features) AQ2104

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

78 4 Emotion, Motivation, Attention and Control

• a specific theory regarding what “demands” should be used to spawn the top-level105

goals106

• a set of (four) interrelated system parameters governing overall system state in a107

useful manner reminiscent of human and animal psychology108

• a systematic theory of how various emotions (wholly or partially) emerge from109

more fundamental underlying phenomena.110

4.3 Psi in CogPrime111

The basic concepts of the Psi approach to motivation, as reviewed in Chap. 5 of Vol. 5,112

are incorporated in CogPrime as follows (note that the following list includes many113

concepts that will be elaborated in more detail in later chapters):114

• Demands are GroundedPredicateNodes (GPNs), i.e. Nodes that have their truth115

value computed at each time by some internal C++ code or some Combo procedure116

in the ProcedureRepository117

– Examples: Alertness, perceived novelty, internal novelty, reward from teachers,118

social stimulus119

– Humans and other animals have familiar demands such as hunger, thirst and120

excretion; to create an AGI closely emulating a human or (say) a dog one may121

wish to simulate these in one’s AGI system as well122

• Urges are also GPNs, with their truth values defined in terms of the truth values of123

the Nodes for corresponding Demands. However in CogPrime we have chosen the124

term “Ubergoal” instead of Urge, as this is more evocative of the role that these125

entities play in the system’s dynamics (they are the top-level goals).126

• Each system comes with a fixed set of Ubergoals (and only very advanced Cog-127

Prime systems will be able to modify their Ubergoals)128

– Example: Stay alert and alive now and in the future; experience and learn new129

things now and in the future; get reward from the teachers now and in the future;130

enjoy rich social interactions with other minds now and in the future131

– A more advanced CogPrime system could have abstract (but experientially132

grounded) ethical principles among its Ubergoals, e.g. an Ubergoal to promote133

joy, an Ubergoal to promote growth and an Ubergoal to promote choice, in134

accordance with the ethics described in [Goe06]135

• The ShortTermImportance of an Ubergoal indicates the urgency of the goal, so136

if the Demand corresponding to an Ubergoal is within its target range, then the137

Ubergoal will have zero STI. But all Ubergoals can be given maximal LTI to138

guarantee they don’t get deleted.139

– Example: If the system is in an environment continually providing an adequate140

level of novelty (according to its Ubergoal), then the Ubergoal corresponding141

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.3 Psi in CogPrime 79

to external novelty will have low STI but high LTI. The system won’t expend142

resources seeking novelty. But then, if the environment becomes more monoto-143

nous, the urgency of the external novelty goal will increase, and its STI will144

increase correspondingly, and resources will begin getting allocated toward im-145

proving the novelty of the stimuli received by the agent.146

• Pleasure is a GPN, and its internal truth value computing program compares the147

satisfaction of Ubergoals to their expected satisfaction148

– Of course, there are various mathematical functions (e.g. p′th power averages1
149

for different p) that one can use to average the satisfaction of multiple Ubergoals;150

and choices here, i.e. different specific ways of calculating Pleasure, could lead151

to systems with different “personalities”152

• Goals are Nodes or Links that are on the system’s list of goals (the GoalPool).153

Ubergoals are automatically Goals, but there will also be many other Goals also154

– Example: The Ubergoal of getting reward from teachers might spawn subgoals155

like “getting reward from Bob” (if Bob is a teacher), or “making teachers smile”156

or “create surprising new structures” (if the latter often garners teacher reward).157

The subgoal of “create surprising new structures” might, in the context of a new158

person entering the agent’s environment with a bag of toys, lead to the creation159

of a subgoal of asking for a new toy of the sort that could be used to help create160

new structures, etc.161

• Psi’s memory is CogPrime’s AtomTable, with associated structures like the162

ProcedureRepository (explained in Chap. 1), the SpaceServer and TimeServer163

(explained in Chap. 8), etc.164

– Examples: The knowledge of what blocks look like and the knowledge that tall165

structures often fall down, go in the AtomTable; specific procedures for picking166

up blocks of different shapes go in the ProcedureRepository; the layout of a167

room or a pile of blocks at a specific point in time go in the SpaceServer; the168

series of events involved in the building-up of a tower are temporally indexed169

in the TimeServer.170

– In Psi and MicroPsi, these same phenomena are stored in memory in a rather171

different way, yet the basic Psi motivational dynamics are independent of these172

representational choices.173

• Psi’s “motive selection” process is carried out in CogPrime by economic attention174

allocation, which allocates ShortTermImportance to Goal nodes175

– Example: The flow of importance from “Get reward from teachers” to “get176

reward from Bob” to “make an interesting structure with blocks” is an instance177

of what Psi calls “motive selection”. No action is being taken yet, but choices are178

being made regarding what specific goals are going to be used to guide action179

selection.180

1 the p′th power average is defined as p
√∑

X p

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_1

http://dx.doi.org/10.2991/978-94-6239-030_8

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

80 4 Emotion, Motivation, Attention and Control

• Psi’s action selection plays the same role as CogPrime’s action selection, with181

the clarification that in CogPrime this is a matter of selecting which procedures182

(i.e. schema) to run, rather than which individual actions to execute. However, this183

notion exists in Psi as well, which accounts for “automatized behaviors” that are184

similar to CogPrime schemata; the only (minor) difference here is that in CogPrime185

automatized behaviors are the default case.186

– Example: If the goal “make an interesting structure with blocks” has a high187

STI, then it may be used to motivate choice of a procedure to execute, e.g. a188

procedure that finds an interesting picture or object seen before and approximates189

it with blocks, or a procedure that randomly constructs something and then190

filters it based on interestingness. Once a blocks-structure-building procedure191

is chosen, this procedure may invoke the execution of sub-procedures such as192

those involved with picking up and positioning particular blocks.193

• Psi’s planning is carried out via various learning processes in CogPrime, including194

PLN plus procedure learning methods like MOSES or hillclimbing195

– Example: If the agent has decided to build a blocks structure emulating a pyramid196

(which it saw in a picture), and it knows how to manipulate and position individ-197

ual blocks, then it must figure out a procedure for carrying out individual-block198

actions that will result in production of the pyramid. In this case, a very inex-199

perienced agent might use MOSES or hillclimbing and “guidedly-randomly”200

fiddle with different construction procedures until it hit on something workable.201

A slightly more experienced agent would use reasoning based on prior struc-202

tures it had built, to figure out a rational plan (like: “start with the base, then203

iteratively pile on layers, each one slightly smaller than the previous.”)204

• The modulators are system parameters which may be represented by PredicateN-205

odes, and which must be incorporated appropriately in the dynamics of various206

MindAgents, e.g.207

– activation affects action selection. For instance this may be effected by a process208

that, each cycle, causes a certain amount of STICurrency to pass to schema209

satisfying certain properties (those involving physical action, or terminating210

rapidly). The amount of currency passed in this way would be proportional to211

the activation212

– resolution level affects perception schema and MindAgents, causing them to213

expend less effort in processing perceptual data214

– certainty affects inference and pattern mining and concept creation processes,215

causing them to place less emphasis on certainty in guiding their activities,216

i.e. to be more accepting of uncertain conclusions. To give a single illustrative217

example: When backward chaining inference is being used to find values for218

variables, a “fitness target” of the form strength × confidence is sometimes219

used; this may be replaced with strengthp × confidence2−p, where activation220

parameter affects the exponent p, so when p tends to 0 confidence is more221

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.3 Psi in CogPrime 81

important, when p tends to 2 strength is more important and when p tends to 1222

strength and confidence are equally important.223

– selection threshold may be used to effect a process that, each cycle, causes a224

certain amount of STICurrency (proportional to the selection threshold) to pass225

to the Goal Atoms that were wealthiest at the previous cycle.226

Based on this run-down, Psi and CogPrime may seem very similar, but that’s because227

we have focused here only on the motivation and emotion aspect. Psi uses a very dif-228

ferent knowledge representation than CogPrime; and in the Psi architecture diagram,229

nearly all of CogPrime is pushed into the role of “background processes that operate230

in the memory box”. According to the theoretical framework underlying CogPrime,231

the multiple synergetic processes operating in the memory box are actually the crux232

of general intelligence. But getting the motivation/emotion framework right is also233

very important, and Psi seems to do an admirable job of that.234

4.4 Implementing Emotion Rules atop Psi’s235

Emotional Dynamics236

Human motivations are largely determined by human emotions, which are the result237

of humanity’s evolutionary heritage and embodiment, which are quite different than238

the heritage and embodiment of current AI systems. So, if we want to create AGI239

systems that lack humanlike bodies, and didn’t evolve to adapt to the same environ-240

ments as humans did, yet still have vaguely human-like emotional and motivational241

structures, the latter will need to be explicitly engineered or taught in some way.242

For instance, if one wants to make a CogPrime agent display anger, something243

beyond Psi’s model of emotion needs to be coded into the agent to enable this. After244

all, the rule that when angry the agent has some propensity to harm other beings,245

is not implicit in Psi and needs to be programmed in. However, making use of246

Psi’s emotion model, anger could be characterized as an emotion consisting of high247

arousal, low resolution, strong motive dominance, few background checks, strong248

goal-orientedness (as the Psi model suggests) and a propensity to cause harm to249

agents or objects. This is much simpler than specifying a large set of detailed rules250

characterizing angry behavior.251

The “anger” example brings up the point that desirability of giving AGI systems252

closely humanlike emotional and motivational systems is questionable. After all we253

humans cause ourselves a lot of problems with these aspects of our mind/brains,254

and we sometimes put our more ethical and intellectual sides at war with our emo-255

tional and motivational systems. Looking into the future, an AGI with greater power256

than humans yet a humanlike motivational and emotional system, could be a very257

dangerous thing.258

On the other hand, if an AGI’s motivational and emotional system is too different259

from human nature, we might have trouble understanding it, and it understanding260

us. This problem shouldn’t be overblown—it seems possible that an AGI with a261

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

82 4 Emotion, Motivation, Attention and Control

more orderly and rational motivational system than the human one might be able to262

understand us intellectually very well, and that we might be able to understand it263

well using our analytical tools. However, if we want to have mutual empathy with an264

AGI system, then its motivational and emotional framework had better have at least265

some reasonable overlap with our own. The value of empathy for ethical behavior266

was stressed extensively in Chap. 12 of Vol. 5.267

This is an area where experimentation is going to be key. Our initial plan is to268

supply CogPrime with rough emulations of some but not all human emotions. We269

see no need to take explicit pains to simulate emotions like anger, jealousy and270

hatred. On the other hand, joy, curiosity, sadness, wonder, fear and a variety of other271

human emotions seem both natural in the context of a robotically or virtually embod-272

ied CogPrime system, and valuable in terms of allowing mutual human/CogPrime273

empathy.274

4.4.1 Grounding the Logical Structure of Emotions275

in the Psi Model276

To make this point in a systematic way, we point out that Ortony et al’s [OCC90]277

“cognitive theory of emotions” can be grounded in CogPrime’s version of Psi in a278

natural way. This theory captures a wide variety of human and animal emotions in279

a systematic logical framework, so that grounding their framework in CogPrime Psi280

goes a long way toward explaining how CogPrime Psi accounts for a broad spectrum281

of human emotions.282

The essential idea of the cognitive theory of emotions can be seen in Fig. 4.1.283

What we see there is that common emotions can be defined in terms of a series of284

choices:285

• Is it positive or negative?286

• Is it a response to an agent, an event or an object?287

• Is it focused on consequences for oneself, or for another?288

– If on another, is it good or bad for the other?289

– If on oneself, is it related to some event whose outcome is uncertain?290

· if it’s related to an uncertain outcome, did the expectation regarding the out-291

come get fulfilled or not?292

Figure 4.1 shows how each set of answers to these questions leads to a different293

emotion. For instance: what is a negative emotion, responding to events, focusing on294

another, and undesirable to the other? Pity.295

In the list of questions, we see that two of them—positive versus negative, and296

expectation fulfillment versus otherwise—are foundational in the Psi model. The297

other questions are evaluations that an intelligent agent would naturally make, but298

aren’t bound up with Psi’s emotion/motivation infrastructure in such a deep way.299

Thus, the cognitive theory of emotion emerges as a combination of some basic Psi300

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_12

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.4 Implementing Emotion Rules atop Psi’s Emotional Dynamics 83

Fig. 4.1 Ontology of Emotions from [OCC90]

factors with some more abstract cognitive properties (good vs. bad for another; agents301

vs. events vs. objects).302

4.5 Goals and Contexts303

Now we dig deeper into the details of motivation in CogPrime. Just as we have304

both explicit (local) and implicit (global) memory in CogPrime, we also have both305

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

84 4 Emotion, Motivation, Attention and Control

Fig. 4.2 Context, procedures and goals. Examples of the basic “goal/context/procedure” triad in a
simple game-agent situation

explicit and implicit goals. An explicit goal is formulated as a Goal Atom, and then306

MindAgents specifically orient the system’s activity toward achievement of that goal.307

An implicit goal is something that the system works toward, but in a more loosely308

organized way, and without necessarily explicitly representing the knowledge that it309

is working toward that goal.310

Here we will focus mainly on explicit motivation, beginning with a description311

of Goal Atoms, and the Contexts in which Goals are worked toward via executing312

Procedures. Figure 4.2 gives a rough depiction of the relationship between goals,313

procedures and context, in a simple example relevant to an OpenCogPrime-controlled314

virtual agent in a game world.315

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.5 Goals and Contexts 85

4.5.1 Goal Atoms316

A Goal Atom represents a target system state and is true to the extent that the system317

satisfied the conditions it represents. A Context Atom represents an observed state318

of the world/mind, and is true to the extent that the state it defines is observed. Taken319

together, these two Atom types provide the infrastructure CogPrime needs to orient320

its actions in specific contexts toward specific goals. Not all of CogPrime’s activity is321

guided by these Atoms; much of it is non-goal-directed and spontaneous, or ambient322

as we sometimes call it. But it is important that some of the system’s activity—and323

in some cases, a substantial portion—is controlled explicitly via goals.324

Specifically, a Goal Atom is simply an Atom (usually a PredicateNode, some-325

times a Link, and potentially another type of Atom) that has been selected by the326

GoalRefinement MindAgent as one that represents a state of the atom space which327

the system finds important to achieve. The extent to which an Atom is considered a328

Goal Atom at a particular point in time is determined by how much of a certain kind329

of financial instrument called an RFS (Request For Service) it possesses (as will be330

explained in Chap. 6).331

A CogPrime instance must begin with some initial Ubergoals (aka top level super-332

goals), but may then refine these goals in various ways using inference. Immature,333

“childlike” CogPrime systems cannot modify their Ubergoals nor add nor delete334

Ubergoals. Advanced CogPrime systems may be allowed to modify, add or delete335

Ubergoals, but this is a critical and subtle aspect of system dynamics that must be336

treated with great care. WIKISOURCE:ContextAtom.337

4.6 Context Atoms338

Next, a Context is simply an Atom that is used as the source of a ContextLink, for339

instance340

Context341

quantum_computing342

Inheritance Ben amateur343

or344

Context345

game_of_fetch346

PredictiveAttraction347

Evaluation give (ball , teacher)348

Satisfaction349

The former simply says that Ben is an amateur in the context of quantum computing.350

The latter says that in the context of the game of fetch, giving the ball to the teacher351

implies satisfaction. A more complex instance pertinent to our running example352

would be353

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_6

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

86 4 Emotion, Motivation, Attention and Control

Context354

Evaluation355

Recently356

List357

Minute358

Evaluation359

Ask360

List361

Bob362

ThereExists $X363

And364

Evaluation365

Build366

List367

self368

$X369

Evaluation370

surprise371

List372

$X373

Bob374

AverageQuantifier $Y375

PredictiveAttraction376

And377

Evaluation378

Build379

List380

self381

$Y382

Evaluation383

surprise384

List385

$Y386

Jim387

Satisfaction388

which says that, if the context is that Bob has recently asked for something surprising389

to be built, then one strategy for getting satisfaction is to build something that seems390

likely to satisfy Jim.391

An implementation-level note: in the current OpenCogPrime implementation of392

CogPrime, ContextLinks are implicit rather than explicit entities. An Atom can393

contain a ComplexTruthValue which in turn contains a number of VersionHandles.394

Each VersionHandle associates a Context or a Hypothetical with a TruthValue. This395

accomplishes the same thing as a formal ContextLink, but without the creation396

of a ContextLink object. However, we continue to use ContextLinks in this book397

and other documents about CogPrime; and it’s quite possible that future CogPrime398

implementations might handle them differently.399

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.7 Ubergoal Dynamics 87

4.7 Ubergoal Dynamics400

In the early phases of a CogPrime system’s cognitive development, the goal system401

dynamics will be quite simple. The Ubergoals are supplied by human programmers,402

and the system’s adaptive cognition is used to derive subgoals. Attentional currency403

allocated to the Ubergoals is then passed along to the subgoals, as judged appropriate.404

As the system becomes more advanced, however, more interesting phenomena405

may arise regarding Ubergoals: implicit and explicit Ubergoal creation.406

4.7.1 Implicit Ubergoal Pool Modification407

First of all, implicit Ubergoal creation or destruction may occur. Implicit Uber-408

goal destruction may occur when there are multiple Ubergoals in the system, and409

some prove easier to achieve than others. The system may then decide not to bother410

achieving the more difficult Ubergoals. Appropriate parameter settings may mitigate411

against this phenomenon, of course.412

Implicit Ubergoal creation may occur if some Goal Node G arises that inherits as413

a subgoal from multiple Ubergoals. This Goal G may then come to act implicitly as414

an Ubergoal, in that it may get more attentional currency than any of the Ubergoals.415

Also, implicit Ubergoal creation may occur via forgetting. Suppose that G416

becomes a goal via inferred inheritance from one or more Ubergoals. Then, sup-417

pose G forgets why this inheritance exists, and that in fact the reason becomes ob-418

solete, but the system doesn’t realize that and keeps the inheritance there. Then, G419

is an implicit Ubergoal in a strong sense: it gobbles up a lot of attentional currency,420

potentially more than any of the actual Ubergoals, but actually doesn’t help achieve421

the Ubergoals, even though the system thinks it does. This kind of dynamic is obvi-422

ously very bad and should be avoided—and can be avoided with appropriate tuning423

of system parameters (so that the system pays a lot of attention to making sure that424

its subgoaling-related inferences are correct and are updated in a timely way).425

4.7.2 Explicit Ubergoal Pool Modification426

An advanced CogPrime system may be given the ability to explicitly modify its427

Ubergoal pool. This is a very interesting but very subtle type of dynamic, which428

is not currently well understood and which potentially could lead to dramatically429

unpredictable behaviors.430

However, modification, creation and deletion of goals is a key aspect of human431

psychology, and the granting of this capability to mature CogPrime systems must be432

seriously considered.433

In the case that Ubergoal pool modification is allowed, one useful heuristic may434

be to make implicit Ubergoals into explicit Ubergoals. For instance: if an Atom is435

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

88 4 Emotion, Motivation, Attention and Control

found to consistently receive a lot of RFSs, and has a long time-scale associated436

with it, then the system should consider making it an Ubergoal. But this heuristic is437

certainly not sufficient, and any advanced CogPrime system that is going to modify438

its own Ubergoals should definitely be tuned to put a lot of thought into the process!439

The science of Ubergoal pool dynamics basically does not exist at the moment,440

and one would like to have some nice mathematical models of the process prior to441

experimenting with it in any intelligent capable CogPrime system Although Schmid-442

dhuber’s Gödel machine [Sch06] has the theoretical capability to modify its ubergoal443

(note that CogPrime is, in some way, a Gödel machine), there is currently no math-444

ematics allowing us to assess the time and space complexity of such process in a445

realistic context, given a certain safety confidence target.446

4.8 Goal Formation447

Goal formation in CogPrime is done via PLN inference. In general, what PLN does448

for goal formation is to look for predicates that can be proved to probabilistically449

imply the existing goals. These new predicates will then tend to receive RFS currency,450

according to the logic of RFS’s to be outlined in Chap. 6), which (according to goal-451

driven attention allocation dynamics) will make the system more likely to enact452

procedures that lead to their satisfaction.453

As an example of the goal formation process, consider the case where External-454

Novelty is an Ubergoal. The agent may then learn that whenever Bob gives it a picture455

to look at, its quest for external novelty is satisfied to a significant degree. That is, it456

learns457

Attraction458

Evaluation give (Bob , me , picture)459

ExternalNovelty460

where Attraction A B measures how much A versus ¬A implies B (as explained461

in Chap. 16). This information allows the agent (the Goal Formation MindAgent) to462

nominate the atom:463

EvaluationLink give (Bob , me , picture)464

as a goal (a subgoal of the original Ubergoal). This is an example of goal refinement,465

which is one among many ways that PLN can create new goals from existing ones.466

4.9 Goal Fulfillment and Predicate Schematization467

When there is a Goal Atom G important in the system (with a lot of RFS), the Goal-468

Fulfillment MindAgent seeks SchemaNodes S that it has reason to believe, if enacted,469

will cause G to become true (satisfied). It then adds these to the ActiveSchemaPool,470

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_6

http://dx.doi.org/10.2991/978-94-6239-030_16

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.9 Goal Fulfillment and Predicate Schematization 89

an object to be discussed below. The dynamics by which the GoalFulfillment process471

works will be discussed in Chap. 6 below.472

For example, if a Context Node Chas a high truth value at that time (because it is473

currently satisfied), and is involved in a relation:474

Attraction475

C476

PredictiveAttraction S G477

(for some SchemaNode S and Goal Node G) then this SchemaNode S is likely to478

be selected by the GoalFulfillment process for execution. This is the fully formalized479

version of the Context and Schema → Goal notion discussed frequently above.480

The process may also allow the importance of various schema S to bias its choices481

of which schemata to execute.482

For instance, following up previous examples, we might have483

Attraction484

Evaluation485

near486

List487

self488

Bob489

PredictiveAttraction490

Evaluation491

ask492

List493

Bob494

‘‘Show me a picture ’’495

ExternalNovelty496

Of course this is a very simplistic relationship but it’s similar to a behavior a young497

child might display. A more advanced agent would utilize a more abstract relation-498

ship that distinguishes various situations in which Bob is nearby, and also involves499

expressing a concept rather than a particular sentence.500

The formation of these schema-context-goal triads may occur according to501

generic inference mechanisms. However, a specially-focused PredicateSchematiza-502

tion MindAgent is very useful here as a mechanism of inference control, increasing503

the number of such relations that will exist in the system.504

4.10 Context Formation505

New contexts are formed by a combination of processes:506

• The MapEncapsulation MindAgent, which creates Context Nodes embodying507

repeated patterns in the perceived world. This process encompasses508

– Maps creating Context Nodes involving Atoms that have high STI at the same509

time510

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_6

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

90 4 Emotion, Motivation, Attention and Control

· Example: A large number of Atoms related to towers could be joined into a511

single map, which would then be a ConceptNode pointing to “tower-related512

ideas, procedures and experiences”513

– Maps creating Context Nodes that are involved in a temporal activation pattern514

that recurs at multiple points in the system’s experience.515

· Example: There may be a common set of processes involving creating a516

building out of blocks: first build the base, then the walls, then the roof. This517

could be encapsulated as a temporal map embodying the overall nature of518

the process. In this case, the map contains information of the nature: first do519

things related to this, then do things related to this, then do things related to520

this...521

• A set of concept creation MindAgents (see Chap. 20, which fuse and split Context522

Nodes to create new ones.523

– The concept of a building and the concept of a person can be merged to create524

the concept of a BuildingMan525

– The concept of a truck built with Legos can be subdivided into trucks you can526

actually carry Lego blocks with, versus trucks that are “just for show” and can’t527

really be loaded with objects and then carry them around.528

4.11 Execution Management529

The GoalFulfillment MindAgent chooses schemata that are found likely to achieve530

current goals, but it doesn’t actually execute these schemata. What it does is to take531

these schemata and place them in a container called the ActiveSchemaPool.532

The ActiveSchemaPool contains a set of schemata that have been determined to533

be reasonably likely, if enacted, to significantly help with achieving the current goal-534

set. i.e., everything in the active schema pool should be a schema S so that it has535

been concluded that536

Attraction537

C538

PredictiveAttraction S G539

—where C is a currently applicable context and G is one of the goals in the current540

goal pool—has a high truth value compared to what could be obtained from other541

known schemata S or other schemata S that could be reasonably expected to be found542

via reasoning.543

The decision of which schemata in the ActiveSchemaPool to enact is made by an544

object called the ExecutionManager, which is invoked each time the SchemaActiva-545

tion MindAgent is executed. The ExecutionManager is used to select which schemata546

to execute, based on doing reasoning and consulting memory regarding which ac-547

tive schemata can usefully be executed simultaneously without causing destructive548

interference (and hopefully causing constructive interference). This process will also549

sometimes (indirectly) cause new schemata to be created and/or other schemata from550

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_20

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4.11 Execution Management 91

the AtomTable to be made active. This process is described more fully in Chap. 6 on551

action selection. WIKISOURCE:GoalsAndTime.552

For instance, if the agent is involved in building a blocks structure intended to sur-553

prise or please Bob, then it might simultaneously carry out some blocks-manipulation554

schema, and also a schema involving looking at Bob to garner his approval. If it can555

do the blocks manipulation without constantly looking at the blocks, this should be556

unproblematic for the agent.557

4.12 Goals and Time558

The CogPrime system maintains an explicit list of “Ubergoals”, which as will be559

explained in Chap. 6, receive attentional currency which they may then allocate to560

their subgoals according to a particular mechanism.561

However, there is one subtle factor involved in the definition of the Ubergoals:562

time. The truth value of a Ubergoal is typically defined as the average level of satisfac-563

tion of some Demand over some period of time—but the time scale of this averaging564

can be very important. In many cases, it may be worthwhile to have separate Uber-565

goals corresponding to the same Demand but doing their truth-value time-averaging566

over different time scales. For instance, corresponding to Demands such as Novelty567

or Health, we may posit both long-term and short-term versions, leading to Uber-568

goals such as CurrentNovelty, LongTermNovelty, CurrentHealth, LongTermHealth,569

etc. Of course, one could also wrap multiple Ubergoals corresponding to a single570

Demand into a single Ubergoal combining estimates over multiple time scales; this571

is not a critical issue and the only point of splitting Demands into multiple Ubergoals572

is that it can make things slightly simpler for other cognitive processes.573

For instance, if the agent has a goal of pleasing Bob, and it knows Bob likes to be574

presented with surprising structures and ideas, then the agent has some tricky choices575

to make. Among other choices it must balance between focusing on576

• creating things and then showing them to Bob577

• studying basic knowledge and improving its skills.578

Perhaps studying basic knowledge and skills will give it a foundation to surprise579

Bob much more dramatically in the mid-term future ... but in the short run will580

not allow it to surprise Bob much at all, because Bob already knows all the basic581

material. This is essentially a variant of the general “exploration versus exploitation”582

dichotomy, which lacks any easy solution. Young children are typically poor at583

carrying out this kind of balancing act, and tend to focus overly much on near-term584

satisfaction. There are also significant cultural differences in the heuristics with which585

adult humans face these issues; e.g. in some contexts Oriental cultures tend to focus586

more on mid to long term satisfaction whereas Western cultures are more short term587

oriented.588

319613_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 91 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_6

http://dx.doi.org/10.2991/978-94-6239-030_6

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 4

Query Refs. Details Required Author’s response

AQ1 Kindly check and confirm the crossreference of Sect. II has been
changed to Sect. 4.2.

AQ2 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Attention Allocation

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo, Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract The critical factor shaping real-world general intelligence is resource constraint.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 5
Attention Allocation

5.1 Introduction0

The critical factor shaping real-world general intelligence is resource constraint.1

Without this issue, we could just have simplistic program-space-search algorithms2

like AIXItl instead of complicated systems like the human brain or CogPrime.3

Resource constraint is managed implicitly within various components of CogPrime,4

for instance in the population size used in evolutionary learning algorithms, and the5

depth of forward or backward chaining inference trees in PLN. But there is also a6

component of CogPrime that manages resources on a global and cognitive-process-7

independent manner: the attention allocation component.8

The general principles the attention allocation process should follow are easy9

enough to see: History should be used as a guide, and an intelligence should make10

probabilistic judgments based on its experience, guessing which resource-allocation11

decisions are likely to maximize its goal-achievement. The problem is that this is a12

difficult learning and inference problem, and to carry it out with excellent accuracy13

would require a limited-resources intelligent system to spend nearly all its resources14

deciding what to pay attention to and nearly none of them actually paying attention15

to anything else. Clearly this would be a very poor allocation of an AI system’s16

attention! So simple heuristics are called for, to be supplemented by more advanced17

and expensive procedures on those occasions where time is available and correct18

decisions are particularly crucial.19

Attention allocation plays, to a large extent, a “meta” role in enabling mind-20

world correspondence. Without effective attention allocation, the other cognitive21

processes can’t do their jobs of helping an intelligent agent to achieve its goals in22

an environment, because they won’t be able to pay attention to the most important23

parts of the environment, and won’t get computational resources at the times when24

they need it. Of course this need could be addressed in multiple different ways.25

Co-authored with Joel Pitt and Matt Ikle’ and Rui Liu.

B. Goertzel et al., Engineering General Intelligence, Part 2, 93
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_5,
© Atlantis Press and the authors 2014

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

94 5 Attention Allocation

For example, in a system with multiple complex cognitive processes, one could have26

attention allocation handled separately within each cognitive process, and then a27

simple “top layer” of attention allocation managing the resources allocated to each28

cognitive process. On the other hand, one could also do attention allocation via a29

single dynamic, pervasive both within and between individual cognitive processes.30

The CogPrime design gravitates more toward the latter approach, though also with31

some specific mechanisms within various MindAgents; and efforts have been made32

to have these specific mechanisms modulated by the generic attention allocation33

structures and dynamics wherever possible.34

In this chapter we will dig into the specifics of how these attention allocation35

issues are addressed in the CogPrime design. In short, they are addressed via a set36

of mechanisms and equations for dynamically adjusting importance values attached37

to Atoms and MindAgents. Different importance values exist pertinent to different38

time scales, most critically the short-term (STI) and long-term (LTI) importances.39

The use of two separate time-scales here reflects fundamental aspects of human-like40

general intelligence and real-world computational constraints.41

The dynamics of STI is oriented partly toward the need for real-time responsive-42

ness, and the more thoroughgoing need for cognitive processes at speeds vaguely43

resembling the speed of “real time” social interaction. The dynamics of LTI is based44

on the fact that some data tends to be useful over long periods of time, years or decades45

in the case of human life, but the practical capability to store large amounts of data46

in a rapidly accessible way is limited. One could imagine environments in which47

very-long-term multiple-type memory was less critical than it is in typical human-48

friendly environments; and one could envision AGI systems carrying out tasks in49

which real-time responsiveness was unnecessary (though even then some attention50

focusing would certainly be necessary). For AGI systems like these, an attention allo-51

cation system based on STI and LTI with CogPrime-like equations would likely be52

inappropriate. But for an AGI system intended to control a vaguely human-like agent53

in an environment vaguely resembling everyday human environments, the focus on54

STI and LTI values, and the dynamics proposed for these values in CogPrime, appear55

to make sense.56

Two basic innovations are involved in the mechanisms attached to these STI and57

LTI importance values:58

• treating attention allocation as a data mining problem: the system records infor-59

mation about what it’s done in the past and what goals it’s achieved in the past, and60

then recognizes patterns in this history and uses them to guide its future actions61

via probabilistically adjusting the (often context-specific) importance values asso-62

ciated with internal terms, actors and relationships, and adjusting the “effort esti-63

mates” associated with Tasks.64

• using an artificial-economics approach to update the importance values (attached65

to Atoms, MindAgents, and other actors in the CogPrime system) that regulate66

system attention. (And, more speculatively, using an information geometry based67

approach to execute the optimization involved in the artificial economics approach68

efficiently and accurately.)69

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.1 Introduction 95

The integration of these two aspects is crucial. The former aspect provides fun-70

damental data about what’s of value to the system, and the latter aspect allows this71

fundamental data to be leveraged to make sophisticated and integrative judgments72

rapidly. The need for the latter, rapid-updating aspect exists partly because of the73

need for real-time responsiveness, imposed by the need to control a body in a rapidly74

dynamic world, and the prominence in the architecture of an animal-like cogni-75

tive cycle. The need for the former, data-mining aspect (or something functionally76

equivalent) exists because, in the context of the tasks involved in human-level gen-77

eral intelligence, the assignment of credit problem is hard—the relations between78

various entities in the mind and the mind’s goals are complex, and identifying and79

deploying these relationships is a difficult learning problem requiring application of80

sophisticated intelligence.81

Both of these aspects of attention allocation dynamics may be used in computa-82

tionally lightweight or computationally sophisticated manners:83

• For routine use in real-time activity.84

– “data mining” consists of forming HebbianLinks (involved in the associative85

memory and inference control, see Sect. 5.5), where the weight of the link from86

Atom A to Atom B is based on the probability of shared utility of A and B.87

– economic attention allocation consists of spreading ShortTermImportance and88

LongTermImportance “artificial currency” values (both grounded in the uni-89

versal underlying “juju” currency value defined further below) between Atoms90

according to specific equations that somewhat resemble neural net activation91

equations but respect the conservation of currency.92

• For use in cases where large amounts of computational resources are at stake93

based on localized decisions, hence allocation of substantial resources to specific94

instances of attention-allocation is warranted.95

– “data mining” may be more sophisticated, including use of PLN, MOSES and96

pattern mining to recognize patterns regarding what probably deserves more97

attention in what contexts.98

– economic attention allocation may involve more sophisticated economic cal-99

culations involving the expected future values of various “expenditures” of100

resources.101

The particular sort of “data mining” going on here is definitely not exactly what102

the human brain does, but we believe this is a case where slavish adherence to neu-103

roscience would be badly suboptimal (even if the relevant neuroscience were well104

known, which is not the case). Doing attention allocation entirely in a distributed,105

formal-neural-net-like way is, we believe, extremely and unnecessarily inefficient,106

and given realistic resource constraints it leads to the rather poor attention allocation107

that we experience every day in our ordinary waking state of consciousness. Several108

aspects of attention allocation can be fruitfully done in a distributed, neural-net-like109

way, but not having a logically centralized repository of system-history informa-110

tion (regardless of whether it’s physically distributed or not) seems intrinsically111

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

96 5 Attention Allocation

problematic in terms of effective attention allocation. And we argue that, even for112

those aspects of attention allocation that are best addressed in terms of distributed,113

vaguely neural-net-like dynamics, an artificial-economics approach has significant114

advantages over a more strictly neural-net-like approach, due to the greater ease of115

integration with other cognitive mechanisms such as forgetting and data mining.116

5.2 Semantics of Short and Long Term Importance117

We now specify the two types of importance value (short and long term) that play a key118

role in CogPrime dynamics. Conceptually, ShortTermImportance (STI) is defined as119

STI(A) = P(A will be useful in the near future)120

whereas LongTermImportance (LTI) is defined as121

LTI(A) = P(A will be useful eventually, in the foreseeable future).122

Given a time-scale T , in general we can define an importance value relative to T as123

IT (A) = P(A will be useful during the next T seconds).124

In the ECAN module in CogPrime, we deal only with STI and LTI rather than any125

other importance values, and the dynamics of STI and LTI are dealt with by treating126

them as two separate “artificial currency” values, which however are interconvertible127

via being mutually grounded in a common currency called “juju.”128

For instance, if the agent is intensively concerned with trying to build interesting129

blocks structures, then knowledge about interpreting biology research paper abstracts130

is likely to be of very little current importance. So its biological knowledge will get131

low STI, but—assuming the agent expects to use biology again—it should main-132

tain reasonably high LTI so it can remain in memory for future use. And if in its133

brainstorming about what blocks structures to build, the system decides to use some134

biological diagrams as inspiration, STI can always spread to some of the biology-135

related Atoms, increasing their relevance and getting them more attention. While136

the attention allocation system contains mechanisms to convert STI to LTI, it also137

has parameter settings biasing it to spend its juju on both kinds of importance—138

i.e. it contains an innate bias to both focus its attention judiciously, and manage its139

long-term memory conscientiously.140

Because in CogPrime most computations involving STI and LTI are required to141

be very rapid (as they’re done for many Atoms in the memory very frequently), in142

most cases when dealing with these quantities, it will be appropriate to sacrifice143

accuracy for efficiency. On the other hand, it’s useful to occasionally be able to carry144

out expensive, highly accurate computations involving importance.145

An example where doing expensive computations about attention allocation might146

pay off, would be the decision whether to use biology-related or engineering-related147

metaphors in creating blocks structures to please a certain person. In this case it148

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.2 Semantics of Short and Long Term Importance 97

could be worth doing a few steps of inference to figure out whether there’s a greater149

intensional similarity between that person’s interests and biology or engineering;150

and then using the results to adjust the STI levels of whichever of the two comes out151

most similar. This would not be a particularly expensive inference to carry out, but152

it’s still much more effort than what can be expended on Atoms in the memory most153

of the time. Most attention allocation in CogPrime involves simple neural-net type154

spreading dynamics rather than explicit reasoning.155

Figure 5.1 illustrates the key role of LTI in the forgetting process. Figure 5.2 illus-156

trates the key role of STI in maintaining a “moving bubble of attention”, which we157

call the system’s AttentionalFocus.158

5.2.1 The Precise Semantics of STI and LTI159

Now we precisiate the above definitions of STI and LTI.160

First, we introduce the notion of reward. Reward is something that Goals give to161

Atoms. In principle a Goal might give an Atom reward in various different forms,162

though in the design given here, reward will be given in units of a currency called juju.163

The process by which Goals assign reward to Atoms is part of the “assignment of164

credit” process (and we will later discuss the various time-scales on which assignment165

of credit may occur and their relationship to the time-scale parameter within LTI).166

Next, we define167

J(A, t1, t2, r) = expected amount of reward A will receive between168

t1 and t2 time-steps in the future, if its STI has percentile169

rank r among all Atoms in the Atom Table170

The percentile rank r of an Atom is the rank of that Atom in a list of Atoms ordered171

by decreasing STI, divided by the total number of Atoms. The reason for using a172

Fig. 5.1 LongTermImportance and forgetting

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

98 5 Attention Allocation

Fig. 5.2 Formation of the AttentionalFocus. The dynamics of STI is configured to encourage the
emergence of richly cross-connected networks of Atoms with high STI (above a threshold called
the AttentionalFocusBoundary), passing STI among each other as long as this is useful and forming
new HebbianLinks among each other. The collection of these Atoms is called the AttentionalFocus

percentile rank instead of the STI itself is because at any given time only a limited173

number of atoms can be given attention, so all atoms below a certain perceptible174

rank, depending on the amount of available resource, will simply be ignored.175

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.2 Semantics of Short and Long Term Importance 99

This is a fine-grained measure of how worthwhile it is expected to be to increase176

A’s STI, in terms of getting A rewarded by Goals.177

For practical purposes it is useful to collapse J(A, t1, t2, r) to a single number:178

J(A, t1, t2) =
∑

r J(A, t1, t2, r)wr∑
r wr

179

where wr weights the different percentile ranks (and should be chosen to be monotone180

increasing in r). This is a single-number measure of the responsiveness of an Atom’s181

utility to its STI level. So for instance if A has a lot of STI and it turns out to be182

rewarded then J(A, t1, t2) will be high. On the other hand if A has little STI then183

whether it gets rewarded or not will not influence J(A, t1, t2) much.184

To simplify notation, it’s also useful to define a single-time-point version185

J(A, t) = J(A, t, t).186

5.2.1.1 Formalizing STI187

Using these definitions, one simple way to make the STI definition precise is:188

STIthresh(A, t) = P(J(A, t, t + tshort) ≥ sthreshold)189

where sthreshold demarcates the “attentional focus boundary”. Which is a way of190

saying that we don’t want to give STI to atoms that would not get rewarded if they191

were given attention.192

Or one could make the STI definition precise in a fuzzier way, and define193

STIfuzzy(A, t) =
∞∑

s=0

J(A, t + s)c−s
194

for some appropriate parameter c (or something similar with a decay function less195

severe than exponential).196

In either case, the goal of the ECAN subsystem, regarding STI, is to assign each197

Atom A an STI value that corresponds as closely as possible to the theoretical STI198

values defined by whichever one of the above equations is selected (or some other199

similar equation).200

5.2.2 STI, STIFund, and Juju201

But how can one estimate these probabilities in practice? In some cases they may be202

estimated via explicit inference. But often they must be estimated by heuristics.203

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

100 5 Attention Allocation

The estimative approach taken in current CogPrime design is an artificial economy,204

in which each Atom maintains a certain fund of artificial currency. In the current205

proposal this currency is called juju and is the same currency used to value LTI. Let206

us call the amount of juju owned by Atom A the STIFund of A. Then, one way to207

formalize the goal of the artificial economy is to state that: if one ranks all Atoms208

by the wealth of their STIFund, and separately ranks all Atoms by their theoretical209

STI value, the rankings should be as close as possible to the same. One may also210

formalize the goal in terms of value correlation instead of rank correlation, of course.211

Proving conditions under which the STIFund values will actually correlate well212

with the theoretical STI values, is an open math problem. Heuristically, one may map213

STIFund values into theoretical STI values by a mapping such as214

A.STI = α + β
A.STIFund − STIFund. min

STIFund. max −STIFund. min
215

where STIFund. min = min
X

X.STIFund. However, we don’t currently have rigorous216

grounding for any particular functional form for such a mapping; the above is just a217

heuristic approximation.218

The artificial economy approach leads to a variety of supporting heuristics. For219

instance, one such heuristic is: if A has been used at time t, then it will probably220

be useful at time t + s for small s. Based on this heuristic, whenever a MindAgent221

uses an Atom A, it may wish to increase A’s STIFund (so as to hopefully increase222

correlation of A’s STIFund with its theoretical STI). It does so by transferring some223

of its juju to A’s STIFund.224

5.2.3 Formalizing LTI225

Similarly to STI, with LTI we will define theoretical LTI values, and posit an LTI-226

Fund associated with each Atom, which seeks to create values correlated with the227

theoretical LTI values.228

For LTI, the theoretical issues are subtler. There is a variety of different ways to229

precisiate the above loose conceptual definition of LTI. For instance, one can (and230

we will below) create formalizations of both:231

1. LTIcont(A) = (some time-weighting or normalization of) the expected value of232

A’s total usefulness over the long-term future.233

2. LTIburst(A) = the probability that A ever becomes highly useful at some point in234

the long-term future.235

(here “cont” stands for “continuous”). Each of these may be formalized, in similar236

but nonidentical ways.237

These two forms of LTI may be viewed as extremes along a continuum; one could238

posit a host of intermediary LTI values between them. For instance, one could define239

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.2 Semantics of Short and Long Term Importance 101

LTIp(A) = the p′th power average1 of expectation of the utility of A over brief time240

intervals, measured over the long-term future.241

Then we would have242

LTIburst = LTI∞243

LTIcont = LTI1244
245

and could vary p to vary the sharpness of the LTI computation. This might be useful246

in some contexts, but our guess is that it’s overkill in practice and that looking at247

LTIburst and LTIcont is enough (or more than enough; the current OCP code uses only248

one LTI value and that has not been problematic so far).249

5.2.4 Applications of LTIburst Versus LTIcont250

It seems that the two forms of LTI discussed above might be of interest in different251

contexts, depending on the different ways that Atoms may be used so as to achieve252

reward.253

If an Atom is expected to get rewarded for the results of its being selected by254

MindAgents that carry out diffuse, background thinking (and hence often select255

low-STI Atoms from the AtomTable), then it may be best associated with LTIcont .256

On the other hand, if an Atom is expected to get rewarded for the results of its257

being selected by MindAgents that are focused on intensive foreground thinking (and258

hence generally only select Atoms with very high STI), it may be best associated259

with LTIburst .260

In principle, Atoms could be associated with particular LTIp based on the particu-261

lars of the selection mechanisms of the MindAgents expected to lead to their reward.262

But the issue with this is, it would result in Atoms carrying around an excessive abun-263

dance of different LTIp values for various p, resulting in memory bloat; and it would264

also require complicated analyses of MindAgent dynamics. If we do need more than265

one LTI value, one would hope that two will be enough, for memory conservation266

reasons.267

And of course, if an Atom has only one LTI value associated with it, this can268

reasonably be taken to stand in for the other one: either of LTIburst or LTIcont may,269

in the absence of information to the contrary, be taken as an estimate of the other.270

5.2.4.1 LTI with Various Time Lags271

The issue of the p value in the average in the definition of LTI is somewhat similar to272

(though orthogonal to) the point that there are many different interpretations of LTI,273

achieved via considering various time-lags. Our guess is that a small set of time-lags274

1 the p′th power average is defined as p
√∑

Xp.

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

102 5 Attention Allocation

will be sufficient. Perhaps one wants an exponentially increasing series of time-lags:275

i.e. to calculate LTI over k cycles where k is drawn from {r, 2r, 4r, 8r, . . . , 2N r}.276

The time-lag in LTI seems related to the time-lag in the system’s goals. If a Goal277

object is disseminating juju, and the Goal has an intrinsic time scale of t, then it may278

be interested in LTI on time-scale t. So when a MA (MindAgent) is acting in pursuit279

of that goal, it should spend a bunch of its juju on LTI on time-scale t.280

Complex goals may be interested in multiple time-scales (for instance, a goal281

might place greater value on things that occur in the next hour, but still have nonzero282

interest in things that occur in a week), and hence may have different levels of interest283

in LTI on multiple time-scales.284

5.2.4.2 Formalizing Burst LTI285

Regarding burst LTI, two approaches to formalization seem to be the threshold ver-286

sion287

LTIburst, thresh(A) = P(A will receive a total of at least sthreshold288

amount of normalized stimulus during some time interval of289

length tshort in the next tlong time steps)290

and the fuzzy version,291

LTIburst,fuzzy(A, t) =
∞∑

s=0

J(A, t + s, t + s + tshort)f (s, tlong)292

where f (t, tlong) : R+ × R+ → R+ is a nonincreasing function that remains roughly293

constant in t up till a point tlong steps in the future, and then begins slowly decaying.294

5.2.4.3 Formalizing Continuous LTI295

The threshold version of continuous LTI is quite simply:296

LTIcont,thresh(A, tlong) = STIthresh(A, tlong)297

That is, smooth threshold LTI is just like smooth threshold STI, but the time-scale298

involved is longer.299

On the other hand, the fuzzy version of smooth LTI is:300

LTIcont,fuzzy(A, t) =
∞∑

s=0

J(A, t + s)f (s, tlong)301

using the same decay function f that was introduced above in the context of burst302

LTI.303

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.3 Defining Burst LTI in Terms of STI 103

5.3 Defining Burst LTI in Terms of STI304

It is straightforward to define burst LTI in terms of STI, rather than directly in terms305

of juju. We have306

LTIburst, thresh(A, t) = P
(⋃s=tlong

s=0 STIthresh(A, t + s)
)

.307

Or, using the fuzzy definitions, we obtain instead the approximate equation308

LTIburst,fuzzy(A, t) ≈
∞∑

s=0

α(s)STIfuzzy(A, t + s)f (s, tlong)309

where310

α(s) = 1 − c

1 − cs+1311

or the more complex exact equation:312

LTIburst,fuzzy(A, t) =
∞∑

s=0

STIfuzzy(A, t + s)

(

f (s, tlong) −
s∑

r=1

(c−r f (s − r, tlong))

)

.313

5.4 Valuing LTI and STI in Terms of a Single Currency314

We now further discuss the approach of defining LTIFund and STIFund in terms of315

a single currency: juju (which as noted, corresponds in the current ECAN design to316

normalized stimulus).317

In essence, we can think of STIFund and LTIFund as different forms of financial318

instrument, which are both grounded in juju. Each Atom has two financial instruments319

attached to it: “STIFund of Atom A” and “LTIFund of Atom A” (or more if multiple320

versions of LTI are used). These financial instruments have the peculiarity that,321

although many agents can put juju into any one of them, no record is kept of who put322

juju in which one. Rather, the MA’s are acting so as to satisfy the system’s Goals, and323

are adjusting the STIFund and LTIFund values in a heuristic manner that is expected324

to approximately maximize the total utility propagated from Goals to Atoms.325

Finally, each of these financial instruments has a value that gets updated by a326

specific update equation.327

To understand the logic of this situation better, consider the point of view of a328

Goal with a certain amount of resources (juju, to be used as reward), and a certain329

time-scale on which its satisfaction is to be measured. Suppose that the goal has a330

certain amount of juju to expend on getting itself satisfied.331

This Goal clearly should allocate some of its juju toward getting processor time332

allocated toward the right Atoms to serve its ends in the near future; and some of333

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

104 5 Attention Allocation

its juju toward ensuring that, in future, the memory will contain the Atoms it will334

want to see processor time allocated to. Thus, it should allocate some of its juju335

toward boosting the STIFund of Atoms that it thinks will (if chosen by appropriate336

MindAgents) serve its needs in the near future, and some of its juju toward boosting337

the LTIFund of Atoms that it thinks will serve its need in the future (if they remain338

in RAM). Thus, when a Goal invokes a MindAgent (giving the MindAgent the juju339

it needs to access Atoms and carry out its work), it should tell this MindAgent to put340

some of its juju into LTIFunds and some into STIFunds.341

If a MindAgent receives a certain amount of juju each cycle, independently of342

what the system Goals are explicitly telling it, then this should be viewed as reflecting343

an implicit goal of “ambient cognition”, and the balance of STI and LTI associated344

with this implicit goal must be a system parameter.345

In general, the trade-off between STI and LTI boils down to the weighting between346

near and far future that is intrinsic to a particular Goal. Simplistically: if a Goal values347

getting processor allocated to the right stuff immediately 25 times more than getting348

processor allocated to the right stuff 20K cycles in the future, then it should be willing349

spend 25× more of its juju on STI than on LTI20K cycles. (This simplistic picture is350

complicated a little by the relationship between different time-scales. For instance,351

boosting LTI10K cycles(A) will have an indirect effect of increasing the odds that A352

will still be in memory 20K cycles in the future.)353

However, this isn’t the whole story, because multiple Goals are setting the impor-354

tance values of the same set of Atoms. If M1 pumps all its juju into STI for certain355

Atoms, then M2 may decide it’s not worthwhile for it to bother competing with M1356

in the STI domain, and to spend its juju on LTI instead.357

Note that the current system doesn’t allow a MA to change its mind about LTI358

allocations. One can envision a system where a MindAgent could in January pay juju359

to have Atom A kept around for a year, but then change its mind in June 6 months later,360

and ask for some of the money back. But this would require an expensive accounting361

procedure, keeping track of how much of each Atom’s LTI had been purchased by362

which MindAgent; so it seems a poor approach.363

A more interesting alternative would be to allow MA’s to retain adjustable “reserve364

funds” of juju. This would mean that a MindAgent would never see a purpose to365

setting LTIoneyear(A) instead of repeatedly setting LTIoneminute, unless a substantial366

transaction cost were incurred with each transaction of adjusting an Atom’s LTI.367

Introducing a transaction cost plus an adjustable per-MindAgent juju reserve fund,368

and LTI’s on multiple time scales, would give the LTI framework considerable flexi-369

bility. (To prevent MA’s from hoarding their juju, one could place a tax rate on reserve370

juju.)371

The conversion rate between STI and LTI becomes an interesting matter; though372

it seems not a critical one, since in the practical dynamics of the system it’s juju that373

is used to produce STI and LTI. In the current design there is no apparent reason to374

spread STI of one Atom to LTI of another Atom, or convert the STI of an Atom into375

LTI of that same Atom, etc.—but such an application might come up. (For the rest of376

this paragraph, let’s just consider LTI with one time scale, for simplicity.) Each Goal377

will have its own preferred conversion rate between STI and LTI, based on its own378

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.4 Valuing LTI and STI in Terms of a Single Currency 105

balancing of different time scales. But, each Goal will also have a limited amount379

of juju, hence one can only trade a certain amount of STI for LTI, if one is trading380

with a specific goal G. One could envision a centralized STI-for-LTI market where381

different MA’s would trade with each other, but this seems overcomplicated, at least382

at the present stage.383

As a simpler software design point, this all suggests a value for associating each384

Goal with a parameter telling how much of its juju it wants to spend on STI versus385

LTI. Or, more subtly, how much of its juju it wants to spend on LTI on various time-386

scales. On the other hand, in a simple ECAN implementation this balance may be387

assumed constant across all Goals.388

5.5 Economic Attention Networks389

Economic Attention Networks (ECANs) are dynamical systems based on the propa-390

gation of STI and LTI values. They are similar in many respects to Hopfield nets, but391

are based on a different conceptual foundation involving the propagation of amounts392

of (conserved) currency rather than neural-net activation. Further, ECANs are specifi-393

cally designed for integration with a diverse body of cognitive processes as embodied394

in integrative AI designs such as CogPrime. A key aspect of the CogPrime design is395

the imposition of ECAN structure on the CogPrime AtomSpace.396

Specifically, ECANs have been designed to serve two main purposes within Cog-397

Prime: to serve as an associative memory for the network, and to facilitate effective398

allocation of the attention of other cognitive processes to appropriate knowledge399

items.400

An ECAN is simply a graph, consisting of un-typed nodes and links, and also401

“Hebbian” links that may have types such as HebbianLink, InverseHebbianLink,402

or SymmetricHebbianLink. Each node and link in an ECAN is weighted with two403

currency values, called STI (short-term importance) and LTI (long-term importance);404

and each Hebbian link is weighted with a probabilistic truth value.405

The equations of an ECAN explain how the STI, LTI and Hebbian link weights406

values get updated over time. As alluded to above, the metaphor underlying these407

equations is the interpretation of STI and LTI values as (separate) artificial currencies.408

The fact that STI and LTI are currencies means that, except in unusual instances409

where the ECAN controller decides to introduce inflation or deflation and explicitly410

manipulate the amount of currency in circulation, the total amounts of STI and LTI411

in the system are conserved. This fact makes the dynamics of an ECAN dramatically412

different than that of an attractor neural network.413

In addition to STI and LTI as defined above, the ECAN equations also contain the414

notion of an Attentional Focus (AF), consisting of those Atoms in the ECAN with the415

highest STI values (and represented by the sthreshold value in the above equations).416

These Atoms play a privileged role in the system and, as such, are treated using an417

alternate set of equations.418

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

106 5 Attention Allocation

5.5.1 Semantics of Hebbian Links419

Conceptually, the probability value of a HebbianLink from A to B is the odds that420

if A is in the AF, so is B; and correspondingly, the InverseHebbianLink from A to421

B is weighted with the odds that if A is in the AF, then B is not. An ECAN will422

often be coupled with a “Forgetting” process that removes low-LTI Atoms from423

memory according to certain heuristics. A critical aspect of the ECAN equations424

is that Atoms periodically spread their STI and LTI to other Atoms that connect to425

them via Hebbian and InverseHebbianLinks; this is the ECAN analogue of activation426

spreading in neural networks.427

Multiple varieties of HebbianLink may be constructed, for instance428

• Asymmetric HebbianLinks, whose semantics are as mentioned above: the truth429

value of HebbianLink A B denotes the probability that if A is in the AF, so is B430

• Symmetric HebbianLinks, whose semantics are that: the truth value of Symmet-431

ricHebbianLink A B denotes the probability that if one of A or B is in the AF, both432

are433

It is also worth noting that one can combine ContextLinks with HebbianLinks and434

express contextual association such that in context C, there is a strong HebbianLink435

between A and B.436

5.5.2 Explicit and Implicit Hebbian Relations437

In addition to explicit HebbianLinks, it can be useful to treat other links implicitly as438

HebbianLinks. For instance, if ConceptNodes A and B are found to connote similar439

concepts, and a SimilarityLink is formed between them, then this gives reason to440

believe that maybe a SymmetricHebbianLink between A and B should exist as well.441

One could incorporate this insight in CogPrime in at least three ways:442

• creating HebbianLinks paralleling other links (such as SimilarityLinks).443

• adding “Hebbian weights” to other links (such as SimilarityLinks).444

• implicitly interpreting other links (such as SimilarityLinks) as HebbianLinks.445

Further, these strategies may potentially be used together.446

There are some obvious semantic relationships to be used in interpreting other447

link types implicitly as HebbianLinks: for instance, Similarity maps into Symmet-448

ricHebbian, and Inheritance A B maps into Hebbian A B. One may express these as449

inference rules, e.g.450

SimilarityLink A B<tv_1 >451

|-452

SymmetricHebbianLink A B <tv_2 >453

where tv2.s = tv1.s. Clearly, tv2.c < tv1.c; but the precise magnitude of tv2.c must454

be determined by a heuristic formula. One option is to set tv2.c = αtv1.c where455

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.5 Economic Attention Networks 107

the constant α is set empirically via data mining the System Activity Tables to be456

described below.457

5.6 Dynamics of STI and LTI Propagation458

We now get more specific about how some of these ideas are implemented in the459

currently implemented ECAN subsystem of CogPrime. We’ll discuss mostly STI460

here because in the current design LTI works basically the same way.461

MindAgents send out stimulus to Atoms whenever they use them (or else, some-462

times, just for the purpose of increasing the Atom’s STI); and before these stimulus463

values are used to update the STI levels of the receiving Atom, they are normalized464

by: the total amount of stimulus sent out by the MindAgent in that cycle, multiplied465

by the total amount of STI currency that the MindAgent decided to spend in that466

cycle. The normalized stimulus is what has above been called juju. This normaliza-467

tion preserves fairness among MA’s, and conservation of currency.468

(The reason “stimuli” exist, separately from STI, is that stimulus-sending needs469

to be very computationally cheap, as in general it’s done frequently by each MA each470

cycle, and we don’t want each action a MA takes to invoke some costly importance-471

updating computation.)472

Then, Atoms exchange STI according to certain equations (related to Hebbian-473

Links and other links), and have their STI values updated according to certain equa-474

tions (which involve, among other operations, transferring STI to the “central bank”).475

5.6.1 ECAN Update Equations476

The CogServer is understood to maintain a kind of central bank of STI and LTI477

funds. When a non-ECAN MindAgent finds an Atom valuable, it sends that Atom a478

certain amount of Stimulus, which results in that Atom’s STI and LTI values being479

increased (via equations to be presented below, that transfer STI and LTI funds from480

the CogServer to the Atoms in question). Then, the ECAN ImportanceUpdating481

MindAgent carries out multiple operations, including some that transfer STI and482

LTI funds from some Atoms back to the CogServer.483

There are multiple ways to embody this process equationally; here we briefly484

describe two variants.485

5.6.1.1 Definition and Analysis of Variant 1486

We now define a specific set of equations in accordance with the ECAN concep-487

tual framework described above. We define HSTI = [s1, . . . , sn] to be the vector488

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

108 5 Attention Allocation

of STI values, and C =
⎡

⎢
⎣

c11, · · · , c1n
...
. . .

...

cn1, · · · , cnn

⎤

⎥
⎦ to be the connection matrix of Hebbian489

probability values, where it is assumed that the existence of a HebbianLink or Inverse-490

HebbianLink between A and B are mutually exclusive possibilities. We also define491

CLTI =
⎡

⎢
⎣

g11, · · · , g1n
...
. . .

...

gn1, · · · , gnn

⎤

⎥
⎦ to be the matrix of LTI values for each of the corresponding492

links.493

We assume an updating scheme in which, periodically, a number of Atoms are494

allocated Stimulus amounts, which causes the corresponding STI values to change495

according to the equations496

∀i : si = si − rent + wages,497

where rent and wages are given by498

rent =

⎧
⎪⎨

⎪⎩

〈Rent〉 · max

(

0,
log

(
20si

recentMaxSTI

)

2

)

, if si > 0

0, if si ≥ e ≥ 0

499

rent = 0, ifsi ≤ e500

and501

wages =
{ 〈Wage〉〈Stimulus〉∑n

i=1 pi
, if pi = 1

〈Wage〉〈Stimulus〉
n−∑n

i=1 pi
, if pi = 0

,502

where P = [
p1, . . . , pn

]
, with pi ∈ {0, 1} is the cue pattern for the pattern that is to503

be retrieved.504

All quantities enclosed in angled brackets are system parameters, and LTI updating505

is accomplished using a completely analogous set of equations.506

The changing STI values then cause updating of the connection matrix, according507

to the “conjunction” equations. First define508

normi =
{ si

recentMaxSTI , if si ≥ 0
si

recentMinSTI , if si < 0
.509

Next define510

conj = Conjunction
(
si, sj

) = normi × normj511

and512

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.6 Dynamics of STI and LTI Propagation 109

c′
ij = 〈ConjDecay〉 conj + (1 − conj) cij.513

Finally update the matrix elements by setting514

cij =
{

cji = c′
ij, if c′

ij ≥ 0
c′

ij, if c′
ij < 0

.515

We are currently also experimenting with updating the connection matrix in accor-516

dance with the equations suggested by Storkey (1997, 1998, 1999).517

A key property of these equations is that both wages paid to, and rent paid by,518

each node are positively correlated to their STI values. That is, the more important519

nodes are paid more for their services, but they also pay more in rent.520

A fixed percentage of the links with the lowest LTI values is then forgotten (which521

corresponds equationally to setting the LTI to 0).522

Separately from the above, the process of Hebbian probability updating is carried523

out via a diffusion process in which some nodes “trade” STI utilizing a diffusion524

matrix D, a version of the connection matrix C normalized so that D is a left stochastic525

matrix. D acts on a similarly scaled vector v, normalized so that v is equivalent to a526

probability vector of STI values.527

The decision about which nodes diffuse in each diffusion cycle is carried out via528

a decision function. We currently are working with two types of decision functions:529

a standard threshold function, by which nodes diffuse if and only if the nodes are in530

the AF; and a stochastic decision function in which nodes diffuse with probability531

tanh(shape(si−FocusBoundary))+1
2 , where shape and FocusBoundary are parameters.532

The details of the diffusion process are as follows. First, construct the diffusion533

matrix from the entries in the connection matrix as follows:534

If cij ≥ 0, then dij = cij,

else, set dji = −cij.
535

Next, we normalize the columns of D to make D a left stochastic matrix. In so doing,536

we ensure that each node spreads no more than a 〈MaxSpread〉 proportion of its STI,537

by setting538

if
n∑

i=1

dij > 〈MaxSpread〉 :539

540

dij =
{

dij × 〈MaxSpread〉∑n
i=1 dij

, for i �= j

djj = 1 − 〈MaxSpread〉541

else:542

djj = 1 −
n∑

i = 1
i �= j

dij543

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

110 5 Attention Allocation

Now we obtain a scaled STI vector v by setting544

minSTI = min
i∈{1,2,...,n} si and maxSTI = max

i∈{1,2,...,n} si545

546

vi = si − min STI

max STI − min STI
547

The diffusion matrix is then used to update the node STIs548

v′ = Dv549

and the STI values are rescaled to the interval [minSTI, maxSTI].550

In both the rent and wage stage and in the diffusion stage, the total STI and551

LTI funds of the system each separately form a conserved quantity: in the case of552

diffusion, the vector v is simply the total STI times a probability vector. To maintain553

overall system funds within homeostatic bounds, a mid-cycle tax and rent-adjustment554

can be triggered if necessary; the equations currently used for this are555

1. 〈Rent〉 = recent stimulus awarded before update×〈Wage〉
recent size of AF ;556

2. tax = x
n , where x is the distance from the current AtomSpace bounds to the center557

of the homeostatic range for AtomSpace funds;558

3. ∀i:si = si − tax559

5.6.1.2 Investigation of Convergence Properties of Variant 1560

Now we investigate some of the properties that the above ECAN equations display561

when we use an ECAN defined by them as an associative memory network in the562

manner of a Hopfield network.563

We consider a situation where the ECAN is supplied with memories via a “train-564

ing” phase in which one imprints it with a series of binary patterns of the form565

P = [
p1, . . . , pn

]
, with pi ∈ {0, 1}. Noisy versions of these patterns are then used as566

cue patterns during the retrieval process.567

We obviously desire that the ECAN retrieve the stored pattern corresponding to568

a given cue pattern. In order to achieve this goal, the ECAN must converge to the569

correct fixed point.570

Theorem 5.1 For a given value of e in the STI rent calculation, there is a subset of571

hyperbolic decision functions for which the ECAN dynamics converge to an attracting572

fixed point.573

Proof Rent is zero whenever e ≤ si ≤ recentMaxSTI
20 , so we consider this case first.574

The updating process for the rent and wage stage can then be written as f (s) =575

s + constant. The next stage is governed by the hyperbolic decision function576

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.6 Dynamics of STI and LTI Propagation 111

g (s) = tanh (shape (s − FocusBoundary)) + 1

2
.577

The entire updating sequence is obtained by the composition (g ◦ f) (s), whose deriv-578

ative is then579

(g ◦ f)
′ = sech2 (f (s)) · shape

2
· (1) ,580

which has magnitude less than 1 whenever −2 < shape < 2. We next consider the581

case si > recentMaxSTI
20 ≥ e. The function f now takes the form582

f (s) = s − log (20s/recentMaxSTI)

2
+ constant,583

and we have584

(g ◦ f)
′ = sech2 (f (s)) · shape

2
·
(

1 − 1

2s

)
.585

which has magnitude less than 1 whenever |shape| <

∣
∣
∣ 4e

2e−1

∣
∣
∣. Choosing the shape586

parameter to satisfy 0 < shape < min
(

2,

∣
∣
∣ 4e

2e−1

∣
∣
∣
)

then guarantees that
∣
∣
∣(g ◦ f)

′ ∣∣
∣587

< 1. Finally, g◦ f maps the closed interval [recentMinStI, recentMaxSTI] into itself,588

so applying the Contraction Mapping Theorem completes the proof.589

5.6.1.3 Definition and Analysis of Variant 2590

The ECAN variant described above has performed completely acceptably in our591

experiments so far; however we have also experimented with an alternate variant,592

with different convergence properties. In Variant 2, the dynamics of the ECAN are593

specifically designed so that a certain conceptually intuitive function serves as a594

Liapunov function of the dynamics.595

At a given time t, for a given Atom indexed i, we define two quantities: OUTi(t) =596

the total amount that Atom i pays in rent and tax and diffusion during the time-597

t iteration of ECAN; INi(t) = the total amount that Atom i receives in diffusion,598

stimulus and welfare during the time-t iteration of ECAN. Note that welfare is a new599

concept to be introduced below. We then define DIFFi(t) = INi(t) − OUTi(t); and600

define AVDIFF(t) as the average of DIFFi(t) over all i in the ECAN.601

The design goal of Variant 2 of the ECAN equations is to ensure that, if the para-602

meters are tweaked appropriately, AVDIFF can serve as a (deterministic or stochastic,603

depending on the details) Lyapunov function for ECAN dynamics. This implies that604

with appropriate parameters the ECAN dynamics will converge toward a state where605

AVDIFF = 0, meaning that no Atom is making any profit or incurring any loss. It606

must be noted that this kind of convergence is not always desirable, and sometimes607

one might want the parameters set otherwise. But if one wants the STI components of608

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

112 5 Attention Allocation

an ECAN to converge to some specific values, as for instance in a classic associative609

memory application, Variant 2 can guarantee this easily.610

In Variant 2, each ECAN cycle begins with rent collection and welfare distribution,611

which occurs via collecting rent via the Variant 1 equation, and then performing the612

following two steps:613

• Step A calculate X, defined as the positive part of the total amount by which614

AVDIFF has been increased via the overall rent collection process.615

• Step B redistribute X to needy Atoms as follows: For each Atom z, calculate the616

positive part of OUT −IN , defined as deficit(z). Distribute X +e wealth among all617

Atoms z, giving each Atom a percentage of X that is proportional to deficit(z), but618

never so much as to cause OUT < IN for any Atom (the welfare being given counts619

toward IN). Here e > 0 ensures AVDIFF decrease; e = 0 may be appropriate if620

convergence is not required in a certain situation.621

Step B is the welfare step, which guarantees that rent collection will decrease AVD-622

IFF. Step A calculates the amount by which the rich have been made poorer, and623

uses this to make the poor richer. In the case that the sum of deficit(z) over all nodes624

z is less than X, a mid-cycle rent adjustment may be triggered, calculated so that step625

B will decrease AVDIFF. (i.e. we cut rent on the rich, if the poor don’t need their626

money to stay out of deficit.)627

Similarly, in each Variant 2 ECAN cycle, there is a wage-paying process, which628

involves the wage-paying equation from Variant 1 followed by two steps. Step A:629

calculate Y , defined as the positive part of the total amount by which AVDIFF has630

been increased via the overall wage payment process. Step B: exert taxation based on631

the surplus Y as follows: For each Atom z, calculate the positive part of IN − OUT ,632

defined as surplus(z). Collect Y + e1 wealth from all Atom z, collecting from each633

node a percentage of Y that is proportional to surplus(z), but never so much as to634

cause IN < OUT for any node (the new STI being collected counts toward OUT).635

In case the total of surplus(z) over all nodes z is less than Y , one may trigger a636

mid-cycle wage adjustment, calculated so that step B will decrease AVDIFF, i.e. we637

cut wages since there is not enough surplus to support it.638

Finally, in the Variant 2 ECAN cycle, diffusion is done a little differently, via639

iterating the following process: If AVDIFF has increased during the diffusion round640

so far, then choose a random node whose diffusion would decrease AVDIFF, and let641

it diffuse; if AVDIFF has decreased during the diffusion round so far, then choose a642

random node whose diffusion would increase AVDIFF, and let it diffuse. In carrying643

out these steps, we avoid letting the same node diffuse twice in the same round.644

This algorithm does not let all Atoms diffuse in each cycle, but it stochastically lets a645

lot of diffusion happen in a way that maintains AVDIFF constant. The iteration may646

be modified to bias toward an average decrease in AVDIFF.647

The random element in the diffusion step, together with the logic of the ren-648

t/welfare and wage/tax steps, combines to yield the result that for Variant 2 of ECAN649

dynamics, AVDIFF is a stochastic Lyapunov function. The details of the proof of this650

will be omitted but the outline of the argument should be clear from the construction651

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.6 Dynamics of STI and LTI Propagation 113

of Variant 2. And note that by setting the e and e1 parameter to 0, the convergence652

requirement can be eliminated, allowing the network to evolve more spontaneously653

as may be appropriate in some contexts; these parameters allow one to explicitly654

adjust the convergence rate.655

One may also derive results pertaining to the meaningfulness of the attractors, in656

various special cases. For instance, if we have a memory consisting of a set M of m657

nodes, and we imprint the memory on the ECAN by stimulating m nodes during an658

interval of time, then we want to be able to show that the condition where precisely659

those m nodes are in the AF is a fixed-point attractor. However, this is not difficult,660

because one must only show that if these m nodes and none others are in the AF, this661

condition will persist.662

5.6.2 ECAN as Associative Memory663

We have carried out experiments gauging the performance of Variant 1 of ECAN as664

an associative memory, using the implementation of ECAN within CogPrime, and665

using both the conventional and Storkey Hebbian updating formulas.666

As with a Hopfield net memory, the memory capacity (defined as the number667

of memories that can be retrieved from the network with high accuracy) depends668

on the sparsity of the network, with denser networks leading to greater capacity. In669

the ECAN case the capacity also depends on a variety of parameters of the ECAN670

equations, and the precise unraveling of these dependencies is a subject of current671

research. However, one interesting dependency has already been uncovered in our672

preliminary experimentation, which has to do with the size of the AF versus the size673

of the memories being stored.674

Define the size of a memory (a pattern being imprinted) as the number of nodes675

that are stimulated during imprinting of that memory. In a classical Hopfield net676

experiment, the mean size of a memory is usually around, say, 0.2–0.5 of the number677

of neurons. In typical CogPrime associative memory situations, we believe the mean678

size of a memory will be one or two orders of magnitude smaller than that, so that679

each memory occupies only a relatively small portion of the overall network.680

What we have found is that the memory capacity of an ECAN is generally com-681

parable to that of a Hopfield net with the same number of nodes and links, if and only682

if the ECAN parameters are tuned so that the memories being imprinted can fit into683

the AF. That is, the AF threshold or (in the hyperbolic case) shape parameter must684

be tuned so that the size of the memories is not so large that the active nodes in a685

memory cannot stably fit into the AF. This tuning may be done adaptively by testing686

the impact of different threshold/shape values on various memories of the appropri-687

ate size; or potentially a theoretical relationship between these quantities could be688

derived, but this has not been done yet. This is a reasonably satisfying result given689

the cognitive foundation of ECAN: in loose terms what it means is that ECAN works690

best for remembering things that fit into its focus of attention during the imprinting691

process.692

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

114 5 Attention Allocation

5.7 Glocal Economic Attention Networks693

In order to transform ordinary ECANs into glocal ECANs, one may proceed in694

essentially the same manner as with glocal Hopfield nets as discussed in Chap. 13 of695

Vol. 5. In the language normally used to describe CogPrime, this would be termed a696

“map encapsulation” heuristic. As with glocal Hopfield nets, one may proceed most697

simply via creating a fixed pool of nodes intended to provide locally-representative698

keys for the maps formed as attractors of the network. Links may then be formed to699

these key nodes, with weights and STI and LTI values adapted by the usual ECAN700

algorithms.701AQ1

5.7.1 Experimental Explorations702

To compare the performance of glocal ECANs with glocal Hopfield networks in a703

simple context, we ran experiments using ECAN in the manner of a Hopfield network.704

That is, a number of nodes take on the equivalent role of the neurons that are presented705

patterns to be stored. These patterns are imprinted by setting the corresponding nodes706

of active bits to have their STI within the AF, whereas nodes corresponding to inactive707

bits of the pattern are below the AF threshold. Link weight updating then occurs,708

using one of several update rules, but in this case the update rule of [SV99] was709

used. Attention was spread using a diffusion approach by representing the weights710

of Hebbian links between pattern nodes within a left stochastic Markov matrix, and711

multiplying it by the vector of normalised STI values to give a vector representing712

the new distribution of STI.713

To explore the effects of key nodes on ECAN Hopfield networks, in [Goe08b]714

we used the palimpsest testing scenario of [SV99], where all the local neighbours715

of the imprinted pattern, within a single bit change, are tested. Each neighbouring716

pattern is used as input to try and retrieve the original pattern. If all the retrieved717

patterns are the same as the original (within a given tolerance) then the pattern is718

deemed successfully retrieved and recall of the previous pattern is attempted via its719

neighbours. The number of patterns this can repeat for successfully is called the720

palimpsest storage of the network.721

As an example, consider one simple experiment that was run with recollection722

of 10 × 10 pixel patterns (so, 100 nodes, each corresponding to a pixel in the grid),723

a Hebbian link density of 30 %, and with 1 % of links being forgotten before each724

pattern is imprinted. The results demonstrated that, when the mean palimpsest storage725

is calculated for each of 0, 1, 5 and 10 key nodes we find that the storage is 22.6, 22.4,726

24.9, and 26.0 patterns respectively, indicating that key nodes do improve memory727

recall on average.728

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_13

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.8 Long-Term Importance and Forgetting 115

5.8 Long-Term Importance and Forgetting729

Now we turn to the forgetting process (carried out by the Forgetting MindAgent),730

which is driven by LTI dynamics, but has its own properties as well.731

Overall, the goal of the “forgetting” process is to maximize the total utility of the732

Atoms in the AtomSpace throughout the future. The most basic heuristic toward this733

end is to remove the Atoms with the lowest LTI, but this isn’t the whole story. Clearly,734

the decision to remove an Atom from RAM should depend on factors beyond just735

the LTI of the Atom. For example, one should also take into account the expected736

difficulty in reconstituting the given Atom from other Atoms. Suppose the system737

has the relations:738

’’dogs are animals ’’739

740

’’animals are cute ’’741

742

’’dogs are cute ’’743

and the strength of the third relation is not dissimilar from what would be obtained744

by deduction and revision from the first two relations and others in the system. Then,745

even if the system judges it will be very useful to know dogs are cute in the future,746

it may reasonably choose to remove dogs are cute from memory anyway, because it747

knows it can be so easily reconstituted, by a few inference steps for instance. Thus,748

as well as removing the lowest-LTI Atoms, the Forgetting MindAgent should also749

remove Atoms meeting certain other criteria such as the combination of:750

• low STI.751

• easy reconstitutability in terms of other Atoms that have LTI not less than its own.752

5.9 Attention Allocation via Data Mining on the System753

Activity Table754

In this section we’ll discuss an object called the System Activity Table, which con-755

tains a number of subtables recording various activities carried out by the various756

objects in the CogPrime system. These tables may be used for sophisticated atten-757

tion allocation processes, according to an approach in which importance values and758

HebbianLink weight values are calculated via direct data mining of a centralized759

knowledge store (the System Activity Table). This approach provides highly accu-760

rate attention allocation but at the cost of significant computational effort.761

The System Activity Table is actually a set of tables, with multiple components.762

The precise definition of the tables will surely be adapted based on experience as763

the work with CogPrime progresses; what is described here is a reasonable first764

approximation.765

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

116 5 Attention Allocation

First, there is a MindAgent Activity Table, which includes, for each MindAgent766

in the system, a table such as Table 5.1 (in which the time-points recorded are the767

last T system cycles, and the Atom-lists recorded are lists of Handles for Atoms).768

The MindAgent’s activity table records, for that MindAgent and for each system769

cycle, which Atom-sets were acted on by that MindAgent at that point in time.770

Similarly, a table of this nature must be maintained for each Task-type, e.g. Infer-771

enceTask, MOSESCategorizationTask, etc. The Task tables are used to estimate772

Effort values for various Tasks, which are used in the procedure execution process.773

If it can be estimated how much spatial and temporal resources a Task is likely to774

use, via comparison to a record of previous similar tasks (in the Task table), then a775

MindAgent can decide whether it is appropriate to carry out this Task (versus some776

other one, or versus some simpler process not requiring a Task) at a given point in777

time, a process to be discussed in a later chapter.778

In addition to the MindAgent and Task-type tables, it is convenient if tables are779

maintained corresponding to various goals in the system (as shown in Table 5.2),780

including the Ubergoals but also potentially derived goals of high importance.781

For each goal, at minimum, the degree of achievement of the goal at a given time782

must be recorded. Optionally, at each point in time, the degree of achievement of a783

goal relative to some particular Atoms may be recorded. Typically the list of Atom-784

specific goal-achievements will be short and will be different for different goals and785

different time points. Some goals may be applied to specific Atoms or Atom sets,786

others may only be applied more generally.787

The basic idea is that attention allocation and credit assignment may be effectively788

carried out via datamining on these tables.789

Table 5.1 Example MindAgent table

System Effort Memory Atom combo 1 Atom combo 2 . . .

cycle spent used utilized utilized

Now 3.3 4,000 Atom21, Atom44 Atom 44, Atom 47, Atom 345 . . .

Now −1 0.4 6,079 Atom123, Atom33 Atom 345 . . .

.

Table 5.2 Example goal table

System Total Achievement Achievement for set . . .

cycle achievement for Atom44 {Atom44, Atom 233}

Now 0.8 0.4 0.5 . . .

Now −1 0.9 0.5 0.55 . . .

.

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.10 Schema Credit Assignment 117

5.10 Schema Credit Assignment790

And, how do we apply a similar approach to clarifying the semantics of schema791

credit assignment?792

From the above-described System Activity Tables, one can derive information of793

the form794

Achieve(G,E,T) =‘‘Goal G was achieved to extent795

E at time T’’796

which may be grounded as, for example:797

798

Similarity799

E800

ExOut801

GetTruthValue802

Evaluation803

atTime804

T805

HypLink G806

and more refined versions such as807

808

Achieve(G,E,T,A,P) = ‘‘Goal G was achieved to extent809

E using810

Atoms A (with parameters P)811

at time T’’812

813

Enact(S,I,T_1 ,O,T_2) = ‘‘Schema S was enacted on814

inputs I815

at time T_1 , producing816

outputs O817

at time T_2 ’’818

The problem of schema credit assignment is then, in essence: Given a goal G and819

a distribution of times D, figure out what schema to enact in order to cause G’s820

achievement at some time in the future, where the desirability of times is weighted821

by D.822

The basic method used is the learning of predicates of the form823

824

ImplicationLink
F(C, P1, . . . , Pn)

G
825

where826

• the Pi are Enact() statements in which the T1 and T2 are variable, and the S, I and827

O may be concrete or variable.828

• C is a predicate representing a context.829

• G is an Achieve() statement, whose arguments may be concrete or abstract.830

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

118 5 Attention Allocation

• F is a Boolean function.831

Typically, the variable expressions in the T1 and T2 positions will be of the form832

T +offset, where offset is a constant value and T is a time value representing the time833

of inception of the whole compound schema. T may then be defined as TG − offset1,834

where offset1 is a constant value and TG is a variable denoting the time of achievement835

of the goal.836

In CogPrime, these predicates may be learned by a combination of statistical837

pattern mining, PLN inference and MOSES or hill-climbing procedure learning.838

The choice of what action to take at a given point in time is then a probabilistic839

decision. Based on the time-distribution D given, the system will know a certain840

number of expressions C = F(C, P1, . . . , Pn) of the type described above. Each of841

these will be involved in an ImplicationLink with a certain estimated strength. It may842

select the “compound schema” C with the highest strength.843

One might think to introduce other criteria here, e.g. to choose the schema with the844

highest strength but the lowest cost of execution. However, it seems better to include845

all pertinent criteria in the goal, so that if one wants to consider cost of execution,846

one assumes the existence of a goal that incorporates cost of execution (which may847

be measured in multiple ways, of course) as part of its internal evaluation function.848

Another issue that arises is whether to execute multiple C simultaneously. In many849

cases this won’t be possible because two different C’s will contradict each other. It850

seems simplest to assume that C’s that can be fused together into a single plan of851

action, are presented to the schema execution process as a single fused C. In other852

words, the fusion is done during the schema learning process rather than the execution853

process.854

A question emerges regarding how this process deals with false causality, e.g.855

with a schema that, due to the existence of a common cause, often happens to occur856

immediately prior to the occurrence of a given goal. For instance, roosters crowing857

often occurs prior to the sun rising. This matter is discussed in more depth in the PLN858

book and The Hidden Pattern; but in brief, the answer is: In the current approach,859

if roosters crowing often causes the sun to rise, then if the system wants to cause860

the sun to rise, it may well cause a rooster to crow. Once this fails, then the system861

will no longer hold the false belief, and afterwards will choose a different course862

of action. Furthermore, if it holds background knowledge indicating that roosters863

crowing is not likely to cause the sun to rise, then this background knowledge will be864

invoked by inference to discount the strength of the ImplicationLink pointing from865

rooster-crowing to sun-rising, so that the link will never be strong enough to guide866

schema execution in the first place.867

The problem of credit assignment thus becomes a problem of creating appropri-868

ate heuristics to guide inference of ImplicationLinks of the form described above.869

Assignment of credit is then implicit in the calculation of truth values for these links.870

The difficulty is that the predicates F involved may be large and complex.871

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.11 Interaction Between ECANs and Other CogPrime Components 119

5.11 Interaction Between ECANs and Other CogPrime872

Components873

We have described above a number of interactions between attention allocation and874

other aspects of CogPrime; in this section we gather a few comments on these inter-875

actions, and some additional ones.876

5.11.1 Use of PLN and Procedure Learning to Help ECAN877

MOSES or hillclimbing may be used to help mine the SystemActivityTable for878

patterns of usefulness, and create HebbianLinks reflecting these patterns.879

PLN inference may be carried out on HebbianLinks by treating (HebbianLink A880

B) as a virtual predicate evaluation relationship, i.e. as881

EvaluationLink Hebbian_predicate (A, B)882

PLN inference on HebbianLinks may then be used to update node importance val-883

ues, because node importance values are essentially node probabilities correspond-884

ing to HebbianLinks. And similarly, MindAgent-relative node importance values are885

node probabilities corresponding to MindAgent-relative HebbianLinks.886

Note that conceptually, the nature of this application of PLN is different from887

most other uses of PLN in CogPrime. Here, the purpose of PLN is not to draw888

conclusions about the outside world, but rather about what the system should focus889

its resources on in what context. PLN, used in this context, effectively constitutes a890

nonlinear-dynamical iteration governing the flow of attention through the CogPrime891

system.892

Finally, inference on HebbianLinks leads to the emergence of maps, via the recog-893

nition of clusters in the graph of HebbianLinks.894

5.11.2 Use of ECAN to Help Other Cognitive Processes895

First of all, associative-memory functionality is directly important in CogPrime896

because it is used to drive concept creation. The CogPrime heuristic called “map897

formation” creates new Nodes corresponding to prominent attractors in the ECAN,898

a step that (according to our preliminary results) not only increases the memory899

capacity of the network beyond what can be achieved with a pure ECAN but also900

enables attractors to be explicitly manipulated by PLN inference.901

Equally important to associative memory is the capability of ECANs to facili-902

tate effective allocation of the attention of other cognitive processes to appropriate903

knowledge items (Atoms). For example, one key role of ECANs in CogPrime is904

to guide the forward and backward chaining processes of PLN (Probabilistic Logic905

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

120 5 Attention Allocation

Network) inference. At each step, the PLN inference chainer is faced with a great906

number of inference steps (branches) from which to choose; and a choice is made907

using a statistical “bandit problem” mechanism that selects each possible inference908

step with a probability proportional to its expected “desirability”. In this context,909

there is considerable appeal in the heuristic of weighting inference steps using prob-910

abilities proportional to the STI values of the Atoms they contain. One thus arrives911

at a combined PLN/ECAN dynamic as follows:912

1. An inference step is carried out, involving a choice among multiple possible913

inference steps, which is made using STI-based weightings (and made among914

Atoms that LTI weightings have deemed valuable enough to remain in RAM).915

2. The Atoms involved in the inference step are rewarded with STI and LTI propor-916

tionally to the utility of the inference step (how much it increases the confidence917

of Atoms in the system’s memory).918

3. The ECAN operates, and multiple Atom’s importance values are updated.919

4. Return to Step 1 if the inference isn’t finished.920

An analogous interplay may occur between ECANs and MOSES.921

It seems intuitively clear that the same attractor-convergence properties high-922

lighted in the above analysis of associative-memory behavior, will also be highly923

valuable for the application of ECANs to attention allocation. If a collection of924

Atoms is often collectively useful for some cognitive process (such as PLN), then925

the associative-memory-type behavior of ECANs means that once a handful of the926

Atoms in the collection are found useful in a certain inference process, the other927

Atoms in the collection will get their STI significantly boosted, and will be likely to928

get chosen in subsequent portions of that same inference process. This is exactly the929

sort of dynamics one would like to see occur. Systematic experimentation with these930

interactions between ECAN and other CogPrime processes is one of our research931

priorities going forwards.932

5.12 MindAgent Importance and Scheduling933

So far we have discussed economic transactions between Atoms and Atoms, and934

between Atoms and Units. MindAgents have played an indirect role, via spreading935

stimulation to Atoms which causes them to get paid wages by the Unit. Now it is936

time to discuss the explicit role of MindAgents in economic transactions. This has937

to do with the integration of economic attention allocation with the Scheduler that938

schedules the core MindAgents involved in the basic cognitive cycle.939

This integration may be done in many ways, but one simple approach is:940

1. When a MindAgent utilizes an Atom, this results in sending stimulus to that941

Atom. (Note that we don’t want to make MindAgents pay for using Atoms942

individually; that would penalize MA’s that use more Atoms, which doesn’t943

really make much sense.)944

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.12 MindAgent Importance and Scheduling 121

2. MindAgents then get currency from the Lobe (as defined in Chap. 1) periodically,945

and get extra currency based on usefulness for goal achievement as determined946

by the credit assignment process. The Scheduler then gives more processor time947

to MindAgents with more STI.948

3. However, any MindAgent with LTI above a certain minimum threshold will get949

some minimum amount of processor time (i.e. get scheduled at least once each950

N cycles).951

As a final note: In a multi-Lobe Unit, the Unit may use the different LTI values952

of MA’s in different Lobes to control the distribution of MA’s among Lobes: e.g. a953

very important (LTI) MA might get cloned across multiple Lobes.954

5.13 Information Geometry for Attention Allocation955

Appendix ?? outlines some very broad ideas regarding the potential utilization of956

information geometry and related ideas for modeling cognition. In this section, we957

present some more concrete and detailed experiments inspired by the same line of958

thinking. We model CogPrime’s Economic Attention Networks (ECAN) component959

using information geometric language, and then use this model to propose a novel960

information geometric method of updating ECAN networks (based on an extension961

of Amari’s ANGL algorithm). Tests on small networks suggest that information-962

geometric methods have the potential to vastly improve ECAN’s capability to shift963

attention from current preoccupations to desired preoccupations. However, there is964

a high computational cost associated with the simplest implementations of these965

methods, which has prevented us from carrying out large-scale experiments so far.966

We are exploring the possibility of circumventing these issues via using sparse matrix967

algorithms on GPUs.968

5.13.1 Brief Review of Information Geometry969

“Information geometry” is a branch of applied mathematics concerned with the970

application of differential geometry to spaces of probability distributions. In [GI11]971

we have suggested some extensions to traditional information geometry aimed at972

allowing it to better model general intelligence. However for the concrete technical973

work in this Chapter, the traditional formulation of information geometry will suffice.974

One of the core mathematical constructs underlying information geometry, is the975

Fisher Information, a statistical quantity which has a a variety of applications rang-976

ing far beyond statistical data analysis, including physics [Fri98], psychology and AI977

[AN00]. Put simply, FI is a formal way of measuring the amount of information that978

an observable random variable X carries about an unknown parameter θ upon which979

the probability of X depends. FI forms the basis of the Fisher-Rao metric, which has980

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

122 5 Attention Allocation

been proved the only Riemannian metric on the space of probability distributions981

satisfying certain natural properties regarding invariance with respect to coordinate982

transformations. Typically θ in the FI is considered to be a real multidimensional983

vector; however, [Dab99] has presented a FI variant that imposes basically no restric-984

tions on the form of θ . Here the multidimensional FI will suffice, but the more general985

version is needed if one wishes to apply FI to AGI more broadly, e.g. to declarative986

and procedural as well as attentional knowledge.987

In the set-up underlying the definition of the ordinary finite-dimensional Fisher988

information, the probability function for X, which is also the likelihood function for989

θ ∈ Rn, is a function f (X; θ); it is the probability mass (or probability density) of the990

random variable X conditional on the value of θ . The partial derivative with respect991

to θi of the log of the likelihood function is called the score with respect to θi. Under992

certain regularity conditions, it can be shown that the first moment of the score is 0.993

The second moment is the Fisher information:994

I(θ)i = IX(θ)i = E

[((
∂

∂θi
ln f (X; θ)

)2
)

|θ
]

995

where, for any given value of θi, the expression E[..|θ] denotes the conditional996

expectation over values for X with respect to the probability function f (X; θ) given997

θ . Note that 0 ≤ I(θ)i < ∞. Also note that, in the usual case where the expectation998

of the score is zero, the Fisher information is also the variance of the score.999

One can also look at the whole Fisher information matrix1000

I(θ)i,j = E

[(
∂lnf (X, θ)

∂θi

∂lnf (X, θ)

∂θj

)
|θ
]

1001

which may be interpreted as a metric gij, that provably is the only “intrinsic” metric1002

on probability distribution space. In this notation we have I(θ)i = I(θ)i,i.1003

Dabak [Dab99] has shown that the geodesic between two parameter vectors θ1004

and θ ′ is given by the exponential weighted curve (γ (t)) (x) = f (x,θ)1−t f (x,θ ′)t
∫

f (y,θ)1−t f (y,θ ′)tdy
,1005

under the weak condition that the log-likelihood ratios with respect to f (X, θ) and1006

f (X, θ ′) are finite. Also, along this sort of curve, the sum of the Kullback-Leibler1007

distances between θ and θ ′, known as the J-divergence, equals the integral of the1008

Fisher information along the geodesic connecting θ and θ ′. This suggests that if one1009

is attempting to learn a certain parameter vector based on data, and one has a certain1010

other parameter vector as an initial value, it may make sense to use algorithms that1011

try to follow the Fisher-Rao geodesic between the initial condition and the desired1012

conclusion. This is what Amari [Ama85] [AN00] calls “natural gradient” based1013

learning, a conceptually powerful approach which subtly accounts for dependencies1014

between the components of θ .1015

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.13 Information Geometry for Attention Allocation 123

5.13.2 Information-Geometric Learning for Recurrent1016

Networks: Extending the ANGL Algorithm1017

Now we move on to discuss the practicalities of information-geometric learning1018

within CogPrime’s ECAN component. As noted above, Amari [Ama85, AN00] intro-1019

duced the natural gradient as a generalization of the direction of steepest descent on1020

the space of loss functions of the parameter space. Issues with the original imple-1021

mentation include the requirement of calculating both the Fisher information matrix1022

and its inverse. To resolve these and other practical considerations, Amari [Ama98]1023

proposed an adaptive version of the algorithm, the Adaptive Natural Gradient Learn-1024

ing (ANGL) algorithm. Park, Amari, and Fukumizu [PAF00] extended ANGL to a1025

variety of stochastic models including stochastic neural networks, multi-dimensional1026

regression, and classification problems.1027

In particular, they showed that, assuming a particular form of stochastic feedfor-1028

ward neural network and under a specific set of assumptions concerning the form of1029

the probability distributions involved, a version of the Fisher information matrix can1030

be written as1031

G(θ) = Eξ

[(
r′

r

)2
]

Ex

[
∇H (∇H)T

]
.1032

Although Park et al. considered only feedforward neural networks, their result1033

also holds for more general neural networks, including the ECAN network. What is1034

important is the decomposition of the probability distribution as1035

p (y|x; θ) =
L∏

i=1

ri (yi − Hi (x, θ))1036

where1037

y = H(x; θ) + ξ, y = (y1, . . . , yL)T , H = (H1, . . . , HL)T , ξ = (ξ1, . . . , ξL)T ,1038

where ξ is added noise. If we assume further that each ri has the same form as1039

a Gaussian distribution with zero mean and standard deviation σ , then the Fisher1040

information matrix simplifies further to1041

G(θ) = 1

σ 2 Ex

[
∇H (∇H)T

]
.1042

The adaptive estimate for Ĝ−1
t+1 is given by1043

Ĝ−1
t+1 = (1 + εt)Ĝ

−1
t − εt(Ĝ

−1
t ∇H)(Ĝ−1

t ∇H)T .1044

and the loss function for our model takes the form1045

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

124 5 Attention Allocation

l(x, y; θ) = −
L∑

i=1

log r(yi − Hi(x, θ)).1046

The learning algorithm for our connection matrix weights θ is then given by1047

θt+1 = θt − ηt Ĝ
−1
t ∇l(θt).1048

5.13.3 Information Geometry for Economic Attention1049

Allocation: A Detailed Example1050

We now present the results of a series of small-scale, exploratory experiments com-1051

paring the original ECAN process running alone with the ECAN process coupled1052

with ANGL. We are interested in determining which of these two lines of processing1053

result in focusing attention more accurately.1054

The experiment started with base patterns of various sizes to be determined by1055

the two algorithms. In the training stage, noise was added, generating a number of1056

instances of noisy base patterns. The learning goal is to identify the underlying base1057

patterns from the noisy patterns as this will identify how well the different algorithms1058

can focus attention on relevant versus irrelevant nodes.1059

Next, the ECAN process was run, resulting in the determination of the connec-1060

tion matrix C. In order to apply the ANGL algorithm, we need the gradient, ∇H,1061

of the ECAN training process, with respect to the input x. While calculating the1062

connection matrix C, we used Monte Carlo simulation to simultaneously calculate1063

an approximation to ∇H.1064

After ECAN training was completed, we bifurcated the experiment. In one branch,1065

we ran fuzzed cue patterns through the retrieval process. In the other, we first applied1066

the ANGL algorithm, optimizing the weights in the connection matrix, prior to1067

running the retrieval process on the same fuzzed cue patterns. At a constant value1068

of σ = 0.8 we ran several samples through each branch with pattern sizes of 4 × 4,1069

Fig. 5.3 Results from experi-
ment 1

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5.13 Information Geometry for Attention Allocation 125

Fig. 5.4 Results from experi-
ment 2

7 × 7, 10 × 10, 15 × 15, and 20 × 20. The results are shown in Fig. 5.3. We also ran1070

several experiments comparing the sum of squares of the errors to the input training1071

noise as measured by the value of σ.; see Figs. 5.4 and ??.1072 AQ2

These results suggest two major advantages of the ECAN+ANGL combination1073

compared to ECAN alone. Not only was the performance of the combination better1074

in every trial, save for one involving a small number of nodes and little noise, but the1075

combination clearly scales significantly better both as the number of nodes increases,1076

and as the training noise increases.1077

319613_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 125 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 5

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly specify the respective citation number for Appendix and
figure at wherever ?? appears as its citation.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Economic Goal and Action Selection

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po, Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract A significant portion of CogPrime’s dynamics is explicitly goal-driven—that is, based on trying (inasmuch
as possible within the available resources) to figure out which actions will best help the system achieve its
goals, given the current context.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 6
Economic Goal and Action Selection

6.1 Introduction0

A significant portion of CogPrime’s dynamics is explicitly goal-driven—that is, based1

on trying (inasmuch as possible within the available resources) to figure out which2

actions will best help the system achieve its goals, given the current context. A3

key aspect of this explicit activity is guided by the process of “goal and action4

selection”—prioritizing goals, and then prioritizing actions based on these goals.5

We have already outlined the high-level process of action selection, in Chap. 4. Now6

we dig into the specifics of the process, showing how action selection is dynamically7

entwined with goal prioritization, and how both processes are guided by economic8

attention allocation as described in Chap. 5.9

While the basic structure of CogPrime’s action selection aspect is fairly similar to10

MicroPsi (due to the common foundation in Dorner’s Psi model), the dynamics are11

less similar. MicroPsi’s dynamics are a little closer to being a formal neural net model,12

whereas ECAN’s economic foundation tends to push it in different directions. The13

CogPrime goal and action selection design involves some simple simulated financial14

mechanisms, building on the economic metaphor of ECAN, that are different from,15

and more complex than, anything in MicroPsi.16

The main actors (apart from the usual ones like the AtomTable, economic attention17

allocation, etc.) in the tale to be told here are as follows:18

• Structures:19

– UbergoalPool20

– ActiveSchemaPool21

• MindAgents:22

– GoalBasedSchemaSelection23

– GoalBasedSchemaLearning24

– GoalAttentionAllocation25

– FeasibilityUpdating26

– SchemaActivation27

B. Goertzel et al., Engineering General Intelligence, Part 2, 127
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_6,
© Atlantis Press and the authors 2014

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_4

http://dx.doi.org/10.2991/978-94-6239-030-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

128 6 Economic Goal and Action Selection

The Ubergoal Pool contains the Atoms that the system considers as top-level28

goals. These goals must be treated specially by attention allocation: they must be29

given funding by the Unit so that they can use it to pay for getting themselves achieved.30

The weighting among different top-level goals is achieved via giving them different31

amounts of currency. STICurrency is the key kind here, but of course ubergoals must32

also get some LTICurrency so they won’t be forgotten. (Inadvertently deleting your33

top-level supergoals from memory is generally considered to be a bad thing ... it’s in34

a sense a sort of suicide...)35

6.2 Transfer of STI “Requests for Services” Between Goals36

Transfer of “attentional funds” from goals to subgoals, and schema modules to other37

schema modules in the same schema, take place via a mechanism of promises of38

funding (or ‘requests for service’, to be called ‘RFS’s’ from here on). This mechanism39

relies upon and interacts with ordinary economic attention allocation but also has40

special properties. Note that we will sometimes say that an Atom “issues” an RFS41

or “transfers” currency while what we really mean is that some MindAgent working42

on that Atom issues an RFS or transfers currency.43

The logic of these RFS’s is as follows. If agent A issues an RFS of value x to44

agent B, then45

1. When B judges it appropriate, B may redeem the note and ask A to transfer46

currency of value x to B.47

2. A may withdraw the note from B at any time.48

(There is also a little more complexity here, in that we will shortly introduce the49

notion of RFS’s whose value is defined by a set of constraints. But this complexity50

does not contradict the two above points.) The total value of the of RFS’s possessed51

by an Atom may be referred to as its “promise”.52

A rough schematic depiction of this RFS process is given in Fig. 6.1.53

Now we explain how RFS’s may be passed between goals. Given two predicates54

A and B, if A is being considered as a goal, then B may be considered as a subgoal55

of A (and A the supergoal of B) if there exists a Link of the form56

PredictiveImplication B A57

i.e., achieving B may help to achieve A. Of course, the strength of this link and58

the temporal characteristics of this link are important in terms of quantifying how59

strongly and how usefully B is a subgoal of A.60

Supergoals (not only top-level ones, aka ubergoals) allocate RFS’s to subgoals61

as follows. Supergoal A may issue a RFS to subgoal B if it is judged that achieve-62

ment (i.e., predicate satisfaction) of B implies achievement of A. This may proceed63

recursively: subgoals may allocate RFS’s to subsubgoals according to the same jus-64

tification.65

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6.2 Transfer of STI “Requests for Services” Between Goals 129

Fig. 6.1 The RFS propagation process. An illustration of the process via which RFS’s propagate
from goals to abstract procedures, and finally must get cashed out to pay for the execution of actual
concrete procedures that are estimated relatively likely to lead to goal fulfillment

Unlike actual currency, RFS’s are not conserved. However, the actual payment66

of real currency upon redemption of RFS’s obeys the conservation of real currency.67

This means that agents need to be responsible in issuing and withdrawing RFS’s. In68

practice this may be ensured by having agents follow a couple simple rules in this69

regard.70

1. If B and C are two alternatives for achieving A, and A has x units of currency,71

then A may promise both B and C x units of currency. Whoever asks for a72

redemption of the promise first, will get the money, and then the promise will73

be rescinded from the other one.74

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

130 6 Economic Goal and Action Selection

2. On the other hand, if the achievement of A requires both B and C to be achieved,75

then B and C may be granted RFS’s that are defined by constraints. If A has x units76

of currency, then B and C receive an RFS tagged with the constraint (B+C<=x).77

This means that in order to redeem the note, either one of B or C must confer78

with the other one, so that they can simultaneously request constraint-consistent79

amounts of money from A.80

As an example of the role of constraints, consider the goal of playing fetch success-81

fully (a subgoal of “get reward”).... Then suppose it is learned that:82

ImplicationLink83

SequentialAND84

get_ball85

deliver_ball86

play_fetch87

where SequentialAND A B is the conjunction of A and B but with B occurring after88

A in time. Then, if play_fetch has $10 in STICurrency, it may know it has $10 to89

spend on a combination of get_ball and deliver_ball. In this case both get_ball and90

deliver_ball would be given RFS’s labeled with the contraint:91

RFS.get_ball + RFS.deliver_ball <= 1092

The issuance of RFS’s embodying constraints is different from (and generally93

carried out prior to) the evaluation of whether the constraints can be fulfilled.94

An ubergoal may rescind offers of reward for service at any time. And, generally,95

if a subgoal gets achieved and has not spent all the money it needed, the supergoal96

will not offer any more funding to the subgoal (until/unless it needs that subgoal97

achieved again).98

As there are no ultimate sources of RFS in OCP besides ubergoals, promise may99

be considered as a measure of “goal-related importance”.100

Transfer of RFS’s among Atoms is carried out by the GoalAttentionAllocation101

MindAgent.102

6.3 Feasibility Structures103

Next, there is a numerical data structure associated with goal Atoms, which is called104

the feasibility structure. The feasibility structure of an Atom G indicates the feasibility105

of achieving G as a goal using various amounts of effort. It contains triples of the106

form (t, p, E) indicating the truth value t of achieving goal G to degree p using effort107

E. Feasibility structures must be updated periodically, via scanning the links coming108

into an Atom G; this may be done by a FeasibilityUpdating MindAgent. Feasibility109

may be calculated for any Atom G for which there are links of the form:110

Implication111

Execution S112

G113

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6.3 Feasibility Structures 131

for some S. Once a schema has actually been executed on various inputs, its cost of114

execution on other inputs may be empirically estimated. But this is not the only case115

in which feasibility may be estimated. For example, if goal G inherits from goal G1,116

and most children (e.g. subgoals) of G1 are achievable with a certain feasibility, then117

probably G is achievable with a similar feasibility as well. This allows feasibility118

estimation even in cases where no plan for achieving G yet exists, e.g. if the plan can119

be produced via predicate schematization, but such schematization has not yet been120

carried out.121

Feasibility then connects with importance as follows. Important goals will get122

more STICurrency to spend, thus will be able to spawn more costly schemata. So,123

the GoalBasedSchemaSelection MindAgent, when choosing which schemata to push124

into the ActiveSchemaPool, will be able to choose more costly schemata correspond-125

ing to goals with more STICurrency to spend.126

6.4 GoalBasedSchemaSelection127

Next, the GoalBasedSchemaSelection (GBSS) selects schemata to be placed into the128

ActiveSchemaPool. It does this by choosing goals G, and then choosing schemata129

that are alleged to be useful for achieving these goals. It chooses goals via a fitness130

function that combines promise and feasibility. This involves solving an optimization131

problem: figuring out how to maximize the odds of getting a lot of goal-important132

stuff done within the available amount of (memory and space) effort. Potentially133

this optimization problem can get quite subtle, but initially some simple heuristics134

are satisfactory. (One subtlety involves handling dependencies between goals, as135

represented by constraint-bearing RFS’s.)136

Given a goal, the GBSS MindAgent chooses a schema to achieve that goal via137

the heuristic of selecting the one that maximizes a fitness function balancing the138

estimated effort required to achieve the goal via executing the schema, with the139

estimated probability that executing the schema will cause the goal to be achieved. AQ1140

When searching for schemata to achieve G, and estimating their effort, one factor141

to be taken into account is the set of schemata already in the ActiveSchemaPool.142

Some schemata S may simultaneously achieve two goals; or two schemata achieving143

different goals may have significant overlap of modules. In this case G may be able144

to get achieved using very little or no effort (no additional effort, if there is already145

a schema S in the ActiveSchemaPool that is going to cause G to be achieved). But146

if G “decides” it can be achieved via a schema S already in the ActiveSchemaPool,147

then it should still notify the ActiveSchemaPool of this, so that G can be added to148

S’s index (see below). If the other goal G1 that placed S in the ActiveSchemaPool149

decides to withdraw S, then S may need to hit up G1 for money, in order to keep150

itself in the ActiveSchemaPool with enough funds to actually execute.151

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

132 6 Economic Goal and Action Selection

6.4.1 A Game-Theoretic Approach to Action Selection152

Min Jiang has observed that, mathematically, the problem of action selection (repre-153

sented in CogPrime as the problem of goal-based schema selection) can be modeled154

in terms of game theory, as follows:155

• the intelligent agent is one player, the world is another player156

• the agent’s model of the world lets it make probabilistic predictions of how the157

world may respond to what the agent does (i.e. to estimate what mixed strategy158

the world is following, considering the world as a game player)159

• the agent itself chooses schema probabilistically, so it’s also following a mixed160

strategy161

• so, in principle the agent can choose schema that it thinks will lead to a mixed162

Nash equilibrium.1163

But the world’s responses are very high-dimensional, which means that finding164

a mixed Nash equilibrium even approximately is a very hard computational prob-165

lem. Thus, in a sense, the crux of the problem seems to come down to feature166

identification. If the world’s response (real or predicted) can be represented as a167

low-dimensional set of features, then these features can be considered as the world’s168

“move” in the game... and the game theory problem becomes tractable via approxi-169

mation schemes. But without the reduction of the world to a low-dimensional set of170

features, finding the mixed Nash equilbrium even approximately will not be compu-171

tationally tractable...172

Some AI theorists would argue that this division into “feature identification”173

versus “action selection” is unnecessarily artificial; for instance, Hawkins [HB06]174

or Arel [ARC09b] might suggest to use a single hierarchical neural network to do175

both of them. But the brain after all contains many different regions, with different176

architectures and dynamics.... In the visual cortex, it seems that feature extraction177

and object classification are done separately. And it seems that in the brain, action178

selection has a lot to do with the basal ganglia, whereas feature extraction is done179

in the cortex. So the neural analogy provides some inspiration for an architecture in180

which feature identification and action selection are separated.181

There is literature discussing numerical methods for calculating approximate Nash182

equilibria; however, this is an extremely tricky topic in the CogPrime context because183

action selection must generally be done in real-time. Like perception processing, this184

may be an area calling for the use of parallel processing hardware. For instance, a185

neural network algorithm for finding mixed Nash equilibria could be implemented on186

a GPU supercomputer, enabling rapid real-time action selection based on a reduced-187

dimensionality model of the world produced by intelligent feature identification.188

Consideration of the application of game theory in this context brings out an189

important point, which is that to do reasonably efficient and intelligent action se-190

lection, the agent needs some rapidly-evaluable model of the world, i.e. some way191

1 In game theory, a Nash equilibrium is when no player can do better by unilaterally changing its
strategy.

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6.4 GoalBasedSchemaSelection 133

to rapidly evaluate the predicted response of the world to a hypothetical action192

by the agent. In the game theory approach (or any other sufficiently intelligent ap-193

proach), for the agent to evaluate fitness of a schema-set S for achieving certain goals194

in a certain context, it has to (explicitly or implicitly) estimate:195

• how the world will respond if the agent does S196

• how the agent could usefully respond to the world’s response (call this action-197

set S1)198

• how the world will respond to the agent doing S1199

• etc.200

and so to rapidly evaluate the fitness of S, the agent needs to be able to quickly201

estimate how the world will respond. This may be done via simulation, or it may202

be done via inference (which however will rarely be fast enough, unless with a203

very accurate inference control mechanism), or it may be done by learning some204

compacted model of the world as represented for instance in a hierarchical neural205

network.206

6.5 SchemaActivation207

And what happens with schemata that are actually in the ActiveSchemaPool? Let us208

assume that each of these schema is a collection of modules (subprograms), connected209

via ActivationLinks, which have semantics: (ActivationLink A B) means that if the210

schema that placed module A in the schema pool is to be completed, then after A211

is activated, B should be activated. (We will have more to say about schemata, and212

their modularization, in Chap. 7.)213

When a goal places a schema in the ActiveSchemaPool, it grants that schema an214

RFS equal in value to the total or some fraction of the promissory+real currency215

it has in its possession. The heuristics for determining how much currency to grant216

may become sophisticated; but initially we may just have a goal give a schema all its217

promissory currency; or in the case of a top-level supergoal, all its actual currency.218

When a module within a schema actually executes, then it must redeem some219

of its promissory currency to turn it into actual currency, because executing costs220

money (paid to the Lobe). Once a schema is done executing, if it hasn’t redeemed221

all its promissory currency, it gives the remainder back to the goal that placed it in222

the ActiveSchemaPool.223

When a module finishes executing, it passes promissory currency to the other224

modules to which it points with ActivationLinks.225

The network of modules in the ActiveSchemaPool is a digraph (whose links are226

ActivationLinks), because some modules may be shared within different overall227

schemata. Each module must be indexed via which schemata contain it, and each228

schema must be indexed via which goal(s) want it in the ActiveSchemaPool.229

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_7

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

134 6 Economic Goal and Action Selection

6.6 GoalBasedSchemaLearning230

Finally, we have the process of trying to figure out how to achieve goals, i.e. trying to231

learn links between ExecutionLinks and goals G. This process should be focused on232

goals that have a high importance but for which feasible achievement-methodologies233

are not yet known. Predicate schematization is one way of achieving this; another is234

MOSES procedure evolution.235

319613_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 134 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 6

Query Refs. Details Required Author’s response

AQ1 Kindly check and confirm the edit made in heading of Sect. 6.4.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Integrative Procedure Evaluation

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po, Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Procedural knowledge must be learned, an often subtle and difficult process—but it must also be enacted.
Procedure enaction is not as tricky a topic as procedure learning, but still is far from trivial, and involves
the real-time interaction of procedures, during the course of execution, with other knowledge. In this brief
chapter we explain how this process may be most naturally and flexibly carried out, in the context of
CogPrime’s representation of procedures as programs (“Combo trees”).

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 7
Integrative Procedure Evaluation

7.1 Introduction0

Procedural knowledge must be learned, an often subtle and difficult process—but it1

must also be enacted. Procedure enaction is not as tricky a topic as procedure learning,2

but still is far from trivial, and involves the real-time interaction of procedures, during3

the course of execution, with other knowledge. In this brief chapter we explain4

how this process may be most naturally and flexibly carried out, in the context of5

CogPrime’s representation of procedures as programs (“Combo trees”).6

While this may seem somewhat of a “mechanical”, implementation-level topic,7

it also involves some basic conceptual points, on which CogPrime as an AGI design8

does procedure evaluation fundamentally differently from narrow-AI systems or9

conventional programming language interpreters. Basically, what makes CogPrime10

Combo tree evaluation somewhat subtle is due to the interfacing between the Combo11

evaluator itself and the rest of the CogPrime system.12

In the CogPrime design, Procedure objects (which contain Combo trees, and13

are associated with ProcedureNodes) are evaluated by ProcedureEvaluator objects.14

Different ProcedureEvaluator objects may evaluate the same Combo tree in different15

ways. Here we explain these various sorts of evaluation—how they work and what16

they mean.17 AQ1

7.2 Procedure Evaluators18

In this section we will mention three different ProcedureEvaluators:19

• Simple procedure evaluation20

• Effort-based procedure evaluation, which is more complex but is required for21

integration of inference with procedure evaluation22

• Adaptive evaluation order based procedure evaluation23

B. Goertzel et al., Engineering General Intelligence, Part 2, 135
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_7,
© Atlantis Press and the authors 2014

319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

136 7 Integrative Procedure Evaluation

In the following section we will delve more thoroughly into the interactions between24

inference and procedure evaluation.25

Another related issue is the modularization of procedures. This issue however is26

actually orthogonal to the distinction between the three ProcedureEvaluators men-27

tioned above. Modularity simply requires that particular nodes within a Combo tree28

be marked as “module roots”, so that they may be extracted from the Combo tree29

as a whole and treated as separate modules (called differently, sub-routines), if the30

ExecutionManager judges this appropriate.31

7.2.1 Simple Procedure Evaluation32

The SimpleComboTreeEvaluator simply does Combo tree evaluation as described33

earlier. When an Atom is encountered, it looks into the AtomTable to evaluate the34

object.35

In the case that a Schema refers to an ungrounded SchemaNode (that is not defined36

by a ComboTree as defined in Chap. 1), and an appropriate EvaluationLink value isn’t37

in the AtomTable, there’s an evaluation failure, and the whole procedure evaluation38

returns the truth value 〈.5, 0〉: i.e. a zero-weight-of-evidence truth value, which is39

equivalent essentially to returning no value.40

In the case that a Predicate refers to an ungrounded PredicateNode, and an41

appropriate EvaluationLink isn’t in the AtomTable, then some very simple “default42

thinking” is done, and it is assigned the truth value of the predicate on the given43

arguments to be the TruthValue of the corresponding PredicateNode. (which is de-44

fined as the mean truth value of the predicate across all arguments known to Cog-45

Prime.)46

7.2.2 Effort Based Procedure Evaluation47

The next step is to introduce the notion of “effort” the amount of effort that the48

CogPrime system must undertake in order to carry out a procedure evaluation.49

The notion of effort is encapsulated in Effort objects, which may take various forms.50

The simplest Effort objects measure only elapsed processing time; more advanced51

Effort objects take into consideration other factors such as memory usage.52

An effort-based Combo tree evaluator keeps a running total of the effort used in53

evaluating the Combo tree. This is necessary if inference is to be used to evaluate54

Predicates, Schema, Arguments, etc. Without some control of effort expenditure, the55

system could do an arbitrarily large amount of inference to evaluate a single Atom.56

The matter of evaluation effort is nontrivial because in many cases a given node57

of a Combo tree may be evaluated in more than one way, with a significant effort58

differential between the different methodologies. If a Combo tree Node refers to59

a predicate or schema that is very costly to evaluate, then the ProcedureEvaluator60

319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

7.2 Procedure Evaluators 137

managing the evaluation of the Combo tree must decide whether to evaluate it directly61

(expensive) or estimate the result using inference (cheaper but less accurate). This62

decision depends on how much effort the ProcedureEvaluator has to play with, and63

what percentage of this effort it finds judicious to apply to the particular Combo tree64

Node in question.65

In the relevant prototypes we built within OpenCog, this kind of decision was66

made based on some simple heuristics inside ProcedureEvaluator objects. However,67

it’s clear that, in general, more powerful intelligence must be applied here, so that68

one needs to have ProcedureEvaluators that—in cases of sub-procedures that are69

both important and highly expensive—use PLN inference to figure out how much70

effort to assign to a given subproblem.71

The simplest useful kind of effort-based Combo tree evaluator is the EffortInter-72

valComboTreeEvaluator, which utilizes an Effort object that contains three numbers73

(yes, no, max). The yes parameter tells it how much effort should be expended to74

evaluate an Atom if there is a ready answer in the AtomTable. The no parameter75

tells it how much effort should be expended in the case that there is not a ready76

answer in the AtomTable. The max parameter tells it how much effort should be77

expended, at maximum, to evaluate all the Atoms in the Combo tree, before giving78

up. Zero effort, in the simplest case, may be heuristically defined as simply looking79

into the AtomTable—though in reality this does of course take effort, and a more80

sophisticated treatment would incorporate this as a factor as well.81

Quantification of amounts of effort is nontrivial, but a simple heuristic guideline82

is to assign one unit of effort for each inference step. Thus, for instance,83

• (yes, no, max) = (0, 5, 1,000) means that if an Atom can be evaluated by AtomTable84

lookup, this is done, but if AtomTable lookup fails, a minimum of five inference85

steps are done to try to do the evaluation. It also says that no more than 1,00086

evaluations will be done in the course of evaluating the Combo tree.87

• (yes, no, max) = (3, 5, 1,000) says the same thing, but with the change that even88

if evaluation could be done by direct AtomTable lookup, three inference steps are89

tried anyway, to try to improve the quality of the evaluation.90

7.2.3 Procedure Evaluation with Adaptive Evaluation Order91

While tracking effort enables the practical use of inference within Combo tree eval-92

uation, if one has truly complex Combo trees, then a higher degree of intelligence is93

necessary to guide the evaluation process appropriately. The order of evaluation of94

a Combo tree may be determined adaptively, based on up to three things:95

• The history of evaluation of the Combo tree96

• Past history of evaluation of other Combo trees, as stored in a special AtomTable97

consisting only of relationships about Combo tree-evaluation-order probabilities98

• New information entering into CogPrime’s primary AtomTable during the course99

of evaluation100

319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

138 7 Integrative Procedure Evaluation

ProcedureEvaluator objects may be selected at runtime by cognitive schemata, and101

they may also utilize schemata and MindAgents internally. The AdaptiveEvalua-102

tionOrderComboTreeEvaluator is more complex than the other ProcedureEvaluators103

discussed, and will involve various calls to CogPrime MindAgents, particularly those104

concerned with PLN inference. WIKISOURCE:ProcedureExecutionDetails.105

7.3 The Procedure Evaluation Process106

Now we give a more thorough treatment of the procedure evaluation process, as107

embodied in the effort-based or adaptive-evaluation-order evaluators discussed108

above. The process of procedure evaluation is somewhat complex, because it en-109

compasses three interdependent processes:110

• The mechanics of procedure evaluation, which in the CogPrime design involves111

traversing Combo trees in an appropriate order. When a Combo tree node referring112

to a predicate or schema is encountered during Combo tree traversal, the process113

of predicate evaluation or schema execution must be invoked.114

• The evaluation of the truth values of predicates—which involves a combination115

of inference and (in the case of grounded predicates) procedure evaluation.116

• The computation of the truth values of schemata—which may involve inference117

as well as procedure evaluation.118

We now review each of these processes.119

7.3.1 Truth Value Evaluation120

What happens when the procedure evaluation process encounters a Combo tree Node121

that represents a predicate or compound term? The same thing as when some other122

CogPrime process decides it wants to evaluate the truth value of a PredicateNode or123

CompoundTermNode: the generic process of predicate evaluation is initiated.124

This process is carried out by a TruthValueEvaluator object. There are several125

varieties of TruthValueEvaluator, which fall into the following hierarchy:126

TruthValueEvaluator127

DirectTruthValueEvaluator (abstract)128

SimpleDirectTruthValueEvaluator129

InferentialTruthValueEvaluator (abstract)130

SimpleInferentialTruthValueEvaluator131

MixedTruthValueEvaluator132

A DirectTruthValueEvaluator evaluates a grounded predicate by directly execut-133

ing it on one or more inputs; an InferentialTruthValueEvaluator evaluates via infer-134

ence based on the previously recorded, or specifically elicited, behaviors of other135

319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

7.3 The Procedure Evaluation Process 139

related predicates or compound terms. A MixedTruthValueEvaluator contains ref-136

erences to a DirectTruthValueEvaluator and an InferentialTruthValueEvaluator, and137

contains a weight that tells it how to balance the outputs from the two.138

Direct truth value evaluation has two cases. In one case, there is a given argument139

for the predicate; then, one simply plugs this argument in to the predicate’s internal140

Combo tree, and passes the problem off to an appropriately selected ProcedureEval-141

uator. In the other case, there is no given argument, and one is looking for the truth142

value of the predicate in general. In this latter case, some estimation is required. It is143

not plausible to evaluate the truth value of a predicate on every possible argument,144

so one must sample a bunch of arguments and then record the resulting probabil-145

ity distribution. A greater or fewer number of samples may be taken, based on the146

amount of effort that’s been allocated to the evaluation process. It’s also possible to147

evaluate the truth value of a predicate in a given context (information that’s recorded148

via embedding in a ContextLink); in this case, the random sampling is restricted to149

inputs that lie within the specified context.150

On the other hand, the job of an InferentialTruthValueEvaluator is to use inference151

rather than direct evaluation to guess the truth value of a predicate (sometimes on152

a particular argument, sometimes in general). There are several different control153

strategies that may be applied here, depending on the amount of effort allocated.154

The simplest strategy is to rely on analogy, simply searching for similar predicates155

and using their truth values as guidance. (In the case where a specific argument156

is given, one searches for similar predicates that have been evaluated on similar157

arguments.) If more effort is available, then a more sophisticated strategy may be158

taken. Generally, an InferentialTruthValueEvaluator may invoke a SchemaNode that159

embodies an inference control strategy for guiding the truth value estimation process.160

These SchemaNodes may then be learned like any others.161

Finally, a MixedTruthValueEvaluator operates by consulting a DirectTruthVal-162

ueEvaluator and/or an InferentialTruthValueEvaluator as necessary, and merging the163

results. Specifically, in the case of an ungrounded PredicateNode, it simply returns164

the output of the InferentialTruthValueEvaluator it has chosen. But in the case of a165

GroundedPredicateNode, it returns a weighted average of the directly evaluated and166

inferred values, where the weight is a parameter. In general, this weighting may be167

done by a SchemaNode that is selected by the MixedTruthValueEvaluator; and these168

schemata may be adaptively learned.169

7.3.2 Schema Execution170

Finally, schema execution is handled similarly to truth value evaluation, but it’s a171

bit simpler in the details. Schemata have their outputs evaluated by SchemaExecutor172

objects, which in turn invoke ProcedureEvaluator objects. We have the hierarchy:173

SchemaExecutor174

DirectSchemaExecutor (abstract)175

SimpleDirectSchemaExecutor176

319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

140 7 Integrative Procedure Evaluation

InferentialSchemaExecutor (abstract)177

SimpleInferentialSchemaExecutor178

MixedSchemaExecutor179

A DirectSchemaExecutor evaluates the output of a schema by directly executing180

it on some inputs; an InferentialSchemaExecutor evaluates via inference based on181

the previously recorded, or specifically elicited, behaviors of other related schemata.182

A MixedSchemaExecutor contains references to a DirectSchemaExecutor and an183

InferentialSchemaExecutor, and contains a weight that tells it how to balance the184

outputs from the two (not always obvious, depending on the output type in question).185

Contexts may be used in schema execution, but they’re used only indirectly, via186

being passed to TruthValueEvaluators used for evaluating truth values of Predicate187

Nodes or CompoundTermNodes that occur internally in schemata being executed.188

319613_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 140 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 7

Query Refs. Details Required Author’s response

AQ1 No query.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part III
2 Perception and Action

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part III Date: 29-10-2013 Page: 141/141

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Perceptual and Motor Hierarchies

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Having discussed declarative, attentional, intentional and procedural knowledge, we are left only with
sensorimotor and episodic knowledge to complete our treatment of the basic CogPrime “cognitive cycle”
via which a CogPrime system can interact with an environment and seek to achieve its goals therein.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 8
Perceptual and Motor Hierarchies

8.1 Introduction0

Having discussed declarative, attentional, intentional and procedural knowledge, we1

are left only with sensorimotor and episodic knowledge to complete our treatment2

of the basic CogPrime “cognitive cycle” via which a CogPrime system can interact3

with an environment and seek to achieve its goals therein.4

The cognitive cycle in its most basic form leaves out the most subtle and unique5

aspects of CogPrime, which all relate to learning in various forms. But nevertheless it6

is the foundation on which CogPrime is built, and within which the various learning7

processes dealing with the various forms of memory all interact. The CogPrime8

cognitive cycle is more complex in many respects than it would need to be if not for9

the need to support diverse forms of learning. And this learning-driven complexity10

is present to some extent in the contents of the present chapter as well. If learning11

weren’t an issue, perception and actuation could more likely be treated as wholly12

(or near-wholly) distinct modules, operating according to algorithms and structures13

independent of cognition. But our suspicion is that this sort of approach is unlikely to14

be adequate for achieving high levels of perception and action capability under real-15

world conditions. Instead, we suspect, it’s necessary to create perception and action16

processes that operate fairly effectively on their own, but are capable of cooperating17

with cognition to achieve yet higher levels of functionality.18

And the benefit in such an approach goes both ways. Cognition helps perception19

and actuation deal with difficult cases, where the broad generalization that is cog-20

nition’s specialty is useful for appropriately biasing perception and actuation based21

on subtle environmental regularities. And, the patterns involved in perception and22

actuation help cognition, via supplying a rich reservoir of structures and processes23

to use as analogies for reasoning and learning at various levels of abstraction. The24

prominence of visual and other sensory metaphors in abstract cognition is well known25

[Arn69, Gar00]; and according to Lakoff and Nunez [LN00] even pure mathematics26

is grounded in physical perception and action in very concrete ways.27

B. Goertzel et al., Engineering General Intelligence, Part 2, 143
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_8,
© Atlantis Press and the authors 2014

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

144 8 Perceptual and Motor Hierarchies

We begin by discussing the perception and action mechanisms required to inter-28

face CogPrime with an agent operating in a virtual world. We then turn to the more29

complex mechanisms needed to effectively interface CogPrime with a robot possess-30

ing vaguely humanoid sensors and actuators, focusing largely on vision processing.31

This discussion leads up to deeper discussions in Chaps. 9–11 where we describe in32

detail the strategy that would be used to integrate CogPrime with the DeSTIN frame-33

work for AGI perception/action (which was described in some detail in Chap. 534

of Vol. 5).35AQ1

In terms of the integrative cognitive architecture presented in Chap. 6 of Vol. 5, the36

material presented in the chapters in this section has mostly to do with the percep-37

tual and motor hierarchies, also touching on the pattern recognition and imprinting38

processes that play a role in the interaction between these hierarchies and the concep-39

tual memory. The commitment to a hierarchical architecture for perception and action40

is not critical for the CogPrime design as a whole—one could build a CogPrime with41

non-hierarchical perception and action modules, and the rest of the system would be42

about the same. The role of hierarchy here is a reflection of the obvious hierarchical43

structure of the everyday human environment, and of the human body. In a world44

marked by hierarchical structure, a hierarchically structured perceptual system is45

advantageous. To control a body marked by hierarchical structure, an hierarchically46

structured action system is advantageous. It would be possible to create a CogPrime47

system without this sort of in-built hierarchical structure, and have it gradually self-48

adapt in such a way as to grow its own internal hierarchical structure, based its49

experience in the world. However, this might be a case of pushing the “experiential50

learning” perspective too far. The human brain definitely has hierarchical structure51

built into it; it doesn’t need to learn to experience the world in hierarchical terms; and52

there seems to be no good reason to complicate an AGI’s early development phase53

by forcing it to learn the basic facts of the world’s and its body’s hierarchality.54

8.2 The Generic Perception Process55

We have already discussed the generic action process of CogPrime, in Chap. 7 on56

procedure evaluation. Action sequences are generated by Combo programs, which57

execute primitive actions, including those corresponding to actuator control signals as58

well as those corresponding to, say, mathematical or cognitive operations. In some59

cases the actuator control signals may directly dictate movements; in other cases60

they may supply inputs and/or parameters to other software (such as DeSTIN, in the61

integrated CogBot architecture to be described below).62

What about the generic perception process? We distinguish sensation from per-63

ception, in a CogPrime context, by defining64

• perception as what occurs when some signal from the outside world registers itself65

in either: a CogPrime Atom, or some other sort of node (e.g. a DeSTIN node) that66

is capable of serving as the target of a CogPrime Link.67

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_9

http://dx.doi.org/10.2991/978-94-6239-030_11

http://dx.doi.org/10.2991/978-94-6239-027-0_5

http://dx.doi.org/10.2991/978-94-6239-027-0_6

http://dx.doi.org/10.2991/978-94-6239-030_7

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.2 The Generic Perception Process 145

• sensation as any “preprocessing” that occurs between the impact of some signal68

on some sensor, and the creation of a corresponding perception.69

Once perceptual Atoms have been created, various perceptual MindAgents comes70

into play, taking perceptual schemata (schemata whose arguments are perceptual71

nodes or relations therebetween) and applying them to Atoms recently created (cre-72

ating appropriate ExecutionLinks to store the results). The need to have special,73

often modality-specific perception MindAgents to do this, instead of just leaving it74

to the generic SchemaExecution MindAgent, has to do with computational efficiency,75

scheduling and parameter settings. Perception MindAgents are doing schema execu-76

tion urgently, and doing it with parameter settings tuned for perceptual processing.77

This means that, except in unusual circumstances, newly received stimuli will be78

processed immediately by the appropriate perceptual schemata.79

Some newly formed perceptual Atoms will have links to existing atoms, ready-80

made at their moment of creation. CharacterInstanceNodes and Number Instance81

Nodes are examples; they are born linked to the appropriate CharacterNodes and82

NumberNodes. Of course, atoms representing perceived relationships, perceived83

groupings, etc., will not have ready-made links and will have to grow such links84

via various cognitive processes. Also, the ContextFormation MindAgent looks at85

perceptual atom creation events and creates Context Nodes accordingly; and this86

must be timed so that the Context Nodes are entered into the system rapidly, so that87

they can be used by the processes doing initial-stage link creation for new perceptual88

Atoms.89

In a full CogPrime configuration, newly created perceptual nodes and perceptual90

schemata may reside in a special perception-oriented Units, so as to ensure that91

perceptual processes occur rapidly, not delayed by slower cognitive processes.92

8.2.1 The ExperienceDB93

Separate from the ordinary perception process, it may also valuable for there to be a94

direct route from the system’s sensory sources to a special “ExperienceDB” database95

that records all of the system’s experience. This does not involve perceptual schemata96

at all, nor is it left up to the sensory source; rather, it is carried out by the CogPrime97

server at the point where it receives input from the sensory source. This experience98

database is a record of what the system has seen in the past, and may be mined by99

the system in the future for various purposes. The creation of new perceptual atoms100

may also be stored in the experience database, but this must be handled with care as101

it can pose a large computational expense; it will often be best to store only a subset102

of these.103

Obviously, such an ExperienceDB is something that has no correlate in the human104

mind/brain. This is a case where CogPrime takes advantage of the non-brainlike105

properties of its digital computer substrate. The CogPrime perception process is106

intended to work perfectly well without access to the comprehensive database of107

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

146 8 Perceptual and Motor Hierarchies

experiences potentially stored in the ExperienceDB. However, a complete record of108

a mind’s experience is a valuable thing, and there seems no reason for the system109

not to exploit it fully. Advantages like this allow the CogPrime system to partially110

compensate for its lack of some of the strengths of the human brain as an AI platform,111

such as massive parallelism.112

8.3 Interfacing CogPrime with a Virtual Agent113

We now discuss some of the particularities of connecting CogPrime to a virtual114

world (such as Second Life, Multiverse, or Unity3D, to name some of the virtual115

world/gaming platforms to which OpenCog has already been connected in practice).116

8.3.1 Perceiving the Virtual World117

The most complex, high-bandwidth sensory data coming in from a typical virtual118

world is visual data, so that will be our focus here. We consider three modes in which119

a virtual world may present visual data to CogPrime (or any other system):120

• Object vision: CogPrime receives information about polygonal objects and their121

colors, textures and coordinates (each object is a set of contiguous polygons, and122

sometimes objects have “type” information, e.g. cube or sphere).123

• Polygon vision: CogPrime receives information about polygons and their colors,124

textures and coordinates.125

• Pixel vision: CogPrime receives information about pixels and their colors and126

coordinates.127

In each case, coordinates may be given either in “world coordinates” or in “relative128

coordinates” (relative to the gaze). This distinction is not a huge deal since within129

an architecture like CogPrime, supplying schemata for coordinate transformation130

is trivial; and, even if treated as a machine learning task, this sort of coordinate131

transformation is not very difficult to learn. Our current approach is to prefer relative132

coordinates, as this approach is more natural in terms of modern Western human133

psychology; but we note that in some other cultures world coordinates are preferred134

and considered more psychologically natural.135

Currently we have not yet done any work with pixel vision in virtual worlds. We136

have been using object vision for most of our experiments, and consider a combi-137

nation of polygon vision and object vision as the “right” approach for early AGI138

experiments in a virtual worlds context. The problem with pure object vision is that139

it removes the possibility for CogPrime to understand object segmentation. If, for140

instance, CogPrime perceives a person as a single object, then how can it recognize a141

head as a distinct sub-object? Feeding the system a pre-figured hierarchy of objects,142

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.3 Interfacing CogPrime with a Virtual Agent 147

sub-objects and so forth seems inappropriate in the context of an experiential learning143

system. On the other hand, the use of polygon vision instead of pixel vision seems144

to meet no such objections. This may take different forms in different platforms. For145

instance, in our work with a Minecraft-like world in the Unity3D environment, we146

have relied heavily on virtual objects made of blocks, in which case the polygons of147

most interest are the faces of the blocks.148

Momentarily sticking with the object vision case for simplicity, examples of the149

perceptions emanating from the virtual world perceptual preprocessor into CogPrime150

are things like:151

1. I am at world-coordinates $W152

2. Object with metadata $M is at world-coordinates $W153

3. Part of object with metadata $M is at world-coordinates $W154

4. Avatar with metadata $M is at world-coordinates $W155

5. Avatar with metadata $M is carrying out animation $A156

6. Statements in natural language, from the pet owner.157

The perceptual preprocessor takes these signals and translates them into Atoms,158

making use of the special Atomspace mechanisms for efficiently indexing spatial159

and temporal information (the and) as appropriate.160

8.3.1.1 Transforming Real-World Vision into Virtual Vision161

One approach to enabling CogPrime to handle visual data coming from the real world162

is to transform this data into data of the type CogPrime sees in the virtual world.163

While this is not the approach we are taking in our current work, we do consider it164

a viable strategy, and we briefly describe it here.165

One approach along these lines would involve multiple phases:166

• Use a camera eye and a LiDAR (Light Detection And Ranging, used for high-167

resolution topographic mapping) sensor in tandem, so as to avoid having to deal168

with stereo vision.169

• Using the above two inputs, create a continuous 3D contour map of the perceived170

visual world.171

• Use standard mathematical transforms to polygon-ize the 3D contour map into a172

large set of small polygons.173

• Use heuristics to merge together the small polygons, obtaining a smaller set of174

larger polygons (but retaining the large set of small polygons for the system to175

reference in cases where a high level of detail is necessary).176

• Feed the polygons into the perceptual pattern mining subsystem, analogously to177

the polygons that come in from virtual-world.178

In this approach, preprocessing is used to make the system see the physical world in a179

manner analogous to how it sees the virtual-world world. This is quite different from180

the DeSTIN-based approach to CogPrime vision that we will discuss in Chap. 10,181

but may well also be feasible.182

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_10

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

148 8 Perceptual and Motor Hierarchies

8.3.2 Acting in the Virtual World183

Complementing the perceptual preprocessor is the action postprocessor: code that184

translates the actions and action-sequences generated by CogPrime into instructions185

the virtual world can understand (such as “launch thus-and-thus animation”). Due to186

the particularities of current virtual world architectures, the current OpenCogPrime187

system carries out actions via executing pre-programmed high-level procedures, such188

as “move forward one step”, “bend over forward” and so forth. Example action189

commands are:190

1. Move ($D, $S): $D is a distance, $S is a speed191

2. Turn ($A, $S): $A is an angle, $S is a speed192

3. Pitch ($A, $S): turn vertically up/down... [for birds only]193

4. Jump ($D, $H, $S): $H is a maximum height, at the center of the jump194

5. Say ($T), $T is text: for agents with linguistic capability, which is not enabled in195

the current version196

6. Pick up($O): $O is an object197

7. Put down($O).198

This is admittedly a crude approach, and if a robot simulator rather than a typical199

virtual world were used, it would be possible for CogPrime to emanate detailed servo-200

motor control commands rather than high-level instructions such as these. However,201

as noted in Chap. 16 of Vol. 5, at the moment there is no such thing as a “massive202

multiplayer robot simulator”, and so the choice is between a multi-participant virtual203

environment (like the Multiverse environment currently used with the PetBrain) or204

a small-scale robot simulator. Our experiments with virtual worlds so far have used205

the high-level approach described here; but we are also experimenting with using206

physical robots and corresponding simulators, as will be described below.207

8.4 Perceptual Pattern Mining208

Next we describe how perceptual pattern mining may be carried out, to recognize209

meaningful structures in the stream of data produced via perceiving a virtual or210

physical world.211

In this subsection we discuss the representation of knowledge, and then in the212

following subsection we discuss the actual mining. We discuss the process in the213

context of virtual-world perception as outlined above, but the same processes apply to214

robotic perception, whether one takes the “physical world as virtual world” approach215

described above or a different sort of approach such as the DeSTIN hybridization216

approach described below.217

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_16

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.4 Perceptual Pattern Mining 149

8.4.1 Input Data218

First, we may assume that each perception is recorded as set of “transactions”, each219

of which is of the form220

Time , 3D coordinates , object type221

or222

Time , 3D coordinates , action type223

Each transaction may also come with an additional list of (attribute, value) pairs,224

where the list of attributes is dependent upon the object or action type. Transactions225

are represented as Atoms, and don’t need to be a specific Atom type—but are referred226

to here by the special name transactions simply to make the discussion clear.227

Next, define a transaction template as a transaction with location and time infor-228

mation set to wild cards—and potentially, some other attributes set to wild cards.229

(These are implemented in terms of Atoms involving VariableNodes.)230

For instance, some transaction templates in the current virtual-world might be231

informally represented as:232

• Reward233

• Red cube234

• Kick235

• Move_forward236

• Cube237

• Cube, size 5238

• Me239

• Teacher.240

8.4.2 Transaction Graphs241

Next we may conceive a transaction graph, whose nodes are transactions and whose242

links are labeled with labels like after, SimAND, SSeqAND (short for Simultane-243

ousSequentialAND), near, in_front_of, and so forth (and whose links are weighted244

as well).245

We may also conceive a transaction template graph, whose nodes are transaction246

templates, and whose links are the same as in the transaction graph. Examples of247

transaction template graphs are248

near(Cube , Teacher)249

250

SSeqAND(move_forward , Reward)251

where Cube, Teacher, etc are transaction templates since Time and 3D coordinates252

are left unspecified.253

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

150 8 Perceptual and Motor Hierarchies

And finally, we may conceive a transaction template relationship graph (TTRG),254

whose nodes may be any of: transactions; transaction templates; basic spatiotemporal255

predicates evaluated at tuples of transactions or transaction templates. For instance256

SimAND(near(Cube , Teacher), above(Cube , Chair))257

8.4.3 Spatiotemporal Conjunctions258

Define a temporal conjunction as a conjunction involving SimultaneousAND and259

SequentialAND operators (including SSeqAND as a special case of SeqAND: the260

special case that interests us in the short term). The conjunction is therefore ordered,261

e.g.262

A SSeqAND B SimAND C SSeqAND D263

We may assume that the order of operations favors SimAND, so that no paren-264

thesizing is necessary.265

Next, define a basic spatiotemporal conjunction as a temporal conjunction that266

conjoins terms that are either267

• transactions, or268

• transaction templates, or269

• basic spatiotemporal predicates applied to tuples of transactions or transaction270

templates.271

i.e. a basic spatiotemporal conjunction is a temporal conjunction of nodes from the272

transaction template relationship graph.273

An example would be:274

(hold ball) SimAND (near(me , teacher)) SSeqAND275

Reward276

This assumes that the hold action has an attribute that is the type of object held,277

so that278

hold ball279

in the above temporal conjunction is a shorthand for the transaction template280

specified by281

action type: hold282

283

object_held_type: ball284

This example says that if the agent is holding the ball and is near the teacher then285

shortly after that, the agent will get a reward.286

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.4 Perceptual Pattern Mining 151

8.4.4 The Mining Task287

The perceptual mining task, then, is to find basic spatiotemporal conjunctions that288

are interesting. What constitutes interestingness is multifactorial, and includes.289

• involves important Atoms (e.g. Reward)290

• has a high temporal cohesion (i.e. the strength of the time relationships embodied291

in the SimAND and SeqAND links is high)292

• has a high spatial cohesion (i.e. the near() relationships have high strength)293

• has a high frequency294

• has a high surprise value (its frequency is far from what would be predicted by its295

component sub-conjunctions).296

Note that a conjunction can be interesting without satisfying all these criteria; e.g. if297

it involves something important and has a high temporal cohesion, we want to find298

it regardless of its spatial cohesion.299

In preliminary experiments we have worked with a provisional definition of “inter-300

estingness” as the combination of frequency and temporal cohesion, but this must be301

extended; and one may even wish to have the combination function optimized over302

time (slowly) where the fitness function is defined in terms of the STI and LTI of the303

concepts generated.304

8.4.4.1 A Mining Approach305

One tractable approach to perceptual pattern mining is greedy and iterative, involving306

the following steps:307

1. Build an initial transaction template graph G.308

2. Greedily mine some interesting basic spatiotemporal conjunctions from it,309

adding each interesting conjunction found as a new node in G (so that G becomes310

a transaction template relationship graph), repeating step 2 until boredom results311

or time runs out.312

The same TTRG may be maintained over time, but of course will require a robust313

forgetting mechanism once the history gets long or the environment gets nontrivially314

complex.315

The greedy mining step may involve simply grabbing SeqAND or SimAND links316

with probability determined by the (importance and/or interestingness) of their tar-317

gets, and the probabilistic strength and temporal strength of the temporal AND rela-318

tionship, and then creating conjunctions based on these links (which then become319

new nodes in the TTRG, so they can be built up into larger conjunctions).320

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

152 8 Perceptual and Motor Hierarchies

8.5 The Perceptual-Motor Hierarchy321

The perceptual pattern mining approach described above is “flat”, in the sense that it322

simply proposes to recognize patterns in a stream of perceptions, without imposing323

any kind of explicitly hierarchical structure on the pattern recognition process or324

the memory of perceptual patterns. This is different from how the human visual325

system works, with its clear hierarchical structure, and also different from many326

contemporary vision architectures, such as DeSTIN or Hawkins’ Numenta system327

which also utilizes hierarchical neural networks.328

However, the approach described above may be easily made hierarchical within329

the CogPrime architecture, and this is likely the most effective way to deal with com-330

plex visual scenes. Most simply, in this approach, a hierarchy may be constructed331

corresponding to different spatial regions, within the visual field. The Region Nodes332

at the lowest level of the hierarchy correspond to small spatial regions, the ones at333

the next level up correspond to slightly larger spatial regions, and so forth. Each334

RegionNode also correspond to a certain interval of time, and there may be differ-335

ent RegionNodes corresponding to the same spatial region but with different time-336

durations attached to them. RegionNodes may correspond to overlapping rather than337

disjoint regions.338

Within each region mapped by a RegionNode, then, perceptual pattern mining339

as defined in the previous section may occur. The patterns recognized in a region340

are linked to the corresponding RegionNode—and are then fed as inputs to the341

RegionNodes corresponding to larger, encompassing regions; and as suggestions-to-342

guide-pattern-recognition to nearby RegionNodes on the same level. This architec-343

ture involves the fundamental hierarchical structure/dynamic observed in the human344

visual cortex. Thus, the hierarchy incurs a dynamic of patterns-within-patterns-345

within-patterns, and the heterarchy incurs a dynamic of patterns-spawning-similar-346

patterns.347

Also, patterns found in a RegionNode should be used to bias the pattern-search in348

the RegionNodes corresponding to smaller, contained regions: for instance, if many349

of the sub-regions corresponding to a certain region have revealed parts of a face,350

then the pattern-mining processes in the remaining sub-regions may be instructed to351

look for other face-parts.352

This architecture permits the hierarchical dynamics utilized in standard hierarchi-353

cal vision models, such as Jeff Hawkins’ and other neural net models, but within the354

context of CogPrime’s pattern-mining approach to perception. It is a good example355

of the flexibility intrinsic to the CogPrime architecture.356

Finally, why have we called it a perceptual-motor hierarchy above? This is357

because, due to the embedding of the perceptual hierarchy in CogPrime’s general358

Atom-network, the percepts in a certain region will automatically be linked to actions359

occurring in that region. So, there may be some perception-cognition-action inter-360

play specific to a region, occurring in parallel with the dynamics in the hierarchy of361

multiple regions. Clearly this mirrors some of the complex dynamics occurring in the362

human brain, and is also reflected in the structure of sophisticated perceptual-motor363

approaches like DeSTIN, to be discussed below.364

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.6 Object Recognition from Polygonal Meshes 153

8.6 Object Recognition from Polygonal Meshes365

Next we describe a more specific perceptual pattern recognition algorithm—a strat-366

egy for identifying objects in a visual scene that is perceived as a set of polygons. It367

is not a thoroughly detailed algorithmic approach, but rather a high-level description368

of how this may be done effectively within the CogPrime design. It is offered here369

largely as an illustration of how specialized perceptual data processing algorithms370

may be designed and implemented within the CogPrime framework.371

We deal here with an agent whose perception of the world, at any point in time,372

is understood to consist of a set of polygons, each one described in terms of a list of373

corners. The corners may be assumed to be described in coordinates relative to the374

viewing eye of the agent.375

What we mean by “identifying objects” here is something very simple. We don’t376

mean identifying that a particular object is a chair, or is Ben’s brown chair, or any-377

thing like that—we simply mean identifying that a given collection of polygons is378

meaningfully grouped into an object. That is the task considered here. The object379

could be a single block, it could be a person, or it could be a tower of blocks (which380

appears as a single object until it is taken apart).381

Of course, not all approaches to polygon-based vision processing would require382

this sort of phase: it would be possible, as an alternative, to simply compare the383

set of polygons in the visual field to a database of prior experience and then do384

object identification (in the present sense) based on this database-comparison. But385

in the approach described in this section, one begins instead with an automated386

segmentation of the set of perceived polygons into a set of objects.387

8.6.1 Algorithm Overview388

The algorithm described here falls into three stages:389

1. Recognizing PersistentPolygonNodes (PPNodes) from PolygonNodes.390

2. Creating Adjacency Graphs from PPNodes.391

3. Clustering in the Adjacency Graph.392

Each of these stages involves a bunch of details, not all of which have been fully393

resolved: this section just gives a conceptual overview.394

We will speak in terms of objects such as PolygonNode, PPNode and so forth,395

because inside the CogPrime AI engine, observed and conceived entities are repre-396

sented as nodes in an graph. However, this terminology is not very important here,397

and what we call a PolygonNode here could just as well be represented in a host of398

other ways, within the overall CogPrime framework.399

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

154 8 Perceptual and Motor Hierarchies

8.6.2 Recognizing PersistentPolygonNodes400

from PolygonNodes401

A PolygonNode represents a polygon observed at a point in time. A PPNode repre-402

sents a series of PolygonNodes that are heuristically guessed to represent the same403

PolygonNode at different moments in time.404

Before “object permanence” is learned, the heuristics for recognizing PPNodes405

will only work in the case of a persistent polygon that, over an interval of time, is406

experiencing relative motion within the visual field, but is never leaving the visual407

field. For example some reasonable heuristics are: If P1 occurs at time t, P2 occurs408

at time s where s is very close to t, and P1 are similar in shape, size and color and409

position, then P1 and P2 should be grouped together into the same PPNode.410

More advanced heuristics would deal carefully with the case where some of these411

similarities did not hold, which would allow us to deal e.g. with the case where an412

object was rapidly changing color.413

In the case where the polygons are coming from a simulation world like OpenSim,414

then from our positions as programmers and world-masters, we can see that what a415

PPNode is supposed to correspond to is a certain side of a certain OpenSim object;416

but it doesn’t appear immediately that way to CogPrime when controlling an agent417

in OpenSim since CogPrime isn’t perceiving OpenSim objects, it’s perceiving poly-418

gons. On the other hand, in the case where polygons are coming from software that419

postprocesses the output of a LiDAR based vision system, then the piecing together420

of PPNodes from PolygonNodes is really necessary.421

8.6.3 Creating Adjacency Graphs from PPNodes422

Having identified PPNodes, we may then draw a graph between PPNodes, a PPGraph423

(also called an “Adjacency Graph”), wherein the links are AdjacencyLinks (with424

weights indicating the degree to which the two PPNodes tend to be adjacent, over425

time). A more refined graph might also involve SpatialCoordinationLinks (with426

weights indicating the degree to which the vector between the centroids of the two427

PPNodes tends to be consistent over time).428

We may then use this graph to do object identification:429

• First-level objects may be defined as clusters in the graph of PPNodes.430

• One may also make a graph between first-level objects, an ObjectGraph with the431

same kinds of links as in the PPGraph. Second-level objects may be defined as432

clusters in the ObjectGraph.433

The “strength” of an identified object may be assigned as the “quality” of the cluster434

(measured in terms of how tight the cluster is, and how well separated from other435

clusters.)436

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.6 Object Recognition from Polygonal Meshes 155

As an example, consider a robot with two parts: a body and a head. The whole437

body may have a moderate strength as a first-level object, but the head and body438

individually will have significantly greater strengths as first-level objects. On the439

other hand, the whole body should have a pretty strong strength as a second-level440

object.441

It seems convenient (though not necessary) to have a PhysicalObjectNode type442

to represent the objects recognized via clustering; but the first versus second level443

object distinction should not need to be made on the Atom type level.444

Building the adjacency graph requires a mathematical formula defining what it445

means for two PPNodes to be adjacent. Creating this formula may require a little446

tuning. For instance, the adjacency between two PPNodes PP1 and PP2 may be447

defined as the average over time of the adjacency of the PolygonNodes PP1(t) and448

PP2(t) observed at each time t. (A p′th power average1 may be used here, and dif-449

ferent values of p may be tried.) Then, the adjacency between two (simultaneous)450

PolygonNodes P1 and P2 may be defined as the average over all x in P1 of the mini-451

mum over all y in P2 of sim(x, y), where sim(,) is an appropriately scaled similarity452

function. This latter average could arguably be made a maximum; or perhaps even453

better a p′th power average with large p, which approximates a maximum.454

8.6.4 Clustering in the Adjacency Graph455

As noted above, the idea is that objects correspond to clusters in the adjacency456

graph. This means we need to implement some hierarchical clustering algorithm457

that is tailored to find clusters in symmetric weighted graphs. Probably some decent458

algorithms of this character exist, if not it would be fairly easy to define one, e.g. by459

mapping some standard hierarchical clustering algorithm to deal with graphs rather460

than vectors.461

Clusters will then be mapped into PhysicalObjectNodes, interlinked appropriately462

via PhysicalPartLinks and AdjacencyLinks (e.g. there would be a PhysicalPartLink463

between the PhysicalObjectNode representing a head and the PhysicalObjectNode464

representing a body [where the body is considered as including the head]).465

8.6.5 Discussion466

It seems probable that, for simple scenes consisting of a small number of simple467

objects, clustering for object recognition will be fairly unproblematic. However,468

there are two cases that are potentially tricky:469

1 the p′th power average is defined as p
√∑

X p .

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

156 8 Perceptual and Motor Hierarchies

• Sub-objects: e.g. the head and torso of a body, which may move separately; or the470

nose of the head, which may wiggle; or the legs of a walking dog; etc.471

• Coordinated objects: e.g. if a character’s hat is on a table, and then later on his472

head, then when it’s on his head we basically want to consider him and his hat as473

the same object, for some purposes.474

These examples show that partitioning a scene into objects is a borderline-cognitive475

rather than purely lower-level-perceptual task, which cannot be hard-wired in any476

very simple way.477

We also note that, for complex scenes, clustering may not work perfectly for478

object recognition and some reasoning may be needed to aid with the process. Intu-479

itively, these may correspond to scenes that, in human perceptual psychology, require480

conscious attention and focus in order to be accurately and usefully perceived.481

8.7 Interfacing the Atomspace with a Deep Learning482

Based Perception-Action Hierarchy483

We have discussed how one may do perception processing such as object recognition484

within the Atomspace, and this is indeed a viable strategy. But an alternate approach485

is also interesting, and likely more valuable in the case of robotic perception/action:486

build a separate perceptual-motor hierarchy, and link it in with the Atomspace. This487

approach is appealing in large part because a lot of valuable and successful work488

has already been done using neural networks and related architectures for perception489

and actuation. And it is not necessarily contradictory to doing perception processing490

in the Atomspace—obviously, one may have complementary, synergetic perception491

processing occurring in two different parts of the architecture.492

This section reviews some general ideas regarding the interfacing of CogPrime493

with deep learning hierarchies for perception and action; the following chapter then494

discusses one example of this in detail, involving the DeSTIN deep learning archi-495

tecture.496

8.7.1 Hierarchical Perception Action Networks497

CogPrime could be integrated with a variety of different hierarchical perception/498

action architectures. For the purpose of this section, however, we will consider a class499

of architectures that is neither completely general nor extremely specific. Many of the500

ideas to be presented here are in fact more broadly applicable beyond the architecture501

described here.502

The following assumptions will be made about the HPANs (Hierarchical503

Perception/Action Network) to be hybridized with CogPrime. It may be best to use504

multiple HPANs, at least one for declarative/sensory/episodic knowledge (we’ll call505

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.7 Interfacing the Atomspace 157

this the “primary HPAN”) and one for procedural knowledge. A HPAN for inten-506

tional knowledge (a goal hierarchy; in DeSTIN called the “critic hierarchy”) may be507

valuable as well. We assume that each HPAN has the properties:508

1. It consists of a network of nodes, endowed with a learning algorithm, whose509

connectivity pattern is largely but not entirely hierarchical (and whose hierarchy510

contains both feedback, feedforward and lateral connections).511

2. It contains a set of input nodes, receiving perceptual inputs, at the bottom of the512

hierarchy.513

3. It has a set of output nodes, which may span multiple levels of the hierarchy.514

The “output nodes” indicate informational signals to cognitive processes lying515

outside the HPAN, or else control signals to actuators, which may be internal or516

external.517

4. Other nodes besides I/O nodes may potentially be observed or influenced by518

external processes; for instance they may receive stimulation.519

5. Link weights in the HPAN get updated via some learning algorithm that is roughly520

speaking “statistically Hebbian”, in the sense that on the whole when a set of nodes521

get activated together for a period of time, they will tend to become attractors.522

By an attractor we mean: a set S of nodes such that the activation of a subset of523

S during a brief interval tends to lead to the activation of the whole set S during524

a reasonably brief interval to follow.525

6. As an approximate but not necessarily strict rule, nodes higher in the hierarchy526

tend to be involved in attractors corresponding to events or objects localized in527

larger spacetime regions.528

Examples of specific hierarchical architectures broadly satisfying these requirements529

are the visual pattern recognition networks constructed by Hawkins [HB06] and530

[PCP00], and Arel’s DeSTIN system discussed earlier (and in more depth in follow-531

ing chapters). The latter appears to fit the requirements particularly snugly due to532

having dynamics very well suited to the formation of a complex array of attractors,533

and a richer methodology for producing outputs. These are all not only HPANs but534

have a more particular structure that in Chap. 9 is called a Compositional Spatiotem-535

poral Deep Learning Network or CSDLN.536

The particulars of the use of HPANs with OpenCog are perhaps best explained537

via enumeration of memory types and control operations.538

8.7.2 Declarative Memory539

The key idea here is linkage of primary HPAN attractors to CogPrime540

ConceptNodes via MemberLinks. This is in accordance with the notion of glo-541

cal memory, in the language of which the HPAN attractors are the maps and the542

corresponding ConceptNodes are the keys. Put simply, when a HPAN attractor is543

recognized, MemberLinks are created between the HPAN nodes comprising the544

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_9

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

158 8 Perceptual and Motor Hierarchies

main body of the attractor, and a ConceptNode in the AtomTable representing the545

attractor. MemberLink weights may be used to denote fuzzy attractor membership.546

Activation may spread from HPAN nodes to ConceptNodes, and STI may spread547

from ConceptNodes to HPAN nodes; a conversion rate between HPAN activation548

and STI currency must be maintained by the CogPrime central bank (see Chap. 5),549

for ECAN purposes.550

Both abstract and concrete knowledge may be represented in this way. For551

instance, the Eiffel Tower would correspond to one attractor, the general shape of552

the Eiffel Tower would correspond to another, and the general notion of a “tower”553

would correspond to yet another. As these three examples are increasingly abstract,554

the corresponding attractors would be weighted increasingly heavily on the upper555

levels of the hierarchy.556

8.7.3 Sensory Memory557

CogPrime may also use its primary HPAN to store memories of sense-perceptions and558

low-level abstractions therefrom. MemberLinks may join concepts in the AtomTable559

to percept-attractors in the HPAN. If the HPAN is engineered to associate specific560

neural modules to specific spatial regions or specific temporal intervals, then this561

may be accounted for by automatically indexing ConceptNodes corresponding to562

attractors centered in those modules in the AtomTable’s TimeServer and SpaceServer563

objects, which index Atoms according to time and space.564

An attractor representing something specific like the Eiffel Tower, or Bob’s face,565

would be weighted largely in the lower levels of the hierarchy, and would correspond566

mainly to sensory rather than conceptual memory.567

8.7.4 Procedural Memory568

The procedural HPAN may be used to learn procedures such as low-level motion569

primitives that are more easily learned using HPAN training than using more abstract570

procedure learning methods. For example, a Combo tree learned by MOSES in Cog-571

Prime might contain a primitive corresponding to the predicate-argument relationship572

pick_up(ball); but the actual procedure for controlling a robot hand to pick up a ball,573

might be expressed as an activity pattern within the low-level procedural HPAN.574

A procedure P stored in the low-level procedural HPAN would be represented in575

the AtomTable as a ConceptNode C linked to key nodes in the HPAN attractor cor-576

responding to P. The invocation of P would be accomplished by transferring STI577

currency to C and then allowing ECAN to do its work.578

On the other hand, CogPrime’s interfacing of the high-level procedural HPAN579

with the CogPrime ProcedureRepository is intimately dependent on the particulars580

of the MOSES procedure learning algorithm. As will be outlined in more depth581

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.7 Interfacing the Atomspace 159

in Chap. 15, MOSES is a complex, multi-stage process that tries to find a program582

maximizing some specified fitness function, and that involves doing the following583

within each “deme” (a deme being an island of roughly-similar programs)584

1. casting program trees into a hierarchical normal form585

2. evaluating the program trees on a fitness function586

3. building a model distinguishing fit versus unfit program trees, which involves:587

(a) figuring out what program tree features the model should include588

(b) building the model using a learning algorithm589

4. generating new program trees that are inferred likely to give high fitness, based590

on the model591

5. return to step 1 with these new program trees.592

593

There is also a system for managing the creation and deletion of demes.594

The weakest point in CogPrime’s current MOSES-based approach to procedure595

learning appears to be step 3. And the main weakness is conceptual rather than596

algorithmic; what is needed is to replace the current step 3 with something that uses597

long-term memory to do model-building and feature-selection, rather than (like the598

current code) doing these things in a manner that’s restricted to the population of599

program trees being evolved to optimize a particular fitness function.600

One promising approach to resolving this issue is via replacing step 3(b) (and,601

to a limited extent, 3(a)) with an interconnection between MOSES and a procedural602

HPAN. A HPAN can do supervised categorization, and can be designed to handle603

feature selection in a manner integrated with categorization, and also to integrate604

long-term memory into its categorization decisions.605

8.7.5 Episodic Memory606

In a hybrid CogPrime/HPAN architecture, episodic knowledge may be handled via607

a combination of:608

1. using a traditional approach to store a large ExperienceDB of actual experienced609

episodes (including sensory inputs and actions; and also the states of the most610

important items in memory during the experience)611

2. using the Atomspace (with its TimeServer and SpaceServer components) to store612

declarative knowledge about experiences613

3. using dimensional embedding to index the AtomSpace’s episodic knowledge in614

a spatiotemporally savvy way, as described in Chap. 22615

4. training a large HPAN to summarize the scope of experienced episodes (this616

could be the primary HPAN used for declarative and sensory memory, or could617

potentially be a separate episodic HPAN).618

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_15

http://dx.doi.org/10.2991/978-94-6239-030_22

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

160 8 Perceptual and Motor Hierarchies

Such a network should be capable of generating imagined episodes based on cues,619

as well recalling real episodes. The HPAN would serve as a sort of index into the620

memory of episodes, There would be HebbianLinks from the AtomTable into the621

episodic HPAN.622

For instance, suppose that once the agent built an extremely tall tower of blocks,623

taller than any others in its memory. Perhaps it wants to build another very tall tower624

again, so it wants to summon up the memory of that previous occasion, to see if625

there is possibly guidance therein. It then proceeds by thinking about tallness and626

towerness at the same time, which stimulates the relevant episode, because at the627

time of building the extremely tall tower, the agent was thinking a lot about tallness628

(so thoughts of tallness are part of the episodic memory).629

8.7.6 Action Selection and Attention Allocation630

CogPrime’s action selection mechanism chooses procedures based on which ones631

are estimated most likely to achieve current goals given current context, and places632

these in an “active procedure pool” where an ExecutionManager object mediates633

their execution.634

Attention allocation spans all components of CogPrime, including an HPAN if635

one is integrated. Attention flows between the two components due to the conversion636

of STI to and from HPAN activation. And in this manner assignment of credit flows637

from GoalNodes into the HPAN, because this kind of simultaneous activation may638

be viewed as “rewarding” a HPAN link. So, the HPAN may reward signals from Goal639

Nodes via ECAN, because when a ConceptNode gets rewarded, if the ConceptNode640

points to a set of nodes, these nodes get some of the reward.641

8.8 Multiple Interaction Channels642

Now we discuss a broader issue regarding the interfacing between CogPrime and643

the external world. The only currently existing embodied OpenCog applications,644

PetBrain and CogBot, are based on a loosely human model of perception and action,645

in which a single CogPrime instance controls a single mobile body, but this of course646

is not the only way to do things. More generally, what we can say is that a variety647

of external-world events come into a CogPrime system from physical or virtual648

world sensors, plus from other sources such as database interfaces, Web spiders,649

and/or other sources. The external systems providing CogPrime with data may be650

generically referred to as sensory sources (and in the terminology we adopt here,651

once Atoms have been created to represent external data, then one is dealing with652

perceptions rather than sensations). The question arises how to architect a CogPrime653

system, in general, for dealing with a variety of sensory sources.654

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8.8 Multiple Interaction Channels 161

We introduce the notion of an “interaction channel”: a collection of sensory655

sources that is intended to be considered as a whole as a synchronous stream, and that656

is also able to receive CogPrime actions—in the sense that when CogPrime carries657

out actions relative to the interaction channel, this directly affects the perceptions658

that CogPrime receives from the interaction channel. A CogPrime meant to have659

conversations with ten separate users at once might have 10 interaction channels. A660

human mind has only one interaction channel in this sense (although humans may661

become moderately adept at processing information from multiple external-world662

sources, coming in through the same interaction channel).663

Multiple-interaction-channel digital psychology may become extremely664

complex—and hard for us, with our single interaction channels, to comprehend.665

This is one among many cases where a digital mind, with its more flexible architec-666

ture, will have a clear advantage over our human minds with their fixed and limited667

neural architectures. For simplicity, however, in the following chapters we will often668

focus on the single-interaction-channel case.669

Events coming in through an interaction channel are presented to the system as670

new perceptual Atoms, and relationships amongst these. In the multiple interaction671

channel case, the AttentionValues of these newly created Atoms require special672

treatment. Not only do they require special rules, they require additional fields to be673

added to the AttentionValue object, beyond what has been discussed so far.674

We require newly created perceptual Atoms to be given a high initial STI. And675

we also require them to be given a high amount of a quantity called “interaction-676

channel STI”. To support this, the AttentionValue objects of Atoms must be expanded677

to contain interaction-channel STI values; and the ImportanceUpdating MindAgent678

must compute interaction-channel importance separately from ordinary importance.679

And, just as we have channel-specific AttentionValues, we may also have channel-680

specific TruthValues. This allows the system to separately account for the frequency681

of a given perceptual item in a given interaction channel. However, no specific mech-682

anism is needed for these, they are merely contextual truth values, to be interpreted683

within a Context Node associated with the interaction channel.684

319613_1_En_8_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 161 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 8

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Integrating CogPrime with a Compositional Spatiotemporal Deep Learning Network

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Many different approaches to “low-level” perception and action processing are possible within the overall
CogPrime framework. We discussed several in the previous chapter, all elaborations of the general
hierarchical pattern recognition approach.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 9
Integrating CogPrime with a Compositional
Spatiotemporal Deep Learning Network

9.1 Introduction0

Many different approaches to “low-level” perception and action processing are1

possible within the overall CogPrime framework. We discussed several in the previ-2

ous chapter, all elaborations of the general hierarchical pattern recognition approach.3

Here we describe one sophisticated approach to hierarchical pattern recognition based4

perception in more detail: the tight integration of CogPrime with a sophisticated hier-5

archical perception/action oriented learning system such as the DeSTIN architecture6

reviewed in Chap. 5 of Vol. 5. AQ17

We introduce here the term “Compositional Spatiotemporal Deep Learning Net-8

work” (CSDLN), to refer to deep learning networks whose hierarchical structure9

directly mirrors the hierarchical structure of spacetime. In the language of Chap. 8, a10

CSDLN is a special kind of HPAN (hierarchical perception action network), which11

has the special property that each of its nodes refers to a certain spatiotemporal region12

and is concerned with predicting what happens inside that region. Current exempli-13

fications of the CSDLN paradigm include the DeSTIN architecture that we will14

focus on here, along with Jeff Hawkins’ Numenta “HTM” system [HB06],1 Itamar15

Arel’s DeSTIN [ARC09a], Itamar Arel’s HDRN2 system (the proprietary, closed-16

source sibling of DeSTIN), Dileep George’s spin-off from Numenta,3 and work by17

Mohamad Tarifi [TSH11], Bundzel and Hashimoto [BH10], and others. CSDLNs are18

reasonably well proven as an approach to intelligent sensory data processing, and19

have also been hypothesized as a broader foundation for artificial general intelligence20

at the human level and beyond [HB06] [ARC09a].21

While CSDLNs have been discussed largely in the context of perception, the22

specific form of CSDLN we will pursue here goes beyond perception processing,23

1 While the Numenta system is the best-known CSDLN architecture, other CSDLNs appear more
impressively functional in various respects; and many CSDLN-related ideas existed in the literature
well before Numenta’s advent.
2 http://www.binatix.com
3 http://www.vicarioussystems.com

B. Goertzel et al., Engineering General Intelligence, Part 2, 163
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_9,
© Atlantis Press and the authors 2014

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_5

http://dx.doi.org/10.2991/978-94-6239-030-0_8

http://www.binatix.com

http://www.vicarioussystems.com

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

164 9 Integrating CogPrime

and involves the coupling of three separate hierarchies, for perception, action and24

goals/reinforcement [GLdG+10]. The “action” CSDLNs discussed here25

correspond to the procedural HPAN discussed in Chap. 8. Abstract learning and26

self-understanding are then hypothesized as related to systems of attractors emerg-27

ing from the close dynamic coupling of the upper levels of the three hierarchies.28

DeSTIN is our paradigm case of this sort of CSDLN, but most of the considerations29

given here would apply to any CSDLN of this general character.30

CSDLNs embody a certain conceptual model of the nature of intelligence, and31

to integrate them appropriately with a broader architecture, one must perform the32

integration not only on the level of software code but also on the level of conceptual33

models. Here we focus here on the problem of integrating an extended version of the34

DeSTIN CSDLN system with the CogPrime integrative AGI (artificial general intel-35

ligence) system. The crux of the issue here is how to map DeSTIN’s attractors into36

CogPrime’s more abstract, probabilistic “weighted, labeled hypergraph” representa-37

tion (called the Atomspace). The main conclusion reached is that in order to perform38

this mapping in a conceptually satisfactory way, one requires a system of hierarchies39

involving the structure of DeSTIN’s network but the semantic structures of40

the Atomspace. The DeSTIN perceptual hierarchy is augmented by motor and goal41

hierarchies, leading to a tripartite “extended DeSTIN”. In this spirit, three “semantic-42

perceptual” hierarchies are proposed, corresponding to the three extended-DeSTIN43

CSDLN hierarchies and explicitly constituting an intermediate level of representa-44

tion between attractors in DeSTIN and the habitual cognitive usage of CogPrime45

Atoms and Atom-networks. For simple reference we refer to this as the “Semantic46

CSDLN” approach.47

A “tripartite semantic CSDLN” consisting of interlinked semantic perceptual,48

motoric and goal hierarchies could be coupled with DeSTIN or another CSDLN49

architecture to form a novel AGI approach; or (our main focus here) it may be used50

as a glue between an CSDLN and and a more abstract semantic network such as the51

cognitive Atoms in CogPrime’s Atomspace.52

One of the core intuitions underlying this integration is that, in order to achieve53

the desired level of functionality for tasks like picture interpretation and assembly of54

complex block structures, a convenient route is to perform a fairly tight integration55

of a highly capable CSDLN like DeSTIN with other CogPrime components. For56

instance, we believe it’s necessary to go deeper than just using DeSTIN as an57

input/output layer for CogPrime, by building associative links between the nodes58

inside DeSTIN and those inside the Atomspace.59

This “tightly linked integration” approach is obviously an instantiation of the60

general cognitive synergy principle, which hypothesizes particular properties that61

the interactions between components in an integrated AGI system should display, in62

order for the overall system to display significant general intelligence using limited63

computational resources. Simply piping output from an CSDLN to other components,64

and issuing control signals from these components to the CSDLN, is likely an inad-65

equate mode of integration, incapable of leveraging the full potential of CSDLNs;66

what we are suggesting here is a much tighter and more synergetic integration.67

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_8

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

9.1 Introduction 165

In terms of the general principle of mind-world correspondence, the conceptual68

justification for CSDLN/CogPrime integration would be that the everyday human69

world contains many compositional spatiotemporal structures relevant to human70

goals, but also contains many relevant patterns that are not most conveniently cast into71

a compositional spatiotemporal hierarchy. Thus, in order to most effectively perceive,72

remember, represent, manipulate and enact the full variety of relevant patterns in the73

world, it is sensible to have a cognitive structure containing a CSDLN as a significant74

component, but not the only component.75

9.2 Integrating CSDLNs with Other AI Frameworks76

CSDLNs represent knowledge as attractor patterns spanning multiple levels of hier-77

archical networks, supported by nonlinear dynamics and (at least in the case of the78

overall DeSTIN design) involving cooperative activity of perceptual, motor and con-79

trol networks. These attractors are learned and adapted via a combination of methods80

including localized pattern recognition algorithms and probabilistic inference. Other81

AGI paradigms represent and learn knowledge in a host of other ways. How then can82

CSDLNs be integrated with these other paradigms?83

A very simple form of integration, obviously, would be to use a CSDLN as a84

sensorimotor cortex for another AI system that’s focused on more abstract cognition.85

In this approach, the CSDLN would stream state-vectors to the abstract cognitive86

system, and the abstract cognitive system would stream abstract cognitive inputs to87

the CSDLN (which would then consider them together with its other inputs). One88

thing missing in this approach is the possibility of the abstract cognitive system’s89

insights biasing the judgments inside the CSDLN. Also, abstract cognition systems90

aren’t usually well prepared to handle a stream of quantitative state vectors (even91

ones representing intelligent compressions of raw data).92

An alternate approach is to build a richer intermediate layer, which in effect93

translates between the internal language of the CSDLN and the internal language of94

the other AI system involved. The particulars, and the viability, of this will depend95

on the particulars of the other AI system. What we’ll consider here is the case where96

the other AI system contains explicit symbolic representations of patterns (including97

patterns abstracted from observations that may have no relation to its prior knowledge98

or any linguistic terms). In this case, we suggest, a viable approach may be to construct99

a “semantic CSDLN” to serve as an intermediary. The semantic CSDLN has the same100

hierarchical structure as an CSDLN, but inside each node it contains abstract patterns101

rather than numerical vectors. This approach has several potential major advantages:102

the other AI system is not presented with a large volume of numerical vectors (which103

it may be unprepared to deal with effectively); the CSDLN can be guided by the104

other AI system, without needing to understand symbolic control signals; and the105

intermediary semantic CSDLN can serve as a sort of “blackboard” which the CSDLN106

and the other AI system can update in parallel, and be guided by in parallel, thus107

providing a platform encouraging “cognitive synergy”.108

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

166 9 Integrating CogPrime

The following sections go into more detail on the concept of semantic CSDLNs.109

The discussion mainly concerns the specific context of DeSTIN/CogPrime integra-110

tion, but the core ideas would apply to the integration of any CSDLN architecture with111

any other AI architecture involving uncertain symbolic representations susceptible112

to online learning.113

9.3 Semantic CSDLN for Perception Processing114

In the standard perceptual CSDLN hierarchy, a node N on level k (considering level 1115

as the bottom) corresponds to a spatiotemporal region S with size sk (sk increasing116

monotonically and usually exponentially with k); and, has children on level k − 1117

corresponding to spatiotemporal regions that collectively partition S. For example,118

a node on level 3 might correspond to a 16 × 16 pixel region S of 2D space over a119

time period of 10 s, and might have four level 2 children corresponding to disjoint120

4 × 4 regions of 2D space over 10 s, collectively composing S.121

This kind of hierarchy is very effective for recognizing certain types of visual122

patterns. However it is cumbersome for recognizing some other types of patterns,123

e.g. the pattern that a face typically contains two eyes beside each other, but at variable124

distance from each other.125

One way to remedy this deficiency is to extend the definition of the hierarchy,126

so that nodes do not refer to fixed spatial or temporal positions, but only to relative127

positions. In this approach, the internals of a node are basically the same as in an128

CSDLN, and the correspondence of the nodes on level k with regions of size sk is129

retained, but the relationships between the nodes are quite different. For instance, a130

variable-position node of this sort could contain several possible 2D pictures of an131

eye, but be nonspecific about where the eye is located in the 2D input image.132

Figure 9.1 depicts this “semantic-perceptual CSDLN” idea heuristically, showing133

part of a semantic-perceptual CSDLN indicating the parts of a face, and also the con-134

nections between the semantic-perceptual CSDLN, a standard perceptual CSDLN,135

and a higher-level cognitive semantic network like CogPrime’s Atomspace.4136

More formally, in the suggested “semantic-perceptual CSDLN” approach, a node137

N on level k, instead of pointing to a set of level k −1 children, points to a small (but138

not necessarily connected) semantic network , such that the nodes of the semantic139

network are (variable-position) level k − 1 nodes; and the edges of the semantic140

4 The perceptual CSDLN shown is unrealistically small for complex vision processing (only four
layers), and only a fragment of the semantic-perceptual CSDLN is shown (a node corresponding to
the category face, and then a child network containing nodes corresponding to several components
of a typical face). In a real semantic-perceptual CSDLN, there would be many other nodes on the
same level as the face node, many other parts to the face subnetwork besides the eyes, nose and
mouth depicted here; the eye, nose and mouth nodes would also have child subnetworks; there
would be link from each semantic node to centroids within a large number of perceptual nodes; and
there would also be many nodes not corresponding clearly to any single English language concept
like eye, nose, face, etc.

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

9.3 Semantic CSDLN for Perception Processing 167

Fig. 9.1 Simplified depiction of the relationship between a semantic-perceptual CSDLN, a tra-
ditional perceptual CSDLN (like DeSTIN), and a cognitive semantic network (like CogPrime’s
AtomSpace)

network possess labels representing spatial or temporal relationships, for example141

horizontally_aligned, vertically_aligned, right_side, left_side, above, behind, imme-142

diately_right, immediately_left, immediately_above, immediately_below, after,143

immediately_after. The edges may also be weighted either with numbers or prob-144

ability distributions, indicating the quantitative weight of the relationship indicated145

by the label.146

So for example, a level 3 node could have a child network of the form horizontally_147

aligned(N1, N2) where N1 and N2 are variable-position level 2 nodes. This would148

mean that N1 and N2 are along the same horizontal axis in the 2D input but don’t need149

to be immediately next to each other. Or one could say, e.g. on_axis_perpendicular_to150

(N1, N2, N3, N4), meaning that N1 and N2 are on an axis perpendicular to the axis151

between N3 and N4. It may be that the latter sort of relationship is fundamentally152

better in some cases, because hori zontally_aligned is still tied to a specific orien-153

tation in an absolute space, whereas on_axis_per pendicular_to is fully relative.154

But it may be that both sorts of relationship are useful.155 AQ2

Next, development of learning algorithms for semantic CSDLNs seems a tractable156

research area. First of all, it would seem that, for instance, the DeSTIN learning157

algorithms could straightforwardly be utilized in the semantic CSDLN case, once158

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

168 9 Integrating CogPrime

the local semantic networks involved in the network are known. So at least for some159

CSDLN designs, the problem of learning the semantic networks may be decoupled160

somewhat from the learning occurring inside the nodes. DeSTIN nodes deal with161

clustering of their inputs, and calculation of probabilities based on these clusters (and162

based on the parent node states). The difference between the semantic CSDLN and163

the traditional DeSTIN CSDLN has to do with what the inputs are.164

Regarding learning the local semantic networks, one relatively straightforward165

approach would be to data mine them from a standard CSDLN. That is, if one166

runs a standard CSDLN on a stream of inputs, one can then run a frequent pattern167

mining algorithm to find semantic networks (using a given vocabulary of semantic168

relationships) that occur frequently in the CSDLN as it processes input. A subnetwork169

that is identified via this sort of mining, can then be grouped together in the semantic170

CSDLN, and a parent node can be created and pointed to it.171

Also, the standard CSDLN can be searched for frequent patterns involving172

the clusters (referring to DeSTIN here, where the nodes contain clusters of input173

sequences) inside the nodes in the semantic CSDLN. Thus, in the “semantic174

DeSTIN” case, we have a feedback interaction wherein: (1) the standard CSDLN is175

formed via processing input;176

(2) frequent pattern mining on the standard CSDLN is used to create subnetworks177

and corresponding parent nodes in the semantic CSDLN;178

(3) the newly created nodes in the semantic CSDLN get their internal clusters179

updated via standard DeSTIN dynamics;180

(4) the clusters in the semantic nodes are used as seeds for frequent pattern mining181

on the standard CSDLN, returning us to Step 2 above.182

After the semantic CSDLN is formed via mining the perceptual CSDLN, it may183

be used to bias the further processing of the perceptual CSDLN. For instance, in DeS-184

TIN each node carries out probabilistic calculations involving knowledge of the prior185

probability of the “observation” coming into that node over a given interval of time.186

In the current DeSTIN version, this prior probability is drawn from a uniform distri-187

bution, but it would be more effective to draw the prior probability from the semantic188

network—observations matching things represented in the semantic network would189

get a higher prior probability. One could also use subtler strategies such as using190

imprecise probabilities in DeSTIN [Goe11b], and assigning a greater confidence to191

probabilities involving observations contained in the semantic network.192

Finally, we note that the nodes and networks in the semantic CSDLN may either193

• be linked into the nodes and links in a semantic network such as CogPrime’s194

AtomSpace195

• actually be implemented in terms of an abstract semantic network language like196

CogPrime’s AtomSpace (the strategy to be suggested in Chap. 11).197

This allows us to think of the semantic CSDLN as a kind of bridge between the198

standard CSDLN and the cognitive layer of an AI system. In an advanced imple-199

mentation, the cognitive network may be used to suggest new relationships between200

nodes in the semantic CSDLN, based on knowledge gained via inference or language.201

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_11

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

9.4 Semantic CSDLN for Motor and Sensorimotor Processing 169

9.4 Semantic CSDLN for Motor and Sensorimotor202

Processing203

Next we consider a semantic CSDLN that focuses on movement rather than sensation.204

In this case, rather than a 2D or 3D visual space, one is dealing with an n-dimensional205

configuration space (C-space). This space has one dimension for each degree of206

freedom of the agent in question. The more joints with more freedom of movement207

an agent has, the higher the dimensionality of its configuration space.208

Using the notion of configuration space, one can construct a semantic-motoric209

CSDLN hierarchy analogous to the semantic-perceptual CSDLN hierarchy. However,210

the curse of dimensionality demands a thoughtful approach here. A square of side211

2 can be tiled with 4 squares of side 1, but a 50-dimensional cube of side 2 can be212

tiled with 250 50-dimensional cubes of side 1. If one is to build a CSDLN hierarchy213

in configuration space analogous to that in perceptual space, some sort of sparse214

hierarchy is necessary.215

There are many ways to build a sparse hierarchy of this nature, but one simple216

approach is to build a hierarchy where the nodes on level k represent motions that217

combine the motions represented by nodes on level k−1. In this case the most natural218

semantic label predicates would seem to be things like simultaneously, after, imme-219

diately_after, etc. So a level k node represents a sort of “motion plan” corresponded220

by chaining together (serially and/or in parallel) the motions encoded in level k − 1221

nodes. Overlapping regions of C-space correspond to different complex movements222

that share some of the same component movements, e.g. if one is trying to slap one223

person while elbowing another, or run while kicking a soccer ball forwards. Also224

note, the semantic CSDLN approach reveals perception and motor control to have225

essentially similar hierarchical structures, more so than with the traditional CSDLN226

approach and its fixed-position perceptual nodes.227

Just as the semantic-perceptual CSDLN is naturally aligned with a traditional228

perceptual CSDLN, similarly a semantic-motoric CSDLN may be naturally aligned229

with a “motor CSDLN”. A typical motoric hierarchy in robotics might contain a230

node corresponding to a robot arm, with children corresponding to the hand, upper231

arm and lower arm; the hand node might then contain child nodes corresponding to232

each finger, etc. This sort of hierarchy is intrinsically spatiotemporal because each233

individual action of each joint of an actuator like an arm is intrinsically bounded in234

space and time. Perhaps the most ambitious attempt along these lines is [AM01],235

which shows how perceptual and motoric hierarchies are constructed and aligned in236

an architecture for intelligent automated vehicle control.237

Figure 9.2 gives a simplified illustration of the potential alignment between a238

semantic-motoric CSDLN and a purely motoric hierarchy (like the one posited above239

in the context of extended DeSTIN).5 In the figure, the motoric hierarchy is assumed240

5 In the figure, only a fragment of the semantic-motoric CSDLN is shown (a node corresponding
to the “get object” action category, and then a child network containing nodes corresponding to
several components of the action). In a real semantic-motoric CSDLN, there would be many other
nodes on the same level as the get-object node, many other parts to the get-object subnetwork besides

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

170 9 Integrating CogPrime

Fig. 9.2 Simplified depiction of the relationship between a semantic-motoric CSDLN, a motor
control hierarchy (illustrated by the hierarchy of servos associated with a robot arm), and a cognitive
semantic network (like CogPrime’s AtomSpace)

to operate somewhat like DeSTIN, with nodes corresponding to (at the lowest level)241

individual servomotors, and (on higher levels) natural groupings of servomotors.242

The node corresponding to a set of servos is assumed to contain centroids of clus-243

ters of trajectories through configuration space. The task of choosing an appropriate244

action is then executed by finding the appropriate centroids for the nodes. Note245

an asymmetry between perception and action here. In perception the basic flow is246

bottom-up, with top-down flow used for modulation and for “imaginative” genera-247

tion of percepts. In action, the basic flow is top-down, with bottom-up flow used for248

modulation and for imaginative, “fiddling around” style generation of actions. The249

semantic-motoric hierarchy then contains abstractions of the C-space centroids from250

the motoric hierarchy—i.e. actions that bind together different C-space trajectories

(Footnote 5 continued)
the ones depicted here; the subnetwork nodes would also have child subnetworks; there would be
link from each semantic node to centroids within a large number of motoric nodes; and there might
also be many nodes not corresponding clearly to any single English language concept like “grasp
object” etc.

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

9.4 Semantic CSDLN for Motor and Sensorimotor Processing 171

that correspond to the same fundamental action carried out in different contexts or251

under different constraints. Similarly to in the perceptual case, the semantic hierar-252

chy here serves as a glue between lower-level function and higher-level cognitive253

semantics.254

9.5 Connecting the Perceptual and Motoric Hierarchies255

with a Goal Hierarchy256

One way to connect perceptual and motoric CSDLN hierarchies is using a “semantic-257

goal CSDLN” bridging the semantic-perceptual and semantic-motoric CSDLNs.258

The semantic-goal CSDLN would be a “semantic CSDLN” loosely analogous to the259

perceptual and motor semantic CSDLNs—and could optionally be linked into the260

reinforcement hierarchy of a tripartite CSDLN like extended DeSTIN. Each node261

in the semantic-goal CSDLN would contain implications of the form “Context and262

Procedure → Goal”, where Goal is one of the AI system’s overall goals or a subgoal263

thereof, and Context and Procedure refer to nodes in the perceptual and motoric264

semantic CSDLNs respectively.265

For instance, a semantic-goal CSDLN node might contain an implication of the266

form “I perceive my hand is near object X and I grasp object X → I possess object X.”267

This would be useful if “I possess object X” were a subgoal of some higher-level268

system goal, e.g. if X were a food object and the system had the higher-level goal of269

obtaining food.270

To the extent that the system’s goals can be decomposed into hierarchies of pro-271

gressively more and more spatiotemporally localized subgoals, this sort of hierarchy272

will make sense, leading to a tripartite hierarchy as loosely depicted in Fig. 9.3.6 One273

could attempt to construct an overall AGI approach based on a tripartite hierarchy274

of this nature, counting on the upper levels of the three hierarchies to come together275

dynamically to form an integrated cognitive network, yielding abstract phenomena276

like language, self, reasoning and mathematics. On the other hand, one may view this277

sort of hierarchy as a portion of a larger integrative AGI architecture, containing a278

separate cognitive network, with a less rigidly hierarchical structure and less of a tie279

to the spatiotemporal structure of physical reality. The latter view is the one we are280

primarily taking within the CogPrime AGI approach, viewing perceptual, motoric281

and goal hierarchies as “lower level” subsystems connected to a “higher level” system282

based on the CogPrime AtomSpace and centered on its abstract cognitive processes.283

284

6 The diagram is simplified in many ways, e.g. only a handful of nodes in each hierarchy is shown
(rather than the whole hierarchy), and lines without arrows are used to indicate bidirectional arrows,
and nearly all links are omitted. The purpose is just to show the general character of interaction
between the components in a simplified context.

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

172 9 Integrating CogPrime

Fig. 9.3 Simplified illustration of the proposed interoperation of perceptual, motoric and goal
semantic CSDLNs

Learning of the subgoals and implications in the goal hierarchy is of course a285

complex matter, which may be addressed via a variety of algorithms, including online286

clustering (for subgoals or implications) or supervised learning (for implications, the287

“supervision” being purely internal and provided by goal or subgoal achievement).288

319613_1_En_9_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 172 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 9

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly provide artwork for Figs. 9.1 and 9.2 with high resolution.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Making DeSTIN Representationally Transparent

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract In this chapter and the next we describe one particular incarnation of the above ideas on semantic CSDLNs
in more depth: the integration of CogPrime with the DeSTIN architecture reviewed in Chap. 5 of Vol. 5.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 10
Making DeSTIN Representationally
Transparent

10.1 Introduction0

In this chapter and the next we describe one particular incarnation of the above ideas1

on semantic CSDLNs in more depth: the integration of CogPrime with the DeSTIN2

architecture reviewed in Chap. 5 of Vol. 5.3

One of the core intuitions underlying this integration is that, in order to achieve4

the desired level of functionality for tasks like picture interpretation and assembly5

of complex block structures, it will be necessary to integrate DeSTIN (or some6

similar system) and CogPrime components fairly tightly—going deeper than just7

using DeSTIN as an input/output layer for CogPrime, by building a number of explicit8

linkages between the nodes inside DeSTIN and CogPrime respectively.9

The general DeSTIN design has been described in talks as comprising three10

crosslinked hierarchies, handling perception, action and reinforcement; but so far11

only the perceptual hierarchy (also called the “spatiotemporal inference network”)12

has been implemented or described in detail in publications. In this chapter we13

will focus on DeSTIN’s perception hierarchy. We will explain DeSTIN’s perceptual14

dynamics and representations as we understand them, more thoroughly than was done15

in the brief review above; and we will describe a series of changes to the DeSTIN16

design, made in the spirit of easing DeSTIN/OpenCog integration. In the following17

chapter we will draw action and reinforcement into the picture, deviating somewhat18

in the details from the manner in which these things would be incorporated into19

a standalone DeSTIN, but pursuing the same concepts in an OpenCog integration20

context.21

What we describe here is a way to make a “Uniform DeSTIN”, in which the inter-22

nal representation of perceived visual forms is independent of affine transformations23

(translation, scaling, rotation and shear). This “representational transparency” means24

that, when Uniform DeSTIN perceives a pattern: no matter how that pattern is shifted25

Co-authored with Itamar Arel.

B. Goertzel et al., Engineering General Intelligence, Part 2, 173
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_10,
© Atlantis Press and the authors 2014

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

174 10 Making DeSTIN Representationally Transparent

or linearly transformed, the way Uniform DeSTIN represents that pattern internally26

is going to be basically the same. This makes it easy to look at a collection of DeSTIN27

states, obtained by exposing a DeSTIN perception network to the world at different28

points in time, and see the commonalities in what they are perceiving and how they29

are interpreting it. By contrast, in the original version of DeSTIN (here called “clas-30

sic DeSTIN”), it may take significant effort to connect the internal representation31

of a visual pattern and the representation of its translated or linearly transformed32

versions. The uniformity of Uniform DeSTIN makes it easier for humans to inspect33

DeSTIN’s state and understand what’s going on, and also (more to the point) makes34

it easier for other AI components to recognize patterns in sets of DeSTIN states. The35

latter fact is critical for the DeSTIN/OpenCog integration.36

10.2 Review of DeSTIN Architecture and Dynamics37

The hierarchical architecture of DeSTIN’s spatiotemporal inference network com-38

prises an arrangement into multiple layers of “nodes” comprising multiple instantia-39

tions of an identical processing unit. Each node corresponds to a particular spatiotem-40

poral region, and uses a statistical learning algorithm to characterize the sequences41

of patterns that are presented to it by nodes in the layer beneath it.42

More specifically, at the very lowest layer of the hierarchy nodes receive as input43

raw data (e.g. pixels of an image) and continuously construct a belief state that44

attempts to characterize the sequences of patterns viewed. The second layer, and45

all those above it, receive as input the belief states of nodes at their corresponding46

lower layers, and attempt to construct belief states that capture regularities in their47

inputs. Each node also receives as input the belief state of the node above it in48

the hierarchy (which constitutes “contextual” information, utilized in the node’s49

prediction process).50

Inside each node, an online clustering algorithm is used to identify regularities51

in the sequences received by that node. The centroids of the clusters learned are52

stored in the node and comprise the basic visual patterns recognized by that node.53

The node’s “belief” regarding what it is seeing, is then understood as a probability54

density function defined over the centroids at that node. The equations underlying55

this centroid formation and belief updating process are identical for every node in56

the architecture, and were given in their original form in [ARC09a], though the57

current open-source DeSTIN codebase reflects some significant improvements not58

yet reflected in the publication record.59AQ1

In short, the way DeSTIN represents an item of knowledge is as a probability60

distribution over “network activity patterns” in its hierarchical network. An activity61

pattern, at each point in time, comprises an indication of which centroids in each62

node are most active, meaning they have been identified as most closely resembling63

what that node has perceived, as judged in the context of the perceptions of the other64

nodes in the system. Based on this methodology, the DeSTIN perceptual network65

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.2 Review of DeSTIN Architecture and Dynamics 175

serves the critical role of building and maintaining a model of the state of the world66

as visually perceived.67

This methodology allows for powerful unsupervised classification. If shown a68

variety of real-world scenes, DeSTIN will automatically form internal structures69

corresponding to the various natural categories of objects shown in the scenes, such70

as trees, chairs, people, etc.; and also to the various natural categories of events it71

sees, such as reaching, pointing, falling. In order to demonstrate the informative-72

ness of these internal structures, experiments have been done using DeSTIN’s states73

as input feature vectors for supervised learning algorithms, enabling high-accuracy74

supervised learning of classification models from labeled image data [KAR10]. A75

closely related algorithm developed by the same principal researcher (Itamar Arel)76

has proven extremely successful at audition tasks such as phoneme recognition77

[ABS+11].78

10.2.1 Beyond Gray-Scale Vision79

The DeSTIN approach may easily be extended to other senses beyond gray-scale80

vision. For color vision, it suffices to replace the one-dimensional signals coming81

into DeSTIN’s lower layer with 3D signals representing points in the color spectrum;82

the rest of the DeSTIN process may be carried over essentially without modification.83

Extension to further senses is also relatively straightforward on the mathematical84

and software structure level, though they may of course require significant additional85

tuning and refinement of details.86

For instance, olfaction does not lend itself well to hierarchical modeling, but87

audition and haptics (touch) do:88

• for auditory perception, one could use a DeSTIN architecture in which each layer89

is one-dimensional rather than two-dimensional, representing a certain pitch. Or90

one could use two dimensions for pitch and volume. This results in a system quite91

similar to the DeSTIN-like system shown to perform outstanding phoneme recog-92

nition in [ABS+11], and is conceptually similar to Hierarchical Hidden Markov93

Models (HHMMs), which have proven quite successful in speech recognition and94

which Ray Kurzweil has argued are the central mechanism of human intelligence95

[Kur12]. Note also recent results published by Microsoft Research, showing dra-96

matic improvements over prior speech recognition results based on use of a broadly97

HHMM-like deep learning system [HDY+12].98

• for haptic perception, one could use a DeSTIN architecture in which the lower layer99

of the network possesses a 2D topology reflecting the topology of the surface of100

the body. Similar to the somatosensory cortex in the human brain, the map could101

be distorted so that more “pixels” are used for regions of the body from which102

more data is available (e.g. currently this might be the fingertips, if these were103

implemented using Syntouch technology [FL12], which has proved excellent at104

touch-based object identification). Input could potentially be multidimensional if105

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

176 10 Making DeSTIN Representationally Transparent

multiple kinds of haptic sensors were available, e.g. temperature, pressure and106

movement as in the Syntouch case.107

Augmentation of DeSTIN to handle action as well as perception is also possible, and108

will be discussed in Chap. 11.109

10.3 Uniform DeSTIN110

It would be possible to integrate DeSTIN in its original form with OpenCog or111

other AI systems with symbolic aspects, via using an unsupervised machine learning112

algorithm to recognize patterns in sets of states of the DeSTIN network as originally113

defined. However, this pattern recognition task becomes much easier if one suitably114

modifies DeSTIN, so as to make the commonalities between semantically similar115

states more obviously perceptible. This can be done by making the library of pat-116

terns recognized within each DeSTIN node invariant with respect to translation, scale,117

rotation and shear—a modification we call “Uniform DeSTIN.” This “uniformiza-118

tion” decreases DeSTIN’s degree of biological mimicry, but eases integration of119

DeSTIN with symbolic AI methods.120

10.3.1 Translation-Invariant DeSTIN121

The first revision to the “classic DeSTIN” to be suggested here is: All the nodes on122

the same level of the DeSTIN hierarchy should share the same library of patterns.123

In the context of classic DeSTIN (i.e. in the absence of further changes to DeSTIN124

to be suggested below, which extend the type of patterns usable by DeSTIN), this125

means: the nodes on the same level should share the same list of centroids. This126

makes DeSTIN’s pattern recognition capability translation-invariant. This transla-127

tion invariance can be achieved without any change to the algorithms for updating128

centroids and matching inputs to centroids.129

In this approach, it’s computationally feasible to have a much larger library of130

patterns utilized by each node, as compared to in classic DeSTIN. Suppose we131

have a n × n pixel grid, where the lowest level has nodes corresponding to 4 × 4132

squares. Then, there are (n
4)2 nodes on the lowest level, and on the kth level there are133

(n
4k)2 nodes. This means that, without increasing computational complexity (actu-134

ally decreasing it, under reasonable assumptions), in translation-invariant Uniform135

DeSTIN we can have a factor of (n
4k)2 more centroids on level k.136

One can achieve a much greater decrease in computational complexity (with the137

same amount of centroid increase) via use of a clever data structure like a cover tree138

[BKL06] to store the centroids at each level. Then the nearest-neighbor matching of139

input patterns to the library (centroid) patterns would be very rapid, much faster than140

linearly comparing the input to each pattern in the list.141

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_11

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.3 Uniform DeSTIN 177

10.3.1.1 Conceptual Justification for Uniform DeSTIN142

Generally speaking, one may say that: if the class of images that the system will see143

is invariant with respect to linear translations, then without loss of generality, we144

can assume that the library of patterns at each node on the same level is the same.145

In reality this assumption isn’t quite going to hold. For instance, for an eye attached146

to a person or humanoid robot, the top of the pixel grid will probably look at a person’s147

hair more often than the bottom... because the person stands right-side-up more often148

than they stand upside-down, and because they will often fixate the center of their149

view on a person’s face, etc. For this reason, we can recognize our friend’s face better150

if we’re looking at them directly, with their face centered in our vision.151

However, we suggest that this kind of peculiarity is not really essential to vision152

processing for general intelligence. There’s no reason you can’t have an intelligent153

vision system that recognizes a face just as well whether it’s centered in the visual154

field or not. (In fact you could straightforwardly explicitly introduce this kind of bias155

within a translation-invariant DeSTIN, but it’s not clear this is a useful direction.)156

By and large, in almost all cases, it seems to us that in a DeSTIN system exposed157

to a wide variety of real-world inputs in complex situations, the library of patterns158

in the different nodes at the same level would turn out to be substantially the same.159

Even if they weren’t exactly the same, they would be close to the same, embodying160

essentially the same regularities. But of course, this sameness would be obscured,161

because centroid 7 in a certain node X on level 4 might actually be the same as162

centroid 18 in some other node Y on level 4 ... and there would be no way to tell that163

centroid 7 in node X and centroid 18 and node Y were actually referring to the same164

pattern, without doing a lot of work.165

10.3.1.2 Comments on Biological Realism166

Translation-invariant DeSTIN deviates further from human brain structure than clas-167

sic DeSTIN, but this is for good reason.168

The brain has a lot of neurons, since adding new neurons was fairly easy and169

cheap for evolution; and tends to do things in a massively parallel manner, with great170

redundancy. For the brain, it’s not so problematically expensive to have the functional171

equivalent of a lot of DeSTIN nodes on the same level, all simultaneously using and172

learning libraries of patterns that are essentially identical to each other. Using current173

computer technology, on the other hand, this sort of strategy is rather inefficient.174

In the brain, messaging between separated regions is expensive, whereas repli-175

cating function redundantly is cheap. In most current computers (with some partial176

exceptions such as GPUs), messaging between separated regions is fairly cheap (so177

long as those regions are stored on the same machine), whereas replicating function178

redundantly is expensive. Thus, even in cases where the same concept and abstract179

mathematical algorithm can be effectively applied in both the brain and a computer,180

the specifics needed for efficient implementation may be quite different.181

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

178 10 Making DeSTIN Representationally Transparent

10.3.2 Mapping States of Translation-Invariant182

DeSTIN into the Atomspace183

Mapping classic DeSTIN’s states into a symbolic pattern-manipulation engine like184

OpenCog is possible, but relatively cumbersome. Doing the same thing with Uniform185

DeSTIN is much more straightforward.186

In Uniform DeSTIN, for example, Cluster 7 means the same thing in ANY node187

on level 4. So after a Uniform DeSTIN system has seen a fair number of images,188

you can be pretty sure its library of patterns is going to be relatively stable. Some189

clusters may come and go as learning progresses, but there’s going to be a large and190

solid library of clusters at each level that persists, because all of its member clusters191

occur reasonably often across a variety of inputs.192

Define a DeSTIN state-tree as a (quaternary) tree with one node for each DeSTIN193

node; and living at each node, a small list of (integer pattern_code, float weight)194

pairs. That is, at each node, the state-tree has a short-list of the patterns that closely195

match a given state at that node. The weights may be assumed between 0 and 1. The196

integer pattern codes have the same meaning for every node on the same level.197

As you feed DeSTIN inputs, at each point in time it will have a certain state,198

representable as a state-tree. So, suppose you have a large database of DeSTIN state-199

trees, obtained by showing various inputs to DeSTIN over a long period of time.200

Then, you can do various kinds of pattern recognition on this database of state-trees.201

More formally, define a state-subtree as a (quaternary) tree with a single integer at202

each node. Two state-subtrees may have various relationships with each other within203

a single state-tree—for instance they may be adjacent to each other, or one may appear204

atop or below the other, etc. In these terms, one interesting kind of pattern recognition205

to do is: Recognize frequent state-subtrees in the stored library of state-trees; and206

then recognize frequent relationships between these frequent state-subtrees. The207

latter relationships will form a kind of “image grammar”, conceptually similar and208

formally related to those described in [ZM06]. Further, temporal patterns may be209

recognized in the same way as spatial ones, as part of the state-subtree grammar210

(e.g. state-subtree A often occurs right before state-subtree B; state-subtree C often211

occurs right before and right below state-subtree D; etc.).212

The flow of activation from OpenCog back down to DeSTIN is also fairly straight-213

forward in the context of translation-invariant DeSTIN. If relationships have been214

stored between concepts in OpenCogPrime’s memory and grammatical patterns215

between state-subtrees, then whenever concept C becomes important in OpenCog-216

Prime’s memory, this can cause a top–down increase in the probability of matching217

inputs to DeSTIN node centroids, that would cause the DeSTIN state-tree to contain218

the grammatical patterns corresponding to concept C .219

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.3 Uniform DeSTIN 179

10.3.3 Scale-Invariant DeSTIN220

The next step, moving beyond translation invariance, is to make DeSTIN’s pattern221

recognition mostly (not wholly) scale invariant. We will describe a straightforward222

way to map centroids on one level of DeSTIN, into centroids on the other levels of223

DeSTIN. This means that when a centroid has been learned on one level, it can be224

experimentally ported to all the other levels, to see if it may be useful there too.225

To make the explanation of this mapping clear, we reiterate some DeSTIN basics226

in slightly different language:227

• A centroid on Level N is: a spatial arrangement (e.g. k ×k square lattice) of beliefs228

of Level N −1. (More generally it is a spatiotemporal arrangement of such beliefs,229

but we will ignore this for the moment).230

• A belief on Level N is: a probability distribution over centroids on Level N . For231

heuristic purposes one can think about this as a mixture of Gaussians, though this232

won’t always be the best model.233

• Thus, a belief on Level N is: a probability distribution over spatial (or more234

generally, spatiotemporal) arrangements of beliefs on Level N − 1.235

On Level 1, the role of centroids is played by simple k × k squares of pixels. Level 1236

beliefs are probability distributions over these small pixel squares. Level 2 centroids237

are hence spatial arrangements of probability distributions over small pixel-squares;238

and Level 2 beliefs are probability distributions over spatial arrangements of proba-239

bility distributions over small pixel-squares.240

A small pixel-square S may be mapped into a single pixel P via a heuristic241

algorithm such as:242

• if S has more black than white pixels, then P is black243

• is S has more white than black pixels, then P is white244

• if S has an equal number of white and black pixels, then use some heuristic. For245

instance if S is 4×4 you could look at the central 2 ×2 square and assign P to the246

color that occurs most often there. If that is also a tie, then you can just arbitrarily247

assign P to the color that occurs in the upper left corner of S.248

A probability distribution over small pixel-squares may then be mapped into a249

probability distribution over pixel values (B or W). A probability distribution over250

the two values B and W may be approximatively mapped into a single pixel value—251

the one that occurs most often in the distribution, with a random choice made to252

break a tie. This tells us how to map Level 2 beliefs into spatial arrangements of253

pixels; and thus, it tells us how to map Level 2 beliefs into Level 1 beliefs.254

But this tells us how to map Level N beliefs into Level N −1 beliefs, inductively.255

Remember, a Level N belief is a probability distribution (pdf for short) over spatial256

arrangements of beliefs on Level N − 1. For example: A Level 3 belief if a pdf over257

arrangements of Level 2 beliefs. But since we can map Level 2 beliefs into Level258

1 beliefs, this means we can map a Level 3 belief into a pdf over arrangements of259

Level 1 beliefs—which means we can map a Level 3 belief into a Level 2 belief, etc.260

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

180 10 Making DeSTIN Representationally Transparent

Of course, this also tells us how to map Level N centroids into Level N − 1261

centroids. A Level N centroid is a pdf over arrangements of Level N − 1 beliefs; a262

Level N − 1 centroid is a pdf over arrangements of Level N − 2 beliefs. But Level263

N − 1 beliefs can be mapped into Level N − 2 beliefs, so Level N centroids can be264

represented as pdfs over arrangements of Level N beliefs, and hence mapped into265

Level N − 1 centroids.266

In practice, one can implement this idea by moving from the bottom up. Given the267

mapping from Level 1 “centroids” to pixels, one can iterate through the Level 1 beliefs268

and identify which pixels they correspond to. Then one can iterate through the Level 2269

beliefs and identify which Level 1 beliefs they correspond to, etc. Each Level N belief270

can be explicitly linked to a corresponding level N −1 belief. Synchronously, as one271

moves up the hierarchy, Level N centroids can be explicitly linked to corresponding272

Level N − 1 centroids.273

Since there are in principle more possible Level N beliefs than Level N −1 beliefs,274

the mapping from level N beliefs to level N − 1 beliefs is many-to-one. This is a275

reason not to simply maintain a single centroid pool across levels. However, when a276

new centroid C is added to the Level N pool, it can be mapped into a Level N − 1277

centroid to be added to the Level N − 1 pool (if not there already). And, it can also278

be used to spawn a Level N + 1 centroid, drawn randomly from the set of possible279

Level N + 1 centroids that map into C .280

Also, note that it is possible to maintain a single centroid numbering system across281

levels, so that a reference like “centroid # 175” has only one meaning in an entire282

DeSTIN network, even though some of these centroid may only be meaningful above283

a certain level in the network.284

10.3.4 Rotation Invariant DeSTIN285

With a little more work, one can make DeSTIN rotation and shear invariant as well.1286

Considering rotation first:287

• When comparing an input A to a Level N node with a Level N centroid B, con-288

sider various rotations of A, and see which rotation gives the closest match.289

• When you match a centroid to an input observation-or-belief, record the rotation290

angle corresponding to the match.291

The second of these points implies the tweaked definitions292

• A centroid on Level N is: a spatial arrangement (e.g. k ×k square lattice) of beliefs293

of Level N − 1.294

• A belief on Level N is: a probability distribution over (angle, centroid) pairs on295

Level N .296

1 The basic idea in this section, in the context of rotation, is due to Jade O’Neill (private commu-
nication).

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.3 Uniform DeSTIN 181

From these it follows that a belief on Level N is: a probability distribution over297

(angle, spatial arrangement of beliefs) pairs on Level N − 1.298

An additional complexity here is that two different (angle, centroid) pairs (on the299

same level) could be (exactly or approximately) equal to each other. This necessitates300

an additional step of “centroid simplification”, in which ongoing checks are made to301

see if there are any two centroids C1, C2 on the same level so that: There exist angles302

A1, A2 so that (A1, C1) is very close to (A2, C2). In this case the two centroids may303

be merged into one.304

To apply these same ideas to shear, one may simply replace “rotation angle” in305

the above by “(rotation angle, shear factor) pair.”306

10.3.5 Temporal Perception307

Translation and scale invariant DeSTIN can be applied perfectly well if the inputs to308

DeSTIN, at level 1, are movies rather than static images. Then, in the simplest version,309

Level 1 consists of pixel cubes instead of pixel squares, etc. (the third dimension in310

the cube representing time). The scale invariance achieved by the methods described311

above would then be scale invariance in time as well as in space.312

In this context, one may enable rectangular shapes as well as cubes. That is, one313

can look at a Level N centroid consisting of m time-slices of a k × k arrangement of314

Level N −1 beliefs—without requiring that m = k This would make the centroid315

learning algorithm a little more complex, because at each level one would want to316

consider centroids with various values of m, from m = 1, ..., k (and potentially317

m > k also).318

10.4 Interpretation of DeSTIN’s Activity319

Uniform DeSTIN constitutes a substantial change in how DeSTIN does its business320

of recognizing patterns in the world—conceptually as well as technically. To expli-321

cate the meaning of these changes, we briefly present our favored interpretation of322

DeSTIN’s dynamics.323

The centroids in the DeSTIN library represent points in “spatial pattern space”, i.e.324

they represent exemplary spatial patterns. DeSTIN’s beliefs, as probability distribu-325

tions over centroids, represent guesses as to which of the exemplary spatial patterns326

are the best models of what’s currently being seen in a certain space-time region.327

This matching between observations and centroids might seem to be a simple328

matter of “nearest neighbor matching”; but the subtle point is, it’s not immediately329

obvious how to best measure the distance between observations and centroids. The330

optimal way of measuring distance is going to depend on context; that is to say, on331

the actual distribution of observations in the system’s real environment over time.332

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

182 10 Making DeSTIN Representationally Transparent

DeSTIN’s algorithm for calculating the belief at a node, based on the observation333

and centroids at that node plus the beliefs at other nearby nodes, is essentially a way334

of tweaking the distance measurement between observations and centroids, so that335

this measurement accounts for the context (the historical distribution of observa-336

tions). There are many possible ways of doing this tweaking. Ideally one could use337

probability theory explicitly, but that’s not always going to be computationally fea-338

sible, so heuristics may be valuable, and various versions of DeSTIN have contained339

various heuristics in this regard.340

The various ways of “uniformizing” DeSTIN described above (i.e. making its341

pattern recognition activity approximately invariant with respect to affine transfor-342

mations), don’t really affect this story—they just improve the algorithm’s ability343

to learn based on small amounts of data (and its rapidity at learning from data in344

general), by removing the need for the system to repeatedly re-learn transformed345

versions of the same patterns. So the uniformization just lets DeSTIN carry out its346

basic activity faster and using less data.347

10.4.1 DeSTIN’s Assumption of Hierarchical Decomposability348

Roughly speaking, DeSTIN will work well to the extent that: The average distance349

between each part of an actually observed spatial pattern, and the closest centroid350

pattern, is not too large (note: the choice of distance measure in this statement is351

potentially subtle). That is: DeSTIN’s set of centroids is supposed to provide a352

compact model of the probability distribution of spatial patterns appearing in the353

experience of the cognitive system of which DeSTIN is a part.354

DeSTIN’s effective functionality relies on the assumption that this probability dis-355

tribution is hierarchically decomposable—i.e. that the distribution of spatial patterns356

appearing over a k × k region can be compactly expressed, to a reasonable degree357

of approximation, as a spatial combination of the distributions of spatial patterns358

appearing over (k/4) × (k/4) regions. This assumption of hierarchical decompos-359

ability greatly simplifies the search problem that DeSTIN faces, but also restricts360

DeSTIN’s capability to deal with more general spatial patterns that are not easily361

hierarchically decomposable. However, the benefits of this approach seem to out-362

weigh the costs, given that visual patterns in the environments humans naturally363

encounter do seem (intuitively at least) to have this hierarchical property.364

10.4.2 Distance and Utility365

Above we noted that choice of distance measure involved in the assessment of366

DeSTIN’s effective functionality is subtle. Further above, we observed that the func-367

tion of DeSTIN’s belief assessment is basically to figure out the contextually best368

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.4 Interpretation of DeSTIN’s Activity 183

way to measure the distance between the observation and the centroids at a node.369

These comments were both getting at the same point.370

But what is the right measure of distance between two spatial patterns? Ultimately,371

the right measure is: the probability that the two patterns A and B can be used in the372

same way. That is: the system wants to identify observation A with centroid B if it373

has useful action-patterns involving B, and it can substitute A for B in these patterns374

without loss.375

This is difficult to calculate in general, though—a rough proxy, which it seems376

will often be acceptable, is to measure the distance between A and B in terms of both377

• the basic (extensional) distance between the physical patterns they embody (e.g.378

pixel by pixel distance)379

• the contextual (intensional) distance, i.e. the difference between the contexts in380

which they occur.381

Via enabling the belief in a node’s parent to play a role in modulating a certain node’s382

belief, DeSTIN’s core algorithm enables contextual/intensional factors to play a role383

in distance assessment.384

10.5 Benefits and Costs of Uniform DeSTIN385

We now summarize the main benefits and costs of Uniform DeSTIN a little more386

systematically. The key point we have made here regarding Uniform DeSTIN and387

representational transparency may be summarized as follows:388

• Define an “affine perceptual equivalence class” as a set of percepts that are equiv-389

alent to each other, or nearly so, under affine transformation. An example would390

be views of the same object from different perspectives or distances.391

• Suppose one has an embodied agent using DeSTIN for visual perception, whose392

perceptual stream tends to include a lot of reasonably large affine perceptual equiv-393

alence classes.394

• Then, supposing the “mechanics” of DeSTIN can be transferred to the Uniform395

DeSTIN case without dramatic loss of performance, Uniform DeSTIN should be396

able to recognize patterns based on many fewer examples than classic DeSTIN.397

As soon as Uniform DeSTIN has learned to recognize one element of a given affine398

perceptual equivalence class, it can recognize all of them. Whereas, classic DeSTIN399

must learn each element of the equivalence class separately. So, roughly speaking,400

the number of cases required for unsupervised training of Uniform DeSTIN will be401

less than that for classic DeSTIN, by a ratio equal to the average size of the affine402

perceptual equivalence classes in the agent’s perceptual stream.403

Counterbalancing this, we have the performance cost of comparing the input to404

each node against a much larger set of centroids (in Uniform DeSTIN as opposed405

to classic DeSTIN). However, if a cover tree or other efficient data structure is used,406

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

184 10 Making DeSTIN Representationally Transparent

this cost is not so onerous. The cost of nearest neighbor queries in a cover tree storing407

n items (in this case, n centroids) is O(c12logn), where the constant c represents the408

“intrinsic dimensionality” of the data; and in practice the cover tree search algorithm409

seems to perform quite well. So, the added time cost for online clustering in Uniform410

DeSTIN as opposed to DeSTIN, is a factor on the order of the log of the number of411

nodes in the DeSTIN tree. We believe this moderate added time cost is well worth412

paying, to gain a significant decrease in the number of training examples required413

for unsupervised learning.414

Beyond increases in computational cost, there is also the risk that the online clus-415

tering may just not work as well when one has so many clusters in each node. This is416

the sort of problem that can really only be identified, and dealt with, during extensive417

practice—since the performance of any clustering algorithm is largely determined by418

the specific distribution of the data it’s dealing with. It may be necessary to improve419

DeSTIN’s online clustering in some way to make Uniform DeSTIN work optimally,420

e.g. improving its ability to form clusters with markedly non-spherical shapes. This421

ties in to a point raised in Chap. 11—the possibility of supplementing traditional422

clusters with predicates learned by CogPrime, which may live inside DeSTIN nodes423

alongside centroids. Each such predicate in effect defines a (generally nonconvex)424

“cluster”.425

10.6 Imprecise Probability as a Tool for Linking426

CogPrime and DeSTIN427

One key aspect of vision processing is the ability to preferentially focus attention on428

certain positions within a perceived visual scene. In this section we describe a novel429

strategy for enabling this in a hybrid CogPrime/DeSTIN system, via use of imprecise430

probabilities. In fact the basic idea suggested here applies to any probabilistic sensory431

system, whether deep-learning-based or not, and whether oriented toward vision or432

some other sensory modality. However, for sake of concreteness, we will focus here433

on the case of DeSTIN/CogPrime integration.434

10.6.1 Visual Attention Focusing435

Since visual input streams contain vast amounts of data, it’s beneficial for a vision436

system to be able to focus its attention specifically on the most important parts of437

its input. Sometimes knowledge of what’s important will come from cognition and438

long-term memory, but sometimes it may come from mathematical heuristics applied439

to the visual data itself.440

In the human visual system the latter kind of “low level attention focusing” is441

achieved largely in the context of the eye changing its focus frequently, looking442

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_11

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.6 Imprecise Probability as a Tool 185

preferentially at certain positions in the scene [Cha09]. This works because the443

center of the eye corresponds to a greater density of neurons than the periphery.444

So for example, consider a computer vision algorithm like SIFT (Scale-Invariant445

Feature Extraction) [Low99], which (as shown in Fig. 10.1) mathematically isolates446

certain points in a visual scene as “keypoints” which are particularly important for447

identifying what the scene depicts (e.g. these may be corners, or easily identifiable448

curves in edges). The human eye, when looking at a scene, would probably spend a449

greater percentage of its time focusing on the SIFT keypoints than on random points450

in the image.451

The human visual system’s strategy for low-level attention focusing is obviously452

workable (at least in contexts similar to those in which the human eye evolved), but it’s453

also somewhat complex, requiring the use of subtle temporal processing to interpret454

even static scenes. We suggest here that there may be a simpler way to achieve the455

same thing, in the context of vision systems that are substantially probabilistic in456

nature, via using imprecise probabilities. The crux of the idea is to represent the457

most important data, e.g. keypoints, using imprecise probability values with greater458

confidence.459

Similarly, cognition-guided visual attention-focusing occurs when a mind’s460

broader knowledge of the world tells it that certain parts of the visual input may461

be more interesting to study than others. For example, in a picture of a person walk-462

ing down a dark street, the contours of the person may not be tremendously striking463

visually (according to SIFT or similar approaches); but even so, if the system as a464

whole knows that it’s looking at a person, it may decide to focus extra visual attention465

on anything person-like. This sort of cognition guided visual attention focusing, we466

suggest, may be achieved similarly to visual attention focusing guided on lower-467

level cues—by increasing the confidence of the imprecise probabilities associated468

with those aspects of the input that are judged more cognitively significant.469

10.6.2 Using Imprecise Probabilities to Guide470

Visual Attention Focusing471

Suppose one has a vision system that internally constructs probabilistic values cor-472

responding to small local regions in visual input (these could be pixels or voxels, or473

something a little larger), and then (perhaps via a complex process) assigns probabili-474

ties to different interpretations of the input based on combinations of these input-level475

probabilities. For this sort of vision system, one may be able to achieve focusing of476

attention via appropriately replacing the probabilities with imprecise probabilities.477

Such an approach may be especially interesting in hierarchical vision systems, that478

also involve the calculation of probabilities corresponding to larger regions of the479

visual input. Examples of the latter include deep learning based vision systems like480

HTM or DeSTIN, which construct nested hierarchies corresponding to larger and481

larger regions of the input space, and calculate probabilities associated with each of482

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

186 10 Making DeSTIN Representationally Transparent

Fig. 10.1 The SIFT algorithm finds keypoints in an image, i.e. localized features that are particularly
useful for identifying the objects in an image. The top row shows images that are matched against
the image in the middle row. The bottom-row image shows some of the keypoints used to perform
the matching (i.e. these keypoints demonstrate the same features in the top-row images and their
transformed middle-row counterparts). SIFT keypoints are identified via a staged filtering approach.
The first stage identifies key locations in scale space by looking for locations that are maxima or
minima of a difference-of-Gaussian function. Each point is used to generate a feature vector that
describes the local image region sampled relative to its scale-space coordinate frame. The features
achieve partial invariance to local variations, such as affine or 3D projections, by blurring image
gradient locations

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10.6 Imprecise Probability as a Tool 187

the regions on each level, based in part on the probabilities associated with other483

related regions.484

In this context, we now state the basic suggestion of the section:485

1. Assign higher confidence to the low-level probabilities that the vision system486

creates corresponding to the local visual regions that one wants to focus attention487

on (based on cues from visual preprocessing or cognitive guidance)488

2. Carry out the vision system’s processing using imprecise probabilities rather than489

single-number probabilities490

3. Wherever the vision system makes a decision based on “the most probable choice”491

from a number of possibilities, change the system to make a decision based on492

“the choice maximizing the product (expectation * confidence)”.493

10.6.3 Sketch of Application to DeSTIN494

Internally to DeSTIN, probabilities are assigned to clusters associated with local495

regions of the visual input. If a system such as SIFT is run as a preprocessor to496

DeSTIN, then those small regions corresponding to SIFT keypoints may be assumed497

semantically meaningful, and internal DeSTIN probabilities associated with them498

can be given a high confidence. A similar strategy may be taken if a cognitive system499

such as OpenCog is run together with DeSTIN, feeding DeSTIN information on500

which portions of a partially-processed image appear most cognitively relevant. The501

probabilistic calculations inside DeSTIN can be replaced with corresponding calcu-502

lations involving imprecise probabilities. And critically, there is a step in DeSTIN503

where, among a set of beliefs about the state in each region of an image (on each504

of a set of hierarchical levels), the one with the highest probability is selected. In505

accordance with the above recipe, this step should be modified to select the belief506

with the highest probability * confidence.507

10.6.3.1 Conceptual Justification508

What is the conceptual justification for this approach?509

One justification is obtained by assuming that each percept has a certain proba-510

bility of being erroneous, and those percepts that appear to more closely embody the511

semantic meaning of the visual scene are less likely to be erroneous. This follows512

conceptually from the assumption that the perceived world tends to be patterned and513

structured, so that being part of a statistically significant pattern is (perhaps weak)514

evidence of being real rather than artifactual. Under this assumption, the proposed515

approach will maximize the accuracy of the system’s judgments.516

A related justification is obtained by observing that this algorithmic approach517

follows from the consideration of the perceived world as mutable. Consider a518

vision system that has the capability to modify even the low-level percepts that it519

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

188 10 Making DeSTIN Representationally Transparent

intakes—i.e. to use what it thinks and knows, to modify what it sees. The human520

brain certainly has this potential [Cha09]. In this case, it will make sense for the521

system to place some constraints regarding which of its percepts it is more likely522

to modify. Confidence values semantically embody this—a higher confidence being523

sensibly assigned to percepts that the system considers should be less likely to be524

modified based on feedback from its higher (more cognitive) processing levels. In525

that case, a higher confidence should be given to those percepts that seem to more526

closely embody the semantic meaning of the visual scene—which is exactly what527

we’re suggesting here.528

10.6.3.2 Enabling Visual Attention Focusing in DeSTIN529

via Imprecise Probabilities530

We now refer back to the mathematical formulation of DeSTIN summarized in531

Sect. 5.3.1 of Chap. 5 in Vol. 5, in the context of which the application of imprecise532

probability based attention focusing to DeSTIN is almost immediate.533

The probabilities P(o|s) may be assigned greater or lesser confidence depending534

on the assessed semantic criticality of the observation o in question. So for instance,535

if one is using SIFT as a preprocessor to DeSTIN, then one may assign probabilities536

P(o|s) higher confidence if they correspond to observations o of SIFT keypoints,537

than if they do not.538

These confidence levels may then be propagated throughout DeSTIN’s proba-539

bilistic mathematics. For instance, if one were using Walley’s interval probabilities,540

then one could carry out the probabilistic equations using interval arithmetic.541

Finally, one wishes to replace Eq. 5.3.1.2 in Chap. 5 of Vol. 5 with542

c = arg max
s

(
(bp(s)).strength ∗ (bp(s)).confidence

)
, (10.1)543

or some similar variant. The effect of this is that hypotheses based on high-confidence544

observations are more likely to be chosen, which of course has a large impact on the545

dynamics of the DeSTIN network.546

319613_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 188 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-5

http://dx.doi.org/10.2991/978-94-6239-027-5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 10

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Bridging the Symbolic/Subsymbolic Gap

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract While it’s widely accepted that human beings carry out both symbolic and subsymbolic processing, as
integral parts of their general intelligence, the precise definition of “symbolic” versus “subsymbolic” is a
subtle issue, which different AI researchers will approach in different ways depending on their differing
overall perspectives on AI.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 11
Bridging the Symbolic/Subsymbolic Gap

11.1 Introduction0

While it’s widely accepted that human beings carry out both symbolic and1

subsymbolic processing, as integral parts of their general intelligence, the precise2

definition of “symbolic” versus “subsymbolic” is a subtle issue, which different AI3

researchers will approach in different ways depending on their differing overall per-4

spectives on AI. Nevertheless, the intuitive meaning of the concepts is commonly5

understood:6

• “subsymbolic” refers to things like pattern recognition in high-dimensional quan-7

titative sensory data, and real-time coordination of multiple actuators taking mul-8

tidimensional control signals.9

• “symbolic” refers to things like natural language grammar and (certain or uncer-10

tain) logical reasoning, that are naturally modeled in terms of manipulation of11

symbolic tokens in terms of particular (perhaps experientially learned) rules.12

Views on the relationship between these two aspects of intelligence in human and13

artificial cognition are quite diverse, including perspectives such as14

1. Symbolic representation and reasoning are the core of human-level intelligence;15

subsymbolic aspects of intelligence are of secondary importance and can be16

thought of as pre- or post-processors to symbolic representation and reasoning.17

2. Subsymbolic representation and learning are the core of human intelligence; sym-18

bolic aspects of intelligence19

(a) emerge from the subsymbolic aspects as needed; or,20

(b) arise via a relatively simple, thin layer on top of subsymbolic intelligence,21

that merely applies subsymbolic intelligence in a slightly different way.22

3. Symbolic and subsymbolic aspects of intelligence are best considered as different23

subsystems, which24

B. Goertzel et al., Engineering General Intelligence, Part 2, 189
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_11,
© Atlantis Press and the authors 2014

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

190 11 Bridging the Symbolic/Subsymbolic Gap

(a) have a significant degree of independent operation, but also need to coordi-25

nate closely together; or,26

(b) operate largely separately and can be mostly considered as discrete modules.27

In evolutionary terms, it is clear that subsymbolic intelligence came first, and that28

most of the human brain is concerned with the subsymbolic intelligence that humans29

share with other animals. However, this observation doesn’t have clear implications30

regarding the relationship between symbolic and subsymbolic intelligence in the31

context of everyday cognition.32AQ1

In the history of the AI field, the symbolic/subsymbolic distinction was sometimes33

aligned with the dichotomy between logic-based and rule-based AI systems (on the34

symbolic side) and neural networks (on the subsymbolic side) [PJ88b]. However, this35

dichotomy has become much blurrier in the last couple decades, with developments36

such as neural network models of language parsing [GH11] and logical reasoning37

[LBH10], and symbolic approaches to perception and action [SR04]. Integrative38

approaches have also become more common, with one of the major traditional sym-39

bolic AI systems, ACT-R, spawning a neural network version [LA93] with parallel40

structures and dynamics to the traditional explicitly symbolic version and a hybridiza-41

tion with a computational neuroscience model [JL08]; and another one, SOAR, incor-42

porating perception processing components as separate modules [Lai12]. The field43

of “neural-symbolic computing” has emerged, covering the emergence of symbolic44

rules from neural networks, and the hybridization of neural networks with explicitly45

symbolic systems [HH07].46

Our goal here is not to explore the numerous deep issues involved with the47

symbolic/subsymbolic dichotomy, but rather to describe the details of a particu-48

lar approach to symbolic/subsymbolic integration, inspired by Perspective 3(a) in49

the above list: the consideration of symbolic and subsymbolic aspects of intelligence50

as different subsystems, which have a significant degree of independent operation,51

but also need to coordinate closely together. We believe this kind of integration can52

serve a key role in the quest to create human-level general intelligence. The approach53

presented here is at the beginning rather than end of its practical implementation;54

what we are describing here is the initial design intention of a project in progress,55

which is sure to be revised in some respects as implementation and testing proceed.56

We will focus mainly on the tight integration of a subsymbolic system enabling57

gray-scale vision processing into a cognitive architecture with significant symbolic58

aspects, and will then briefly explain how the same ideas can be used for color vision,59

and multi-sensory and perception-action integration.60

The approach presented here begins with two separate AI systems, OpenCog61

(introduced in Chap. 6 of Vol. 5) and DeSTIN (introduced in Chap. 4 of Vol. 5)—62

both currently implemented in open-source software. Here are the relevant features63

of each as they pertain to our current effort of bridging the symbolic/subsymbolic64

gap::65

• OpenCog is centered on a “weighted, labeled hypergraph” knowledge repre-66

sentation called the Atomspace, and features a number of different, sophisti-67

cated cognitive algorithms acting on the Atomspace. Some of these cognitive68

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_6

http://dx.doi.org/10.2991/978-94-6239-027-0_4

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.1 Introduction 191

algorithms are heavily symbolic in focus (e.g. a probabilistic logic engine); others69

are more subsymbolic in nature (e.g. a neural net like system for allocating atten-70

tion and assigning credit). However, OpenCog in its current form cannot deal with71

high-dimensional perceptual input, nor with detailed real-time control of complex72

actuators. OpenCog is now being used to control intelligent characters in an exper-73

imental virtual world, where the perceptual inputs are the 3D coordinate locations74

of objects or small blocks; and the actions are movement commands like “step75

forward”, “turn head to the right”.76

• DeSTIN is a deep learning system consisting of a hierarchy of processing nodes,77

in which the nodes on higher levels correspond to larger regions of space-time, and78

each node carries out prediction regarding events in the space-time region to which79

it corresponds. Feedback and feedforward dynamics between nodes combine with80

the predictive activity within nodes, to create a complex nonlinear dynamical81

system whose state self-organizes to reflect the state of the world being perceived.82

However, the specifics of DeSTIN’s dynamics have been designed in what we83

consider a particularly powerful way, and the system has shown good results on84

small-scale test problems [KAR10]. So far DeSTIN has been utilized only for85

vision processing, but a similar proprietary system has been used for auditory data86

as well; and DeSTIN was designed to work together with an accompanying action87

hierarchy.88

These two systems were not originally designed to work together, but we will describe89

a method for achieving their tight integration via90

1. Modifying DeSTIN in several ways, so that91

(a) the patterns in its states over time will have more easily recognizable regu-92

larities93

(b) its nodes are able to scan their inputs not only for simple statistical patterns94

(DeSTIN “centroids”), but also for patterns recognized by routines supplied95

to it by an external source (e.g. another AI system such as OpenCog).96

2. Utilizing one of OpenCogPrime’s cognitive processes (the “Fishgram” frequent97

subhypergraph mining algorithm) to recognize patterns in sets of DeSTIN states,98

and then recording these patterns in OpenCogPrime’s Atomspace knowledge99

store.100

3. Utilizing OpenCogPrime’s other cognitive processes to abstract concepts and101

draw conclusions from the patterns recognized in DeSTIN states by Fishgram.102

4. Exporting the concepts and conclusions thus formed to DeSTIN, so that its nodes103

can explicitly scan for their presence in their inputs, thus allowing the results of104

symbolic cognition to explicitly guide subsymbolic perception.105

5. Creating an action hierarchy corresponding closely to DeSTIN’s perceptual hier-106

archy, and also corresponding to the actuators of a particular robot. This allows107

action learning to be done via an optimization approach ([LKP+05], [YKL+04]),108

where the optimization algorithm uses DeSTIN states corresponding to perceived109

actuator states as part of its inputs.110

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

192 11 Bridging the Symbolic/Subsymbolic Gap

The ideas presented here are compatible with those described in [Goe11a], but111

different in emphasis. That chapter described a strategy for integrating OpenCog112

and DeSTIN via creating an intermediate “semantic CSDLN” hierarchy to translate113

between OpenCog and DeSTIN, in both directions. In the approach suggested here,114

this semantic CSDLN hierarchy exists conceptually but not as a separate software115

object: it exists as the combination of116

• OpenCog predicates exported to DeSTIN and used alongside DeSTIN centroids,117

inside DeSTIN nodes.118

• OpenCog predicates living in the OpenCog knowledge repository (AtomSpace),119

and interconnected in a hierarchical way using OpenCog nodes and links (thus120

reflecting DeSTIN’s hierarchical structure within the AtomSpace).121

This hierarchical network of predicates, spanning the two software systems, plays122

the role of a semantic CSDLN as described in [Goe11a].123

11.2 Simplified OpenCog Workflow124

The dynamics inside an OpenCog system may be highly complex, defying sim-125

ple flowcharting, but from the point of view of OpenCog-DeSTIN integration, one126

important pattern of information flow through the system is as follows:127

1. Perceptions come into the Atomspace. In the current OpenCog system, these are128

provided via a proxy to the game engine where the OpenCog controlled character129

interacts. In an OpenCog-DeSTIN hybrid, these will be provided via DeSTIN.130

2. Hebbian learning builds HebbianLinks between perceptual Atoms representing131

percepts that have frequently co-occurred.132

3. PLN inference, concept blending and other methods act on these perceptual Atoms133

and their HebbianLinks, forming links between them and linking them to other134

Atoms stored in the Atomspace reflecting prior experience and generalizations135

therefrom.136

4. Attention allocation gives higher short and long term importance values to those137

Atoms that appear likely to be useful based on the links they have obtained.138

5. Based on the system’s current goals and subgoals (the latter learned from the top-139

level goals using PLN), and the goal-related links in the Atomspace, the OpenPsi140

mechanism triggers the PLN-based planner, which chooses a series of high-level141

actions that are judged likely to help the system achieve its goals in the current142

context.143

6. The chosen high-level actions are transformed into series of lower-level, directly144

executable actions. In the current OpenCog system, this is done by a set of145

hand-coded rules based on the specific mechanics of the game engine where146

the OpenCog controlled character interacts. In an OpenCog-DeSTIN hybrid, the147

lower-level action sequence will be chosen by an optimization method acting148

based on the motor control and perceptual hierarchies.149

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.2 Simplified OpenCog Workflow 193

This pattern of information flow omits numerous aspects of OpenCog cognitive150

dynamics, but gives the key parts of the picture in terms of the interaction of OpenCog151

cognition with perception and action. Most of the other aspects of the dynamics152

have to do with the interaction of multiple cognitive processes acting on the Atom-153

space, and the interaction between the Atomspace and several associated specialized154

memory stores, dealing with procedural, episodic, temporal and spatial aspects of155

knowledge. From the present point of view, these additional aspects may be viewed156

as part of Step 3 above, wrapped up in the phrase “and other methods act on these157

perceptual Atoms”. However, it’s worth noting that in order to act appropriately on158

perceptual Atoms, a lot of background cognition regarding more abstract conceptual159

Atoms (often generalized from previous perceptual Atoms) may be drawn on. This160

background inference incorporates both symbolic and subsymbolic aspects, but goes161

beyond the scope of the present discussion, as its particulars do not impinge on the162

particulars of DeSTIN-OpenCog integration.163

OpenCog also possesses a specialized facility for natural language comprehen-164

sion and generation [LGE10] [Goe11a], which may be viewed as a parallel percep-165

tion/action pathway, bypassing traditional human-like sense perception and dealing166

with text directly. Integrating OpenCogPrime’s current linguistics processes with167

DeSTIN-based auditory and visual processing is a deep and important topic, but one168

we will bypass here, for sake of brevity and because it’s not our current research169

priority.170

11.3 Integrating DeSTIN and OpenCog171

The integration of DeSTIN and OpenCog involves two key aspects:172

• recognition of patterns in sets of DeSTIN states, and exportation of these patterns173

into the OpenCog Atomspace174

• use of OpenCog-created concepts within DeSTIN nodes, alongside statistically-175

derived “centroids”.176

From here on, unless specified otherwise, when we mention “DeSTIN” we will refer177

to “Uniform DeSTIN” as presented in Chap. 10 and an extension of “classic DeSTIN”178

as defined in [ARK09].179

11.3.1 Mining Patterns from DeSTIN States180

The first step toward using OpenCog tools to mine patterns from sets of DeSTIN181

states, is to represent these states in Atom form in an appropriate way. A simple but182

workable approach, restricting attention for the moment to purely spatial patterns, is183

to use the six predicates:184

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_10

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

194 11 Bridging the Symbolic/Subsymbolic Gap

• hasCentroid(node N , int k)185

• has ParentCentroid(node N , int k)186

• has NorthNeighborCentroid(node N , int k)187

• hasSouthNeighborCentroid(node N , int k)188

• has East NeighborCentroid(node N , int k)189

• hasW est NeighborCentroid(node N , int k)190

For instance191

has NorthNeighborCentroid(N , 3)192

means that N ’s north neighbor has centroid #3193

One may consider also the predicates194

• has Parent (node N , Node M)195

• has NorthNeighbor(node N , Node M)196

• hasSouthNeighbor(node N , Node M)197

• has East Neighbor(node N , Node M)198

• hasW est Neighbor(node N , Node M)199

Now suppose we have a stored set of DeSTIN states, saved from the application of200

DeSTIN to multiple different inputs. What we want to find are predicates P that are201

conjunctions of instances of the above 10 predicates, which occur frequently in the202

stored set of DeSTIN states. A simple example of such a predicate would be the203

conjunction of204

• has NorthNeighbor($N , $M)205

• has ParentCentroid($N , 5)206

• has ParentCentroid($M, 5)207

• has NorthNeighborCentroid($N , 6)208

• hasW est NeighborCentroid($M, 4)209

This predicate could be evaluated at any pair of nodes ($N , $M) on the same DeSTIN210

level. If it is true for atypically many of these pairs, then it’s a “frequent pattern”,211

and should be detected and stored.212

OpenCogPrime’s pattern mining component, Fishgram, exists precisely for the213

purpose of mining this sort of conjunction from sets of relationships that are stored214

in the Atomspace. It may be applied to this problem as follows:215

• Translate each DeSTIN state into a set of relationships drawn from: hasNorth-216

Neighbor, hasSouthNeighbor, hasEastNeighbor, hasWestNeighbor, hasCentroid,217

hasParent.218

• Import these relationships, describing each DeSTIN state, into the OpenCog Atom-219

space.220

• Run pattern mining on this AtomSpace.221

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.3 Integrating DeSTIN and OpenCog 195

11.3.2 Probabilistic Inference on Mined Hypergraphs222

Patterns mined from DeSTIN states can then be reasoned on by OpenCogPrime’s223

PLN inference engine, allowing analogy and generalization.224 AQ2

Suppose centroids 5 and 617 are estimated to be similar—either via DeSTIN’s225

built-in similarity metric, or, more interestingly via OpenCog inference on the Atom226

representations of these centroids. As an example of the latter, consider: 5 could227

represent a person’s nose and 617 could represent a rabbit’s nose. In this case, DeSTIN228

might not judge the two centroids particularly similar on a purely visual level, but,229

OpenCog may know that the images corresponding to both of these centroids are are230

called “noses” (e.g. perhaps via noticing people indicate these images in association231

with the word “nose”), and may thus infer (using a simple chain of PLN inferences)232

that these centroids seem probabilistically similar.233

If 5 and 617 are estimated to be similar, then a predicate like234

ANDLink235

EvaluationLink236

hasNorthNeighbor237

ListLink $N $M238

EvaluationLink239

hasParentCentroid240

ListLink $N 5241

EvaluationLink242

hasParentCentroid243

ListLink $M 5244

EvaluationLink245

hasNorthNeighborCentroid246

ListLink $N 6247

EvaluationLink248

hasWestNeighborCentroid249

ListLink $M 4250

mined from DeSTIN states, could be extended via PLN analogical reasoning to251

ANDLink252

EvaluationLink253

hasNorthNeighbor254

ListLink $N $M255

EvaluationLink256

hasParentCentroid257

ListLink $N 617258

EvaluationLink259

hasParentCentroid260

ListLink $M 617261

EvaluationLink262

hasNorthNeighborCentroid263

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

196 11 Bridging the Symbolic/Subsymbolic Gap

ListLink $N 6264

EvaluationLink265

hasWestNeighborCentroid266

ListLink $M 4267

11.3.3 Insertion of OpenCog-Learned Predicates268

into DeSTIN’s Pattern Library269

Suppose one has used Fishgram, as described in the earlier part of this chapter, to270

recognize predicates embodying frequent or surprising patterns in a set of DeSTIN271

states or state-sequences. The next natural step is to add these frequent or surprising272

patterns to DeSTIN’s pattern library, so that the pattern library contains not only clas-273

sic DeSTIN centroids, but also these corresponding “image grammar” style patterns.274

Then, when a new input comes into a DeSTIN node, in addition to being compared275

to the centroids at the node, it can be fed as input to the predicates associated with276

the node.277

What is the advantage of this approach, compared to DeSTIN without these predi-278

cates? The capability for more compact representation of a variety of spatial patterns.279

In many cases, a spatial pattern that would require a large number of DeSTIN cen-280

troids to represent, can be represented by a single, fairly compact predicate. It is281

an open question whether these sorts of predicates are really critical for human-like282

vision processing. However, our intuition is that they do have a role in human as283

well as machine vision. In essence, DeSTIN is based on a fancy version of nearest-284

neighbor search, applied in a clever way on multiple levels of a hierarchy, using285

context-savvy probabilities to bias the matching. But we suspect there are many286

visual patterns that are more compactly and intuitively represented using a more287

flexible language, such as OpenCog predicates formed by combining elementary288

predicates involving appropriate spatial and temporal relations.289

For example, consider the archetypal spatial pattern of a face as: either two eyes290

that are next to each other, or sunglasses, above a nose, which is in turn above a291

mouth. (This is an oversimplified toy example, but we’re positing it for illustration292

only. The same point applies to more complex and realistic patterns.) One could293

represent this in OpenCogPrime’s Atom language as something like:294

AND295

InheritanceLink N B_nose296

InheritanceLink M B_mouth297

EvaluationLink298

above299

ListLink E N300

EvaluationLink301

above302

ListLink N M303

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.3 Integrating DeSTIN and OpenCog 197

OR304

AND305

MemberLink E1 E306

MemberLink E2 E307

EvaluationLink308

next_to309

ListLink E1 E2310

InheritanceLink E1 B_eye311

AND312

InheritanceLink E B_sunglasses313

where e.g. B_eye is a DeSTIN belief that corresponds roughly to recognition of the314

spatial pattern of a human eye. To represent this using ordinary DeSTIN centroids,315

one couldn’t represent the OR explicitly; instead one would need to split it into316

two different sets of centroids, corresponding to the eye case and the sunglasses317

case—unless the DeSTIN pattern library contained a belief corresponding to “eyes318

or sunglasses”. But the question then becomes: how would classic DeSTIN actually319

learn a belief like this? In the suggested architecture, pattern mining on the database320

of DeSTIN states is proposed as an algorithm for learning such beliefs.321

This sort of predicate-enhanced DeSTIN will have advantages over the traditional322

version, only if the actual distribution of images observed by the system contains323

many (reasonably high probability) images modeled accurately by predicates involv-324

ing disjunctions and/or negations as well as conjunctions. If the system’s perceived325

world is simpler than this, then good old DeSTIN will work just as well, and the326

OpenCog-learned predicates are a needless complication.327

Without these sorts of predicates, how might DeSTIN be extended to include328

beliefs like “eyes or sunglasses”? One way would be to couple DeSTIN with a rein-329

forcement learning subsystem, that reinforced the creation of beliefs that were useful330

for the system as a whole. If reasoning in terms of faces (independent of whether they331

have eyes or sunglasses) got the system reward, presumably it could learn to form the332

concept “eyes or sunglasses”. We believe this would also be a workable approach,333

but that given the strengths and weaknesses of contemporary computer hardware,334

the proposed DeSTIN-OpenCog approach will prove considerably simpler and more335

effective.336

11.4 Multisensory Integration, and Perception-Action337

Integration338

In Chap. 10 we have briefly indicated how DeSTIN could be extended beyond339

vision to handle other senses such as audition and touch. If one had multiple340

perception hierarchies corresponding to multiple senses, the easiest way to inte-341

grate them within an OpenCog context would be to use OpenCog as the com-342

munication nexus—representing DeSTIN centroids in the various modality-specific343

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_10

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

198 11 Bridging the Symbolic/Subsymbolic Gap

hierarchies as OpenCog Atoms (PerceptualCentroidNodes), and building Hebbian-344

Links in OpenCogPrime’s Atomspace between these PerceptualCentroidNodes as345

appropriate based on their association. So for instance the sound of a person’s foot-346

steps would correspond to a certain belief (probability distribution over centroids)347

in the auditory DeSTIN network, and the sight of a person’s feet stepping would348

correspond to a certain belief (probability distribution over centroids) in the visual349

DeSTIN network; and the OpenCog Atomspace would contain links between the sets350

of centroids assigned high weights between these two belief distributions. Importance351

spreading between these various PerceptualCentroidNodes would cause a dynamic352

wherein seeing feet stepping would bias the system to think it was hearing footsteps,353

and hearing footsteps would bias it to think it was seeing feet stepping.354

And, suppose there are similarities between the belief distributions for the visual355

appearance of dogs, and the visual appearance of cats. Via the intermediary of the356

Atomspace, this would bias the auditory and haptic DeSTIN hierarchies to assume357

a similarity between the auditory and haptic characteristics of dogs, and the analo-358

gous characteristics of cats. Because: PLN analogical reasoning would extrapolate359

from, e.g.360

• HebbianLinks joining cat-related visual PerceptualCentroidNodes and dog-related361

visual PerceptualCentroidNodes362

• HebbianLinks joining cat-related visual PerceptualCentroidNodes to cat-related363

haptic PerceptualCentroidNodes; and others joining dog-related visual Perceptu-364

alCentroidNodes to dog-related haptic PerceptualCentroidNodes365

to yield HebbianLinks joining cat-related haptic PerceptualCentroidNodes and dog-366

related haptic PerceptualCentroidNodes. This sort of reasoning would then cause the367

system DeSTIN to, for example, upon touching a cat, vaguely expect to maybe hear368

dog-like things. This sort of simple analogical reasoning will be right sometimes and369

wrong sometimes—a cat walking sounds a fair bit like a dog walking, and cat and370

dog growls sound fairly similar, but a cat meowing doesn’t sound that much like a371

dog barking. More refined inferences of the same basic sort may be used to get the372

details right as the system explores and understands the world more accurately.373

11.4.1 Perception-Action Integration374

While experimentation with DeSTIN has so far been restricted to perception process-375

ing, the system was designed from the beginning with robotics applications in376

mind, involving integration of perception with action and reinforcement learning.377

As OpenCog already handles reinforcement learning on a high level (via OpenPsi),378

our approach to robot control using DeSTIN and OpenCog involves creating a control379

hierarchy parallel to DeSTIN’s perceptual hierarchy, and doing motor learning using380

optimization algorithms guided by reinforcement signals delivered from OpenPsi381

and incorporating DeSTIN perceptual states as part of their input information.382

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.4 Multisensory Integration, and Perception-Action Integration 199

Our initial research goal, where action is concerned, is not to equal the best383

purely control-theoretic algorithms at fine-grained control of robots carrying out384

specialized tasks, but rather to achieve basic perception/control/cognition integration385

in the rough manner of a young human child. A two year old child is not particularly386

well coordinated, but is capable of coordinating actions involving multiple body387

parts using an integration of perception and action with unconscious and deliberative388

reasoning. Current robots, in some cases, can carry out specialized actions with great389

accuracy, but they lack this sort of integration, and thus generally have difficulty390

effectively carrying out actions in unforeseen environments and circumstances.391

We will create an action hierarchy with nodes corresponding to different parts of392

the robot body, where e.g. the node corresponding to an arm would have child nodes393

corresponding to a shoulder, elbow, wrist and hand; and the node corresponding to a394

hand would have child nodes corresponding to the fingers of the hand; etc. Physical395

self-perception is then achieved by creating a DeSTIN “action-perception” hierarchy396

with nodes corresponding to the states of body components. In the simplest case this397

means the lowest-level nodes will correspond to individual servomotors, and their398

inputs will be numerical vectors characterizing servomotor states. If one is dealing399

with a robot endowed with haptic technology, e.g. Syntouch [FL12] fingertips, then400

numerical vectors characterizing haptic inputs may be used alongside these.401

The configuration space of an action-perception node, corresponding to the402

degrees of freedom of the servomotors of the body part the node represents, may403

be approximated by a set of “centroid” vectors. When an action is learned by the404

optimization method used for this purpose, this involves movements of the servomo-405

tors corresponding to many different nodes, and thus creates a series of “configuration406

vectors” in each node. These configuration vector series may be subjected to online407

clustering, similar to percepts in a DeSTIN perceptual hierarchy. The result is a408

library of “codewords”, corresponding to discrete trajectories of movement, associ-409

ated with each node. The libraries may be shared by identical body parts (e.g. shared410

among legs, shared among fingers), but will be distinct otherwise. Each coordinated411

whole-body action thus results in a series of (node, centroid) pairs, which may be412

mined for patterns, similarly to the perception case.413

The set of predicates needed to characterize states in this action-perception hier-414

archy is simpler than the one described for visual perception above; here one requires415

only416

• hasCentroid(node N , int k)417

• has ParentCentroid(node N , int k)418

• has Parent (node N , Node M)419

• hasSibling(node N , Node M)420

and most of the patterns will involve specific nodes rather than node variables. The421

different nodes in a DeSTIN vision hierarchy are more interchangeable (in terms of422

their involvement in various patterns) than, say, a leg and a finger.423

In a pure DeSTIN implementation, the visual and action-perception hierarchies424

would be directly linked. In the context of OpenCog integration, it is simplest to425

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

200 11 Bridging the Symbolic/Subsymbolic Gap

link the two via OpenCog, in a sense using cognition as a bridge between action and426

perception. It is unclear whether this strategy will be sufficient in the long run, but we427

believe it will be more than adequate for experimentation with robotic perceptual-428

motor coordination in a variety of everyday tasks. OpenCogPrime’s Hebbian learning429

process can be used to find common associations between action-perception states430

and visual-perception states, via mining a data store containing time-stamped state431

records from both hierarchies.432

Importance spreading along the HebbianLinks learned in this way can then be433

used to bias the weights in the belief states of the nodes in both hierarchies. So,434

for example, the action-perception patterns related to clenching the fist, would be435

Hebbianly correlated with the visual-perception patterns related to seeing a clenched436

fist. When a clenched fist was perceived via servomotor data, importance spread-437

ing would increase the weighting of visual patterns corresponding to clenched fists,438

within the visual hierarchy. When a clenched fist was perceived via visual data,439

importance spreading would increase the weighting of servomotor data patterns cor-440

responding to clenched fists, within the action-perception hierarchy.441

11.4.2 Thought-Experiment: Eye-Hand Coordination442

For example, how would DeSTIN-OpenCog integration as described here carry out a443

simple task of eye-hand coordination? Of course the details of such a feat, as actually444

achieved, would be too intricate to describe in a brief space, but it still is meaningful445

to describe the basic ideas. Consider the case of a robot picking up a block, in plain446

sight immediately in front of the robot, via pinching it between two fingers and then447

lifting it. In this case,448

• The visual scene, including the block, is perceived by DeSTIN; and appropriate449

patterns in various DeSTIN nodes are formed.450

• Predicates corresponding to the distribution of patterns among DeSTIN nodes are451

activated and exported to the OpenCog Atomspace.452

• Recognition that a block is present is carried out, either by453

– PLN inference within OpenCog, drawing the conclusion that a block is present454

from the exported predicates, using ImplicationLinks comprising a working455

definition of a “block”.456

– A predicate comprising the definition of “block”, previously imported into457

DeSTIN from OpenCog and utilized within DeSTIN nodes as a basic pattern458

to be scanned for. This option would obtain only if the system had perceived459

many blocks in the past, justifying the automation of block recognition within460

the perceptual hierarchy.461

• OpenCog, motivated by one of its higher-level goals, chooses “picking up the462

block” as subgoal. So it allocates effort to finding a procedure whose execution, in463

the current context, has a reasonable likelihood of achieving the goal of picking up464

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.4 Multisensory Integration, and Perception-Action Integration 201

the block. For instance, the goal could be curiosity (which might make the robot465

want to see what lies under the block), or the desire to please the agent’s human466

teacher (in case the human teacher likes presents, and will reward the robot for467

giving it a block as a present), etc.468

• OpenCog, based on its experience, uses PLN to reason that “grabbing the block”469

is a subgoal of “picking up the block”.470

• OpenCog utilizes a set of predicates corresponding to the desired state of “grabbing471

the the block” as a target for an optimization algorithm, designed to figure out a472

series of servomotor actions that will move the robot’s body from the current state473

to the target state. This is a relatively straightforward control theory problem.474

• Once the chosen series of servomotor actions has been executed, the robot has475

its fingers poised around the block, ready to pick it up. At this point, the action-476

perception hierarchy perceives what is happening in the fingers. If the block is477

really being grabbed properly, then the fingers are reporting some force, due to478

the feeling of grabbing the block (haptic input is another possibility and would be479

treated similarly, but we will leave that aside for now). Importance spreads from480

these action-perception patterns into the Atomspace, and back down into the visual481

perception hierarchy, stimulating concepts and percepts related to “something is482

being grabbed by the fingers”.483

• If the fingers aren’t receiving enough force, because the agent is actually only484

poking the block with one finger and grabbing the air with another finder, then the485

“something is being grabbed by the fingers” stimulation doesn’t happen, and the486

agent is less sure it’s actually grabbing anything. In that case it may withdraw its487

hand a bit, so that it can more easily assess its hand’s state visually, and try the488

optimization-based movement planning again.489

• Once the robot estimates the goal of grabbing the block has been successfully490

achieved, it proceeds to the next sub-subgoal, and asks the action-sequence opti-491

mizer to find a sequence of movements that will likely cause the predicates corre-492

sponding to “hold the block up” to obtain. It then executes this movement series493

and picks the block up in the air.494

This simple example is a far cry from the perceptual-motor coordination involved in495

doing embroidery, juggling or serving a tennis ball. But we believe it illustrates, in496

a simple way, the same basic cognitive structures and dynamics used in these more497

complex instances.498

11.5 A Practical Example: Using Subtree Mining499

to Bridge the Gap Between DeSTIN and PLN500

In this section we describe some relatively simple practical experiments we have run,501

exploring the general ideas described above. The core idea of these experiments is502

to apply Yun Chi’s Frequent Subtree Mining software [CXYM05]1 to mine frequent503

1 available for download at http://www.nec-labs.com/~ychi/publication/software.html.

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

http://www.nec-labs.com/~ychi/publication/software.html

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

202 11 Bridging the Symbolic/Subsymbolic Gap

patterns from a data-store of trees representing DeSTIN states. In this application,504

each frequent subtree represents a “common visual pattern”. These patterns may505

then be reasoned about using PLN. This approach may also be extended to include506

additional quality metrics besides frequency, e.g. interaction information [Bel03]507

which lets one measure how “surprising” a subtree is.508

Figure 11.1 illustrates the overall architecture into which the use of frequent509

subtree mining to bridge DeSTIN and PLN is intended to fit. This architecture is not510

yet fully implemented, but is a straightforward extension of the current OpenCog511

architecture for processing data from game worlds [GEA08], and is scheduled for512

implementation later in 2013 in the course of a funded project involving the use of513

DeSTIN and OpenCog for humanoid robot control.514

The components intervening between DeSTIN and OpenCog, in this architecture,515

are:516

• DeSTIN State DB: Stores all DeSTIN states the system has experienced, indexed517

by time of occurrence.518

• Frequent Subtree Miner: Recognizes frequent subtrees in the database of519

DeSTIN states, and can also filter the frequent subtrees by other criteria such520

as information-theoretic surprisingness. These subtrees may sometimes span mul-521

tiple time points.522

• Frequent Subtree Recognizer: Scans DeSTIN output, and recognizes frequent523

subtrees therein. These subtrees are the high level “visual patterns” that make their524

way from DeSTIN to OpenCog.525

Fig. 11.1 Graphical depiction of the architecture for DeSTIN/OpenCog integration using frequent
subtree mining as a bridge. Semantic feedback is not yet implemented; and sophisticated process-
ing of DeSTIN or other visual input is not yet handled by OpenCog’s Perception Collector. The
experiments presented here utilized a simplified, preliminary version of the architecture

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.5 A Practical Example 203

• Perception Collector: Linearly normalizes the spatial coordinates associated with526

its input subtrees, to compensate for movement of the camera. Filters out percep-527

tions that didn’t change recently (e.g. a static white wall), so that only new visual528

information is passed along to OpenCog. Translates the subtrees into Scheme files529

representing OpenCog logical Atoms.530

• Experience DB: Stores all the normalized subtrees that have actually made their531

way into OpenCog.532

• Semantic Feedback: Allows the semantic associations OpenCog makes to a sub-533

tree, to be fed back into DeSTIN as additional inputs to the nodes involved in the534

subtree. This allows perception to make use of cognitive information.535

11.5.1 The Importance of Semantic Feedback536

One aspect of the above architecture not yet implemented, but worthy of note, is537

semantic feedback. Without the semantic feedback, we expect to be able to emulate538

human object and event recognition insofar as they are done by the human brain539

in a span of less than 500 ms or so. In this time frame, the brain cannot do much540

sophisticated cognitive feedback, and processes perceptual data in an essentially541

feedforward manner. On the other hand, properly tuned semantic feedback along542

with appropriate symbolic reasoning in OpenCog, may allow us to emulate human543

object and event recognition as the human brain does it when it has more time544

available, and can use its cognitive understanding to guide vision processing.545

A simple example of this sort of symbolic reasoning is analogical inference. Given546

a visual scene, OpenCog can reason about what the robot has seen in similar situations547

before, where its notion of “similarity” draws not only on visual cues but on other548

contextual information: what time it is, what else is in the room (even if not currently549

visible), who has been seen in the room recently, etc.550

For instance, recognizing familiar objects that are largely occluded and in dim551

light, may be something requiring semantic feedback, and not achievable via the552

feedforward dynamics alone. This can be tested in a robot vision context via showing553

the robot various objects and events in various conditions of lighting and occlusion,554

and observing its capability at recognizing the objects and events with and without555

semantic feedback, in each of the conditions.556

If the robot sees an occluded object in a half-dark area on a desk, and it knows557

that a woman was recently sitting at that desk and then got up and left the room, its558

symbolic analogical inference may make it more likely to conclude that the object is559

a purse. Without this symbolic inference, it might not be able to recognize the object560

as a purse based on bottom-up visual clues alone.561

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

204 11 Bridging the Symbolic/Subsymbolic Gap

11.6 Some Simple Experiments with Letters562

To illustrate the above ideas in an elementary context, we now present results of an563

experiment using DeSTIN, subtree mining and PLN together to recognize patterns564

among a handful of black and white images comprising simple letter-forms. This is565

a “toy” example, but exemplifies the key processes reviewed above. During the next566

year we will be working on deploying these same processes in the context of robot567

vision.568

11.6.1 Mining Subtrees from DeSTIN States Induced569

via Observing Letterforms570

Figure 11.2 shows the 7 input images utilized; Fig. 11.3 shows the centroids found on571

each of the layers of DeSTIN (note that translation invariance was enabled for these572

experiments); and Fig. 11.4 shows the most frequent subtrees recognized among the573

DeSTIN states induced by observing the 7 input images.574

(a) (b)

(c) (d) (e)

(f) (g)

Fig. 11.2 Simple input images fed to DeSTIN for the experiment reported here. a Image 0,
b Image 1, c Image 2, d Image 3, e Image 4, f Image 5, g Image 6

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.6 Some Simple Experiments with Letters 205

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 11.3 Example visualization of the centroids on the 7 layers of the DeSTIN network. Each
picture shows multiple centroids at the corresponding level. Higher level centroids are visualized
as p’th power averages of lower level centroids, with p = 4. a Layer 0, b Layer 1, c Layer 2,
d Layer 3, e Layer 4, f Layer 5, g Layer 6, h Layer 7

The centroid images shown in Fig. 11.3 were generated as follows. For the bottom575

layer, centroids were directly represented as 4 × 4 grayscale images (ignoring the576

previous and parent belief sections of the centroid). For higher-level centroids, we577

proceeded as follows:578

• Divide the centroid into 4 sub-arrays. An image is generated for each sub-array by579

treating the elements of the sub-array as weights in a weighted sum of the child580

centroid images. This weighted sum is used superpose/blend the child images into581

1 image.582

• Then these 4 sub-array images are combined in a square to create the whole centroid583

image.584

• Repeat the process recursively, till one reaches the top level.585

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

206 11 Bridging the Symbolic/Subsymbolic Gap

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 11.4 Example subtrees extracted from the set of DeSTIN states corresponding to the input
images given above. Each subtree is associated with a triple (level, centroid, position). The position
is one of the four level n squares making up a level n − 1 centroid. In this simple exmaple,
all these frequent subtrees happen to be from Level 6, but this is not generally the case for
more complex images. some of the centroids look like whitespace, but this is because a com-
mon region of whitespace was recognized among multiple input images. a Subtree 0: (L6, C2, P0),
b Subtree 1: (L6, C12, P0), c Subtree 2: (L6, C19, P0), d Subtree 3: (L6, C12, P1), e Subtree 4:
(L6, C13, P1), f Subtree 5: (L6, C1, P2), g Subtree 6: (L6, C5, P2), h Subtree 7: (L6, C20, P3)

The weighted averaging used a p-power approach, i.e. replacing each weight wi with586

w
p
i /(w

p
1 + · · · + w

p
n) for a given exponent p > 0. The parameter p toggles how587

much attention is paid to nearby versus distant centroids. In generating Fig. 11.3 we588

used p = 4.589

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.6 Some Simple Experiments with Letters 207

The relation between subtrees and input images, in this example, was directly590

given via the subtree miner as:591

tree #0 matches input image: 4 6592

tree #1 matches input image: 1 2593

tree #2 matches input image: 3 5594

tree #3 matches input image: 0 1 2 4595

tree #4 matches input image: 3 5596

tree #5 matches input image: 4 5597

tree #6 matches input image: 1 2598

tree #7 matches input image: 0 3 4599

11.6.2 Mining Subtrees from DeSTIN States Induced600

via Observing Letterforms601

The subtree-image relationships listed above may be most directly expressed in PLN602

syntax/semantics via603

Evaluation contained_in (Tree0 Image4)604

Evaluation contained_in (Tree0 Image6)605

Evaluation contained_in (Tree1 Image1)606

Evaluation contained_in (Tree1 Image2)607

Evaluation contained_in (Tree2 Image3)608

Evaluation contained_in (Tree2 Image5)609

Evaluation contained_in (Tree3 Image0)610

Evaluation contained_in (Tree3 Image1)611

Evaluation contained_in (Tree3 Image2)612

Evaluation contained_in (Tree3 Image4)613

Evaluation contained_in (Tree4 Image3)614

Evaluation contained_in (Tree4 Image5)615

Evaluation contained_in (Tree5 Image4)616

Evaluation contained_in (Tree5 Image5)617

Evaluation contained_in (Tree6 Image1)618

Evaluation contained_in (Tree6 Image2)619

Evaluation contained_in (Tree7 Image0)620

Evaluation contained_in (Tree7 Image3)621

Evaluation contained_in (Tree7 Image4)622

But while this is a perfectly natural way to import such relationships into OpenCog,623

it is not necessarily the most convenient form for PLN to use to manipulate them.624

For some useful inference chains, it is most convenient for PLN to translate these625

into the more concise form626

Inheritance Image4 hasTree0627

Inheritance Image6 hasTree0628

...629

Inheritance Image3 hasTree7630

Inheritance Image4 hasTree7631

PLN performs the translation from Evaluation into Inheritance form via the inference632

steps633

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

208 11 Bridging the Symbolic/Subsymbolic Gap

Evaluation contains (Tree0 Image4)634

==> \\ definition of SatisfyingSet635

Member Image4 (SatisfyingSet (Evaluation636

contains(Tree0 *)))637

== \\ definition of hasTree0638

Member Image4 hasTree0639

==> \\ M2I , Member to Inheritance inference640

Inheritance Image4 hasTree0641

Finally, given the Inheritance relations listed above, PLN can draw some simple642

conclusions fairly directly, such as:643

Similarity Image1 Image2 <1, .375>644

Similarity Image3 Image5 <.5, .444>645

The PLN truth values above are given in the form “ <strength, confidence>”, where646

strength is in this case effectively a probability, and confidence represents a scaling647

into the interval [0, 1] of the amount of evidence on which that strength value is648

based. The confidence is calculated using a “personality parameter” of k = 5 (k may649

vary between 1 and ∞, with higher numbers indicating less value attached to each650

individual piece of evidence. For example the truth value strength of 1 attached to651

“Similarity Image1 Image2” indicates that according to the evidence provided by652

these subtrees (and ignoring all other evidence), Image1 and Image2 are the same.653

Of course they are not the same—one is a C and another is an O—and once more654

evidence is given to PLN, it will decrease the strength value of this SimilarityLink.655

The confidence value of .375 indicates that PLN is not very certain of the sameness656

of these two letters.657

What conclusion can we draw from this toy example, practically speaking? The658

conclusions drawn by the PLN system are not useful in this case—PLN thinks C and659

O are the same, as a provisional hypothesis based on this data. But this is not because660

DeSTIN and PLN are stupid. Rather, it’s because they have not been fed enough data.661

The hypothesis that a C is an occluded O is actually reasonably intelligent. If we662

fed these same systems many more pictures, then the subtree miner would recognize663

many more frequent subtrees in the larger corpus of DeSTIN states, and PLN would664

have a lot more information to go on, and would draw more conmmonsensically665

clever conclusions. We will explore this in our future work.666

We present this toy example not as a useful practical achievement, but rather as a667

very simple illustration of the process via which subsymbolic knowledge (as in the668

states of the DeSTIN deep learning architecture) can be mapped into abstract logical669

knowledge, which can then be reasoned on via a probabilistic logical reasoning engine670

(such as PLN). We believe that the same process illustrated so simplistically in this671

example, will also generalize to more realistic and interesting examples, involving672

more complex images and inferences. The integration of DeSTIN and OpenCog673

described here is being pursued in the context of a project aimed at the creation of674

a humanoid robot capable of perceiving interpreting and acting in its environment675

with a high level of general intelligence.676

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

11.7 Conclusion 209

11.7 Conclusion677

We have described, at a high level, a novel approach to bridging the symbolic/678

subsymbolic gap, via very tightly integrating DeSTIN with OpenCog. We don’t679

claim that this is the only way to bridge the gap, but we do believe it is a viable680

way. Given the existing DeSTIN and OpenCog designs and codebases, the execution681

of the ideas outlined here seems to be relatively straightforward, falling closer to682

the category of “advanced development” than that of blue-sky research. However,683

fine-tuning all the details of the approach will surely require substantial effort.684

While we have focused on robotics applications here, the basic ideas described685

could be implemented and evaluated in a variety of other contexts as well, for example686

the identification of objects and events in videos, or intelligent video summarization.687

Our interests are broad, however, we feel that robotics is the best place to start—688

partly due to a general intuition regarding the deep coupling between human-like689

intelligence and human-like embodiment; and partly due to a more specific intuition690

regarding the value of action for perception, as reflected in Heinz von Foerster’s691

dictum “if you want to see, learn how to act”. We suspect there are important cognitive692

reasons why perception in the human brain centrally involves premotor regions.693

The coupling of a perceptual deep learning hierarchy and a symbolic AI system694

doesn’t intrinsically solve the combinatorial explosion problem intrinsic in looking695

for potential conceptual patterns in masses of perceptual data. However, a system with696

particular goals and the desire to act in such a way as to achieve them, possesses a very697

natural heuristic for pruning the space of possible perceptual/conceptual patterns. It698

allows the mind to focus in on those percepts and concepts that are useful for action.699

Of course, there are other ways besides integrating action to enforce effective pruning,700

but the integration of perception and action has a variety of desirable properties that701

might be difficult to emulate via other methods, such as the natural alignment of the702

hierarchical structures of action and reward with that of perception.703

The outcome of any complex research project is difficult to foresee in detail. How-704

ever, our intuition—based on our experience with OpenCog and DeSTIN, and our705

work with the mathematical and conceptual theories underlying these two systems—706

is that the hybridization of OpenCog and DeSTIN as described here will constitute707

a major step along the path to human-level AGI. It will enable the creation of an708

OpenCog instance endowed with the capability of flexibly interacting with a rich709

stream of data from the everyday human world. This data will not only help OpenCog710

to guide a robot in carrying out everyday tasks, but will also provide raw material711

for OpenCogPrime’s cognitive processes to generalize from in various ways—e.g.712

to use as the basis for the formation of new concepts or analogical inferences.713

319613_1_En_11_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 209 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 11

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Please check and confirm the inserted citation of Fig. 11.1 is cor-
rect. If not, please suggest an alternative citation.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part IV
2 Procedure Learning

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part IV Date: 29-10-2013 Page: 211/211

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Procedure Learning as Program Learning

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Broadly speaking, the learning of predicates and schemata (executable procedures) is done in CogPrime
via a number of different methods, including for example PLN inference and concept predicatization (to be
discussed in later chapters). Most of these methods, however, merely extrapolate procedures directly from
other procedures or concepts in the AtomSpace, in a local way—a new procedure is derived from a small
number of other procedures or concepts.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 12
Procedure Learning as Program
Learning

12.1 Introduction0

Broadly speaking, the learning of predicates and schemata (executable procedures)1

is done in CogPrime via a number of different methods, including for example PLN2

inference and concept predicatization (to be discussed in later chapters). Most of these3

methods, however, merely extrapolate procedures directly from other procedures or4

concepts in the AtomSpace, in a local way—a new procedure is derived from a5

small number of other procedures or concepts. General intelligence also requires6

a method for deriving new procedures that are more “fundamentally new.” This is7

where CogPrime makes recourse to explicit procedure learning algorithms such as8

hillclimbing and MOSES, discussed in Chaps. 14 and 15.9

In this brief chapter we formulate the procedure learning problem as a program10

learning problem in a general way, and make some high-level observations about it.11

Conceptually, this chapter is a follow-up to Chap. 3 which discussed the choice to12

represent procedures as programs; here we make some simple observations regarding13

the implications of this choice for procedure learning, and the formal representation14

of procedure learning with CogPrime.15

12.1.1 Program Learning16

An optimization problem may be defined as follows: a solution space S is speci-17

fied, together with some fitness function on solutions, where “solving the problem”18

corresponds to discovering a solution in S with a sufficiently high fitness.19

In this context, we may define program learning as follows: given a program20

space P, a behavior space B, an execution function exec : P �→ B, and a fitness21

function on behaviors, “solving the problem” corresponds to discovering a program22

p in P whose corresponding behavior, exec(p), has a sufficiently high fitness.23

B. Goertzel et al., Engineering General Intelligence, Part 2, 213
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_12,
© Atlantis Press and the authors 2014

319613_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 216 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_14

http://dx.doi.org/10.2991/978-94-6239-030_15

http://dx.doi.org/10.2991/978-94-6239-030_3

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

214 12 Procedure Learning as Program Learning

In evolutionary learning terms, the program space is the space of genotypes, and24

the behavior space is the space of phenotypes.25

This formalism of procedure learning serves well for explicit procedure learning26

CogPrime, not counting cases like procedure learning within other systems (like27

DeSTIN) that may be hybridized with CogPrime.28

Of course, this extended formalism can of be entirely vacuous—the behavior29

space could be identical to the program space, and the execution function simply30

identity, allowing any optimization problem to be cast as a problem of program31

learning. The utility of this specification arises when we make interesting assumptions32

regarding the program and behavior spaces, and the execution and fitness functions33

(thus incorporating additional inductive bias):34

1. Open-endedness—P has a natural “program size” measure—programs may be35

enumerated from smallest to largest, and there is no obvious problem-independent36

upper bound on program size.37

2. Over-representation—exec often maps many programs to the same behavior.38

3. Compositional hierarchy—programs themselves have an intrinsic hierarchical39

organization, and may contain subprograms which are themselves members of40

P or some related program space. This provides a natural family of distance41

measures on programs, in terms of the the number and type of compositions /42

decompositions needed to transform one program into another (i.e. edit distance).43

4. Chaotic Execution—very similar programs (as conceptualized in the previous44

item) may have very different behaviors.45

Precise mathematical definitions could be given for all of these properties but46

would provide little insight—it is more instructive to simply note their ubiquity in47

symbolic representations; human programming languages (LISP, C, etc.), Boolean48

and real-valued formulae, pattern-matching systems, automata, and many more. The49

crux of this line of thought is that the combination of these four factors conspires to50

scramble fitness functions—even if the mapping from behaviors to fitness is separable51

or nearly decomposable, the complex1 program space and chaotic execution function52

will often quickly lead to intractability as problem size grows. These properties are53

not superficial inconveniences that can be circumvented by some particularly clever54

encoding. On the contrary, they are the essential characteristics that give programs55

the power to compress knowledge and generalize correctly, in contrast to flat, inert56

representations such as lookup tables (see Baum [Bau04] for a full treatment of this57

line of argument).58

The consequences of this particular kind of complexity, together with the fact59

that most program spaces of interest are combinatorially very large, might lead one60

to believe that competent program learning is impossible. Not so: real-world pro-61

gram learning tasks of interest have a compact structure2—they are not “needle in62

haystack” problems or uncorrelated fitness landscapes, although they can certainly63

1 Here “complex” means open-ended, over-representing, and hierarchical.
2 Otherwise, humans could not write programs significantly more compact than lookup tables.

319613_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 216 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

12.1 Introduction 215

be encoded as such. The most one can definitively state is that algorithm foo, method-64

ology bar, or representation baz is unsuitable for expressing and exploiting the reg-65

ularities that occur across interesting program spaces. Some of these regularities are66

as follows:67

1. Simplicity prior—our prior assigns greater probability mass to smaller programs.68

2. Simplicity preference—given two programs mapping to the same behavior, we69

prefer the smaller program (this can be seen as a secondary fitness function).70

3. Behavioral decomposability—the mapping between behaviors and fitness is sep-71

arable or nearly decomposable. Relatedly, fitness are more than scalars—there is a72

partial ordering corresponding to behavioral dominance, where one behavior dom-73

inates another if it exhibits a strict superset of the latter’s desideratum, according74

to the fitness function.3 This partial order will never contradict the total ordering75

of scalar fitness.76

4. White box execution—the mechanism of program execution is known a priori,77

and remains constant across many problems.78

How these regularities may be exploited will be discussed in later sections and79

chapters. Another fundamental regularity of great interest for artificial general intelli-80

gence is patterns across related problems that may be solvable with similar programs81

(e.g. involving common modules).82

12.2 Representation-Building83

One important issue in achieving competent program learning is representation84

building. In an ideally encoded optimization problem, all prespecified variables85

would exhibit complete separability, and could be optimized independently. Prob-86

lems with hierarchical dependency structure cannot be encoded this way, but are still87

tractable by dynamically learning the problem decomposition (as is done by the BOA88

and hBOA, described in Chap. 15). For complex problems with interacting subcom-89

ponents, finding an accurate problem decomposition is often tantamount to finding90

a solution. In an idealized run of a competent optimization algorithm, the problem91

decomposition evolves along with the set of solutions being considered, with parallel92

convergence to the correct decomposition and the global solution optima. However,93

this is certainly contingent on the existence of some compact4 and reasonably correct94

decomposition in the space (of decompositions, not solutions) being searched.95

Difficulty arises when no such decomposition exists, or when a more effec-96

tive decomposition exists that cannot be formulated as a probabilistic model over97

3 For example, in supervised classification one rule dominates another if it correctly classifies all
of the items that second rule classifies correctly, as well as some which the second rule gets wrong.
4 The decomposition must be compact because in practice only a fairly small sampling of solutions
may be evaluated (relative to the size of the total space) at a time, and the search mechanism for
exploring decomposition-space is greedy and local. This is in also accordance with the general
notion of learning corresponding to compression.

319613_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 216 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_15

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

216 12 Procedure Learning as Program Learning

representational parameters. Accordingly, one may extend current approaches via98

either: a more general modeling language for expressing problem decompositions;99

or additional mechanisms that modify the representations on which modeling oper-100

ates (introducing additional inductive bias). In CogPrime we have focused on the101

latter—the former would appear to require qualitatively more computational capac-102

ity than will be available in the near future. If one ignores this constraint, such a103

“universal” approach to general problem-solving is indeed possible, e.g. AI X I tl as104

discussed in Sect. 7.3105

We refer to these additional mechanisms as “representation-building” because106

they serve the same purpose as the pre-representational mechanisms employed (typ-107

ically by humans) in setting up an optimization problem—to present an optimization108

algorithm with the salient parameters needed to build effective problem decompo-109

sitions and vary solutions along meaningful dimensions. We return to this issue in110

detail in Chap. 15 in the context of MOSES, the most powerful procedure-learning111

algorithm provided in CogPrime.112

12.3 Specification Based Procedure Learning113

Now we explain how procedure learning fits in with the declarative and intentional114

knowledge representation in the Atomspace.115

The basic method that CogPrime uses to learn procedures that appear funda-116

mentally new from the point of view of the AtomSpace at a given point in time is117

“specification-based procedure learning”. This involves taking a PredicateNode with118

a ProcedureNode input type as a specification, and searching for ProcedureNodes119

that fulfill this specification (in the sense of making the specification PredicateNode120

as true as possible). In evolutionary computing lingo, the specification predicate is a121

fitness function.122

Searching for PredicateNodes that embody patterns in the AtomSpace as a whole123

is a special case of this kind of learning, where the specification PredicateNode124

embodies a notion of what constitutes an “interesting pattern”. The quantification of125

interestingness is of course an interesting and nontrivial topic in itself.126

Finding schemata that are likely to achieve goals important to the system is also127

a special case of this kind of learning. In this case, the specification predicate is of128

the form:129

F(S) = PredictiveImplicationLink (ExOutLink S) G130

This measures the extent to which executing schema S is positively correlated131

with goal-predicate G being achieved shortly later.132

Given a PredicateNode interpretable as a specification, how do we find a Proce-133

dureNode satisfying the specification? Lacking prior knowledge sufficient to enable134

an incremental approach like inference, we must search the space of possible Pro-135

cedureNodes, using an appropriate search heuristic, hopefully one that makes use of136

the system’s existing knowledge as fully as possible.137

319613_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 216 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_7

http://dx.doi.org/10.2991/978-94-6239-030_15

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Learning Procedures via Imitation, Reinforcement and Correction

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract In procedure learning as elsewhere in cognition, it’s not enough to use the right algorithm, one has to use it
in the right way based on the data and context and affordances available.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 13
Learning Procedures via Imitation,
Reinforcement and Correction

13.1 Introduction0

In procedure learning as elsewhere in cognition, it’s not enough to use the right algo-1

rithm, one has to use it in the right way based on the data and context and affordances2

available. While Chaps. 14 and 15 focus on procedure learning algorithms, this one3

focuses on procedure learning methodology. We will delve into the important spe-4

cial case of procedure learning in which the fitness function involves reinforcement5

and imitation supplied by a teacher and/or an environment, and look at examples6

of this in the context of teaching behaviors to virtual pets controlled by OpenCog-7

Prime. While this may seem a very narrow context, many of the lessons learned are8

applicable more broadly; and the discussion has the advantage of being grounded in9

actual experiments done with OpenCogPrime’s predecessor system, the Novamente10

Cognition Engine, and with an early OpenCog version as well, during the period11

2007–2008.12

We will focus mainly on learning from a teacher, and then common on the very13

similar case where the environment, rather than some specific agent, is the teacher.14

13.2 IRC Learning15

Suppose one intelligent agent (the “teacher”) has knowledge of how to carry out a16

certain behavior, and wants to transfer this knowledge to another intelligent agent17

(the “student”). But, suppose the student agent lacks the power of language (which18

might be, for example, because language is the thing being taught!). How may the19

knowledge be transferred? At least three methodologies are possible:20

Co-authored with Moshe Looks, Samir Araujo and Welter Silva.

B. Goertzel et al., Engineering General Intelligence, Part 2, 217
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_13,
© Atlantis Press and the authors 2014

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_14

http://dx.doi.org/10.2991/978-94-6239-030-0_15

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

218 13 Learning Procedures via Imitation, Reinforcement and Correction

1. Imitative learning: The teacher acts out the behavior, showing the student by21

example22

2. Reinforcement learning: The student tries to do the behavior himself, and the23

teacher gives him feedback on how well he did24

3. Corrective learning: As the student attempts the behavior, the teacher actively25

corrects (i.e., changes) the student’s actions, guiding him toward correct perfor-26

mance27

Obviously, these three forms of instruction are not exclusive. What we describe here,28

and call IRC learning, is a pragmatic methodology for instructing AGI systems that29

combines these three forms of instruction. We believe this combination is a potent30

one, and is certainly implicit in the way human beings typically teach young children31

and animals.32

For sake of concreteness, we present IRC learning here primarily in the context of33

virtually embodied AGI systems—i.e., AGI systems that control virtual agents living34

in virtual worlds. There is an obvious extension to physical robots living in the real35

world and capable of flexible interaction with humans. In principle, IRC learning36

is applicable more broadly as well, and could be explored in various non-embodied37

context such as (for instance) automated theorem-proving. In general, the term “IRC38

learning” may be used to describe any teacher/student interaction that involves a39

combination of reinforcement, imitation and correction. While we have focused in40

our practical work so far on the use of IRC to teach simple “animal-like” behaviors,41

the application that interests us more in the medium term is language instruction, to42

which we will return in later chapters.43

Harking back to Chap. 9 of Vol. 5, it is clear that an orientation toward effective44

IRC learning will be valuable for any system attempting to achieve complex goals45

in an environment heavily populated by other intelligences possessing significant46

goal-relevant knowledge. Everyday human environments possess this characteristic,47

and we suggest the best way to create human-level AGIs will be to allow them to48

develop in environments possessing this characteristic as well.49

13.2.1 A Simple Example of Imitation/Reinforcement Learning50

Perhaps the best way to introduce the essential nature of the IRC teaching protocol51

is to give a brief snippet from a script that was created to guide the actual training of52

the virtual animals controlled by the PetBrain. This snippet involves only I and R;53

the C will be discussed afterwards.54

This snippet demonstrates a teaching methodology that involves two avatars: Bob55

who is being the teacher, and Jill who is being an “imitation animal,” showing the56

animal what to do by example.57

1. Bob wants to teach the dog Fido a trick. He calls his friend Jill over. “Jill, can58

you help me teach Fido a trick?”59

2. Jill comes over. “How much will you pay me for it?”60

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_9

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

13.2 IRC Learning 219

3. Bob gives her a kiss.61

4. “All right,” says Jill, “what do you want to teach him?”62

5. “Let’s start with fetching stuff,” replies Bob.63

6. So Bob and Jill start teaching Fido to fetch using the Pet language....64

7. Bob says: “Fido, I’m going to teach you to play fetch with Jill.”65

8. Fido sits attentively, looking at Bob.66

9. Bob says: “OK, I’m playing fetch now.”67

10. Bob picks up a stick from the ground and throws it. Jill runs to get the stick and68

brings it back to Bob.69

11. Bob says: “I’m done fetching.”70

12. Bob says, “You try it.”71

13. Bob throws a stick. Fido runs to the stick, gets it, and brings it back.72

14. Bob says “Good dog!”73

15. Fido looks happy.74

16. Bob says: “Ok, we’re done with that game of fetch.”75

17. Bob says, “Now, let’s try playing fetch again.”76

18. This time, Bob throws a stick in a different direction, where there’s already a77

stick lying on the ground (call the other stick Stick 2).78

19. Fido runs and retrieves Stick 2. As soon as he picks it up, Bob says “No.” But79

Fido keeps on running and brings the stick back to Bob.80

20. Bob says “No, that was wrong. That was the wrong stick. Stop trying!”81

21. Jill says, “Furry little moron!”82

22. Bob says to Jill, “Have some patience, will you? Let’s try again.”83

23. Fido is slowly wandering around, sniffing the ground.84

24. Bob says “Fido, stay.” Fido returns near Bob and sits.85

25. Bob throws Stick 2. Fido starts to get up and Bob repeats “Fido, stay.”86

26. Bob goes and picks up Stick 1, and walks back to his original position.87

27. Bob says “Fido, I’m playing fetch with Jill again.”88

28. Bob throws the first stick in the direction of stick 2.89

29. Jill goes and gets stick 1 and brings it back to Bob.90

30. Bob says “I’m done playing fetch with Jill.”91

31. Bob says “Try playing fetch with me now.” He throws stick 1 in another direc-92

tion, where stick 3 and stick 4 are lying on the ground, along with some other93

junk.94

32. Fido runs and gets stick 1 and brings it back.95

33. Bob and Jill both jump up and down smiling and say “Good dog! Good dog,96

Fido!! Good dog!!”97

34. Fido smiles and jumps up and licks Jill on the face.98

35. Bob says, “Fido, we’re done practicing fetch.”99

In the above transcript, Line 7 initiates a formal training session, and Line 33 ter-100

minates this session. The training session is broken into “exemplar” intervals during101

which exemplars are being given, and “trial” intervals during which the animal is102

trying to imitate the exemplars, following which is receives reinforcement on its103

success or otherwise. For instance line 9 initiates the presentation of an exemplar104

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

220 13 Learning Procedures via Imitation, Reinforcement and Correction

interval, and line 11 indicates the termination of this interval. Line 12 indicates the105

beginning of a trial interval, and line 16 indicates the termination of this interval.106

The above example of combined imitative/reinforcement learning involves two107

teachers, but, this is of course not the only way things can be done. Jill could be108

eliminated from the above teaching example. The result of this would be that, in109

figuring out how to imitate the exemplars, Fido would have to figure out which of110

Bob’s actions were “teacher” actions and which were “simulated student” actions.111

This is not a particularly hard problem, but it’s harder than the case where Jill carries112

out all the simulated-student actions. So in the case of teaching fetch with only one113

teacher avatar, on average, more reinforcement trials will be required.114

13.2.2 A Simple Example of Corrective Learning115

Another interesting twist on the imitative/reinforcement teaching methodology116

described above is the use of explicit correctional instructions from the teacher to the117

animal. This is not shown in the above example but represents an important addition118

to the methodology show there. One good example of the use of corrections would119

be the problem of teaching would be teaching an animal to sit and wait until the120

teacher says “Get Up,” using only a single teacher. Obviously, using two teachers,121

this is a much easier problem. Using only one teacher, it’s still easy, but involves a122

little more subtlety, and becomes much more tractable when corrections are allowed.123

One way that human dog owners teach their dogs this sort of behavior is as follows:124

1. Tell the dog “sit”125

2. tell the dog “stay”126

3. Whenever the dog tries to get up, tell him “no” or “sit,” and then he sits down127

again128

4. eventually, tell the dog to “get up”129

The real dog understands, in its own way, that the “no” and “sit” commands said after130

the “stay” command are meta-commands rather than part of the “stay” behavior.131

In our virtual-pet case, this would be more like132

1. tell the dog “I’m teaching you to stay”133

2. Tell the dog “sit”134

3. Whenever the dog tries to get up, tell him “no” or “sit,” and then he sits down135

again136

4. eventually, tell the dog to “get up”137

5. tell the dog “I’m done teaching you to stay”138

One easy way to do this, which deviates from the pattern of humanlike interaction,139

would be to give the agent knowledge about how to interpret an explicit META flag140

in communications directed toward it. In this case, the teaching would look like141

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

13.2 IRC Learning 221

1. tell the dog “I’m teaching you to stay”142

2. Tell the dog “META: sit”143

3. Whenever the dog tries to get up, tell him “META: no” or “META: sit,” and then144

he sits down again145

4. eventually, tell the dog to “get up”146

5. tell the dog “I’m done teaching you to stay”147

Even without the META tag, this behavior (and other comparable ones) is learn-148

able via CogPrime’s learning algorithms within a modest number of reinforce-149

ment trials. So we have not actually implemented the META approach. But it well150

illustrates the give-and-take relationship between the sophistication of the teaching151

methodology and the number of reinforcement trials required. In many cases, the152

best way to reduce the number of reinforcement trials required to learn a behavior153

is not to increase the sophistication of the learning algorithm, but rather to increase154

the information provided during the instruction process. No matter how advanced155

the learning algorithm, if the teaching methodology only gives a small amount of156

information, it’s going to take a bunch of reinforcement trials to go through the search157

space and find one of the right procedures satisfying the teacher’s desires. One of158

the differences between the real-world learning that an animal or human child (or159

adult) experiences, and the learning “experienced” by standard machine-learning160

algorithms, is the richness and diversity of information that the real world teaching161

environment provides, beyond simple reinforcement signals. Virtual worlds provide162

a natural venue in which to experiment with providing this sort of richer feedback to163

AI learning systems, which is one among the many reasons why we feel that virtual164

worlds are an excellent venue for experimentation with and education of early-stage165

AGI systems.166

13.3 IRC Learning in the PetBrain167

Continuing the theme of the previous section, we now discuss “trick learning” in168

the PetBrain, as tested using OpenCog and the Multiverse virtual world during169

2007–2008. The PetBrain constitutes a specific cognitive infrastructure implement-170

ing the IRC learning methodology in the virtual-animal context, with some extensi-171

bility beyond this context as well.172

In the PetBrain, learning itself is carried out by a variety of hillclimbing as173

described in Chap. 14, which is a fast learning algorithm but may fail on harder174

behaviors (in the sense of requiring an unacceptably large number of reinforcement175

trials). For more complex behaviors, MOSES (Chap. 15) would need to be integrated176

as an alternative. Compared to hillclimbing, MOSES is much smarter but slower, and177

may take a few minutes to solve a problem. The two algorithms (as implemented for178

the PetBrain) share the same Combo knowledge representation and some other soft-179

ware components (e.g., normalization rules for placing procedures in an appropriate180

hierarchical normal form, as described in Chap. 3).181

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_14

http://dx.doi.org/10.2991/978-94-6239-030-0_15

http://dx.doi.org/10.2991/978-94-6239-030-0_3

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

222 13 Learning Procedures via Imitation, Reinforcement and Correction

The big challenge involved in designing the PetBrain system, AI-wise, was that182

these learning algorithms, used in a straightforward way with feedback from a human-183

controlled avatar as the fitness function, would have needed an excessive number184

of reinforcement trials to learn relatively simple behaviors. This would bore the185

human beings involved with teaching the animals. This is not a flaw of the particular186

learning algorithms being proposed, but is a generic problem that would exist with187

any AI algorithms. To choose an appropriate behavior out of the space of all possible188

behaviors satisfying reasonable constraints, requires more bits of information that is189

contained in a handful of reinforcement trials.190

Most “animal training” games (e.g., Nintendogs may be considered as a reference191

case) work around this “hard problem” by not allowing teaching of novel behaviors.192

Instead, a behavior list is made up front by the game designers. The animals have193

preprogrammed procedures for carrying out the behaviors on the list. As training pro-194

ceeds they make fewer errors, till after enough training they converge “miraculously”195

on the pre-programmed plan.196

This approach only works, however, if all the behaviors the animals will ever learn197

have been planned and scripted in advance.198

The first key to making learning of non-pre-programmed behaviors work, without199

an excessive number of reinforcement trials, is in “fitness estimation”—code that200

guesses the fitness of a candidate procedure at fulfilling the teacher’s definition of201

a certain behavior, without actually having to try out the procedure and see how it202

works. This is where the I part of IRC learning comes in.203

At an early stage in designing the PetBrain application, we realized it would be204

best if the animals were instructed via a methodology where the same behaviors are205

defined by the teacher both by demonstration and by reinforcement signals. Learning206

based on reinforcement signals only can also be handled, but learning will be much207

slower.208

In evolutionary programming lingo, we have209

1. Procedures = genotypes210

2. Demonstrated exemplars, and behaviors generated via procedures = phenotypes211

3. Reinforcement signals from pet owner = fitness212

One method of imitation-based fitness estimation used in the PetBrain involves213

an internal simulation world which we’ll call CogSim, as discussed in Chap. 22.1214

CogSim can be visualized using a simple testing UI, but in the normal course of215

operations it doesn’t require a user interface; it is an internal simulation world,216

which allows the PetBrain to experiment and see what a certain procedure would be217

likely to do if enacted in the SL virtual world. Of course, the accuracy of this kind of218

simulation depends on the nature of the procedure. For procedures that solely involve219

moving around and interacting with inanimate objects, it can be very effective. For220

procedures involving interaction with human-controlled avatars, other animals, or221

1 The few readers familiar with obscure OpenCog documentation may remember that CogSim was
previously called “Third Life,” in reference to the Second Life virtual world that was being used to
embody the OpenCog virtual pets at the time.

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_22

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

13.3 IRC Learning in the PetBrain 223

other complex objects, it may be unreliable—and making it even moderately reliable222

would require significant work that has not yet been done, in terms of endowing223

CogSim with realistic simulations of other agents and their internal motivational224

structures and so forth. But short of this, CogSim has nonetheless proved useful for225

estimating the fitness of simple behavioral procedures.226 AQ1

When a procedure is enacted in CogSim, this produces an object called a “behavior227

description” (BD), which is represented in the AtomSpace knowledge representa-228

tion format. The BD generated by the procedure is then compared with the BD’s229

corresponding to the “exemplar” behaviors that the teacher has generated, and that230

the student is trying to emulate. Similarities are calculated, which is a fairly subtle231

matter that involves some heuristic inferences. An estimate of the likelihood that the232

procedure, if executed in the world, will generate a behavior adequately similar to233

the exemplar behaviors.234

Furthermore, this process of estimation may be extended to make use of the235

animal’s long-term episodic memory. Suppose a procedure P is being evaluated in236

the context of exemplar-set E. Then237

1. The episodic memory is mined for pairs (P’, E’) that are similar to (P, E)238

2. The fitness of these pairs (P’, E’) is gathered from the experience base239

3. An estimate of the fitness of (P, E) is then formed240

Of course, if a behavior description corresponding to P has been generated via241

CogSim, this may also be used in the similarity matching against long-term memory.242

The tricky part here, of course, is the similarity measurement itself, which can be243

handled via simple heuristics, but if taken sufficiently seriously becomes a complex244

problem of uncertain inference.245

One thing to note here is that in the PetBrain context, although learning is done246

by each animal individually, this learning is subtly guided by collective knowledge247

within the fitness estimation process. Internally, we have a “borg mind” with multiple248

animal bodies, and an architecture designed to ensure the maintenance of unique249

personalities on the part of the individual animals in spite of the collective knowledge250

and learning underneath.251

At time of writing, we have just begun to experiment with the learning system252

as described above, and are using it to learn simple behaviors such as playing fetch,253

basic soccer skills, doing specific dances as demonstrated by the teacher, and so forth.254

We have not yet done enough experimentation to get a solid feel for the limitations255

of the methodology as currently implemented.256

Note also the possibility of using CogPrime’s PLN inference component to allow257

generalization of learned behaviors. For instance, with inference deployed appropri-258

ately, a pet that had learned how to play tag would afterwards have a relatively easy259

time learning to play “freeze tag.” A pet that had learned how to hunt for Easter eggs260

would have a relatively easy time learning to play hide-and-seek. Episodic memory261

can be very useful for fitness estimation here, but explicit use of inference may allow262

much more rapid and far-reaching inference capabilities.263

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

224 13 Learning Procedures via Imitation, Reinforcement and Correction

13.3.1 Introducing Corrective Learning264

Next, how may corrections be utilized in the learning process we have described?265

Obviously, the corrected behavior description gets added into the knowledge base as266

an additional exemplar. And, the fact of the correction acts as a partial reinforcement267

(up until the time of the correction, what the animal was doing was correct). But268

beyond this, what’s necessary is to propagate the correction backward from the BD269

level to the procedure level. For instance, if the animal is supposed to be staying in one270

place, and it starts to get up but is corrected by the teacher (who says “sit” or physically271

pushes the animal back down), then the part of the behavior-generating procedure272

that directly generated the “sit” command needs to be “punished.” How difficult this273

is to do, depends on how complex the procedure is. It may be as simple as providing a274

negative reinforcement to a specific “program tree node” within the procedure, thus275

disincentivizing future procedures generated by the procedure learning algorithm276

from containing this node. Or it may be more complex, requiring the solution of an277

inference problem of the form “Find a procedure P” that is as similar as possible to278

procedure P, but that does not generate the corrected behavior, but rather generates279

the behavior that the teacher wanted instead.” This sort of “working backwards from280

the behavior description to the procedure” is never going to be perfect except in281

extremely simple cases, but it is an important part of learning. We have not yet282

experimented with this extensively in our virtual animals, but plan to do so as the283

project proceeds.284

There is also an interesting variant of correction in which the agent’s own memory285

serves implicitly as the teacher. That is, if a procedure generates a behavior that seems286

wrong based on the history of successful behavior descriptions for similar exemplars,287

then the system may suppress that particular behavior or replace it with another one288

that seems more appropriate—inference based on history thus serving the role of a289

correcting teacher.290

13.4 Applying A Similar IRC Methodology291

to Spontaneous Learning292

We have described the IRC teaching/learning methodology in the context of learning293

from a teacher—but in fact a similar approach can be utilized for purely unsupervised294

learning. In that case, the animal’s intrinsic goal system acts implicitly as a teacher.295

For instance, suppose the animal wants to learn how to better get itself fed. In this296

case,297

1. Exemplars are provided by instances in the animal’s history when it has success-298

fully gotten itself fed299

2. Reinforcement is provided by, when it is executing a certain procedure, whether300

or not it actually gets itself fed or not301

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

13.4 Applying A Similar IRC Methodology to Spontaneous Learning 225

3. Correction as such doesn’t apply, but implicit correction may be used via302

deploying history-based inference. If a procedure generates a behavior that seems303

wrong based on the history of successful behavior descriptions for the goal of304

getting fed, then the system may suppress that particular behavior.305

The only real added complexity here lies in identifying the exemplars. In surveying306

its own history, the animal must look at each previous instance in which it got fed (or307

same sample thereof), and for each one recollect the series of N actions that it carried308

out prior to getting fed. It then must figure out how to set N— i.e. which of the actions309

prior to getting fed were part of the behavior that led up to getting fed, and which310

were just other things the animal happened to be doing a while before getting fed. To311

the extent that this exemplar mining problem can be solved adequately, innate-goal-312

directed spontaneous learning becomes closely analogous to teacher-driven learning313

as we’ve described it. Or in other words: Experience, as is well known, can serve as314

a very effective teacher.315

319613_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 225 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 13

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Procedure Learning via Adaptively Biased Hillclimbing

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Having chosen to represent procedures as programs, explicit procedure learning then becomes a matter of
automated program learning.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 14
Procedure Learning via Adaptively
Biased Hillclimbing

14.1 Introduction0

Having chosen to represent procedures as programs, explicit procedure learning then1

becomes a matter of automated program learning. In its most general incarnation,2

automated program learning is obviously an intractable problem; so the procedure3

learning design problem then boils down to finding procedure learning algorithms4

that are effective on the class of problems relevant to CogPrime systems in prac-5

tice. This is a subtle matter because there is no straightforward way to map from the6

vaguely-defined category of real-world “everyday human world like” goals and envi-7

ronments to any formally-defined class of relevant objective functions for a program8

learning algorithm.9

However, this difficulty is not a particular artifact of the choice of programs to10

represent procedures; similar issues would arise with any known representational11

mechanism of suitable power. For instance, if procedures were represented as recur-12

rent neural nets, there would arise similar questions of how many layers to give13

the networks, how to determine the connection statistics, what sorts of neurons to14

use, which learning algorithm, etc. One can always push such problems to the meta15

level and use automated learning to determine which variety of learning algorithm16

to use—but then one has to make some decisions on the metalearning level, based17

on one’s understanding of the specific structure of the space of relevant program18

learning algorithms. In the fictitious work of unbounded computational resources no19

such judicious choices are necessary, but that’s not the world we live in, and it’s not20

relevant to the design of human-like AGI systems.21

At the moment, in CogPrime, we utilize two different procedure learning systems,22

which operate on the same knowledge representation and rely on much of the same23

internal code. One, which we roughly label “hill climbing”, is used for problems24

that are sufficiently “easy” in the sense that it’s possible for the system to solve25

Primary author: Nil Geisweiller.

B. Goertzel et al., Engineering General Intelligence, Part 2, 227
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_14,
© Atlantis Press and the authors 2014

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

228 14 Procedure Learning via Adaptively Biased Hillclimbing

them using feasible resources without (implicitly or explicitly) building any kind of26

sophisticated model of the space of solutions to the problem. The other, MOSES, is27

used for problems that are sufficiently difficult that the right way to solve them is to28

progressively build a model of the program space as one tries out various solutions,29

and then use this model to guide ongoing search for better and better solutions.30

Hillclimbing is treated in this chapter; MOSES in the next.31

14.2 Hillclimbing32

“Hillclimbing”, broadly speaking, is not a specific algorithm but a category of algo-33

rithms. It applies in general to any search problem where there is a large space34

of possible solutions, which can be compared as to their solution quality. Here we35

are interested in applying it specifically to problems of search through spaces of36

programs.37

In hillclimbing, one starts with a candidate solution to a problem (often a random38

one, which may be very low-quality), and iteratively makes small changes to the39

candidate to generate new possibilities, hoping one of them will be a better solution.40

If a new possibility is better than the current candidate, then the algorithm adopts the41

new possibility as its new candidate solution. When the current candidate solution can42

no longer be improved via small changes, the algorithm terminates. Ideally, at that43

point the current candidate solution is close to optimal—but this is not guaranteed!44

Various tweaks to hillclimbing exist, including “restart” which means that one45

starts hillclimbing over and over again, taking the best solution from multiple trials;46

and “backtracking”, which means that if the algorithm terminates at a solution that47

seems inadequate, then the search can “backtrack” to a previously considered can-48

didate solution, and try to make different small changes to that candidate solution,49

trying previously unexplored possibilities in search of a new candidate. The value of50

these and other tweaks depends on the specific problem under consideration.51

In the specific approach to hillclimbing described here, we use a hillclimber52

with backtracking, applied to programs that are represented in the same hierarchical53

normal form used with MOSES (based on the program normalization ideas presented54

in Chap. 3). The basic pseudocode for the hillclimber may be given as:55

Let L be the list (initially empty) of programs explored so far in decreasing order56

with respect to their fitness. Let Np be the neighbors of program p.57

1. Take the best program p ∈ L58

2. Evaluate all programs of Np59

3. Merge Np in L60

4. Move p from L to the set of best programs found so far and repeat from step 161

until time runs out.62

In the following sections of this chapter, we show how to speed up the hillclimbing63

search for learning procedures via four optimizations, which have been tested fairly64

extensively. For concreteness we will refer often to the specific case of using the hill65

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_3

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14.2 Hillclimbing 229

climbing algorithm to control a virtual agent in a virtual world—and especially the66

case of teaching a virtual pet tricks via imitation learning (as in Chap. 13) but the67

ideas have more general importance. The four optimizations are:68

• reduce candidates to normal form to minimize over-representation and increase69

the syntactic semantic correlation (Chap. 3),70

• filter perceptions using an entropy criterion to avoid building candidates that71

involve nodes unlikely to be contained in the solution (Sect. 14.3),72

• use sequences of agent actions, observed during the execution of the program, as73

building blocks (Sect. 14.4),74

• choose and calibrate a simplicity measure to focus on simpler solutions (the75

“Occam bias”) first (Sect. 14.5).76

14.3 Entity and Perception Filters77

The number of program candidates of a given size increases exponentially with the78

alphabet of the language; therefore it is important to narrow that alphabet as much79

as possible. This is the role of the two filters explained below, the Entity and the80

Entropy filter.81

14.3.1 Entity Filter82

This filter is in charge of selecting the entities in the scene the pet should take83

into account during an imitation learning session. These entities can be any objects,84

avatars or other pets.85

In general this is a very hard problem, for instance if a bird is flying near the86

owner while teaching a trick, should the pet ignore it? Perhaps the owner wants to87

teach the pet to bark at them; if so they should not be ignored.88

In our current and prior work with OpenCog controlling virtual world agents, we89

have used some fairly crude heuristics for entity filtering, which must be hand-tuned90

depending on the properties of the virtual world. However, our intention is to replace91

these heuristics with entity filtering based on Economic Attention Networks (ECAN)92

as described in Chap. 5.93

14.3.2 Entropy Perception Filter94

The perception filter is in charge of selecting all perceptions in the scene that are95

reasonably likely to be part of the solution to the program learning problem posed.96

A “perception” in the virtual world context means the evaluation of one of a set of97

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_13

http://dx.doi.org/10.2991/978-94-6239-030-0_3

http://dx.doi.org/10.2991/978-94-6239-030-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

230 14 Procedure Learning via Adaptively Biased Hillclimbing

pre-specified perception predicates, with an argument consisting of one of the entities98

in the observed environment.99

Given N entities (provided by the Entity filter), there are usually O(N 2) potential100

perceptions in the Atomspace due to binary perceptions like101

near(owner bird)102

inside(toy box)103

. . .104

The perception filter proceeds by computing the entropy of any potential percep-105

tions happening during a learning session. Indeed if the entropy of a given perception106

P is high that means that a conditional if(P B1 B2) has a rather balanced proba-107

bility of taking Branch B1 or B2. On the other hand if the entropy is low then the108

probability of taking these branches is unbalanced, for instance the probability of109

taking B1 may be significantly higher than the probability of taking B2, and therefore110

if(P B1 B2) could reasonably be substituted by B1.111

For example, assume that during the teaching sessions, the predicate near(owner112

bird) is false 99 % percent of the time; then near(owner bird) will have a low113

entropy and will possibly be discarded by the filter (depending on the threshold). If114

the bird is always far from the owner then it will have entropy 0 and will surely be115

discarded, but if the bird comes and goes it will have a high entropy and will pass the116

filter. Let P be such a perception and Pt returns 1 when the perception is true at time117

t or 0 otherwise, where t ranges over the set of instants, of size N , recorded between118

the beginning and the end of the demonstrated trick. The calculation goes as follows119

Entropy(P) = H

(∑
t Pt

N

)
120

where H(p) = −p log(p)−(1− p)log(1− p). There are additional subtleties when121

the perception involves random operators, like near(owner random_object) that122

is the entropy is calculated by taking into account a certain distribution over enti-123

ties grouped under the term random_object. The calculation is optimized to ignore124

instants when the perception relates to object that have not moved which makes the125

calculation efficient enough, but there is room to improve it in various ways; for126

instance it could be made to choose perceptions based not only on entropy but also127

inferred relevancy with respect to the context using PLN.128

14.4 Using Action Sequences as Building Blocks129

A heuristic that has been shown to work, in the “virtual pet trick” context,is to130

consider sequences of actions that are compatible with the behavior demonstrated by131

the avatar showing the trick as building blocks when defining the neighborhood of a132

candidate. For instance if the trick is to fetch a ball, compatible sequences would be133

goto(ball),grab(ball),goto(owner),drop134

goto(random_object),grab(nearest_object),goto(owner),drop135

. . .136

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14.4 Using Action Sequences as Building Blocks 231

Sub-sequences can be considered as well—though too many building blocks also137

increase the neighborhood exponentially, so one has to be careful when doing that. In138

practice using the set of whole compatible sequences worked well. This for instance139

can speed up many fold the learning of the trick triple_kick as shown in Sect. 14.6.140

14.5 Automatically Parametrizing the Program Size Penalty141

A common heuristic for program learning is an “Occam penalty” that penalizes large142

programs, hence biasing search toward compact programs. The function we use to143

penalize program size is inspired by Ray Solomonoff’s theory of optimal inductive144

inference [Sol64a, Sol64b]; simply said, a program is penalized exponentially with145

respect to its size. Also, one may say that since the number of program candidates146

grows exponentially with their size, exploring solutions with higher size must be147

exponentially worth the cost.148

In the next subsections we describe the particular penalty function we have used149

and how to tune its parameters.150

14.5.1 Definition of the Complexity Penalty151

Let p be a program candidate and penalty(p) a function with domain [0,1] measuring152

the complexity of p. If we consider the complexity penalty function penalty(p) as if153

it denotes the prior probability of p, and score(p) (the quality of p as utilized within154

the hill climbing algorithm) as denoting the conditional probability of the desired155

behavior knowing p, then Bayes rule1 tells us that156

fitness(p) = score(p) × penalty(p)157

denotes the conditional probability of p knowing the right behavior to imitate, the158

fitness function that we want to maximize.159

It happens that in the pet trick learning context which is our main example in160

this chapter, score(p) does not denote such a probability; instead it measures how161

similar the behavior generated by p and the behavior to imitate are. However, we162

utilize the above formula anyway, with a heuristic interpretation. One may construct163

assumptions under which score(p) does represent a probability but this would take164

us too far afield.165

1 Bayes rule as used here is P(M |D) = P(M)P(D|M)
P(D)

where M denotes the Model (the program)
and D denotes the data (the behavior to imitate), here P(D) is ignored, that is the data is assumed
to be distributed uniformly.

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

232 14 Procedure Learning via Adaptively Biased Hillclimbing

The penalty function we use is then given by:166

penalty(p) = exp(−a × log(b × |A| + e) × |p|)167

where |p| is the program size, |A| its alphabet size and e = exp(1). The reason168

|A| enters into the equation is because the alphabet size varies from one problem169

to another due to the perception and action filters. Without that constraint the term170

log(b × |A| + e) could simply be included in a. The higher a the more intense the171

penalty is. The parameter b controls how that intensity varies with the alphabet size.172

It is important to remark the difference between such a penalty function and173

lexicographic parsimony pressure (literally said everything being equal, choose the174

shortest program). Because of the use of sequences as building blocks, without such175

a penalty function the algorithm may rapidly reach an optimal program (a mere long176

sequence of actions) and remain stuck in an apparent optimum while missing the177

very logic of the action sequence that the human wants to convey.178

14.5.2 Parameterizing the Complexity Penalty179

Due to the nature of the search algorithm (hill climbing with restart), the choice180

of the candidate used to restart the search is crucial. In our case we restart with181

the candidate with the best fitness so far which has not been yet used to restart.182

The danger of such an approach is that when the algorithm enters a region with183

local optima (like a plateau), it may basically stay there as long as there exist better184

candidates in that region than outside of it non used yet for restart. Longer programs185

tend to generate larger regions of local optima (because they have exponentially more186

syntactic variations that lead to close behaviors), so if the search enters such region187

via an overly complex program it is likely to take a very long time to get out of it.188

Introducing probability in the choice of the restart may help avoiding that sort of189

trap but having experimented with that it turned out not to be significantly better on190

average for learning relatively simple things (indeed although the restart choice is191

more diverse it still tends to occur in large region of local optima).192

However, a significant improvement we have found is to carefully choose the size193

penalty function so that the search will tend to restart on simpler programs even194

if they do not exhibit the best behaviors, but will still be able to reach the optimal195

solution even if it is a complex one.196

The solution we suggest is to choose a and b such that penalty(p) is:197

1. as penalizing as possible, to focus on simpler programs first (although that con-198

straint may possibly be lightened as the experimentation shows),199

2. but still correct in the sense that the optimal solution p maximizes fitness(p).200

And we want that to work for all problems we are interested in. That restriction201

is an important point because it is likely that in general the second constraint will be202

too strict to produce a good penalty function.203

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14.5 Automatically Parametrizing the Program Size Penalty 233

We will now formalize the above problem. Let i be an index that ranges over204

the set of problems of interest (in our case pet tricks to learn), scorei and fitnessi205

denotes the score and fitness functions of the i th problem. Let Θi (s) denote the set206

of programs of score s207

Θi (s) = {p|score(p) = s}208

Define a family of partial functions209

fi : [0, 1] �→ N210

so that211

fi (s) = argmin
p∈Θi (p)

|p|212

What this says is that for any given score s we want the size of the shortest program213

p with that score. And fi is partial because there may not be any program returning214

a given score.215

Let be the family of partial functions216

gi : [0, 1] �→ [0, 1]217

parametrized by a and b such that218

gi (s) = s × exp(−a × (log(b × |A| + e) × fi (s)).219

That is: given a score s, gi (s) returns the fitness fitness(p) of the shortest program220

p that marks that score.221

14.5.3 Definition of the Optimization Problem222

Let si be the highest score obtained for fitness function i (that is the score of the223

program chosen as the current best solution of i). Now the optimization problem224

consists of finding some a and b such that225

∀i argmax
s

gi (s) = si226

that is the highest score has also the highest fitness. We started by choosing a and b227

as high as possible, it is a good heuristic but not the best, the best one would be to228

choose a and b so that they minimize the number of iterations (number of restarts)229

to reach a global optimum, which is a harder problem.230

Also, regarding the resolution of the above equation, it is worth noting we do not231

need the analytical expression of score(p). Using past learning experiences we can232

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

234 14 Procedure Learning via Adaptively Biased Hillclimbing

get a partial description of the fitness landscape of each problem just by looking at233

the traces of the search.234

Overall we have found this optimization works rather well; that is, tricks that would235

otherwise take several hours or days of computation can be learned in seconds or236

minutes. And the method also enables fast learning for new tricks, in fact all tricks we237

have experimented with so far could be learned reasonably fast (seconds or minutes)238

without the need to retune the penalty function.239

In the current CogPrime codebase, the algorithm in charge of calibrating the240

parameters of the penalty function has been written in Python. It takes in input the241

log of the imitation learning engine that contains the score, the size, the penalty242

and the fitness of all candidates explored for all tricks taken in consideration for the243

parameterizing. The algorithm proceeds in two steps:244

1. Reconstitute the partial functions fi for all fitness functions i already attempted,245

based on the traces of these previously optimized fitness functions.246

2. Try to find the highest a and b so that247

∀i argmax
s

gi (s) = si248

For step 2, since there are only two parameters to tune, we have used a 2D grid,249

enumerating all points (a, b) and zooming when necessary. So the speed of the250

process depends largely on the resolution of the grid but (on an ordinary 2009 PC251

processor) usually it does not require more than 20 minutes to both extract fi and252

find a and b with a satisfactory resolution.253

14.6 Some Simple Experimental Results254

To test the above ideas in a simple context, we initially used them to enable an255

OpenCog powered virtual world agent to learn a variety of simple “dog tricks” based256

on imitation and reinforcement learning in the Multiverse virtual world. We have257

since deployed them on a variety of other applications in various domains.258

We began these experiments by running learning on two tricks, fetch_ball and259

triple_kick to be described below, in order to calibrate the size penalty function:260

1. fetch_ball, which corresponds to the Combo program261

and_seq(goto(ball)262

grab(ball)263

goto(owner)264

drop)265

2. triple_kick, if the stick is near the ball then kick 3 times with the left leg and266

otherwise 3 times with the right leg. So for that trick the owner had to provide267

2 exemplars, one for kickL (with the stick near the ball) and one for kickR, and268

move away the ball from the stick before showing the second exemplar. Below269

is the Combo program of triple_kick270

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14.6 Some Simple Experimental Results 235

if(near(stick ball)271

and_seq(kickL kickL kickL)272

and_seq(kickR kickR kickR))273

Before choosing an exponential size penalty function and calibrating it fetch_ball274

would be learned rather rapidly in a few seconds, but triple_kick would take more275

than an hour. After calibration both fetch_ball and triple_kick would be learned276

rapidly, the later in less than a minute.277

Then we experimented with a new few tricks, some simpler, like sit_under_tree278

and_seq(goto(tree) sit)279

and others more complex like double_dance, where the trick consists of dancing until280

the owner emits the message “stop dancing”, and changing the dance upon owner’s281

actions282

while(not(says(owner ‘‘stop dancing’’))283

if(last_action(owner ‘‘kickL’’)284

tap_dance285

lean_rock_dance))286

That is the pet performs a tap_dance when the last action of the owner is kickL,287

and otherwise performs a lean_rock_dance.288

We tested learning for 3 tricks, fetch_ball, triple_kick and double_dance. Each289

trick was tested in 7 settings denoted conf1 to conf10 summarized in Table 14.1.290

• conf1 is the default configuration of the system, the parameters of the size penalty291

function are a = 0.03 and b = 0.34, which is actually not what is returned by the292

calibration technique but close to. That is because in practice we have found that293

on average learning is working slightly faster with these values.294

• conf2 is the configuration with the exact values returned by the calibration, that is295

a = 0.05, b = 0.94.296

• conf3 has the reduction engine disabled.297

• conf4 has the entropy filter disabled (threshold is null so all perceptions pass the298

filter).299

• conf5 has the intensity of the penalty function set to 0.300

• conf6 has the penalty function set with low intensity.301

• conf7 and conf8 have the penalty function set with high intensity.302

• conf9 has the action sequence building block enabled.303

• conf10 has the action sequence building block enabled but with a slightly lower304

intensity of the size penalty function than normal.305

Tables 14.2, 14.3 and 14.4 contain the results of the learning experiment for the306

three tricks, fetch_ball, triple_kick and double_dance. In each table the column Per-307

cept gives the number perceptions which is taken into account for the learning. Restart308

gives the number of restarts hill climbing had to do before reaching the solution. Eval309

gives the number of evaluations and Time the search time.310

In Table 14.2 and 14.4 we can see that fetch_ball or double_dance are learned311

in a few seconds both in conf1 and conf2. In 14.3 however learning is about five312

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

236 14 Procedure Learning via Adaptively Biased Hillclimbing

Table 14.1 Settings for each
learning experiment

Reduct ActSeq Entropy a b Setting

On Off 0.1 0.03 0.34 conf1
On Off 0.1 0.05 0.94 conf2
Off Off 0.1 0.03 0.34 conf3
On Off 0 0.03 0.34 conf4
On Off 0.1 0 0.34 conf5
On Off 0.1 0.0003 0.34 conf6
On Off 0.1 0.3 0.34 conf7
On Off 0.1 3 0.34 conf8
On On 0.1 0.03 0.34 conf9
On On 0.1 0.025 0.34 conf10

Table 14.2 Learning time for
fetch_ball

Setting Percep Restart Eval Time

conf1 3 3 653 5s18
conf2 3 3 245 2s
conf3 3 3 1073 8s42
conf4 136 3 28287 4mn7s
conf5 3 >700 >500000 >1h
conf6 3 3 653 5s18
conf7 3 8 3121 23s42
conf8 3 147 65948 8mn10s
conf9 3 0 89 410ms
conf10 3 0 33 161ms

Table 14.3 Learning time for
triple_kick

Setting Percep Restart Eval Time

conf1 1 18 2783 21s47
conf2 1 110 11426 1mn53s
conf3 1 49 15069 2mn15s
conf4 124 ∞ ∞ ∞
conf5 1 >800 >200K >1h
conf6 1 7 1191 9s67
conf7 1 >2500 >200K >1h
conf8 1 >2500 >200K >1h
conf9 1 0 107 146ms
conf10 1 0 101 164ms

times faster with conf1 than with conf2, which was the motivation to go with conf2313

as default configuration, but conf2 still performs well.314

As Tables 14.2, 14.3 and 14.4 demonstrate for setting conf3, the reduction engine315

speeds the search up by less than twice for fetch_ball and double_dance, and many316

times for triple_kick.317

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14.6 Some Simple Experimental Results 237

Table 14.4 Learning time for
double_dance

Setting Percep Restart Eval Time

conf1 5 1 113 4s
conf2 5 1 113 4s
conf3 5 1 150 6s20ms
conf4 139 >4 >60K >1h
conf5 5 1 113 4s
conf6 5 1 113 4s
conf7 5 1 113 4s
conf8 5 >1000 >300K >1h
conf9 5 1 138 4s191ms
conf10 5 181 219K 56mn3s

The results for conf4 shows the importance of the filtering function, learning is318

dramatically slowed down without it. A simple trick like fetch_ball took few minutes319

instead of seconds, double_dance could not be learned after an hour, and triple_kick320

might never be learned because it did not focus on the right perception from the start.321

The results for conf5 shows that without any kind of complexity penalty learning322

can be dramatically slowed down, for the reasons explained in Sect. 14.5 that is323

the search loses itself in large regions of sub-optima. Only double_dance was not324

affected by that, which is probably explained by the fact that only one restart occurred325

in double_dance and it happened to be the right one.326

The results for conf6 show that when action sequence building-block is disabled327

the intensity of the penalty function could be set even lower. For instance triple_kick328

is learned faster (9s67 instead of 21s47 for conf1). Conversely the results for conf7329

show that when action sequence building-block is enabled, if the Occam’s razor is too330

weak it can dramatically slow down the search. That is because in this circumstance331

the search is misled by longer candidates that fit and takes a very cut before it can332

reach the optimal more compact solution.333

14.7 Conclusion334

In our experimentation with hillclimbing for learning pet tricks in a virtual world,335

we have shown that the combination of336

1. candidate reduction into normal form,337

2. filtering operators to narrow the alphabet,338

3. using action sequences that are compatible with the shown behavior as building339

blocks,340

4. adequately choosing and calibrating the complexity penalty function,341

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

238 14 Procedure Learning via Adaptively Biased Hillclimbing

can speed up imitation learning so that moderately complex tricks can be learned342

within seconds to minutes instead of hours, using a simple “hill climbing with343

restarts” learning algorithm.344

While we have discussed these ideas in the context of pet tricks, they have of course345

been developed with more general applications in mind, and have been applied in346

many additional contexts. Combo can be used to represent any sort of procedure,347

and both the hillclimbing algorithm and the optimization heuristics described here348

appear broad in their relevance.349

Natural extensions of the approach described here include the following direc-350

tions:351

1. improving the Entity and Entropy filter using ECAN and PLN so that filtering352

is not only based on entropy but also relevancy with respect to the context and353

background knowledge,354

2. using transfer learning (see Sect. 15.5 of Chap. 15) to tune the parameters of355

algorithm using contextual and background knowledge.356

Indeed these improvements are under active investigation at time of writing, and357

some may well have been implemented and tested by the time you read this.358

319613_1_En_14_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 238 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_15

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Probabilistic Evolutionary Procedure Learning

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, TaiPo,HongKong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract A program evolution component is proposed for integrative artificial general intelligence. The system’s
deployment is intended to be comparable, on Marr’s level of computational theory, to evolutionary
mechanisms in human thought. The challenges of program evolution are described, along with the
requirements for a program evolution system to be competent- solving hard problems quickly, accurately,
and reliably. Meta-optimizing semantic evolutionary search (MOSES) is proposed to fulfill these
requirements.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 15
Probabilistic Evolutionary Procedure
Learning

15.1 Introduction0

The CogPrime architecture fundamentally requires, as one of its components, some1

powerful algorithm for automated program learning. This algorithm must be able to2

solve procedure learning problems relevant to achieving human-like goals in every-3

day human environments, relying on the support of other cognitive processes, and4

providing them with support in turn. The requirement is not that complex human5

behaviors need to be learnable via program induction alone, but rather that when the6

best way for the system to achieve a certain goal seems to be the acquisition of a7

chunk of procedural knowledge, the program learning component should be able to8

carry out the requisite procedural knowledge.9

As CogPrime is a fairly broadly-defined architecture overall, there are no extremely10

precise requirements for its procedure learning component. There could be variants11

of CogPrime in which procedure learning carried more or less weight, relative to12

other components.13

Some guidance here may be provided by looking at which tasks are generally14

handled by humans primarily using procedural learning, a topic on which cogni-15

tive psychology has a fair amount to say, and which is also relatively amenable to16

commonsense understanding based on our introspective and social experience of17

being human. When we know how to do something, but can’t explain very clearly18

to ourselves or others how we do it, the chances are high that we have acquired this19

knowledge using some form of “procedure learning” as opposed to declarative learn-20

ing. This is especially the case if we can do this same sort of thing in many different21

contexts, each time displaying a conceptually similar series of actions, but adapted22

to the specific situation. We would like CogPrime to be able to carry out procedural23

learning in roughly the same situations ordinary humans can (and potentially other24

Co-authored with Moshe Looks (First author).

B. Goertzel et al., Engineering General Intelligence, Part 2, 239
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_15,
© Atlantis Press and the authors 2014

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

240 15 Probabilistic Evolutionary Procedure Learning

situations as well: maybe even at the start, and definitely as development proceeds),25

largely via action of its program learning component.26

In practical terms, our intuition (based on considerable experience with automated27

program learning, in OpenCog and other contexts) is that one requires a program28

learning component capable of learning programs with between dozens and hundreds29

of program tree nodes, in Combo or some similar representation—not able to learn30

arbitrary programs of this size, but rather able to solve problems arising in everyday31

human situations in which the simplest acceptable solutions involve programs of this32

size. We also suggest that the majority of procedure learning problems arising in33

everyday human situation can be solved via program with hierarchical structure, so34

that it likely suffices to be able to learn programs with between dozens and hundreds35

of program tree nodes, where the programs have a modular structure, consisting36

of modules each possessing no more than dozens of program tree nodes. Roughly37

speaking, with only a few dozen Combo tree nodes, complex behaviors seem only38

achievable via using very subtle algorithmic tricks that aren’t the sort of thing a39

human-like mind in the early stages of development could be expected to figure40

out; whereas, getting beyond a few hundred Combo tree nodes, one seems to get41

into the domain where an automated program learning approach is likely infeasible42

without rather strong restrictions on the program structure, so that a more appropriate43

approach within CogPrime would be to use PLN, concept creation or other methods44

to fuse together the results of multiple smaller procedure learning runs.45

While simple program learning techniques like hillclimbing (as discussed in46

Chap. 14) can be surprisingly powerful, they do have fundamental limitations, and47

our experience and intuition both indicate that they are not adequate for serving as48

CogPrime’s primary program learning component. This chapter describes an algo-49

rithm that we do believe is thus capable—CogPrime’s most powerful and general50

procedure learning algorithm, MOSES, an integrative probabilistic evolutionary pro-51

gram learning algorithm that was briefly overviewed in Chap. 1 of Vol. 5.52

While MOSES as currently designed and implemented embodies a number of53

specific algorithmic and structural choices, at bottom it embodies two fundamental54

insights that are critical to generally intelligent procedure learning:55

• Evolution is the right approach to the learning of difficult procedures56

• Enhancing evolution with probabilistic methods is necessary. Pure evolution, in57

the vein of the evolution of organisms and species, is too slow for broad use within58

cognition; so what is required is a hybridization of evolutionary and probabilistic59

methods, where probabilistic methods provide a more directed approach to gener-60

ating candidate solutions than is possible with typical evolutionary heuristics like61

crossover and mutation62

We summarize these insights in the phrase Probabilistic Evolutionary Program63

Learning (PEPL); MOSES is then one particular PEPL algorithm, and in our view a64

very good one. We have also considered other related algorithms such as the PLEA-65

SURE algorithm [Goe08a] (which may also be hybridized with MOSES), but for the66

time being it appears to us that MOSES satisfies CogPrime’s needs.67

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_14

http://dx.doi.org/10.2991/978-94-6239-027-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.1 Introduction 241

Our views on the fundamental role of evolutionary dynamics in intelligence were68

briefly presented in Chap. 4 of Vol. 5. Terrence Deacon said it even more emphatically:69

“At every step the design logic of brains is a Darwinian logic: overproduction, varia-70

tion, competition, selection…it should not come as a surprise that this same logic is71

also the basis for the normal millisecond-by-millisecond information processing that72

continues to adapt neural software to the world” [Dea98]. He has articulated ways in73

which, during neurodevelopment, different computations compete with each other74

(e.g., to determine which brain regions are responsible for motor control). More gen-75

erally, he posits a kind of continuous flux as control shifts between competing brain76

regions, again, based on high-level “cognitive demand”.77

Deacon’s intuition is similar to the one that led Edelman to propose Neural78

Darwinism [Ede93], and Calvin and Bickerton [CB00] to pose the notion of79

mind as a “Darwin Machine”. The latter have given plausible neural mechanisms80

(“Darwin Machines”) for synthesizing short “programs”. These programs are for81

tasks such as rock throwing and sentence generation, which are represented as coher-82

ent firing patterns in the cerebral cortex. A population of such patterns, competing83

for neurocomputational territory, replicates with variations, under selection pressure84

to conform to background knowledge and constraints.85

To incorporate these insights, a system is needed that can recombine existing86

solutions in a non-local synthetic fashion, learning nested and sequential structures,87

and incorporate background knowledge (e.g. previously learned routines). MOSES88

is a particular kind of program evolution intended to satisfy these goals, using a89

combination of probability theory with ideas drawn from genetic programming, and90

also incorporating some ideas we have seen in previous chapters such as program91

normalization.92

The main conceptual assumption about CogPrime’s world, implicit in the sugges-93

tion of MOSES as the primary program learning component, is that the goal-relevant94

knowledge that cannot effectively be acquired by the other methods at CogPrime’s95

disposal (PLN, ECAN, etc.), forms a body of knowledge that can effectively be96

induced across via probabilistic modeling on the space of programs for controlling97

a CogPrime agent. If this is not true, then MOSES will provide no advantage over98

simple methods like well-tuned hillclimbing as described in Chap. 14. If it is true,99

then the effort of deploying a complicated algorithm like MOSES is worthwhile.100

In essence, the assumption is that there are relatively simple regularities among the101

programs implementing those procedures that are most critical for a human-like102

intelligence to acquire via procedure learning rather than other methods.103

15.1.1 Explicit Versus Implicit Evolution in CogPrime104

Of course, the general importance of evolutionary dynamics for intelligence does not105

imply the need to use explicit evolutionary algorithms in one’s AGI system. Evolution106

can occur in an intelligent system whether or not the low-level implementation layer107

of the system involves any explicitly evolutionary processes. For instance it’s clear108

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_4

http://dx.doi.org/10.2991/978-94-6239-030-0_14

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

242 15 Probabilistic Evolutionary Procedure Learning

that the human mind/brain involves evolution in this sense on the emergent level—we109

create new ideas and procedures by varying and combining ones that we’ve found110

useful in the past, and this occurs on a variety of levels of abstraction in the mind. In111

CogPrime, however, we have chosen to implement evolutionary dynamics explicitly,112

as well as encouraging them to occur implicitly.113

CogPrime is intended to display evolutionary dynamics on the derived-hypergraph114

level, and this is intended to be a consequence of both explicitly-evolutionary and not-115

explicitly-evolutionary dynamics. Cognitive processes such as PLN inference may116

lead to emergent evolutionary dynamics (as useful logical relationships are reasoned117

on and combined, leading to new logical relationships in an evolutionary manner);118

even though PLN in itself is not explicitly evolutionary in character, it becomes119

emergently evolutionary via its coupling with CogPrime’s attention allocation sub-120

system, which gives more cognitive attention to Atoms with more importance, and121

hence creates an evolutionary dynamic with importance as the fitness criterion and the122

whole constellation of MindAgents as the novelty-generation mechanism. However,123

MOSES explicitly embodies evolutionary dynamics for the learning of new patterns124

and procedures that are too complex for hillclimbing or other simple heuristics to125

handle. And this evolutionary learning subsystem naturally also contributes to the126

creation of evolutionary patterns on the emergent, derived-hypergraph level.127

15.2 Estimation of Distribution Algorithms128

There is a long history in AI of applying evolution-derived methods to practical129

problem-solving; John Holland’s genetic algorithm [Hol75], initially a theoretical130

model, has been adapted successfully to a wide variety of applications (see e.g. the131

proceedings of the GECCO conferences). Briefly, the methodology applied is as132

follows:133

1. generate a random population of solutions to a problem134

2. evaluate the solutions in the population using a predefined fitness function135

3. select solutions from the population proportionate to their fitnesss136

4. recombine/mutate them to generate a new population137

5. go to step 2.138

Holland’s paradigm has been adapted from the case of fixed-length strings to the139

evolution of variable-sized and shaped trees (typically Lisp S-expressions), which in140

principle can represent arbitrary computer programs [Koz92, Koz94].141

Recently, replacements-for/extensions-of the genetic algorithm have been devel-142

oped (for fixed-length strings) which may be described as estimation-of-distribution143

algorithms (see [Pel05] for an overview). These methods, which outperform genetic144

algorithms and related techniques across a range of problems, maintain centralized145

probabilistic models of the population learned with sophisticated datamining tech-146

niques. One of the most powerful of these methods is the Bayesian optimization147

algorithm (BOA) [Pel05].148

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.2 Estimation of Distribution Algorithms 243

The basic steps of the BOA are:149

1. generate a random population of solutions to a problem150

2. evaluate the solutions in the population using a predefined fitness function151

3. from the promising solutions in the population, learn a generative model152

4. create new solutions using the model, and merge them into the existing population153

5. go to step 2.154

The neurological implausibility of this sort of algorithm is readily apparent—yet155

recall that in CogPrime we are attempting to roughly emulate human cognition on156

the level of behavior not structure or dynamics.157

Fundamentally, the BOA and its ilk (the competent adaptive optimization algo-158

rithms) differ from classic selecto-recombinative search by attempting to dynamically159

learn a problem decomposition, in terms of the variables that have been pre-specified.160

The BOA represents this decomposition as a Bayesian network (directed acyclic161

graph with the variables as nodes, and an edge from x to y indicating that y is prob-162

abilistically dependent on x). An extension, the hierarchical Bayesian optimization163

algorithm (hBOA), uses a Bayesian network with local structure to more accurately164

represent hierarchical dependency relationships. The BOA and hBOA are scalable165

and robust to noise across the range of nearly decomposable functions. They are also166

effective, empirically, on real-world problems with unknown decompositions, which167

may or may not be effectively representable by the algorithms; robust, high-quality168

results have been obtained for Ising spin glasses and MaxSAT, as well as a variety169

of real-world problems.170

15.3 Competent Program Evolution via MOSES171

In this section we summarize meta-optimizing semantic evolutionary search172

(MOSES), a system for competent program evolution, described more thoroughly173

in [Loo06]. Based on the viewpoint developed in the previous section, MOSES is174

designed around the central and unprecedented capability of competent optimization175

algorithms such as the hBOA, to generate new solutions that simultaneously combine176

sets of promising assignments from previous solutions according to a dynamically177

learned problem decomposition. The novel aspects of MOSES described herein are178

built around this core to exploit the unique properties of program learning problems.179

This facilitates effective problem decomposition (and thus competent optimization).180

15.3.1 Statics181

The basic goal of MOSES is to exploit the regularities in program spaces outlined182

in the previous section, most critically behavioral decomposability and white box183

execution, to dynamically construct representations that limit and transform the184

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

244 15 Probabilistic Evolutionary Procedure Learning

program space being searched into a relevant subspace with a compact problem185

decomposition. These representations will evolve as the search progresses.186

15.3.1.1 An Example187

Let’s start with an easy example. What knobs (meaningful parameters to vary) exist188

for the family of programs depicted in Fig. ?? on the left? We can assume, in accor-189

dance with the principle of white box execution, that all symbols have their standard190

mathematical interpretations, and that x, y, and z are real-valued variables.191

In this case, all three programs correspond to variations on the behavior repre-192

sented graphically on the right in the figure. Based on the principle of behavioral193

decomposability, good knobs should express plausible evolutionary variation and194

recombination of features in behavior space, regardless of the nature of the corre-195

sponding changes in program space. It’s worth repeating once more that this goal196

cannot be meaningfully addressed on a syntactic level—it requires us to leverage197

background knowledge of what the symbols in our vocabulary (cos, +, 0.35, etc.)198

actually mean.199

A good set of knobs will also be orthogonal. Since we are searching through the200

space of combinations of knob settings (not a single change at a time, but a set of201

changes), any knob whose effects are equivalent to another knob or combination of202

knobs is undesirable.1 Correspondingly, our set of knobs should span all of the given203

programs (i.e., be able to represent them as various knob settings).204

A small basis for these programs could be the 3-dimensional parameter space,205

x1 ∈ {x, z, 0} (left argument of the root node), x2 ∈ {y, x} (argument of cos), and206

x3 ∈ [0.3, 0.4] (multiplier for the cos-expression). However, this is a very limiting207

view, and overly tied to the particulars of how these three programs happen to be208

encoded. Considering the space behaviorally (right of Fig. ??), a number of additional209

knobs can be imagined which might be turned in meaningful ways, such as:210

1. numerical constants modifying the phase and frequency of the cosine expression,211

2. considering some weighted average of x and y instead of one or the other,212

3. multiplying the entire expression by a constant,213

4. adjusting the relative weightings of the two arguments to +.214

15.3.1.2 Syntax and Semantics215

This kind of representation-building calls for a correspondence between syntactic and216

semantic variation. The properties of program spaces that make this difficult are over-217

representation and chaotic execution, which lead to non-orthogonality, oversampling218

1 First because this will increase the number of samples needed to effectively model the structure
of knob-space, and second because this modeling will typically be quadratic with the number of
knobs, at least for the BOA or hBOA.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.3 Competent Program Evolution via MOSES 245

of distant behaviors, and undersampling of nearby behaviors, all of which can directly219

impede effective program evolution.220

Non-orthogonality is caused by over-representation. For example, based on the221

properties of commutativity and associativity, a1 + a2 + · · · + an may be expressed222

in exponentially many different ways, if + is treated as a non-commutative and223

non-associative binary operator. Similarly, operations such as addition of zero and224

multiplication by one have no effect, the successive addition of two constants is equiv-225

alent to the addition of their sum, etc. These effects are not quirks of real-valued226

expressions; similar redundancies appear in Boolean formulae (x AND x ≡ x),227

list manipulation (cdr(cons(x, L)) ≡ L), and conditionals (if x then y else z ≡228

if NOT x then z else y).229

Without the ability to exploit these identities, we are forced to work in a greatly230

expanded space which represents equivalent expression in many different ways, and231

will therefore be very far from orthogonality. Completely eliminating redundancy is232

infeasible, and typically NP-hard (in the domain of Boolean formulae it is reducible233

to the satisfiability problem, for instance), but one can go quite far with a heuristic234

approach.235

Oversampling of distant behaviors is caused directly by chaotic execution, as236

well as a somewhat subtle effect of over-representation, which can lead to simpler237

programs being heavily oversampled. Simplicity is defined relative to a given pro-238

gram space in terms of minimal length, the number of symbols in the shortest program239

that produces the same behavior.240

Undersampling of nearby behaviors is the flip side of the oversampling of241

distant behaviors. As we have seen, syntactically diverse programs can have the same242

behavior; this can be attributed to redundancy, as well as non-redundant programs243

that simply compute the same result by different means. For example, 3*x can also244

be computed as x + x + x; the first version uses less symbols, but neither contains245

any obvious “bloat” such as addition of zero or multiplication by one. Note however246

that the nearby behavior of 3.1*x, is syntactically close to the former, and relatively247

far from the latter. The converse is the case for the behavior of 2*x+y. In a sense,248

these two expressions can be said to exemplify differing organizational principles,249

or points of view, on the underlying function.250

Differing organizational principles lead to different biases in sampling nearby251

behaviors. A superior organizational principle (one leading to higher-fitness syntac-252

tically nearby programs for a particular problem) might be considered a metaptation253

(adaptation at the second tier). Since equivalent programs organized according to dif-254

ferent principles will have identical fitnesss, some methodology beyond selection for255

high fitnesss must be employed to search for good organizational principles. Thus, the256

resolution of undersampling of nearby behaviors revolves around the management257

of neutrality in search, a complex topic beyond the scope of this chapter.258

These three properties of program spaces greatly affect the performance of evo-259

lutionary methods based solely on syntactic variation and recombination operators,260

such as local search or genetic programming. In fact, when quantified in terms of261

various fitness-distance correlation measures, they can be effective predictors of262

algorithm performance, although they are of course not the whole story. A semantic263

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

246 15 Probabilistic Evolutionary Procedure Learning

search procedure will address these concerns in terms of the underlying behavioral264

effects of and interactions between a language’s basic operators; the general scheme265

for doing so in MOSES is the topic of the next subsection.266

15.3.1.3 Neighborhoods and Normal Forms267

The procedure MOSES uses to construct a set of knobs for a given program (or268

family of structurally related programs) is based on three conceptual steps: reduction269

to normal form, neighborhood enumeration, and neighborhood reduction.270

Reduction to normal form271

Redundancy is heuristically eliminated by reducing programs to a normal form.272

Typically, this will be via the iterative application of a series of local rewrite rules273

(e.g., ∀x, x +0 → x), until the target program no longer changes. Note that the well-274

known conjunctive and disjunctive normal forms for Boolean formulae are generally275

unsuitable for this purpose; they destroy the hierarchical structure of formulae, and276

dramatically limit the range of behaviors (in this case Boolean functions) that can be277

expressed compactly. Rather, hierarchical normal forms for programs are required.278

Neighborhood enumeration279

A set of possible atomic perturbations is generated for all programs under con-280

sideration (the overall perturbation set will be the union of these). The goal is to281

heuristically generate new programs that correspond to behaviorally nearby varia-282

tions on the source program, in such a way that arbitrary sets of perturbations may283

be composed combinatorially to generate novel valid programs.284

Neighborhood reduction285

Redundant perturbations are heuristically culled to reach a more orthogonal set. A286

straightforward way to do this is to exploit the reduction to normal form outlined287

above; if multiple knobs lead to the same normal forms program, only one of them288

is actually needed. Additionally, note that the number of symbols in the normal form289

of a program can be used as a heuristic approximation for its minimal length—if290

the reduction to normal form of the program resulting from twiddling some knob291

significantly decreases its size, it can be assumed to be a source of oversampling,292

and hence eliminated from consideration. A slightly smaller program is typically a293

meaningful change to make, but a large reduction in complexity will rarely be useful294

(and if so, can be accomplished through a combination of knobs that individually295

produce small changes).296

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.3 Competent Program Evolution via MOSES 247

At the end of this process, we will be left with a set of knobs defining a subspace297

of programs centered around a particular region in program space and heuristically298

centered around the corresponding region in behavior space as well. This is part of the299

meta aspect of MOSES, which seeks not to evaluate variations on existing programs300

itself, but to construct parameterized program subspaces (representations) containing301

meaningful variations, guided by background knowledge. These representations are302

used as search spaces within which an optimization algorithm can be applied.303

15.3.2 Dynamics304

As described above, the representation-building component of MOSES constructs a305

parameterized representation of a particular region of program space, centered around306

a single program family of closely related programs. This is consistent with the line of307

thought developed above, that a representation constructed across an arbitrary region308

of program space (e.g., all programs containing less than n symbols), or spanning309

an arbitrary collection of unrelated programs, is unlikely to produce a meaningful310

parameterization (i.e., one leading to a compact problem decomposition).311

A sample of programs within a region derived from representation-building312

together with the corresponding set of knobs will be referred to herein as a deme2; a set313

of demes (together spanning an arbitrary area within program space in a patchwork314

fashion) will be referred to as a metapopulation.3 MOSES operates on a metapop-315

ulation, adaptively creating, removing, and allocating optimization effort to various316

demes. Deme management is the second fundamental meta aspect of MOSES, after317

(and above) representation-building; it essentially corresponds to the problem of318

effectively allocating computational resources to competing regions, and hence to319

competing programmatic organizational- representational schemes.320

15.3.2.1 Algorithmic Sketch321

The salient aspects of programs and program learning lead to requirements for com-322

petent program evolution that can be addressed via a representation-building process323

such as the one shown above, combined with effective deme management. The fol-324

lowing sketch of MOSES, elaborating Fig. 15.1 repeated here from Chap. 8 of Vol. 5,325

presents a simple control flow that dynamically integrates these processes into an326

overall program evolution procedure:327

1. Construct an initial set of knobs based on some prior (e.g., based on an empty328

program) and use it to generate an initial random sampling of programs. Add this329

deme to the metapopulation.330

2 A term borrowed from biology, referring to a somewhat isolated local population of a species.
3 Another term borrowed from biology, referring to a group of somewhat separate populations (the
demes) that nonetheless interact.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_8

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

248 15 Probabilistic Evolutionary Procedure Learning

Fig. 15.1 The top-level architectural components of MOSES, with directed edges indicating the
flow of information and program control

2. Select a deme from the metapopulation and update its sample, as follows:331

a. Select some promising programs from the deme’s existing sample to use for332

modeling, according to the fitness function.333

b. Considering the promising programs as collections of knob settings, gen-334

erate new collections of knob settings by applying some (competent) opti-335

mization algorithm.336

c. Convert the new collections of knob settings into their corresponding pro-337

grams, reduce the programs to normal form, evaluate their fitnesss, and338

integrate them into the deme’s sample, replacing less promising programs.339

3. For each new program that meets the criteria for creating a new deme, if any:340

a. Construct a new set of knobs (via representation-building) to define a region341

centered around the program (the deme’s exemplar), and use it to generate342

a new random sampling of programs, producing a new deme.343

b. Integrate the new deme into the metapopulation, possibly displacing less344

promising demes.345

4. Repeat from step 2.346

The criterion for creating a new deme is behavioral non-dominance (programs347

which are not dominated by the exemplars of any existing demes are used as exem-348

plars to create new demes), which can be defined in a domain-specific fashion. As a349

default, the fitness function may be used to induce dominance, in which case the set350

of exemplar programs for demes corresponds to the set of top-fitness programs.351

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.3 Competent Program Evolution via MOSES 249

15.3.3 Architecture352

The preceding algorithmic sketch of MOSES leads to the top-level architecture353

depicted in Fig. ??. Of the four top-level components, only the fitness function354

is problem-specific. The representation-building process is domain-specific, while355

the random sampling methodology and optimization algorithm are domain-general.356

There is of course the possibility of improving performance by incorporating domain357

and/or problem-specific bias into random sampling and optimization as well.358

15.3.4 Example: Artificial Ant Problem359

Let’s go through all of the steps that are needed to apply MOSES to a small problem,360

the artificial ant on the Santa Fe trail [Koz92], and describe the search process. The361

artificial ant domain is a two-dimensional grid landscape where each cell may or may362

not contain a piece of food. The artificial ant has a location (a cell) and orientation363

(facing up, down, left, or right), and navigates the landscape via a primitive sensor,364

which detects whether or not there is food in the cell that the ant is facing, and365

primitive actuators move (take a single step forward), right (rotate 90◦ clockwise),366

and left (rotate 90◦ counter-clockwise). The Santa Fe trail problem is a particular367

32×32 toroidal grid with food scattered on it (Fig. 4), and a fitness function counting368

the number of unique pieces of food the ant eats (by entering the cell containing the369

food) within 600 steps (movement and 90◦ rotations are considered single steps). AQ1370

Programs are composed of the primitive actions taking no arguments, a conditional371

(if-food-ahead),4 which takes two arguments and evaluates one or the other based372

on whether or not there is food ahead, and progn, which takes a variable number of373

arguments and sequentially evaluates all of them from left to right. To fitness a pro-374

gram, it is evaluated continuously until 600 time steps have passed, or all of the food375

is eaten (whichever comes first). Thus for example, the program if-food-ahead(m, r)376

moves forward as long as there is food ahead of it, at which point it rotates clockwise377

until food is again spotted. It can successfully navigate the first two turns of the378

placeSanta Fe trail, but cannot cross “gaps” in the trail, giving it a final fitness of 11.379

The first step in applying MOSES is to decide what our reduction rules should380

look like. This program space has several clear sources of redundancy leading to381

over-representation that we can eliminate, leading to the following reduction rules:382

1. Any sequence of rotations may be reduced to either a left rotation, a right rotation,383

or a reversal, for example:384

progn(left, left, left)385

reduces to386

right387

4 This formulation is equivalent to using a general three-argument if-then-else statement with a
predicate as the first argument, as there is only a single predicate (food-ahead) for the ant problem.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

250 15 Probabilistic Evolutionary Procedure Learning

1. Any if-food-ahead statement which is the child of an if-food-ahead statement388

may be eliminated, as one of its branches is clearly irrelevant, for example:389

if-food-ahead(m, if-food-ahead(l, r))390

reduces to391

if-food-ahead(m, r)392

1. Any progn statement which is the child of a progn statement may be eliminated393

and replaced by its children, for example:394

progn(progn(left, move), move)395

reduces to396

progn(left, move, move)397

The representation language for the ant problem is simple enough that these are the398

only three rules needed—in principle there could be many more. The first rule may399

be seen as a consequence of general domain-knowledge pertaining to rotation. The400

second and third rules are fully general simplification rules based on the semantics401

of if-then-else statements and associative functions (such as progn), respectively.402AQ2

These rules allow us to naturally parameterize a knob space corresponding to a403

given program (note that the arguments to the progn and if-food-ahead functions404

will be recursively reduced and parameterized according to the same procedure).405

Rotations will correspond to knobs with four possibilities (left, right, reversal, no406

rotation). Movement commands will correspond to knobs with two possibilities407

(move, no movement). There is also the possibility of introducing a new command408

in between, before, or after, existing commands. Some convention (a “canonical409

form”) for our space is needed to determine how the knobs for new commands will410

be introduced. A representation consists of a rotation knob, followed by a conditional411

knob, followed by a movement knob, followed by a rotation knob, etc.5412

The structure of the space (how large and what shape) and default knob values will413

be determined by the “exemplar” program used to construct it. The default values414

are used to bias the initial sampling to focus around the prototype associated to the415

exemplar: all of the n direct neighbors of the prototype are first added to the sample,416

followed by a random selection of n programs at a distance of two from the prototype,417

n programs at a distance of three, etc., until the entire sample is filled. Note that the418

hBOA can of course effectively recombine this sample to generate novel programs at419

any distance from the initial prototype. The empty program progn (which can be used420

as the initial exemplar for MOSES), for example, leads to the following prototype:421

progn(422

rotate? [default no rotation],423

if-food-ahead(424

progn(425

rotate? [default no rotation],426

5 That there is some fixed ordering on the knobs is important, so that two rotation knobs are not
placed next to each other (as this would introduce redundancy). In this case, the precise ordering
chosen (rotation, conditional, movement) does not appear to be critical.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.3 Competent Program Evolution via MOSES 251

move? [default no movement]),427

progn(428

rotate? [default no rotation],429

move? [default no movement])),430

move? [default no movement])431

432

There are six parameters here, three which are quaternary (rotate), and three which433

are binary (move). So the program434

progn(left, if-food-ahead(move, left))435

would be encoded in the space as436

[left, no rotation, move, left, no movement, no movement]437

with knobs ordered according to a pre-order left-to-right traversal of the program’s438

parse tree (this is merely for exposition; the ordering of the parameters has no effect439

on MOSES). For a prototype program already containing an if-food-ahead statement,440

nested conditionals would be considered (Fig. 15.2). AQ3441

Fig. 15.2 On the top, histogram of the number of global optima found after a given number of
program evaluations for 100 runs of MOSES on the artificial ant problem (each run is counted
once for the first global optimum reached). On the bottom, computational effort required to find an
optimal solution for various techniques with probability p = 0.99 (for MOSES p = 1, since an
optimal solution was found in all runs)

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

252 15 Probabilistic Evolutionary Procedure Learning

A space with six parameters in it is small enough that MOSES can reliably find442

the optimum (the program progn(right, if-food-ahead(progn(), left), move)), with a443

very small population. After no further improvements have been made in the search444

for a specified number of generations (calculated based on the size of the space based445

on a model derived from [23] that is general to the hBOA, and not at all tuned for446

the artificial ant problem), a new representation is constructed centered around this447

program.6 Additional knobs are introduced “in between” all existing ones (e.g., an448

optional move in between the first rotation and the first conditional), and possible449

nested conditionals are considered (a nested conditional occurring in a sequence450

after some other action has been taken is not redundant). The resulting space has 39451

knobs, still quite tractable for hBOA, which typically finds a global optimum within452

a few generations. If the optimum were not to be found, MOSES would construct453

a new (possibly larger or smaller) representation, centered around the best program454

that was found, and the process would repeat.AQ4455

The artificial ant problem is well-studied, with published benchmark results avail-456

able for genetic programming as well as evolutionary programming based solely on457

mutation (i.e., a form of population-based stochastic hill climbing). Furthermore,458

an extensive analysis of the search space has been carried out by Langdon and Poli459

[LP02], with the authors concluding:460

1. The problem is “deceptive at all levels”, meaning that the partial solutions that461

must be recombined to solve the problem to optimality have lower average fitness462

than the partial solutions that lead to inferior local optima.463

2. The search space contains many symmetries (e.g., between left and right rota-464

tions),465

3. There is an unusually high density of global optima in the space (relative to other466

common test problems);467

4. even though current evolutionary methods can solve the problem, they are not sig-468

nificantly more effective (in terms of the number of program evaluations require)469

than random sample.470

5. “If real program spaces have the above characteristics (we expect them to do so but471

be still worse) then it is important to be able to demonstrate scalable techniques472

on such problem spaces”.473

15.3.4.1 Test Results474

Koza [Koz92] reports on a set of 148 runs of genetic programming with a popula-475

tion size of 500 which had a 16 % success rate after 51 generations when the runs476

were terminated (a total of 25,500 program evaluations per run). The minimal “com-477

putational effort” needed to achieve success with 99 % probability was attained by478

6 MOSES reduces the exemplar program to normal form before constructing the representation;
in this particular case however, no transformations are needed. Similarly, in general neighborhood
reduction would be used to eliminate any extraneous knobs (based on domain-specific heuristics).
For the ant domain however no such reductions are necessary.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.3 Competent Program Evolution via MOSES 253

processing through generation 14 was 450,000 (based on parallel independent runs).479

Chellapilla [Che97] reports 47 out of 50 successful runs with a minimal computa-480

tional effort (again, for success with 99 % probability) of 136,000 for his stochastic481

hill climbing method.482

In our experiment with the artificial ant problem, one hundred runs of MOSES483

were executed. Beyond the domain knowledge embodied in the reduction and knob484

construction procedure, the only parameter that needed to be set was the population485

scaling factor, which was set to 30 (MOSES automatically adjusts to generate a larger486

population as the size of the representation grows, with the base case determined by487

this factor). Based on these “factory” settings, MOSES found optimal solutions on488

every run out of 100 trials, within a maximum of 23,000 program evaluations (the489

computational effort figure corresponding to 100 % success). The average number490

of program evaluations required was 6,952, with 95 % confidence intervals of ±856491

evaluations.492

Why does MOSES outperform other techniques? One factor to consider first is493

that the language programs are evolved in is slightly more expressive than that used494

for the other techniques; specifically, a progn is allowed to have no children (if all495

of its possible children are “turned off”), leading to the possibility of if-food-ahead496

statements which do nothing if food is present (or not present). Indeed, many of497

the smallest solutions found by MOSES exploit this feature. This can be tested by498

inserting a “do nothing” operation into the terminal set for genetic programming (for499

example). Indeed, this reduces the computational effort to 272,000; an interesting500

effect, but still over an order of magnitude short of the results obtained with MOSES501

(the success rate after 50 generations is still only 20 %).502

Another possibility is that the reductions in the search space via simplification503

of programs alone are responsible. However, the results past attempts at introducing504

program simplification into genetic programming systems [27, 28] have been mixed;505

although the system may be sped up (because programs are smaller), there have been506

no dramatic improvement in results noted. To be fair, these results have been primarily507

focused on the symbolic regression domain; I am not aware of any results for the508

artificial ant problem.509

The final contributor to consider is the sampling mechanism (knowledge-driven510

knob-creation followed by probabilistic model-building). We can test to what extent511

model-building contributes to the bottom line by simply disabling it and assuming512

probabilistic independence between all knobs. The result here is of interest because513

model-building can be quite expensive (O(n2N) per generation, where n is the prob-514

lem size and N is the population size7). In 50 independent runs of MOSES with-515

out model-building, a global optimum was still discovered in all runs. However,516

the variance in the number of evaluations required was much higher (in two cases517

over 100,000 evaluations were needed). The new average was 26,355 evaluations518

to reach an optimum (about 3.5 times more than required with model-building).519

7 The fact that reduction to normal tends to reduce the problem size is another synergy between it
and the application of probabilistic model-building.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

254 15 Probabilistic Evolutionary Procedure Learning

The contribution of model-building to the performance of MOSES is expected to be520

even greater for more difficult problems.521

Applying MOSES without model-building (i.e., a model assuming no interac-522

tions between variables) is a way to test the combination of representation-building523

with an approach resembling the probabilistic incremental program learning (PIPE)524

algorithm [SS03], which learns programs based on a probabilistic model without any525

interactions. PIPE has now been shown to provide results competitive with genetic526

programming on a number of problems (regression, agent control, etc.).527

It is additionally possible to look inside the models that the hBOA constructs528

(based on the empirical statistics of successful programs) to see what sorts of linkages529

between knobs are being learned.8 For the 6-knob model given above for instance530

an analysis of the linkages learned shows that the three most common pairwise531

dependencies uncovered, occurring in over 90 % of the models across 100 runs, are532

between the rotation knobs. No other individual dependencies occurred in more than533

32 % of the models. This preliminary finding is quite significant given Landgon and534

Poli’s findings on symmetry, and their observation that “[t]hese symmetries lead to535

essentially the same solutions appearing to be the opposite of each other. E.g. either536

a pair of Right or pair of Left terminals at a particular location may be important”.537

In this relatively simple case, all of the components of MOSES appear to mesh538

together to provide superior performance—which is promising, though it of course539

does not prove that these same advantages will apply across the range of problems540

relevant to human-level AGI.541

15.3.5 Discussion542

The overall MOSES design is unique. However, it is instructive at this point to com-543

pare its two primary unique facets (representation-building and deme management)544

to related work in evolutionary computation.545

Rosca’s adaptive representation architecture [Ros99] is an approach to program546

evolution which also alternates between separate representation-building and opti-547

mization stages. It is based on Koza’s genetic programming, and modifies the rep-548

resentation based on a syntactic analysis driven by the fitness function, as well as a549

modularity bias. The representation-building that takes place consists of introduc-550

ing new compound operators, and hence modifying the implicit distance function in551

tree-space. This modification is uniform, in the sense that the new operators can be552

placed in any context, without regard for semantics.553

In contrast to Rosca’s work and other approaches to representation-building such554

as Koza’s automatically defined functions [KA95], MOSES explicitly addresses the555

underlying (semantic) structure of program space independently of the search for556

any kind of modularity or problem decomposition. This preliminary stage critically557

8 There is in fact even more information available in the hBOA models concerning hierarchy and
direction of dependence, but this is difficult to analyze.

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.3 Competent Program Evolution via MOSES 255

changes neighborhood structures (syntactic similarity) and other aggregate properties558

of programs.559

Regarding deme management, the embedding of an evolutionary algorithm within560

a superordinate procedure maintaining a metapopulation is most commonly associ-561

ated with “island model” architectures [SWM90]. One of the motivations articulated562

for using island models has been to allow distinct islands to (usually implicitly)563

explore different regions of the search space, as MOSES does explicitly. MOSES564

can thus be seen as a very particular kind of island model architecture, where pro-565

grams never migrate between islands (demes), and islands are created and destroyed566

dynamically as the search progresses.567

In MOSES, optimization does not operate directly on program space, but rather568

on a subspace defined by the representation-building process. This subspace may be569

considered as being defined by a sort of template assigning values to some of the570

underlying dimensions (e.g., it restricts the size and shape of any resulting trees). The571

messy genetic algorithm [GKD89], an early competent optimization algorithm, uses a572

similar mechanism—a common “competitive template” is used to evaluate candidate573

solutions to the optimization problem which are themselves underspecified. Search574

consequently centers on the template(s), much as search in MOSES centers on the575

programs used to create new demes (and thereby new representations). The issue of576

deme management can thus be seen as analogous to the issue of template selection577

in the messy genetic algorithm.578

15.3.6 Conclusion579

Competent evolutionary optimization algorithms are a pivotal development, allowing580

encoded problems with compact decompositions to be tractably solved according581

to normative principles. We are still faced with the problem of representation-582

building—casting a problem in terms of knobs that can be twiddled to solve it.583

Hopefully, the chosen encoding will allow for a compact problem decomposition.584

Program learning problems in particular rarely possess compact decompositions,585

due to particular features generally present in program spaces (and in the mapping586

between programs and behaviors). This often leads to intractable problem formula-587

tions, even if the mapping between behaviors and fitness has an intrinsic separable or588

nearly decomposable structure. As a consequence, practitioners must often resort to589

manually carrying out the analogue of representation-building, on a problem-specific590

basis. Working under the thesis that the properties of programs and program spaces591

can be leveraged as inductive bias to remove the burden of manual representation-592

building, leading to competent program evolution, we have developed the MOSES593

system, and explored its properties.594

While the discussion above has highlighted many of the features that make595

MOSES uniquely powerful, in a sense it has told only half the story. Part of what596

makes MOSES valuable for CogPrime is that it’s good on its own; and the other597

part is that it cooperates well with the other cognitive processes within CogPrime.598

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

256 15 Probabilistic Evolutionary Procedure Learning

We have discussed aspects of this already in Chap. 8 of Vol. 5, especially in regard to599

the MOSES/PLN relationship. In the following section we proceed further to explore600

the interaction of MOSES with other aspects of the CogPrime system—a topic that601

will arise repeatedly in later chapters as well.602

15.4 Integrating Feature Selection into the Learning Process603

In the typical workflow of applied machine learning, one begins with a large number604

of features, each applicable to some or all of the entities one wishes to learn about;605

then one applies some feature selection heuristics to whittle down the large set of606

features into a smaller one; then one applies a learning algorithm to the reduced set of607

features. The reason for this approach is that the more powerful among the existing608

machine learning algorithms tend to get confused when supplied with too many609

features. The problem with this approach is that sometimes one winds up throwing610

out potentially very useful information during the feature selection phase. This same611

sort of problem exists with MOSES in its simplest form, as described above.612

The human mind, as best we understand it, does things a bit differently than this613

standard “feature selection followed by learning” process. It does seem to perform614

operations analogous to feature selection, and operations analogous to the application615

of a machine learning algorithm to a reduced feature set—but then it also involves616

feedback from these “machine learning like” operations to the “feature selection like”617

operations, so that the intermediate results of learning can cause the introduction into618

the learning process of features additional to those initially selected, thus allowing619

the development of better learning results.620

Compositional spatiotemporal deep learning (CSDLN) architectures like HTM621

[HB06] or DeSTIN [ARC09a], as discussed in 9 incorporate this same sort of feed-622

back. The lower levels of such an architecture, in effect, carry out “feature selection”623

for the upper levels—but then feedback from the upper to the lower levels also624

occurs, thus in effect modulating the “feature selection like” activity at the lower lev-625

els based on the more abstract learning activity on the upper levels. However, such626

CSDLN architectures are specifically biased toward recognition of certain sorts of627

patterns—an aspect that may be considered a bug or a feature of this class of learning628

architecture, depending on the context. For visual pattern recognition, it appears to629

be a feature, since the hierarchical structure of such algorithms roughly mimics the630

architecture of visual cortex. For automated learning of computer programs carrying631

out symbolic tasks, on the other hand, CSDLN architectures are awkward at best632

and probably generally inappropriate. For cases like language learning or abstract633

conceptual inference, the jury is out.634

In this section we explore the question of: how to introduce an appropriate635

feedback between feature selection and learning in the case of machine learning636

algorithms with general scope and without explicit hierarchical structure—such as637

MOSES. We introduce a specific technique enabling this, which we call LIFES, short638

for Learning-Incorporated Feature Selection. We argue that LIFES is particularly639

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_8

http://dx.doi.org/10.2991/978-94-6239-030-0_9

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.4 Integrating Feature Selection into the Learning Process 257

applicable to learning problems that possess the conjunction of two properties that640

we call data focusability and feature focusability. We illustrate LIFES in a MOSES641

context, via describing a specific incarnation of the LIFES technique that does fea-642

ture selection repeatedly during the MOSES learning process, rather than just doing643

it initially prior to MOSES learning.644

15.4.1 Machine Learning, Feature Selection and AGI645

The relation between feature selection and machine learning appears an excellent646

example of the way that, even when the same basic technique is useful in both narrow647

AI and AGI, the method of utilization is often quite different. In most applied machine648

learning tasks, the need to customize feature selection heuristics for each application649

domain (and in some cases, each particular problem) is not a major difficulty. This650

need does limit the practical utilization of machine learning algorithms, because it651

means that many ML applications require an expert user who understands something652

about machine learning, both to deal with feature selection issues and to interpret the653

results. But it doesn’t stand in the way of ML’s fundamental usability. On the other654

hand, in an AGI context, the situation is different, and the need for human-crafted,655

context-appropriate feature selection does stand in the way of the straightforward656

insertion of most ML algorithms into an integrative AGI systems.657

For instance, in the OpenCog integrative AGI architecture that we have co-658

architected [Gea13], the MOSES automated program learning algorithm plays a659

key role. It is OpenCog’s main algorithm for acquiring procedural knowledge, and660

is used for generating some sorts of declarative knowledge as well. However, when661

MOSES tasks are launched automatically via the OpenCog scheduler based on an662

OpenCog agent’s goals, there is no opportunity for the clever choice of feature selec-663

tion heuristics based on the particular data involved. And crude feature selection664

heuristics based on elementary statistics, are often insufficiently effective, as they665

rule out too many valuable features (and sometimes rule out the most critical fea-666

tures). In this context, having a variant of MOSES that can sift through the scope of667

possible features in the course of its learning is very important.668

An example from the virtual dog domain pursued in [GEA08] would be as follows.669

Each procedure learned by the virtual dog combines a number of different actions,670

such as “step forward”, “bark”, “turn around”, “look right”, “lift left front leg”, etc. In671

the virtual dog experiments done previously, the number of different actions permitted672

to the dog was less than 100, so that feature selection was not a major issue. However,673

this was an artifact of the relatively simplistic nature of the experiments conducted.674

For a real organism, or for a robot that learns its own behavioral procedures (say,675

via a deep learning algorithm) rather than using a pre-configured set of “animated”676

behaviors, the number of possible behavioral procedures to potentially be combined677

using a MOSES-learned program may be very large. In this case, one must either678

use some crude feature selection heuristic, have a human select the features, or use679

something like the LIFES approach described here. LIFES addresses a key problem680

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

258 15 Probabilistic Evolutionary Procedure Learning

in moving from the relatively simple virtual dog work done before, to related work681

with virtual agents displaying greater general intelligence.682

As an other example, suppose an OpenCog-controlled agent is using MOSES to683

learn procedures for navigating in a dynamic environment. The features that candidate684

navigation procedures will want to pay attention to, may be different in a well-lit685

environment than in a dark environment. However, if the MOSES learning process686

is being launched internally via OpenCog’s goal system, there is no opportunity for687

a human to adjust the feature selection heuristics based on the amount of light in the688

environment. Instead, MOSES has got to figure out what features to pay attention689

to all by itself. LIFES is designed to allow MOSES (or other comparable learning690

algorithms) to do this.691

So far we have tested LIFES in genomics and other narrow-AI application areas,692

as a way of initially exploring and validating the technique. As our OpenCog work693

proceeds, we will explore more AGI-oriented applications of MOSES-LIFES. This694

will be relatively straightforward on a software level as MOSES is fully integrated695

with OpenCog.696

15.4.2 Data- and Feature- Focusable Learning Problems697

Learning-integrated feature selection as described here is applicable across multi-698

ple domain areas and types of learning problem—but it is not completely broadly699

applicable. Rather it is most appropriate for learning problems possessing two prop-700

erties we call data focusability and feature focusability. While these properties can701

be defined with mathematical rigor, here we will not be proving any theorems about702

them, so we will content ourselves with semi-formal definitions, sufficient to guide703

practical work.704

We consider a fitness function Φ, defined on a space of programs f whose inputs705

are features defined on elements of a reference dataset S, and whose outputs lie in706

the interval [0, 1]. The features are construed as functions mapping elements of S707

into [0, 1]. Where F(x) = (F1(x), . . . , Fn(x)) is the set of features evaluated on708

x ∈ S, we use f (x) as a shorthand for f (F(x)).709

We are specifically interested in Φ which are “data focusable”, in the sense that,710

for a large number of highly fit programs f , there is some subset S f on which f is711

highly concentrated (note that S f will be different for different f). By “concentrated”712

it is meant that713 ∑
x∈S f

f (x)
∑

x∈S f (x)
714

is large. A simple case is where f is Boolean and f (x) = 1 ⇐⇒ x ∈ S f .715

One important case is where Φ is “property-based”, in the sense that each element716

x ∈ S has some Boolean or numeric property p(x), and the fitness function Φ(f)717

rewards f for predicting p(x) given x for x ∈ S f , where S f is some non-trivial718

subset of S. For example, each element of S might belong to some category, and the719

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.4 Integrating Feature Selection into the Learning Process 259

fitness function might represent the problem of placing elements of S into the proper720

category—but with the twist that f gets rewarded if it accurately places some subset721

S f of elements in S into the proper category, even if it has nothing to say about all722

the elements in S but not S f .723

For instance, consider the case where S is a set of images. Suppose the function724

p(x) indicates whether the image x contains a picture of a cat or not. Then, a suitable725

fitness function Φ would be one measuring whether there is some non-trivially large726

set of images S f so that if x ∈ S f , then f can accurately predict whether x contains a727

picture of a cat or not. A key point is that the fitness function doesn’t care whether f728

can accurately predict whether x contains a picture of a cat or not, for x outside S f .729

Or, consider the case where S is a discrete series of time points, and p(x) indicates730

the value of some quantity (say, a person’s EEG) at a certain point in time. Then a731

suitable fitness function Φ might measure whether there is some non-trivially large732

set of time-points S f so that if x ∈ S f , then f can accurately predict whether x will733

be above a certain level L or not.734

Finally, in addition to the property of data-focusability introduced above, we will735

concern ourselves with the complementary property of “feature-focusability”. This736

means that, while the elements of S are each characterized by a potentially large set737

of features, there are many highly fit programs f that utilize only a small subset of738

this large set of features. The case of most interest here is where there are various739

highly fit programs f , each utilizing a different small subset of the overall large set of740

features. In this case one has (loosely speaking) a pattern recognition problem, with741

approximate solutions comprising various patterns that combine various different742

features in various different ways. For example, this would be the case if there743

were many different programs for recognizing pictures containing cats, each one744

utilizing different features of cats and hence applying to different subsets of the745

overall database of images.746

There may, of course, be many important learning problems that are neither data747

nor feature focusable. However, the LIFES technique presented here for integrat-748

ing feature selection into learning is specifically applicable to objective functions749

that are both data and feature focusable. In this sense, the conjunction of data and750

feature focusability appears to be a kind of “tractability” that allows one to bypass751

the troublesome separation of feature selection and learning, and straightforwardly752

combine the two into a single integrated process. Being property-based in the sense753

described above does not seem to be necessary for the application of LIFES, though754

most practical problems do seem to be property-based.755

15.4.3 Integrating Feature Selection into Learning756

The essential idea proposed here is a simple one. Suppose one has a learning problem757

involving a fitness function that is both data and feature focusable. And suppose that,758

in the course of learning according to some learning algorithm, one has a candidate759

program f , which is reasonably fit but merits improvement. Suppose that f uses a760

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

260 15 Probabilistic Evolutionary Procedure Learning

subset F f of the total set F of possible input features. Then, one may do a special761

feature selection step, customized just for f . Namely, one may look at the total set F762

of possible features, and ask which features or small feature-sets display desirable763

properties on the set S f . This will lead to a new set of features potentially worthy764

of exploration; let’s call it F ′
f . We can then attempt to improve f by creating variants765

of f introducing some of the features in F ′
f —either replacing features in F f or766

augmenting them. The process of creating and refining these variants will then lead767

to new candidate programs g, potentially concentrated on sets Sg different from S f ,768

in which case the process may be repeated. This is what we call LIFES—Learning-769

Integrated Feature Selection.770

As described above the LIFES process is quite general, and applies to a variety of771

learning algorithms—basically any learning algorithm that includes the capability772

to refine a candidate solution via the introduction of novel features. The nature of773

the “desirable properties” used to evaluate candidate features or feature-sets on S f774

needs to be specified, but a variety of standard techniques may be used here (along775

with more advanced ideas)—for instance, in the case where the fitness function is776

defined in terms of some property mapping p as describe, above, then given a feature777

Fi , one can calculate the mutual information of Fi with p over S f . Other measures778

than mutual information may be used here as well.779

The LIFES process doesn’t necessarily obviate the need for up-front feature selec-780

tion. What it does, is prevent up-front feature selection from limiting the ultimate781

feature usage of the learning algorithm. It allows the initially selected features to be782

used as a rough initial guide to learning—and for the candidates learned using these783

initial features, to then be refined and improved using additional features chosen784

opportunistically along the learning path. In some cases, the best programs ulti-785

mately learned via this approach might not end up involving any of the initially786

selected features.787

15.4.4 Integrating Feature Selection into MOSES Learning788

The application of the general LIFES process in the MOSES context is relatively789

straightforward. Quite simply, given a reasonably fit program f produced within a790

deme, one then isolates the set S f on which f is concentrated, and identifies a set791

F ′
f of features within F that displays desirable properties relative to S f . One then792

creates a new deme f ∗, with exemplar f , and with a set of potential input features793

consisting of F f ∪ F ′
f .794

What does it mean to create a deme f ∗with a certain set of “potential input fea-795

tures” F f ∪ F ′
f ? Abstractly, it means that F f ∗ = F f ∪ F ′

f . Concretely, it means796

that the knobs in the deme’s exemplar f ∗ must be supplied with settings correspond-797

ing to the elements of F f ∪ F ′
f . The right way to do this will depend on the semantics798

of the features.799

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.4 Integrating Feature Selection into the Learning Process 261

For instance, it may be that the overall feature space F is naturally divided into800

groups of features. In that case, each new feature Fi in F ′
f would be added, as a801

potential knob setting, to any knob in f corresponding to a feature in the same group802

as Fi .803

On the other hand, if there is no knob in f corresponding to features in Fi ’s knob804

group, then one has a different situation, and it is necessary to “mutate” f by adding805

a new node with a new kind of knob corresponding to Fi , or replacing an existing806

node with a new one corresponding to Fi .807

15.4.5 Application to Genomic Data Classification808

To illustrate the effectiveness of LIFES in a MOSES context, we now briefly describe809

an example application, in the genomics domain. The application of MOSES to gene810

expression data is described in more detail in [Loo07b], and is only very briefly sum-811

marized here. To obtain the results summarized here, we have used MOSES, with and812

without LIFES, to analyze two different genomics datasets: an Alzheimers SNP (sin-813

gle nucleotide polymorphism) dataset [Mea07] previously analyzed using ensemble814

genetic programming [CGPH09]. The dataset is of the form “Case versus Control”,815

where the Case category consists of data from individuals with Alzheimers and Con-816

trol consists of matched controls. MOSES was used to learn Boolean program trees817

embodying predictive models that take in a subset of the genes in an individual, and818

output a Boolean combination of their discretized expression values, that is inter-819

preted as a prediction of whether the individual is in the Case or Control category.820

Prior to feeding them into MOSES, expression values were first Q-normalized, and821

then discretized via comparison to the median expression measured across all genes822

on a per-individual basis (1 for greater than the median, 0 for less than). Fitness was823

taken as precision, with a penalty factor restriction attention to program trees with824

recall above a specified minimum level.825

These study was carried out, not merely for testing MOSES and LIFES, but as826

part of a practical investigation into which genes and gene combinations may be the827

best drug targets for Alzheimers Disease. The overall methodology for the biological828

investigation, as described in [GCPM06], is to find a (hopefully diverse) ensemble829

of accurate classification models, and then statistically observe which genes tend830

to occur most often in this ensemble, and which combinations of genes tend to co-831

occur most often in the models in the ensemble. These most frequent genes and832

combinations are taken as potential therapeutic targets for the Case category of the833

underlying classification problem (which in this case denotes inflammation). This834

methodology has been biologically validated by follow-up lab work in a number of835

cases; see e.g. [Gea05] where this approach resulted in the first evidence of a genetic836

basis for Chronic Fatigue Syndrome. A significant body of unpublished commercial837

work along these lines has been done by Biomind LLC [http://biomind.com] for its838

various customers.839

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

http://biomind.com

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

262 15 Probabilistic Evolutionary Procedure Learning

Comparing MOSES-LIFES to MOSES with conventional feature selection, we840

find that the former finds model ensembles combining greater diversity with greater841

precision, and equivalent recall. This is because conventional feature selection elimi-842

nates numerous genes that actually have predictive value for the phenotype of inflam-843

mation, so that MOSES never gets to see them. LIFES exposes MOSES to a much844

greater number of genes, some of which MOSES finds useful. And LIFES enables845

MOSES to explore this larger space of genes without getting bollixed by the potential846

combinatorial explosion of possibilities (Table 15.1).847

Table 15.1 Impact of LIFES on MOSES classification of Alzheimers Disease SNP data

Algorithm Train. precision Train. recall Test precision Test recall

MOSES 0.81 0.51 0.65 0.42 Best training precision
MOSES 0.80 0.52 0.69 0.43 Best test precision
MOSES-LIFES 0.84 0.51 0.68 0.38 Best training precision
MOSES-LIFES 0.82 0.51 0.72 0.48 Best test precision

Fitness function sought to maximize precision consistent with a constraint of precision being at least
0.5. Precision and recall figures are average figures over tenfolds, using tenfold cross-validation.
The results shown here are drawn from a larger set of runs, and are selected according to two criteria:
best training precision (the fair way to do it) and best test precision (just for comparison). We see
that use of LIFES increases precision by around 3 % in these tests, which is highly statistically
significant according to permutation analysis

AQ5

The genomics example shows that LIFES makes sense and works in the context848

of MOSES, broadly speaking. It seems very plausible that LIFES will also work849

effectively with MOSES in an integrative AGI context, for instance in OpenCog850

deployments where MOSES is used to drive procedure learning, with fitness func-851

tions supplied by other OpenCog components. However, the empirical validation of852

this plausible conjecture remains for future work.853

15.5 Supplying Evolutionary Learning with Long-Term Memory854

This section introduces an important enhancement to evolutionary learning, which855

extends the basic PEPL framework, by forming an adaptive hybridization of PEPL856

optimization with PLN inference (rather than merely using PLN inference within857

evolutionary learning to aid with modeling).858

The first idea here is the use of PLN to supply evolutionary learning with a long-859

term memory. Evolutionary learning approaches each problem as an isolated entity,860

but in reality, a CogPrime system will be confronting a long series of optimization861

problems, with subtle interrelationships. When trying to optimize the function f,862

CogPrime may make use of its experience in optimizing other functions g.863

Inference allows optimizers of g to be analogically transformed into optimizers864

of f, for instance it allows one to conclude:865

Inheritance f g866

EvaluationLink f x867

EvaluationLink g x868

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.5 Supplying Evolutionary Learning with Long-Term Memory 263

However, less obviously, inference also allows patterns in populations of optimizers869

of g to be analogically transformed into patterns in populations of optimizers of f.870

For example, if pat is a pattern in good optimizers of f, then we have:871

InheritanceLink f g872

ImplicationLink873

EvaluationLink f x874

EvaluationLink pat x875

ImplicationLink876

EvaluationLink g x877

EvaluationLink pat x878

(with appropriate probabilistic truth values), an inference which says that patterns879

in the population of f-optimizers should also be patterns in the population of g-880

optimizers).881

Note that we can write the previous example more briefly as:882

InheritanceLink f g883

ImplicationLink (EvaluationLink f) (EvaluationLink pat)884

ImplicationLink (EvaluationLink g) (EvaluationLink pat)885

A similar formula holds for SimilarityLinks.886

We may also infer:887

ImplicationLink (EvaluationLink g) (EvaluationLink pat_g)888

ImplicationLink (EvaluationLink f) (EvaluationLink pat_f)889

ImplicationLink890

(EvaluationLink (g AND f))891

(EvaluationLink (pat_g AND pat_f))892

and:893

894

ImplicationLink (EvaluationLink f) (EvaluationLink pat)895

ImplicationLink (EvaluationLink ~f) (EvaluationLink ~pat)896

Through these sorts of inferences, PLN inference can be used to give evolutionary897

learning a long-term memory, allowing knowledge about population models to be898

transferred from one optimization problem to another. This complements the more899

obvious use of inference to transfer knowledge about specific solutions from one900

optimization problem to another.901

For instance in the problem of finding a compact program generating some given902

sequences of bits the system might have noticed that when the number of 0 roughly903

balances the number of 1 (let us call this property STR_BALANCE) successful904

optimizers tend to give greater biases toward conditionals involving comparisons of905

the number of 0 and 1 inside the condition, let us call this property over optimizers906

COMP_CARD_DIGIT_BIAS. This can be expressed in PLN as follows907

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

264 15 Probabilistic Evolutionary Procedure Learning

AverageQuantifierLink 〈tv〉
ListLink

$X
$Y

ImplicationLink
ANDLink

InheritanceLink
STR_BALANCE
$X

EvaluationLink
SUCCESSFUL_OPTIMIZER_OF
ListLink

$Y
$X

InheritanceLink
COMP_CARD_DIGIT_BIAS
$Y

908

which translates by, if the problem $X inherits from STR_BALANCE and $Y is a suc-909

cessful optimizer of $X then, with probability p calculated according to tv, $Y tends910

to be biased according to the property described by COMP_CARD_DIGIT_BIAS.911

15.6 Hierarchical Program Learning912

Next we discuss hierarchical program structure, and its reflection in probabilistic913

modeling, in more depth. This is a surprisingly subtle and critical topic, which may be914

approached from several different complementary angles. To an extent, hierarchical915

structure is automatically accounted for in MOSES, but it may also be valuable to916

pay more explicit mind to it.917

In human-created software projects, one common approach for dealing with the918

existence of complex interdependencies between parts of a program is to give the919

program a hierarchical structure. The program is then a hierarchical arrangement of920

programs within programs within programs, each one of which has relatively simple921

dependencies between its parts (however its parts may themselves be hierarchical922

composites). This notion of hierarchy is essential to such programming methodolo-923

gies as modular programming and object-oriented design.924

Pelikan and Goldberg discuss the hierarchal nature of human problem-solving, in925

the context of the hBOA (hierarchical BOA) version of BOA. However, the hBOA926

algorithm does not incorporate hierarchical program structure nearly as deeply and927

thoroughly as the hierarchical procedure learning approach proposed here. In hBOA928

the hierarchy is implicit in the models of the evolving population, but the popula-929

tion instances themselves are not necessarily explicitly hierarchical in structure. In930

hierarchical PEPL as we describe it here, the population consists of hierarchically931

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.6 Hierarchical Program Learning 265

structured Combo trees, and the hierarchy of the probabilistic models corresponds932

directly to this hierarchical program structure.933

The ideas presented here have some commonalities to John Koza’s ADFs and934

related tricks for putting reusable subroutines in GP trees, but there are also some935

very substantial differences, which we believe will make the current approach far936

more effective (though also involving considerably more computational overhead).937

We believe that this sort of hierarchically-savvy modeling is what will be needed to938

get probabilistic evolutionary learning to scale to large and complex programs, just as939

hierarchy-based methodologies like modular and object-oriented programming are940

needed to get human software engineering to scale to large and complex programs.941

15.6.1 Hierarchical Modeling of Composite Procedures942

in the AtomSpace943

The possibility of hierarchically structured programs is (intentionally) present in the944

CogPrime design, even without any special effort to build hierarchy into the PEPL945

framework. Combo trees may contain Nodes that point to PredicateNodes, which946

may in turn contain Combo trees, etc. However, our current framework for learning947

Combo trees does not take advantage of this hierarchy. What is needed, in order to948

do so, is for the models used for instance generation to include events of the form:949

Combo tree Node at position x has type PredicateNode; and the PredicateNode950

at position x contains a Combo tree that possesses property P.951

where x is a position in a Combo tree and P is a property that may or may not952

be true of any given Combo tree. Using events like this, a relatively small program953

explicitly incorporating only short-range dependencies; may implicitly encapsulate954

long-range dependencies via the properties P.955

But where do these properties P come from? These properties should be pat-956

terns learned as part of the probabilistic modeling of the Combo tree inside the957

PredicateNode at position x. For example, if one is using a decision tree modeling958

framework, then the properties might be of the form decision tree D evaluates to959

True. Note that not all of these properties have to be statistically correlated with the960

fitness of the PredicateNode at position x (although some of them surely will be).961

Thus we have a multi-level probabilistic modeling strategy. The top-level Combo962

tree has a probabilistic model whose events may refer to patterns that are parts of the963

probabilistic models of Combo trees that occur within it and so on down.964

In instance generation, when a newly generated Combo tree is given a PredicateNode965

at position x, two possibilities exist:966

• There is already a model for PredicateNodes at position x in Combo trees in the967

given population, in which case a population of PredicateNodes potentially living968

at that position is drawn from the known model, and evaluated.969

• There is no such model (because it has never been tried to create a PredicateNode970

at position x in this population before), in which case a new population of Combo971

trees is created corresponding to the position, and evaluated.972

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

266 15 Probabilistic Evolutionary Procedure Learning

Note that the fitness of a Combo tree that is not at the top level of the overall process,973

is assessed indirectly in terms of the fitness of the higher-level Combo tree in which974

it is embedded, due to the requirement of having certain properties, etc.975

Suppose each Combo tree in the hierarchy has on average R adaptable sub-976

programs (represented as Nodes pointing to PredicateNodes containing Combo trees977

to be learned). Suppose the hierarchy is K levels deep. Then we will have about R×K978

program tree populations in the tree. This suggests that hierarchies shouldn’t get too979

big, and indeed, they shouldn’t need to, for the same essential reason that human-980

created software programs, if well-designed, tend not to require extremely deep and981

complex hierarchical structures.982

One may also introduce a notion of reusable components across various program983

learning runs, or across several portions of the same hierarchical program. Here is984

one learning patterns of the form:985

If property P1(C, x) applies to a Combo tree C and a node x within it, then it986

is often good for node x to refer to a PredicateNode containing a Combo tree with987

property P2.988

These patterns may be assigned probabilities and may be used in instance genera-989

tion. They are general or specialized programming guidelines, which may be learned990

over time.991

15.6.2 Identifying Hierarchical Structure in Combo Trees992

Via MetaNodes and Dimensional Embedding993

One may also apply the concepts of the previous section to model a population of994

CTs that doesn’t explicitly have a hierarchical structure, via introducing the hierar-995

chical structure during the evolutionary process, through the introduction of special996

extra Combo tree nodes called MetaNodes. For instance MetaNodes may represent997

subtrees of Combo trees, which have proved useful enough that it seems justifiable998

to extract them as “macros”. This concept may be implemented in a couple different999

ways, here we will introduce a simple way of doing this based on dimensional embed-1000

ding, and then in the next section we will allude to a more sophisticated approach1001

that uses inference instead.1002

The basic idea is to couple decision tree modeling with dimensional embedding1003

of subtrees, a trick that enables small decision tree models to cover large regions of a1004

CT in an approximate way, and which leads naturally to a form of probabilistically-1005

guided crossover.1006

The approach as described here works most simply for CTs that have many sub-1007

trees that can be viewed as mapping numerical inputs into numerical outputs. There1008

are clear generalizations to other sorts of CTs, but it seems advisable to test the1009

approach on this relatively simple case first.1010

The first part of the idea is to represent subtrees of a CT as numerical vectors1011

in a relatively low-dimensional space (say N = 50 dimensions). This can be done1012

using our existing dimensional embedding algorithm, which maps any metric space1013

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.6 Hierarchical Program Learning 267

of entities into a dimensional space. All that’s required is that we define a way of1014

measuring distance between subtrees. If we look at subtrees with numerical inputs1015

and outputs, this is easy. Such a subtree can be viewed as a function mapping Rn1016

into Rm; and there are many standard ways to calculate the distance between two1017

functions of this sort (for instance one can make a Monte Carlo estimate of the L p
1018

metric which is defined as:1019

[Sum{x} (f(x) - g(x))^p] ^ (1/p)1020

Of course, the same idea works for subtrees with non-numerical inputs and out-1021

puts, the tuning and implementation are just a little trickier.1022

Next, one can augment a CT with meta-nodes that correspond to subtrees. Each1023

meta-node is of a special CT node type MetaNode, and comes tagged with an N-1024

dimensional vector. Exactly which subtrees to replace with MetaNodes is an inter-1025

esting question that must be solved via some heuristics.1026

Then, in the course of executing the PEPL algorithm, one does decision tree1027

modeling as usual, but making use of MetaNodes as well as ordinary CT nodes.1028

The modeling of MetaNodes is quite similar to the modeling of Nodes representing1029

ConceptNodes and PredicateNodes using embedding vectors. In this way, one can use1030

standard, small decision tree models to model fairly large portions of CTs (because1031

portions of CTs are approximately represented by MetaNodes).1032

But how does one do instance generation, in this scheme? What happens when1033

one tries to do instance generation using a model that predicts a MetaNode existing1034

in a certain location in a CT? Then, the instance generation process has got to find1035

some CT subtree to put in the place where the MetaNode is predicted. It needs to find1036

a subtree whose corresponding embedding vector is close to the embedding vector1037

stored in the MetaNode. But how can it find such a subtree?1038

There seem to be two ways:1039

1. A reasonable solution is to look at the database of subtrees that have been seen1040

before in the evolving population, and choose one from this database, with the1041

probability of choosing subtree X being proportional to the distance between X’s1042

embedding vector and the embedding vector stored in the MetaNode.1043

2. One can simply choose good subtrees, where the goodness of a subtree is judged1044

by the average fitness of the instances containing the target subtree.1045

One can use a combination of both of these processes during instance generation.1046

But of course, what this means is that we’re in a sense doing a form of1047

crossover, because we’re generating new instances that combine subtrees from pre-1048

vious instances. But we’re combining subtrees in a judicious way guided by proba-1049

bilistic modeling, rather than in a random way as in GP-style crossover.1050

15.6.2.1 Inferential MetaNodes1051

MetaNodes are an interesting and potentially powerful technique, but we don’t1052

believe that they, or any other algorithmic trick, is going to be the solution to the1053

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

268 15 Probabilistic Evolutionary Procedure Learning

problem of learning hierarchical procedures. We believe that this is a cognitive sci-1054

ence problem that probably isn’t amenable to a purely computer science oriented1055

solution. In other words, we suspect that the correct way to break a Combo tree1056

down into hierarchical components depends on context, algorithms are of course1057

required, but they’re algorithms for relating a CT to its context rather than pure CT-1058

manipulation algorithms. Dimensional embedding is arguably a tool for capturing1059

contextual relationships, but it’s a very crude one.1060

Generally speaking, what we need to be learning are patterns of the form “A subtree1061

meeting requirements X is often fit when linked to a subtree meeting requirements1062

Y, when solving a problem of type Z”. Here the context requirements Y will not1063

pertain to absolute tree position but rather to abstract properties of a subtree.1064

The MetaNode approach as outlined above is a kind of halfway measure toward1065

this goal, good because of its relative computational efficiency, but ultimately too1066

limited in its power to deal with really hard hierarchical learning problems. The rea-1067

son the MetaNode approach is crude is simply because it involves describing subtrees1068

via points in an embedding space. We believe that the correct (but computationally1069

expensive) approach is indeed to use MetaNodes—but with each MetaNode tagged,1070

not with coordinates in an embedding space, but with a set of logical relationships1071

describing the subtree that the MetaNode stands for. A candidate subtree’s similar-1072

ity to the MetaNode may then be determined by inference rather than by the simple1073

computation of a distance between points in the embedding space. (And, note that we1074

may have a hierarchy of MetaNodes, with small subtrees corresponding to MetaN-1075

odes, larger subtrees comprising networks of small subtrees also corresponding to1076

MetaNodes, etc.)1077

The question then becomes which logical relationships one tries to look for, when1078

characterizing a MetaNode. This may be partially domain-specific, in the sense that1079

different properties will be more interesting when studying motor-control procedures1080

than when studying cognitive procedures.1081

To intuitively understand the nature of this idea, let’s consider some abstract but1082

commonsense examples. Firstly, suppose one is learning procedures for serving a1083

ball in tennis. Suppose all the successful procedures work by first throwing the ball1084

up really high, then doing other stuff. The internal details of the different procedures1085

for throwing the ball up really high may be wildly different. What we need is to learn1086

the pattern1087

1088

Implication1089

Inheritance X ‘‘throwing the ball up really high ’’1090

‘‘X then Y’’ is fit1091

Here X and Y are MetaNodes. But the question is how do we learn to break trees1092

down into MetaNodes according to the formula “tree =‘X then Y’ where X inherits1093

from ‘throwing the ball up really high”’?1094

Similarly, suppose one is learning procedures to do first-order inference. What1095

we need is to learn a pattern such as:1096

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

15.6 Hierarchical Program Learning 269

Implication1097

AND1098

F involves grabbing pairs from the AtomTable1099

G involves applying an inference rule to those each pair1100

H involves putting the results back in the AtomTable1101

‘‘F (G (H)))’’ is fit1102

Here we need MetaNodes for F, G and H, but we need to characterize e.g. the1103

MetaNode F by a relationship such as “involves grabbing pairs from the AtomTable”.1104

Until we can characterize MetaNodes using abstract descriptors like this, one1105

might argue we’re just doing “statistical learning” rather than “general intelligence1106

style” procedure learning. But to do this kind of abstraction intelligently seems to1107

require some background knowledge about the domain.1108

In the “throwing the ball up really high” case the assignment of a descriptive1109

relationship to a subtree involves looking, not at the internals of the subtree itself,1110

but at the state of the world after the subtree has been executed.1111

In the “grabbing pairs from the AtomTable” case it’s a bit simpler but still requires1112

some kind of abstract model of what the subtree is doing, i.e. a model involving a1113

logic expression such as “The output of F is a set S so that if P belongs to S then P is1114

a set of two Atoms A1 and A2, and both A1 and A2 were produced via the getAtom1115

operator”.1116

How can this kind of abstraction be learned? It seems unlikely that abstractions1117

like this will be found via evolutionary search over the space of all possible predicates1118

describing program subtrees. Rather, they need to be found via probabilistic reasoning1119

based on the terms combined in subtrees, put together with background knowledge1120

about the domain in which the fitness function exists. In short, integrative cognition is1121

required to learn hierarchically structured programs in a truly effective way, because1122

the appropriate hierarchical breakdowns are contextual in nature, and to search for1123

appropriate hierarchical breakdowns without using inference to take context into1124

account, involves intractably large search spaces.1125

15.7 Fitness Function Estimation via Integrative Intelligence1126

If instance generation is very cheap and fitness evaluation is very expensive (as is the1127

case in many applications of evolutionary learning in CogPrime), one can accelerate1128

evolutionary learning via a “fitness function estimation” approach. Given a fitness1129

function embodied in a predicate P, the goal is to learn a predicate Q so that:1130

1. Q is much cheaper than P to evaluate, and1131

2. There is a high-strength relationship:1132

Similarity Q P1133

or else1134

ContextLink C (Similarity Q P)1135

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

270 15 Probabilistic Evolutionary Procedure Learning

where C is a relevant context.1136

Given such a predicate Q, one could proceed to optimize P by ignoring evolution-1137

ary learning altogether and just repeatedly following the algorithm:1138

• Randomly generate N candidate solutions.1139

• Evaluate each of the N candidate solutions according to Q.1140

• Take the k�N solutions that satisfy Q best, and evaluate them according to P.1141

Improved based on the new evaluations of P that are done. Of course, this would not1142

be as good as incorporating fitness function estimation into an overall evolutionary1143

learning framework.1144

Heavy utilization of fitness function estimation may be appropriate, for example,1145

if the entities being evolved are schemata intended to control an agent’s actions1146

in a real or simulated environment. In this case the specification predicate P, in1147

order to evaluate P(S), has to actually use the schema S to control the agent in the1148

environment. So one may search for Q that do not involve any simulated environment,1149

but are constrained to be relatively small predicates involving only cheap-to-evaluate1150

terms (e.g. one may allow standard combinators, numbers, strings, ConceptNodes,1151

and predicates built up recursively from these). Then Q will be an abstract predictor1152

of concrete environment success.1153

We have left open the all-important question of how to find the “specification1154

approximating predicate” Q.1155

One approach is to use evolutionary learning. In this case, one has a population1156

of predicates, which are candidates for Q. The fitness of each candidate Q is judged1157

by how well it approximates P over the set of candidate solutions for P that have1158

already been evaluated. If one uses evolutionary learning to evolve Qs, then one is1159

learning a probabilistic model of the set of Qs, which tries to predict what sort of Qs1160

will better solve the optimization problem of approximating P’s behavior. Of course,1161

using evolutionary learning for this purpose potentially initiates an infinite regress,1162

but the regress can be stopped by, at some level, finding Qs using a non-evolutionary1163

learning based technique such as genetic programming, or a simple evolutionary1164

learning based technique like standard BOA programming.1165

Another approach to finding Q is to use inference based on background knowledge.1166

Of course, this is complementary rather than contradictory to using evolutionary1167

learning for finding Q. There may be information in the knowledge base that can1168

be used to “analogize” regarding which Qs may match P. Indeed, this will generally1169

be the case in the example given above, where P involves controlling actions in a1170

simulated environment but Q does not.1171

An important point is that, if one uses a certain Q1 within fitness estimation,1172

the evidence one gains by trying Q1 on numerous fitness cases may be utilized in1173

future inferences regarding other Q2 that may serve the role of Q. So, once inference1174

gets into the picture, the quality of fitness estimators may progressively improve1175

via ongoing analogical inference based on the internal structures of the previously1176

attempted fitness estimators.1177

319613_1_En_15_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 270 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 15

Query Refs. Details Required Author’s response

AQ1 Please check and provide corresponding figure for the citation
Fig. 4 under the section ‘Example: Artificial Ant Problem’.

AQ2 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ3 Please check and confirm the inserted citation of Fig. 15.2 is cor-
rect. If not, please suggest an alternate citation. Please note that
figures should be cited in sequential order in the text.

AQ4 “Kindly specify the respective citation number for figure at wher-
ever ?? appears as its citation.”

AQ5 Please check and confirm the inserted citation of Table 15.1 is
correct. If not, please suggest an alternate citation.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part V
2 Declarative Learning

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part V Date: 29-10-2013 Page: 271/271

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Probabilistic Logic Networks

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Now we turn to CogPrime’s methods for handling declarative knowledge—beginning with a series of
chapters discussing the Probabilistic Logic Networks (PLN) [GMIH08] approach to uncertain logical
reasoning, and then turning to chapters on pattern mining and concept creation.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 16
Probabilistic Logic Networks

16.1 Introduction0

Now we turn to CogPrime’s methods for handling declarative knowledge—beginning1

with a series of chapters discussing the Probabilistic Logic Networks (PLN)2

[GMIH08] approach to uncertain logical reasoning, and then turning to chapters3

on pattern mining and concept creation. In this first of the chapters on PLN, we give4

a high-level overview, summarizing material given in the book Probabilistic Logic5

Networks [GMIH08] more compactly and in a somewhat differently-organized way.6

For a more thorough treatment of the concepts and motivations underlying PLN, the7

reader is encouraged to read [GMIH08].8

PLN is a mathematical and software framework for uncertain inference, operative9

within the CogPrime software framework and intended to enable the combination10

of probabilistic truth values with general logical reasoning rules. Some of the key11

requirements underlying the development of PLN were the following:12

• To enable uncertainty-savvy versions of all known varieties of logical reasoning,13

including for instance higher-order reasoning involving quantifiers, higher-order14

functions, and so forth15

• To reduce to crisp “theorem prover” style behavior in the limiting case where16

uncertainty tends to zero17

• To encompass inductive and abductive as well as deductive reasoning18

• To agree with probability theory in those reasoning cases where probability theory,19

in its current state of development, provides solutions within reasonable calcula-20

tional effort based on assumptions that are plausible in the context of real-world21

embodied software systems22

• To gracefully incorporate heuristics not explicitly based on probability theory, in23

cases where probability theory, at its current state of development, does not provide24

adequate pragmatic solutions25

Co-authored with Matthew Ikle.

B. Goertzel et al., Engineering General Intelligence, Part 2, 273
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_16,
© Atlantis Press and the authors 2014

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

274 16 Probabilistic Logic Networks

• To provide “scalable” reasoning, in the sense of being able to carry out inferences26

involving billions of premises.27

• To easily accept input from, and send input to, natural language processing software28

systems.29

In practice, PLN consists of30

• A set of inference rules (e.g. deduction, Bayes rule, variable unification, modus31

ponens, etc.), each of which takes one or more logical relationships or terms32

(represented as CogPrime Atoms) as inputs, and produces others as outputs33

• Specific mathematical formulas for calculating the probability value of the con-34

clusion of an inference rule based on the probability values of the premises plus35

(in some cases) appropriate background assumptions.36

PLN also involves a particular approach to estimating the confidence values with37

which these probability values are held (weight of evidence, or second-order uncer-38

tainty). Finally, the implementation of PLN in software requires important choices39

regarding the structural representation of inference rules, and also regarding “infer-40

ence control”—the strategies required to decide what inferences to do in what order,41

in each particular practical situation. Currently PLN is being utilized to enable an42

animated agent to achieve goals via combining actions in a game world. For example,43

it can figure out that to obtain an object located on top of a wall, it may want to build44

stairs leading from the floor to the top of the wall. Earlier PLN applications have45

involved simpler animated agent control problems, and also other domains, such46

as reasoning based on information extracted from biomedical text using a language47

parser.48

For all its sophistication, however, PLN falls prey to the same key weakness as49

other logical inference systems: combinatorial explosion. In trying to find a logical50

chain of reasoning leading to a desired conclusion, or to evaluate the consequences51

of a given set of premises, PLN may need to explore an unwieldy number of possible52

combinations of the Atoms in CogPrime’s memory. For PLN to be practical beyond53

relatively simple and constrained problems (and most definitely, for it to be useful54

for AGI at the human level or beyond), it must be coupled with a powerful method55

for “inference tree pruning”—for paring down the space of possible inferences that56

the PLN engine must evaluate as it goes about its business in pursuing a given goal57

in a certain context. Inference control will be addressed in Chap. 18.58

16.2 A Simple Overview of PLN59

The key elements of PLN are its rules and Formulas. In general, a PLN rule has60

• Input: A tuple of Atoms (which must satisfy certain criteria, specific to the Rule)61

• Output: A tuple of Atoms.62

Actually, in nearly all cases, the output is a single Atom; and the input is a single63

Atom or a pair of Atoms.64

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_18

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.2 A Simple Overview of PLN 275

The prototypical example is the DeductionRule. Its input must look like65

X_Link A B66

X_Link B C67

And its output then looks like68

X_Link A C69

Here, X_Link may be either InheritanceLink, SubsetLink, ImplicationLink or70

ExtensionalImplicationLink.71

A PLN formula goes along with a PLN rule, and tells the uncertain truth value of72

the output, based on the uncertain truth value of the input. For example, if we have73

X_Link A B <sAB >74

X_Link B C <sBC >75

then the standard PLN deduction formula tells us76

X_Link A C <sAC >77

with

sAC = sABsBC + (1 − sAB) (sC − sBsBC)

1 − sB

where e.g. sA denote the strength of the truth value of node A.78

In this example, the uncertain truth value of each Atom is given as a single79

“strength” number. In general, uncertain truth values in PLN may take multiple80

forms, such as81

• Single strength values like 0.8, which may indicate probability or fuzzy truth value,82

depending on the Atom type.83

• (Strength, confidence) pairs like (0.8, 0.4).84

• (Strength, count) pairs like (0.8, 15).85

• Indefinite probabilities like (0.6,. 0.9, 0.95) which indicate credible intervals of86

probabilities.87

16.2.1 Forward and Backward Chaining88

Typical patterns of usage of PLN are forward-chaining and backward-chaining89

inference.90

Forward chaining basically means:91

1. Given a pool (a list) of Atoms of interest.92

2. One applies PLN rules to these Atoms, to generate new Atoms, hopefully also93

of interest.94

3. Adding these new Atoms to the pool, one returns to Step 1.95

Example: “People are animals” and “animals breathe” are in the pool of Atoms.96

These are combined by the Deduction rule to form the conclusion “people breathe”.97

Backward chaining falls into two cases. First:98

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

276 16 Probabilistic Logic Networks

• “Truth value query”. Given a target Atom whose truth value is not known (or is too99

uncertainly known), plus a pool of Atoms, find a way to estimate the truth value of100

the target Atom, via combining the Atoms in the pool using the inference Rules.101
AQ1

Example: The target is “do people breathe?” (InheritanceLink people breathe). The102

truth value of the target is estimated via doing the inference “People are animals,103

animals breathe, therefore people breathe.”104

Second:105

• “Variable fulfillment query”. Given a target Link (Atoms may be Nodes or Links)106

with one or more VariableAtoms among its targets, figure out what Atoms may be107

put in place of these VariableAtoms, so as to give the target Link a high strength*108

confidence (i.e. a “high truth value”).109

Example: The target is “what breathes?”, i.e. “InheritanceLink $X breathe”...110

Direct lookup into the Atomspace reveals the Atom “InheritanceLink animal breathe”,111

indicating that the slot $X may be filled by “animal”. Inference reveals that “Inheri-112

tance people breathe” , so that the slot $X may also be filled by “people”.113

Example: The target is “what breathes and adds”, ie “(InheritanceLink $X breathe)114

AND (InheritanceLink $X add)”. Inference reveals that the slot $X may be filled by115

“people” but not “cats” or “computers”.116

Common-sense inference may involve a combination of backward chaining and117

forward chaining.118

The hardest part of inference is “inference control”—that is, knowing which119

among the many possible inference steps to take, in order to obtain the desired120

information (in backward chaining) or to obtain interesting new information (in121

forward chaining). In an Atomspace with a large number of (often quite uncertain)122

Atoms, there are many, many possibilities and powerful heuristics are needed to123

choose between them. The best guide to inference control is some sort of induction124

based on the system’s past history of which inferences have been useful. But of course,125

a young system doesn’t have much history to go on. And relying on indirectly relevant126

history is, itself, an inference problem—which can be solved best by a system with127

some history to draw on!128

16.3 First Order Probabilistic Logic Networks129

We now review the essentials of PLN in a more formal way. PLN is divided into130

first-order and higher-order sub-theories (FOPLN and HOPLN). These terms are131

used in a nonstandard way drawn conceptually from NARS [Wan06]. We develop132

FOPLN first, and then derive HOPLN therefrom.133

FOPLN is a term logic, involving terms and relationships (links) between terms.134

It is an uncertain logic, in the sense that both terms and relationships are associated135

with truth value objects, which may come in multiple varieties ranging from single136

numbers to complex structures like indefinite probabilities. Terms may be either137

elementary observations, or abstract tokens drawn from a token-set T .138

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.3 First Order Probabilistic Logic Networks 277

16.3.1 Core FOPLN Relationships139

“Core FOPLN” involves relationships drawn from the set: negation; Inheritance140

and probabilistic conjunction and disjunction; Member and fuzzy conjunction and141

disjunction. Elementary observations can have only Member links, while token terms142

can have any kinds of links. PLN makes clear distinctions, via link type semantics,143

between probabilistic relationships and fuzzy set relationships. Member semantics144

are usually fuzzy relationships (though they can also be crisp), whereas Inheritance145

relationships are probabilistic, and there are rules governing the interoperation of the146

two types.147

Suppose a virtual agent makes an elementary VisualObservation o of a creature148

named Fluffy. The agent might classify o as belonging, with degree 0.9, to the fuzzy149

set of furry objects. The agent might also classify o as belonging with degree 0.8150

to the fuzzy set of animals. The agent could then build the following links in its151

memory:152

Member o furry < 0.9 >

Member o animals < 0.8 >

The agent may later wish to refine its knowledge, by combining these Member-153

Links. Using the minimum fuzzy conjunction operator, the agent would conclude:154

fuzzyAND < 0.8 >

Member o furry
Member o animals

meaning that the observation o is a visual observation of a fairly furry, animal object.155

The semantics of (extensional) Inheritance are quite different from, though related156

to, those of the MemberLink. ExtensionalInheritance represents a purely conditional157

probabilistic subset relationship and is represented through the Subset relationship.158

If A is Fluffy and B is the set of cat, then the statement159

Subset < 0.9 >

A
B

means that
P(x is in the set B|x is in the set A) = 0.9.

16.3.2 PLN Truth Values160

PLN is equipped with a variety of different types of truth-value types. In order of161

increasing information about the full probability distribution, they are:162

• Strength truth-values, which consist of single numbers; e.g., < s > or < 0.8 >.163

Usually strength values denote probabilities but this is not always the case.164

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

278 16 Probabilistic Logic Networks

• SimpleTruthValues, consisting of pairs of numbers. These pairs come in two forms:165

< s, w >, where s is a strength and w is a “weight of evidence” and < s, N >,166

where N is a “count”. “Weight of evidence” is a qualitative measure of belief,167

while “count” is a quantitative measure of accumulated evidence.168

• IndefiniteTruthValues, which quantify truth-values in terms of an interval [L , U],169

a credibility level b, and an integer k (called the lookahead). IndefiniteTruthValues170

quantify the idea that after k more observations there is a probability b that the171

conclusion of the inference will appear to lie in [L , U].172

• DistributionalTruthValues, which are discretized approximations to entire proba-173

bility distributions.174

16.3.3 Auxiliary FOPLN Relationships175

Beyond the core FOPLN relationships, FOPLN involves additional relationship types
of two varieties. There are simple ones like Similarity, defined by

Similari t y A B

We say a relationship R is simple if the truth value of R A B can be calculated solely in176

terms of the truth values of core FOPLN relationships between A and B. There are also177

complex “auxiliary” relationships like IntensionalInheritance, which as discussed in178

depth in the Appendix ??, measures the extensional inheritance between the set of179

properties or patterns associated with one term and the corresponding set associated180

with another.AQ2181

Returning to our example, the agent may observe that two properties of cats are182

that they are furry and purr. Since the Fluffy is also a furry animal, the agent might183

then obtain, for example184

IntensionalInheritance < 0.5 >

Fluffy
cat

meaning that the Fluffy shares about 50 % of the properties of cat. Building upon this185

relationship even further, PLN also has a mixed intensional/extensional Inheritance186

relationship which is defined simply as the disjunction of the Subset and Intension-187

alInheritance relationships.188

As this example illustrates, for a complex auxiliary relationship R, the truth value189

of R A B is defined in terms of the truth values of a number of different FOPLN190

relationships among different terms (others than A and B), specified by a certain191

mathematical formula.192

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.3 First Order Probabilistic Logic Networks 279

16.3.4 PLN Rules and Formulas193

A distinction is made in PLN between rules and formulas. PLN logical inferences194

take the form of “syllogistic rules”, which give patterns for combining statements195

with matching terms. Examples of PLN rules include, but are not limited to,196

• Deduction ((A → B) ∧ (B → C) ⇒ (A → C)),197

• Induction ((A → B) ∧ (A → C) ⇒ (B → C)),198

• Abduction ((A → C) ∧ (B → C) ⇒ (A → C)),199

• Revision, which merges two versions of the same logical relationship that have200

different truth values201

• Inversion ((A → B) ⇒ (B → A)).202

The basic schematic of the first four of these rules is shown in Fig. 16.1. We can203

see that the first three rules represent the natural ways of doing inference on three204

interrelated terms. We can also see that induction and abduction can be obtained205

from the combination of deduction and inversion, a fact utilized in PLN’s truth value206

formulas.207

Related to each rule is a formula which calculates the truth value resulting from
application of the rule. As an example, suppose sA, sB , sC , sAB , and sBC represent
the truth values for the terms A, B, C , as well the truth values of the relationships
A → B and B → C , respectively. Then, under suitable conditions imposed upon
these input truth values, the formula for the deduction rule is given by:

sAC = sABsBC + (1 − sAB) (sC − sBsBC)

1 − sB
,

where sAC represents the truth value of the relationship A → C . This formula is208

directly derived from probability theory given the assumption that A → B and209

B → C are independent.210

Fig. 16.1 The four most basic
first-order PLN inference rules

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

280 16 Probabilistic Logic Networks

For inferences involving solely fuzzy operators, the default version of PLN uses
standard fuzzy logic with min/max truth value formulas (though alternatives may also
be employed consistently with the overall PLN framework). Finally, the semantics of
combining fuzzy and probabilistic operators is hinted at in [GMIH08] but addressed
more rigorously in [GL10], which gives a precise semantics for constructs of the
form

I nheri tance A B

where A and B are characterized by relationships of the form Member C A,211

Member D B, etc. It is easy to see that, in the crisp case, where all MemberLinks212

and InheritanceLinks have strength 0 or 1, FOPLN reduces to standard propositional213

logic. Where inheritance is crisp but membership isn’t, FOPLN reduces to higher-214

order fuzzy logic (including fuzzy statements about terms or fuzzy statements, etc.).215

16.3.5 Inference Trails216

Inference trails are a mechanism used in some implementations of PLN, borrowed217

from the NARS inference engine [Wan06]. In this approach, each Atom contains218

a Trail structure, which keeps a record of which Atoms were used in deriving the219

given Atom’s TruthValue. In its simplest form, the Trail can just be a list of Atoms.220

The total set of Atoms involved in a given Trail, in principle, could be very large;221

but one can in practice cap Trail size at 50 or some other similar number. In a more222

sophisticated version, one can record the rules used with the Atoms in the Trail as223

well, allowing recapitulation of the whole inference history producing an Atom’s224

truth value. If the PLN MindAgents store all the inferences they do in some global225

inference history structure, then Trails are obviated, as the information in the Trail226

can be found via consulting this history structure.227

The purpose of keeping inference trails is to avoid errors due to double-counting228

of evidence. If links L1 and L2 are both derived largely based on link L0, and L1229

and L2 both lead to L4 as a consequence—do we want to count this as two separate,230

independent pieces of evidence about L4? Not really, because most of the information231

involved comes from the single Atom L0 anyway. If all the Atoms maintain Trails232

then this sort of overlapping evidence can be identified easily; otherwise it will be233

opaque to the reasoning system.234

While Trails can be a useful tool, there is reason to believe they’re not strictly235

necessary. If one just keeps doing probabilistic inference iteratively without using236

Trails, eventually the dependencies and overlapping evidence bases will tend to be237

accounted for, much as in a loopy Bayes net. The key question then comes down to:238

how long is “eventually” and can the reasoning system afford to wait? A reasonable239

strategy seems to be240

• Use Trails for high-STI Atoms that are being reasoned about intensively, to mini-241

mize the amount of error.242

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.3 First Order Probabilistic Logic Networks 281

• For lower-STI Atoms that are being reasoned on more casually in the background,243

allow the double-counting to exist in the short term, figuring it will eventually244

“come out in the wash” so it’s not worth spending precious compute resources to245

more rigorously avoid it in the short term.246

16.4 Higher-Order PLN247

Higher-order PLN (HOPLN) is defined as the subset of PLN that applies to predicates248

(considered as functions mapping arguments into truth values). It includes mecha-249

nisms for dealing with variable-bearing expressions and higher-order functions.250

A predicate, in PLN, is a special kind of term that embodies a function mapping251

terms or relationships into truth-values. HOPLN contains several relationships that252

act upon predicates including Evaluation, Implication, and several types of quanti-253

fiers. The relationships can involve constant terms, variables, or a mixture.254

The Evaluation relationship, for example, evaluates a predicate on an input term.255

An agent can thus create a relationship of the form256

Evaluation
near
(Bob’s house, Fluffy)

or, as an example involving variables,257

Evaluation
near
(X, Fluffy)

The Implication relationship is a particularly simple kind of HOPLN relationship258

in that it behaves very much like FOPLN relationships, via substitution of predicates259

in place of simple terms. Since our agent knows, for example,260

Implication
is_Fluffy
AND is_furry purrs

and261

Implication
AND is_furry purrs
is_cat

the agent could then use the deduction rule to conclude262

Implication is_Fluffy is_cat

PLN supports a variety of quantifiers, including traditional crisp and fuzzy quan-
tifiers, plus the AverageQuantifier defined so that the truth value of

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

282 16 Probabilistic Logic Networks

AverageQuanti f ier X F(X)

is a weighted average of F(X) over all relevant inputs X . AverageQuantifier is used263

implicitly in PLN to handle logical relationships between predicates, so that e.g. the264

conclusion of the above deduction is implicitly interpreted as265

AverageQuantifier X
Implication

Evaluation is_Fluffy X
Evaluation is_cat X

We can now connect PLN with the SRAM model (defined in Chap.7 of Vol. 5).AQ3266

Suppose for instance that the agent observes Fluffy from across the room, and that267

it has previously learned a Fetch procedure that tells it how to obtain an entity once it268

sees that entity. Then, if the agent has the goal of finding a cat, and it has concluded269

based on the above deduction that Fluffy is indeed a cat (since it is observed to270

be furry and purr), the cognitive schematic (knowledge of the form Context and271

Procedure → Goal as explained in Chap. 8 of Vol. 5) may suggest it to execute the272

Fetch procedure.273

16.4.1 Reducing HOPLN to FOPLN274

In [GMIH08] it is shown that in principle, over any finite observation set, HOPLN275

reduces to FOPLN. The key ideas of this reduction are the elimination of variables via276

use of higher-order functions, and the use of the set-theoretic definition of function277

embodied in the SatisfyingSet operator to map function-argument relationships into278

set-member relationships.279

As an example, consider the Implication link. In HOPLN, where X is a variable280

Implication
R1 A X
R2 B X

may be reduced to281

Inheritance
SatisfyingSet(R1 A X)
SatisfyingSet(R2 B X)

where e.g. Satis f yingSet (R1 A X) is the fuzzy set of all X satisfying the relationship282

R1(A, X).283

Furthermore in Appendix ??, we show how experience-based possible world284

semantics can be used to reduce PLN’s existential and universal quantifiers to stan-285

dard higher order PLN relationships using AverageQuantifier relationships. This286

completes the reduction of HOPLN to FOPLN in the SRAM context.287

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_7

http://dx.doi.org/10.2991/978-94-6239-030-0_8

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.4 Higher-Order PLN 283

One may then wonder why it makes sense to think about HOPLN at all. The answer288

is that it provides compact expression of a specific subset of FOPLN expressions,289

which is useful in cases where agents have limited memory and these particular290

expressions provide agents practical value (it biases the agent’s reasoning ability to291

perform just as well as in first or higher orders).292

16.5 Predictive Implication and Attraction293

This section briefly reviews the notions of predictive implication and predictive294

attraction, which are critical to many aspects of CogPrime dynamics including goal-295

oriented behavior.296

Define297

Attraction A B <s>298

as P(B|A) - P(B|¬A) = s, or in node and link terms299

s = (Inheritance A B).s - (Inheritance ¬A B).s300

For instance301

(Attraction fat pig).s =302

(Inheritance fat pig).s - (Inheritance ¬fat pig).s303

Relatedly, in the temporal domain, we have the link type PredictiveImplication,304

where305

PredictiveImplication A B <s>306

roughly means that s is the probability that307

Implication A B <s>308

holds and also A occurs before B. More sophisticated versions of PredictiveImpli-309

cation come along with more specific information regarding the time lag between310

A and B: for instance a time interval T in which the lag must lie, or a probability311

distribution governing the lag between the two events.312

We may then introduce313

PredictiveAttraction A B <s>314

to mean315

s=(PredictiveImplication A B).s - (PredictiveImplication ¬A B).s316

For instance317

(PredictiveAttraction kiss_Ben be_happy).s =318

(PredictiveImplication kiss_Ben be_happy).s319

- (PredictiveImplication ¬kiss_Ben be_happy).s320

This is what really matters in terms of determining whether kissing Ben is worth321

doing in pursuit of the goal of being happy, not just how likely it is to be happy if322

you kiss Ben, but how differentially likely it is to be happy if you kiss Ben.323

Along with predictive implication and attraction, sequential logical operations324

are important, represented by operators such as SequentialAND, SimultaneousAND325

and SimultaneousOR. For instance:326

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

284 16 Probabilistic Logic Networks

PredictiveAttraction327

SequentialAND328

Teacher says ’fetch ’329

I get the ball330

I bring the ball to the teacher331

I get a reward332

combines SequentialAND and PredictiveAttraction. In this manner, an arbitrarily333

complex system of serial and parallel temporal events can be constructed.334

16.6 Confidence Decay335

PLN is all about uncertain truth values, yet there is an important kind of uncertainty336

it doesn’t handle explicitly and completely in its standard truth value representations:337

the decay of information with time.338

PLN does have an elegant mechanism for handling this: in the < s, d > formalism339

for truth values, strength s may remain untouched by time (except as new evidence340

specifically corrects it), but d may decay over time. So, our confidence in our old341

observations decreases with time. In the indefinite probability formalism, what this342

means is that old truth value intervals get wider, but retain the same mean as they343

had back in the good old days.344

But the tricky question is: How fast does this decay happen?345

This can be highly context-dependent.346

For instance, 20 years ago we learned that the electric guitar is the most popular347

instrument in the world, and also that there are more bacteria than humans on Earth.348

The former fact is no longer true (keyboard synthesizers have outpaced electric349

guitars), but the latter is. And, if you’d asked us 20 years ago which fact would be350

more likely to become obsolete, we would have answered the former—because we351

knew particulars of technology would likely change far faster than basic facts of352

earthly ecology.353

On a smaller scale, it seems that estimating confidence decay rates for different354

sorts of knowledge in different contexts is a tractable data mining problem, that can355

be solved via the system keeping a record of the observed truth values of a random356

sampling of Atoms as they change over time. (Operationally, this record may be357

maintained in parallel with the SystemActivityTable and other tables maintained for358

purposes of effort estimation, attention allocation and credit assignment.) If the truth359

values of a certain sort of Atom in a certain context change a lot, then the confidence360

decay rate for Atoms of that sort should be increased.361

This can be quantified nicely using the indefinite probabilities framework.362

For instance, we can calculate, for a given sort of Atom in a given context, separate363

b-level credible intervals for the L and U components of the Atom’s truth value at364

time t−r, centered about the corresponding values at time t. (This would be computed365

by averaging over all t values in the relevant past, where the relevant past is defined366

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.6 Confidence Decay 285

as some particular multiple of r; and over a number of Atoms of the same sort in the367

same context.)368

Since historically-estimated credible-intervals won’t be available for every exact369

value of r, interpolation will have to be used between the values calculated for specific370

values of r.371

Also, while separate intervals for L and U would be kept for maximum accuracy,372

for reasons of pragmatic memory efficiency one might want to maintain only a single373

number x, considered as the radius of the confidence interval about both L and U.374

This could be obtained by averaging together the empirically obtained intervals for375

L and U.376

Then, when updating an Atom’s truth value based on a new observation, one377

performs a revision of the old TV with the new, but before doing so, one first widens378

the interval for the old one by the amounts indicated by the above-mentioned credible379

intervals.380

For instance, if one gets a new observation about A with TV (Lnew, Unew), and381

the prior TV of A, namely (Lold , Uold), is 2 weeks old, then one may calculate that382

Lold should really be considered as:383

$(L_{old} - x, L_{old}+x)$384

and U_old should really be considered as:385

$(U_{old} - x, U_{old} + x)$386

so that (L_new, U_new) should actually be revised with:387

$(L_{old} - x, U_{old} + x)$388

to get the total:389

(L,U)390

for the Atom after the new observation.391

Note that we have referred fuzzily to “sort of Atom” rather than “type of Atom”392

in the above. This is because Atom type is not really the right level of specificity to393

be looking at. Rather—as in the guitar versus bacteria example above—confidence394

decay rates may depend on semantic categories, not just syntactic (Atom type) cate-395

gories. To give another example, confidence in the location of a person should decay396

more quickly than confidence in the location of a building. So ultimately confi-397

dence decay needs to be managed by a pool of learned predicates, which are applied398

periodically. These predicates are mainly to be learned by data mining, but inference399

may also play a role in some cases.400

The ConfidenceDecay MindAgent must take care of applying the confidence-401

decaying predicates to the Atoms in the AtomTable, periodically.402

The ConfidenceDecayUpdater MindAgent must take care of:403

• Forming new confidence-decaying predicates via data mining, and then revising404

them with the existing relevant confidence-decaying predicates.405

• Flagging confidence-decaying predicates which pertain to important Atoms but406

are unconfident, by giving them STICurrency, so as to make it likely that they will407

be visited by inference.408

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

286 16 Probabilistic Logic Networks

16.6.1 An Example409

As an example of the above issues, consider that the confidence decay of:410

Inh Ari male411

should be low whereas that of:412

Inh Ari tired413

should be higher, because we know that for humans, being male tends to be a more414

permanent condition than being tired.415

This suggests that concepts should have context-dependent decay rates, e.g. in416

the context of humans, the default decay rate of maleness is low whereas the default417

decay rate of tired-ness is high.418

However, these defaults can be overridden. For instance, one can say “As he419

passed through his 80s, Grandpa just got tired, and eventually he died.” This kind420

of tiredness, even in the context of humans, does not have a rapid decay rate. This421

example indicates why the confidence decay rate of a particular Atom needs to be422

able to override the default.423

In terms of implementation, one mechanism to achieve the above example would424

be as follows. One could incorporate an interval confidence decay rate as an optional425

component of a truth value. As noted above one can keep two separate intervals for426

the L and U bounds; or to simplify things one can keep a single interval and apply it427

to both bounds separately.428

Then, e.g., to define the decay rate for tiredness among humans, we could say:429

ImplicationLink_HOJ430

InheritanceLink $X human431

InheritanceLink $X tired <confidenceDecay = [0,0.1]>432

or else (preferably):433

ContextLink434

human435

InheritanceLink $X tired <confidenceDecay = [0,0.1]>436

Similarly, regarding maleness we could say:437

ContextLink438

human439

Inh $X male <confidenceDecay = [0,0.00001]>440

Then one way to express the violation of the default in the case of grandpa’s tiredness441

would be:442

InheritanceLink443

grandpa tired <confidenceDecay = [0 ,0.001] >444

(Another way to handle the violation from default, of course, would be to create a445

separate Atom:446

tired_from_old_age447

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.6 Confidence Decay 287

and consider this as a separate sense of “tired” from the normal one, with its own448

confidence decay setting.)449

In this example we see that, when a new Atom is created (e.g. I nheri tanceLink450

Ari tired), it needs to be assigned a confidence decay rate via inference based on451

relations such as the ones given above (this might be done e.g. by placing it on the452

queue for immediate attention by the ConfidenceDecayUpdater MindAgent). And453

periodically its confidence decay rate could be updated based on ongoing inferences454

(in case relevant abstract knowledge about confidence decay rates changes). Making455

this sort of inference reasonably efficient might require creating a special index456

containing abstract relationships that tell you something about confidence decay457

adjustment, such as the examples given above.458

16.7 Why is PLN a Good Idea?459

We have explored the intersection of the family of conceptual and formal struc-460

tures that is PLN, with a specific formal model of intelligent agents (SRAM) and its461

extension using the cognitive schematic. The result is a simple and explicit formu-462

lation of PLN as a system by which an agent can manipulate tokens in its memory,463

thus represent observed and conjectured relationships (between its observations and464

between other relationships), in a way that assists it in choosing actions according465

to the cognitive schematic.466

We have not, however, rigorously answered the question: What is the contribution467

of PLN to intelligence, within the formal agents framework introduced above? This468

is a quite subtle question, to which we can currently offer only an intuitive answer,469

not a rigorous one.470

Firstly, there is the question of whether probability theory is really the best way471

to manage uncertainty, in a practical context. Theoretical results like those of Cox472

[Cox61] and de Finetti [dF37] demonstrate that probability theory is the optimal473

way to handle uncertainty, if one makes certain reasonable assumptions. However,474

these reasonable assumptions don’t actually apply to real-world intelligent systems,475

which must operate with relatively severe computational resource constraints. For476

example, one of Cox’s axioms dictates that a reasoning system must assign the same477

truth value to a statement, regardless of the route it uses to derive the statement.478

This is a nice idealization, but it can’t be expected of any real-world, finite-resources479

reasoning system dealing with a complex environment. So an open question exists,480

as to whether probability theory is actually the best way for practical AGI systems481

to manage uncertainty. Most contemporary AI researchers assume the answer is yes,482

and probabilistic AI has achieved increasing popularity in recent years. However,483

there are also significant voices of dissent, such as Pei Wang [Wan06] in the AGI484

community, and many within the fuzzy logic community.485

PLN is not strictly probabilistic, in the sense that it combines formulas derived486

rigorously from probability theory with others that are frankly heuristic in nature.487

PLN was created in a spirit of open-mindedness regarding whether probability the-488

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

288 16 Probabilistic Logic Networks

ory is actually the optimal approach to reasoning under uncertainty using limited489

resources, versus merely an approximation to the optimal approach in this case.490

Future versions of PLN might become either more or less strictly probabilistic, de-491

pending on theoretical and practical advances.492

Next, aside from the question of the practical value of probability theory, there493

is the question of whether PLN in particular is a good approach to carrying out494

significant parts of what an AGI system needs to do, to achieve human-like goals in495

environments similar to everyday human environments.496

Within a cognitive architecture where explicit utilization the cognitive schematic497

(Context and Procedure → Goal) is useful, clearly PLN is useful if it works reason-498

ably well—so this question partially reduces to: what are the environments in which499

agents relying on the cognitive schematic are intelligent according to formal intelli-500

gent measures like those defined in Chap. 7 of Vol. 5. And then there is the possibility501

that some uncertain reasoning formalism besides PLN could be even more useful in502

the context of the cognitive schematic.503

In particular, the question arises: What are the unique, peculiar aspects of PLN that504

makes it more useful in the context of the cognitive schematic, than some other, more505

straightforward approach to probabilistic inference? Actually there are multiple such506

aspects that we believe make it particularly useful. One is the indefinite probability507

approach to truth values, which we believe is more robust for AGI than known508

alternatives. Another is the clean reduction of higher order logic (as defined in PLN)509

to first-order logic (as defined in PLN), and the utilization of term logic instead of510

predicate logic wherever possible—these aspects make PLN inferences relatively511

simple in most cases where, according to human common sense, they should be512

simple.513

A relatively subtle issue in this regard has to do with PLN intension. The cog-514

nitive schematic is formulated in terms of PredictiveExtensionalImplication (or any515

other equivalent way like PredictiveExtensionalAttraction), which means that inten-516

sional PLN links are not required for handling it. The hypothesis of the usefulness of517

intensional PLN links embodies a subtle assumption about the nature of the environ-518

ments that intelligent agents are operating in. As discussed in [Goe06] it requires an519

assumption related to Peirce’s philosophical axiom of the “tendency to take habits”,520

which posits that in the real world, entities possessing some similar patterns have a521

probabilistically surprising tendency to have more similar patterns.522

Reflecting on these various theoretical subtleties and uncertainties, one may get the523

feeling that the justification for applying PLN in practice is quite insecure! However,524

it must be noted that no other formalism in AI has significantly better foundation, at525

present. Every AI method involves certain heuristic assumptions, and the applicabil-526

ity of these assumptions in real life is nearly always a matter of informal judgment527

and copious debate. Even a very rigorous technique like a crisp logic formalism or528

support vector machines for classification, requires non-rigorous heuristic assump-529

tions to be applied to the real world (how does sensation and actuation get translated530

into logic formulas, or SVM feature vectors)? It would be great if it were possible531

to use rigorous mathematical theory to derive an AGI design, but that’s not the case532

right now, and the development of this sort of mathematical theory seems quite a long533

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_7

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16.7 Why is PLN a Good Idea? 289

way off. So for now, we must proceed via a combination of mathematics, practice534

and intuition.535

In terms of demonstrated practical utility, PLN has not yet confronted any really536

ambitious AGI-type problems, but it has shown itself capable of simple practical537

problem-solving in areas such as virtual agent control and natural language based538

scientific reasoning [GIGH08]. The current PLN implementation within CogPrime539

can be used to learn to play fetch or tag, draw analogies based on observed objects,540

or figure out how to carry out tasks like finding a cat. We expect that further practical541

applications, as well as very ambitious AGI development, can be successfully under-542

taken with PLN without a theoretical understanding of exactly what are the properties543

of the environments and goals involved that allow PLN to be effective. However, we544

expect that a deeper theoretical understanding may enable various aspects of PLN to545

be adjusted in a more effective manner.546

319613_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 289 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 16

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of edited quotation marks in the
Sect. 16.2.1.

AQ2 Kindly specify the respective citation number for Appendix at
wherever ?? appears as its citation.

AQ3 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Spatio-Temporal Inference

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Spatiotemporal reasoning is an important skill that an AGI is expected to have, innately or not. Much work
has already been done in defining reasoning systems for space, time and spacetime, such as the Region
Connection Calculus for space, Allen’s Interval Algebra for time, or the Qualitative Trajectory Calculus
for motion. However, these reasoning systems rarely take adequate account of uncertainty, which poses an
obstacle to using them in an AGI system confronted with an uncertain reality. In this paper we show how
to use PLN (Probabilistic Logic Networks) to represent spatiotemporal knowledge and reasoning, via
incorporating existing spatiotemporal calculi, and considering a novel extension of standard PLN truth
values inspired by -logic. This “PLN-ization” of existing spatiotemporal calculi, we suggest,
constitutes an approach to spatiotemporal inference suitable for use in AGI systems that incorporate logic-
based components.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 17
Spatio-temporal Inference

17.1 Introduction0

Most of the problems and situations humans confront every day involve space and1

time explicitly and centrally. Thus, any AGI system aspiring to humanlike general2

intelligence must have some reasonably efficient and general capability to solve3

spatiotemporal problems. Regarding how this capability might get into the system,4

there is a spectrum of possibilities, ranging from rigid hard-coding to tabula rasa5

experiential learning. Our bias in this regard is that it’s probably sensible to somehow6

“wire into” CogPrime some knowledge regarding space and time—these being, after7

all, very basic categories for any embodied mind confronting the world.8

It’s arguable whether the explicit insertion of prior knowledge about spacetime9

is necessary for achieving humanlike AGI using feasible resources. As an argument10

against the necessity of this sort of prior knowledge, Ben Kuipers and his colleagues11

[SMK12] have shown that an AI system can learn via experience that its perceptual12

stream comes from a world with three, rather than two or four dimensions. There13

is a long way from learning the number of dimensions in the world to learning the14

full scope of practical knowledge needed for effectively reasoning about the world—15

but it does seem plausible, from their work, that a broad variety of spatiotemporal16

knowledge could be inferred from raw experiential data. On the other hand, it also17

seems clear that the human brain does not do it this way, and that a rich fund of18

spatiotemporal knowledge is “hard-coded” into the brain by evolution—often in19

ways so low-level that we take them for granted, e.g. the way some motion detection20

neurons fire in the physical direction of motion, and the way somatosensory cortex21

presents a distorted map of the body’s surface. On a psychological level, it is known22

that some fundamental intuition for space and time is hard-coded into the human23

infant’s brain [Joh05]. So while we consider the learning of basic spatiotemporal24

knowledge from raw experience a worthy research direction, and fully compatible25

with the CogPrime vision; yet for our main current research, we have chosen to26

hard-wire some basic spatiotemporal knowledge.27

B. Goertzel et al., Engineering General Intelligence, Part 2, 291
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_17,
© Atlantis Press and the authors 2014

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

292 17 Spatio-temporal Inference

If one does wish to hard-wire some basic spatiotemporal knowledge into one’s AI28

system, multiple alternate or complementary methodologies may be used to achieve29

this, including spatiotemporal logical inference, internal simulation, or techniques30

like recurrent neural nets whose dynamics defy simple analytic explanation. Though31

our focus in this chapter is on inference, we must emphasize that inference, even32

very broadly conceived, is not the only way for an intelligent agent to solve spa-33

tiotemporal problems occurring in its life. For instance, if the agent has a detailed34

map of its environment, it may be able to answer some spatiotemporal questions by35

directly retrieving information from the map. Or, logical inference may be substituted36

or augmented by (implicitly or explicitly) building a model that satisfies the initial37

knowledge—either abstractly or via incorporating “visualization” connected to sen-38

sory memory—and then interpret new knowledge over that model instead of inferring39

it. The latter is one way to interpret what DeSTIN and other CSDLNs do; indeed,40

DeSTIN’s perceptual hierarchy is often referred to as a “state inference hierarchy”.41

Any CSDLN contains biasing toward the commonsense structure of space and time,42

in its spatiotemporal hierarchical structure. It seems plausible that the human mind43

uses a combination of multiple methods for spatiotemporal understanding, just as44

we intend CogPrime to do.45

In this chapter we focus on spatiotemporal logical inference, addressing the prob-46

lem of creating a spatiotemporal logic adequate for use within an AGI system that47

confronts the same sort of real-world problems that humans typically do. The idea48

is not to fully specify the system’s understanding of space and time in advance,49

but rather to provide some basic spatiotemporal logic rules, with parameters to be50

adjusted based on experience, and the opportunity for augmenting the logic over time51

with experientially-acquired rules. Most of the ideas in this chapter are reviewed in52

more detail, with more explanation, in the book Real World Reasoning [GGC+11];53

this chapter represent a concise summary, compiled with the AGI context specifically54

in mind.55

A great deal of excellent work has already been done in the areas of spatial,56

temporal and spatiotemporal reasoning; however, this work does not quite provide57

an adequate foundation for a logic-incorporating AGI system to do spatiotemporal58

reasoning, because it does not adequately incorporate uncertainty. Our focus here59

is to extend existing spatiotemporal calculi to appropriately encompass uncertainty,60

which we argue is sufficient to transform them into an AGI-ready spatiotemporal61

reasoning framework. We also find that a simple extension of the standard PLN62

uncertainty representations, inspired by P(Z)-logic [Yan10], allows more elegant63

expression of probabilistic fuzzy predicates such as arise naturally in spatiotemporal64

logic.65

In the final section of the chapter, we discuss the problem of planning, which has66

been considered extensively in the AI literature. We describe an approach to planning67

that incorporates PLN inference using spatiotemporal logic, along with MOSES as a68

search method, and some record-keeping methods inspired by traditional AI planning69

algorithms.70

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.2 Related Work on Spatio-temporal Calculi 293

17.2 Related Work on Spatio-temporal Calculi71

We now review several calculi that have previously been introduced for representing72

and reasoning about space, time and space-time combined.73

Spatial Calculi74

Calculi dealing with space usually model three types of relationships between spatial75

regions: topological, directional and metric.76

The most popular calculus dealing with topology is the Region Connection Calcu-77

lus (RCC) [RCC93], relying on a base relationship C (for Connected) and building78

up other relationships from it, likeP (forPartOf), orO (forOverlap). For instance79

P(X, Y), meaning X is a part of Y , can be defined using C as follows80

P(X, Y) iff ∀Z ∈ U ,C(Z , X) =⇒ C(Z , Y) (17.1)81

where U is the universe of regions. RCC-8 models eight base relationships, see82

Fig. 17.1. And it is possible, using the notion of convexity, to model more relation-83

ships such as inside, partially inside and outside, see Fig. 17.2. For instance RCC-2384

[Ben94] is an extension of RCC-8 using relationships based on the notion of convex-85

ity. The nine-intersection calculus [Win95, Kur09] is another calculus for reason-86

ing on topological relationships, but handling relationships between heterogeneous87

objects, points, lines, surfaces.88

Regarding reasoning about direction, the Cardinal Direction Calculus [GE01,89

ZLLY08] considers directional relationships between regions, to express proposi-90

tions such as “region A is to the north of region B”.91

And finally regarding metric reasoning, spatial reasoning involving qualitative dis-92

tance (such as close, medium, far) and direction combined is considered in [CFH97].93

EC(X, Y)

EQ(X, Y)

YX

YX Y
X

TPP(X, Y)

TPPi(X, Y)

Y

X

PO(X, Y)

Y X

Y X

DC(X, Y)

Y

X

NTPP(X, Y)

NTPPi(X, Y)

Y

X

Fig. 17.1 The eight base relationships of RCC-8

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

294 17 Spatio-temporal Inference

XY

P−Inside(X, Y)

XY

Inside(X, Y)

Y X

Outside(X, Y)

Fig. 17.2 Additional relationships using convexity

Some work has also been done to extend and combine these various calculi, such94

as combining RCC-8 and the Cardinal Direction Calculus [LLR09], or using size95

[GR00] or shape [Coh95] information in RCC.96

Temporal Calculi97

The best known temporal calculus is Allen’s Interval Algebra [All83], which con-98

siders 13 relationships over time intervals, such as Before, During, Overlap,99

Meet, etc. For instance one can express that digestion occurs after or right after100

eating by101

Before(Eat, Digest) ∨ Meet(Eat, Digest)102

equivalently denoted Eat{Before,Meet}Digest. There also exists a generalization103

of Allen’s Interval Algebra that works on semi-intervals [FF92], that are intervals104

with possibly undefined start or end.105

There are modal temporal logics such as LTL and CTL, mostly used to check106

temporal constraints on concurrent systems such as deadlock or fairness using Model107

Checking [Mai00].108

Calculi with Space and Time Combined109

There exist calculi combining space and time, first of all those obtained by “tem-110

porizing” spatial calculus, that is tagging spatial predicates with timestamps or time111

intervals. For instance STCC (for Spatio-temporal Constraint Calculus) [GN02] is112

basically RCC-8 combined with Allen’s Algebra. With STCC one can express spa-113

tiotemporal propositions such as114

Meet(DC(Finger, Key),EC(Finger, Key))115

which means that the interval during which the finger is away from the key meets116

the interval during which the finger is against the key.117

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.2 Related Work on Spatio-temporal Calculi 295

Another way to combine space and time is by modeling motion; e.g. the Qualitative118

Trajectory Calculus (QTC) [WKB05] can be used to express whether 2 objects are119

going forward/backward or left/right relative to each other.120

Uncertainty in Spatio-temporal Calculi121

In many situations it is worthwhile or even necessary to consider non-crisp extensions122

of these calculi. For example it is not obvious how one should consider in practice123

whether two regions are connected or disconnected. A desk against the wall would124

probably be considered connected to it even if there is a small gap between the wall125

and the desk. Or if A is not entirely part of B it may still be valuable to consider to126

which extent it is, rather than formally rejecting PartOf(A, B). There are several127

ways to deal with such phenomena; one way is to consider probabilistic or fuzzy128

extensions of spatiotemporal calculi.129

For instance in [SDCCK08b, SDCCK08a] the RCC relationship C (for130

Connected) is replaced by a fuzzy predicate representing closeness between131

regions and all other relationships based on it are extended accordingly. So e.g.132

DC (for Disconnected) is defined as follows133

DC(X, Y) = 1 − C(X, Y) (17.2)134

P (for PartOf) is defined as135

P(X, Y) = inf
Z∈U

I (C(Z , X),C(Z , Y)) (17.3)136

where I is a fuzzy implication with some natural properties (usually I (x1, x2) =137

max(1 − x1, x2)). Or, EQ (for Equal) is defined as138

EQ(X, Y) = min(P(X, Y),P(Y, X)) (17.4)139

and so on.140

However the inference rules cannot determine the exact fuzzy values of the result-141

ing relationships but only a lower bound, for instance142

T (P(X, Y),P(Y, Z)) ≤ P(X, Z) (17.5)143

where T (x1, x2) = max(0, x1 +x2 −1). This is to be expected since in order to know144

the resulting fuzzy value one would need to know the exact spatial configuration.145

For instance Fig. 17.3 depicts two possible configurations that would result in two146

different values of P(X, Z).147

One way to address this difficulty is to reason with interval-value fuzzy logic148

[DP09], with the downside of ending up with wide intervals. For example applying149

the same inference rule from Eq. 17.5 in the case depicted in Fig. 17.4 would result150

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

296 17 Spatio-temporal Inference

X ZX ZY Y

(a) (b)

Fig. 17.3 Depending on where Z is, in dashline, P(X, Z) gets a different value

YX

Z

β

Y

Z

X

β

YX

Z

β

(a) (b) (c)

Fig. 17.4 dX Z , in dashline, for 3 different angles

in the interval [0, 1], corresponding to a state of total ignorance. This is the main151

reason why, as explained in the next section, we have decided to use distributional152

fuzzy values for our AGI-oriented spatiotemporal reasoning.153

There also exist attempts to use probability with RCC. For instance in [Win00],154

RCC relationships are extracted from computer images and weighted based on their155

likelihood as estimated by a shape recognition algorithm. However, to the best of156

our knowledge, no one has used distributional fuzzy values [Yan10] in the context157

of spatiotemporal reasoning; and we believe this is important for the adaptation of158

spatiotemporal calculi to the AGI context.159

17.3 Uncertainty with Distributional Fuzzy Values160

P(Z) [Yan10] is an extension of fuzzy logic that considers distributions of fuzzy161

values rather than mere fuzzy values. That is, fuzzy connectors are extended to apply162

over probability density functions of fuzzy truth value. For instance the connector163

¬ (often defined as ¬x = 1 − x) is extended such that the resulting distribution164

μ¬ : [0, 1] �→ R+ is165

μ¬(x) = μ(1 − x) (17.6)166

where μ is the probability density function of the unique argument. Similarly, one can167

define μ∧ : [0, 1] �→ R+ as the resulting density function of the connector x1 ∧ x2 =168

min(x1, x2) over the two arguments μ1 : [0, 1] �→ R+ and μ2 : [0, 1] �→ R+
169

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.3 Uncertainty with Distributional Fuzzy Values 297

μ∧(x) = μ1(x)

∫ 1

x
μ2(x2)dx2

+μ2(x)

∫ 1

x
μ1(x1)dx1

(17.7)170

See [Yan10] for the justification of Eqs. 17.6 and 17.7.171

Besides extending the traditional fuzzy operators, one can also define a wider172

class of connectors that can fully modulate the output distribution. Let F : [0, 1]n �→173

([0, 1] �→ R
+) be a n-ary connector that takes n fuzzy values and returns a prob-174

ability density function. In that case the probability density function resulting from175

the extension of F over distributional fuzzy values is:176

μF =∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
n

F(x1, . . . , xn)μ1(x1) . . . μn(xn)dx1 . . . dxn (17.8)177

where μ1, . . . ,μn are the n input arguments. That is, it is the average of all density178

functions output by F applied over all fuzzy input values. Let us call that type of179

connectors fuzzy-probabilistic.180

In the following we give an example of such a fuzzy-probabilistic connector.181

Example with PartOf182

Let us consider the RCC relationship PartOf (P for short as defined in Eq. 17.1).183

A typical inference rule in the crisp case would be:184

P(X, Y) P(Y, Z)

P(X, Z)
(17.9)185

expressing the transitivity of P. But using a distribution of fuzzy values we would186

have the following rule187

P(X, Y) 〈μ1〉 P(Y, Z) 〈μ2〉
P(X, Z) 〈μP OT 〉 (17.10)188

P OT stands for PartOf Transitivity. The definition of μP OT for that particular infer-189

ence rule may depend on many assumptions like the shapes and sizes of regions X, Y190

and Z . In the following we will give an example of a definition of μP OT with respect191

to some oversimplified assumptions chosen to keep the example short.192

Let us define the fuzzy variant of PartOf(X, Y) as the proportion of X which193

is part of Y (as suggested in [Pal04]). Let us also assume that every region is a194

unitary circle. In this case, the required proportion depends solely on the distance

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

298 17 Spatio-temporal Inference

dXY between the centers of X and Y , so we may define a function f that takes that195

distance and returns the according fuzzy value; that is, f (dXY) = P(X, Y)196

f (dXY) =
{ 4α − dXY sin (α)

2π
if 0 ≤ dXY ≤ 2

0 if dXY > 2
(17.11)197

where α = cos−1 (dXY /2).198

For 0 ≤ dXY ≤ 2, f (dXY) is monotone decreasing, so the inverse of f (dXY),199

that takes a fuzzy value and returns a distance, is a function declared as f −1(x) :200

[0, 1] �→ [0, 2].201

Let be xXY = P(X, Y), xY Z = P(Y, Z), x = P(X, Z), dXY = f −1(xXY), dY Z =202

f −1(xY Z), l = |dXY − dY Z | and u = dXY + dY Z . For dXY and dY Z fixed, let203

g : [0,π] �→ [l, u] be a function that takes as input the angle β of the two lines from204

the center of Y to X and Y to Z (as depicted in Fig. 17.4) and returns the distance205

dX Z .g is defined as follows206

g(β) =
√

(dXY − dY Z sin (β))2 + (dY Z cos (β))2
207

So l ≤ dX Z ≤ u. It is easy to see that g is monotone increasing and surjective,208

therefore there exists a function inverse g−1 : [l, u] �→ [0,π]. Let h = f ◦ g, so209

h takes an angle as input and returns a fuzzy value, h : [0,π] �→ [0, 1]. Since f is210

monotone decreasing and g is monotone increasing, h is monotone decreasing. Note211

that the codomain of h is [0, f −1(l)] if l < 2 or {0} otherwise. Assuming that l < 2,212

then the inverse of h is a function with the following signature h−1 : [0, f −1(l)] �→213

[0,π]. Using h−1 and assuming that the probability of picking β ∈ [0,π] is uniform,214

we can define the binary connector POT. Let us define ν = POT(xXY , xY Z), recalling215

that POT returns a density function and assuming x < f −1(l)216

ν(x) = 2 lim
δ→0

∫ h−1(x)

h−1(x+δ)

1

π
dβ

δ
217

= 2

π
lim
δ→0

h−1(x) − h−1(x + δ)

δ
218

= −2h−1′
(x)

π
(17.12)219

where h−1′
is the derivative of h−1. If x ≥ f −1(l) then ν(x) = 0. For sake of220

simplicity the exact expressions of h−1 andν(x)have been left out, and the case where221

one of the fuzzy arguments xXY , xY Z or both are null has not been considered but222

would be treated similarly assuming some probability distribution over the distances223

dXY and dX Z .224

It is now possible to define μP OT in rule 17.10 (following Eq. 17.8)225

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.3 Uncertainty with Distributional Fuzzy Values 299

μP OT =∫ 1

0

∫ 1

0
P OT (x1, x2)μ1(x1)μ2(x2)dx1dx2

(17.13)226

Obviously, assuming that regions are unitary circles is crude; in practice, regions227

might be of very different shapes and sizes. In fact it might be so difficult to chose228

the right assumptions (and once chosen to define P OT correctly), that in a complex229

practical context it may be best to start with overly simplistic assumptions and then230

learn P OT based on the experience of the agent. So the agent would initially perform231

spatial reasoning not too accurately, but would improve over time by adjusting P OT ,232

as well as the other connectors corresponding to other inference rules.233

It may also be useful to have more premises containing information about the234

sizes (e.g Big(X)) and shapes (e.g Long(Y)) of the regions, like235

B(X) 〈μ1〉 L(Y) 〈μ2〉 P(X, Y) 〈μ3〉 P(Y, Z) 〈μ4〉
P(X, Z) 〈μ〉236

where B and L stand respectively for Big and Long.237

Simplifying Numerical Calculation238

Using probability density as described above is computationally expensive, and in239

many practical cases it’s overkill. To decrease computational cost, several cruder240

approaches are possible, such as discretizing the probability density functions with a241

coarse resolution, or restricting attention to beta distributions and treating only their242

means and variances (as in [Yan10]).243

The right way to simplify depends on the fuzzy-probabilistic connector involved244

and on how much inaccuracy can be tolerated in practice.245

17.4 Spatio-temporal Inference in PLN246

We have discussed the representation of spatiotemporal knowledge, including asso-247

ciated uncertainty. But ultimately what matters is what an intelligent agent can do248

with this knowledge. We now turn to uncertain reasoning based on uncertain spa-249

tiotemporal knowledge, using the integration of the above-discussed calculi into the250

Probabilistic Logic Networks reasoning system, an uncertain inference framework251

designed specifically for AGI and integrated into the OpenCog AGI framework.252

We give here a few examples of spatiotemporal inference rules coded in PLN.253

Although the current implementation of PLN incorporates both fuzziness and prob-254

ability it does not have a built-in truth value to represent distributional fuzzy values,255

or rather a distribution of distribution of fuzzy value, as this is how, in essence,256

confidence is represented in PLN. At that point, depending on design choice and257

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

300 17 Spatio-temporal Inference

experimentation, it is not clear whether we want to use the existing truth values and258

treat them as distributional truth values or implement a new type of truth value ded-259

icated for that, so for our present theoretical purposes we will just call it DF Truth260

Value.261

Due to the highly flexible HOJ formalism (Higher Order Judgment, explained262

in the PLN book in detail) we can express the inference rule for the relationship263

PartOf directly as Nodes and Links as follows264

ForAllLink $X $Y $Z
ImplicationLink_HOJ

ANDLink
PartOf($X, $Y) 〈tv1〉
PartOf($Y, $Z) 〈tv2〉

ANDLink
tv3 = μP OT (tv1,tv2)
PartOf($X, $Z) 〈tv3〉

(17.14)265

where μP OT is defined in Eq. 17.13 but extended over the domain of PLN DF266

Truth Value instead of P(Z) distributional fuzzy value. Note that PartOf($X, $Y)267

〈tv〉 is a shorthand for268

EvaluationLink 〈tv〉
PartOf
ListLink

$X
$Y

(17.15)269

and ForAllLink $X $Y $Z is a shorthand for270

ForAllLink
ListLink

$X
$Y
$Z

(17.16)271

Of course one advantage of expressing the inference rule directly in Nodes and272

Links rather than a built-in PLN inference rule is that we can use OpenCog itself to273

improve and refine it, or even create new spatiotemporal rules based on its experience.274

In the next 2 examples the fuzzy-probabilistic connectors are ignored, (so no DF Truth275

Value is indicated) but one could define them similarly to μP OT .276

First consider a temporal rule from Allen’s Interval Algebra. For instance “if $I1277

meets $I2 and $I3 is during $I2 then $I3 is after $I1” would be expressed as278

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.4 Spatio-temporal Inference in PLN 301

ForAllLink $I1 $I2 $I3
ImplicationLink

ANDLink
Meet($I1, $I2)
During($I3, $I2)

After($I3, $I1)

(17.17)279

and a last example with a metric predicate could be “if $X is near $Y and $X is far280

from $Z then $Y is far from $Y”281

ForAllLink $X $Y $Z
ImplicationLink_HOJ

ANDLink
Near($X, $Y)

Far($X, $Z)

Far($Y, $Z)

(17.18)282

that is only a small and partial illustrative example—for instance other rules may be283

used to specify that Near and Far and reflexive and symmetric.284

17.5 Examples285

The ideas presented here have extremely broad applicability; but for sake of concrete-286

ness, we now give a handful of examples illustrating applications to commonsense287

reasoning problems.288

17.5.1 Spatiotemporal Rules289

The rules provided here are reduced to the strict minimum needed for the examples:290

1. At $T, if $X is inside $Y and $Y is inside $Z then $X is inside $Z291

ForAllLink $T $X $Y $Z
ImplicationLink_HOJ

ANDLink
atTime($T,Inside($X, $Y))

atTime($T,Inside($Y, $Z))

atTime($T,Inside($X, $Z))

292

2. If a small object $X is over $Y and $Y is far from $Z then $X is far from $Z293

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

302 17 Spatio-temporal Inference

ForAllLink
ImplicationLink_HOJ

ANDLink
Small($X)

Over($X, $Y)

Far($Y)

Far($X)

294

That rule is expressed in a crisp way but again is to be understood in an uncertain295

way, although we haven’t worked out the exact formulae.296

17.5.2 The Laptop Is Safe from the Rain297

A laptop is over the desk in the hotel room, the desk is far from the window and we298

want assess to what extent the laptop is far from the window, therefore same from299

the rain.300

Note that the truth values are ignored but each concept is to be understood as301

fuzzy, that is having a PLN Fuzzy Truth Value but the numerical calculation are left302

out.303

We want to assess how far the Laptop is from the window304

Far(Window,Laptop)305

Assuming the following306

1. The laptop is small307

Small(Laptop).308

2. The laptop is over the desk309

Over(Laptop,Desk).310

3. The desk is far from the window311

Far(Desk,Window).312

Now we can show an inference trail that lead to the conclusion, the numeric calcu-313

lation are let for later.314

1. using axioms 1, 2, 3 and PLN AND rule315

ANDLink
Small(Laptop)

Over(Laptop,Desk)

Far(Desk,Window)

316

2. using spatiotemporal rule 2, instantiated with $X = Laptop, $Y = Desk and317

$Z = Window318

ImplicationLink_HOJ
ANDLink

Small(Laptop)

Over(Laptop,Desk)

Far(Desk,Window)

Far(Laptop,Window)

319

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.5 Examples 303

3. using the result of previous step as premise with PLN implication rule320

Far(Laptop,Window)321

17.5.3 Fetching the Toy Inside the Upper Cupboard322

Suppose we know that there is a toy in an upper cupboard and near a bag, and want323

to assess to which extent climbing on the pillow is going to bring us near the toy.324

Here are the following assumptions325

1. The toy is near the bag and inside the cupboard. The pillow is near and below the326

cupboard327

Near(toy,bag) 〈tv1〉
Inside(toy,cupboard) 〈tv2〉
Below(pillow,cupboard) 〈tv3〉
Near(pillow,cupboard) 〈tv4〉

328

2. The toy is near the bag inside the cupboard, how near is the toy to the edge of the329

cupboard?330

ImplicationLink_HOJ
ANDLink

Near(toy,bag) 〈tv1〉
Inside(toy,cupboard) 〈tv2〉

ANDLink
tv3 = μF1(tv1,tv2)
Near(toy,cupboard_edge) 〈tv3〉

331

3. If I climb on the pillow, then shortly after I’ll be on the pillow332

PredictiveImplicationLink
Climb_on(pillow)

Over(self,pillow)

333

4. If I am on the pillow near the edge of the cupboard how near am I to the toy?334

ImplicationLink_HOJ
ANDLink

Below(pillow,cupboard) 〈tv1〉
Near(pillow,cupboard) 〈tv2〉
Over(self,pillow) 〈tv3〉
Near(toy,cupboard_edge) 〈tv4〉

ANDLink
tv5 = μF2(tv1,tv2,tv3,tv4)
Near(self,toy) 〈tv5〉

335

The target theorem is “How near I am to the toy if I climb on the pillow.”336

PredictiveImplicationLink
Climb_on(pillow)

Near(self,toy) 〈?〉
337

And the inference chain as follows338

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

304 17 Spatio-temporal Inference

1. Axiom 2 with axiom 1339

Near(toy,cupboard_edge) 〈tv6〉340

2. Step 1 with axiom 1 and 3341

PredictiveImplicationLink
Climb_on(pillow)

ANDLink
Below(pillow,cupboard) 〈tv3〉
Near(pillow,cupboard) 〈tv4〉
Over(self,pillow) 〈tv7〉
Near(toy,cupboard_edge) 〈tv6〉

342

3. Step 2 with axiom 4, target theorem: How near am I to the toy if I climb on the343

pillow344

PredictiveImplicationLink
Climb_on(pillow)

Near(self,toy) 〈tv9〉
345

17.6 An Integrative Approach to Planning346

Planning is a major research area in the mainstream AI community, and planning347

algorithms have advanced dramatically in the last decade. However, the best of348

breed planning algorithms are still not able to deal with planning in complex envi-349

ronments in the face of a high level of uncertainty, which is the sort of situation350

routinely faced by humans in everyday life. Really powerful planning, we suggest,351

requires an approach different than any of the dedicated planning algorithms, involv-352

ing spatiotemporal logic combined with a sophisticated search mechanism (such as353

MOSES).354

It may be valuable (or even necessary) for an intelligent system involved in355

planning-intensive goals to maintain a specialized planning-focused data structure356

to guide general learning mechanisms toward more efficient learning in a planning357

context. But even if so, we believe planning must ultimately be done as a case of358

more general learning, rather than via a specialized algorithm.359

The basic approach we suggest here is to360

• Use MOSES for the core plan learning algorithm. That is, MOSES would maintain361

a population of “candidate partial plans”, and evolve this population in an effort362

to find effective complete plans.363

• Use PLN to help in the fitness evaluation of candidate partial plans. That is, PLN364

would be used to estimate the probability that a partial plan can be extended into365

a high-quality complete plan. This requires PLN to make heavy use of spatiotem-366

poral logic, as described in the previous sections of this chapter.367

• Use a GraphPlan-style [BF97] planning graph, to record information about candi-368

date plans, and to propagate information about mutual exclusion between actions.369

The planning graph maybe be used to help guide both MOSES and PLN.370

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

17.6 An Integrative Approach to Planning 305

In essence, the planning graph simply records different states of the world that may be371

achievable, with a high-strength PredictiveImplicationLink pointing between state X372

and Y if X can sensibly serve as a predecessor to X ; and a low-strength (but potentially373

high-confidence) PredictiveImplicationLink between X and Y if the former excludes374

the latter. This may be a subgraph of the Atomspace or it may be separately cached;375

but in each case it must be frequently accessed via PLN in order for the latter to avoid376

making a massive number of unproductive inferences in the course of assisting with377

planning.378

One can think of this as being a bit like PGraphPlan [BL99], except that379

• MOSES is being used in place of forward or backward chaining search, enabling380

a more global search of the plan space (mixing forward and backward learning381

freely)382

• PLN is being used to estimate the value of partial plans, replacing heuristic methods383

of value propagation384

Regarding PLN, one possibility would be to (explicitly, or in effect) create a385

special API function looking something like386

EstimateSuccessProbability(PartialPlan PP, Goal G)387

(assuming the goal statement contains information about the time allotted to388

achieve the goal). The PartialPlan is simply a predicate composed of predicates linked389

together via temporal links such as PredictiveImplication and SimultaneousAND. Of390

course, such a function could be used within many non-MOSES approaches to plan-391

ning also.392

Put simply, the estimation of the success probability is “just” a matter of asking the393

PLN backward-chainer to figure out the truth value of a certain ImplicationLink, i.e.394

PredictiveImplicationLink [time-lag T]395

EvaluationLink do PP396

G397

But of course, this may be a very difficult inference without some special guidance398

to help the backward chainer. The GraphPlan-style planning graph could be used by399

PLN to guide it in doing the inference, via telling it what variables to look at, in400

doing its inferences. This sort of reasoning also requires PLN to have a fairly robust401

capability to reason about time intervals and events occurring therein (i.e. basic402

temporal inference).403

Regarding MOSES, given a candidate plan, it could look into the planning graph404

to aid with program tree expansion. That is, given a population of partial plans,405

MOSES would progressively add new nodes to each plan, representing predecessors406

or successors to the actions already described in the plans. In choosing which nodes407

to add, it could be probabilistically biased toward adding nodes suggested by the408

planning graph.409

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

306 17 Spatio-temporal Inference

So, overall what we have is an approach to doing planning via MOSES, with410

PLN for fitness estimation—but using a GraphPlan-style planning graph to guide411

MOSES’s exploration of the neighborhood of partial plans, and to guide PLN’s412

inferences regarding the success likelihood of partial plans.413AQ1

319613_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 306 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 17

Query Refs. Details Required Author’s response

AQ1 No query

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Adaptive, Integrative Inference Control

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract The subtlest and most difficult aspect of logical inference is not the logical rule-set nor the management of
uncertainty, but the control of inference: the choice of which inference steps to take, in what order, in
which contexts. Without effective inference control methods, logical inference is an unscalable and
infeasible approach to learning declarative knowledge. One of the key ideas underlying the CogPrime
design is that inference control cannot effectively be handled by looking at logic alone. Instead, effective
inference control must arise from the intersection between logical methods and other cognitive processes.
In this chapter we describe some of the general principles used for inference control in the CogPrime
design.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 18
Adaptive, Integrative Inference Control

18.1 Introduction0

The subtlest and most difficult aspect of logical inference is not the logical rule-1

set nor the management of uncertainty, but the control of inference: the choice of2

which inference steps to take, in what order, in which contexts. Without effective3

inference control methods, logical inference is an unscalable and infeasible approach4

to learning declarative knowledge. One of the key ideas underlying the CogPrime5

design is that inference control cannot effectively be handled by looking at logic6

alone. Instead, effective inference control must arise from the intersection between7

logical methods and other cognitive processes. In this chapter we describe some of8

the general principles used for inference control in the CogPrime design.9

Logic itself is quite abstract and relatively (though not entirely) independent of10

the specific environment and goals with respect to which a system’s intelligence is11

oriented. Inference control, however, is (among other things) a way of adapting a12

logic system to operate effectively with respect to a specific environment and goal-13

set. So, the reliance of CogPrime’s inference control methods on the integration14

between multiple cognitive processes, is a reflection of the foundation of CogPrime15

on the assumption (articulated in Chap. 9 of Vol. 5) that the relevant environment and16

goals embody interactions between world-structures and interaction-structures best17

addressed by these various processes.18 AQ1

18.2 High-Level Control Mechanisms19

The PLN implementation in CogPrime is complex and lends itself to utilization via20

many different methods. However, a convenient way to think about it is in terms of21

three basic backward-focused query operations:22

• findtv, which takes in an expression and tries to find its truth value.23

B. Goertzel et al., Engineering General Intelligence, Part 2, 307
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_18,
© Atlantis Press and the authors 2014

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_9

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

308 18 Adaptive, Integrative Inference Control

• findExamples, which takes an expression containing variables and tries to find24

concrete terms to fill in for the variables.25

• createExamples, which takes an expression containing variables and tries to cre-26

ate new Atoms to fill in for the variables, using concept creation heuristics as27

discussed in a Chap. 20, coupled with inference for evaluating the products of28

concept creation.29

and one forward-chaining operation:30

• findConclusions, which takes a set of Atoms and seeks to draw the most interesting31

possible set of conclusions via combining them with each other and with other32

knowledge in the AtomTable.33

These inference operations may of course call themselves and each other recursively,34

thus creating lengthy chains of diverse inference.35

Findtv is quite straightforward, at the high level of discussion adopted here. Vari-36

ous inference rules may match the Atom; in our current PLN implementation, loosely37

described below, these inference rules are executed by objects called Rules. In the38

course of executing findtv, a decision must be made regarding how much attention39

to allocate to each one of these Rule objects, and some choices must be made by the40

objects themselves - issues that involve processes beyond pure inference, and will be41

discussed later in this chapter. Depending on the inference rules chosen, findtv may42

lead to the construction of inferences involving variable expressions, which may then43

be evaluated via findExamples or createExamples queries.44

The findExamples operation sometimes reduces to a simple search through45

the AtomSpace. On the other hand, it can also be done in a subtler way. If the46

findExamples Rule wants to find examples of $X so that F($X), but can’t find any,47

then it can perform some sort of heuristic search, or else it can run another findEx-48

amples query, looking for $G so that49

Implication $G F50

and then running findExamples on G rather than F. But what if this findExamples51

query doesn’t come up with anything? Then it needs to run a createExamples query52

on the same implication, trying to build a $G satisfying the implication.53

Finally, forward-chaining inference (findConclusions) may be conceived of as a54

special heuristic for handling special kinds of findExample problems. Suppose we55

have K Atoms and want to find out what consequences logically ensue from these K56

Atoms, taken together. We can form the conjunction of the K Atoms (let’s call it C),57

and then look for $D so that58

Implication C $D59

Conceptually, this can be approached via findExamples, which defaults to create Ex-60

amples in cases where nothing is found. However, this sort of findExamples problem61

is special, involving appropriate heuristics for combining the conjuncts contained62

in the expression C, which embody the basic logic of forward-chaining rather than63

backward-chaining inference.AQ2 64

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_20

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.2 High-Level Control Mechanisms 309

18.2.1 The Need for Adaptive Inference Control65

It is clear that in humans, inference control is all about context. We use different66

inference strategies in different contexts, and learning these strategies is most of67

what learning to think is all about. One might think to approach this aspect of68

cognition, in the CogPrime design, by introducing a variety of different inference69

control heuristics, each one giving a certain algorithm for choosing which inferences70

to carry out in which order in a certain context. (This is similar to what has been71

done within Cyc, for example http://www.cyc.com). However, in keeping with the72

integrated intelligence theme that pervades CogPrime, we have chosen an alternate73

strategy for PLN. We have one inference control scheme, which is quite simple, but74

which relies partially on structures coming from outside PLN proper. The requisite75

variety of inference control strategies is provided by variety in the non-PLN structures76

such as77

• HebbianLinks existing in the AtomTable.78

• Patterns recognized via pattern-mining in the corpus of prior inference trails.79

18.3 Inference Control in PLN80

We will now describe the basic “inference control” loop of PLN in CogPrime.81

Pre-2013 OpenCog versions used a somewhat different scheme, more similar to82

a traditional logic engine. The approach presented here is more cognitive synergy83

oriented, achieving PLN control via a combination of logic engine style methods and84

integration with attention allocation.85

18.3.1 Representing PLN Rules as GroundedSchemaNodes86

PLN inference rules may be represented as GroundedSchemaNodes. So for instance87

the PLN Deduction Rule, becomes a GroundedSchemaNode with the properties:88

• Input: a pair of links (L1, L2), where L1 and L2 are the same type, and must be one89

of InheritanceLink, ImplicationLink, SubsetLink or ExtensionalImplicationLink.90

• Output: a single link, of the same type as the input.91

The actual PLN Rules and Formulas are then packed into the internal execution92

methods of GroundedSchemaNodes.93

In the current PLN code, each inference rule has a Rule class and a separate94

Formula class. So then, e.g. the PLNDeductionRule GroundedSchemaNode, invokes95

a function of the general form96

Link PLNDeductionRule(Link L1, Link L2)97

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

http://www.cyc.com

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

310 18 Adaptive, Integrative Inference Control

which calculates the deductive consequence of two links. This function then invokes98

a function of the form99

TruthValue PLNDeductionFormula(TruthValue tAB, TruthValue tBC,100

TruthValue tA, TruthValue tB, TruthValue tC)101

which in turn invokes functions such as102

SimpleTruthValue SimplePLNDeductionFormula(SimpleTruthValue103

tAB,104

SimpleTruthValue tBC, SimpleTruthValue tA, SimpleTruthValue tB,105

SimpleTruthValue tC)106

107

IndefiniteTruthValue IndefinitePLNDeductionFormula108

(IndefiniteTruthValue tAB, IndefiniteTruthValue tBC,109

IndefiniteTruthValue tA, IndefiniteTruthValue tB,110

IndefiniteTruthValue tC)111

18.3.2 Recording Executed PLN Inferences in the Atomspace112

Once an inference has been carried out, it can be represented in the Atomspace, e.g.113

as114

ExecutionLink115

GroundedSchemaNode: PLNDeductionRule116

ListLink117

HypotheticalLink118

InheritanceLink people animal <tv1>119

HypotheticalLink120

InheritanceLink animal breathe <tv2>121

HypotheticalLink122

InheritanceLink people breathe <tv3>123

Note that a link such as124

InheritanceLink125

people breathe <.8, .2>126

will have its truth value stored as a truth value version within a CompositeTruthValue127

object). In the above, e.g.128

InheritanceLink people animal129

is used as shorthand for130

InheritanceLink C1 C2131

where C1 and C2 are ConceptNodes representing “people” and “animal” respec-132

tively.133

We can also have records of inferences involving variables, such as134

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.3 Inference Control in PLN 311

ExecutionLink135

GroundedSchemaNode: PLNDeductionRule136

ListLink137

HypotheticalLink138

InheritanceLink $V1 animal <tv1>139

HypotheticalLink140

InheritanceLink animal breathe <tv2>141

HypotheticalLink142

InheritanceLink $V1 breathe <tv3>143

where $V1 is a specific VariableNode.144

18.3.3 Anatomy of a Single Inference Step145

A single inference step, then, may be viewed as follows:146

1. Choose an inference rule R and a tuple of Atoms that collectively match the input147

conditions of the rule.148

2. Apply the chosen rule R to the chosen input Atoms.149

3. Create an ExecutionLink recording the output found.150

4. In addition to retaining this ExecutionLink in the Atomspace, also save a copy of151

it to the InferenceRepository [this is not needed for the very first implementation,152

but will be very useful once PLN is in regular use].153

The InferenceRepository, referred to here, is a special Atomspace that exists just154

to save a record of PLN inferences. It can be mined, after the fact, to learn inference155

patterns, which can be used to guide future inferences.156

18.3.4 Basic Forward and Backward Inference Steps157

The choice of an inference step, at the microscopic level, may be done in a number158

of ways, of which perhaps the simplest are:159

• “Basic forward step”. Choose an Atom A1, then choose a rule R. If R only takes160

one input, then apply R to A1. If R applies to two Atoms, then find another Atom161

A2 so that (A1, A2) may be taken as the inputs of R.162

• “Basic backward step”. Choose an Atom A1, then choose a rule R. If R takes only163

one input, then find an Atom A2 so that applying R to A2, yields A1 as output. If164

R takes two inputs, then find two Atoms (A2, A3) so that applying R to (A2, A3)165

yields A1 as output.166

Given a target Atom such as167

A1 = Inheritance $V1 breathe168

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

312 18 Adaptive, Integrative Inference Control

the VariableAbstractionRule will do inferences such as169

ExecutionLink170

VariableAbstractionRule171

HypotheticalLink172

Inheritance people breathe173

HypotheticalLink174

Inheritance $v1 breathe175

This allows the basic backward step to carry out variable fulfillment queries as well176

as truth value queries. We may encapsulate these processes in the Atomspace as177

GroundedSchemaNode: BasicForwardInferenceStep178

GroundedSchemaNode: BasicBackwardInferenceStep179

which take as input some Atom A1.180

and also as181

GroundedSchemaNode: AttentionalForwardInferenceStep182

GroundedSchemaNode: AttentionalBackwardInferenceStep183

which automatically choose the Atom A1 they start with, via choosing some Atom184

within the AttentionalFocus, with probability proportional to STI.185

Forward chaining, in its simplest form, then becomes: The process of repeatedly186

executing the AttentionalForwardInferenceStep SchemaNode.187

Backward chaining, in the simplest case (we will discuss more complex cases188

below), becomes the process of189

1. Repeatedly executing the BasicBackwardInferenceStep SchemaNode, starting190

from a given target Atom.191

2. Concurrently, repeatedly executing the AttentionalBackwardInferenceStep Sche-192

maNode, to ensure that backward inference keeps occurring, regarding Atoms193

that were created via Step 1.194

Inside the BasicForwardStep or BasicBackwardStep schema, there are two choices195

to be made: choosing a rule R, and then choosing additional Atoms A2 and possibly196

A3.197

The choice of the rule R should be made probabilistically, choosing each rule with198

probability proportional to a certain weight associated with each rule. Initially we can199

assign these weights generically, by hand, separately for each application domain.200

Later on they should be chosen adaptively, based on information mined from the201

InferenceRepository, regarding which rules have been better in which contexts.202

The choice of the additional Atoms A2 and A3 is subtler, and should be done203

using STI values as a guide:204

• First the AttentionalFocus is searched, to find all the Atoms there that fit the205

input criteria of the rule R. Among all the Atoms found, an Atom is chosen with206

probability proportional to STI.207

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.3 Inference Control in PLN 313

• If the AttentionalFocus doesn’t contain anything suitable, then an effort may be208

made to search the rest of the Atomspace to find something suitable. If multiple209

candidates are found within the amount of effort allotted, then one should be210

chosen with probability proportional to STI.211

If an Atom A is produced as output of a forward inference step, or is chosen212

as the input of a backward inference step, then the STI of this Atom A should213

be incremented. This will increase the probability of A being chosen for ongoing214

inference. In this way, attention allocation is used to guide the course of ongoing215

inference.216

18.3.5 Interaction of Forward and Backward Inference217

Starting from a target, a series of backward inferences can figure out ways to estimate218

the truth value of that target, or fill in the variables within that target.219

However, once the backward-going chain of inferences is done (to some reason-220

able degree of satisfaction), there is still the remaining task of using all the conclusions221

drawn during the series of backward inferences, to actually update the target.222

Elegantly, this can be done via forward inference. So if forward and backward223

inference are both operating concurrently on the same pool of Atoms, it is forward224

inference that will propagate the information learned during backward chaining in-225

ference, up to the target of the backward chain.226

18.3.6 Coordinating Variable Bindings227

Probably the thorniest subtlety that comes up in a PLN implementation is the coordi-228

nation of the values assigned to variables, across different micro-level inferences that229

are supposed to be coordinated together as part of the same macro-level inference.230

For a very simple example, suppose we have a truth-value query with target231

A1 = InheritanceLink Bob rich232

Suppose the deduction rule R is chosen.233

Then if we can find (A2, A3) that look like, say,234

A2 = InheritanceLink Bob owns_mansion235

A3 = InheritanceLink owns_mansion rich236

our problem is solved.237

But what if there is no such simple solution in the Atomspace available? Then we238

have to build something like239

A2 = InheritanceLink Bob $v1240

A3 = InheritanceLink $v1 rich241

and try to find something that works to fill in the variable $v1.242

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

314 18 Adaptive, Integrative Inference Control

But this is tricky, because $v1 now has two constraints (A2 and A3). So, suppose243

A2 and A3 are both created as a result of applying BasicBackwardInferenceStep to244

A1, and thus A2 and A3 both get high STI values. Then both A2 and A3 are going to245

be acted on by AttentionalBackwardInferenceStep. But as A2 and A3 are produced246

via other inputs using backward inference, it is necessary that the values assigned to247

$v1 in the context of A2 and A3 remain consistent with each other.248

Note that, according to the operation of the Atomspace, the same VariableAtom249

will be used to represent $v1 no matter where it occurs.250

For instance, it will be problematic if one inference rule schema tries to instan-251

tiate $v1 with “owns_mansion”, but another tries to instantiate $v1 with “lives_in252

_Manhattan”.253

That is, we don’t want to find254

InheritanceLink Bob lives_in_mansion255

InheritanceLink lives_in_mansion owns_mansion256

|-257

InheritanceLink Bob owns_mansion258

which binds $v1 to owns_mansion, and259

InheritanceLink lives_in_Manhattan lives_in_top_city260

InheritanceLink lives_in_top_city rich261

|-262

InheritanceLink lives_in_Manhattan rich263

which binds $v1 to lives_in_Manhattan264

We want A2 and A3 to be derived in ways that bind $v1 to the same thing.265

The most straightforward way to avoid confusion in this sort of context, is to266

introduce an addition kind of inference step,267

• “Variable-guided backward step”. Choose a set V of VariableNodes (which may268

just be a single VariableNode $v1), and identify the set S_V of all Atoms involving269

any of the variables in V.270

– Firstly: If V divides into two sets V1 and V2, so that no Atom contains variables271

in both V1 and V2, then launch separate variable-guided backwards steps for272

V1 and V2. [This step is “Problem Decomposition”]273

– Carry out the basic backward step for all the Atoms in S_V, but restricting274

the search for Atoms A2, A3 in such a way that each of the variables in V is275

consistently instantiated. This is a non-trivial optimization, and more will be276

said about this below.277

• “Variable-guided backward step, Atom-triggered”. Choose an Atom A1. Identify278

the set V of VariableNodes targeted by A1, and then do a variable-guided backward279

step starting from V.280

AQ3

This variable guidance may, of course, be incorporated into the AttentionalBack-281

wardInferenceStep as well. In this case, backward chaining becomes the process282

of283

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.3 Inference Control in PLN 315

• Repeatedly executing the VariableGuidedBackwardInferenceStep SchemaNode,284

starting from a given target Atom.285

• Concurrently, repeatedly executing the AttentionalVariableGuidedBackwardInfer-286

enceStep SchemaNode, to ensure that backward inference keeps occurring, regard-287

ing Atoms that were created via Step 1.288

The hard work here is then done in Step 2 of the Variable Guided Backward289

Step, which has to search for multiple Atoms, to fulfill the requirements of multiple290

inference rules, in a way that keeps consistent variable instantiations. But this same291

difficulty exists in a conventional backward chaining framework, it’s just arranged292

differently, and not as neatly encapsulated.293

18.3.7 An Example of Problem Decomposition294

Illustrating a point raised above, we now give an example of a case where, given a295

problem of finding values to assign a set of variables to make a set of expressions296

hold simultaneously, the appropriate course is to divide the set of expressions into297

two separate parts.298

Suppose we have the six expressions299

300

E1 = Inheritance ($v1, Animal)301

302

E2 = Evaluation($v1, ($v2, Bacon))303

304

E3 = Inheritance($v2, $v3)305

306

E4 = Evaluation(Eat, ($v3, $v1))307

308

E5 = Evaluation (Eat, ($v7, $v9))309

310

E6 = Inheritance $v9 $v6311

312

Since the set {E1, E2, E3, E4} doesn’t share any variables with {E5, E6}, there is313

no reason to consider them all as one problem. Rather we will do better to decompose314

it into two problems, one involving {E1, E2, E3, E4} and one involving {E5, E6}.315

In general, given a set of expressions, one can divide it into subsets, where each316

subset S has the property that: for every variable v contained in S, all occurrences of317

v in the Atomspace, are in expressions contained in S.318

18.3.8 Example of Casting a Variable Assignment Problem319

as an Optimization Problem320

Suppose we have the four expressions321

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

316 18 Adaptive, Integrative Inference Control

E1 = Inheritance ($v1, Animal)322

E2 = Evaluation($v2, ($v1, Bacon))323

E3 = Inheritance($v2, $v3)324

E4 = Evaluation(Enjoy, ($v1, $v3))325

where Animal, Bacon and Enjoy are specific Atoms.326

Suppose the task at hand is to find values for ($v1, $v2, $v3) that will make all of327

these expressions confidently true.328

If there is some assignment329

($v1, $v2, $v3) = (A1,A2, A3)330

ready to hand in the Atomspace, that fulfills the equations E1, E2, E3, E4, then the331

Atomspace API’s pattern matcher will find it. For instance,332

($v1, $v2, $v3) = (Cat, Eat, Chew)333

would work here, since334

E1 = Inheritance (Cat, Animal)335

E2 = Evaluation(Eat, (Cat, Bacon))336

E3 = Inheritance(Eat, Chew)337

E4 = Evaluation(Enjoy, (Cat, Chew))338

are all reasonably true.339

If there is no such assignment ready to hand, then one is faced with a search340

problem. This can can be approached as an optimization problem, e.g. one of maxi-341

mizing a function342

f($v1, $v2, $v3) = sc(E1) * sc(E2) * sc(E3)343

where344

sc(A) = A.strength * A.confidence345

The function f is then a function with signature346

f: Atomˆ4 ==> float347

f can then be optimized by a host of optimization algorithms. For instance a genetic348

algorithm approach might work, but a Bayesian Optimization Algorithm (BOA)349

approach would probably be better.350

In a GA approach, mutation would work as follows. Suppose one had a candidate351

($v1, $v2, $v3) = (A1,A2, A3)352

Then one could mutate this candidate by (for instance) replacing A1 with some353

other Atom that is similar to A1, e.g. connected to A1 with a high-weight Similarity354

Link in the Atomspace.355

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.3 Inference Control in PLN 317

18.3.9 Backward Chaining via Nested Optimization356

Given this framework that does inference involving variables via using optimization357

to solve simultaneous equations of logical expressions with overlapping variables,358

“backward chaining” becomes the iterative launch of repeated optimization prob-359

lems, each one defined in terms of the previous ones. We will now illustrate this360

point via continuing with the {E1, E2, E3, E4)} example from above. Suppose one361

found an assignment362

($v1, $v2, $v3) = (A1,A2, A3)363

that worked for every equation except E3. Then there is the problem of finding some364

way to make365

E3 = Inheritance(A2, A3)366

work.367

For instance, what if we have found the assignment368

($v1, $v2, $v3) = (Cat, Eat, Chase)369

In this case, we have370

E1 = Inheritance (Cat, Animal) -- YES371

E2 = Evaluation(Eat,(Cat,Bacon)) -- YES372

E3 = Inheritance(Eat, Chase) -- NO373

E4 = Evaluation(Enjoy, (Cat, Chase)) -- YES374

so the assignment works for every equation except E3. Then there is the problem of375

finding some way to make376

E3 = Inheritance(Eat, Chase)377

work. But if the truth value of378

Inheritance(Eat, Chase)379

has a low strength and high confidence, this may seem hopeless, so this assignment380

may not get followed up on.381

On the other hand, we might have the assignment382

($v1, $v2, $v3) = (Cat, Eat, SocialActivity)383

In this case, for a particular CogPrime instance, we might have384

E1 = Inheritance (Cat, Animal) -- YES385

E2 = Evaluation(Eat, (Cat, Bacon)) -- YES386

E3 = Inheritance(Eat, SocialActivity) -- UNKNOWN387

E4 = Evaluation(Enjoy, (Cat, SocialActivity)) -- YES388

The above would hold if the reasoning system knew that cats enjoy social activities,389

but did not know whether eating is a social activity. In this case, the reasoning system390

would have reason to launch a new inference process aimed at assessing the truth391

value of392

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

318 18 Adaptive, Integrative Inference Control

E3 = Inheritance(Eat, SocialActivity) --393

This is backward chaining: Launching a new inference process to figure out a question394

raised by another inference process.395

For instance, in this case the inference engine might: Choose an inference Rule396

(let’s say it’s Deduction, for simplicity), and then look for $v4 so that397

Inheritance Eat $v4398

Inheritance $v4 SocialActivity399

are both true. In this case one has spawned a new Variable-Guided Backward Infer-400

ence problem, which must be solved in order to make {A1, A2, A3} an OK solution401

for the problem of {E1, E2, E3, E4}.402

Or it might choose the Induction rule, and look for $v4 so that403

Inheritance $v4 Eat404

Inheritance $v4 SocialActivity405

Maybe then it would find that $v4=Dinner works, because it knows that406

Inheritance Dinner407

Eat Inheritance Dinner SocialActivity408

But maybe $v4=Dinner doesn’t boost the truth value of409

E3 = Inheritance(Eat, SocialActivity)410

high enough. In that case it may keep searching for more information about E4 in411

the context of this particular variable assignment. It might choose Induction again,412

and discover e.g. that413

Inheritance Lunch414

Eat Inheritance Lunch SocialActivity415

In this example, weve assumed that some non-backward-chaining heuristic search416

mechanism found a solution that almost works, so that backward chaining is only417

needed on E3. But of course, one could backward chain on all of E1, E2, E3, E4418

simultaneously—or various subsets thereof.419

For a simple example, suppose one backward chains on420

E1 = Inheritance ($v1, Animal)421

E3 = Inheritance($v2, SocialActivity)422

simultaneously. Then one is seeking, say, ($v4, $v5) so that423

Inheritance $v1 $v5424

Inheritance $v5 Animal425

Inheritance $v2 $v4426

Inheritance $v4 SocialActivity\427

This adds no complexity, as the four relations partition into two disjoint sets of two.428

Separate chaining processes may be carried out for E1 and E3.429

On the other hand, for a slightly more complex example, what if we backward430

chain on431

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.3 Inference Control in PLN 319

E2 = Evaluation($v2, ($v1, Bacon))432

E3 = Inheritance($v2, SocialActivity)433

simultaneously? (Assuming that a decision has already been made to explore the434

possibility $v3 = SocialActivity.) Then we have a somewhat more complex situation.435

We are trying to find $v2 that is a SocialActivity, so that $v1 likes to do $v2 in436

conjunction with Bacon.437

If the Member2Evaluation rule is chosen for E2 and the Deduction rule is chosen438

for E3, then we have439

E5 = Inheritance $v2 $v6440

E6 = Inheritance $v6 SocialActivity441

E7 = Member ($v1, Bacon) (SatisfyingSet $v2)442

and if the Inheritance2Member rule is then chosen for E7, we have443

E5 = Inheritance $v2 $v6444

E6 = Inheritance $v6 SocialActivity445

E8 = Inheritance ($v1, Bacon) (SatisfyingSet $v2)446

and if Deduction is then chosen for E8 then we have447

E5 = Inheritance $v2 $v6448

E6 = Inheritance $v6 SocialActivity449

E9 = Inheritance ($v1 , Bacon) $v8450

E10 = Inheritance $v8 (SatisfyingSet $v2)451

Following these steps expands the search to involve more variables and means the452

inference engine now gets to deal with453

E1 = Inheritance ($v1, Animal)454

E4 = Evaluation(Enjoy, ($v1, SocialActivity))455

E5 = Inheritance $v2 $v6456

E6 = Inheritance $v6 SocialActivity457

E9 = Inheritance ($v1 , Bacon) $v8458

E10 = Inheritance $v8 (SatisfyingSet $v2)459

or some such i.e. we have expanded our problem to include more and more simul-460

taneous logical equations in more and more variables! Which is not necessarily a461

terrible thing, but it does get complicated.462

We might find, for example, that $v=1 Pig, $v6=Dance, $v2=Waltz, $v8 =463

PiggyWaltz464

E1 = Inheritance (Pig, Animal)465

E4 = Evaluation(Enjoy, (Pig, SocialActivity))466

E5 = Inheritance Waltz Dance467

E6 = Inheritance Dance SocialActivity468

E9 = Inheritance (Pig , Bacon) PiggyWaltz469

E10 = Inheritance PiggyWaltz (SatisfyingSet Waltz)470

Here PiggyWaltz is a special dance that pigs do with their Bacon, as a SocialActivity!471

Of course, this example is extremely contrived. Real inference examples will472

rarely be this simple, and will not generally involve Nodes that have simple English473

names. This example is just for illustration of the concepts involved.474

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

320 18 Adaptive, Integrative Inference Control

18.4 Combining Backward and Forward Inference Steps475

with Attention Allocation to Achieve the Same Effect476

as Backward Chaining (and Even Smarter Inference477

Dynamics)478

Backward chaining is a powerful heuristic, one can achieve the same effect—and479

even smarter inference dynamics—via a combination of480

• Heuristic search to satisfy simultaneous expressions481

• Boosting the STI of expressions being searched482

• Importance spreading (of STI)483

• Ongoing background forward inference484

can combine to yield the same basic effect as backward chaining, but without ex-485

plicitly doing backward chaining.486

The basic idea is: When system of expressions involving variables is explored487

using a GA or whatever other optimization process is deployed, these expressions488

also get their STI boosted.489

Then, the atoms with high STI, are explored by the forward inference process,490

which is always acting in the background on the atoms in the Atomspace. Other491

atoms related to these also get STI via importance spreading. And these other related492

Atoms are then acted on by forward inference as well.493

This forward chaining will then lead to the formation of new Atoms, which may494

make the solution of the system of expressions easier the next time it is visited by495

the backward inference process.496

In the above example, this means:497

• E1, E2, E3, E4 will all get their STI boosted.498

• Other Atoms related to these (Animal, Bacon and Enjoy) will also get their STI499

boosted.500

• These other Atoms will get forward inference done on them.501

• This forward inference will then yield new Atoms that can be drawn on when the502

solution of the expression-system E1, E2, E3, E4 is pursued the next time.503

So, for example, if the system did not know that eating is a social activity, it might504

learn this during forward inference on SocialActivity. The fact that SocialActivity505

has high STI would cause forward inferences such as506

Inheritance Dinner Eat507

Inheritance Dinner SocialActivity508

|-509

Inheritance Eat SocialActivity510

to get done. These forward inferences would then produce links that could simply511

be found by the pattern matcher when trying to find variable assignments to satisfy512

{E1, E2, E3, E4}.513

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.4 Combining Backward and Forward Inference Steps 321

18.4.1 Breakdown into MindAgents514

To make this sort of PLN dynamic work, we require a number of MindAgents to be515

operating “ambiently” in the background whenever inference is occurring; to wit:516

• Attentional forward chaining (i.e. each time this MindAgent is invoked, it chooses517

high-STI Atoms and does basic forward chaining on them)518

• Attention allocation (importance updating is critical, Hebbian learning is also519

useful)520

• Attentional (variable guided) backward chaining.521

On top of this ambient inference, we may then have query-driven backward chaining522

inferences submitted by other processes (via these launching backward inference523

steps and giving the associated Atoms lots of STI). The ambient inference processes524

will help the query-driven inference processes to get fulfilled.525

18.5 Hebbian Inference Control526

A key aspect of the PLN control mechanism described here is the use of attention527

allocation to guide inference. A key aspect here is the use of attention allocation to528

guide Atom choice in the course of forward and backward inference. Figure 18.1 gives529

a simple illustrative example of the use of attention allocation, via HebbianLinks,530

for PLN backward chaining.531

The semantics of a HebbianLink between A and B is, intuitively: In the past, when532

A was important, B was also important. HebbianLinks are created via two basic533

mechanisms: pattern-mining of associations between importances in the system’s534

history, and PLN inference based on HebbianLinks created via pattern mining (and535

inference). Thus, saying that PLN inference control relies largely on HebbianLinks is536

in part saying that PLN inference control relies on PLN. There is a bit of a recursion537

here, but it’s not a bottomless recursion because it bottoms out with HebbianLinks538

learned via pattern mining.539

As an example of the Atom-choices to be made by a forward or backward inference540

agent in the course of doing inference, consider that to evaluate (Inheritance A C) via541

the deduction Rule, some collection of intermediate nodes for the deduction must be542

chosen. In the case of higher-order deduction, each deduction may involve a number543

of complicated subsidiary steps, so perhaps only a single intermediate node will be544

chosen. This choice of intermediate nodes must be made via context-dependent prior545

probabilities. In the case of other Rules besides deduction, other similar choices must546

be made.547

The basic means of using HebbianLinks in inferential Atom-choice is simple: If548

there are Atoms linked via HebbianLinks with the other Atoms in the inference tree,549

then these Atoms should be given preference in the selection process.550

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

322 18 Adaptive, Integrative Inference Control

Fig. 18.1 The use of attention allocation for guiding backward chaining inference

Along the same lines but more subtly, another valuable heuristic for guiding551

inference control is “on-the-fly associatedness assessment”. If there is a chance to552

apply the chosen Rule via working with Atoms that are:553

• Strongly associated with the Atoms in the Atom being evaluated (via Hebbian-554

Links)555

• Strongly associated with each other via HebbianLinks (hence forming a cohesive556

set)557

then this should be ranked as a good thing.558

For instance, it may be the case that, when doing deduction regarding relationships559

between humans, using relationships involving other humans as intermediate nodes560

in the deduction is often useful. Formally this means that, when doing inference of561

the form:562

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.5 Hebbian Inference Control 323

AND563

Inheritance A human564

Inheritance A B565

Inheritance C human566

Inheritance C B567

|-568

Inheritance A C569

then it is often valuable to choose B so that:570

HebbianLink B human571

has high strength. This would follow from the above-mentioned heuristic.572

Next, suppose one has noticed a more particular heuristic - that in trying to reason573

about humans, it is particularly useful to think about their wants. This suggests that574

in abductions of the above form it is often useful to choose B of the form:575

B = SatisfyingSet [wants(human, $X)]576

This is too fine-grained of a cognitive-control intuition to come from simple577

association-following. Instead, it requires fairly specific data-mining of the system’s578

inference history. It requires the recognition of “Hebbian predicates” of the form:579

HebbianImplication580

AND581

Inheritance $A human582

Inheritance $C human583

Similarity584

$B585

SatisfyingSet586

Evaluation wants (human, $X)587

AND588

Inheritance $A $B589

Inheritance $C $B590

The semantics of:591

HebbianImplication X Y592

is that when X is being thought about, it is often valuable to think about Y shortly593

thereafter.594

So what is required to do inference control according to heuristics like think595

about humans according to their wants is a kind of backward-chaining inference596

that combines Hebbian implications with PLN inference rules. PLN inference says597

that to assess the relationship between two people, one approach is abduction. But598

Hebbian learning says that when setting up an abduction between two people, one599

useful precondition is if the intermediate term in the abduction regards wants. Then600

a check can be made whether there are any relevant intermediate terms regarding601

wants in the system’s memory.602

What we see here is that the overall inference control strategy can be quite simple.603

For each Rule that can be applied, a check can be made for whether there is any604

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

324 18 Adaptive, Integrative Inference Control

relevant Hebbian knowledge regarding the general constructs involved in the Atoms605

this Rule would be manipulating. If so, then the prior probability of this Rule is606

increased, for the purposes of the Rule-choice bandit problem. Then, if the Rule is607

chosen, the specific Atoms this Rule would involve in the inference can be summoned608

up, and the relevant Hebbian knowledge regarding these Atoms can be utilized.609

To take another similar example, suppose we want to evaluate:610

Inheritance pig dog611

via the deduction Rule (which also carries out induction and abduction). There are612

a lot of possible intermediate terms, but a reasonable heuristic is to ask a few basic613

questions about them: How do they move around? What do they eat? How do they614

reproduce? How intelligent are they? Some of these standard questions correspond615

to particular intermediate terms, e.g. the intelligence question partly boils down to616

computing:617

Inheritance pig intelligent618

and:619

Inheritance dog intelligent620

So a link:621

HebbianImplication animal intelligent622

may be all that’s needed to guide inference to asking this question. This HebbianLink623

says that when thinking about animals, it’s often interesting to think about intelli-624

gence. This should bias the system to choose “intelligent” as an intermediate node625

for inference.626

On the other hand, the what do they eat question is subtler and boils down to627

asking; Find $X so that when:628

R($X) = SatisfyingSet[$Y] eats ($Y,$X)629

holds (R($X) is a concept representing what eat $X), then we have:630

Inheritance pig R($X)631

and:632

Inheritance dog R($X)633

In this case, a HebbianLink from animal to eat would not really be fine-grained634

enough. Instead we want a link of the form:635

HebbianImplication636

Inheritance $X animal637

SatisfyingSet[$Y] eats ($X, $Y)638

This says that when thinking about an animal, it’s interesting to think about what639

that animal eats.640

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.5 Hebbian Inference Control 325

The deduction Rule, when choosing which intermediate nodes to use, needs to641

look at the scope of available HebbianLinks and HebbianPredicates and use them to642

guide its choice. And if there are no good intermediate nodes available, it may report643

that it doesn’t have enough experience to assess with any confidence whether it can644

come up with a good conclusion. As a consequence of the bandit-problem dynamics,645

it may be allocated reduced resources, or another Rule is chosen altogether.646

18.6 Inference Pattern Mining647

Along with general-purpose attention spreading, it it very useful for PLN processes648

to receive specific guidance based on patterns mined from previously performed and649

storedife.650

This information is stored in CogPrime in a data repository called the Inference651

PatternRepository - which is, quite simply, a special “data table” containing inference652

trees extracted from the system’s inference history, and patterns recognized therein.653

An “inference tree” refers to a tree whose nodes, called InferenceTreeNodes, are654

Atoms (or generally Atom-versions, Atoms with truth value relative to a certain655

context), and whose links are inference steps (so each link is labeled with a certain656

inference rule).657

In a large CogPrime system it may not be feasible to store all inference trees; but658

then a wide variety of trees should still be retained, including mainly successful ones659

as well as a sampling of unsuccessful ones for purpose of comparison.660

The InferencePatternRepository may then be used in two ways:661

• An inference tree being actively expanded (i.e. utilized within the PLN inference662

system) may be compared to inference trees in the repository, in real time, for663

guidance. That is, if a node N in an inference tree is being expanded, then the664

repository can be searched for nodes similar to N, whose contexts (within their665

inference trees) are similar to the context of N within its inference tree. A study can666

then be made regarding which Rules and Atoms were most useful in these prior,667

similar inferences, and the results of this can be used to guide ongoing inference.668

• Patterns can be extracted from the store of inference trees in the InferencePattern-669

Repository, and stored separately from the actual inference trees (in essence, these670

patterns are inference subtrees with variables in place of some of their concrete671

nodes or links). An inference tree being expanded can then be compared to these672

patterns instead of, or in addition to, the actual trees in the repository. This provides673

greater efficiency in the case of common patterns among inference trees.674

A reasonable approach may be to first check for inference patterns and see if there675

are any close matches; and if there are not, to then search for individual inference676

trees that are close matches.677

Mining patterns from the repository of inference trees is a potentially highly678

computationally expensive operation, but this doesn’t particularly matter since it can679

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

326 18 Adaptive, Integrative Inference Control

be run periodically in the background while inference proceeds at its own pace in680

the foreground, using the mined patterns. Algorithmically, it may be done either681

by exhaustive frequent-itemset-mining (as in deterministic greedy datamining algo-682

rithms), or by stochastic greedy mining. These operations should be carried out by683

an InferencePatternMiner MindAgent.684

18.7 Evolution as an Inference Control Scheme685

It is possible to use PEPL (Probabilistic Evolutionary Program Learning, such as686

MOSES) as, in essence, an InferenceControl scheme. Suppose we are using an evo-687

lutionary learning mechanism such as MOSES or PLEASURE [Goe08a] to evolve688

populations of predicates or schemata. Recall that there are two ways to evaluate689

procedures in CogPrime: by inference or by direct evaluation. Consider the case690

where inference is needed in order to provide high-confidence estimates of the eval-691

uation or execution relationships involved. Then, there is the question of how much692

effort to spend on inference, for each procedure being evaluated as part of the fit-693

ness evaluation process. Spending a small amount of effort on inference means that694

one doesn’t discover much beyond what’s immediately apparent in the AtomSpace.695

Spending a large amount of effort on inference means that one is trying very hard696

to use indirect evidence to support conjectures regarding the evaluation or execution697

Links involved.698

When one is evolving a large population of procedures, one can’t afford to do too699

much inference on each candidate procedure being evaluated. Yet, of course, doing700

more inference may yield more accurate fitness evaluations, hence decreasing the701

number of fitness evaluations required.702

Often, a good heuristic is to gradually increase the amount of inference effort703

spent on procedure evaluation, during the course of evolution. Specifically, one may704

make the amount of inference effort roughly proportional to the overall population705

fitness. This way, initially, evolution is doing a cursory search, not thinking too much706

about each possibility. But once it has some fairly decent guesses in its population,707

then it starts thinking hard, applying more inference to each conjecture.708

Since the procedures in the population are likely to be interrelated to each other,709

inferences done on one procedure are likely to produce intermediate knowledge710

that’s useful for doing inference on other procedures. Therefore, what one has in this711

scheme is evolution as a control mechanism for higher-order inference.712

Combined with the use of evolutionary learning to achieve memory across opti-713

mization runs, this is a very subtle approach to inference control, quite different from714

anything in the domain of logic-based AI. Rather than guiding individual inference715

steps on a detailed basis, this type of control mechanism uses evolutionary logic to716

guide the general direction of inference, pushing the vast mass of exploratory infer-717

ences in the direction of solving the problem at hand, based on a flexible usage of718

prior knowledge.719

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18.8 Incorporating Other Cognitive Processes into Inference 327

18.8 Incorporating Other Cognitive Processes into Inference720

Hebbian inference control and inference pattern mining are valuable and powerful721

processes, but they are not always going to be enough. The solution of some problems722

that CogPrime chooses to address via inference will ultimately require the use of723

other methods, too. In these cases, one workaround is for inference to call on other724

cognitive processes to help it out.725

This is done via the forward or backward chaining agents identifying specific726

Atoms deserving of attention by other cognitive processes, and then spawning Tasks727

executing these other cognitive processes on the appropriate Atoms.728

Firstly, which Atoms should be selected for this kind of attention? What we want729

are InferenceTreeNodes that:730

• Have high STI.731

• Have the impact to significantly change the overall truth value of the inference tree732

they are embedded in (something that can be calculated by hypothetically varying733

the truth value of the InferenceTreeNode and seeing how the truth value of the734

overall conclusion is affected).735

• Have truth values that are known with low confidence.736

Truth values meeting these criteria should be taken as strong candidates for attention737

by other cognitive processes.738

The next question is which other cognitive processes do we apply in which cases?739

MOSES in supervised categorization mode can be applied to a candidate In-740

ferenceTreeNode representing a CogPrime Node if it has a sufficient number of741

members (Atoms linked to it by MemberLinks); and, a sufficient number of new742

members have been added to it (or have had their membership degree significantly743

changed) since MOSES in supervised categorization mode was used on it last.744

Next, pattern mining can be applied to look for connectivity patterns elsewhere745

in the AtomTable, similar to the connectivity patterns of the candidate Atom, if the746

candidate Atom has changed significantly since pattern mining last visited it.747

More subtly, what if, we try to find whether “cross breed” implies “Ugliness”,748

and we know that “bad genes” implies Ugliness, but can’t find a way, by backward749

chaining, to prove that “cross breed” implies “bad genes”. Then we could launch750

a non-backward-chaining algorithm to measure the overlap of SatisfyingSet(cross751

breed) and SatisfyingSet(bad genes). Specifically, we could use MOSES in super-752

vised categorization mode to find relationships characterizing “cross breed” and other753

relationships characterizing “bad genes”, and then do some forward chaining infer-754

ence on these relationships. This would be a general heuristic for what to do when755

there’s a link with low confidence but high potential importance to the inference tree.756

SpeculativeConceptFormation (see Chap. 20) may also be used to create new con-757

cepts and attempt to link them to the Atoms involved in an inference (via subsidiary758

inference processes, or HebbianLink formation based on usage in learned procedures,759

etc.), so that they may be used in inference.760

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_20

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

328 18 Adaptive, Integrative Inference Control

18.9 PLN and Bayes Nets761

Finally, we give some comments on the relationship between PLN and Bayes Nets762

[PJ88a]. We have not yet implemented such an approach, but it may well be that763

Bayes Nets methods can serve as a useful augmentation to PLN for certain sorts of764

inference (specifically, for inference on networks of knowledge that are relatively765

static in nature).766

We can’t use standard Bayes Nets as the primary way of structuring reasoning in767

CogPrime because CogPrime’s knowledge network is loopy. The peculiarities that768

allow standard Bayes net belief propagation to work in standard loopy Bayes nets,769

don’t hold up in CogPrime, because of the way you have to update probabilities770

when you’re managing a very large network in interaction with a changing world,771

so that different parts of which get different amounts of focus. So in PLN we use772

different mechanisms (the “inference trail” mechanism) to avoid “repeated evidence773

counting” whereas in loopy Bayes nets they rely on the fact that in the standard774

loopy Bayes net configuration, extra evidence counting occurs in a fairly constant775

way across the network.776

However, when you have within the AtomTable a set of interrelated knowledge777

items that you know are going to be static for a while, and you want to be able to778

query them probabilistically, then building a Bayes Net of some sort (i.e. “freezing”779

part of CogPrime’s knowledge network and mapping it into a Bayes Net) may be780

useful. I.e., one way to accelerate some PLN inference would be:781

1. Freeze a subnetwork of the AtomTable which is expected not to change a lot in782

the near future.783

2. Interpret this subnetwork as a loopy Bayes net, and use standard Bayesian belief784

propagation to calculate probabilities based on it.785

This would be a highly efficient form of “background inference” in certain contexts.786

(Note that this ideally requires an “indefinite Bayes net” implementation that propa-787

gates indefinite probabilities through the standard Bayes-net local belief propagation788

algorithms, but this is not mathematically problematic.)789

On the other hand, if you have a very important subset of the Atomspace, then it790

may be worthwhile to maintain a Bayes net modeling the conditional probabilities791

between these Atoms, but with a dynamically updated structure.792

319613_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 328 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 18

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of edited quotation marks in the
Sect. 18.3.4 and 18.3.6.

AQ2 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ3 Please confirm we have changed from ”’ to double quotation mark
under the Sections 18.3.4 and 18.3.6.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Pattern Mining

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Having discussed inference in depth we now turn to other, simpler but equally important approaches to
creating declarative knowledge.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 19
Pattern Mining

19.1 Introduction0

Having discussed inference in depth we now turn to other, simpler but equally1

important approaches to creating declarative knowledge. This chapters deals with2

pattern mining—the creation of declarative knowledge representing patterns among3

other knowledge (which may be declarative, sensory, episodic, procedural, etc.)—4

and the following chapter deals with speculative concept creation.5

Within the scope of pattern mining, we will discuss two basic approaches:6

• Supervised learning: given a predicate, finding a pattern among the entities that7

satisfy that predicate.8

• Unsupervised learning: undirected search for “interesting patterns”.9

The supervised learning case is easier and we have done a number of experiments10

using MOSES for supervised pattern mining, on biological (microarray gene expres-11

sion and SNP) and textual data. In the CogPrime case, the “positive examples” are12

the elements of the SatisfyingSet of the predicate P, and the “negative examples”13

are everything else. This can be a relatively straight forward problem if there are14

enough positive examples and they actually share common aspects... but some trick-15

iness emerges, of course, when the common aspects are, in each example, complexly16

intertwined with other aspects.17

The unsupervised learning case is considerably trickier. The main problem issue18

here regards the definition of an appropriate fitness function. We are searching for19

“interesting patterns.” So the question is, what constitutes an interesting pattern?20

We will also discuss two basic algorithmic approaches:21

• Program learning, via MOSES or hillclimbing22

• Frequent subgraph mining, using greedy algorithms.23

Co-authored with Jade O’Neill.

B. Goertzel et al., Engineering General Intelligence, Part 2, 329
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_19,
© Atlantis Press and the authors 2014

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

330 19 Pattern Mining

The value of these various approaches is contingent on the environment and goal24

set being such that algorithms of this nature can actually recognize relevant patterns25

in the world and mind. Fortunately, the everyday human world does appear to have the26

property of possessing multiple relevant patterns that are recognizable using varying27

levels of sophistication and effort. It has patterns that can be recognized via simple28

frequent pattern mining, and other patterns that are too subtle for this, and are better29

addressed by a search-based approach. In order for an environment and goal set to30

be appropriate for the learning and teaching of a human-level AI, it should have the31

same property of possessing multiple relevant patterns recognizable using varying32

levels of subtlety.33

19.2 Finding Interesting Patterns via Program Learning34

As one important case of pattern mining, we now discuss the use of program learning35

to find “interesting” patterns in sets of Atoms.36

Clearly, “interestingness” is a multidimensional concept. One approach to defining37

it is empirical, based on observation of which predicates have and have not proved38

interesting to the system in the past (based on their long-term importance values, i.e.39

LTI).40

In this approach, one has a supervised categorization problem: learn a rule pre-41

dicting whether a predicate will fall into the interesting category or the uninteresting42

category. Once one has learned this rule, which has expressed this rule as a predicate43

itself, one can then use this rule as the fitness function for evolutionary learning44

evolution.45

There is also a simpler approach, which defines an objective notion of interest-46

ingness. This objective notion is a weighted sum of two factors:47

• Compactness.48

• Surprisingness of truth value.49

Compactness is easy to understand: all else equal, a predicate embodied in a small50

Combo tree is better than a predicate embodied in a big one. There is some work51

hidden here in Combo tree reduction; ideally, one would like to find the smallest rep-52

resentation of a given Combo tree, but this is a computationally formidable problem,53

so one necessarily approaches it via heuristic algorithms.54

Surprisingness of truth value is a slightly subtler concept. Given a Boolean predi-55

cate, one can envision two extreme ways of evaluating its truth value (represented by56

two different types of Procedure Evaluator). One can use an Independence Assuming57

Procedure Evaluator, which deals with all AND and OR operators by assuming prob-58

abilistic independence. Or, one can use an ordinary Effort Based Procedure Evaluator,59

which uses dependency information wherever feasible to evaluate the truth values60

of AND and OR operators. These two approaches will normally give different truth61

values but, how different? The more different, the more surprising is the truth value62

of the predicate, and the more interesting may the predicate be.63

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

19.2 Finding Interesting Patterns via Program Learning 331

In order to explore the power of this kind of approach in a simple context, we have64

tested pattern mining using MOSES on Boolean predicates as a data mining algorithm65

on a number of different datasets, including some interesting and successful work in66

the analysis of gene expression data, and some more experimental work analyzing67

sociological data from the National Longitudinal Survey of Youth (NLSY) (http://68

stats.bls.gov/nls/).69

A very simple illustrative result from the analysis of the NLSY data is the pattern:70

OR71

(NOT(MothersAge(X)) AND NOT(FirstSexAge(X)))72

(Wealth(X) AND PIAT(X))73

where the domain of X are individuals, meaning that:74

• Being the child of a young mother correlates with having sex at a younger age;75

• Being in a wealthier family correlates with better Math (PIAT) scores;76

• The two sets previously described tend to be disjoint.77

Of course, many data patterns are several times more complex than the simple78

illustrative pattern shown above. However, one of the strengths of the evolutionary79

learning approach to pattern mining is its ability to find simple patterns when they do80

exist, yet without (like some other mining methods) imposing any specific restrictions81

on the pattern format.82

19.3 Pattern Mining via Frequent/Surprising Subgraph Mining83

Probabilistic evolutionary learning is an extremely powerful approach to pattern84

mining, but, may not always be realistic due to its high computational cost. A cheaper,85

though also weaker, alternative, is to use frequent subgraph mining algorithms such86

as [HWP03, KK01], which may straightforwardly be adapted to hypergraphs such87

as the Atomspace.88

Frequent subgraph mining is a port to the graph domain of the older, simpler idea89

of frequent itemset mining, which we now briefly review. There are a number of90

algorithms in the latter category, the classic is Apriori [AS94], and an alternative is91

Relim [Bor05] which is conceptually similar but seems to give better performance.92

The basic goal of frequent itemset mining is to discover frequent subsets (“item-93

sets”) in a group of sets, whose members are all drawn from some base set of items.94

One knows that for a set of N items, there are 2N − 1 possible subgroups. The algo-95

rithm operates in several rounds. Round i heuristically computes frequent i-itemsets96

(i.e. frequent sets containing i items). A round has two steps: candidate generation97

and candidate counting. In the candidate generation step, the algorithm generates a98

set of candidate i-itemsets whose support—the percentage of events in which the item99

must appears—has not been yet been computed. In the candidate-counting step, the100

algorithm scans its memory database, counting the support of the candidate itemsets.101

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

http://stats.bls.gov/nls/

http://stats.bls.gov/nls/

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

332 19 Pattern Mining

After the scan, the algorithm discards candidates with support lower than the spec-102

ified minimum (an algorithm parameter) and retains only the sufficiently frequent103

i-itemsets. The algorithm reduces the number of tested subsets by pruning apriori104

those candidate itemsets that cannot be frequent, based on the knowledge about infre-105

quent itemsets obtained from previous rounds. So for instance if {A, B} is a frequent106

2-itemset then {A, B, C} will be considered as a potential 3-itemset, on the contrary107

if {A, B} is not a frequent itemset then {A, B, C}, as well as any superset of {A, B},108

will be discarded. Although the worst case of this sort of algorithm is exponential,109

practical executions are generally fast, depending essentially on the support limit.110

Frequent subgraph mining follows the same pattern, but instead of a set of items it111

deals with a group of graphs. There are many frequent subgraph mining algorithms112

in the literature, but the basic concept underlying nearly all of them is the same:113

first find small frequent subgraphs. Then seek to find slightly larger frequent patterns114

encompassing these small ones. Then seek to find slightly larger frequent patterns115

encompassing these, etc. This approach is much faster than something like MOSES,116

although management of the large number of subgraphs to be searched through can117

require subtle design and implementation of data structures.118

If, instead of an ensemble of small graphs, one has a single large graph like the119

AtomSpace, one can follow the same approach, via randomly subsampling from the120

large graph to find the graphs forming the ensemble to be mined from; see [ZH10]121

for a detailed treatment of this sort of approach. The fact that the AtomSpace is122

a hypergraph rather than a graph doesn’t fundamentally affect the matter since a123

hypergraph may always be considered a graph via introduction of an additional node124

for each hyperedge (at the cost of a potentially great multiplication of the number of125

links).126

Frequent subgraph mining algorithms appropriately deployed can find subgraphs127

which occur repeatedly in the Atomspace, including subgraphs containing Atom-128

valued variables . Each such subgraph may be represented as a PredicateNode, and129

frequent subgraph mining will find such PredicateNodes that have surprisingly high130

truth values when evaluated across the Atomspace. But unlike MOSES when applied131

as described above, such an algorithm will generally find such predicates only in a132

“greedy” way.133

For instance, a greedy subgraph mining algorithm would be unlikely to find134

OR135

(NOT(MothersAge(X)) AND NOT(FirstSexAge(X)))136

(Wealth(X) AND PIAT(X))137

as a surprising pattern in an AtomSpace, unless at least one (and preferably both) of138

Wealth(X) AND PIAT(X)139

and140

NOT(MothersAge(X)) AND NOT(FirstSexAge(X))141

were surprising patterns in that Atomspace on their own.142

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

19.4 Fishgram 333

19.4 Fishgram143

Fishgram is a simple example of an algorithm for finding patterns in an Atomspace,144

instantiating the general concepts presented in the previous section. It represents145

patterns as conjunctions (AndLink) of Links, which usually contain variables.146

It does a greedy search, so it can quickly find many patterns. In contrast, algorithms147

like MOSES are designed to find a small number of the best patterns. Fishgram works148

by finding a set of objects that have links in common, so it will be most effective if the149

AtomSpace has a lot of raw data, with simple patterns. For example, it can be used150

on the perceptions from the virtual world. There are predicates for basic perceptions151

(e.g. what kind of object something is, objects being near each other, types of blocks,152

and actions being performed by the user or the AI).153

The details of the Fishgram code and design are not sufficiently general or scalable154

to serve as a robust, omnipurpose pattern mining solution for CogPrime. However,155

Fishgram is nevertheless interesting, as an existent, implemented and tested prototype156

of a greedy frequent/interesting subhypergraph mining system. A more scalable157

analogous system, with a similar principle of operation, has been outlined and is in158

the process of being designed at time of writing, but will not be presented here.159

19.4.1 Example Patterns160

Here is some example output from Fishgram, when run on the virtual agent’s161

memories.162

(AndLink163

(EvaluationLink is_edible:PredicateNode (ListLink $1000041))164

(InheritanceLink $1000041 Battery:ConceptNode)165

)166

This means a battery which can be “eaten” by the virtual robot. The variable167

$1000041 refers to the object (battery).168

Fishgram can also find patterns containing a sequence of events. In this case, there169

is a list of EvaluationLinks or InheritanceLinks which describe the objects involved,170

followed by the sequence of events.171

(AndLink172

(InheritanceLink $1007703 Battery:ConceptNode)173

(SequentialAndLink174

(EvaluationLink isHolding:PredicateNode (ListLink $1008725 $1007703)))175

)176

)177

)178

This means the agent was holding a battery. $1007703 is the battery, and there is179

also a variable for the agent itself. Many interesting patterns involve more than one180

object. This pattern would also include the user (or another AI) holding a battery,181

because the pattern does not refer to the AI character specifically.182

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

334 19 Pattern Mining

It can find patterns where it performs an action and achieves a goal. There is code183

to create implications based on these conjunctions. After finding many conjunctions,184

it can produce ImplicationLinks based on some of them. Here is an example where185

the AI-controlled virtual robot discovers how to get energy.186

(ImplicationLink187

(AndLink188

(EvaluationLink is_edible:PredicateNode189

(ListLink $1011619))190

(InheritanceLink $1011619 Battery:ConceptNode)191

)192

(PredictiveImplicationLink193

(EvaluationLink actionDone:PredicateNode194

(ListLink195

(ExecutionLink eat:GroundedSchemaNode196

(ListLink $1011619))))197

(EvaluationLink increased:PredicateNode198

(ListLink199

(EvaluationLink200

EnergyDemandGoal:PredicateNode)))201

)202

)203

19.4.2 The Fishgram Algorithm204

The core Fishgram algorithm, in pseudocode, is as follows:205

initial layer = every pair (relation, binding)206

207

while previous layer is not empty:208

foreach (conjunction, binding) in previous layer:209

let incoming = all (relation, binding) pairs210

containing an object in the conjunction211

let possible_next_events = all212

(event, binding) pairs where213

the event happens during or shortly214

after the last event in conjunction215

foreach (relation, relation_binding)216

in incoming217

and possible_next_events:218

(new_relation,219

new_conjunction_binding) =220

map_to_existing_variables221

(conjunction,222

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

19.4 Fishgram 335

binding, relation,223

relation_binding)224

if new_relation is already in225

conjunction, skip it226

new_conjunction = conjunction227

+ new_relation228

if new_conjunction has been229

found already, skip it230

otherwise, add new_conjunction231

to the current layer232

233

map_to_existing_variables(conjunction,234

conjunction_binding,235

relation, relation_binding)236

r’, s’ = a copy of the relation and binding using237

new variables238

foreach variable v, object o in relation_binding:239

foreach variable v2, object o2 in240

conjunction_binding:241

if o == o2:242

change r’ and s’ to use v2 instead of v243

19.4.3 Preprocessing244

There are several preprocessing steps to make it easier for the main Fishgram search245

to find patterns. There is a list of things that have to be variables. For example, any246

predicate that refers to object (including agents) will be given a variable so it can247

refer to any object. Other predicates or InheritanceLinks can be added to a pattern,248

to restrict it to specific kinds of objects, as shown above. So there is a step which249

goes through all of the links in the AtomSpace, and records a list of predicates with250

variables. Such as “X is red” or “X eats Y”. This makes the search part simpler,251

because it never has to decide whether something should be a variable or a specific252

object.253

There is also a filter system, so that things which seem irrelevant can be excluded254

from the search. There is a combinatorial explosion as patterns become larger. Some255

predicates may be redundant with each other, or known not to be very useful. It can256

also try to find only patterns in the AI’s “attentional focus”, which is much smaller257

than the whole AtomSpace.258

The Fishgram algorithm cannot currently handle patterns involving numbers,259

although it could be extended to do so. The two options would be to either have260

a separate discretization step, creating predicates for different ranges of a value.261

Or alternatively, have predicates for mathematical operators. It would be possible to262

search for a “splitpoint” like in decision trees. So a number would be chosen, and only263

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

336 19 Pattern Mining

things above that value (or only things below that value) would count for a pattern.264

It would also be possible to have multiple numbers in a pattern, and compare them265

in various ways. It is uncertain how practical this would be in Fishgram. MOSES is266

good for finding numeric patterns, so it may be better to simply use those patterns267

inside Fishgram.268

The “increased” predicate is added by a preprocessing step. The goals have a269

fuzzy TruthValue representing how well the goal is achieved at any point in time,270

so e.g. the EnergyDemandGoal represents how much energy the virtual robot has at271

some point in time. The predicate records times that a goal’s TruthValue increased.272

This only happens immediately after doing something to increase it, which helps273

avoid finding spurious patterns.274

19.4.4 Search Process275

Fishgram search is breadth-first. It starts with all predicates (or InheritanceLinks)276

found by the preprocessing step. Then it finds pairs of predicates involving the same277

variable. Then they are extended to conjunctions of three predicates, and so on. Many278

relations apply at a specific time, for example the agent being near an object, or an279

action being performed. These are included in a sequence, and are added in the order280

they occurred.281

Fishgram remembers the examples for each pattern. If there is only one variable282

in the pattern, an example is a single object; otherwise each example is a vector of283

objects for each variable in the pattern. Each time a relation is added to a pattern, if284

it has no new variables, some of the examples may be removed, because they don’t285

satisfy the new predicate. It needs to have at least one variable in common with the286

previous relations. Otherwise the patterns would combine many unrelated things.287

In frequent itemset mining (for example the APRIORI algorithm), there is ef-288

fectively one variable, and adding a new predicate will often decrease the number289

of items that match. It can never increase it. The number of possible conjunctions290

increases with the length, up to some point, after which it decreases. But when min-291

ing for patterns with multiple objects there is a much larger combinatorial explosion292

of patterns. Various criteria can be used to prune the search.293

The most basic criterion is the frequency. Only patterns with at least N examples294

will be included, where N is an arbitrary constant. You can also set a maximum295

number of patterns allowed for each length (number of relations), and only include296

the best ones. The next level of the breadth-first search will only search for extensions297

of those patterns.298

One can also use a measure of statistical interestingness, to make sure the relations299

in a pattern are correlated with each other. There are many spurious frequent patterns,300

because anything which is frequent will occur together with other things, whether301

they are relevant or not. For example “breathing while typing” is a frequent pattern,302

because people breathe at all times. But “moving your hands while typing” is a303

much more interesting pattern. As people only move their hands some of the time,304

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

19.4 Fishgram 337

a measure of correlation would prefer the second pattern. The best measure may be305

interaction information, which is a generalisation of mutual information that applies306

to patterns with more than two predicates. An early-stage AI would not have much307

knowledge of cause and effect, so it would rely on statistical measures to find useful308

patterns.309

19.4.5 Comparison to Other Algorithms310

Fishgram is more suitable for OpenCogPrime’s purposes than existing graph mining311

algorithms, most of which were designed with molecular datasets in mind. The312

OpenCog AtomSpace is a different graph in various ways. For one, there are many313

possible relations between nodes (much like in a semantic network). Many relations314

involve more than two objects, and there are also properties predicates about a single315

object. So the relations are effectively directed links of varying arity. It also has316

events, and many states can change over time (e.g. an egg changes state while it’s317

cooking). Fishgram is designed for general knowledge in an embodied agent.318

There are other major differences. Fishgram uses a breadth-first search, rather than319

depth-first search like most graph mining algorithms. And it does an “embedding-320

based” search, searching for patterns that can be embedded multiple times in a large321

graph. Molecular datasets have many separate graphs for separate molecules, but the322

embodied perceptions are closer to a single, fairly well-connected graph. Depth-first323

search would be very slow on such a graph, as there are many very long paths through324

the graph, and the search would mostly find those. Whereas the useful patterns tend325

to be compact and repeated many times.326

Lastly the design of Fishgram makes it easy to experiment with multiple differ-327

ent scoring functions, from simple ones like frequency to much more sophisticated328

functions such as interaction information.329

As mentioned above, the current implementation of Fishgram is not sufficiently330

scalable to be utilized for general-purpose Atomspaces. The underlying data structure331

within Fishgram, used to store recognized patterns, would need to be replaced, which332

would lead to various other modifications within the algorithm. But, the general333

principle and approach illustrated by Fishgram will be persisted in any more scalable334

reimplementation.335 AQ1

319613_1_En_19_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 337 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 19

Query Refs. Details Required Author’s response

AQ1 No query

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Speculative Concept Formation

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract One of the hallmarks of general intelligence is its capability to deal with novelty in its environment and/or
goal-set. And dealing with novelty intrinsically requires creating novelty. It’s impossible to efficiently
handle new situations without creating new ideas appropriately. Thus, in any environment complex and
dynamic enough to support human-like general intelligence (or any other kind of highly powerful general
intelligence), the creation of novel ideas will be paramount. New idea creation takes place in OpenCog via
a variety of methods—e.g. inside MOSES which creates new program trees, PLN which creates new
logical relationships, ECAN which creates new associative relationships, etc. But there is also a role for
explicit, purposeful creation of new Atoms representing new concepts, outside the scope of these other
learning mechanisms.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 20
Speculative Concept Formation

20.1 Introduction0

One of the hallmarks of general intelligence is its capability to deal with novelty1

in its environment and/or goal-set. And dealing with novelty intrinsically requires2

creating novelty. It’s impossible to efficiently handle new situations without creating3

new ideas appropriately. Thus, in any environment complex and dynamic enough to4

support human-like general intelligence (or any other kind of highly powerful general5

intelligence), the creation of novel ideas will be paramount. New idea creation takes6

place in OpenCog via a variety of methods—e.g. inside MOSES which creates new7

program trees, PLN which creates new logical relationships, ECAN which creates8

new associative relationships, etc. But there is also a role for explicit, purposeful9

creation of new Atoms representing new concepts, outside the scope of these other10

learning mechanisms.11

The human brain gets by, in adulthood, without creating that many new neurons—12

although neurogenesis does occur on an ongoing basis. But this is achieved only via13

great redundancy, because for the brain it’s cheaper to maintain a large number of14

neurons in memory at the same time, than to create and delete neurons. Things are15

different in a digital computer: memory is more expensive but creation and deletion of16

object is cheaper. Thus in CogPrime, forgetting and creation of Atoms is a regularly17

occurring phenomenon. In this chapter we discuss a key class of mechanisms for18

Atom creation, “speculative concept formation”. Further methods will be discussed19

in following chapters.20

The philosophy underlying CogPrime’s speculative concept formation is that new21

things should be created from pieces of good old things (a form of “evolution”,22

broadly construed), and that probabilistic extrapolation from experience should be23

used to guide the creation of new things (inference). It’s clear that these principles24

are necessary for the creation of new mental forms but it’s not obvious that they’re25

sufficient: this is a nontrivial hypothesis, which may also be considered a family26

of hypotheses since there are many different ways to do extrapolation and inter-27

combination. In the context of mind-world correspondence, the implicit assumption28

B. Goertzel et al., Engineering General Intelligence, Part 2, 339
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_20,
© Atlantis Press and the authors 2014

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

340 20 Speculative Concept Formation

underlying this sort of mechanism is that the relevant patterns in the world can of-29

ten be combined to form other relevant patterns. The everyday human world does30

quite markedly display this kind of combinatory structure, and such a property seems31

basic enough that it’s appropriate for use as an assumption underlying the design of32

cognitive mechanisms.33

In CogPrime we have introduced a variety of heuristics for creating new Atoms—34

especially ConceptNodes—which may then be reasoned on and subjected to implicit35

(via attention allocation) and explicit (via the application of evolutionary learning to36

predicates obtained from concepts via “concept predicatization”) evolution. Among37

these are the node logical operators described in the book Probabilistic Logic Net-38

works, which allow the creation of new concepts via AND, OR, XOR and so forth.39

However, logical heuristics alone are not sufficient. In this chapter we will review40

some of the nonlogical heuristics that are used for speculative concept formation.41

These operations play an important role in creativity— to use cognitive-psychology42

language, they are one of the ways that CogPrime implements the process of blend-43

ing, which Falconnier and Turner (2003) have argued is key to human creativity44

on many different levels. Each of these operations may be considered as implicitly45

associated with a hypothesis that, in fact, the everyday human world tends to assign46

utility to patterns that are combinations of other patterns produced via said operation.47AQ1

An evolutionary perspective may also be useful here, on a technical level as well48

as philosophically. As noted in The Hidden Pattern and hinted at in Chap. 4 of Vol. 5,49

one way to think about an AGI system like CogPrime is as a huge evolving ecology.50

The AtomSpace is a biosphere of sorts, and the mapping from Atom types into species51

has some validity to it (though not complete accuracy: Atom types do not compete52

with each other; but they do reproduce with each other, and according to most of53

the reproduction methods in use, Atoms of differing type cannot cross-reproduce).54

Fitness is defined by importance. Reproduction is defined by various operators that55

produce new Atoms from old, including the ones discussed in this chapter, as well56

as other operators such as inference and explicit evolutionary operators.57AQ2

New ConceptNode creation may be triggered by a variety of circumstances. If58

two ConceptNodes are created for different purposes, but later the system finds that59

most of their meanings overlap, then it may be more efficient to merge the two into60

one. On the other hand, a node may become overloaded with different usages, and61

it is more useful to split it into multiple nodes, each with a more consistent content.62

Finally, there may be patterns across large numbers of nodes that merit encapsulation63

in individual nodes. For instance, if there are 1,000 fairly similar ConceptNodes, it64

may be better not to merge them all together, but rather to create a single node to65

which they all link, reifying the category that they collectively embody.66

In the following sections, we will begin by describing operations that create67

new ConceptNodes from existing ones on a local basis: by mutating individual68

ConceptNodes or combining pairs of ConceptNodes. Some of these operations are69

inspired by evolutionary operators used in the GA, others are based on the cognitive70

psychology concept of “blending”. Then we will turn to the use of clustering and for-71

mal concept analysis algorithms inside CogPrime to refine the system’s knowledge72

about existing concepts, and create new concepts.73

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_4

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20.2 Evolutionary Concept Formation 341

20.2 Evolutionary Concept Formation74

A simple and useful way to combine ConceptNodes is to use GA-inspired evolution-75

ary operators: crossover and mutation. In mutation, one replaces some number of a76

Node’s links with other links in the system. In crossover, one takes two nodes and77

creates a new node containing some links from one and some links from another.78

More concretely, to cross over two ConceptNodes X and Y, one may proceed as79

follows (in short clustering the union of X and Y):80

• Create a series of empty nodes Z1, Z2, . . . , Zk81

• Form a “link pool” consisting of all X’s links and all Y’s links, and then divide82

this pool into clusters (clustering algorithms will be described below).83

• For each cluster with significant cohesion, allocate the links in that cluster to one84

of the new nodes Zi .85

On the other hand, to mutate a ConceptNode, a number of different mutation86

processes are reasonable. For instance, one can87

• Cluster the links of a Node, and remove one or more of the clusters, creating a88

node with less links89

• Cluster the links, remove one or more clusters, and then add new links that are90

similar to the links in the remaining clusters.91

The EvolutionaryConceptFormation MindAgent selects pairs of nodes from the92

system, where the probability of selecting a pair is determined by93

• The average importance of the pair94

• The degree of similarity of the pair95

• The degree of association of the pair.96

(Of course, other heuristics are possible too). It then crosses over the pair, and mutates97

the result.98

Note that, unlike in some GA implementations, the parent node(s) are retained99

within the system; they are not replaced by the children. Regardless of how many100

offspring they generate by what methods, and regardless of their age, all Nodes101

compete and cooperate freely forever according to the fitness criterion defined by the102

importance updating function. The entire AtomSpace may be interpreted as a large103

evolutionary, ecological system, and the action of CogPrime dynamics, as a whole,104

is to create fit nodes.105

A more advanced variant of the EvolutionaryConceptFormation MindAgent106

would adapt its mutation rate in a context-dependent way. But our intuition is that107

it is best to leave this kind of refinement for learned cognitive schemata, rather than108

to hard-wire it into a MindAgent. To encourage the formation of such schemata,109

one may introduce elementary schema functions that embody the basic node-level110

evolutionary operators:111

ConceptNode ConceptCrossover(ConceptNode A, ConceptNode B)112

ConceptNode mutate(ConceptNode A, mutationAmount m)113

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

342 20 Speculative Concept Formation

There will also be a role for more abstract schemata that utilize these. An example114

cognitive schema of this sort would be one that said: “When all my schema in a115

certain context seem unable to achieve their goals, then maybe I need new concepts116

in this context, so I should increase the rate of concept mutation and crossover, hoping117

to trigger some useful concept formation”.118

As noted above, this component of CogPrime views the whole AtomSpace as a119

kind of genetic algorithm—but the fitness function is “ecological” rather than fixed,120

and of course the crossover and mutation operators are highly specialized. Most of the121

concepts produced through evolutionary operations are going to be useless nonsense,122

but will be recognized by the importance updating process and subsequently forgotten123

from the system. The useful ones will link into other concepts and become ongoing124

aspects of the system’s mind. The importance updating process amounts to fitness125

evaluation, and it depends implicitly on the sum total of the cognitive processes going126

on in CogPrime.127

To ensure that importance updating properly functions as fitness evaluation, it is128

critical that evolutionarily-created concepts (and other speculatively created Atoms)129

always comprise a small percentage of the total concepts in the system. This guaran-130

tees that importance will serve as a meaningful “fitness function” for newly created131

ConceptNodes. The reason for this is that the importance measures how useful the132

newly created node is, in the context of the previously existing Atoms. If there are133

too many speculative, possibly useless new ConceptNodes in the system at once, the134

importance becomes an extremely noisy fitness measure, as it’s largely measuring135

the degree to which instances of new nonsense fit in with other instances of new136

nonsense. One may find interesting self-organizing phenomena in this way, but in an137

AGI context we are not interested in undirected spontaneous pattern-formation, but138

rather in harnessing self-organizing phenomena toward system goals. And the latter139

is achieved by having a modest but not overwhelming amount of speculative new140

nodes entering into the system.141

Finally, as discussed earlier, evolutionary operations on maps may occur naturally142

and automatically as a consequence of other cognitive operations. Maps are contin-143

ually mutated due to fluctuations in system dynamics; and maps may combine with144

other maps with which they overlap, as a consequence of the nonlinear properties145

of activation spreading and importance updating. Map-level evolutionary operations146

are not closely tied to their Atom-level counterparts (a difference from e.g. the close147

correspondence between map-level logical operations and underlying Atom-level148

logical operations).149

20.3 Conceptual Blending150

The notion of Conceptual Blending (aka Conceptual Integration) was proposed by151

Gilles Fauconnier and Mark Turner [FT02] as general theory of cognition. According152

to this theory, the basic operation of creative thought is the “blend” in which elements153

and relationships from diverse scenarios are merged together in a judicious way. As a154

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20.3 Conceptual Blending 343

very simple example, we may consider the blend of “tower” and “snake” to form a new155

concept of “snake tower” (a tower that looks somewhat like a snake). However, most156

examples of blends will not be nearly so obvious. For instance, the complex numbers157

could be considered a blend between 2D points and real numbers. Figure 20.1 gives158

a conceptual illustration of the blending process.159

The production of a blend is generally considered to have three key stages (elu-160

cidated via the example of building a snake-tower out of blocks):161

• composition: combining judiciously chosen elements from two or more concept162

inputs163

– Example: Taking the “buildingness“ and “verticalness” of a tower, and the164

“head” and “mouth” and “tail” of a snake165

• completion: adding new elements from implicit background knowledge about the166

concept inputs167

– Example: Perhaps a mongoose-building will be built out of blocks, poised in a168

position indicating it is chasing the snake-tower (incorporating the background169

knowledge that mongeese often chase snakes)170

Fig. 20.1 Conceptual illustration of conceptual blending

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

344 20 Speculative Concept Formation

• elaboration: fine-tuning, which shapes the elements into a new concept, guided171

by the desire to optimize certain criteria172

– Example: The tail of the snake-tower is a part of the building that rests on the173

ground, and connects to the main tower. The head of the snake-tower is a portion174

that sits atop the main tower, analogous to the restaurant atop the Space Needle.175

The “judiciousness” in the composition phase may be partially captured in Cog-176

Prime via PLN inference, via introducing a “consistency criterion” that the elements177

chosen as part of the blend should not dramatically decrease in confidence after the178

blend’s relationships are submitted to PLN inference. One especially doesn’t want179

to choose mutually contradictory elements from the two inputs. For instance one180

doesn’t want to choose “alive” as an element of “snake”, and “non-living” as an ele-181

ment of “building”. This kind of contradictory choice can be ruled out by inference,182

because after very few inference steps, this choice would lead to a drastic confidence183

reduction for the InheritanceLinks to both “alive” and “non-living”.184

Aside from consistency, some other criteria considered relevant to evaluating the185

quality of a blend, are:186

• topology principle that relations in the blend should match the relations of their187

counterparts in other concepts related to the concept inputs188

• web principle that the representation in the blended space should maintain map-189

pings to the concept inputs190

• unpacking principle that, given a blended concept, the interpreter should be able191

to infer things about other related concepts192

• good reason principle that there should be simple explanations for the elements193

of the blend194

• metonymic tightening that when metonymically related elements are projected into195

the blended space, there is pressure to compress the “distance” between them.196

While vague-sounding in their verbal formulations, these criteria have been com-197

putationally implemented in the Sapper system, which uses blending theory to model198

analogy and metaphor [VK94, VO07]; and in a different form in [Car06]’s framework199

for computational creativity. In CogPrime terms, these various criteria essentially boil200

down to: the new, blended concept should get a lot of interesting links.201

One could implement blending in CogPrime very straightforwardly via an evolu-202

tionary approach: search the space of possible blends, evaluating each one according203

to its consistency but also the STI that it achieves when released into the Atomspace.204

However, this will be quite computationally expensive, so a wiser approach is to205

introduce heuristics aimed at increasing the odds of producing important blends.206

A simple heuristic is to calculate, for each candidate blend, the amount of STI that207

the blend would possess N cycles later if, at the current time, it was given a certain208

amount of STI. A blend that would accumulate more STI in this manner may be209

considered more promising, because this means that its components are more richly210

interconnected. Further, this heuristic may be used as a guide for greedy heuristics211

for creating blends: e.g. if one has chosen a certain element A of the first blend input,212

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20.3 Conceptual Blending 345

then one may seek an element B of the second blend input that has a strong Hebbian213

link to A (if such a B exists).214

However, it may also be interesting to pursue different sorts of heuristics, using215

information-theoretic or other mathematical criteria to preliminarily filter possible216

blends before they are evaluated more carefully via integrated cognition and impor-217

tance dynamics.218

20.3.1 Outline of a CogPrime Blending Algorithm219

A rough outline of a concept blending algorithm for CogPrime is as follows:220

• Choose a pair of concepts C1 and C2, which have a nontrivially-strong Hebbian-221

Link between them, but not an extremely high-strength SimilarityLink between222

them (i.e. the concepts should have something to do with each other, but not be223

extremely similar; blends of extremely similar things are boring). These parame-224

ters may be twiddled.225

• Form a new concept C3, which has some of C1’s links, and some of C2’s links.226

• If C3 has obvious contradictions, resolve them by pruning links. (For instance, if227

C1 inherits from alive to degree. 9 and C2 inherits from alive to degree. 1, then228

one of these two TruthValue versions for the inheritance link from alive, has got229

to be pruned...).230

• For each of C3’s remaining links L, make a vector indicating everything it or its231

targets are associated with (via HebbianLinks or other links). This is basically232

a list of “what’s related to L”. Then, assess whether there are a lot of common233

associations to the links L that came from C1 and the links L that came from C2.234

• If the filter in step 4 is passed, then let the PLN forward chainer derive some con-235

clusions about C3, and see if it comes up with anything interesting (e.g. anything236

with surprising truth value, or anything getting high STI, etc.).237

Steps 1 and 2 should be repeated over and over. Step 5 is basically “cognition as238

usual”—i.e. by the time the blended concept is thrown into the Atomspace and239

subjected to Step 5, it’s being treated the same as any other ConceptNode.240

The above is more of a meta-algorithm than a precise algorithm. Many avenues241

for variation exist, including242

• Step 1: heuristics for choosing what to try to blend.243

• Step 3: how far do we go here, at removing contradictions? Do we try simple PLN244

inference to see if contradictions are unveiled, or do we just limit the contradiction-245

check to seeing if the same exact link is given different truth-values?246

• Step 4: there are many different ways to build this association-vector. There are247

also many ways to measure whether a set of association-vectors demonstrates248

“common associations”. Interaction information [Bel03] is one fancy way; there249

are also simpler ones.250

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

346 20 Speculative Concept Formation

• Step 5: there are various ways to measure whether PLN has come up with anything251

interesting.252

20.3.2 Another Example of Blending253

To illustrate these ideas further, consider the example of the SUV—a blend of “Car”254

and “Jeep”255

Among the relevant properties of Car are:256

• Appealing to ordinary consumers257

• Fuel efficient258

• Fits in most parking spots259

• Easy to drive260

• 2 wheel drive.261

Among the relevant properties of Jeep are:262

• 4 wheel drive263

• Rugged264

• Capable of driving off road265

• High clearance266

• Open or soft top.267

Obviously, if we want to blend Car and Jeep, we need to choose properties of each268

that don’t contradict each other. We can’t give the Car/Jeep both 2 wheel drive and269

4 wheel drive. Four wheel drive wins for Car/Jeep because sacrificing it would get rid270

of “capable of driving off road”, which is critical to Jeep-ness; whereas sacrificing271

2WD doesn’t kill anything that’s really critical to car-ness.272

On the other hand, having a soft top would really harm “appealing to consumers”,273

which from the view of car-makers is a big part of being a successful car. But getting274

rid of the hard top doesn’t really harm other aspects of jeep-ness in any series way.275

However, what really made the SUV successful was that “rugged” and “high276

clearance” turned out to make SUVs look funky to consumers, thus fulfilling the277

“appealing to ordinary consumers” feature of Car. In other words, the presence of278

the links279

• Looks funky → appealing to ordinary consumers280

• Rugged & high clearance → looks funky281

made a big difference. This is the sort of thing that gets figured out once one starts282

doing PLN inference on the links associated with a candidate blend.283

However, if one views each feature of the blend as a probability distribution over284

concept space—for instance indicating how closely associated each concept is with285

that feature (e.g. via HebbianLinks) then we see that the mutual information (and286

more generally interaction information) between the features of the blend, is a quick287

estimate of how likely it is that inference will lead to interesting conclusions via288

reasoning about the combination of features that the blend possesses.289

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20.4 Clustering 347

20.4 Clustering290

Next, a different method for creating new ConceptNodes in CogPrime is using clus-291

tering algorithms. There are many different clustering algorithms in the statistics and292

data mining literature, and no doubt many of them could have value inside CogPrime.293

We have experimented with several different clustering algorithms in the CogPrime294

context, and have selected one, which we call Omniclust [GCPM06], based on its295

generally robust performance on high-volume, noisy data. However, other methods296

such as EM (Expectation-Maximization) clustering [WF05] would likely serve the297

purpose very well also.298

In the above discussion on evolutionary concept creation, we mentioned the use299

of a clustering algorithm to cluster links. The same algorithm we describe here for300

clustering ConceptNodes directly and creating new ConceptNodes representing these301

clusters, can also be used for clustering links in the context of node mutation and302

crossover.303

The application of Omniclust or any other clustering algorithm for ConceptN-304

ode creation in CogPrime is simple. The clustering algorithm is run periodically,305

and the most significant clusters that it finds are embodied as ConceptNodes, with306

InheritanceLinks to their members. If these significant clusters have subclusters also307

identified by Omniclust, then these subclusters are also made into ConceptNodes,308

etc., with InheritanceLinks between clusters and subclusters.309

Clustering technology is famously unreliable, but this unreliability may be310

mitigated somewhat by using clusters as initial guesses at concepts, and using other311

methods to refine the clusters into more useful concepts. For instance, a cluster may312

be interpreted as a disjunctive predicate, and a search may be made to determine313

sub-disjunctions about which interesting PLN conclusions may be drawn.314

20.5 Concept Formation via Formal Concept Analysis315

Another approach to concept formation is an uncertain version of Formal Concept316

Analysis [GSW05]. There are many ways to create such a version, here we describe317

one approach we have found interesting, called Fuzzy Concept Formation (FCF).318

The general formulation of FCF begins with n objects O1, ..., On, m basic319

attributes a1, ..., am , and information that object Oi possesses attribute a j to degree320

wi j ∈ [0, 1]. In CogPrime, the objects and attributes are Atoms, and wi j is the321

strength of the InheritanceLink pointing from Oi to a j .322

In this context, we may define a concept as a fuzzy set of objects, and a derived323

attribute as a fuzzy set of attributes.324

Fuzzy concept formation (FCF) is, then, a process that produces N “concepts”325

Cn+1, ..., Cn+N and M “derived attributes” dm+1, ..., dm+M , based on the initial set326

of objects and attributes. We can extend the weight matrix wi j to include entries327

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

348 20 Speculative Concept Formation

involving concepts and derived attributes as well, so that e.g. wn+3,m+5 indicates the328

degree to which concept Cn+3 possesses derived attribute dm+5.329

The learning engine underlying FCF is a clustering algorithm clust330

= clust (X1, ..., Xr ; b) which takes in r vectors Xr ∈ [0, 1]n and outputs b or331

fewer clusters of these vectors. The overall FCF process is independent of the par-332

ticular clustering algorithm involved, though the interestingness of the concepts and333

attributes formed will of course vary widely based on the specific clustering algo-334

rithm. Some clustering algorithms will work better with large values of b, others with335

smaller values of b.336

We then define the process f orm_concepts(b) to operate as follows. Given a337

set S = S1, ..., Sk containing objects, concepts, or a combination of objects and338

concepts, and an attribute vector wi of length h with entries in [0, 1] corresponding339

to each Si , one applies clust to find b clusters of attribute vectors wi : B1, ..., Bb.340

Each of these clusters may be considered as a fuzzy set, for instance by considering341

the membership of x in cluster B to be 2−d(x,centroid(B)) for an appropriate metric342

d. These fuzzy sets are the b concepts produced by f orm_concepts(b).343

20.5.1 Calculating Membership Degrees of New Concepts344

The degree to which a concept defined in this way possesses an attribute, may be345

defined in a number of ways, maybe the simplest is: weighted-summing the degree346

to which the members of the concept possess the attribute. For instance, to figure347

out the degree to which beautiful women (a concept) are insane (an attribute), one348

would calculate349

∑
w∈beauti f ul_women χbeauti f ul_women(w)χinsane(w)

∑
w∈beauti f ul_women χbeauti f ul_women(w)

where χX (w) denotes the fuzzy membership degree of w in X . One could probably350

also consider Extensional I nheri tancebeauti f ul_womeninsane.351

20.5.2 Forming New Attributes352

One may define an analogous process f orm_attributes(b) that begins with a set353

A = A1, ..., Ak containing (basic and/or derived) attributes, and a column vector354

⎛

⎝
w1i

...

whi

⎞

⎠

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20.5 Concept Formation via Formal Concept Analysis 349

of length h with entries in [0, 1] corresponding to each Ai (the column vector tells355

the degrees to which various objects possess the attributes Ai). One applies clust to356

find b clusters of vectors vi : B1, ..., Bb. These clusters may be interpreted as fuzzy357

sets, which are derived attributes.358

20.5.2.1 Calculating Membership Degrees of New, Derived Attributes359

One must then defines the degree to which an object or concept possesses a derived360

attribute. One way to do this is using a geometric mean. For instance, suppose there361

is a derived attribute formed by combining the attributes vain, selfish and egocentric.362

Then, the degree to which the concept banker possesses this new derived attribute363

could be defined by364

∑
b∈banker χbanker(b)

(
χvain(b)χselfish(b)χegocentric(b)

)1/3

∑
b∈banker χbanker(b)

20.5.3 Iterating the Fuzzy Concept Formation Process365

Given a set S of concepts and/or objects with a set A of attributes, one may define366

• append_concepts(S′, S) as the result of adding the concepts in the set S′ to S,367

and evaluating all the attributes in A on these concepts, to get an expanded matrix368

w369

• append_attributes(A′, A) as the result of adding the attributes in the set A′ to370

A, and evaluating all the attributes in A′ on the concepts and objects in S, to get371

an expanded matrix w372

• collapse(S, A) is the result of taking (S, A) and eliminating any concept or373

attribute that has distance less than ε from some other concept or attribute that374

comes before it in the lexicographic ordering of concepts or attributes. I.e.,375

collapse removes near-duplicate concepts or attributes.376

Now, one may begin with a set S of objects and attributes, and iteratively run a377

process such as378

b = rˆc \\e.g. r=2, or r=1.5379

while(b>1) {380

S = append_concepts(S, form_concepts(S,b))381

S = collapse(S)382

S = append_attributes(S, form_attributes(S,b))383

S = collapse(S)384

b = b/r385

}386

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

350 20 Speculative Concept Formation

with c corresponding to the number of iterations. This will terminate in finite time387

with a finitely expanded matrix w containing a number of concepts and derived388

attributes in addition to the original objects and basic attributes.389

Or, one may look at390

while(S is different from old_S) {391

old_S = S392

S = add_concepts(S, form_concepts(S,b))393

S = collapse(S)394

S = add_attributes(S, form_attributes(S,b))395

S = collapse(S)396

}397

This second version raises the mathematical question of the speed with which it398

will terminate (as a function of ε). I.e., when does the concept and attribute formation399

process converge, and how fast? This will surely depend on the clustering algorithm400

involved.401

319613_1_En_20_Chapter � TYPESET DISK LE � CP Disp.:30/10/2013 Pages: 350 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 20

Query Refs. Details Required Author’s response

AQ1 Reference ‘Falconnier and Turner (2003)’ is cited in text but not
provided in the reference list. Please provide references in the list
or delete the citation.

AQ2 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part VI
2 Integrative Learning

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part VI Date: 29-10-2013 Page: 351/351

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Dimensional Embedding

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Among the many key features of the human brain omitted by typical formal neural network models, one of
the foremost is the brain’s three-dimensionality. The brain is not just a network of neurons arranged as an
abstract graph; it’s a network of neurons arranged in three-dimensional space, and making use of this three-
dimensionality directly and indirectly in various ways and for various purposes.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 21
Dimensional Embedding

21.1 Introduction0

Among the many key features of the human brain omitted by typical formal neural1

network models, one of the foremost is the brain’s three-dimensionality. The brain is2

not just a network of neurons arranged as an abstract graph; it’s a network of neurons3

arranged in three-dimensional space, and making use of this three-dimensionality4

directly and indirectly in various ways and for various purposes. The somatosensory5

cortex contains a geometric map reflecting, approximatively, the geometric structure6

of parts of the body. The Visual cortex uses the 2D layout of cortical sheets to reflect7

the geometric structure of perceived space; motion detection neurons often fire in8

the actual physical direction of motion, etc. The degree to which the brain uses 2D9

and 3D geometric structure to reflect conceptual rather than perceptual or motoric10

knowledge is unclear, but we suspect considerable. One well-known idea in this11

direction is the “self-organizing map” or Kohonen net [Koh01], a highly effective12

computer science algorithm that performs automated classification and clustering13

via projecting higher-dimensional (perceptual, conceptual or motoric) vectors into a14

simulated 2D sheet of cortex.15

It’s not clear that the exploitation of low-dimensional geometric structure is some-16

thing an AGI system necessarily must support—there are always many different17

approaches to any aspect of the AGI problem. However, the brain does make clear18

that exploitation of this sort of structure is a powerful way to integrate various useful19

heuristics. In the context of mind-world correspondence theory, there seems clear20

potential value in having a mind mirror the dimensional structure of the world, at21

some level of approximation.22

It’s also worth emphasizing that the brain’s 3D structure has minuses as well as23

plusses—one suspects it complexifies and constrains the brain, along with implicitly24

suggesting various useful heuristics. Any mathematical graph can be represented in25

3 dimensions without links crossing (unlike in 2 dimensions), but that doesn’t mean26

the representation will always be efficient or convenient—sometimes it may result27

in conceptually related, and/or frequently interacting, entities being positioned far28

B. Goertzel et al., Engineering General Intelligence, Part 2, 353
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_21,
© Atlantis Press and the authors 2014

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

354 21 Dimensional Embedding

away from each other geometrically. Coupled with noisy signaling methods such as29

the brain uses, this sometime lack of alignment between conceptual/pragmatic and30

geometric structure can lead to various sorts of confusion (i.e. when neuron A sends31

a signal to physical distant neurons B, this may cause various side-effects along the32

path, some of which wouldn’t happen if A and B were close to each other).33

In the context of CogPrime, the most extreme way to incorporate a brain-like 3D34

structure would be to actually embed an Atomspace in a bounded 3D region. Then the35

Atomspace would be geometrically something like a brain, but with abstract nodes36

and links (some having explicit symbolic content) rather than purely sub symbolic37

neurons. This would not be a ridiculous thing to do, and could yield interesting38

results. However, we are unsure this would be an optimal approach. Instead we have39

opted for a more moderate approach: couple the non-dimensional Atomspace with a40

dimensional space, containing points corresponding to Atoms. That is, we perform41

an embedding of Atoms in the OpenCog AtomSpace into n-dimensional space—a42

judicious transformation of (hyper)graphs into vectors.43

This embedding has applications to PLN inference control, and to the guidance of44

instance generation in PEPL learning of Combo trees. It is also, in itself, a valuable45

and interesting heuristic for sculpting the link topology of a CogPrime AtomSpace.46

The basic dimensional embedding algorithm described here is fairly simple and not47

original to CogPrime, but it has not previously been applied in any similar context.48

The intuition underlying this approach is that there are some cases (e.g. PLN con-49

trol, and PEPL guidance) where dimensional geometry provides a useful heuristic50

for constraining a huge search space, via providing a compact way of storing a large51

amount of information. Dimensionally embedding Atoms lets CogPrime be dimen-52

sional like the brain when it needs to be, yet with the freedom of nondimensionality53

the rest of the time. This dual strategy is one that may be of value for AGI gener-54

ally beyond the CogPrime design, and is somewhat related to (though different in55

detail from) the way the CLARION cognitive architecture [SZ04] maps declarative56

knowledge into knowledge appropriate for its neural net layer.57

There is an obvious way to project CogPrime Atoms into n-dimensional space,58

by assigning each Atom a numerical vector based on the weights of its links. But this59

is not a terribly useful approach, because the vectors obtained in this way will live,60

potentially, in millions- or billions-dimensional space. The approach we describe61

here is a bit different. We are defining more specific embeddings, each one based62

on a particular link type or set of link types. And we are doing the embedding into63

a space whose dimensionality is high but not too high, e.g. n = 50. This moderate64

dimensional space could then be projected down into a lower dimensional space, like65

a 3D space, if needed.66

The philosophy underlying the ideas proposed here is similar to that underly-67

ing Principal Components Analysis (PCA) in statistics [Jol10]. The n-dimensional68

spaces we define here, like those used in PCA or LSI (for Latent Semantic Indexing69

[LMDK07]), are defined by sets of orthogonal concepts extracted from the original70

spaceof concepts. The difference is that PCA and LSI work on spaces of entities71

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

21.1 Introduction 355

defined by feature vectors, whereas the methods described here work for entities72

defined as nodes in weighted graphs. There is no precise notion of orthogonality for73

nodes in a weighted graph, but one can introduce a reasonable proxy.74

21.2 Link Based Dimensional Embedding75

In this section we define the type of dimensional embedding that we will be talking76

about. For concreteness we will speak in terms of CogPrime nodes and links, but the77

discussion applies much more generally than that.78

A link based dimensional embedding is defined as a mapping that maps a set of79

CogPrime Atoms into points in an n-dimensional real space, by:80

• Mapping link strength into coordinate values in an embedding space, and81

• Representing nodes as points in this embedding space, using the coordinate values82

defined by the strengths of their links.83

In the usual case, a dimensional embedding is formed from links of a single type,84

or from links whose types are very closely related (e.g. from all symmetrical logical85

links).86

Mapping all the link strengths of the links of a given type into coordinate values87

in a dimensional space is a simple, but not a very effective strategy. The approach88

described here is based on strategically choosing a subset of particular links and89

forming coordinate values from them. The choice of links is based on the desire for a90

correspondence between the metric structure of the embedding space, and the metric91

structure implicit in the weights of the links of the type being embedded. The basic92

idea of metric preservation is depicted in Fig. 21.1.93

More formally, let proj (A) denote the point in Rn corresponding to the Atom A.94

Then if, for example, we are doing an embedding based on SimilarityLinks, we want95

there to be a strong correlation (or rather anticorrelation) between:96

(SimilarityLink A B).tv.s97

and
dE (proj (A), proj (B))

where dE denotes the Euclidean distance on the embedding space. This is a sim-98

ple case because SimilarityLink is symmetric. Dealing with asymmetric links like99

InheritanceLinks is a little subtler, and will be done below in the context of inference100

control.101

Larger dimensions generally allow greater correlation, but add complexity. If one102

chooses the dimensionality equal to the number of nodes in the graph, there is really103

no point in doing the embedding. On the other hand, if one tries to project a huge104

and complex graph into 1 or 2 dimensions, one is bound to lose a lot of important105

structure. The optimally useful embedding will be into a space whose dimension is106

large but not too large.107

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

356 21 Dimensional Embedding

Fig. 21.1 Metric-preserving dimensional embedding. The basic idea of the sort of embedding
described here is to map Atoms into numerical vectors, in such a way that, on average, distance
between Atoms roughly correlates with distance between corresponding vectors. (The picture shows
a 3D embedding space for convenience, but in reality the dimension of the embedding space will
generally be much higher.)

For internal CogPrime inference purposes, we should generally use a moderately108

high-dimensional embedding space, say n = 50 or n = 100.109

21.3 Harel and Koren’s Dimensional Embedding Algorithm110

Our technique for embedding CogPrime Atoms into high-dimensional space is based111

on an algorithm suggested by David Harel and Yehuda Koren [HK02]. Their work112

is concerned with visualizing large graphs, and they propose a two-phase approach:113

1. Embed the graph into a high-dimensional real space.114

2. Project the high-dimensional points into 2D or 3D space for visualization.115

In CogPrime, we don’t always require the projection step (step 2); our focus is on116

the initial embedding step. Harel and Koren’s algorithm for dimensional embedding117

(step 1) is directly applicable to the CogPrime context.118

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

21.3 Harel and Koren’s Dimensional Embedding Algorithm 357

Of course this is not the only embedding algorithm that would be reasonable to119

use in an CogPrime context; it’s just one possibility that seems to make sense.120

Their algorithm works as follows.121

Suppose one has a graph with symmetric weighted links. Further, assume that122

between any two nodes in the graph, there is a way to compute the weight that a link123

between those two nodes would have, even if the graph in fact doesn’t contain a link124

between the two nodes.125

In the CogPrime context, for instance, the nodes of the graph may be ConceptN-126

odes, and the links may be SimilarityLinks. We will discuss the extension of the127

approach to deal with asymmetric links like InheritanceLinks, later on.128

Let n denote the dimension of the embedding space (e.g. n = 50). We wish to129

map graph nodes into points in Rn , in such a way that the weight of the graph link130

between A and B correlates with the distance between proj (A) and proj (B) in Rn .131

21.3.1 Step 1: Choosing Pivot Points132

Choose n “pivot points” that are roughly uniformly distributed across the graph.133

To do this, one chooses the first pivot point at random and then iteratively chooses134

the i th point to be maximally distant from the previous (i − 1) points chosen.135

One may also use additional criteria to govern the selection of pivot points. In136

CogPrime, for instance, we may use long-term stability as a secondary criterion for137

selecting Atoms to serve as pivot points. Greater computational efficiency is achieved138

if the pivot-point Atoms don’t change frequently.139

21.3.2 Step 2: Similarity Estimation140

Estimate the similarity between each Atom being projected, and the n pivot Atoms.141

This is expensive. However, the cost is decreased somewhat in the CogPrime142

case by caching the similarity values produced in a special table (they may not be143

important enough otherwise to be preserved in CogPrime). Then, in cases where144

neither the pivot Atom nor the Atom being compared to it have changed recently,145

the cached value can be reused.146

21.3.3 Step 3: Embedding147

Create an n-dimensional space by assigning a coordinate axis to each pivot Atom.148

Then, for an Atom i , the i th coordinate value is given by its similarity to the i th pivot149

Atom.150

After this step, one has transformed one’s graph into a collection of n-dimensional151

vectors. WIKISOURCE:EmbeddingBasedInference152

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

358 21 Dimensional Embedding

21.4 Embedding Based Inference Control153

One important application for dimensional embedding in CogPrime is to help with154

the control of155

• Logical inference.156

• Direct evaluation of logical links.157

We describe how it can be used specifically to stop the CogPrime system from158

continually trying to make the same unproductive inferences.159

To understand the problem being addressed, suppose the system tries to evaluate160

the strength of the relationship161

SimilarityLink foot toilet162

Assume that no link exists in the system representing this relationship.163

Here “foot” and “toilet” are hypothetical ConceptNodes that represent aspects of164

the concepts of foot and toilet respectively. In reality these concepts might well be165

represented by complex maps rather than individual nodes.166

Suppose the system determines that the strength of this Link is very close to zero.167

Then (depending on a threshold in the MindAgent), it will probably not create a168

SimilarityLink between the “foot” and “toilet” nodes.169

Now, suppose that a few cycles later, the system again tries to evaluate the strength170

of the same Link,171

SimilarityLink foot toilet172

Again, very likely, it will find a low strength and not create the Link at all.173

The same problem may occur with InheritanceLinks, or any other (first or higher174

order) logical link type.175

Why would the system try, over and over again, to evaluate the strength of the176

same nonexistent relationship? Because the control strategies of the current forward-177

chaining inference and pattern mining MindAgents are simple by design. These178

MindAgents work by selecting Atoms from the AtomTable with probability pro-179

portional to importance, and trying to build links between them. If the foot and180

toilet nodes are both important at the same time, then these MindAgents will try to181

build links between them—regardless of how many times they’ve tried to build links182

between these two nodes in the past and failed.183

How do we solve this problem using dimensional embedding? Generally:184

• One will need a different embedding space for each link type for which one wants185

to prevent repeated attempted inference of useless relationships. Sometimes, very186

closely related link types might share the same embedding space; this must be187

decided on a case-by-case basis.188

• In the embedding space for a link type L, one only embeds Atoms of a type that189

can be related by links of type L.190

It is too expensive to create a new embedding very often. Fortunately, when a new191

Atom is created or an old Atom is significantly modified, it’s easy to reposition the192

Atom in the embedding space by computing its relationship to the pivot Atoms. Once193

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

21.4 Embedding Based Inference Control 359

enough change has happened, however, new pivot Atoms will need to be recomputed,194

which is a substantial computational expense. We must update the pivot point set195

every N cycles, where N is large; or else, whenever the total amount of change in the196

system has exceeded a certain threshold.197

Now, how is this embedding used for inference control? Let’s consider the case of198

similarity first. Quite simply, one selects a pair of Atoms (A, B) for SimilarityMining199

(or inference of a SimilarityLink) based on some criterion such as, for instance:200

importance(A) * importance(B) * simproj(A,B)201

where202

distproj(A,B) = dE(proj(A) , proj(B))203

204

simproj = 2-c*distproj205

and c is an important tunable parameter.206

What this means is that, if A and B are far apart in the SimilarityLink embedding207

space, the system is unlikely to try to assess their similarity.208

There is a tremendous space efficiency of this approach, in that, where there are209

N Atoms and m pivot Atoms, Nˆ2 similarity relationships are being approximately210

stored in m*N coordinate values. Furthermore, the cost of computation is m*N times211

the cost of assessing a single SimilarityLink. By accepting crude approximations of212

actual similarity values, one gets away with linear time and space cost.213

Because this is just an approximation technique, there are definitely going to214

be cases where A and B are not similar, even though they’re close together in the215

embedding space. When such a case is found, it may be useful for the AtomSpace216

to explicitly contain a low-strength SimilarityLink between A and B. This link will217

prevent the system from making false embedding-based decisions to explore (Sim-218

ilarityLink A B) in the future. Putting explicit low-strength SimilarityLinks in the219

system in these cases, is obviously much cheaper than using them for all cases.220

We’ve been talking about SimilarityLinks, but the approach is more broadly221

applicable. Any symmetric link type can be dealt with about the same way. For222

instance, it might be useful to keep dimensional embedding maps for223

• SimilarityLink224

• ExtensionalSimilarityLink225

• EquivalenceLink226

• ExtensionalEquivalenceLink.227

On the other hand, dealing with asymmetric links in terms of dimensional embedding228

requires more subtlety—we turn to this topic below.229

21.5 Dimensional Embedding and InheritanceLinks230

Next, how can we use dimensional embedding to keep an approximate record of231

which links do not inherit from each other? Because inheritance is an asymmetric232

relationship, whereas distance in embedding spaces is a symmetrical relationship,233

there’s no direct and simple way to do so.234

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

360 21 Dimensional Embedding

However, there is an indirect approach that solves the problem, which involves235

maintaining two embedding spaces, and combining information about them in an236

appropriate way. In this subsection, we’ll discuss an approach that should work for237

InheritanceLink, SubsetLink, ImplicationLink, and ExtensionalImplicationLink and238

other related link types. But we’ll explicitly present it only for the InheritanceLink239

case.240

Although the embedding algorithm described above was intended for symmetric241

weighted graphs, in fact we can use it for asymmetric links in just about the same242

way. The use of the embedding graph for inference control differs, but not the basic243

method of defining the embedding.244

In the InheritanceLink case, we can define pivot Atoms in the same way, and then245

we can define two vectors for each Atom A:246

proj_{parent }(A)_i = (InheritanceLink A A_i).tv.s247

proj_{child}(A)_i = (InheritanceLink A_i A).tv.s248

where Ai is the i th pivot Atom.249

If generally projchild(A)i ≤ projchild(B)i then qualitatively “children of A are250

children of B”; and if generally projparent (A)i ≥ projparet (B)i then qualitatively251

“parents of B are parents of A”. The combination of these two conditions means252

heuristically that (I nheri tance A B) is likely. So, by combining the two embedding253

vectors assigned to each Atom, one can get heuristic guidance regarding inheritance254

relations, analogous to the case with similarity relationships. One may produce math-255

ematical formulas estimating the error of this approach under appropriate conditions,256

but in practice it will depend on the probability distribution of the vectors.AQ1257

319613_1_En_21_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 360 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 21

Query Refs. Details Required Author’s response

AQ1 No query.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Mental Simulation and Episodic Memory

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract This brief chapter deals with two important, coupled cognitive components of CogPrime: the component
concerned with creating internal simulations of situations and episodes in the external physical world, and
the one concerned with storing and retrieving memories of situations and episodes.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 22
Mental Simulation and Episodic Memory

22.1 Introduction0

This brief chapter deals with two important, coupled cognitive components of1

CogPrime: the component concerned with creating internal simulations of situa-2

tions and episodes in the external physical world, and the one concerned with storing3

and retrieving memories of situations and episodes.4

These are components that are likely significantly different in CogPrime from any-5

thing that exists in the human brain, yet, the functions they carry out are obviously6

essential to human cognition (perhaps more so to human cognition than to Cog-7

Prime’s cognition, because CogPrime is by design more reliant on formal reasoning8

than the human brain is).9

Much of human thought consists of internal, quasi-sensory “imaging” of the exter-10

nal physical world—and much of human memory consists of remembering autobi-11

ographical situations and episodes from daily life, or from stories heard from others12

or absorbed via media. Often this episodic remembering takes the form of visu-13

alization, but not always. Blind people generally think and remember in terms of14

non-visual imagery, and many sighted people think in terms of sounds, tastes or15

smells in addition to visual images.16

So far, the various mechanisms proposed as part of CogPrime do not have much17

to do with either internal imagery or episodic remembering, even though both seem18

to play a large role in human thought. This is OK, of course, since CogPrime is19

not intended as a simulacrum of human thought, but rather as a different sort of20

intelligence.21

However, we believe it will actually be valuable to CogPrime to incorporate both22

of these factors. And for that purpose, we propose23

• a novel mechanism: the incorporation within the CogPrime system of a 3D24

physical-world simulation engine.25

• an episodic memory store centrally founded on dimensional embedding, and linked26

to the internal simulation model.27

B. Goertzel et al., Engineering General Intelligence, Part 2, 361
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_22,
© Atlantis Press and the authors 2014

319613_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 365 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

362 22 Mental Simulation and Episodic Memory

22.2 Internal Simulations28

The current use of virtual worlds for OpenCog is to provide a space in which human-29

controlled agents and CogPrime -controlled agents can interact, thus allowing flexible30

instruction of the CogPrime system by humans, and flexible embodied, grounded31

learning by CogPrime systems. But this very same mechanism may be used internally32

to CogPrime, i.e. a CogPrime system may be given an internal simulation world,33

which serves as a sort of “mind’s eye”. Any sufficiently flexible virtual world software34

may be used for this purpose, for example OpenSim (http://opensim.org).35

Atoms encoding percepts may be drawn from memory and used to generate forms36

within the internal simulation world. These forms may then interact according to37

• The patterns via which they are remembered to act38

• The laws of physics, as embodied in the simulation world39

This allows a kind of “implicit memory”, in that patterns emergent from the world-40

embedded interaction of a number of entities need not explicitly be stored in memory,41

so long as they will emerge when the entities are re-awakened within the internal42

simulation world.43

The SimulatorMindAgent grabs important perceptual Atoms and uses them to44

generate forms within the internal simulation world, which then act according to45

remembered dynamical patterns, with the laws of physics filling in the gaps in mem-46

ory. This provides a sort of running internal visualization of the world. Just as impor-47

tant, however, are specific schemata that utilize visualization in appropriate contexts.48

For instance, if reasoning is having trouble solving a problem related to physical enti-49

ties, it may feed these entities to the internal simulation world to see what can be50

discovered. Patterns discovered via simulation can then be fed into reasoning for51

further analysis.52

The process of perceiving events and objects in the simulation world is essentially53

identical to the process of perceiving events and objects in the “actual” world.54

And of course, an internal simulation world may be used whether the CogPrime55

system in question is hooked up to a virtual world like OpenSim, or to a physical56

robot.57

Finally, perhaps the most interesting aspect of internal simulation is the genera-58

tion of “virtual perceptions” from abstract concepts. Analogical reasoning may be59

used to generate virtual perceptions that were never actually perceived, and these60

may then be visualized. The need for “reality discrimination” comes up here, and is61

easier to enforce in CogPrime than in humans. A PerceptNode that was never actually62

perceived may be explicitly embedded in a HypotheticalLink, thus avoiding the pos-63

sibility of confusing virtual percepts with actual ones. How useful the visualization64

of virtual perceptions will be to CogPrime cognition, remains to be seen. This kind65

of visualization is key to human imagination but this doesn’t mean it will play the66

same role in CogPrime’s quite different cognitive processes. But it is important that67

CogPrime has the power to carry out this kind of imagination.68

319613_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 365 Layout: T1-Standard

http://opensim.org

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22.3 Episodic Memory 363

22.3 Episodic Memory69

Episodic memory refers to the memory of our own “life history” that each of us has.70

Loss of this kind of memory is the most common type of amnesia in fiction—such71

amnesia is particularly dramatic because our episodic memories constitute so much72

of what we consider as our “selves”. To a significant extent, we as humans remember,73

reason and relate in terms of stories—and the centerpiece of our understanding of74

stories is our episodic memory. A CogPrime system need not be as heavily story-75

focused as a typical human being (though it could be, potentially)—but even so,76

episodic memory is a critical component of any CogPrime system controlling an77

agent in a world.78 AQ1

The core idea underlying CogPrime’s treatment of episodic memory is a sim-79

ple one: two dimensional embedding spaces dedicated to episodes. An episode—a80

coherent collection of happenings, often with causal interrelationships, often (but not81

always) occurring near the same spatial or temporal locations as each other—may be82

Fig. 22.1 Relationship between episodic, declarative and perceptual memory. The nodes and links
at the bottom depict declarative memory stored in the Atomspace; the picture at the top illustrates
an archetypal episode stored in episodic memory, and linked to the perceptual hierarchy enabling
imagistic simulation

319613_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 365 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

364 22 Mental Simulation and Episodic Memory

represented explicitly as an Atom, and implicitly as a map whose key is that Atom.83

These episode-Atoms may then be mapped into two dedicated embedding spaces:84

• One based on a distance metric determined by spatiotemporal proximity85

• One based on a distance metric determined by semantic similarity.86

A story is then a series of episodes—ideally one that, if the episodes in the series87

become important sequentially in the AtomSpace, causes a significant important-88

goal-related (ergo emotional) response in the system. Stories may also be represented89

as Atoms, in the simplest case consisting of SequentialAND links joining episode-90

Atoms. Stories then correspond to paths through the two episodic embedding spaces.91

Each path through each embedding space implicitly has a sort of “halo” in the space—92

visualizable as a tube snaking through the space, centered on the path. This tube93

Fig. 22.2 Relationship between episodic, declarative and perceptual memory. Another example
similar to the one in ??, but referring specifically to events occurring in an OpenCogPrime -controlled
agent’s virtual world

319613_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 365 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22.3 Episodic Memory 365

contains other paths—other stories—that related to the given center story, either94

spatiotemporally or semantically.95

The familiar everyday human experience of episodic memory may then be approx-96

imatively emulated via the properties of the dimensional embedding space. For97

instance, episodic memory is famously associative—when we think of one episode98

or story, we think of others that are spatiotemporally or semantically associated with99

it. This emerges naturally from the embedding space approach, due to the natural100

emergence of distance-based associative memory in an embedding space.101

Figures 22.1 and 22.2 roughly illustrates the link between episodic/perceptual and102

declarative memory.103

319613_1_En_22_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 365 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 22

Query Refs. Details Required Author’s response

AQ1 Please provide a definition for the significance of [question mark]
in the figure caption.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Integrative Procedure Learning

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract “Procedure learning”—learning step-by-step procedures for carrying out internal or external operations—is
a highly critical aspect of general intelligence, and is carried out in CogPrime via a complex combination
of methods.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 23
Integrative Procedure Learning

23.1 Introduction0

“Procedure learning”—learning step-by-step procedures for carrying out internal1

or external operations—is a highly critical aspect of general intelligence, and is2

carried out in CogPrime via a complex combination of methods. This somewhat3

heterogeneous chapter reviews several advanced aspects of procedure learning in4

CogPrime, mainly having to do with the integration between different cognitive5

processes.6

In terms of general cognitive theory and mind-world correspondence, this is some7

of the subtlest material in the book. We are not concerned just with how the mind’s8

learning of one sort of knowledge correlated with the way this sort of knowledge is9

structured in the mind’s habitual environments, in the context of its habitual goals.10

Rather, we are concerned with how various sorts of knowledge intersect and inter-11

act with each other. The proposed algorithmic intersections between, for instance,12

declarative and procedural learning processes, are reflective of implicit assumptions13

about how declarative and procedural knowledge are presented in the world in the14

context of the system’s goals—but these implicit assumptions are not always easy15

to tease out and state in a compact way. We will do our best to highlight these16

assumptions as they arise throughout the chapter.17

Key among these assumptions, however, are that a human-like mind18

• Is presented with various procedure learning problems at various levels of difficulty19

(so that different algorithms may be appropriate depending on the difficulty level).20

This leads for instance to the possibility of using various different algorithms like21

MOSES or hillclimbing, for different procedure learning problems.22

• Is presented with some procedure learning problems that may be handled in a23

relatively isolated way, and others that are extremely heavily dependent on context,24

often in a way that recurs across multiple learning instances in similar contexts.25

This leads to a situations where the value of bringing declarative (PLN) and26

associative (ECAN) and episodic knowledge into the procedure learning process,27

has varying value depending on the situation.28

B. Goertzel et al., Engineering General Intelligence, Part 2, 367
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_23,
© Atlantis Press and the authors 2014

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

368 23 Integrative Procedure Learning

• Is presented with a rich variety of procedure learning problems with complex29

interrelationships, including many problems that are closely related to previously30

solved problems in various ways. This highlights the value of using PLN analogical31

reasoning, and importance spreading along HebbianLinks learned by ECAN, to32

help guide procedure learning in various ways.33

• Needs to learn some procedures whose execution may be carried out in a relatively34

isolated way, and other procedures whose execution requires intensive ongoing35

interaction with other cognitive processes.36

The diversity of procedure learning situations reflected in these assumptions, leads37

naturally to the diversity of technical procedure learning approaches described in38

this chapter. Potentially one could have a single, unified algorithm covering all the39

different sorts of procedure learning, but instead we have found it more practical to40

articulate a small number of algorithms which are then combined in different ways41

to yield the different kinds of procedure learning.42

23.1.1 The Diverse Technicalities of Procedure Learning43

in CogPrime44

On a technical level, this chapter discusses two closely related aspects of CogPrime:45

schema learning and predicate learning, which we group under the general category46

of “procedure learning”.47

Schema learning—the learning of SchemaNodes and schema maps (explained48

further in the Chap. 24)—is CogPrime lingo for learning how to do things. Learning49

how to act, how to perceive, and how to think—beyond what’s explicitly encoded50

in the system’s MindAgents. As an advanced CogPrime system becomes more pro-51

foundly self-modifying, schema learning will drive more and more of its evolution.52

Predicate learning, on the other hand, is the most abstract and general man-53

ifestation of pattern recognition in the CogPrime system. PredicateNodes, along54

with predicate maps, are CogPrime’s way of representing general patterns (general55

within the constraints imposed by the system parameters, which in turn are governed56

by hardware constraints). Predicate evolution, predicate mining and higher-order57

inference—specialized and powerful forms of predicate learning—are the system’s58

most powerful ways of creating general patterns in the world and in the mind. Simpler59

forms of predicate learning are grist for the mill of these processes.60

It may be useful to draw an analogy with another (closely related) very hard prob-61

lem in CogPrime, discussed in the book Probabilistic Logic Networks: probabilistic62

logical unification, which in the CogPrime /PLN framework basically comes down63

to finding the Satisfying Sets of given predicates. Hard logical unification problems64

can often be avoided by breaking down large predicates into small ones in strategic65

ways, guided by non-inferential mind processes, and then doing unification only on66

the smaller predicates. Our limited experimental experience indicates that the same67

“hierarchical breakdown” strategy also works for schema and predicate learning,68

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_24

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.1 Introduction 369

to an extent. But still, as with unification, even when one does break down a large69

schema or predicate learning problem into a set of smaller problems, one is still in70

most cases left with a set of fairly hard problems.71

More concretely, CogPrime procedure learning may be generally decomposed72

into three aspects:73

1. Converting back and forth between maps and ProcedureNodes (encapsulation74

and expansion)75

2. Learning the Combo Trees to be embedded in grounded ProcedureNodes76

3. Learning procedure maps (networks of grounded ProcedureNodes acting in a77

coordinated way to carry out procedures).78

Each of these three aspects of CogPrime procedure learning mentioned above may79

be dealt with somewhat separately, though relying on largely overlapping methods.80

CogPrime approaches these problems using a combination of techniques:81

• Evolutionary procedure learning and hillclimbing for dealing with brand new pro-82

cedure learning problems, requiring the origination of innovative, highly approx-83

imate solutions out of the blue84

• Inferential procedure learning for taking approximate solutions and making them85

exact, and for dealing with procedure learning problems within domains where86

closely analogous procedure learning problems have previously been solved87

• Heuristic, probabilistic data mining for the creation of encapsulated procedures88

(which then feed into inferential and evolutionary procedure learning), and the89

expansion of encapsulated procedures into procedure maps90

• PredictiveImplicationLink formation (augmented by PLN inference on such links)91

as a CogPrime version of goal-directed reinforcement learning.92

Using these different learning methods together, as a coherently-tuned whole, one93

arrives at a holistic procedure learning approach that combines speculation, system-94

atic inference, encapsulation and credit assignment in a single adaptive dynamic95

process.96

We are relying on a combination of techniques to do what none of the techniques97

can accomplish on their own. The combination is far from arbitrary, however. As we98

will see, each of the techniques involved plays a unique and important role.99

23.1.1.1 Comments on an Alternative Representational Approach100

We briefly pause to contrast certain technical aspects of the present approach to101

analogous aspects of the Webmind AI Engine (one of CogPrime’s predecessor AI102

systems, briefly discussed in Sect. 1.1). This predecessor system used a knowledge103

representation somewhat similar to the Atomspace, but with various differences; for104

instance the base types were Node and Link rather than Atom, and there was a Node105

type not used in CogPrime called the SchemaInstanceNode (each one corresponding106

to a particular instance of a SchemaNode, used within a particular procedure).107

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

370 23 Integrative Procedure Learning

In this approach, complex, learned schema were represented as distributed net-108

works of elementary SchemaInstanceNodes, but these networks were not defined109

purely by function application—they involved explicit passing of variable values110

through VariableNodes. Special logic-gate-bearing objects were created to deal with111

the distinction between arguments of a SchemaInstanceNode, and predecessor tokens112

giving a SchemaInstanceNode permission to act.113

While this approach is in principle workable, it proved highly complex in prac-114

tice, and for the Novamente Cognition Engine and CogPrime we chose to store115

and manipulate procedural knowledge separately from declarative knowledge (via116

Combo trees).117

23.2 Preliminary Comments on Procedure Map Encapsulation118

and Expansion119

Like other knowledge in CogPrime, procedures may be stored in either a localized120

(Combo tree) or globalized (procedure map) manner, with the different approaches121

being appropriate for different purposes. Activation of a localized procedure may122

spur activation of a globalized procedure, and vice versa—so on the overall mind-123

network level the representation of procedures is heavily “glocal”.124

One issue that looms large in this context is the conversion between localized and125

globalized procedures—i.e., in CogPrime lingo, the encapsulation and expansion of126

procedure maps. This matter will be considered in more detail in Chap. 24 but here127

we briefly review some key ideas.128

Converting from grounded ProcedureNodes into maps is a relatively simple learn-129

ing problem: one enacts the procedure, observes which Atoms are active at what times130

during the enaction process, and then creating PredictiveImplicationLinks between131

the Atoms active at a certain time and those active at subsequent times. Generally it132

will be necessary to enact the procedure multiple times and with different inputs, to133

build up the appropriate library of PredictiveImplicationLinks.134

Converting from maps into ProcedureNodes is significantly trickier. First, it135

involves carrying out data mining over the network of ProcedureNodes, identifying136

subnetworks that are coherent schema or predicate maps. Then it involves translating137

the control structure of the map into explicit logical form, so that the encapsulated138

version will follow the same order of execution as the map version. This is an impor-139

tant case of the general process of map encapsulation, to be discussed in Chap. 24.140

Next, the learning of grounded ProcedureNodes is carried out by a synergis-141

tic combination of multiple mechanisms, including pure procedure learning meth-142

ods like hillclimbing and evolutionary learning, and logical inference. These two143

approaches have quite different characteristics. Evolutionary learning and hillclimb-144

ing excel at confronting a problem that the system has no clue about, and arriving at145

a reasonably good solution in the form of a schema or predicate. Inference excels at146

deploying the system’s existing knowledge to form useful schemata or predicates.147

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_24

http://dx.doi.org/10.2991/978-94-6239-030-0_24

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.2 Preliminary Comments on Procedure Map Encapsulation and Expansion 371

The choice of the appropriate mechanism for a given problem instance depends148

largely on how much relevant knowledge is available.149

A relatively simple case of ProcedureNode learning is where one is given a Con-150

ceptNode and wants to find a ProcedureNode matching it. For instance, given a151

ConceptNode C, one may wish to find the simplest possible predicate whose corre-152

sponding PredicateNode P satisfies153

SatisfyingSet(P) = C154

On the other hand, given a ConceptNode C involved in inferred ExecutionLinks of155

the form156

ExecutionLink C Ai Bi157

i=1,...,n158

one may wish to find a SchemaNode so that the corresponding SchemaNode will159

fulfill this same set of ExecutionLinks. It may seem surprising at first that a Con-160

ceptNode might be involved with ExecutionLinks, but remember that a function can161

be seen as a set of tuples (ListLink in CogPrime) where the first elements, the inputs162

of the function, are associated with a unique output. These kinds of ProcedureNode163

learning may be cast as optimization problems, and carried out by hillclimbing or164

evolutionary programming. Once procedures are learned via evolutionary program-165

ming or other techniques, they may be refined via inference.166

The other case of ProcedureNode learning is goal-driven learning. Here one seeks167

a SchemaNode whose execution will cause a given goal (represented by a Goal Node)168

to be satisfied. The details of Goal Nodes have already been reviewed; but all we need169

to know here is simply that a Goal Node presents an objective function, a function170

to be maximized; and that it poses the problem of finding schemata whose enaction171

will cause this function to be maximized in specified contexts.172

The learning of procedure maps, on the other hand, is carried out by reinforcement173

learning, augmented by inference. This is a matter of the system learning Hebbian-174

Links between ProcedureNodes, as will be described below.175

23.3 Predicate Schematization176

Now we turn to the process called “predicate schematization”, by which declara-177

tive knowledge about how to carry out actions may be translated into Combo trees178

embodying specific procedures for carrying out actions. This process is straightfor-179

ward and automatic in some cases, but in other cases requires significant contextually-180

savvy inference. This is a critical process because some procedure knowledge—181

especially that which is heavily dependent on context in either its execution or its182

utility—will be more easily learned via inferential methods than via pure procedure-183

learning methods. But, even if a procedure is initially learned via inference (or is184

learned by inference based on cruder initial guesses produced by pure procedure185

learning methods), it may still be valuable to have this procedure in compact and186

rapidly executable form such as Combo provides.187

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

372 23 Integrative Procedure Learning

To proceed with the technical description of predicate schematization in Cog-188

Prime, we first need the notion of an “executable predicate”. Some predicates are189

executable in the sense that they correspond to executable schemata, others are not.190

There are executable atomic predicates (represented by individual PredicateNodes),191

and executable predicates (which are link structures). In general, a predicate may be192

turned into a schema if it is an atomic executable predicate, or if it is a compound193

link structure that consists entirely of executable atomic predicates (e.g. pick_up,194

walk_to, can_do, etc.) and temporal links (e.g. SimultaneousAND, PredictiveImpli-195

cation, etc.).196

Records of predicate execution may then be made using ExecutionLinks, e.g.197

ExecutionLink pick_up (me , ball_7)198

is a record of the fact that the schema corresponding to the pick_up predicate was199

executed on the arguments (me, ball_7).200

It is also useful to introduce some special (executable) predicates related to schema201

execution:202

• can_do, which represents the system’s perceived ability to do something203

• do, which denotes the system actually doing something; this is used to mark actions204

as opposed to perceptions205

• just_done, which is true of a schema if the schema has very recently been executed.206

The general procedure used in figuring out what predicates to schematize, in order207

to create a procedure achieving a certain goal, is: Start from the goal and work back-208

wards, following PredictiveImplications and EventualPredictiveImplications and209

treating can_do’s as transparent, stopping when you find something that can cur-210

rently be done, or else when the process dwindles due to lack of links or lack of211

sufficiently certain links.212

In this process, an ordered list of perceptions and actions will be created. The213

Atoms in this perception/action-series (PA-series) are linked together via temporal-214

logical links.215

The subtlety of this process, in general, will occur because there may be many216

different paths to follow. One has the familiar combinatorial explosion of backward-217

chaining inference, and it may be hard to find the best PA-series among all the mess.218

Experience-guided pruning is needed here just as with backward-chaining inference.219

Specific rules for translating temporal links into executable schemata, used in this220

process, are as follows. All these rule-statements assume that B is in the selected PA-221

series. All node variables not preceded by do or can_do are assumed to be perceptions.222

The → denotes the transformation from predicates to executable schemata.223

EventualPredictiveImplicationLink (do A) B224

→225

Repeat (do A) Until B226

EventualPredictiveImplicationLink (do A) (can_do B)227

→228

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.3 Predicate Schematization 373

Repeat229

do A230

do B231

Until232

Evaluation just_done B233

the understanding being that the agent may try to do B and fail, and then try again234

the next time around the loop235

PredictiveImplicationLink (do A) (can_do B)<time -lag T>236

→237

do A238

wait T239

do B240

SimultaneousImplicationLink A (can_do B)241

→242

if A then do B243

SimultaneousImplicationLink (do A) (can_do B)244

→245

do A246

do B247

PredictiveImplicationLink A (can_do B)248

→249

if A then do B250

SequentialAndLink A1 ... An251

→252

A1253

...254

An255

SequentialAndLink A1 ... An <time_lag T>256

→257

A1258

Wait T259

A2260

Wait T261

...262

Wait T263

An264

SimultaneousANDLink A1 ? An265

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

374 23 Integrative Procedure Learning

→266

A1267

...268

An269

Note how all instances of can_do are stripped out upon conversion from predicate to270

schema, and replaced with instances of do.271

23.3.1 A Concrete Example272

For a specific example of this process, consider the knowledge that: “If I walk to the273

teacher while whistling, and then give the teacher the ball, I’ll get rewarded.”274

This might be represented by the predicates275

walk to the teacher while whistling276

A_1 :=277

SimultaneousAND278

do Walk_to279

ExOutLink locate teacher280

EvaluationLink do whistle281

If I walk to the teacher while whistling, eventually I will be next to the teacher282

EventualPredictiveImplication283

A_1284

Evaluation next_to teacher285

While next to the teacher, I can give the teacher the ball286

SimultaneousImplication287

EvaluationLink next_to teacher288

can_do289

EvaluationLink give (teacher , ball)290

If I give the teacher the ball, I will get rewarded291

PredictiveImplication292

just_done293

EvaluationLink done give (teacher , ball)294

Evaluation reward295

Via goal-driven predicate schematization, these predicates would become the296

schemata297

walk toward the teacher while whistling298

Repeat:299

do WalkTo300

ExOut locate teacher301

do Whistle302

Until:303

next_to(teacher , ball)304

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.3 Predicate Schematization 375

if next to the teacher, give the teacher the ball305

If:306

Evaluation next_to teacher307

Then308

do give(teacher , ball)309

Carrying out these two schemata will lead to the desired behavior of walking toward310

the teacher while whistling, and then giving the teacher the ball when next to the311

teacher.312

Note that, in this example:313

• The walk_to, whistle, locate and give used in the example schemata are procedures314

corresponding to the executable predicates walk_to, whistle, locate and give used315

in the example predicates316

• Next_to is evaluated rather than executed because (unlike the other atomic predi-317

cates in the overall predicate being made executable) it has no “do” or “can_do”318

next to it.319

23.4 Concept-Driven Schema and Predicate Creation320

In this section we will deal with the “conversion” of ConceptNodes into SchemaN-321

odes or PredicateNodes. The two cases involve similar but nonidentical methods;322

we will begin with the simpler PredicateNode case. Conceptually, the importance of323

this should be clear: sometimes knowledge may be gained via concept-learning or324

linguistic means, but yet may be useful to the mind in other forms, e.g. as executable325

schema or evaluable predicates. For instance, the system may learn conceptually326

about bicycle-riding, but then may also want to learn executable procedures allow-327

ing it to ride a bicycle. Or it may learn conceptually about criminal individuals, but328

may then want to learn evaluable predicates allowing it to quickly evaluate whether329

a given individual is a criminal or not.330

23.4.1 Concept-Driven Predicate Creation331

Suppose we have a ConceptNode C, with a set of links of the form332

MemberLink A_i C, i=1,...,n333

Our goal is to find a PredicateNode so that firstly,334

MemberLink X C335

336

is equivalent to337

338

X ’’within ’’ SatisfyingSet(P)339

and secondly,340

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

376 23 Integrative Procedure Learning

P is as simple as possible341

This is related to the “Occam’s Razor”, Solomonoff induction related heuristic to342

be presented later in this chapter.343

We now have an optimization problem: search the space of predicates for P that344

maximize the objective function f(P,C), defined as for instance345

f (P, C) = cp(P) × r(C, P)

where cp(P), the complexity penalty of P , is a positive function that decreases when346

P gets larger and with r(C, P) =347

GetStrength348

SimilarityLink349

C350

SatisfyingSet(P)351

This is an optimization problem over predicate space, which can be solved in an352

approximate way by the evolutionary programming methods described earlier.353

The ConceptPredicatization MindAgent selects ConceptNodes based on354

• Importance355

• Total (truth value based) weight of attached MemberLinks and EvaluationLinks356

and launches an evolutionary learning or hillclimbing task focused on learning pred-357

icates based on the nodes it selects.358

23.4.2 Concept-Driven Schema Creation359

In the schema learning case, instead of a ConceptNode with MemberLinks and360

EvaluationLinks, we begin with a ConceptNode C with ExecutionLinks. These Exe-361

cutionLinks were presumably produced by inference (the only CogPrime cognitive362

process that knows how to create ExecutionLinks for non-ProcedureNodes).363

The optimization problem we have here is: search the space of schemata for S
that maximize the objective function f (S, C), defined as follows:

f (S, C) = cp(S) × r(S, C)

Let Q(C) be the set of pairs (X, Y) so that ExecutionLink C X Y , and364

r(S,C) =365

366

GetStrength367

SubsetLink368

Q(C)369

Graph(S)370

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.4 Concept-Driven Schema and Predicate Creation 377

where Graph(S) denotes the set of pairs (X, Y) so that ExecutionLink S X Y ,371

where S has been executed over all valid inputs.372

Note that we consider a SubsetLink here because in practice C would have been373

observed on a partial set of inputs.374

Operationally, the situation here is very similar to that with concept predicati-375

zation. The ConceptSchematization MindAgent must select ConceptNodes based376

on:377

• Importance378

• Total (truth value based) weight of ExecutionLinks379

and then feed these to evolutionary optimization or hillclimbing.380

23.5 Inference-Guided Evolution of Pattern-Embodying381

Predicates382

Now we turn to predicate learning—the learning of PredicateNodes, in particular.383

Aside from logical inference and learning predicates to match existing concepts,384

how does the system create new predicates? Goal-driven schema learning (via evolu-385

tion or reinforcement learning) provides one alternate approach: create predicates in386

the context of creating useful schema. Pattern mining, discussed in Chap. 19, provides387

another. Here we will describe (yet) another complementary dynamic for predicate388

creation: pattern-oriented, inference-guided PredicateNode evolution.389

In most general terms, the notion pursued here is to form predicates that embody390

patterns in itself and in the world. This brings us straight back to the foundations of the391

patternist philosophy of mind, in which mind is viewed as a system for recognizing392

patterns in itself and in the world, and then embodying these patterns in itself. This393

general concept is manifested in many ways in the CogPrime design, and in this394

section we will discuss two of them:395

• Reward of surprisingly probable Predicates396

• Evolutionary learning of pattern-embodying Predicates.397

These are emphatically not the only way pattern-embodying PredicateNodes get into398

the system. Inference and concept-based predicate learning also create PredicateN-399

odes embodying patterns. But these two mechanisms complete the picture.400

23.5.1 Rewarding Surprising Predicates401

The TruthValue of a PredicateNode represents the expected TruthValue obtained by402

averaging its TruthValue over all its possible legal argument-values. Some Predicates,403

however, may have high TruthValue without really being worthwhile. They may not404

add any information to their components. We want to identify and reward those405

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_19

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

378 23 Integrative Procedure Learning

Predicates whose TruthValues actually add information beyond what is implicit in406

the simple fact of combining their components.407

For instance, consider the PredicateNode408

AND409

InheritanceLink X man410

InheritanceLink X ugly411

If we assume the man and ugly concepts are independent, then this PredicateNode
will have the TruthValue

man.tv.s × ugly.tv.s

In general, a PredicateNode will be considered interesting if:412

1. Its Links are important413

2. Its TruthValue differs significantly from what would be expected based on inde-414

pendence assumptions about its components.415

It is of value to have interesting Predicates allocated more attention than uninteresting416

ones. Factor 1 is already taken into account, in a sense: if the PredicateNode is417

involved in many Links this will boost its activation which will boost its importance.418

On the other hand, Factor 2 is not taken into account by any previously discussed419

mechanisms.420

For instance, we may wish to reward a PredicateNode if it has a surprisingly large421

or small strength value. One way to do this is to calculate:422

sdi f f = |actual strength − strength predicted via independence assumptions|423

×weight_of _evidence424

425

and then increment the value:
K × sdi f f

onto the PredicateNode’s LongTermImportance value, and similarly increment STI426

using a different constant.427

Another factor that might usefully be caused to increment LTI is the simplicity428

of a PredicateNode. Given two Predicates with equal strength, we want the sys-429

tem to prefer the simpler one over the more complex one. However, the Occams430

Razor MindAgent, to be presented below, rewards simpler Predicates directly in431

their strength values. Hence if the latter is in use, it seems unnecessary to reward432

them for their simplicity in their LTI values as well. This is an issue that may require433

some experimentation as the system develops.434

Returning to the surprisingness factor, consider the PredicateNode representing435

AND436

InheritanceLink X cat437

EvaluationLink (eats X) fish438

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.5 Inference-Guided Evolution of Pattern-Embodying Predicates 379

If this has a surprisingly high truth value, this means that there are more X known to439

(or inferred by) the system, that both inherit from cat and eat fish, than one would440

expect given the probabilities of a random X both inheriting from cat and eating fish.441

Thus, roughly speaking, the conjunction of inheriting from cat and eating fish may442

be a pattern in the world.443

We now see one very clear sense in which CogPrime dynamics implicitly leads to444

predicates representing patterns. Small predicates that have surprising truth values445

get extra activation, hence are more likely to stick around in the system. Thus the446

mind fills up with patterns.447

23.5.2 A More Formal Treatment448

It is worth taking a little time to clarify the sense in which we have a pattern in449

the above example, using the mathematical notion of pattern reviewed in Chap. 4 of450

Vol. 5.451 AQ1

Consider the predicate:452

pred1(T).tv453

equals454

>455

GetStrength456

AND457

Inheritance $X cat458

Evaluation eats ($X , fish)459

T460

where T is some threshold value (e.g. 0.8). Let B = SatisfyingSet(pred1(T)). B is the461

set of everything that inherits from cat and eats fish.462

Now we will make use of the notion of basic complexity. If one assumes the463

entire AtomSpace A constituting a given CogPrime system as given background464

information, then the basic complexity c(B||A) may be considered as the number of465

bits required to list the handles of the elements of B, for lookup in A; whereas c(B)466

is the number of bits required to actually list the elements of B. Now, the formula467

given above, defining the set B, may be considered as a process P whose output is the468

set B. The simplicity c(P||A) is the number of bits needed to describe this process,469

which is a fairly small number. We assume A is given as background information,470

accessible to the process.471

Then the degree to which P is a pattern in B is given by472

1 − c(P||A)/c(B||A)

which, if B is a sizable category, is going to be pretty close to 1.473

The key to there being a pattern here is that the relation:474

(Inheritance X cat) AND (eats X fish)475

has a high strength and also a high count. The high count means that B is a large476

set, either by direct observation or by hypothesis (inference). In the case where the477

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027_4

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

380 23 Integrative Procedure Learning

count represents actual pieces of evidence observed by the system and retained in478

memory, then quite literally and directly, the PredicateNode represents a pattern in a479

subset of the system (relative to the background knowledge consisting of the system480

as a whole). On the other hand, if the count value has been obtained indirectly by481

inference, then it is possible that the system does not actually know any examples482

of the relation. In this case, the PredicateNode is not a pattern in the actual memory483

store of the system, but it is being hypothesized to be a pattern in the world in which484

the system is embedded.485

23.6 PredicateNode Mining486

We have seen how the natural dynamics of the CogPrime system, with a little help487

from special heuristics, can lead to the evolution of Predicates that embody patterns488

in the system’s perceived or inferred world. But it is also valuable to more aggres-489

sively and directly create pattern-embodying Predicates. This does not contradict the490

implicit process, but rather complements it. The explicit process we use is called491

PredicateNode Mining and is carried out by a PredicateNodeMiner MindAgent.492

Define an Atom structure template as a schema expression corresponding to a493

CogPrime Link in which some of the arguments are replaced with variables. For494

instance,495

Inheritance X cat496

497

EvaluationLink (eats X) fish498

are Atom structure templates. (Recall that Atom structure templates are important in499

PLN inference control, as reviewed in Chap. 18 of Vol. 5)500

What the PredicateNodeMiner does is to look for Atom structure templates and501

logical combinations thereof which502

• Minimize PredicateNode size503

• Maximize surprisingness of truth value.504

This is accomplished by a combination of heuristics.505

The first step in PredicateNode mining is to find Atom structure templates with506

high truth values. This can be done by a fairly simple heuristic search process.507

First, note that if one specifies an (Atom, Link type), one is specifying a set of508

Atom structure templates. For instance, if one specifies509

(cat, InheritanceLink)510

then one is specifying the templates511

InheritanceLink $X cat512

and513

InheritanceLink cat $X514

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027_18

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.6 PredicateNode Mining 381

One can thus find Atom structure templates as follows. Choose an Atom with high515

truth value, and then, for each Link type, tabulate the total truth value of the Links of516

this type involving this Atom. When one finds a promising (Atom, Link type) pair,517

one can then do inference to test the truth value of the Atom structure template one518

has found.519 AQ2

Next, given high-truth-value Atom structure templates, the PredicateNodeMiner520

experiments with joining them together using logical connectives. For each potential521

combination it assesses the fitness in terms of size and surprisingness. This may be522

carried out in two ways:523

1. By incrementally building up larger combinations from smaller ones, at each524

incremental stage keeping only those combinations found to be valuable525

2. For large combinations, by evolution of combinations.526

Option 1 is basically greedy data mining (which may be carried out via various stan-527

dard algorithms, as discussed in Chap. 19), which has the advantage of being much528

more rapid than evolutionary programming, but the disadvantage that it misses large529

combinations whose subsets are not as surprising as the combinations themselves.530

It seems there is room for both approaches in CogPrime (and potentially many531

other approaches as well). The PredicateNodeMiner MindAgent contains a parame-532

ter telling it how much time to spend on stochastic pattern mining versus evolution,533

as well as parameters guiding the processes it invokes.534

So far we have discussed the process of finding single-variable Atom structure535

templates. But multivariable Atom structure templates may be obtained by combining536

single-variable ones. For instance, given537

eats $X fish538

539

lives_in $X Antarctica540

one may choose to investigate various combinations such as541

(eats $X $Y) AND (lives_in $X $Y)542

(this particular example will have a predictably low truth value). So, the introduction543

of multiple variables may be done in the same process as the creation of single-544

variable combinations of Atom structure templates.545

When a suitably fit Atom structure template or logical combination thereof is546

found, then a PredicateNode is created embodying it, and placed into the AtomSpace.547

WIKISOURCE:SchemaMaps.548

23.7 Learning Schema Maps549

Next we plunge into the issue of procedure maps—schema maps in particular.550

A schema map is a simple yet subtle thing—a subnetwork of the AtomSpace con-551

sisting of SchemaNodes, computing some useful quantity or carrying out some use-552

ful process in a cooperative way. The general purpose of schema maps is to allow553

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_19

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

382 23 Integrative Procedure Learning

schema execution to interact with other mental processes in a more flexible way554

than is allowed by compact Combo trees with internal hooks into the AtomSpace.555

I.e., to handle cases where procedure execution needs to be very highly interactive,556

mediated by attention allocation and other CogPrime dynamics in a flexible way.557

But how can schema maps be learned? The basic idea is simply reinforcement558

learning. In a goal-directed system consisting of interconnected, cooperative ele-559

ments, you reinforce those connections and/or those elements that have been helpful560

for achieving goals, and weaken those connections that haven’t. Thus, over time, you561

obtain a network of elements that achieves goals effectively.562

The central difficulty in all reinforcement learning approaches is the ‘assignment563

of credit’ problem. If a component of a system has been directly useful for achieving564

a goal, then rewarding it is easy. But if the relevance of a component to a goal is565

indirect, then things aren’t so simple. Measuring indirect usefulness in a large, richly566

connected system is difficult—inaccuracies creep into the process easily.567

In CogPrime, reinforcement learning is handled via HebbianLinks, acted on by a568

combination of cognitive processes. Earlier, in Chap. 5, we reviewed the semantics569

of HebbianLinks, and discussed two methods for forming HebbianLinks:570

1. Updating HebbianLink strengths via mining of the System Activity Table571

2. Logical inference on HebbianLinks, which may also incorporate the use of infer-572

ence to combine HebbianLinks with other logical links (for instance, in the573

reinforcement learning context, PredictiveImplicationLinks).574

We now describe how HebbianLinks, formed and manipulated in this manner, may575

play a key role in goal-driven reinforcement learning. In effect, what we will describe576

is an implicit integration of the bucket brigade with PLN inference. The addition of577

robust probabilistic inference adds a new kind of depth and precision to the rein-578

forcement learning process.579

Goal Nodes have an important ability to stimulate a lot of SchemaNode execution580

activity. If a goal needs to be fulfilled, it stimulates schemata that are known to make581

this happen. But how is it known which schemata tend to fulfill a given goal? A link:582

PredictiveImplicationLink S G583

means that after schema S has been executed, goal G tends to be fulfilled. If these584

links between goals and goal-valuable schemata exist, then activation spreading from585

goals can serve the purpose of causing goal-useful schemata to become active.586

The trick, then, is to use HebbianLinks and inference thereon to implicitly guess587

PredictiveImplicationLinks. A HebbianLink between S1 and S says that when think-588

ing about S1 was useful in the past, thinking about S was also often useful. This589

suggests that if doing S achieves goal G, maybe doing S1 is also a good idea. The590

system may then try to find (by direct lookup or reasoning) whether, in the cur-591

rent context, there is a PredictiveImplication joining S1 to S. In this way Hebbian592

reinforcement learning is being used as an inference control mechanism to aid in the593

construction of a goal-directed chain of PredictiveImplicationLinks, which may then594

be schematized into a contextually useful procedure.595

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.7 Learning Schema Maps 383

Note finally that this process feeds back into itself in an interesting way, via596

contributing to ongoing HebbianLink formation. Along the way, while leading to the597

on-the-fly construction of context-appropriate procedures that achieve goals, it also598

reinforces the HebbianLinks that hold together schema maps, sculpting new schema599

maps out of the existing field of interlinked SchemaNodes.600

23.7.1 Goal-Directed Schema Evolution601

Finally, as a complement to goal-driven reinforcement learning, there is also a602

process of goal-directed SchemaNode learning. This combines features of the goal-603

driven reinforcement learning and concept-driven schema evolution methods dis-604

cussed above. Here we use a Goal Node to provide the fitness function for schema605

evolution.606

The basic idea is that the fitness of a schema is defined by the degree to which607

enactment of that schema causes fulfillment of the goal. This requires the introduction608

of CausalImplicationLinks, as defined in PLN. In the simplest case, a CausalImpli-609

cationLink is simply a PredictiveImplicationLink.610

One relatively simple implementation of the idea is as follows. Suppose we have
a Goal Node G, whose satisfaction we desire to have achieved by time T1. Suppose
we want to find a SchemaNode S whose execution at time T2 will cause G to be
achieved. We may define a fitness function for evaluating candidate S by:

f (S, G, T 1, T 2) = cp(S) × r(S, G, T 1, T 2)

r(S,G,T1 ,T2) =611

GetStrength612

CausalImplicationLink613

EvaluationLink614

AtTime615

T1616

ExecutionLink S X Y617

EvaluationLink AtTime (T2, G)618

Another variant specifies only a relative time lag, not two absolute times.

f (S, G, T) = cp(S) × v(S, G, T)

619

v(S,G,T) =620

AND621

NonEmpty622

SatisfyingSet r(S,G,T1 ,T2)623

T1 > T2 - T624

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

384 23 Integrative Procedure Learning

Using evolutionary learning or hillclimbing to find schemata fulfilling these fit-625

ness functions, results in SchemaNodes whose execution is expected to cause the626

achievement of given goals. This is a complementary approach to reinforcement-627

learning based schema learning, and to schema learning based on PredicateNode628

concept creation. The strengths and weaknesses of these different approaches need629

to be extensively experimentally explored. However, prior experience with the learn-630

ing algorithms involved gives us some guidance.631

We know that when absolutely nothing is known about an objective function,632

evolutionary programming is often the best way to proceed. Even when there is633

knowledge about an objective function, the evolution process can take it into account,634

because the fitness functions involve logical links, and the evaluation of these logical635

links may involve inference operations.636

On the other hand, when there’s a lot of relevant knowledge embodied in previ-637

ously executed procedures, using logical reasoning to guide new procedure creation638

can be cumbersome, due to the overwhelming potentially useful number of facts to639

choose when carrying inference. The Hebbian mechanisms used in reinforcement640

learning may be understood as inferential in their conceptual foundations (since a641

HebbianLink is equivalent to an ImplicationLink between two propositions about642

importance levels). But in practice they provide a much-streamlined approach to643

bringing knowledge implicit in existing procedures to bear on the creation of new644

procedures. Reinforcement learning, we believe, will excel at combining existing645

procedures to form new ones, and modifying existing procedures to work well in646

new contexts. Logical inference can also help here, acting in cooperation with rein-647

forcement learning. But when the system has no clue how a certain goal might be648

fulfilled, evolutionary schema learning provides a relatively time-efficient way for it649

to find something minimally workable.650

Pragmatically, the GoalDrivenSchemaLearning MindAgent handles this aspect651

of the system’s operations. It selects Goal Nodes with probability proportional to652

importance, and then spawns problems for the Evolutionary Optimization Unit Group653

accordingly. For a given Goal Node, PLN control mechanisms are used to study its654

properties and select between the above objective functions to use, on an heuristic655

basis.656

23.8 Occam’s Razor657

Finally we turn to an important cognitive process that fits only loosely into the658

category of “CogPrime Procedure learning”—it’s not actually a procedure learning659

process, but rather a process that utilizes the fruits of procedure learning.660

The well-known “Occam’s razor” heuristic says that all else being equal, simpler is661

better. This notion is embodied mathematically in the Solomonoff-Levin “universal662

prior”, according to which the a priori probability of a computational entity X is663

defined as a normalized version of:664

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.8 Occam’s Razor 385

m(X) =
∑

p

2−l(p)
665

where:666

• The sum is taken over all programs p that compute X667

• l(p) denotes the length of the program p.668

Normalization is necessary because these values will not automatically sum to 1 over669

the space of all X.670

Without normalization, m is a semimeasure rather than a measure; with normal-671

ization it becomes the “Solomonoff-Levin measure” [Lev94].672

Roughly speaking, Solomonoff’s induction theorem [Sol64a, Sol64b] shows that,673

if one is trying to learn the computer program underlying a given set of observed674

data, and one does Bayesian inference over the set of all programs to try and obtain675

the answer, then if one uses the universal prior distribution one will arrive at the676

correct answer.677

CogPrime is not a Solomonoff induction engine. The computational cost of actu-678

ally applying Solomonoff induction is unrealistically large. However, as we have seen679

in this chapter, there are aspects of CogPrime that are reminiscent of Solomonoff680

induction. In concept-directed schema and predicate learning, in pattern-based pred-681

icate learning—and in causal schema learning, we are searching for schemata and682

predicates that minimize complexity while maximizing some other quality. These683

processes all implement the Occam’s Razor heuristic in a Solomonoffian style.684

Now we will introduce one more method of imposing the heuristic of algorithmic685

simplicity on CogPrime Atoms (and hence, indirectly, on CogPrime maps as well).686

This is simply to give a higher a priori probability to entities that are more simply687

computable.688

For starters, we may increase the node probability of ProcedureNodes proportion-689

ately to their simplicity. A reasonable formula here is simply:690

2−rc(P)
691

where P is the ProcedureNode and r > 0 is a parameter. This means that infinitely692

complex P have a priori probability zero, whereas an infinitely simple P has an a693

priori probability 1.694

This is not an exact implementation of the Solomonoff-Levin measure, but it’s695

a decent heuristic approximation. It is not pragmatically realistic to sum over the696

lengths of all programs that do the same thing as a given predicate P. Generally697

the first term of the Solomonoff-Levin summation is going to dominate the sum698

anyway, so if the ProcedureNode P is maximally compact, then our simplified formula699

will be a good approximation of the Solomonoff-Levin summation. These a priori700

probabilities may be merged with node probability estimates from other sources,701

using the revision rule.702

A similar strategy may be taken with ConceptNodes. We want to reward a Con-703

ceptNode C with a higher a priori probability if C ∈ SatisfyingSet(P) for a simple704

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

386 23 Integrative Procedure Learning

PredicateNode P. To achieve this formulaically, let sim(X, Y) denote the strength of705

the SimilarityLink between X and Y, and let:706

sim′(C, P) = sim(C, SatisfyingSet(P))707

We may then define the a priori probability of a ConceptNode as:708

pr(C) =
∑

P

sim′(C, P)2−rc(P)
709

where the sum goes over all P in the system. In practice of course it’s only necessary710

to compute the terms of the sum corresponding to P so that sim′(C, P) is large.711

As with the a priori PredicateNode probabilities discussed above, these a priori712

Concept Node probabilities may be merged with other node probability information,713

using the revision rule, and using a default parameter value for the weight of evi-714

dence. There is one pragmatic difference here from the PredicateNode case, though.715

As the system learns new PredicateNodes, its best estimate of pr(C) may change.716

Thus it makes sense for the system to store the a priori probabilities of ConceptN-717

odes separately from the node probabilities, so that when the a priori probability is718

changed, a two step operation can be carried out:719

• First, remove the old a priori probability from the node probability estimate, using720

the reverse of the revision rule721

• Then, add in the new a priori probability.722

Finally, we can take a similar approach to any Atom Y produced by a SchemaNode.723

We can construct:724

pr(Y) =
∑

S,X

s(S, X, Y)2−r(c(S)+c(X))
725

where the sum goes over all pairs (S, X) so that:726

ExecutionLink S X Y727

and s(S, X, Y) is the strength of this ExecutionLink. Here, we are rewarding Atoms728

that are produced by simple schemata based on simple inputs.729

The combined result of these heuristics is to cause the system to prefer simpler730

explanations, analysis, procedures and ideas. But of course this is only an Apriori731

preference, and if more complex entities prove more useful, these will quickly gain732

greater strength and importance in the system.733

Implementationally, these various processes are carried out by the Occams Razor734

MindAgent. This dynamic selects ConceptNodes based on a combination of:735

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

23.8 Occam’s Razor 387

• Importance736

• Time since the a priori probability was last updated (a long time is preferred).737

It selects ExecutionLinks based on importance and based on the amount of time since738

they were last visited by the Occams Razor MindAgent. And it selects PredicateN-739

odes based on importance, filtering out PredicateNodes it has visited before.740

319613_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 23

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly note that Chap. 1.1 has been changed to Sect. 1.1.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Map Formation

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract In Chap. 2 we distinguished the explicit versus implicit aspects of knowledge representation in CogPrime.
The explicit level consists of Atoms with clearly comprehensible meanings, whereas the implicit level
consists of “maps”—collections of Atoms that become important in a coordinated manner, analogously to
cell assemblies in an attractor neural net.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 24
Map Formation

24.1 Introduction0

In Chap. 2 we distinguished the explicit versus implicit aspects of knowledge1

representation in CogPrime. The explicit level consists of Atoms with clearly com-2

prehensible meanings, whereas the implicit level consists of “maps”—collections of3

Atoms that become important in a coordinated manner, analogously to cell assem-4

blies in an attractor neural net. The combination of the two is valuable because the5

world-patterns useful to human-like minds in achieving their goals, involve varying6

degrees of isolation and interpenetration, and their effective goal-oriented process-7

ing involves both symbolic manipulation (for which explicit representation is most8

valuable) and associative creative manipulation (for which distributed, implicit rep-9

resentation is most valuable).10

The chapters since have focused primarily on explicit representation, comment-11

ing on the implicit “map” level only occasionally. There are two reasons for this:12

one theoretical, one pragmatic. The theoretical reason is that the majority of map13

dynamics and representations are implicit in Atom-level correlates. And the prag-14

matic reason is that, at this stage, we simply do not know as much about CogPrime15

maps as we do about CogPrime Atoms. Maps are emergent entities and, lacking16

a detailed theory of CogPrime dynamics, the only way we have to study them in17

detail is to run CogPrime systems and mine their System Activity Tables and logs18

for information. If CogPrime research goes well, then updated versions of this book19

may include more details on observed map dynamics in various contexts.20

In this chapter, however, we finally turn our gaze directly to maps and their21

relationships to Atoms, and discuss processes that convert Atoms into maps22

(expansion) and vice versa (encapsulation). These processes represent a bridge23

between the concretely-implemented and emergent aspects of CogPrime’s mind.24 AQ1

Map encapsulation is the process of recognizing Atoms that tend to become im-25

portant in a coordinated manner, and then creating new Atoms grouping these. As26

such it is essentially a form of AtomSpace pattern mining. In terms of patternist27

philosophy, map encapsulation is a direct incarnation of the so-called “cognitive28

B. Goertzel et al., Engineering General Intelligence, Part 2, 389
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_24,
© Atlantis Press and the authors 2014

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_2

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

390 24 Map Formation

equation”; that is, the process by which the mind recognizes patterns in itself, and29

then embodies these patterns as new content within itself—an instance of what Hof-30

stadter famously labeled a “strange loop” [Hof79]. In SMEPH terms, the encapsu-31

lation process is how CogPrime explicitly studies its own derived hypergraph and32

then works to implement this derived hypergraph more efficiently by recapitulating33

it at the concretely-implemented-mind level. This of course may change the derived34

hypergraph considerably. Among other things, map encapsulation has the possibility35

of taking the things that were the most abstract, highest level patterns in the system36

and forming new patterns involving them and their interrelationships—thus building37

the highest level of patterns in the system higher and higher. Figures 24.1 and 24.238

illustrate concrete examples of the process.AQ2 39

Map expansion, on the other hand, is the process of taking knowledge that is ex-40

plicitly represented and causing the AtomSpace to represent it implicitly, on the map41

level. In many cases this will happen automatically. For instance, a ConceptNode C42

may turn into a concept map if the importance updating process iteratively acts in43

such a way as to create/reinforce a map consisting of C and its relata. Or, an Atom-44

level InheritanceLink may implicitly spawn a map-level InheritanceEdge (in SMEPH45

terms). However, there is one important case in which Atom-to-map conversion must46

occur explicitly: the expansion of compound ProcedureNodes into procedure maps.47

This must occur explicitly because the process graphs inside ProcedureNodes have48

Fig. 24.1 Illustration of the process of creating explicit Atoms corresponding to a pattern previously
represented as a distributed “map”

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.1 Introduction 391

Fig. 24.2 Illustration of the process of creating explicit Atoms corresponding to a pattern previously
represented as a distributed “map”

no dynamics going on except evaluation; there is no opportunity for them to mani-49

fest themselves as maps, unless a MindAgent is introduced that explicitly does so.50

Of course, just unfolding a Combo tree into a procedure map doesn’t intrinsically51

make it a significant part of the derived hypergraph—but it opens the door for the52

inter-cognitive-process integration that may make this occur.53

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

392 24 Map Formation

24.2 Map Encapsulation54

Returning to encapsulation: it may be viewed as a form of symbolization, in which55

the system creates concrete entities to serve as symbols for its own emergent patterns.56

It can then study an emergent pattern’s interrelationships by studying the interrela-57

tionships of the symbol with other symbols.58

For instance, suppose a system has three derived-hypergraph ConceptVertices59

A, B and C, and observes that:60

InheritanceEdge A B61

InheritanceEdge B C62

Then encapsulation may create ConceptNodes A′, B′ and C′ for A, B and C, and63

InheritanceLinks corresponding to the InheritanceEdges, where e.g. A′ is a set con-64

taining all the Atoms contained in the static map A. First-order PLN inference will65

then immediately conclude:66

InheritanceLink A’ C’67

and it may possibly do so with a higher strength than the strength corresponding to the68

(perhaps not significant) InheritanceEdge between A and C. But if the encapsulation69

is done right then the existence of the new InheritanceLink will indirectly cause the70

formation of the corresponding:71

InheritanceEdge A C72

via the further action of inference, which will use (InheritanceLink A′ C′) to trigger73

the inference of further inheritance relationships between members of A′ and mem-74

bers of C′, which will create an emergent inheritance between members of A (the75

map corresponding to A′) and C (the map corresponding to C′).76

The above example involved the conversion of static maps into ConceptNodes.77

Another approach to map encapsulation is to represent the fact that a set of Atoms78

constitutes a map as a predicate; for instance if the nodes A, B and C are habitually79

used together, then the predicate P may be formed, where:80

P =81

AND82

A is used at time T83

B is used at time T84

C is used at time T85

The habitualness of A, B and C being used together will be reflected in the fact86

that P has a surprisingly high truth value. By a simple concept formation heuristic,87

this may be used to form a link AND (A, B, C), so that:88

AND(A, B, C) is used at time T89

This composite link AND (A, B, C) is then an embodiment of the map in single-90

Atom form.91

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.2 Map Encapsulation 393

Similarly, if a set of schemata is commonly used in a certain series, this may be92

recognized in a predicate, and a composite schema may then be created embodying93

the component schemata. For instance, suppose it is recognized as a pattern that:94

AND95

S1 is used at time T on input I1 producing96

output O197

S2 is used at time T+s on input O1 producing98

output O299

Then we may explicitly create a schema that consists of S1 taking input and feeding100

its output to S2. This cannot be done via any standard concept formation heuristic;101

it requires a special process.102

One might wonder why this Atom-to-map conversion process is necessary: Why103

not just let maps combine to build new maps, hierarchically, rather than artificially104

transforming some maps into Atoms and letting maps then form from these map-105

representing Atoms. It is all a matter of precision. Operations on the map level are106

fuzzier and less reliable than operations on the Atom level. This fuzziness has its posi-107

tive and its negative aspects. For example, it is good for spontaneous creativity, but bad108

for constructing lengthy, confident chains of thought. WIKISOURCE:ActivityTables109

24.3 Atom and Predicate Activity Tables110

A major role in map formation is played by a collection of special tables. Map111

encapsulation takes place, not by data mining directly on the AtomTable, but by data112

mining on these special tables constructed from the AtomTable, specifically with113

efficiency of map mining in mind.114

First, there is the Atom Utilization Table, which may be derived from the Sys-115

temActivityTable. The Atom Utilization Table, in its most simple possible version,116

takes the form shown in Table 24.1.117

The calculation of “utility” values for this purpose must be done in a “local” way by118

MindAgents, rather than by a global calculation of the degree to which utilizing a119

certain Atom has led to the achievement of a certain system goal (this kind of global120

calculation would be better in principle, but it would require massive computational121

effort to calculate for every Atom in the system at frequent intervals). Each Mind122

Agent needs to estimate how much utility it has obtained from a given Atom, as well123

as how much effort it has spent on this Atom, and report these numbers to the Atom124

Utilization Table.125

Table 24.1 Atom utilization
table

Time Atom Handle H

? ? ?
T ? (Effort spent on Atom H at time t, utility

derived from atom H at time t)
? ? ?

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

394 24 Map Formation

The normalization of effort values is simple, since effort can be quantified in terms126

of time and space expended. Normalization of utility values is harder, as it is difficult127

to define a common scale to span all the different MindAgents, which in some cases128

carry out very different sorts of operations. One reasonably “objective” approach129

is to assign each MindAgent an amount of “utility credit”, at time T, equal to the130

amount of currency that the MindAgent has spent since it last disbursed its utility131

credits. It may then divide up its utility credit among the Atoms it has utilized. Other132

reasonable approaches may also be defined.133

The use of utility and utility credit for Atoms and MindAgents is similar to the134

stimulus used in the Attention allocation system. There, MindAgents reward Atoms135

with stimulus to indicate that their short and long term importance should be in-136

creased. Merging utility and stimulus is a natural approach to implementing utility137

in OpenCogPrime.138

Note that there are many practical manifestations that the abstract notion of an139

ActivityTable may take. It could be an ordinary row-and-column style table, but that140

is not the only nor the most interesting possibility. An ActivityTable may also be141

effectively stored as a series of graphs corresponding to time intervals—one graph142

for each interval, consisting of HebbianLinks formed solely based on importance143

during that interval. In this case it is basically a set of graphs, which may be stored144

for instance in an AtomTable, perhaps with a special index.145

Then there is the Procedure Activity Table, which records the inputs and outputs146

associated with procedures:147

Data mining on these tables may be carried out by a variety of algorithms (see148

MapMining)—the more advanced the algorithm, the fuller the transfer from the149

derived-hypergraph level to the concretely-implemented level. There is a tradeoff150

here similar to that with attention allocation—if too much time is spent studying151

the derived hypergraph, then there will not be any interesting cognitive dynamics152

going on anymore because other cognitive processes get no resources, so the map153

encapsulation process will fail because there is nothing to study!154

These same tables may be used in the attention allocation process, for assign-155

ing of MindAgent-specific AttentionValues to Atoms. WIKISOURCE:MapMining156

(Table 24.2)157AQ3

Table 24.2 Procedure
activity table for a particular
MindAgent

Time ProcedureNode Handle H

? ? ?
T ? (Inputs to H, Outputs from H)
? ? ?

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.4 Mining the AtomSpace for Maps 395

24.4 Mining the AtomSpace for Maps158

Searching for general maps in a complex AtomSpace is an unrealistically difficult159

problem, as the search space is huge. So, the bulk of map-mining activity involves160

looking for the most simple and obvious sorts of maps. A certain amount of resources161

may also be allocated to looking for subtler maps using more resource-intensive162

methods.163

The following categories of maps can be searched for at relatively low cost:164

• Static maps165

• Temporal motif maps.166

Conceptually, a static map is simply a set of Atoms that all tend to be active at167

the same time.168

Next, by a “temporal motif map” we mean a set of pairs:169

(Ai , ti)170

of the type:171

(Atom, int)172

so that for many activation cycle indices T , Ai is highly active at some time very173

close to index T + ti . The reason both static maps and temporal motif maps are easy174

to recognize is that they are both simply repeated patterns.175

Perceptual context formation involves a special case of static and temporal motif176

mining. In perceptual context formation, one specifically wishes to mine maps in-177

volving perceptual nodes associated with a single interaction channel (see Chap. 8178

for interaction channel). These maps then represent real-world contexts, that may be179

useful in guiding real-world-oriented goal activity (via schema-context-goal triads).180

In CogPrime so far we have considered three broad approaches for mining static181

and temporal motif maps from AtomSpaces:182

• Frequent subgraph mining, frequent itemset mining, or other sorts of datamining183

on Activity Tables184

• Clustering on the network of HebbianLinks185

• Evolutionary Optimization based datamining on Activity Tables186

The first two approaches are significantly more time-efficient than the latter, but also187

significantly more limited in the scope of patterns they can find.188

Any of these approaches can be used to look for maps subject to several types of189

constraints, such as for instance:190

• Unconstrained: maps may contain any kinds of Atoms191

• Strictly constrained: maps may only contain Atom types contained on a certain192

list193

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_8

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

396 24 Map Formation

• Probabilistically constrained: maps must contain Atom types contained on a194

certain list, as x % of their elements195

• Trigger-constrained: the map must contain an Atom whose type is on a certain196

list, as its most active element197

Different sorts of constraints will lead to different sorts of maps, of course. We don’t198

know at this stage which sorts of constraints will yield the best results. Some special199

cases, however, are reasonably well understood. For instance:200

• Procedure encapsulation, to be discussed below, involves searching for (strictly-201

constrained) maps consisting solely of ProcedureInstanceNodes.202

• To enhance goal achievement, it is likely useful to search for trigger-constrained203

maps triggered by Goal Nodes.204

What the MapEncapsulation CIM-Dynamic (Concretely-Implemented-Mind-205

Dynamic, see Chap. 1) does once it finds a map, is dependent upon the type of206

map it’s found. In the special case of procedure encapsulation, it creates a compound207

ProcedureNode (selecting SchemaNode or PredicateNode based on whether the out-208

put is a TruthValue or not). For static maps, it creates a ConceptNode, which links to209

all members of the map with MemberLinks, the weight of which is determined by210

the degree of map membership. For dynamic maps, it creates PredictiveImplication211

links depicting the pattern of change.212

24.4.1 Frequent Itemset Mining for Map Mining213

One class of technique that is useful here is frequent itemset mining (FIM), a process214

that looks to find all frequent combinations of items occurring in a set of data. Another215

useful class of algorithms is greedy or stochastic itemset mining, which does roughly216

the same thing as FIM but without being completely exhaustive (the advantage being217

greater execution speed). Here we will discuss FIM, but the basic concepts are the218

same if one is doing greedy or stochastic mining instead.219

The basic goal of frequent itemset mining is to discover frequent subsets in a group220

of items. One knows that for a set of N items, there are 2N−1 possible subgroups. To221

avoid the exponential explosion of subsets, one may compute the frequent itemsets222

in several rounds. Round i computes all frequent i-itemsets.223

A round has two steps: candidate generation and candidate counting. In the can-224

didate generation step, the algorithm generates a set of candidate i-itemsets whose225

support—a minimum percentage of events in which the item must appear—has not226

been yet been computed. In the candidate-counting step, the algorithm scans its227

memory database, counting the support of the candidate itemsets. After the scan, the228

algorithm discards candidates with support lower than the specified minimum (an229

algorithm parameter) and retains only the frequent i-itemsets. The algorithm reduces230

the number of tested subsets by pruning a priori those candidate itemsets that can-231

not be frequent, based on the knowledge about infrequent itemsets obtained from232

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_1

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.4 Mining the AtomSpace for Maps 397

previous rounds. So for instance if {A, B} is a frequent 2-itemset then {A, B, C}233

may possibly be a 3-itemset, on the contrary if {A, B} is not a frequent itemset then234

{A, B, C}, as well as any super set of {A, B}, will be discarded. Although the worst235

case of this sort of algorithm is exponential, practical executions are generally fast,236

depending essentially on the support limit.237

To apply this kind of approach to search for static maps, one simply creates a238

large set of sets of Atoms—one set for each time-point. In the set S(t) corresponding239

to time t, we place all Atoms that were firing activation at time t. The itemset miner240

then searches for sets of Atoms that are subsets of many different S(t) corresponding241

to many different times t. These are Atom sets that are frequently co-active.242

Table ?? presents a typical example of data prepared for frequent itemset mining,243

in the context of context formation via static-map recognition. Columns represent244

important nodes and rows indicate time slices. For simplicity, we have thresholded245

the values and show only activity values; so that a one in a cell indicates that the246

Atom indicated by the column was being utilized at the time indicated by the row.247

In the example, if we assume minimum support as 50 %, the context nodes C1 =248

{Q, R}, and C2 = {Q, T, U} would be created.249

Using frequent itemset mining to find temporal motif maps is a similar, but slightly250

more complex process. Here, one fixes a time-window W. Then, for each activation251

cycle index t, one creates a set S(t) consisting of pairs of the form:252

(A, s)253

where A is an Atom and 0 ≤ s ≤ W is an integer temporal offset. We have:254

(A,s) ‘‘within ’’ S(t)255

if Atom A is firing activation at time t + s. Itemset mining is then used to search256

for common subsets among the S(t). These common subsets are common patterns of257

temporal activation, i.e. repeated temporal motifs.258

The strength of this approach is its ability to rapidly search through a huge space259

of possibly significant subsets. Its weakness is its restriction to finding maps that260

can be incrementally built up from smaller maps. How significant this weakness261

is, depends on the particular statistics of map occurrence in CogPrime. Intuitively,262

we believe frequent itemset mining can perform rather well in this context, and our263

preliminary experiments have supported this intuition.264

Frequent Subgraph Mining for Map Mining265

A limitation of FIM techniques, from a CogPrime perspective, is that they are266

intended for relational databases (RDBs); but the information about co-activity in a267

CogPrime instance is generally going to be more efficiently stored as graphs rather268

than RDB’s. Indeed an ActivityTable may be effectively stored as a series of graphs269

corresponding to time intervals—one graph for each interval, consisting of Hebbian-270

Links formed solely based on importance during that interval. From ActivityTable271

stores like this, the way to find maps is not frequent itemset mining but rather frequent272

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

398 24 Map Formation

subgraph mining—a variant of FIM that is conceptually similar but algorithmically273

more subtle, and on which there has arisen a significant literature in recent years.274

We have already briefly discussed this technology in Chap. 19 on pattern mining275

the Atomspace—map mining being an important special case of Atomspace pattern276

mining. As noted there, some of the many approaches to frequent subgraph mining277

are described in [HWP03, KK01].278

24.4.2 Evolutionary Map Detection279

Just as general Atomspace pattern mining may be done via evolutionary learning as280

well as greedy mining, the same holds for the special case of map mining. Comple-281

mentary to the itemset mining approach, the CogPrime design also uses evolutionary282

optimization to find maps. Here the data setup is the same as in the itemset mining283

case, but instead of using an incremental search approach, one sets up a population284

of subsets of the sets S(t), and seeks to evolve the population to find an optimally285

fit S(t). Fitness is defined simply as high frequency—relative to the frequency one286

would expect based on statistical independence assumptions alone.287

In principle one could use evolutionary learning to do all map encapsulation, but288

this isn’t computationally feasible—it would limit too severely the amount of map en-289

capsulation that could be done. Instead, evolutionary learning must be supplemented290

by some more rapid, less expensive technique.291

24.5 Map Dynamics292

Assume one has a collection of Atoms, with:293

• Importance values I(A), assigned via the economic attention allocation294

mechanism.295

• HebbianLink strengths (HebbianLink A B).tv.s, assigned as (loosely speaking)296

the probability of B’s importance assuming A’s importance.297

Then, one way to search for static maps is to look for collections C of Atoms that are298

strong clusters according to HebbianLinks. That is, for instance, to find collections299

C so that:300

• The mean strength of (HebbianLink A B).tv.s, where A and B are in the collection301

C, is large.302

• The mean strength of (HebbianLink A Z).tv.s, where A is in the collection C and303

Z is not, is small.304

(this is just a very simple cluster quality measurement; there is a variety of other305

cluster quality measurements one might use instead.)306

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_19

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.5 Map Dynamics 399

Dynamic maps may be more complex, for instance there might be two collections307

C1 and C2 so that:308

• Mean strength of (HebbianLink A B).s, where A is in C1 and B is in C2309

• Mean strength of (HebbianLink B A).s, where B is in C2 and A is in C1310

are both very large.311

A static map will tend to be an attractor for CogPrime’s attention-allocation-based312

dynamics, in the sense that when a few elements of the map are acted upon, it is likely313

that other elements of the map will soon also come to be acted upon. The reason314

is that, if a few elements of the map are acted upon usefully, then their importance315

values will increase. Node probability inference based on the HebbianLinks will then316

cause the importance values of the other nodes in the map to increase, thus increasing317

the probability that the other nodes in the map are acted upon. Critical here is that the318

HebbianLinks have a higher weight of evidence than the node importance values.319

This is because the node importance values are assumed to be ephemeral—they320

reflect whether a given node is important at a given moment or not—whereas the321

HebbianLinks are assumed to reflect longer-lasting information.322

A dynamic map will also be an attractor, but of a more complex kind. The example323

given above, with C1 and C2, will be a periodic attractor rather than a fixed-point324

attractor. WIKISOURCE:ProcedureEncapsulation.325

24.6 Procedure Encapsulation and Expansion326

One of the most important special cases of map encapsulation is procedure encapsu-327

lation. This refers to the process of taking a schema/predicate map and embodying it328

in a single ProcedureNode. This may be done by mining on the Procedure Activity329

Table, described in Activity Tables, using either:330

• A special variant of itemset mining that seeks for procedures whose outputs serve331

as inputs for other procedures.332

• Evolutionary optimization with a fitness function that restricts attention to sets of333

procedures that form a digraph, where the procedures lie at the vertices and an334

arrow from vertex A to vertex B indicates that the outputs of A become the inputs335

of B.336

The reverse of this process, procedure expansion, is also interesting, though337

algorithmically easier—here one takes a compound ProcedureNode and expands338

its internals into a collection of appropriately interlinked ProcedureNodes. The chal-339

lenge here is to figure out where to split a complex Combo tree into subtrees. But if340

the Combo tree has a hierarchical structure then this is very simple; the hierarchical341

subunits may simply be split into separate ProcedureNodes.342

These two processes may be used in sequence to interesting effect: expanding343

an important compound ProcedureNode so it can be modified via reinforcement344

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

400 24 Map Formation

learning, then encapsulating its modified version for efficient execution, then perhaps345

expanding this modified version later on.346

To an extent, the existence of these two different representations of procedures is347

an artifact of CogPrime’s particular software design (and ultimately, a reflection of348

certain properties of the von Neumann computing architecture). But it also represents349

a more fundamental dichotomy, between:350

• Procedures represented in a way that allows them to be dynamically, improvisation-351

ally restructured via interaction with other mental processes during the execution352

process.353

• Procedures represented in a way that is relatively encapsulated and mechanical,354

allowing collaboration with other aspects of the mind during execution only in355

fairly limited ways.356

Conceptually, we believe that this is a very useful distinction for a mind to make.357

In nearly any reasonable cognitive architecture, it’s going to be more efficient to358

execute a procedure if that procedure is treated as something with a relatively rigid359

structure, so it can simply be executed without worrying about interactions except in360

a few specific regards. This is a strong motivation for an artificial cognitive system to361

have a dual (at least) representation of procedures, or else a subtle representation that362

is flexible regarding its degree of flexibility, and automagically translates constraint363

into efficiency.364

24.6.1 Procedure Encapsulation in More Detail365

A procedure map is a temporal motif: it is a set of Atoms (ProcedureNodes), which366

are habitually executed in a particular temporal order, and which implicitly pass367

arguments amongst each other. For instance, if procedure A acts to create node X,368

and procedure B then takes node X as input, then we may say that A has implicitly369

passed an argument to B.370

The encapsulation process can recognize some very subtle patterns, but a fair371

fraction of its activity can be understood in terms of some simple heuristics.372

For instance, the map encapsulation process will create a node373

h = B f g = f ◦ g = f composed with g374

(B as in combinatory logic) when there are many examples in the system of:375

ExecutionLink g x y376

ExecutionLink f y z377

The procedure encapsulation process will also recognize larger repeated subgraphs,378

and their patterns of execution over time. But some of its recognition of larger sub-379

graphs may be done incrementally, by repeated recognition of simple patterns like380

the ones just described.381

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.6 Procedure Encapsulation and Expansion 401

24.6.2 Procedure Encapsulation in the Human Brain382

Finally, we briefly discuss some conceptual issues regarding the relation between383

CogPrime procedure encapsulation and the human brain. Current knowledge of the384

human brain is weak in this regard, but we won’t be surprised if, in time, it is revealed385

that the brain stores procedures in several different ways, that one distinction between386

these different ways has to do with degree of openness to interactions, and that the387

less open ways lead to faster execution.388

Generally speaking, there is good evidence for a neural distinction between proce-389

dural, episodic and declarative memory. But knowledge about distinctions between390

different kinds of procedural memory is scanter. It is known that procedural knowl-391

edge can be “routinized”—so that, e.g. once you get good at serving a tennis ball or392

solving a quadratic equation, your brain handles the process in a different way than393

before when you were learning. And it seems plausible that routinized knowledge,394

as represented in the brain, has fewer connections back to the rest of the brain than395

the pre-routinized knowledge. But there will be much firmer knowledge about such396

things in the coming years and decades as brain scanning technology advances.397

Overall, there is more knowledge in cognitive and neural science about motor398

procedures than cognitive procedures (see e.g. [SW05]. In the brain, much of motor399

procedural memory resides in the pre-motor area of the cortex. The motor plans400

stored here are not static entities and are easily modified through feedback, and401

through interaction with other brain regions. Generally, a motor plan will be stored402

in a distributed way across a significant percentage of the premotor cortex; and a403

complex or multipart actions will tend to involve numerous sub-plans, executed in404

both parallel and in serial. Often what we think of as separate/distinct motor-plans405

may in fact be just slightly different combinations of subplans (a phenomenon also406

occurring with schema maps in CogPrime).407

In the case of motor plans, a great deal of the routinization process has to do with408

learning the timing necessary for correct coordination between muscles and motor409

subplans. This involves integration of several brain regions—for instance, timing410

is handled by the cerebellum to a degree, and some motor-execution decisions are411

regulated by the basal ganglia.412

One can think of many motor plans as involving abstract and concrete sub-plans.413

The abstract sub-plans are more likely to involve integration with those parts of the414

cortex dealing with conceptual thought. The concrete sub-plans have highly opti-415

mized timings, based on close integration with cerebellum, basal ganglia and so416

forth—but are not closely integrated with the conceptualization-focused parts of417

the brain. So, a rough CogPrime model of human motor procedures might involve418

schema maps coordinating the abstract aspects of motor procedures, triggering activ-419

ity of complex SchemaNodes containing precisely optimized procedures that interact420

carefully with external actuators. WIKISOURCE:MapsAndAttention.421

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

402 24 Map Formation

24.7 Maps and Focused Attention422

The cause of map formation is important to understand. Formation of small maps423

seems to follow from the logic of focused attention, along with hierarchical maps of424

a certain nature. But the argument for this is somewhat subtle, involving cognitive425

synergy between PLN inference and economic attention allocation.426

The nature of PLN is that the effectiveness of reasoning is maximized by (among427

other strategies) minimizing the number of incorrect independence assumptions.428

If reasoning on N nodes, the way to minimize independence assumptions is to use the429

full inclusion-exclusion formula to calculate interdependencies between the N nodes.430

This involves 2N terms, one for each subset of the N nodes. Very rarely, in practical431

cases, will one have significant information about all these subsets. However, the432

nature of focused attention is that the system seeks to find out about as many of these433

subsets as possible, so as to be able to make the most accurate possible inferences,434

hence minimizing the use of unjustified independence assumptions. This implies that435

focused attention cannot hold too many items within it at one time, because if N is436

too big, then doing a decent sampling of the subsets of the N items is no longer437

realistic.438

So, suppose that N items have been held within focused attention, meaning that439

a lot of predicates embodying combinations of N items have been constructed and440

evaluated and reasoned on. Then, during this extensive process of attentional focus,441

many of the N items will be useful in combination with each other—because of442

the existence of predicates joining the items. Hence, many HebbianLinks will grow443

between the N items—causing the set of N items to form a map.444

By this reasoning, it seems that focused attention will implicitly be a map forma-445

tion process—even though its immediate purpose is not map formation, but rather446

accurate inference (inference that minimizes independence assumptions by com-447

puting as many cross terms as is possible based on available direct and indirect448

evidence). Furthermore, it will encourage the formation of maps with a small num-449

ber of elements in them (say, N<10). However, these elements may themselves be450

ConceptNodes grouping other nodes together, perhaps grouping together nodes that451

are involved in maps. In this way, one may see the formation of hierarchical maps,452

formed of clusters of clusters of clusters..., where each cluster has N<10 elements453

in it. These hierarchical maps manifest the abstract dual network concept that occurs454

frequently in CogPrime philosophy.455

It is tempting to postulate that any intelligent system must display similar456

properties—so that focused attention, in general, has a strictly limited scope and457

causes the formation of maps that have central cores of roughly the same size as458

its scope. If this is indeed a general principle, it is an important one, because it tells459

you something about the general structure of derived hypergraphs associated with460

intelligent systems, based on the computational resource constraints of the systems.461

The scope of an intelligent system’s attentional focus would seem to generally462

increase logarithmically with the system’s computational power. This follows im-463

mediately if one assumes that attentional focus involves free intercombination of464

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.7 Maps and Focused Attention 403

the items within it. If attentional focus is the major locus of map formation, then—465

lapsing into SMEPH-speak—it follows that the bulk of the ConceptVertices in the466

intelligent system’s derived hypergraphs may correspond to maps focused on a fairly467

small number of other ConceptVertices. In other words, derived hypergraphs may468

tend to have a fairly localized structure, in which each ConceptVertex has very strong469

InheritanceEdges pointing from a handful of other ConceptVertices (corresponding470

to the other things that were in the attentional focus when that ConceptVertex was471

formed). WIKISOURCE:RecognizingAndCreatingSelfReferentialStructures.472

24.8 Recognizing and Creating Self-Referential Structures473

Finally, this brief section covers a large and essential topic: how CogPrime will be474

able to recognize and create large-scale self-referential structures.475

Some of the most essential structures underlying human-level intelligence are476

self-referential in nature. These include:477

• The phenomenal self (see Thomas Metzinger’s book “Being No One”)478

• The will479

• Reflective awareness480

These structures are arguably not critical for basic survival functionality in natural481

environments. However, they are important for adequate functionality within ad-482

vanced social systems, and for abstract thinking regarding science, humanities, arts483

and technology.484

Recall that in Chap. 4 of Vol. 5 these entities are formalized in terms of hypersets485

and, the following recursive definitions are given:486

• “S is conscious of X” is defined as: The declarative content that “S is conscious487

of X” correlates with “X is a pattern in S”488

• “S wills X” is defined as: The declarative content that “S wills X” causally implies489

“S does X”490

• “X is part of S’s self” is defined as: The declarative content that “X is a part of491

S’s self” correlates with “X is a persistent pattern in S over time”492

Relatedly, one may posit multiple similar processes that are mutually recursive, e.g.493

• S is conscious of T and U494

• T is conscious of S and U495

• U is conscious of S and T496

The cognitive importance of this sort of mutual recursion is further discussed in497

Appendix ??.498 AQ4

According to the philosophy underlying CogPrime, none of these are things that499

should be programmed into an artificial mind. Rather, they must emerge in the course500

of a mind’s self-organization in connection with its environment. However, a mind501

may be constructed so that, by design, these sorts of important self-referential struc-502

tures are encouraged to emerge.503

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_4

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

404 24 Map Formation

24.8.1 Encouraging the Recognition of Self-Referential504

Structures in the AtomSpace505

How can we do this—encourage a CogPrime instance to recognize complex self-506

referential structures that may exist in its AtomTable? This is important, because,507

according to the same logic as map formation: if these structures are explicitly recog-508

nized when they exist, they can then be reasoned on and otherwise further refined,509

which will then cause them to exist more definitively, and hence to be explicitly510

recognized as yet more prominent patterns... etc. The same virtuous cycle via which511

ongoing map recognition and encapsulation is supposed to lead to concept formation,512

may be posited on the level of complex self-referential structures, leading to their513

refinement, development and ongoing complexity.514

One really simple way is to encode self-referential operators in the Combo vocab-515

ulary, that is used to represent the procedures grounding GroundedPredicateNodes.516

That way, one can recognize self-referential patterns in the AtomTable via standard517

CogPrime methods like MOSES and integrative procedure and predicate learning as518

discussed in Chap. 23, so long as one uses Combo trees that are allowed to include519

self-referential operators at their nodes. All that matters is that one is able to take one520

of these Combo trees, compare it to an AtomTable, and assess the degree to which521

that Combo tree constitutes a pattern in that AtomTable.522

But how can we do this? How can we match a self-referential structure like:523

EquivalenceLink524

EvaluationLink will (S,X)525

CausalImplicationLink526

EvaluationLink will (S,X)527

EvaluationLink do (S,X)528

against an AtomTable or portion thereof?529

The question is whether there is some “map” of Atoms (some set of Predicate530

Nodes) willMap, so that we may infer the SMEPH (see Chap. 14 of Vol. 5) relation-531

ship:532

EquivalenceEdge533

EvaluationEdge willMap (S,X)534

CausalImplicationEdge535

EvaluationEdge willMap (S,X)536

EvaluationEdge doMap (S,X)537

as a statistical pattern in the AtomTable’s history over the recent past. (Here, doMap538

is defined to be the map corresponding to the built-in “do” predicate.)539

If so, then this map willMap, may be encapsulated in a single new Node (call it540

willNode), which represents the system’s will. This willNode may then be explicitly541

reasoned upon, used within concept creation, etc. It will lead to the spontaneous542

formation of a more sophisticated, fully-fleshed-out will map. And so forth.543

Now, what is required for this sort of statistical pattern to be recognizable in544

the AtomTable’s history? What is required is that EquivalenceEdges (which, note,545

must be part of the Combo vocabulary in order for any MOSES-related algorithms546

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_23

http://dx.doi.org/10.2991/978-94-6239-027-0_14

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24.8 Recognizing and Creating Self-Referential Structures 405

to recognize patterns involving them) must be defined according to the logic of547

hypersets rather than the logic of sets. What is fascinating is that this is no big deal!548

In fact, the AtomTable software structures support this automatically; it’s just not549

the way most people are used to thinking about things. There is no reason, in terms550

of the AtomTable, not to create self-referential structures like the one given above.551

The next question, though, is how do we calculate the truth values of structures like552

those above. The truth value of a hyperset structure turns out to be an infinite order553

probability distribution, which a complex and peculiar entity [Goe10a]. Infinite-order554

probability distributions are partially-ordered, and so one can compare the extent to555

which two different self-referential structures apply to a given body of data (e.g. an556

AtomTable), via comparing the infinite-order distros that constitute their truth values.557

In this way, one can recognize self-referential patterns in an AtomTable, and carry out558

encapsulation of self-referential maps. This sounds very abstract and complicated,559

but the class of infinite-order distributions defined in the above-referenced papers560

actually have their truth values defined by simple matrix mathematics, so there is561

really nothing that abstruse involved in practice.562

Finally, there is the question of how these hyperset structures are to be logically563

manipulated within PLN. The answer is that regular PLN inference can be applied564

perfectly well to hypersets, but some additional hyperset operations may also be565

introduced; these are currently being researched.566

Clearly, with this subtle, currently unimplemented component of the CogPrime567

design we have veered rather far from anything the human brain could plausibly be568

doing in detail. But yet, some meaningful connections may be drawn. In Chap. 13 of569

Vol. 5 we have discussed how probabilistic logic might emerge from the brain, and570

also how the brain may embody self-referential structures like the ones considered571

here, via (perhaps using the hippocampus) encoding whole neural nets as inputs to572

other neural nets. Regarding infinite-order probabilities, it is certainly the case that573

the brain is efficient at carrying out operations equivalent to matrix manipulations574

(e.g. in vision and audition), and [Goe10a] reduced infinite-order probabilities to575

finite matrix manipulations, so that it’s not completely outlandish to posit the brain576

could be doing something mathematically analogous. Thus, all in all, it seems at least577

plausible that the brain could be doing something roughly analogous to what we’ve578

described here, though the details would obviously be very different.579

319613_1_En_24_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 405 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_13

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 24

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly note that captions of Figs. 24.1 and 24.2 are seems to be
same. Kindly check and confirm.

AQ3 Please check and confirm the inserted citation of Table 24.2 is
correct. If not, please suggest an alternative citation.

AQ4 Please provide appropriate appendix number for Appendix ?? cited
in this chapter.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part VII
2 Communication Between Human
3 and Artificial Minds

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part VII Date: 29-10-2013 Page: 407/407

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Communication Between Artificial Minds

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Language is a key aspect of human intelligence, and seems to be one of two critical factors separating
humans from other intelligent animals—the other being the ability to use tools.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 25
Communication Between Artificial Minds

25.1 Introduction0

Language is a key aspect of human intelligence, and seems to be one of two critical1

factors separating humans from other intelligent animals—the other being the ability2

to use tools. Steven Mithen [Mit96] argues that the key factor in the emergence of3

the modern human mind from its predecessors was the coming-together of formerly4

largely distinct mental modules for linguistic communication and tool making use.5

Other animals do appear to have fairly sophisticated forms of linguistic communica-6

tion, which we don’t understand very well at present; but as best we can tell, modern7

human language has many qualitatively different aspects from these, which enable8

it to synergize effectively with tool making and use, and which have enabled it to9

co-evolve with various aspects of tool-dependent culture.10

Some AGI theorists have argued that, since the human brain is largely the same11

as that of apes and other mammals without human-like language, the emulation of12

human-like language is not the right place to focus if one wants to build human-13

level AGI. Rather, this argument goes, one should proceed in the same order that14

evolution did—start with motivated perception and action, and then once these are15

mastered, human-like language will only be a small additional step. We suspect this16

would indeed be a viable approach—but may not be well suited for the hardware17

available today. Robot hardware is quite primitive compared to animal bodies, but18

the kind of motivated perception and action that non-human animals do is extremely19

body-centric (even more so than is the case in humans). On the other hand, mod-20

ern computing technology is quite sophisticated as regards language—we program21

computers (including AIs) using languages of a sort, for example. This suggests that22

on a pragmatic basis, it may make sense to start working with language at an earlier23

stage in AGI development, than the analogue with the evolution of natural organisms24

would suggest.25

The CogPrime architecture is compatible with a variety of different approaches26

to language learning and capability, and frankly at this stage we are not sure which27

approach is best. Our intention is to experiment with a variety of approaches and28

B. Goertzel et al., Engineering General Intelligence, Part 2, 409
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_25,
© Atlantis Press and the authors 2014

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

410 25 Communication Between Artificial Minds

proceed pragmatically and empirically. One option is to follow the more “natural”29

course and let sophisticated non-linguistic cognition emerge first, before dealing with30

language in any serious way—and then encourage human-like language facility to31

emerge via experience. Another option is to integrate some sort of traditional com-32

putational linguistics system into CogPrime, and then allow CogPrime’s learning33

algorithms to modify this system based on its experience. Discussion of this latter34

option occupies most of this section of the book—involves many tricks and compro-35

mises, but could potentially constitute a faster route to success. Yet another option is36

to communicate with young CogPrime systems using an invented language halfway37

between the human-language and programming-language domains, such as Lojban38

(this possibility is discussed in Appendix E).39

In this initial chapter on communication, we will pursue a direction quite different40

from the latter chapters, and discuss a kind of communication that we think may be41

very valuable in the CogPrime domain, although it has no close analogue among42

human beings. Many aspects of CogPrime closely resemble aspects of the human43

mind; but in the end CogPrime is not intended as an emulation of human intelligence,44

and there are some aspects of CogPrime that bear no resemblance to anything in the45

human mind, but exploit some of the advantages of digital computing infrastructure46

over neural wetware. One of the latter aspects is Psynese, a word we have introduced47

to refer to direct mind-to-mind information transfer between artificial minds.48

Psynese has some relatively simple practical applications: e.g. it could aid with49

the use of linguistic resources and hand-coded or statistical language parsers within50

a learning-based language system, to be discussed in following chapters. In this use51

case, one sets up one CogPrime using the traditional NLP approaches, and another52

CogPrime using a purer learning-based approach, and lets the two systems share53

mind-stuff in a controlled way. Psynese may also be useful in the context of intelligent54

virtual pets, where one may wish to set up a CogPrime representing “collective55

knowledge” of multiple virtual pets.56

But it also has some grander potential implications, such as the ability to fuse57

multiple AI systems into “mindplexes” as discussed in Chap. 12 of Vol. 5.58

One might wonder why a community of two or more CogPrime s would need59

a language at all, in order to communicate. After all, unlike humans, CogPrime60

systems can simply exchange “brain fragments”—subspaces of their Atomspaces.61

One CogPrime can just send relevant nodes and links to another CogPrime (in binary62

form, or in an XML representation, etc.), bypassing the linear syntax of language.63

This is in fact the basis of Psynese: why transmit linear strings of characters when64

one can directly transit Atoms? But the details are subtler than it might at first seem.65

One CogPrime can’t simply “transfer a thought” to another CogPrime. The prob-66

lem is that the meaning of an Atom consists largely of its relationships with other67

Atoms, and so to pass a node to another CogPrime, it also has to pass the Atoms that68

it is related to, and so on. Atomspaces tend to be densely interconnected, and so to69

transmit one thought fully accurately, a CogPrime system is going to end up having70

to transmit a copy of its entire Atomspace! Even if privacy were not an issue, this71

form of communication (each utterance coming packaged with a whole mind-copy)72

would present rather severe processing load on the communicators involved.73

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_12

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

25.1 Introduction 411

The idea of Psynese is to work around this interconnectedness problem by defin-74

ing a mechanism for CogPrime instances to query each others’ minds directly, and75

explicitly represent each others’ concepts internally. This doesn’t involve any unique76

cognitive operations besides those required for ordinary individual thought, but it77

requires some unique ways of wrapping up these operations and keeping track of78

their products.79

Another idea this leads to is the notion of a PsyneseVocabulary: a collection of80

Atoms, associated with a community of CogPrime s, approximating the most impor-81

tant Atoms inside that community. The combinatorial explosion of direct-Atomspace82

communication is then halted by an appeal to standardized Psynese Atoms. Prag-83

matically, a PsyneseVocabulary might be contained in a PsyneseVocabulary server,84

a special CogPrime instance that exists to mediate communications between other85

CogPrime s, and provide CogPrime s with information. Psynese makes sense both as86

a mechanism for peer-to-peer communication between CogPrime s, and as a mech-87

anism allowing standardized communication between a community of CogPrime s88

using a PsyneseVocabulary server.89

25.2 A Simple Example Using a PsyneseVocabulary Server90

Suppose CogPrime 1 wanted to tell CogPrime 2 that “Russians are crazy” (with the91

latter word meaning something inbetween “insane” and “impractical”); and suppose92

that both CogPrime s are connected to the same Psynese CogPrime with Psynese-93

Vocabulary PV. Then, for instance, it must find the Atom in PV corresponding to its94

concept “crazy.” To do this it must create an AtomStructureTemplate such as95

Pred1(C1)96

equals97

ThereExists98

W1 , C2 , C3 , W2 , W399

AND100

ConceptNode: C1101

ReferenceLink C1 W1102

WordNode: W1 #crazy103

ConceptNode: C2104

HebbianLink C1 C2105

ReferenceLink C2 W2106

WordNode: W2 #insane107

ConceptNode: C3108

HebbianLink C1 C3109

ReferenceLink C3 W3110

WordNode: W3 #impractical111

encapsulating relevant properties of the Atom it wants to grab from PV. In this112

example the properties specified are:113

• ConceptNode, linked via a ReferenceLink to the WordNode for “crazy”.114

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

412 25 Communication Between Artificial Minds

• HebbianLinks with ConceptNodes linked via ReferenceLinks to the WordNodes115

for “insane” and “impractical”.116

So, what CogPrime 1 can do is fish in PV for “some concept that is denoted by the117

word ‘crazy’ and is associated with ‘insane’ and ‘impractical’.” The association with118

“insane” provides more insurance of getting the correct sense of the word “crazy” as119

opposed to e.g. the one in the phrase “He was crazy about her” or in “That’s crazy,120

man, crazy” (in the latter slang usage “crazy” basically means “excellent”). The121

association with “impractical” biases away from the interpretation that all Russians122

are literally psychiatric patients.1123

So, suppose that CogPrime 1 has fished the appropriate Atoms for “crazy” and124

“Russian” from PV. Then it may represent in its Atomspace something we may125

denote crudely (a better notation will be introduced later) as126

InheritanceLink PV :477335:1256953732 PV :744444:127

1256953735 <.8.,6>128

where e.g. “PV:744444” means “the Atom with Handle 744444 in CogPrime PV at129

time 1256953735,” and may also wish to store additional information such as130

PsyneseEvaluationLink <.9>131

PV132

Pred1133

PV :744444:1256953735134

meaning that Pred1(PV :744444 :1256953735) holds true with truth value < .9 > if135

all the Atoms referred to within Pred1 are interpreted as existing in PV rather than136

CogPrime 1.137

The InheritanceLink then means: “In the opinion of CogPrime 1, ‘Russian’ as de-138

fined by PV:477335:1256953732 inherits from ‘crazy’ as defined by PV:744444:125139

6953735 with truth value < .8, .6 >.”140

Suppose CogPrime 1 then sends the InheritanceLink to CogPrime 2. It is going141

to be meaningfully interpretable by CogPrime 2 to the extent that CogPrime 2 can142

interpret the relevant PV Atoms, for instance by finding Atoms of its own that cor-143

respond to them. To interpret these Atoms, CogPrime 2 must carry out the reverse144

process that CogPrime 1 did to find the Atoms in the first place. For instance, to fig-145

ure out what PV:744444:1256953735 means to it, CogPrime 2 may find some of the146

important links associated with the Node in PV, and make a predicate accordingly,147

e.g.:148

Pred2(C1)149

equals150

ThereExists151

W1 , C2 , C3 , W2 , W3152

AND153

1 A similar but perhaps more compelling example would be the interpretation of the phrase “the
accountant cooked the books.” In this case both “cooked” and “books” are used in atypical senses,
but specifying a HebbianLink to “accounting” would cause the right Nodes to get retrieved from
PV.

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

25.2 A Simple Example Using a PsyneseVocabulary Server 413

ConceptNode: C1154

ReferenceLink C1 W1155

WordNode: W1 #crazy156

ConceptNode: C2157

HebbianLink C1 C2158

ReferenceLink C2 W2159

WordNode: W2 #lunatic160

ConceptNode: C3161

HebbianLink C1 C3162

ReferenceLink C3 W3163

WordNode: W3 #unrealistic164

On the other hand, if there is no PsyneseVocabulary involved, then CogPrime 1165

can submit the same query directly to CogPrime 2. There is no problem with this, but166

if there is a reasonably large community of CogPrime s it becomes more efficient for167

them all to agree on a standard vocabulary of Atoms to be used for communication—168

just as, at a certain point in human history, it was recognized as more efficient for169

people to use dictionaries rather than to rely on peer-to-peer methods for resolution170

of linguistic disagreements.171

The above examples involve human natural language terms, but this does not have172

to be the case. PsyneseVocabularies can contain Atoms representing quantitative or173

other types of data, and can also contain purely abstract concepts. The basic idea174

is the same. A CogPrime has some Atoms it wants to convey to another CogPrime,175

and it looks in a PsyneseVocabulary to see how easily it can approximate these176

Atoms in terms of “socially understood” Atoms. This is particularly effective if the177

CogPrime receiving the communication is familiar with the PsyneseVocabulary in178

question. Then the recipient may already know the PsyneseVocabulary Atoms it is179

being pointed to; it may have already thought about the difference between these180

consensus concepts and its own related concepts. Also, if the sender CogPrime is181

encapsulating maps for easy communication, it may specifically seek approximate182

encapsulations involving PsyneseVocabulary terms, rather than first encapsulating183

in its own terms and then translating into PsyneseVocabulary terms.184

25.2.1 The Psynese Match Schema185

One way to streamline the above operations is to introduce a Psynese Match Schema,186

with the property that187

ExOut188

PsyneseMatch PV A189

within CogPrime instance CP1, denotes the Atom within CogPrime instance PV190

that most closely matches the Atom A in CP1. Note that the PsyneseMatch schema191

implicitly relies on various parameters, because it must encapsulate the kind of192

process described explicitly in the above example. PsyneseMatch must, internally,193

decide how many and which Atoms related to A should be used to formulate a query194

to PV , and also how to rank the responses to the query (e.g. by strength×confidence).195

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

414 25 Communication Between Artificial Minds

Using PsyneseMatch, the example written above as196

Inheritance PV :477335:1256953732 PV :744444:1256953735197

<.8.,6>198

could be rewritten as199

Inheritance <.8.,6>200

ExOut201

PsyneseMatch PV C1202

ExOut203

PsyneseMatch PV C2204

where C1 and C2 are the ConceptNodes in CP1 corresponding to the intended senses205

of “crazy” and “Russian.”206

25.3 Psynese as a Language207

The general definition of a psynese expression for CogPrime is a Set of Atoms that208

contains only:209

• Nodes from PsyneseVocabularies.210

• Perceptual nodes (numbers, words, etc.).211

• Relationships relating no nodes other than the ones in the above two categories,212

and relating no relationships except ones in this category.213

• Predicates or Schemata involving no relationships or nodes other than the ones in214

the above three categories, or in this category.215

The PsyneseEvaluationLink type indicated earlier forces interpretation of a predicate216

as a Psynese expression.217

In what sense is the use of Psynese expressions to communicate a language?218

Clearly it is a formal language in the mathematical sense. It is not quite a “human219

language” as we normally conceive it, but it is ideally suited to serve the same func-220

tions for CogPrime s as human language serves for humans. The biggest differences221

from human language are:222

• Psynese uses weighted, typed hypergraphs (i.e. Atomspaces) instead of linear223

strings of symbols. This eliminates the “parsing” aspect of language (syntax being224

mainly a way of projecting graph structures into linear expressions).225

• Psynese lacks subtle and ambiguous referential constructions like “this”, “it” and226

so forth. These are tools allowing complex thoughts to be compactly expressed in227

a linear way, but CogPrime s don’t need them. Atoms can be named and pointed228

to directly without complex, poorly-specified mechanisms mediating the process.229

• Psynese has far less ambiguity. There may be Atoms with more than one aspect230

to their meanings, but the cost of clarifying such ambiguities is much lower for231

CogPrime s than for humans using language, and so habitually there will not be232

the rampant ambiguity that we see in human expressions.233

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

25.3 Psynese as a Language 415

On the other hand, mapping Psynese into Lojban—a syntactically formal, seman-234

tically highly precise language created for communication between humans—rather235

than a true natural language would be much more straightforward. Indeed, one could236

create a PsyneseVocabulary based on Lojban, which might be ideally suited to serve237

as an intermediary between different CogPrime s. And Lojban may be used to create238

a linearized version of Psynese that looks more like a natural language. We return to239

this point in Appendix ??. AQ1240

25.4 Psynese Mindplexes241

We now recall from Chap. 12 of Vol. 5 the notion of a mindplex: that is, an intelligent242

system that:243

1. Is composed of a collection of intelligent systems, each of which has its own244

“theater of consciousness” and autonomous control system, but which interact245

tightly, exchanging large quantities of information frequently.246

2. Has a powerful control system on the collective level, and an active “theater of247

consciousness” on the collective level as well.248

In informal discussions, we have found that some people, on being introduced to249

the mindplex concept, react by contending that either human minds or human social250

groups are mindplexes. However, I believe that, while there are significant similarities251

between mindplexes and minds, and between mindplexes and social groups, there252

are also major qualitative differences. It’s true that an individual human mind may253

be viewed as a collective, both from a theory-of-cognition perspective (e.g. Minsky’s254

“society of mind” theory [Min88]) and from a personality-psychology perspective255

(e.g. the theory of subpersonalities [Row90]). And it’s true that social groups dis-256

play some autonomous control and some emergent-level awareness. However, in257

a healthy human mind, the collective level rather than the cognitive-agent or sub-258

personality level is dominant, the latter existing in service of the former; and in a259

human social group, the individual-human level is dominant, the group-mind clearly260

“cognizing” much more crudely than its individual-human components, and exerting261

most of its intelligence via its impact on individual human minds. A mindplex is a262

hypothetical intelligent system in which neither level is dominant, and both levels263

are extremely powerful. A mindplex is like a human mind in which the subperson-264

alities are fully-developed human personalities, with full independence of thought,265

and yet the combination of subpersonalities is also an effective personality. Or, from266

the other direction, a mindplex is like a human society that has become so integrated267

and so cohesive that it displays the kind of consciousness and self-control that we268

normally associate with individuals.269

There are two mechanisms via which mindplexes may possibly arise in the270

medium-term future:271

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_12

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

416 25 Communication Between Artificial Minds

1. Humans becoming more tightly coupled via the advance of communication tech-272

nologies, and a communication-centric AI system coming to embody the “emer-273

gent conscious theater” of a human-incorporating mindplex.274

2. A society of AI systems communicating amongst each other with a richness not275

possible for human beings, and coming to form a mindplex rather than merely a276

society of distinct AI’s.277

The former sort of mindplex relates to the concept of a “global brain” discussed278

in Chap. 12 of Vol. 5. Of course, these two sorts of mindplexes are not mutually279

contradictory, and may coexist or fuse. The possibility also exists for higher-order280

mindplexes, meaning mindplexes whose component minds are themselves mind-281

plexes. This would occur, for example, if one had a mindplex composed of a family282

of closely-interacting AI systems, which acted within a mindplex associated with the283

global communication network.284

Psynese, however, is more directly relevant to the latter form of mindplex. It gives285

a concrete mechanism via which such a mindplex might be sculpted.286

25.4.1 AGI Mindplexes287

How does one get from CogPrime s communicating via Psynese to CogPrime mind-288

plexes?289

Clearly, with the Psynese mode of communication, the potential is there for much290

richer communication than exists between humans. There are limitations, posed by291

the private nature of many concepts—but these limitations are much less onerous than292

for human language, and can be overcome to some extent by the learning of complex293

cognitive schemata for translation between the “private languages” of individual294

Atomspaces and the “public languages” of Psynese servers.295

But rich communication does not in itself imply the evolution of mindplexes. It296

is possible that a community of Psynese-communicating CogPrime s might spon-297

taneously evolve a mindplex structure—at this point, we don’t know enough about298

CogPrime individual or collective dynamics to say. But it is not necessary to rely299

on spontaneous evolution. In fact it is possible, and even architecturally simple, to300

design a community of CogPrime s in such a way as to encourage and almost force301

the emergence of a mindplex structure.AQ2302

The solution is simple: simply beef up PsyneseVocabulary servers. Rather than303

relatively passive receptacles of knowledge from the CogPrime s they serve, allow304

them to be active, creative entities, with their own feelings, goals and motivations.305

The PsyneseVocabulary servers serving a community of CogPrime’s are ab-306

solutely critical to these CogPrime s. Without them, high-level inter-CogPrime307

communication is effectively impossible. And without the concepts the PsyneseVo-308

cabularies supply, high-level individual CogPrime thought will be difficult, because309

CogPrime s will come to think in Psynese to at least the same extent to which humans310

think in language.311

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_12

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

25.4 Psynese Mindplexes 417

Suppose each PsyneseVocabulary server has its own full CogPrime mind, its own312

“conscious theater”. These minds are in a sense “emergent minds” of the CogPrime313

community they serve—because their contents are a kind of “nonlinear weighted314

average” of the mind-contents of the community. Furthermore, the actions these315

minds take will feed back and affect the community in direct and indirect ways—by316

affecting the language by which the minds communicate. Clearly, the definition of a317

mindplex is fulfilled.318

But what will the dynamics of such a CogPrime mindplex be like? What will be319

the properties of its cognitive and personality psychology? We could speculate on320

this here, but would have very little faith in the possible accuracy of our speculations.321

The psychology of mindplexes will reveal itself to us experimentally as our work on322

AGI engineering, education and socialization proceeds.323

One major issue that arises, however, is that of personality filtering. Put simply:324

each intelligent agent in a mindplex must somehow decide for itself which knowl-325

edge to grab from available PsyneseVocabulary servers and other minds, and which326

knowledge to avoid grabbing from others in the name of individuality. Different327

minds may make different choices in this regard. For instance, one choice could be328

to, as a matter of routine, take only extremely confident knowledge from the Psynese-329

Vocabulary server. This corresponds roughly to ingesting “facts” from the collective330

knowledge pool, but not opinions or speculations. Less confident knowledge would331

then be ingested from the collective knowledge pool on a carefully calculated and332

as-needed basis. Another choice could be to accept only small networks of Atoms333

from the collective knowledge pool, on the principle that these can be reflectively334

understood as they are ingested, whereas large networks of Atoms are difficult to335

deliberate and reflect about. But any policies like this are merely heuristic ones.336

25.5 Psynese and Natural Language Processing337

Next we review a more near-term, practical application of the Psynese mechanism:338

the fusion of two different approaches to natural language processing in CogPrime,339

the experiential learning approach and the “engineered NLP subsystem” approach.340

In the former approach, language is not given any extremely special role, and341

CogPrime is expected to learn language much as it would learn any other complex342

sort of knowledge. There may of course be learning biases programmed into the343

system, to enable it to learn language based on its experience more rapidly. But there344

is no concrete linguistic knowledge programmed in.345

In the latter approach, one may use knowledge from statistical corpus analysis,346

one may use electronic resources like WordNet and FrameNet, and one may use347

sophisticated, specialized tools like natural language parsers with hand-coded gram-348

mars. Rather than trying to emulate the way a human child learns language, one is349

trying to emulate the way a human adult comprehends and generates language.350

Of course, there is not really a rigid dichotomy between these two approaches.351

Many linguistic theorists who focus on experiential learning also believe in some352

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

418 25 Communication Between Artificial Minds

form of universal grammar, and would advocate for an approach where learning353

is foundational but is biased by in-built abstract structures representing universal354

grammar. There is of course very little knowledge (and few detailed hypotheses)355

about how universal grammar might be encoded in the human brain, though there356

is reason to think it may be at a very abstract level, due to the significant overlaps357

between grammatical structure, social role structure [CB00], and physical reasoning358

[Cas04].359

The engineered approach to NLP provides better functionality right “out of the360

box,” and enables the exploitation of the vast knowledge accumulated by com-361

putational linguists in the past decades. However, we suspect that computational362

linguistics may have hit a ceiling in some regards, in terms of the quality of the lan-363

guage comprehension and generation that it can deliver. It runs up against problems364

related to the disambiguation of complex syntactic constructs, which don’t seem to365

be resolvable using either a tractable number of hand-coded rules, or supervised or366

unsupervised learning based on a tractably large set of examples. This conclusion367

may be disputed, and some researchers believe that statistical computational linguis-368

tics can eventually provide human-level functionality, once the Web becomes a bit369

larger and the computers used to analyze it become a bit more powerful. But in our370

view it is interesting to explore hybridization between the engineered and experi-371

ential approaches, with the motivation that the experiential approach may provide a372

level of flexibility and insight at dealing with ambiguity that the engineered approach373

apparently lacks.374

After all, the way a human child deals with the tricky disambiguation problems375

that stump current computational linguistics systems is not via analysis of trillion-376

word corpuses, bur rather via correlating language with non-linguistic experience.377

One may argue that the genome implicitly contains a massive corpus of speech,378

but there it’s also to be noted that this is experientially contextualized speech. And379

it seems clear from the psycholinguistic evidence [Tom03] that for young human380

children, language is part and parcel of social and physical experience, learned in a381

manner that’s intricately tied up with the learning of many other sorts of skills.382

One interesting approach to this sort of hybridization, using Psynese, is to create383

multiple CogPrime instances taking different approaches to language learning, and384

let them communicate. Most simply one may create385

• A CogPrime instance that learns language mainly based on experience, with per-386

haps some basic in-built structure and some judicious biasing to its learning (let’s387

call this CPexp).388

• A CogPrime instance using an engineered NLP system (let’s call this CPeng).389

In this case, CPexp can use CPeng as a cheap way to test its ideas. For instance390

suppose, CPexp thinks it has correctly interpreted a certain sentence S into Atom-set391

A. Then it can send its interpretation A to CPeng and see whether CPeng thinks A is392

a good interpretation of S, by consulting CPeng the truth value of393

ReferenceLink394

ExOut395

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

25.5 Psynese and Natural Language Processing 419

PsyneseMatch CPeng S396

ExOut397

PsyneseMatch CPeng A398

Similarly, if CPexp believes it has found a good way (S) to linguistically express a399

collection S of Atoms A, it can check whether these two match reasonably well in400

CPeng.401

Of course, this approach could be abused in an inefficient and foolish way, for402

instance if CPexp did nothing but randomly generate sentences and then test them403

against CPeng. In this case we would have a much less efficient approach than simply404

using CPeng directly. However, effectively making use of CPeng as a resource requires405

a different strategy: throwing CPeng only a relatively small selection of things that406

seem to make sense, and using CPeng as a filter to avoid trying out rough-draft guesses407

in actual human conversation.408

This hybrid approach, we suggest, may provide a way of getting the best of both409

worlds: the flexibility of a experiential-learning-based language approach, together410

with the exploitation of existing linguistic tools and resources. With this in mind, in411

the following chapters we will describe both engineering and experiential-learning412

based approaches to NLP.413

25.5.1 Collective Language Learning414

Finally we bring the language-learning and mindplex themes together, in the notion415

of collective language learning. One of the most interesting uses for a mindplex416

architecture is to allow multiple CogPrime agents to share the linguistic knowledge417

they gain. One may envision a PsyneseVocabulary server into which a population418

of CogPrime agents input their linguistic knowledge specifically, and which these419

agents then consult when they wish to comprehend or express something in language,420

and their individual NLP systems are not up to the task.421

This could be a very powerful approach to language learning, because it would422

allow a potentially very large number of AI systems to effectively act as a single423

language learning system. It is an especially appealing approach in the context of424

CogPrime systems used to control animated agents in online virtual worlds or mul-425

tiplayer games. The amount of linguistic experience undergone by, say, 100,000 vir-426

tually embodied CogPrime agents communicating with human virtual world avatars427

and game players, would be far more than any single human child or any single428

agent could undergo. Thus, to the extent that language learning can be accelerated429

by additional experience, this approach could enable language to be learned quite430

rapidly. AQ3431

319613_1_En_25_Chapter-online � TYPESET DISK LE � CP Disp.:28/10/2013 Pages: 419 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 25

Query Refs. Details Required Author’s response

AQ1 Kindly provide appropriate citation in the place of Appendix ?? in
sentence starting with ‘We return to... (under Sect. 25.3)’.

AQ2 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ3 Kindly confirm whether to change the term ‘CogPrime s’ to ‘Cog-
Prime systems’ or ‘CogPrime’ throughout the chapter.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Natural Language Comprehension

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Two key approaches to endowing AGI systems with linguistic facility exist, as noted above.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 26
Natural Language Comprehension

26.1 Introduction0

Two key approaches to endowing AGI systems with linguistic facility exist, as noted1

above:2

• “Experiential”—shorthand here for “gaining most of its linguistic knowledge from3

interactive experience, in such a way that language learning is not easily separable4

from generic learning how to survive and flourish”5

• “Engineered”—shorthand here for “gaining most of its linguistic knowledge from6

sources other than the system’s own experience in the world” (including learning7

language from resources like corpora).8

This dichotomy is somewhat fuzzy, since getting experiential language learning to9

work well may involve some specialized engineering, and engineered NLP systems10

may also involve some learning from experience. However, in spite of the fuzziness,11

the dichotomy is still real and important; there are concrete choices to be made in12

designing an NLP system and this dichotomy compactly symbolizes some of them.13

Much of this chapter and the next few will be focused on the engineering approach,14

but we will also devote some space to discussing the experience-based approach.15

Our overall perspective on the dichotomy is that16

• The engineering-based approach, on its own, is unlikely to take us to human-level17

NLP ... but this isn’t wholly impossible, if the engineering is done in a manner that18

integrates linguistic functionality richly with other kinds of experiential learning19

• Using a combination of experience-based and engineering-based approaches may20

be the most practical option21

• The engineering approach is useful for guiding the experiential approach, because22

it tells us a lot about what kinds of general structures and dynamics may be adequate23

for intelligent language processing. To simplify a bit, one can prepare an AGI sys-24

tem for experiential learning by supplying it with structures and dynamics capable25

of supporting the key components of an engineered NLP system—and biased to-26

ward learning things similar to known engineered NLP systems—but requiring27

B. Goertzel et al., Engineering General Intelligence, Part 2, 421
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_26,
© Atlantis Press and the authors 2014

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

422 26 Natural Language Comprehension

all, or the bulk of, the actual linguistic content to be learned via experience. This28

approach may be preferable to requiring a system to learn language based on more29

abstract structures and dynamics, and may indeed be more comparable to what30

human brains do, given the large amount of linguistic biasing that is probably built31

into the human genome.32

Further distinctions, overlapping with this one, may also be useful. One may33

distinguish (at least) five modes of instructing NLP systems, the first three of which34

are valid only for engineered NLP systems, but the latter two of which are valid both35

for engineered and experiential NLP systems:36

• Hand-coded rules37

• Supervised learning on hand-tagged corpuses, or via other mechanisms of explicit38

human training39

• Unsupervised learning from static bodies of data40

• Unsupervised learning via interactive experience41

• Supervised learning via interactive experience.42

Note that, in principle, any of these modes may be used in a pure-language43

or a socially/physically embodied language context. Of course, there is also semi-44

supervised learning which may be used in place of supervised learning in the above45

list [CSZ06].46

Another key dichotomy related to linguistic facility is language comprehension47

versus language generation (each of which is typically divided into a number of dif-48

ferent subprocesses). In language comprehension, we have processes like stemming,49

part-of-speech tagging, grammar-based parsing, semantic analysis, reference reso-50

lution and discourse analysis. In language generation, we have semantic analysis,51

syntactic sentence generation, pragmatic discourse generation, reference-insertion,52

and so forth. In this chapter and the next two we will briefly review all these differ-53

ent topics and explain how they may be embodied in CogPrime. Then, in Chap. 1254

of Vol. 5 we present a complementary approach to linguistic interaction with AGI55

systems based on the invented language Lojban; and in Chap. 30 we discuss the use56

of CogPrime cognition to regulate the dialogue process.57AQ1

A typical, engineered computational NLP system involves hand-coded algorithms58

carrying out each of the specific tasks mentioned in the previous paragraph, some-59

times with parameters, rules or number tables that are tuned or learned statistically60

based on corpuses of data. In fact, most NLP systems handle only understanding or61

only generation; systems that cover both aspects in a unified way are quite rare. The62

human mind, on the other hand, carries out these tasks in a much more interconnected63

way—using separate procedures for the separate tasks, to some extent, but allowing64

each of these procedures to be deeply informed by the information generated by the65

other procedures. This interconnectedness is what allows the human mind to really66

understand language—specifically because human language syntax is complex and67

ambiguous enough that the only way to master it is to infuse one’s syntactic analyses68

with semantic (and to a lesser extent pragmatic) knowledge. In our treatment of NLP69

we will pay attention to connections between linguistic functionalities, as well as to70

linguistic functionalities in isolation.71

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_12

http://dx.doi.org/10.2991/978-94-6239-030-0_30

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.1 Introduction 423

It’s worth emphasizing that what we mean by a “experience based” language sys-72

tem is quite different from corpus-based language systems as are commonplace in73

computational linguistics today [MS99] (and from the corpus-based learning algo-74

rithm to be discussed in Chap. 27). In fact, we feel the distinction between corpus-75

based and rule-based language processing systems is often overblown. Whether one76

hand-codes a set of rules, or carefully marks up a corpus so that rules can be induced77

from it, doesn’t ultimately make that much difference. For instance, OpenCogPrime’s78

RelEx system (to be described below) uses hand-coded rules to do much the same79

thing that the Stanford parser does using rules induced from a tagged corpus. But both80

systems do roughly the same thing. RelEx is currently faster due to using fewer rules,81

and it handles some complex cases like comparatives better (presumably because82

they were not well covered in the Stanford parser’s training corpus); but the Stanford83

parser may be preferable in other respects, for instance it’s more easily generalizable84

to languages beyond English (for a language with structure fairly similar to English,85

one just has to supply a new marked-up training corpus; whereas porting RelEx rules86

to other languages requires more effort).87

An unsupervised corpus-based learning system like the one to be described in88

Chap. 27 is a little more distinct from rule-based systems, in that it is based on89

inducing patterns from natural rather than specially prepared data. But still, it is90

learning language as a phenomenon unto itself, rather than learning language as part91

and parcel of a system’s overall experience in the world.92

The key distinction to be made, in our view, is between language systems that93

learn language in a social and physical context, versus those that deal with language94

in isolation. Dealing with language in context immediately changes the way the95

linguistics problem appears (to the AI system, and also to the researcher), and makes96

hand-coded rules and hand-tagged corpuses less viable, shifting attention toward97

experiential learning based approaches.98

Ultimately we believe that the “right” way to teach an AGI system language is99

via semi-supervised learning in a socially and physically embodied context. That100

is: talk to the system, and have it learn both from your reinforcement signals101

and from unsupervised analysis of the dialogue. However, we believe that other102

modes of teaching NLP systems can also contribute, especially if used in support103

of a system that also does semi-supervised learning based on embodied interactive104

dialogue. AQ2105

Finally, a note on one aspect of language comprehension that we don’t deal with106

here. We deal only with text processing, not speech understanding or generation. A107

CogPrime approach to speech would be quite feasible to develop, for instance using108

neural-symbolic hybridization with DeSTIN or a similar perceptual-motor hierarchy.109

However, this potential aspect of CogPrime has not been pursued in detail yet, and110

we won’t devote space to it here.111

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_27

http://dx.doi.org/10.2991/978-94-6239-030-0_27

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

424 26 Natural Language Comprehension

26.2 Linguistic Atom Types112

Explicit representation of linguistic knowledge in terms of Atoms is not a deep issue,113

more of a “plumbing” type of issue, but it must be dealt with before moving on to114

subtler aspects.115

In principle, for dealing with linguistic information coming in through ASCII, all116

we need besides the generic CogPrime structures and dynamics are two node types117

and one relationship type:118

• CharacterNode119

• CharacterInstanceNode120

• A unary relationship concat denoting an externally-observed list of items.121

Sequences of characters may then be represented in terms of lists and the concat122

schema. For instance the word “pig” is represented by the list concat (# p, #i, #g).123

The concat operator can be used to help define special NL atom types, such as:124

• MorphemeNode/MorphemeInstanceNode125

• WordNode/WordInstanceNode126

• PhraseNode/PhraseInstanceNode127

• SentenceNode/SentenceInstanceNode128

• UtteranceNode/UtteranceInstanceNode.129

26.3 The Comprehension and Generation Pipelines130

Exactly how the “comprehension pipeline” is broken down into component trans-131

formations, depends on one’s linguistic theory of choice. The approach taken in132

OpenCogPrimes engineered NLP framework, in use from 2008 to 2012, looked like:133

Text --> Tokenizer --> Link Parser -->134

Syntactico-Semantic Relationship Extractor (RelEx) -->135

Semantic RelationshipExtractor (RelEx2Frame) -->136

SemanticNodes & Links137

In 2012–2013, a new approach has been undertaken, which simplifies things a138

little and looks like139

Text --> Tokenizer --> Link Parser -->140

Syntactico-Semantic Relationship Extractor (Syn2Sem) -->141

Semantic Nodes & Links142

Note that many other variants of the NL pipeline include a “tagging” stage, which143

assigns part of speech tags to words based on the words occurring around them. In144

our current approach, tagging is essentially subsumed within parsing; the choice of145

a POS (part-of-speech) tag for a word instance is carried out within the link parser.146

However, it may still be valuable to derive information about likely POS tags for147

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.3 The Comprehension and Generation Pipelines 425

word instances from other techniques, and use this information within a link parsing148

framework by allowing it to bias the probabilities used in the parsing process.149

None of the processes in this pipeline are terribly difficult to carry out, if one150

is willing to use hand-coded rules within each step, or derive rules via supervised151

learning, to govern their operation. The truly tricky aspects of NL comprehension are:152

• Arriving at the rules used by the various subprocesses, in a way that naturally153

supports generalization and modification of the rules based on ongoing experience154

• Allowing semantic understanding to bias the choice of rules in particular contexts155

• Knowing when to break the rules and be guided by semantic intuition instead.156

Importing rules straight from linguistic databases results in a system that (like the157

current RelEx system) is reasonably linguistically savvy on the surface, but lacks the158

ability to adapt its knowledge effectively based on experience, and has trouble com-159

prehending complex language. Supervised learning based on hand-created corpuses160

tends to result in rule-bases with similar problems. This doesn’t necessarily mean161

that hand-coding or supervised learning of linguistic rules has no place in an AGI162

system, but it means that if one uses these methods, one must take extra care to make163

one’s rules modifiable and generalizable based on ongoing experience, because the164

initial version of one’s rules is not going to be good enough.165

Generation is the subject of the following chapter, but for comparison we give166

here a high-level overview of the generation pipeline, which may be conceived as:167

1. Content determination: figuring out what needs to be said in a given context168

2. Discourse planning: overall organization of the information to be communicated169

3. Lexicalization: assigning words to concepts170

4. Reference generation: linking words in the generated sentences using pronouns171

and other kinds of reference172

5. Syntactic and morphological realization: the generation of sentences via a173

process inverse to parsing, representing the information gathered in the above174

phases175

6. Phonological or orthographic realization: turning the above into spoken or writ-176

ten words, complete with timing (in the spoken case), punctuation (in the written177

case), etc.178

In Chap. 28 we explain how this pipeline is realized in OpenCogPrimes current179

engineered NL generation system.180

26.4 Parsing with Link Grammar181

Now we proceed to explain some of the details of OpenCogPrime’s engineered NL182

comprehension system. This section gives an overview of link grammar, a key part183

of the current OpenCog NLP framework, and explains what makes it different from184

other linguistic formalisms.185

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_28

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

426 26 Natural Language Comprehension

We emphasize that this particular grammatical formalism is not, in itself, a critical186

part of the CogPrime design. In fact, it should be quite possible to create and teach a187

CogPrime AGI system without using any particular grammatical formalism—having188

it acquire linguistic knowledge in a purely experiential way. However, a great deal of189

insight into CogPrime-based language processing may be obtained by considering190

the relevant issues in the concrete detail that the assumption of a specific grammatical191

formalism provides. This insight is of course useful if one is building a CogPrime192

that makes use of that particular grammatical formalism, but it’s also useful to some193

degree even if one is building a CogPrime that deals with human language entirely194

experientially.195

This material will be more comprehensible to the reader who has some familiarity196

with computational linguistics, e.g. with notions such as parts of speech, feature197

structures, lexicons, dependency grammars, and so forth. Excellent references are198

[MS99, Jac03]. We will try to keep the discussion relatively elementary, but have199

opted not to insert a computational linguistics tutorial.200

The essential idea of link grammar is that each word comes with a feature structure201

consisting of a set of typed connectors. Parsing consists of matching up connectors202

from one word with connectors from another.203

To understand this in detail, the best course is to consider an example sentence.204

We will use the following example, drawn from the classic paper “Parsing with a205

Link Grammar” by Sleator and Temperley [ST93]:206

The cat chased a snake207

The link grammar parse structure for this sentence is:208

In phrase structure grammar terms, this corresponds loosely to209

(S (NP The cat)210

(VP chased211

(NP a snake))212

.)213

but the OpenCog linguistic pipeline makes scant use of this kind of phrase structure214

rendition (which is fine in this simple example; but in the case of complex sentences,215

construction of analogous mappings from link parse structures to phrase structure216

grammar parse trees can be complex and problematic). Currently the hierarchical217

view is used in OpenCog only within some reference resolution heuristics.218

There is a database called the “link grammar dictionary” which contains connec-219

tors associated with all common English words. The notation used to describe feature220

structures in this dictionary is quite simple. Different kinds of connectors are denoted221

by letters or pairs of letters like S or SX. Then if a word W1 has the connector S+,222

this means that the word can have an S link coming out to the right side. If a word223

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.4 Parsing with Link Grammar 427

W2 has the connector S−, this means that the word can have an S link coming out to224

the left side. In this case, if W1 occurs to the left of W2 in a sentence, then the two225

words can be joined together with an S link.226

The features of the words in our example sentence, as given in the S&T paper, are:227

228

Words Formula

A, the D+
Snake, cat D− & (O− or S+)
Chased S− & O+

To illustrate the role of syntactic sense disambiguation, we will introduce alternate229

formulas for one of the words in the example: the verb sense of “snake”. We then230

have231

Words Formula

A, the D+
Snake_N, cat, ran_N D− & (O− or S+)
Chased S− & O+
Snake_V S−

The variables to be used in parsing this sentence are, for each word:232

1. The features in the Agreement structure of the word (for any of its senses)233

2. The words matching each of the connectors of the word.234

For example,235

1. For “snake”, there are features for “word that links to D−”, “word that links236

to O−” and “word that links to S+”. There are also features for “tense” and237

“person”.238

2. For “the”, the only feature is “word that links to D+”. No features for Agreement239

are needed.240

The nature of linkage imposes constraints on the variable assignments; for241

instance, if “the” is assigned as the value of the “word that links to D−” feature242

of “snake”, then “snake” must be assigned as the value of the “word that links to243

D+” feature of “the”.244

The rules of link grammar impose additional constraints—i.e. the planarity, con-245

nectivity, ordering and exclusion metarules described in Sleator and Temperley’s246

papers. Planarity means that links don’t cross—a rule that S&T’s parser enforces247

with absoluteness, whereas we have found it is probably better to impose it as a248

probabilistic constraint, since sometimes it’s really nice to let links cross (the rep-249

resentation of conjunctions is one example). Connectivity means that the links and250

words of a sentence must form a connected graph—all the words must be linked251

into the other words in the sentence via some path. Again connectivity is a valuable252

constraint but in some cases one wants to relax it—if one just can’t understand the253

whole sentence, one may wish to understand at least some parts of it, meaning that254

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

428 26 Natural Language Comprehension

one has a disconnected graph whose components are the phrases of the sentence255

that have been successfully comprehended. Finally, linguistic transformations may256

potentially be applied while checking if these constraints are fulfilled (that is, instead257

of just checking if the constraints are fulfilled, one may check if the constraints are258

fulfilled after one or more transformations are performed.)259

We will use the term “Agreement” to refer to “person” values or ordered pairs260

(tense, person), and NAGR to refer to the number of agreement values (12–40,261

perhaps, in most realistic linguistic theories). Agreement may be dealt with alongside262

the connector constraints. For instance, “chased” has the Agreement values (past,263

third person), and it has the constraint that its S− argument must match the person264

component of its Agreement structure.265

Semantic restrictions may be imposed in the same framework. For instance, it266

may be known that the subject of “chased” is generally animate. In that case,267

we’d say268

Words Formula

A, the D+
Snake_N, cat D− & (O− or S+)
Chased (S−, C inheritance animate <0.8>) & O+
Snake_V S−

where we’ve added the modifier (C Inheritance animate) to the S− connector of269

the verb “chased”, to indicate that with strength 0.8, the word connecting to this270

S− connector should denote something inheriting from “animate”. In this example,271

“snake” and “cat” inherit from “animate”, so the probabilistic restriction doesn’t help272

the parser any. If the sentence were instead273

The snake in the hat chased the car274

then the “animate” constraint would tell the parsing process not to start out by trying275

to connect “hat” to “chased”, because the connection is semantically unlikely.276

26.4.1 Link Grammar Versus Phrase Structure Grammar277

Before proceeding further, it’s worth making a couple observations about the rela-278

tionship between link grammars and typical phrase structure grammars. These could279

also be formulated as observations about the relationship between dependency gram-280

mars and phrase structure grammars, but that gets a little more complicated as there281

are many kinds of dependency grammars with different properties; for simplicity we282

will restrict our discussion here to the link grammar that we actually use in OpenCog.283

Two useful observations may be:284

1. Link grammar formulas correspond to grammatical categories. For example, the285

link structure for “chased” is “S− & O+”. In categorical grammar, this would286

seem to mean that “‘chased’ belongs to the category of words with link structure287

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.4 Parsing with Link Grammar 429

Fig. 26.1 Dependency and phrase-structure parses. A comparison of dependency (above) and
phrase-structure (below) parses. In general, one can be converted to the other (algorithmically);
dependency grammars tend to be easier understand. (Image taken from G. Schneider, “learning to
disambiguate syntactic relations” linguistik online 17, 5/03)

‘S− & O+”’. In other words, each “formula” in link grammar corresponds to a288

category of words attached to that formula.289

2. Links to words might as well be interpreted as links to phrases headed by those290

words. For example, in the sentence “the cat chased a snake”, there’s an O-link291

from “chased” to “snake”. This might as well be interpreted as “there’s an O-292

link from the phrase headed by ‘chased’ to the phrase headed by ‘snake”’. Link293

grammar simplifies things by implicitly identifying each phrase by its head.294

Based on these observations, one could look at phrase structure as implicit in a link295

parse; and this does make sense, but also leads to some linguistic complexities that296

we won’t enter into here (Fig. 26.1).297 AQ3

26.5 The RelEx Framework for Natural Language298

Comprehension299

Now we move forward in the pipeline from syntax toward semantics. The NL com-300

prehension framework provided with OpenCog at its inception in 2008 is RelEx,301

an English-language semantic relationship extractor, which consists of two main302

components: the dependency extractor and the relationship extractor. It can identify303

subject, object, indirect object and many other dependency relationships between304

words in a sentence; it generates dependency trees, resembling those of dependency305

grammars. In 2012 we are in the process of replacing RelEx with a different approach306

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

430 26 Natural Language Comprehension

Fig. 26.2 A overview of the RelEx architecture for language comprehension

that we believe will be more amenable to generalization based on experience. Here307

we will describe both approaches.308

The overall processing scheme of RelEx is shown in Fig. 26.2.309

The dependency extractor component carries out dependency grammar parsing310

via a customized version of the open-source Sleator and Temperley’s link parser, as311

reviewed above. The link parser outputs several parses, and the dependencies of the312

best one are taken. The relationship extractor component is composed of a number313

of template matching algorithms that act upon the link parser’s output to produce a314

semantic interpretation of the parse. It contains three steps:315

1. Convert the Link Parser output to a feature structure representation316

2. Execute the Sentence Algorithm Applier, which contains a series of Sentence317

Algorithms, to modify the feature structure.318

3. Extract the final output representation by traversing the feature structure.319

A feature structure, in the RelEx context, is a directed graph in which each node320

contains either a value, or an unordered list of features. A feature is just a labeled321

link to another node. Sentence Algorithm Applier loads a list of SentenceAlgorithms322

from the algorithm definition file, and the SentenceAlgorithms are executed in the323

order they are listed in the file. RelEx iterates through every single feature node in the324

feature structure, and attempts to apply the algorithm to each node. Then the modified325

feature structures are used to generate the final RelEx semantic relationships.326

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.5 The RelEx Framework for Natural Language Comprehension 431

26.5.1 RelEx2Frame: Mapping Syntactico-Semantic Relationships327

into FrameNet Based Logical Relationships328

Next in the current OpenCog NL comprehension pipeline, the RelEx2Frame com-329

ponent uses hand-coded rules to map RelEx output into sets of relationships uti-330

lizing FrameNet and other similar semantic resources. This is definitively viewed331

as a “stopgap” without a role in a human-level AGI system, but it’s described here332

because it’s part of the current OpenCog system and is now being used together with333

other OpenCog components in practical projects, including those with proto-AGI334

intentions.335

The syntax currently used for describing semantic relationships drawn from336

FrameNet and other sources is exemplified by the example337

ˆ1_Benefit:Benefitor(give,$var1)338

The 1 indicates the data source, where 1 is a number indicating that the resource339

is FrameNet. The “give” indicates the word in the original sentence from which340

the relationship is drawn, that embodies the given semantic relationship. So far the341

resources we’ve utilized are:342

1. FrameNet343

2. Custom relationship names344

but using other resources in future is quite possible.345

An example using a custom relationship would be:346

ˆ2_inheritance($var1,$var2)347

which defines an inheritance relationship: something that is part of CogPrime’s348

ontology but not part of FrameNet.349

The “Benefit” part of the first example indicates the frame indicated, and the350

“Benefitor” indicates the frame element indicated. This distinction (frame vs. frame351

element) is particular to FrameNet; other knowledge resources might use a different352

sort of identifier. In general, whatever lies between the underscore and the initial353

parenthese should be considered as particular to the knowledge-resource in question,354

and may have different format and semantics depending on the knowledge resource355

(but shouldn’t contain parentheses or underscores unless those are preceded by an356

escape character).357

As an example, consider:358

Put the ball on the table359

Here the RelEx output is:360

imperative (Put) [1]361

_obj(Put, ball) [1]362

on(Put, table) [1]363

singular (ball) [1]364

singular (table) [1]365

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

432 26 Natural Language Comprehension

The relevant FrameNet Mapping Rules are:366

$var0 = ball367

$var1 = table368

IF imperative(put) THEN ˆ1_Placing:Agent(put,you)369

IF _obj(put,$var0) THEN ˆ1_Placing:Theme(put,$var0)370

IF on(put,$var1) & _obj(put,$var0) THEN ˆ1_Placing:Goal(put,$var1) \371

ˆ1_Locative_relation:Figure($var0) ˆ1_Locative_relation:Ground($var1)372

Finally, the output FrameNet Mapping is:373

ˆ1_Placing:Agent(put,you)374

ˆ1_Placing:Theme(put,ball)375

ˆ1_Placing:Goal(put,table)376

ˆ1_Locative_relation:Figure(put,ball)377

ˆ1_Locative_relation:Ground(put,table)378

The textual syntax used for the hand-coded rules mapping RelEx to FrameNet, at379

the moment, looks like:380

IF imperative(put) THEN ˆ1_Placing:Agent(put,you)381

IF _obj(put,$var0) THEN ˆ1_Placing:Theme(put,$var0)382

IF on(put,$var1) & _obj(put,$var0) THEN ˆ1_Placing:Goal(put,$var1) \383

ˆ1_Locative_relation:Figure($var0) ˆ1_Locative_relation:Ground($var1)384

Basically, this means each rule looks like385

IF condition THEN action386

where the condition is a series of RelEx relationships, and the action is a series of387

FrameNet relationships. The arguments of the relationships may be words or may be388

variables in which case their names must start with $.1 The only variables appearing389

in the action should be ones that appeared in the condition.390

26.5.2 A Priori Probabilities for Rules391

It can be useful to attach a priori, heuristic probabilities to RelEx2Frame rules, say392

IF _obj(put,$var0) THEN ˆ1_Placing:Theme(put,$var0) <.5>393

to denote that the a priori probability for the rule is 0.5.394

This is a crude mechanism because the probability of a rule being useful, in reality,395

depends so much on context; but it still has some nonzero value.396

1 An escape character “\” must be used to handle cases where the character “$” starts a word.

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.5 The RelEx Framework for Natural Language Comprehension 433

26.5.3 Exclusions Between Rules397

It may be also useful to specify that two rules can’t semantically-consistently be398

applied to the same RelEx relationship. To do this, we need to associate rules with399

labels, and then specify exclusion relationships such as400

IF on(put,$var1) & _obj(put,$var0) THEN ˆ1_Placing:Goal(put,$var1) \401

ˆ1_Locative_relation:Figure($var0) ˆ1_Locative_relation:Ground($var1) [1]402

IF on(put,$var1) & _subj(put,$var0) THEN \403

ˆ1_Performing_arts:Performance(put,$var1) \404

ˆ1_Performing_arts:Performer(put,$var0) [2]405

EXCLUSION 1 2406

In this example, Rule 1 would apply to “He put the ball on the table”, whereas407

Rule 2 would apply to “He put on a show”. The exclusion says that generally these408

two rules shouldn’t be applied to the same situation. Of course some jokes, poetic409

expressions, etc., may involve applying excluded rules in parallel.410

26.5.4 Handling Multiple Prepositional Relationships411

Finally, one complexity arising in such rules is exemplified by the sentence:412

“Bob says killing for the Mafia beats killing for the government”413

whose RelEx mapping looks like414

uncountable(Bob) [6]415

present(says) [6]416

_subj(says, Bob) [6]417

_that(says, beats) [3]418

uncountable(killing) [6]419

for(killing, Mafia) [3]420

singular(Mafia) [6]421

definite(Mafia) [6]422

hyp(beats) [3]423

present(beats) [5]424

_subj(beats, killing) [3]425

_obj(beats, killing_1) [5]426

uncountable(killing_1) [5]427

for(killing_1, government) [2]428

definite(government) [6]429

In this case there are two instances of “for”. The output of RelEx2Frame must thus430

take care to distinguish the two different for’s (or we might want to modify RelEx431

to make this distinction). The mechanism currently used for this is to subscript the432

for’s, as in433

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

434 26 Natural Language Comprehension

uncountable(Bob) [6]434

present(says) [6]435

_subj(says, Bob) [6]436

_that(says, beats) [3]437

uncountable(killing) [6]438

for(killing, Mafia) [3]439

singular(Mafia) [6]440

definite(Mafia) [6]441

hyp(beats) [3]442

present(beats) [5]443

_subj(beats, killing) [3]444

_obj(beats, killing_1) [5]445

uncountable(killing_1) [5]446

for_1(killing_1, government) [2]447

definite(government) [6]448

so that upon applying the rule:449

IF for($var0,$var1) ˆ {present($var0) OR past($var0) OR future($var0)} \450

THEN ˆ2_Benefit:Benefitor(for,$var1) ˆ2_Benefit:Act(for,$var0)451

we obtain452

ˆ2_Benefit:Benefitor(for,Mafia)453

ˆ2_Benefit:Act(for,killing)454

455

ˆ2_Benefit:Benefitor(for_1,government)456

ˆ2_Benefit:Act(for_1,killing_1)457

Here the first argument of the output relationships allows us to correctly associate458

the different acts of killing with the different benefitors.459

26.5.5 Comparatives and Phantom Nodes460

Next, a bit of subtlety is needed to deal with sentences like461

Mike eats more cookies than Ben.462

which RelEx handles via463

_subj(eat, Mike)464

_obj(eat, cookie)465

more(cookie, $cVar0)466

$cVar0(Ben)467

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.5 The RelEx Framework for Natural Language Comprehension 435

Then a RelEx2FrameNet mapping rule such as:468

IF469

_subj(eat,$var0)470

_obj(eat,$var1)471

more($var1,$cVar0)472

$cVar0($var2)473

THEN474

ˆ2_AsymmetricEvaluativeComparison:ProfiledItem(more, $var1)475

ˆ2_AsymmetricEvaluativeComparison:StandardItem(more, $var1_1)476

ˆ2_AsymmetricEvaluativeComparison:Valence(more, more)477

ˆ1_Ingestion:Ingestor(eat,$var0)478

ˆ1_Ingestion:Ingested(eat,$var1)479

ˆ1_Ingestion:Ingestor(eat_1,$var2)480

ˆ1_Ingestion:Ingested(eat_1,$var1_1)481

applies, which embodies the commonsense intuition about comparisons regarding482

eating. (Note that we have introduced a new frame AsymmetricEvaluativeCompari-483

son here, by analogy to the standard FrameNet frame Evaluative_comparison.)484

Note also that the above rule may be too specialized, though it’s not incorrect.485

One could also try more general rules like486

IF487

%Agent($var0)488

%Agent($var1)489

_subj($var3,$var0)490

_obj($var3,$var1)491

more($var1,$cVar0)492

$cVar0($var2)493

THEN494

ˆ2_AsymmetricEvaluativeComparison:ProfiledItem(more, $var1)495

ˆ2_AsymmetricEvaluativeComparison:StandardItem(more, $var1_1)496

ˆ2_AsymmetricEvaluativeComparison:Valence(more, more)497

_subj($var3,$var0)498

_obj($var3,$var1)499

_subj($var3_1,$var2)500

_obj($var3_1,$var1_1)501

However, this rule is a little different than most RelEx2Frame rules, in that it produces502

output that then needs to be processed by the RelEx2Frame rule-base a second time.503

There’s nothing wrong with this, it’s just an added layer of complexity.504

26.6 Frame2Atom505

The next step in the current OpenCog NLP comprehension pipeline is to translate506

the output of RelEx2Frame into Atoms. This may be done in a variety of ways; the507

current Frame2Atom script embodies one approach that has proved workable, but is508

certainly not the only useful one.509

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

436 26 Natural Language Comprehension

The Node types currently used in Frame2Atom are:510

• WordNode511

• ConceptNode512

– DefinedFrameNode513

– DefinedLinguisticConceptNode514

• PredicateNode515

– DefinedFrameElementNode516

– DefinedLinguisticRelationshipNode517

• SpecificEntityNode518

The special node types519

• DefinedFrameNode520

• DefinedFrameElementNode521

have been created to correspond to FrameNet frames and elements respectively (or522

frames and elements drawn from similar resources to FrameNet, such as our own523

frame dictionary).524

Similarly, the special node types525

• DefinedLinguisticConceptNode526

• DefinedLinguisticRelationshipNode527

have been created to correspond to RelEx unary and binary relationships respectively.528

The “defined” is in the names because once we have a more advanced CogPrime529

system, it will be able to learn its own frames, frame elements, linguistic concepts530

and relationships. But what distinguishes these “defined” Atoms is that they have531

names which correspond to specific external resources.532

The Link types we need for Frame2Atom are:533

• InheritanceLink534

• ReferenceLink (current using WRLink aka “word reference link”)535

• FrameElementLink.536

ReferenceLink is a special link type for connecting concepts to the words that537

they refer to. (This could be eliminated via using more complex constructs, but it’s538

a very common case so for practical purposes it makes sense to define it as a link539

type.)540

FrameElementLink is a special link type connecting a frame to its element. Its541

semantics (and how it could be eliminated at cost of increased memory and com-542

plexity) will be explained below.543

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.6 Frame2Atom 437

26.6.1 Examples of Frame2Atom544

Below follow some examples to illustrate the nature of the mapping intended. The545

examples include a lot of explanatory discussion as well.546

Note that, in these examples, [n] denotes an Atom with AtomHandle n. All Atoms547

have Handles, but Handles are only denoted in cases where this seems useful. (In the548

XML representation used in the current OpenCogPrime impelmentation, these are549

replaced by UUID’s).550

The notation
W ord Node# pig

denotes a WordNode with name pig, and a similar convention is used for other551

AtomTypes whose names are useful to know.552

These examples pertain to fragments of the parse553

Ben slowly ate the fat chickens.554

555

A:_advmod:V(slowly:A, eat:V)556

N:_nn:N(fat:N, chicken:N)557

N:definite(Ben:N)558

N:definite(chicken:N)559

N:masculine(Ben:N)560

N:person(Ben:N)561

N:plural(chicken:N)562

N:singular(Ben:N)563

V:_obj:N(eat:V, chicken:N)564

V:_subj:N(eat:V, Ben:N)565

V:past(eat:V)566

567

^1 _Ingestion:Ingestor(eat ,Ben)568

^1 _Temporal_colocation:Event(past ,eat)569

^1 _Ingestion:Ingestibles(eat ,chicken)570

^1 _Activity:Agent(subject ,Ben)571

^1 _Activity:Activity(verb ,eat)572

^1 _Transitive_action:Event(verb ,eat)573

^1 _Transitive_action:Patient(object ,chicken)574

Example1575
_obj (eat, chicken)

would map into576

EvaluationLink577

DefinedLinguisticRelationshipNode #_obj578

ListLink579

ConceptNode [2]580

ConceptNode [3]581

InheritanceLink582

[2]583

ConceptNode [4]584

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

438 26 Natural Language Comprehension

585

InheritanceLink586

[3]587

ConceptNode [5]588

589

ReferenceLink [6]590

WordNode #eat [8]591

[4]592

593

ReferenceLink [7]594

WordNode #chicken [9]595

[5]596

Please note that the Atoms labeled 4, 5, 6, 7, 8, 9 would not normally have to be
created when entering the relationship

_obj (eat, chicken)

into the AtomTable. They should already be there, assuming the system already597

knows about the concepts of eating and chickens. These would need to be newly598

created only if the system had never seen these words before.599

For instance, the Atom [2] represents the specific instance of “eat” involved in600

the relationship being entered into the system. The Atom [4] represents the general601

concept of “eat”, which is what is linked to the word “eat”.602

Note that a very simple step of inference, from these Atoms, would lead to the603

conclusion604

EvaluationLink605

DefinedLinguisticRelationshipNode #_obj606

ListLink607

ConceptNode [4]608

ConceptNode [5]609

which represents the general statement that chickens are eaten. This is such an obvious610

and important step, that perhaps as soon as the relationship _obj (eat, chicken) is611

entered into the system, it should immediately be carried out (i.e. that link if not612

present should be created, and if present should have its truth value updated). This is613

a choice to be implemented in the specific scripts or schema that deal with ingestion614

of natural language text.615

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.6 Frame2Atom 439

Example2616

masculine(Ben)

would map into617

InheritanceLink618

SpecificEntityNode [40]619

DefinedLinguisticConceptNode #masculine620

621

InheritanceLink622

[40]623

[10]624

625

ReferenceLink626

WordNode #Ben627

[10]628

Example3629

The mapping of the RelExToFrame output

I ngestion : I ngestor(eat, Ben)

would use the existing Atoms630

DefinedFrameNode #Ingestion [11]631

DefinedFrameElementNode #Ingestion:Ingestor [12]632

which would be related via633

FrameElementLink [11] [12]634

(Note that FrameElementLink may in principle be reduced to more elementary635

PLN link types.)636

Note that each FrameNet frame contains some core elements and some optional637

elements. This may be handled by giving core elements links such as638

FrameElementLink F E <1>639

and optional ones links such as640

FrameElementLink F E <.7>641

Getting back to the example at hand, we would then have642

InheritanceLink [2] [11]643

(recall [2], is the instance of eating involved in Example 1; and [11], is the Ingestion644

frame), which says that this instance of eating is an instance of ingestion. (In principle,645

some instances of eating might not be instances of ingestion—or more generally, we646

can’t assume that all instances of a given concept will always associate with the647

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

440 26 Natural Language Comprehension

same FrameNodes. This could be assumed only if we assumed all word-associated648

concepts were disambiguated to a single known FrameNet frame, but this can’t649

be assumed, especially if later on we want to use cognitive processes to do sense650

disambiguation.)651

We would then also have links denoting the role of Ben as an Ingestor in the652

frame-instance [2], i.e.653

EvaluationLink654

DefinedFrameElementNode #Ingestion:Ingestor [12]655

ListLink656

[2]657

[40]658

This says that the specific instance of Ben observed in that sentence ([4]) served659

the role of Ingestion:Ingestor in regard to the frame-instance [2] (which is an instance660

of eating, which is known to be an instance of the frame of Ingestion).661

26.6.2 Issues Involving Disambiguation662

Right now, OpenCogPrime’s RelEx2Frame rulebase is far from adequately large663

(there are currently around 5,000 rules) and the link parser and RelEx are also664

imperfect. The current OpenCog NLP system does work, but for complex sentences665

it tends to generate too many interpretations of each sentence—“parse selection”666

or more generally “interpretation selection” is not yet adequately addressed. This is667

a tricky issue that can be addressed to some extent via statistical linguistics meth-668

ods, but we believe that to solve it convincingly and thoroughly will require more669

cognitively sophisticated methods.670

The most straightforward way to approach it statistically is to process a large671

number of sentences, and then tabulate co-occurrence probabilities of different rela-672

tionships across all the sentences. This allows one to calculate the probability of a673

given interpretation conditional on the corpus, via looking at the probabilities of the674

combinations of relationships in the interpretation. This may be done using a Bayes675

Net or using PLN—in any case the problem is one of calculating the probability of676

a conjunction of terms based on knowledge regarding the probabilities of various677

sub-conjunctions. As this method doesn’t require marked-up training data, but is678

rather purely unsupervised, it’s feasible to apply it to a very large corpus of text—the679

only cost is computer time.680

What the statistical approach won’t handle, though, are the more conceptually681

original linguistic constructs, containing combinations that didn’t occur frequently in682

the system’s training corpus. It will rate innovative semantic constructs as unlikely,683

which will lead it to errors sometimes—errors of choosing an interpretation that684

seems odd in terms of the sentence’s real-world interpretation, but matches well685

with things the system has seen before. The only way to solve this is with genuine686

understanding—with the system reasoning on each of the interpretations and seeing687

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.7 Syn2Sem: A Semi-Supervised Alternative to RelEx and RelEx2Frame 441

which one makes more sense. And this kind of reasoning generally requires some688

relevant commonsense background knowledge—which must be gained via experi-689

ence, reading and conversing, or from a hand-coded knowledge base, or via some690

combination of the above.691

Related issues also involving disambiguation include word sense disambiguation692

(words with multiple meanings) and anaphor resolution (recognizing the referents693

of pronouns, and of nouns that refer to other nouns, etc.).694

The current RelEx system contains a simple statistical parse ranker (which rates695

a parse higher if the links it includes occur more frequently in a large parsed corpus),696

statistical methods for word sense disambiguation [Mih07] inspired by those in Rada697

Mihalcea’s work [SM09], and an anaphor resolution algorithm based on the classic698

Hobbs Algorithm (customized to work with the link parser) [Hob78]. While reason-699

ably effective in many cases, from an AGI perspective these must all be considered700

“stopgaps” to be replaced with code that handles these tasks using probabilistic in-701

ference. It is conceptually straightforward to replace statistical linguistic algorithms702

with comparable PLN-based methods, however significant attention must be paid to703

code optimization as using a more general algorithm is rarely as efficient as using a704

specialized one. But once one is handling things in PLN and the Atomspace rather705

than in specialized computational linguistics code, there is the opportunity to use a706

variety of inference rules for generalization, analogy and so forth, which enables a707

radically more robust form of linguistic intelligence.708

26.7 Syn2Sem: A Semi-Supervised Alternative to RelEx709

and RelEx2Frame710

This section describes an alternative approach to the RelEx/RelEx2Frame approach711

described above, which is in the midst of implementation at time of writing. This alter-712

native represents a sort of midway point between the rule-based RelEx/RelEx2Frame713

approach, and a conceptually ideal fully experiential learning based approach.714

The motivations underlying this alternative approach have been to create an715

OpenCog NLP system with the capability to:716

• Support simple dialogue in a video game like world, and a robot system717

• Leverage primarily semi-supervised experiential learning718

• Replace the RelEx2Frame rules, which are currently problematic, with a different719

way of mapping syntactic relationships into Atoms, that is still reasoning and720

learning friendly721

• Require only relatively modest effort for implementation (not multiple human-722

years).723

The latter requirement ruled out a pure “learn language from experience with no724

aid from computational linguistics tools” approach, which may well happen within725

OpenCog at some point.726

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

442 26 Natural Language Comprehension

26.8 Mapping Link Parses into Atom Structures727

The core idea of the new approach is to learn “Syn2Sem” rules that map link728

parses into Atom structures. These rules may then be automatically reversed to form729

Sem2Syn rules, which may be used in language generation.730

Note that this is different from the RelEx approach as currently pursued (the “old731

approach”), which contains732

• One set of rules (the RelEx rules) mapping link parses into semantic relation-sets733

(“RelEx relation-sets” or rel-sets)734

• Another set of rules (the RelEx2Frame rules) mapping rel-sets into FrameNet-735

based relation-sets736

• Another set of rules (the Frame2Atom rules) mapping FrameNet-based relation-737

sets into Atom-sets.738

In the old approach, all the rules were hand-coded. In the new approach739

• Nothing needs to be hand-coded (except the existing link parser dictionary); the740

rules can be learned from a corpus of (link-parse, Atom-set) pairs. This corpus741

may be human-created; or may be derived via a system’s experience in some742

domain where sentences are heard or read, and can be correlated with observed743

nonlinguistic structures that can be described by Atoms.744

• In practice, some hand-coded rules are being created to map RelEx rel-sets into745

Atom-sets directly (bypassing RelEx2Frame) in a simple way. These rules will be746

used, together with RelEx, to create a large corpus of (link parse, Atom-set) pairs,747

which will be used as a training corpus. This training corpus will have more errors748

than a hand-created corpus, but will have the compensating advantage of being749

significantly larger than any hand-created corpus would feasibly be.750

In the old approach, NL generation was done by using a pattern-matching751

approach, applied to a corpus of (link parse, rel-set) pairs, to mine rules mapping rel-752

sets to sets of link parser links. This worked to an extent, but the process of piecing753

together the generated sets of link parser links to form coherent “sentence parses”754

(that could then be turned into sentences) turned out to be subtler than expected, and755

appeared to require an escalatingly complex set of hand-coded rules, to be extended756

beyond simple cases.757

In the new approach, NL generation is done by explicitly reversing the mapping758

rules learned for mapping link parses into Atom sets. This is possible because the rules759

are explicitly given in a form enabling easy reversal; whereas in the old approach,760

RelEx transformed link parses into rel-sets using a process of successively apply-761

ing many rules to an ornamented tree, each rule acting on variables (“ornaments”)762

deposited by previous rules. Put simply, RelEx transformed link parses into rel-sets763

via imperative programming, whereas in the new approach, link parses are trans-764

formed into Atom-sets using learned rules that are logical in nature. The movement765

from imperative to logical style dramatically eases automated rule reversal.766

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.8 Mapping Link Parses into Atom Structures 443

26.8.1 Example Training Pair767

For concreteness, an example (link parse, Atom-set) pair would be as follows. For768

the sentence “Trains move quickly”, the link parse looks like769

Sp(trains, move)770

MVa(move, quickly)771

whereas the Atom-set looks like772

Inheritance773

move_1774

move775

776

Evaluation777

move_1778

train779

780

Inheritance781

move_1782

quick783

Rule learning proceeds, in the new approach, from a corpus consisting of such784

pairs.785

26.9 Making a Training Corpus786

26.9.1 Leveraging RelEx to Create a Training Corpus787

To create a substantial training corpus for the new approach, we are leveraging the788

existence of RelEx. We have a large corpus of sentences parsed by the link parser and789

then processed by RelEx. A new collection of rules is being created, RelEx2Atom,790

that directly translates RelEx parses into Atoms, in a simple way, embodying the791

minimal necessary degree of disambiguation (in a sense to be described just below).792

Using these RelEx2Atom rules, one can transform a corpus of (link parse, RelEx793

rel-set) triples into a corpus of (link parse, Atom-set) pairs—which can then be used794

as training data for learning Syn2Sem rules.795

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

444 26 Natural Language Comprehension

26.9.2 Making an Experience Based Training Corpus796

An alternate approach to making a training corpus would be to utilize a virtual world797

such as the Unity3D world now being used for OpenCog game AI research and798

development.799

A human game-player could create a training corpus by repeated:800

• Typing in a sentence801

• Indicating, via the graphic user interface, which entities or events in the virtual802

world were referred to by the sentence.803

Since OpenCog possesses code for transforming entities and events in the virtual804

world into Atom-sets, this would implicitly produce a training corpus of (sentence,805

Atom-set) pairs, which using the link parser could then be transformed into (link806

parse, Atom-set) pairs.807

26.9.3 Unsupervised, Experience Based Corpus Creation808

One could also dispense with the explicit reference-indication GUI, and just have a809

user type sentences to the AI agent as the latter proceeds through the virtual world.810

The AI agent would then have to figure out what specifically the sentences were811

referring to—maybe the human-controlled avatar is pointing at something; maybe812

one thing recently changed in the game world and nothing else did; etc. This mode813

of corpus creation would be reasonably similar to human first language learning814

in format (though of course there are many differences from human first language815

learning in the overall approach, for instance we are assuming the link parser, whereas816

a human language learner has to learn grammar for themselves, based on complex817

and ill-understood genetically encoded prior probabilistic knowledge regarding the818

likely aspects of the grammar to be learned).819

This seems a very interesting direction to explore later on, but at time of writing820

we are proceeding with the RelEx-based training corpus, for sake of simplicity and821

speed of development.822

26.10 Limiting the Degree of Disambiguation Attempted823

The old approach is in a sense more ambitious than the new approach, because the824

RelEx2Frame rules attempt to perform a deeper and more thorough level of semantic825

disambiguation than the new rules. However, the RelEx2Frame rule-set in its current826

state is too “noisy” to be really useful; it would need dramatic improvement to be827

helpful in practice. The key difference is that,828

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.10 Limiting the Degree of Disambiguation Attempted 445

• In the new approach, the syntax-to-semantics mapping rules attempt only the829

disambiguation that needs to be done to get the structure of the resultant Atom-set830

correct. Any further disambiguation is left to be done later, by MindAgents acting831

on the Atom-sets after they’ve already been placed in the AtomSpace.832

• In the old approach, the RelEx2Frame rules attempted, in many cases, to disam-833

biguate between different meanings beyond the level needed to disambiguate the834

structure of the Atom-set.835

To illustrate the difference, consider the sentences836

• Love moves quickly.837

• Trains move quickly.838

These sentences involve different senses of “move”—change in physical location,839

versus a more general notion of progress. However, both sentences map to the same840

basic conceptual structure, e.g.841

Inheritance842

move_1843

move844

845

Evaluation846

move_1847

train848

849

Inheritance850

move_1851

quick852

versus853

Inheritance854

move_2855

move856

857

Evaluation858

move_2859

love860

861

Inheritance862

move_2863

quick864

The RelEx2Frame rules try to distinguish between these cases via, in effect,865

associating the two instances move_1 and move_2 with different frames, using hand-866

coded rules that map RelEx rel-sets into appropriate Atom-sets defined in terms of867

FrameNet relations. This is not a useless thing to do; however, doing it well requires868

a very large and well-honed rule-base. Cyc’s natural language engine attempts to869

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

446 26 Natural Language Comprehension

do something similar, though using a different parser than the link parser and a870

different ontology than FrameNet; it does a much better job than the current version of871

RelEx2Frame, but still does a surprisingly incomplete job given the massive amount872

of effort put into sculpting the relevant rule-sets.873

The new approach does not try to perform this kind of disambiguation prior874

to mapping things into Atom-sets. Rather, this kind of disambiguation is left for875

inference to do, after the relevant Atoms have already been placed in the AtomSpace.876

The rule of thumb is: Do precisely the disambiguation needed to map the parse into877

a compact, simple Atom-set, whose component nodes correspond to English words.878

Let the disambiguation of the meaning of the English words be done by some other879

process acting on the AtomSpace.880

26.11 Rule Format881

To represent Syn2Sem rules, it is convenient to represent link parses as Atom-sets.882

Each element of the training corpus will then be of the form (Atom set representing883

link parse, Atom-set representing semantic interpretation). Syn2Sem rules are then884

rules mapping Atom-sets to Atom-sets.885

Broadly speaking, the format of a Syn2Sem rule is then886

Implication887

Atom-set representing portion of link parse888

Atom-set representing portion of semantic interpretation889

26.11.1 Example Rule890

A simple example rule would be891

Implication892

Evaluation893

Predicate: Sp894

\$V1895

\$V2896

Evaluation897

\$V2898

\$V1899

This rule, in essence, maps verbs into predicates that take their subjects as argu-900

ments.901

On the other hand, an Sem2Syn rule would look like the reverse:902

Implication903

Atom-set representing portion of link parse904

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.11 Rule Format 447

Atom-set representing portion of semantic interpretation905

Our currentapproach is to begin with Syn2Sem rules, because, due to the nature906

of natural language, these rules will tend to be more certain. That is: it is more907

strongly the case in natural languages that each syntactic construct maps into a small908

set of semantic structures, than that each semantic structure is realizable only via a909

small set of syntactic constructs. There are usually more ways structurally different,910

reasonably sensible ways to say an arbitrary thought, than there are structurally911

different, reasonably sensible ways to interpret an arbitrary sentence. Because of this912

fact about language, the design of the Atom-sets in the corpus is based on the principle913

of finding an Atom structure that most simply represents the meaning of the sentence914

corresponding to each given link parse. Thus, there will be many Syn2Sem rules with915

a high degree of certitude attached to them. On the other hand, the Sem2Syn rules916

will tend to have less certitude, because there may be many different syntactic ways917

to realize a given semantic expression.918

26.12 Rule Learning919

Learning of Syn2Sem rules may be done via any algorithm that is able to search rule920

space for rules of the proper format with high truth value as evaluated across the921

training set. Currently we are experimenting with using OpenCogPrime’s frequent922

subgraph mining algorithm in this context. MOSES could also potentially be used to923

learn Syn2Sem rules. One suspects that MOSES might be better than frequent sub-924

graph mining for learning complex rules, but based on preliminary experimentation,925

frequent subgraph mining seems fine for learning the simple rules involved in simple926

sentences.927

PLN inference may also be used to generate new rules by combining previous928

ones, and to generalize rules into more abstract forms.929

26.13 Creating a Cyc-Like Database Via Text Mining930

The discussion of these NL comprehension mechanisms leads naturally to one in-931

teresting potential application of the OpenCog NL comprehension pipeline—which932

is only indirectly related to CogPrime, but would create a valuable resource for use933

by CogPrime if implemented. The possibility exists to use the OpenCog NL com-934

prehension system to create a vaguely Cyc-like database of common-sense rules.935

The approach would be as follows:936

1. Get a corpus of text937

2. Parse the text using OpenCog (RelEx or Syn2Sem)938

3. Mine logical relationships among Atomrelationships from the data thus pro-939

duced, using greedy data-mining, MOSES, or other methods.940

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

448 26 Natural Language Comprehension

These mined logical relationships will then be loosely analogous to the rules the941

Cyc team have programmed in. For instance, there will be many rules like:942

IF _subj(understand,$var0) THEN ˆ1_Grasp:Cognizer(understand,$var0)943

IF _subj(know,$var0) THEN ˆ1_Grasp:Cognizer(understand,$var0)944

So statistical mining would learn rules like945

IF ˆ1_Mental_property(stupid) & ˆ1_Mental_property:Protagonist($var0)946

THEN ˆ1_Grasp:Cognizer(understand,$var0) <.3>947

IF ˆ1_Mental_property(smart) & ˆ1_Mental_property:Protagonist($var0)948

THEN ˆ1_Grasp:Cognizer(understand,$var0) <.8>949

which means that stupid people mentally grasp less than smart people do.950

Note that these commonsense rules would come out automatically probabilisti-951

cally quantified.952

Note also that to make such rules come out well, one needs to do some (proba-953

bilistic) synonym-matching on nouns, adverbs and adjectives, e.g. so that mentions954

of “smart”, “intelligent”, “clever”, etc. will count as instances of955

ˆ1_Mental_property(smart)956

By combining probabilistic synonym matching on words, with mapping RelEx957

output into FrameNet input, and doing statistical mining, it should be possible to958

build a database like Cyc but far more complete and with coherent probabilistic959

weightings.960

Although this way of building a commonsense knowledge base requires a lot of961

human engineering, it requires far less than something like Cyc. One “just” needs962

to build the RelEx2FrameNet mapping rules, not all the commonsense knowledge963

relationships directly—those come from text. We do not advocate this as a solution964

to the AGI problem, but merely suggest that it could produce a large amount of useful965

knowledge to feed into an AGI’s brain.966

And of course, the better an AI one has, the better one can do the step labeled “Rank967

the parses and FrameNet interpretations using inference or heuristics or both”. So968

there is a potential virtuous cycle here: more commonsense knowledge mined helps969

create a better AI mind, which helps mine better commonsense knowledge, etc.970

26.14 PROWL Grammar971

We have described the crux of the NL comprehension pipeline that is currently in972

place in the OpenCog codebase, plus some ideas for fairly moderate modifications973

or extensions. This section is a little more speculative, and describes an alternative974

approach that fits better with the overall CogPrime design, which however has not975

yet been implemented. The ideas given here lead more naturally to a design for976

experience-based language learning and processing, a connection that will be pointed977

out in a later section.978

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.14 PROWL Grammar 449

What we describe here is a partially-new theory of language formed via combining979

ideas from three sources: Hudson’s Word Grammar [Hud90, Hud07a], Sleator and980

Temperley’s link grammar, and Probabilistic Logic Networks. Reflecting its origin981

in these three sources, we have named the new theory PROWL grammar, meaning982

PRObabilistic Word Link Grammar. We believe PROWL has value purely as a con-983

ceptual approach to understanding language; however, it has been developed largely984

from the standpoint of computational linguistics—as part of an attempt to create a985

framework for computational language understanding and generation that both986

1. Yields broadly adequate behavior based on hand-coding of “expert rules” such987

as grammatical rules, combined with statistical corpus analysis988

2. Integrates naturally with a broader AI framework that combines language with989

embodied social, experiential learning, that ultimately will allow linguistic rules990

derived via expert encoding and statistical corpus analysis to be replaced with991

comparable, more refined rules resulting from the system’s own experience.992

PROWL has been developed as part of the larger CogPrime project; but, it is993

described in this section mostly in a CogPrime-independent way, and is intended to994

be independently evaluable (and, hopefully, valuable).995

As an integration of three existing frameworks, PROWL could be presented in996

various different ways. One could choose any one of the three components as an initial997

foundation, and then present the combined theory as an expansion/modification of998

this component. Here we choose to present it as an expansion/modification of Word999

Grammar, as this is the way it originated, and it is also the most natural approach1000

for readers with a linguistics background. From this perspective, to simplify a fair1001

bit, one may describe PROWL as consisting of Word Grammar with three major1002

changes:1003

1. Word Grammar’s network knowledge representation is replaced with a richer1004

PLN-based network knowledge representation.1005

a. This includes, for instance, the replacement of Word Grammar’s single “isa”1006

relationship type with a more nuanced collection of logically distinct prob-1007

abilistic inheritance relationship types1008

2. Going along with the above, Word Grammar’s “default inheritance” mechanism1009

is replaced by an appropriate PLN control mechanism that guides the use of1010

standard PLN inference rules1011

a. This allows the same default-inheritance based inferences that Word Gram-1012

mar relies upon, but embeds these inferences in a richer probabilistic frame-1013

work that allows them to be integrated with a wide variety of other inferences1014

3. Word Grammar’s small set of syntactic link types is replaced with a richer set1015

of syntactic link types as used in Link Grammar1016

a. The precise optimal set of link types is not clear; it may be that the link1017

grammar’s syntactic link type vocabulary is larger than necessary, but we1018

also find it clear that the current version of Word Grammar’s syntactic link1019

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

450 26 Natural Language Comprehension

type vocabulary is smaller than feasible (at least, without the addition of1020

large, new, and as yet unspecified ideas to Word Grammar).1021

In the following subsections we will review these changes in a little more detail.1022

Basic familiarity with Word Grammar, Link Grammar and PLN is assumed.1023

Note that in this section we will focus mainly on those issues that are somehow1024

nonobvious. This means that a host of very important topics that come along with the1025

Word Grammar/PLN integration are not even mentioned. The way Word Grammar1026

deals with morphology, semantics and pragmatics, for instance, seems to us quite1027

sensible and workable—and doesn’t really change at all when you integrate Word1028

Grammar with PLN, except that Word Grammar’s crisp isa links become PLN-style1029

probabilistic Inheritance links.1030

26.14.1 Brief Review of Word Grammar1031

Word Grammar is a theory of language structure which Richard Hudson began devel-1032

oping in the early 1980s [Hud90]. While partly descended from Systemic Functional1033

Grammar, there are also significant differences. The main ideas of Word Grammar1034

are as follows2:1035

• It presents language as a network of knowledge, linking concepts about words,1036

their meanings, etc.—e.g. the word “dog” is linked to the meaning ‘dog’, to the1037

form /dog/, to the word-class ‘noun’, etc.1038

• If language is a network, then it is possible to decide what kind of network it is1039

(e.g. it seems to be a scale-free small-world network)1040

• It is monostratal—only one structure per sentence, no transformations.1041

• It uses word-word dependencies—e.g. a noun is the subject of a verb.1042

• It does not use phrase structure—e.g. it does not recognise a noun phrase as the1043

subject of a clause, though these phrases are implicit in the dependency structure.1044

• It shows grammatical relations/functions by explicit labels—e.g. ‘subject’ and1045

‘object’.1046

• It uses features only for inflectional contrasts that are mentioned in agreement1047

rules—e.g. number but not tense or transitivity.1048

• It uses default inheritance, as a very general way of capturing the contrast be-1049

tween ‘basic’ or ‘underlying’ patterns and ‘exceptions’ or ‘transformations’—e.g.1050

by default, English words follow the word they depend on, but exceptionally sub-1051

jects precede it; particular cases ‘inherit’ the default pattern unless it is explicitly1052

overridden by a contradictory rule.1053

• It views concepts as prototypes rather than ‘classical’ categories that can be defined1054

by necessary and sufficient conditions. All characteristics (i.e. all links in the1055

2 The following list is paraphrased with edits from http://www.phon.ucl.ac.uk/home/dick/wg.htm
downloaded on June 27, 2010.

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://www.phon.ucl.ac.uk/home/dick/wg.htm

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.14 PROWL Grammar 451

network) have equal status, though some may for pragmatic reasons be harder to1056

override than others.1057

• In this network there are no clear boundaries between different areas of1058

knowledge—e.g. between ‘lexicon’ and ‘grammar’, or between ‘linguistic mean-1059

ing’ and ‘encyclopedic knowledge’; language is not a separate module of cognition.1060

• In particular, there is no clear boundary between ‘internal’ and ‘external’ facts1061

about words, so a grammar should be able to incorporate sociolinguistic facts—1062

e.g. the speaker of “sidewalk” is an American.1063

26.14.2 Word Grammar’s Logical Network Model1064

Word Grammar presents an elegant framework in which all the different aspects of1065

language are encompassed within a single knowledge network. Representationally,1066

this network combines two key aspects:1067

1. Inheritance (called is-a) is explicitly represented1068

2. General relationships between n-ary predicates and their arguments, including1069

syntactic relationships, are explicitly represented.1070

Dynamically, the network contains two key aspects:1071

1. An inference rule called “default inheritance”1072

2. Activation-spreading, similar to that in a neural network or standard semantic1073

network.1074

The similarity between Word Grammar and CogPrime is fairly strong. In the latter,1075

inheritance and generic predicate-argument relationships are explicitly represented;1076

and, a close analogue of activation spreading is present in the “attention allocation”1077

subsystem. As in Word Grammar, important cognitive phenomena are grounded in1078

the symbiotic combination of logical-inference and activation-spreading dynamics.1079

At the most general level, the reaction of the Word Grammar network to any1080

situation is proposed to involve three stages:1081

1. Node creation and identification: of nodes representing the situation as under-1082

stood, in its most relevant aspects1083

2. Where choices need to be made (e.g. where an identified predicate needs to1084

choose which other nodes to bind to as arguments), activation spreading is used,1085

and the most active eligible argument is utilized (this is called “best fit binding”)1086

3. Default inheritance is used to supply new links to the relevant nodes as necessary.1087

Default inheritance is a process that relies on the placement of each node in a1088

directed acyclic graph hierarchy (dag) of isa links. The basic idea is as follows.1089

Suppose one has a node N, and a predicate f(N,L), where L is another argument1090

or list of arguments. Then, if the truth value of f(N,L) is not explicitly stored in1091

the network, N inherits the value from any ancestor A in the dag so that: f(A,L) is1092

explicitly stored in the network; and there is not any node P inbetween N and A1093

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

452 26 Natural Language Comprehension

for which f(P,L) is explicitly stored in the network. Note that multiple inheritance is1094

explicitly supported, and in cases where this leads to multiple assignments of truth1095

values to a predicate, confusion in the linguistic mind may ensue. In many cases the1096

option coming from the ancestor with the highest level of activity may be selected.1097

Our suggestion is that Word Grammar’s network representation may be replaced1098

with PLN’s logical network representation without any loss, and with significant gain.1099

Word Grammar’s network representation has not been fleshed out as thoroughly as1100

that of PLN, it does not handle uncertainty, and it is not associated with general1101

mechanisms for inference. The one nontrivial issue that must be addressed in porting1102

Word Grammar to the PLN representation is the role of default inheritance in Word1103

Grammar. This is covered in the following subsection.1104

The integration of activation spreading and default inheritance proposed in Word1105

Grammar, should be easily achievable within CogPrime assuming a functional at-1106

tention allocation subsystem.1107

26.14.3 Link Grammar Parsing Versus Word Grammar Parsing1108

From a CogPrime/PLN point of view, perhaps the most striking original contribution1109

of Word Grammar is in the area of syntax parsing. Word Grammar’s treatment of mor-1110

phology and semantics is, basically, exactly what one would expect from representing1111

such things in a richly structured semantic network. PLN adds much additional rich-1112

ness to Word Grammar via allowing nuanced representation of uncertainty, which1113

is critical on every level of the linguistic hierarchy—but this doesn’t change the1114

fundamental linguistic approach of Word Grammar. Regarding syntax processing,1115

however, Word Grammar makes some quite specific and unique hypotheses, which1116

if correct are very valuable contributions.1117

The conceptual assumption we make here is that syntax processing, while carried1118

out using generic cognitive processes for uncertain inference and activation spread-1119

ing, also involves some highly specific constraints on these processes. The extent1120

to which these constraints are learned versus inherited is yet unknown, and for the1121

subtleties of this issue the reader is referred to [EBJ+97]. Word Grammar and Link1122

Grammar are then understood as embodying different hypotheses regarding what1123

these constraints actually are.1124

It is interesting to consider the contributions of Word Grammar to syntax parsing1125

via comparing it to Link Grammar.1126

Note that Link Grammar, while a less comprehensive conceptual theory than1127

Word Grammar, has been used to produce a state-of-the-art syntax parser, which1128

has been incorporated into a number of other software systems including OpenCog.1129

So it is clear that the Link Grammar approach has a great deal of pragmatic value.1130

On the other hand, it also seems clear that Link Grammar has certain theoretical1131

shortcomings. It deals with many linguistic phenomena very elegantly, but there are1132

other phenomena for which its approach can only be described as “hacky”.1133

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.14 PROWL Grammar 453

Word Grammar contains fewer hacks than Link Grammar, but has not yet been1134

put to the test of large-scale computational implementation, so it’s not yet clear how1135

many hacks would need to be added to give it the relatively broad coverage that Link1136

Grammar currently has. Our own impression is that to make Word Grammar actually1137

work as the foundation for a broad-coverage grammar parser (whether standalone, or1138

integrated into a broader artificial cognition framework), one would need to move it1139

somewhat in the direction of link grammar, via adding a greater number of specialized1140

syntactic link types (more on this shortly). There are in fact concrete indications of1141

this in [Hud07a].1142

The Link Grammar framework may be decomposed into three aspects:1143

1. The link grammar dictionary, which for each word in English, contains a number1144

of links of different types. Some links point left, some point right, and each link1145

is labeled. Furthermore, some links are required and others are optional.1146

2. The “no-links-cross” constraint, which states that the correct parse of a sentence1147

will involve drawing links between words, in such a way that all the required1148

links of each word are fulfilled, and no two links cross when the links are depicted1149

in two dimensions1150

3. A processing algorithm, which involves first searching the space of all possi-1151

ble linkages among the words in a sentence to find all complete linkages that1152

obey the no-links-cross constraint; and then applying various postprocessing1153

rules to handle cases (such as conjunctions) that aren’t handled properly by this1154

algorithm.1155

In PROWL, what we suggest is that1156

1. The link grammar dictionary is highly valuable and provides a level of linguistic1157

detail that is not present in Word Grammar; and, we suggest that in order to turn1158

Word Grammar into a computationally tractable system, one will need something1159

at least halfway between the currently minimal collection of syntactic link types1160

used in Word Grammar and the much richer collection used in Link Grammar1161

2. The no-links-cross constraint is an approximation of a deeper syntactic constraint1162

(“landmark transitivity”) that has been articulated in the most recent formulations1163

of Word Grammar. Specifically: when a no-links-crossing parse is found, it is1164

correct according to Word Grammar; but Word Grammar correctly recognizes1165

some parses that violate this constraint1166

3. The Link Grammar parsing algorithm is not cognitively natural, but is effective1167

in a standalone-parsing framework. The Word Grammar approach to parsing1168

is cognitively natural, but as formulated could only be computationally imple-1169

mented in the context of an already-very-powerful general intelligence system.1170

Fortunately, various intermediary approaches to parsing seem possible.1171

26.14.3.1 Using Landmark Transitivity with the Link Grammar Dictionary1172

An earlier version of Word Grammar utilized a constraint called “no tangled links”1173

which is equivalent to the link parser’s “no links cross” constraint. In the new version1174

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

454 26 Natural Language Comprehension

of Word Grammar this is replaced with a subtler and more permissive constraint called1175

“landmark transitivity”. While in Word Grammar, landmark transitivity is used with a1176

small set of syntactic link types, there is no reason why it can’t be used with the richer1177

set of link types that Link Grammar provides. In fact, this seems to us a probably1178

effective method of eliminating most or all of the “postprocessing rules” that exist1179

in the link parser, and that constitute the least elegant aspect of the Link Grammar1180

framework.1181

The first foundational concept, on the path to the notion of landmark transitivity,1182

is the notion of a syntactic parent. In Word Grammar each syntactic link has a parent1183

end and a child end. In a dependency grammar context, the notion is that the child1184

depends upon the parent. For instance, in Word Grammar, in the link between a noun1185

and an adjective, the noun is the parent.1186

To apply landmark transitivity in the context of the Link Grammar, one needs1187

to provide some additional information regarding each link in the Link Grammar1188

dictionary. One needs to specify which end of each of the link grammar links is the1189

“parent” and which is the “child”. Examples of this kind of markup are as follows1190

(with P shown by the parent):1191

S link: subject-noun ------- finite verb (P)1192

1193

O link: transitive verb (P) ----- direct or indirect object1194

1195

D link: determiner ----- noun (P)1196

1197

MV link: verb (P) ----- verb modifier1198

1199

J link: preposition ----- object (P)1200

1201

ON link: on ----- time-expression [P]1202

1203

M link: noun [P]----- modifiers1204

1205

In some cases a word may have more than one parent. In this case, the rule is that1206

the landmark is the one that is superordinate to all the other parents. In the rare case1207

that two words are each others’ parents, then either may serve as the landmark.1208

The concept of a parent leads naturally into that of a landmark. The first rule1209

regarding landmarks is that a parent is a landmark for its child. Next, two kinds1210

of landmarks are introduced: Before landmarks (in which the child is before the1211

parent) and After landmarks (in which the child is after the parent). The Before/After1212

distinction should be obvious in the Link Grammar examples given above.1213

The landmark transitivity rule, then, has two parts. If A is a landmark for B, of1214

subtype L (where L is either Before or After), then1215

1. Subordinate transitivity says that if B is a landmark for C, then A is also a1216

type-L landmark for C1217

2. Sister transitivity says that if A is a landmark for C, then B is also a landmark1218

for C.1219

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.14 PROWL Grammar 455

Finally, there are some special link types that cause a word to depend on its1220

grandparents or higher ancestors as well as its parents. I note that these are not treated1221

thoroughly in (Hudson 2007); one needs to look to the earlier, longer and rarer work1222

[Hud90]. Some questions are dealt with this way. Another example is what in Word1223

Grammar is called a “proxy link”, as occurs between “with” and “whom” in1224 AQ4

The person with whom she works1225

The link parser deals with this particular example via a Jw link1226

1227

1228

so to apply landmark transitivity in the context of the Link Grammar, in this case, it1229

seems one would need to implement the rule that in the case of two words connected1230

by a Jw-link, the child of one of the words is also the child of the other. Handling1231

other special cases like this in the context of Link Grammar seems conceptually1232

unproblematic, though naturally some hidden rocks may appear. Basically a list1233

needs to be made of which kinds of link parser links embody proxy relationships for1234

which other kinds of link parser links.1235

According to the landmark transitivity approach, then, the criterion for syntactic1236

correctness of a parse is that, if one takes the links in the parse and applies the1237

landmark transitivity rule (along with the other special-case “raising” rules we’ve1238

discussed), one does not arrive at any contradictions (i.e. no situations where A is a1239

Before landmark of B, and1240 AQ5

The main problem with the landmark-transitivity constraint seems to be compu-1241

tational tractability. The problem exists for both comprehension and generation, but1242

we’ll focus on comprehension here.1243

To find all possible parses of a sentence using Hudson’s landmark-transitivity-1244

based approach, one needs to find all linkages that don’t lead to contradictions when1245

used as premises for reasoning based on the landmark-transitivity axioms. This ap-1246

pears to be extremely computationally intensive! So, it seems that Word Grammar1247

style parsing is only computationally feasible for a system that has extremely strong1248

semantic understanding, so as to be able to filter out the vast majority of possible1249

parses on semantic rather than purely syntactic grounds.1250

On the other hand, it seems possible to apply landmark-transitivity together with1251

no-links-cross, to provide parsing that is both efficient and general. If applying the1252

no-links-cross constraint finds a parse in which no links cross, without using post-1253

processing rules, then this will always be a legal parse according to the landmark-1254

transitivity rule.1255

However, landmark-transitivity also allows a lot of other parses that link grammar1256

either needs postprocessing rules to handle, or can’t find even with postprocessing1257

rules. So, it would make sense to apply no-links-cross parsing first, but then if this1258

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

456 26 Natural Language Comprehension

fails, apply landmark-transitivity parsing starting from the partial parses that the1259

former stage produced. This is the approach suggested in PROWL, and a similar1260

approach may be suggested for language generation.1261

26.14.3.2 Overcoming the Current Limitations of Word Grammar1262

Finally, it is worth noting that expanding the Word Grammar parsing framework to1263

include the link grammar dictionary, will likely allow us to solve some unsolved prob-1264

lems in Word Grammar. For instance [Hud07a]. notes that the current formulation1265

of Word Grammar has no way to distinguish the behavior of last versus this in1266

I ate last night1267

I ate this ham1268

The issue he sees is that in the first case, night should be considered the parent of1269

last; whereas in the second case, this should be considered the parent of ham.1270

The current link parser also fails to handle this issue according to Hudson’s intu-1271

ition:1272

1273

1274

1275

1276

However, the link grammar framework gives us a clear possibility for allow-1277

ing the kind of interpretation Hudson wants: just allow this to take a left-going1278

O-link, and (in PROWL) let it optionally assume the parent role when involved in a1279

D-link relationship. There are no funky link-crossing or semantic issues here; just a1280

straightforward link-grammar dictionary edit.1281

This illustrates the syntactic flexibility of the link parsing framework, and also the1282

inelegance—adding new links to the dictionary generally solves syntactic problems,1283

but at the cost of creating more complexity to be dealt with further down the pipeline,1284

when the various link types need to be compressed into a smaller number of semantic1285

relationship types for purposes of actual comprehension (as is done in RelEx, for1286

example). However, as far as we can tell, this seems to be a necessary cost for1287

adequately handling the full complexity of natural language syntax. Word Grammar1288

holds out the hope of possibly avoiding this kind of complexity, but without filling1289

in enough details to allow a clear estimate of whether this hope can ever be fulfilled.1290

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.14 PROWL Grammar 457

26.14.4 Contextually Guided Greedy Parsing and Generation1291

Using Word Link Grammar1292

Another difference between Link Grammar and currently utilized, and Word Gram-1293

mar as described, is the nature of the parsing algorithm. Link Grammar operates in1294

a manner that is fairly traditional among contemporary parsing algorithms: given1295

a sentence, it produces a large set of possible parses, and then it is left to other1296

methods/algorithms to select the right parse, and to form a semantic interpretation1297

of the selected parse. Parse selection may of course involve semantic interpretation:1298

one way to choose the right parse is to choose the one that has the most contex-1299

tually sensible semantic interpretation. We may call this approach whole-sentence1300

purely-syntactic parsing, or WSPS parsing.1301

One of the nice things about Link Grammar, as compared to many other compu-1302

tational parsing frameworks, is that it produces a relatively small number of parses,1303

compared for instance to typical head-driven phrase-structure grammar parsers. For1304

simple sentences the link parser generally produces only handful of parses. But for1305

complex sentences the link parser can produce hundreds of parses, which can be1306

computationally costly to sift through.1307

Word Grammar, on the other hand, presents far fewer constraints regarding which1308

words may link to other words. Therefore, to apply parsing in the style of the cur-1309

rent link parser, in the context of Word Grammar, would be completely infeasible.1310

The number of possible parses would be tremendous. The idea of Word Grammar1311

is to pare down parses via semantic/pragmatic sensibleness, during the course of1312

the syntax parsing process, rather than breaking things down into two phases (pars-1313

ing followed by semantic/pragmatic interpretation). Parsing is suggested to proceed1314

forward through a sentence: when a word is encountered, it is linked to the words1315

coming before it in the sentence, in a way that makes sense. If this seems impossible,1316

consistently with the links that have already been drawn in the course of the parsing1317

process, then some backtracking is done and prior choices may be revisited. This1318

approach is more like what humans do when parsing a sentence, and does not have1319

the effect of producing a large number of syntactically possible, semantically/prag-1320

matically absurd parses, and then sorting through them afterwards. It is what we call1321

a contextually-guided greedy parsing (CGGP) approach.1322

For language generation, the link parser and Word Grammar approaches also1323

suggest different strategies. Link Grammar suggests taking a semantic network,1324

then searching holistically for a linear sequence of words that, when link-parsed,1325

would give rise to that semantic network as the interpretation. On the other hand,1326

Word Grammar suggests taking that same semantic network and iterating through1327

it progressively, verbalizing each node of the network as one walks through it, and1328

backtracking if one reaches a point where there is no way to verbalize the current1329

node consistently with how one has already verbalized the previous nodes.1330

The main observation we want to make here is that, while Word Grammar by its1331

nature (due to the relative paucity of explicit constraints on which syntactic links may1332

be formed), can operate with CGGP but not WSPS parsing. On the other hand, while1333

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

458 26 Natural Language Comprehension

Link Grammar is currently utilized with WPSP parsing, there is no reason one can’t1334

use it with CGGP parsing just as well. There is no objection to using CGGP parsing1335

together with the link-parser dictionary, nor with the no-links cross constraint rather1336

than the landmark-transitivity constraint (in fact, as noted above, earlier versions of1337

Word Grammar made use of the no-links-cross constraint).1338

What we propose in PROWL is to use the link grammar dictionary together with1339

the CGGP parsing approach. The WSPS parsing approach may perhaps be useful1340

as a fallback for handling extremely complex and perverted sentences where CGGP1341

takes too long to come to an answer—it corresponds to sentences that are so obscure1342

one has to do really hard, analytical thinking to figure out what they mean.1343

Regarding constraints on link structure, the suggestion in PROWL is to use the1344

no-links-cross constraint as a first approximation. In comprehension, if no sufficiently1345

high-probability interpretation obeying the no-links-cross constraint is found, then1346

the scope of investigation should expand to include link-structures obeying landmark-1347

transitivity but violating no-links-cross. In generation, things are a little subtler: a list1348

should be kept of link-type combinations that often correctly violate no-links-cross,1349

and when these combinations are encountered in the generation process, then con-1350

structs that satisfy landmark-transitivity but not no-links-cross should be considered.1351

Arguably, the PROWL approach is less elegant than either Link Grammar or Word1352

Grammar considered on its own. However, we are dubious of the proposition that1353

human syntax processing, with all its surface messiness and complexity, is really1354

generated by a simple, unified, mathematically elegant underlying framework. Our1355

goal is not to find a maximally elegant theoretical framework, but rather one that1356

works both as a standalone computational-linguistics system, and as an integrated1357

component of an adaptively-learning AGI system.1358

26.15 Aspects of Language Learning1359

Now we finally turn to language learning—a topic that spans the engineered and1360

experiential approaches to NLP. In the experiential approach, learning is required1361

to gain even simple linguistic functionality. In the engineered approach, even if a1362

great deal of linguistic functionality is built in, learning may be used for adding1363

new functionality and modifying the initially given functionality. In this section1364

we will focus on a few aspects of language learning that would be required even1365

if the current engineered OpenCog comprehension pipeline were completed to a1366

high level of functionality. The more thoroughgoing language learning required for1367

the experiential approach will then be discussed in the following section. Further,1368

Chap. 27 will dig in depth into an aspect of language learning that to some extent cuts1369

across the engineered/experiential dichotomy—unsupervised learning of linguistic1370

structures from large corpora of text.1371

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_27

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.15 Aspects of Language Learning 459

26.15.1 Word Sense Creation1372

In our examples above, we’ve frequently referred to ReferenceLinks between1373

WordNodes and ConceptNodes. But, how do these links get built? One aspect of1374

this is the process of word sense creation.1375

Suppose we have a WordNode W that has ReferenceLinks to a number of dif-1376

ferent ConceptNodes. A common case is that these ConceptNodes fall into clusters,1377

each one denoting a “sense” of the word. The clusters are defined by the following1378

relationships:1379

1. ConceptNodes within a cluster have high-strength SimilarityLinks to each other1380

2. ConceptNodes in different clusters have low-strength (i.e. dissimilarity-denoting)1381

SimilarityLinks to each other.1382

When a word is first learned, it will normally be linked only to mutually agree-1383

able ConceptNodes, i.e. there will only be one sense of the word. As more and1384

more instances of the word are seen, however, eventually the WordNode will gather1385

more than one sense. Sometimes different senses are different syntactically, other1386

times they are different only semantically, but are involved in the same syntactic1387

relationships. In the case of a word with multiple senses, most of the relevant feature1388

structure information will be attached to word-sense-representing ConceptNodes,1389

not to WordNodes themselves.1390

The formation of sense-representing ConceptNodes may be done by the standard1391

clustering and predicate mining processes, which will create such ConceptNodes1392

when there are adequately many Atoms in the system satisfying the criteria represent.1393

It may also be valuable to create a particular SenseMining CIM-Dynamic, which uses1394

the same criteria for node formation as the clustering and predicate mining CIM-1395

Dynamics, but focuses specifically on creating predicates related to WordNodes and1396

their nearby ConceptNodes.1397

26.15.2 Feature Structure Learning1398

We’ve mentioned above the obvious fact that, to intelligently use a feature-structure1399

based grammar, the system needs to be capable of learning new linguistic feature1400

structures. Probing into this in more detail, we see that there are two distinct but1401

related kinds of feature structure learning:1402

1. Learning the values that features have for particular word senses.1403

2. Learning new features altogether.1404

Learning the values that features have for particular word senses must be done1405

when new senses are created; and even for features imported from resources like the1406

link grammar, the possibility of corrections must obviously be accepted. This kind of1407

learning can be done by straightforward inference—inference from examples of word1408

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

460 26 Natural Language Comprehension

usage, and by analogy from features for similar words. A simple example to think1409

about, e.g., is learning the verb sense of “fax” when only the noun sense is known.1410

Next, the learning of new features can be viewed as a reasoning problem, in1411

that inference can learn new relations applied to nodes representing syntactic senses1412

of words. In principle, these “features” may be very general or very specialized,1413

depending on the case. New feature learning, in practice, requires a lot of examples,1414

and is a more fundamental but less common kind of learning than learning feature1415

values for known word senses. A good example would be the learning of “third1416

person” by an agent that knows only first and second person.1417

In this example, it’s clear that information from embodied experience would be1418

extremely helpful. In principle, it could be learned from corpus analysis alone—but1419

the presence of knowledge that certain words (“him”, “her”, “they”, etc.) tend to1420

occur in association with observed agents different from the speaker or the hearer,1421

would certainly help a lot with identifying “third person” as a separate construct. It1422

seems that either a very large number of un-embodied examples or a relatively small1423

number of embodied examples would be needed to support the inference of the “third1424

person” feature. And we suspect this example is typical—i.e. that the most effective1425

route to new feature structure learning involves both embodied social experience and1426

rather deep commonsense knowledge about the world.1427

26.15.3 Transformation and Semantic Mapping Rule Learning1428

Word sense learning and feature structure learning are important parts of language1429

learning, but they’re far from the whole story. An equally important role is played1430

by linguistic transformations, such as the rules used in RelEx and RelEx2Frame. At1431

least some of these must be learned based on experience, for human-level intelligent1432

language processing to proceed.1433

Each of these transformations can be straightforwardly cast as an ImplicationLink1434

between PredicateNodes, and hence formalistically can be learned by PLN inference,1435

combined with one or another heuristic methods for compound predicate creation.1436

The question is what knowledge exists for PLN to draw on in assessing the strengths1437

of these links, and more critically, to guide the heuristic predicate formation meth-1438

ods. This is a case that likely requires the full complexity of “integrative predicate1439

learning” as discussed in Chap. 23. And, as with feature structure learning, it’s a case1440

that will be much more effectively handled using knowledge from social embodied1441

experience alongside purely linguistic knowledge.1442

26.16 Experiential Language Learning1443

We have talked a great deal about “engineered” approaches to NL comprehension and1444

only peripherally about experiential approaches. But there has been a not-so-secret1445

plan underlying this approach. There are many approaches to experiential language1446

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_23

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26.16 Experiential Language Learning 461

learning, ranging from a “tabula rasa” approach in which language is just treated as1447

raw data, to an approach where the whole structure of a language comprehension1448

system is programmed in, and “merely” the content remains to be learned. There isn’t1449

much to say about the tabula rasa approach—we have already discussed CogPrime’s1450

approach to learning, and in principle it is just as applicable to language learning as1451

to any other kind of learning. The more structured approach has more unique aspects1452

to it, so we will turn attention to it here. Of course, various intermediate approaches1453

may be constructed by leaving out various structures.1454

The approach to experiential language learning we consider most promising is1455

based on the PROWL approach, discussed above. In this approach one programs1456

in a certain amount of “universal grammar”, and then allows the system to learn1457

content via experience that obeys this universal grammar. In a PROWL approach,1458

the basic linguistic representational infrastructure is given by the Atomspace that1459

already exists in OpenCog, so the content of “universal grammar” is basically1460

• The propensity to identify words1461

• The propensity to create a small set of asymmetric (i.e. parent/child) labeled re-1462

lationship types, to use to label relationships between semantically related word-1463

instances. These are “syntactic link types.”1464

• The set of constraints on syntactic links implicit in word grammar, e.g. landmark1465

transitivity or no-links-cross.1466

Building in the above items, without building in any particular syntactic links,1467

seems enough to motivate a system to learn a grammar resembling that of human1468

languages.1469

Of course, experiential language learning of this nature is very, very different from1470

“tabula rasa” experiential language learning. But we note that, while PROWL style1471

experiential language learning seems like a difficult problem given existing AI tech-1472

nologies, tabula rasa language learning seems like a nearly unapproachable problem.1473

One could infer from this that current AI technologies are simply inadequate to ap-1474

proach the problem that the young human child mind solves. However, there seems1475

to be some solid evidence that the young human child mind does contain some form1476

of universal grammar guiding its learning. Though we don’t yet know what form this1477

universal prior linguistic knowledge takes in the human mind or brain, the evidence1478

regarding common structures arising spontaneously in various unrelated Creole lan-1479

guages is extremely compelling [Bic08], supporting ideas presented previously based1480

on different lines of evidence. So we suggest that PROWL based experiential lan-1481

guage learning is actually conceptually closer to human child language learning than1482

a tabula rasa approach—although we certainly don’t claim that the PROWL based1483

approach builds in the exact same things as the human genome does.1484

What we need to make experiential language learning work, then, is a language-1485

focused inference-control mechanism that includes, e.g.1486

• A propensity to look for syntactic link types, as outlined just above1487

• A propensity to form new word senses, as outlined earlier1488

• A propensity to search for implications of the general form of RelEx and1489

RelEx2Frame or Syn2Sem rules.1490

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

462 26 Natural Language Comprehension

Given these propensities, it seems reasonable to expect a PLN inference system to1491

be able to “fill in the linguistic content” based on its experience, using links between1492

linguistic and other experiential content as its guide. This is a very difficult learning1493

problem, to be sure, but it seems in principle a tractable one, since we have broken it1494

down into a number of interrelated component learning problems in a manner guided1495

by the structure of language.1496

Other aspects of language comprehension, such as word sense disambiguation and1497

anaphor resolution, seem to plausibly follow from applying inference to linguistic1498

data in the context of embodied experiential data, without requiring especial attention1499

to inference control or supplying prior knowledge.1500

Chapter 27 presents an elaboration of this sort of perspective, in a limited case1501

which enables greater clarity: the learning of linguistic content from an unsupervised1502

corpus, based on the assumption of linguistic infrastructure s just summarized above.1503

26.17 Which Path(s) Forward?1504

We have discussed a variety of approaches to achieving human-level NL compre-1505

hension in the CogPrime framework. Which approach do we think is best? All things1506

considered, we suspect that a tabula rasa experiential approach is impractical, whereas1507

a traditional computational linguistics approach (whether based on hand-coded rules,1508

corpus analysis, or a combination thereof) will reach an intelligence ceiling well short1509

of human capability. On the other hand we believe that all of these options1510

1. The creation of an engineered NL comprehension system (as we have already1511

done), and the adaptation and enhancement of this system using learning that1512

incorporates knowledge from embodied experience1513

2. The creation of an engineered NL comprehension system via unsupervised learn-1514

ing from a large corpus, as described in Chap. 271515

3. The creation of an experiential learning based NL comprehension system using1516

in-built structures, such as the PROWL based approach described above1517

4. The creation of an experiential learning based system as described above, using1518

an engineered system (like the current one) as a “fitness estimation” resource in1519

the manner described at the end of Chap. 251520

have significant promise and are worthy of pursuit. Which of these approaches we fo-1521

cus on in our ongoing OpenCogPrime implementation work will depend on logistical1522

issues as much as on theoretical preference.1523

319613_1_En_26_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: ?? Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_27

http://dx.doi.org/10.2991/978-94-6239-030-0_27

http://dx.doi.org/10.2991/978-94-6239-030-0_25

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 26

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

AQ2 Kindly provide high resolution image for Fig. 26.2.

AQ3 Please check and confirm the inserted citation of Fig. 26.1 is cor-
rect. If not, please suggest an alternative citation.

AQ4 Reference (Hudson 2007) is cited in text but not provided in the
reference list. Please provide references in the list or delete the
citation.

AQ5 The given paragraph starting with ‘According to the landmark
transitivity’ seems to be incomplete. Please check and confirm.

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Language Learning via Unsupervised Corpus Analysis

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract The approach taken to NLP in the OpenCog project up through 2013, in practice, has involved engineering
and integrating rule-based NLP systems as “scaffolding”, with a view toward later replacing the rule
content with alternative content learned via an OpenCog system’s experience.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 27
Language Learning via Unsupervised
Corpus Analysis

27.1 Introduction0

The approach taken to NLP in the OpenCog project up through 2013, in practice,1

has involved engineering and integrating rule-based NLP systems as “scaffolding”,2

with a view toward later replacing the rule content with alternative content learned3

via an OpenCog system’s experience.4

In this chapter we present a variant on this approach, in which the rule content5

of the existing rule-based NLP system is replaced with new content learned via6

unsupervised corpus analysis. This content can then be modified and improved via7

an OpenCog system’s experience, embodied and otherwise, as needed.8

This unsupervised corpus analysis based approach deviates fairly far from human9

cognitive science. However, as discussed above, language processing is one of those10

areas where the pragmatic differences between young humans and early-stage AGI11

systems may be critical to consider. The automated learning of language from embod-12

ied, social experience is a key part of the path to AGI, and is one way that CogPrimes13

and other AGI systems should learn language. On the other hand, unsupervised cor-14

pus based language learning, may perhaps also have a significant role to play in the15

path to linguistically savvy AGI, leveraging some advantages that AGIs have that16

humans do not, such as direct access to massive amounts of online text (without the17

need to filter the text through slow-paced sense-perception systems like eyes).18

The learning of language from unannotated text corpora is not a major pur-19

suit within the computational linguistics community currently. Supervised learning20

of linguistic structures from expert-annotated corpora plays a large role, but this21

is a wholly different sort of pursuit, more analogous to rule-based NLP, in that it22

involves humans explicitly specifying formal linguistic structures (e.g. parse trees23

Co-authored with Linas Vepstas: Dr. Vepstas would properly be listed as the first author of
this chapter; this material was developed in a collaboration between Vepstas and Goertzel.
However, as with all the co-authored chapters in this book, final responsibility for any flaws in
the presentation of the material lies with Ben Goertzel, the chief author of the book.

B. Goertzel et al., Engineering General Intelligence, Part 2, 463
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_27,
© Atlantis Press and the authors 2014

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

464 27 Language Learning via Unsupervised Corpus Analysis

for sentences in a corpus). However, we hypothesize that unsupervised corpus-based24

language learning can be carried out by properly orchestrating the use of some fairly25

standard machine learning algorithms (already included in OpenCog/CogPrime),26

within an appropriate structured framework (such as OpenCog’s current NLP frame-27

work).28

The review of [KM04] provides a summary of the state of the art in automatic29

grammar induction (the third alternative listed above), as it stood a decade ago: it30

addresses a number of linguistic issues and difficulties that arise in actual imple-31

mentations of algorithms. It is also notable in that it builds a bridge between phrase-32

structure grammars and dependency grammars, essentially pointing out that these33

are more or less equivalent, and that, in fact, significant progress can be achieved by34

taking on both points of view at once. Grammar induction has progressed somewhat35

since this review was written, and we will mention some of the more recent work36

below; but yet, it is fair to say that there has been no truly dramatic progress in this37

direction.38

In this chapter we describe a novel approach to achieving automated grammar39

induction, i.e. to machine learning of linguistic content from a large, unannotated40

text corpus. The methods described may also be useful for language learning based41

on embodied experience; and may make use of content created using hand-coded42

rules or machine learning from annotated corpora. But our focus in this chapter will43

be on learning linguistic content from a large, unannotated text corpus.44

The algorithmic approach given in this chapter is wholly in the spirit of the45

“PROWL” approach reviewed above in Chap. 26. However, PROWL is a quite gen-46

eral idea. Here we present a highly specific PROWL-like algorithm, which is focused47

on learning from a large unannotated corpus rather than from embodied experience.48

Because of the corpus-oriented focus, it is possible to tie the algorithm of this chapter49

in with the statistical language learning literature, more tightly than is possible with50

PROWL language learning in general. Yet, the specifics presented here could largely51

be generalized to a broader PROWL context.52

We consider the approach described here as “deep learning” oriented because it53

is based on hierarchical pattern recognition in linguistic data: identifying patterns,54

then patterns among these patterns, etc., in a hierarchy that allows “higher level”55

(more abstract) patterns to feed back down the hierarchy and affect the recognition56

of lower level patterns. Our approach does not use conventional deep learning archi-57

tectures like Deep Boltzmann machines or recurrent neural networks. Conceptually,58

our approach is based on a similar intuition to these algorithms, in that it relies on the59

presence of hierarchical structure in its input data, and utilizes a hierarchical pattern60

recognition structure with copious feedback to adaptively identify this hierarchical61

structure. But the specific pattern recognition algorithms we use, and the specific62

nature of the hierarchy we construct, are guided by existing knowledge about what63

works and what doesn’t in (both statistical and rule-based) computational linguistics.64

While the overall approach presented here is novel, most of the detailed ideas are65

extensions and generalizations of the prior work of multiple authors, which will be66

referenced and in some cases discussed below. In our view, the body of ideas needed67

to enable unsupervised learning of language from large corpora has been gradually68

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_26

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.1 Introduction 465

emerging during the last decade. The approach given here has unique aspects, but69

also many aspects already validated by the work of others.70

For sake of simplicity, we will deal here only with learning from written text here.71

We believe that conceptually very similar methods can be applied to spoken language72

as well, but this brings extra complexities that we will avoid for the purpose of the73

present document. (In short: Below we represent syntactic and semantic learning as74

separate but similarly structured and closely coupled learning processes. To handle75

speech input thoroughly, we would suggest phonological learning as another separate,76

similarly structured and closely coupled learning process).77

Finally, we stress that the algorithms presented here are intended to be used in78

conjunction with a large corpus, and a large amount of processing power. Without a79

very large corpus, some of the feedbacks required for the learning process described80

would be unlikely to happen (e.g. the ability of syntactic and semantic learning to81

guide each other). We have not yet sought to estimate exactly how large a corpus82

would be required, but our informal estimate is that Wikipedia might or might not83

be large enough, and the Web is certainly more than enough.84

We don’t pretend to know just how far this sort of unsupervised, corpus based85

learning can be pushed. To what extent can the content of a natural language like86

English be learned this way. How much, if any, ambiguity will be left over once87

this kind of learning has been thoroughly done—only pragmatically disambiguable88

via embodied social learning? Strong opinions on these sorts of issues abound in89

the cognitive science, linguistics and AI communities; but the only apparent way to90

resolve these questions is empirically.91

27.2 Assumed Linguistic Infrastructure92

While the approach outlined in this chapter aims to learn the linguistic content of93

a language from textual data, it does not aim to learn the idea of language. Implic-94

itly, we assume a model in which a learning system begins with a basic “linguistic95

infrastructure” indicating the various parts of a natural language and how they gen-96

erally interrelate; and it then learns the linguistic content characterizing a particular97

language. In principle, it would also be possible to have an AI system to learn the98

very concept of a language and build its own linguistic infrastructure. However, that99

is not the problem we address here; and we suspect such an approach would require100

drastically more computational resources.101

The basic linguistic infrastructure assumed here includes:102

• A formalism for expressing grammatical (dependency) rules is assumed.103

– The ideas given here are not tied to any specific grammatical formalism, but104

as in Chap. 26 we find it convenient to make use of a formalism in the style105

of dependency grammar [Tes59]. Taking a mathematical perspective, different106

grammar formalisms can be translated into one-another, using relatively simple107

rules and algorithms [KM04]. The primary difference between them is more108

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_26

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

466 27 Language Learning via Unsupervised Corpus Analysis

a matter of taste, perceived linguistic ‘naturalness’, adaptability, and choice109

of parser algorithm. In particular, categorial grammars can be converted into110

link grammars in a straight-forward way, and vice versa, but link grammars111

provide a more compact dictionary. Link grammars [ST91, ST93] are a type112

of dependency grammar; these, in turn, can be converted to and from phrase-113

structure grammars. We believe that dependency grammars provide a more114

simple and natural description of linguistic phenomena. We also believe that115

dependency grammars have a more natural fit with maximum-entropy ideas,116

where a dependency relationship can be literally interpreted as the mutual infor-117

mation between word-pairs [Yur98]. Dependency grammars also work well with118

Markov119

models; dependency parsers can be implemented as Viterbi decoders. Figure 26.1120

illustrates two different formalisms.121

– The discussion below assumes the use of a formalism similar that of Link Gram-122

mar, as described above. In this theory, each word is associated with a set of123

‘connector disjuncts’, each connector disjunct controlling the possible linkages124

that the word may take part in. A disjunct can be thought of as a jig-saw puzzle-125

piece; valid syntactic word orders are those for which the puzzle-pieces can be126

validly connected. A single connector can be thought of as a single tab on a127

puzzle-piece (shown in Fig. 26.2). Connectors are thus ’types’ X with a + or −128

sign indicating that they connect to the left or right. For example, a typical verb129

disjunct might be S− and O+ indicating that a subject (a noun) is expected on130

the left, and an object (also a noun) is expected on the right.131

– Some of the discussion below assumes select aspects of (Dick Hudson’s) Word132

Grammar [Hud84, Hud07b]. As reviewed above, Word Grammar theory (implic-133

itly) uses connectors similar to those of Link Grammar, but allows each connec-134

tor to be marked as the head of a link or not. A link then becomes an arrow from135

a head word to the dependent word. (Somewhat confusingly, the head of the136

arrow points at the dependent word; this means the tail of the arrow is attached137

to the head word).138

– Each word is associated with a “lexical entry”; in Link Grammar, this is the139

set of connector disjuncts for that word. It is usually the case that many words140

share a common lexical entry; for example, most common nouns are syntacti-141

cally similar enough that they can all be grouped under a single lexical entry.142

Conversely, a single word is allowed to have multiple lexical entries; so, for143

example, “saw”, the noun, will have a different lexical entry from “saw”, the144

past tense of the verb “to see”. That is, lexical entries can loosely correspond145

to traditional dictionary entries. Whether or not a word has multiple lexical146

entries is a matter of convenience, rather than a fundamental aspect. Curiously,147

a single Link Grammar connector disjunct can be viewed as a very fine-grained148

part-of-speech. In this way, it is a stepping stone to the semantic meaning of a149

word.150

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_26

http://dx.doi.org/10.2991/978-94-6239-030-0_26

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.2 Assumed Linguistic Infrastructure 467

• A parser, for extracting syntactic structure from sentences, is assumed. What’s151

more, it is assumed that the parser is capable of using semantic relationships to152

guide parsing.153

– A paradigmatic example of such a parser is the “Viterbi Link Parser”, currently154

under development for use with the Link Grammar. This parser is currently155

operational in a simple form. The name refers to its use of a the general ideas156

of the Viterbi algorithm. This algorithm seems biologically plausible, in that it157

applies only a local analysis of sentence structure, of limited scope, as opposed158

to a global optimization, thus roughly emulating the process of human listening.159

The current set of legal parses of a sentence is pruned incrementally and prob-160

abilistically, based on flexible criteria. These potentially include the semantic161

relationships extractable from the partial parse obtained at a given point in time.162

It also allows for parsing to be guided by inter-sentence relationships, such as163

pronoun resolution, to disambiguate otherwise ambiguous sentences.164

• A formalism for expressing semantic relationships is assumed.165

– A semantic relationship generalizes the notion of a lexical entry to allow for166

changes of word order, paraphrasing, tense, number, the presence or absence of167

modifiers, etc. An example of such a relationship would be eat(X, Y)—indicating168

the eating of some entity Y by some entity X. This abstracts into common form169

several different syntactic expressions: “Ben ate a cookie”, “A cookie will be170

eaten by Ben”, “Ben sat, eating cookies”.171

– Nothing particularly special is assumed here regarding semantic relationships,172

beyond a basic predicate-argument structure. It is assumed that predicates can173

have arguments that are other predicates, and not just atomic terms; this has an174

explicit impact on how predicates and arguments are represented. A “semantic175

representation” of a sentence is a network of arrows (defining predicates and176

arguments), each arrow or a small subset of arrows defining a “semantic rela-177

tionship”. However, the beginning or end of an arrow is not necessarily a single178

node, but may land on a subgraph.179

– Type constraints seem reasonable, but its not clear if these must be made explicit,180

or if they are the implicit result of learning. Thus, eat(X, Y) requires that X and181

Y both be entities, and not, for example, actions or prepositions.182

– We have not yet thought through exactly how rich the semantic formalism183

should be for handling the full variety of quantifier constructs in complex nat-184

ural language. But we suspect that it’s OK to just use basic predicate-argument185

relationships and not build explicit quantification into the formalism, allowing186

quantifiers to be treated like other predicates.187

– Obviously, CogPrime’s formalism for expressing linguistic structures in terms188

of Atoms, presented in Chap. 26, fulfills the requirements of the learning scheme189

presented in this chapter. However, we wish to stress that the learning scheme190

presented her does not depend on the particulars of CogPrime’s representation191

scheme, though it is very compatible with them.192

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_26

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

468 27 Language Learning via Unsupervised Corpus Analysis

27.3 Linguistic Content to be Learned193

Given the above linguistic infrastructure, what remains for a language learning system194

to learn is the linguistic content that characterizes a particular language. Everything195

included in OpenCog’s existing “scaffolding” rule-based NLP system would, in this196

approach, be learned to first approximation via unsupervised corpus analysis.197

Specifically, given the assumed framework, key things to be learned include:198

• A list of ‘link types’ that will be used to form ‘disjuncts’ must be learned.199

– An example of a link type is the ’subject’ link S. This link typically connects the200

subject of a sentence to the head verb. Given the normal English subject-verb201

word order, nouns will typically have an S+ connector, indicating that an S link202

may be formed only when the noun appears to the left of a word bearing an203

S− connector. Likewise, verbs will typically be associated with S− connectors.204

The current Link Grammar contains roughly one hundred different link-types,205

with additional optional subtypes that are used to further constrain syntactic206

structure. This number of different link types seems required simply because207

there are many relationships between words: there is not just a subject-verb or208

verb-object relationship, but also rather fine distinctions, such as those needed209

to form grammatical time, date, money, and measurement expressions, punctu-210

ation use, including street-addresses, cardinal and ordinal relationships, proper211

(given) names, titles and suffixes, and other highly constrained grammatical212

constructions. This is in addition to the usual linguistic territory of needing to213

indicate dependent clauses, comparatives, subject-verb inversion, and so on. It214

is expected that a comparable number of link types will need to be learned.215

– Some link types are rather strict, such as those connect verb subjects and objects,216

while other types are considerably more ambiguous, such as those involving217

prepositions. This reflects the structure of English, where subject-verb-object218

order is fairly rigorously enforced, but the ordering and use of prepositions is219

considerably looser. When considering the looser cases, it becomes clear that220

there is no single, inherent ‘right answer’ for the creation and assignment of link221

types, and that several different, yet linguistically plausible linkage assignments222

may be made.223

– The definition of a good link-type is one that leads the parser— applied across224

the whole corpus—to allow parsing to be successful for almost all sentences, and225

yet not to be so broad as to enable parsing of word-salads. Significant pressure226

must be applied to prevent excess proliferation of link types, yet no so much as227

to over-simplify things, and provide valid parses for unobserved, ungrammatical228

sentences.229

• Lexical entries for different words must be learned.230

– Typically, multiple connectors are needed to define how a word can link syntac-231

tically to others. Thus, for example, many verbs have the disjunct S− and O+232

indicating that they need a subject noun to the left, and an object to the right.233

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.3 Linguistic Content to be Learned 469

All words have at least a handful of valid disjuncts that they can be used with,234

and sometimes hundreds or even more. Thus, a “lexical entry” must be learned235

for each word, the lexical entry being a set of disjuncts that can be used with236

that word.237

– Many words are syntactically similar; most common nouns can share a single238

lexical entry. Yet, there are many exceptions. Thus, during learning, there is a239

back-and forth process of grouping and ungrouping words; clustering them so240

that they share lexical entries, but also splitting apart clusters when its realized241

that some words behave differently. Thus for example, the words “sing” and242

“apologize” are both verbs, and thus share some linguistic structure, but one243

cannot say “I apologized a song to Vicky”; if these two verbs were initially244

grouped together into a common lexical entry, they must later be split apart.245

– The definition of a good lexical entry is much the same as that for a good link246

type: observed sentences must be parsable; random sentences mostly must not247

be, and excessive proliferation and complexity must be prevented.248

• Semantic relationships must be learned.249

– The semantic relationship eat(X,Y) is prototypical. Foundationally, such a250

semantic relationship may be represented as a set whose elements consist of251

syntactico-semantic subgraphs. For the relation eat(X,Y), a subgraph may be as252

simple as a single (syntactic) disjunct S− and O+ for the normal word order253

“Ben ate a cookie”, but it may also be a more complex set needed to repre-254

sent the inverted word order in “a cookie was eaten by Ben”. The set of all255

of these different subgraphs defines the semantic relationship. The subgraphs256

themselves may be syntactic (as in the example above), or they may be other257

semantic relationships, or a mixture thereof.258

– Not all re-phrasings are semantically equivalent. “Mr. Smith is late” has a rather259

different meaning from “The late Mr. Smith”.260

– In general, place-holders like X and Y may be words or category labels. In early261

stages of learning, it is expected that X and Y are each just sets of words. At262

some point, though, it should become clear that these sets are not specific to263

this one relationship, but can appropriately take part in many relationships. In264

the above example, X and Y must be entities (physical objects), and, as such,265

can participate in (most) any other relationships where entities are called for.266

More narrowly, X is presumably a person or animal, while Y is a foodstuff. Fur-267

thermore, as entities, it might be inferred when these refer to the same physical268

object (see the section ‘reference resolution’ below).269

– Categories can be understood as sets of synonyms, including hyponyms (thus,270

“grub” is a synonym for “food”, while “cookie” is a hyponym.271

• Idioms and set phrases must be learned.272

– English has a large number of idiomatic expressions whose meanings cannot273

be inferred from the constituent words (such as “to pull one’s leg”). In this way,274

idioms present a challenge: their sometimes complex syntactic constructions275

belie their often simpler semantic content. On the other hand, idioms have a276

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

470 27 Language Learning via Unsupervised Corpus Analysis

very rigid word-choice and word order, and are highly invariant. Set phrases277

take a middle ground: word-choice is not quite as fixed as for idioms, but,278

none-the-less, there is a conventional word order that is usually employed. Not279

that the manually-constructed Link Grammar dictionaries contain thousands280

of lexical entries for idiomatic constructions. In essence, these are multi-word281

constructions that are treated as if they were a single word.282

Each of the above tasks have already been accomplished and described in the liter-283

ature; for example, automated learning of synonymous words and phrases has been284

described by Lin [LP01] and Poon and Domingos [PD09]. The authors are not aware285

of any attempts to learn all of these, together, in one go, rather than presuming the286

pre-existance of dependent layers.287

27.3.1 Deeper Aspects of Comprehension288

While the learning of the above aspects of language is the focus of our discussion here,289

the search for semantic structure does not end there; more is possible. In particular,290

natural language generation has a vital need for lexical functions, so that appropriate291

word-choice can be made when vocalizing ideas. In order to truly understand text, one292

also needs, as a minimum, to discern referential structure, and sophisticated under-293

standing requires discerning topics. We believe automated, unsupervised learning of294

these aspects is attainable, but is best addressed after the ‘simpler’ language learning295

described above. We are not aware of any prior work aimed at automatically learning296

these, aside from relatively simple, unsophisticated (bag-of-words style) efforts at297

topic categorization.298

27.4 A Methodology for Unsupervised Language Learning299

from a Large Corpus300

The language learning approach presented here is novel in its overall nature. Each301

part of it, however, draws on prior experimental and theoretical research by others on302

particular aspects of language learning, as well as on our own previous work building303

computational linguistic systems. The goal is to assemble a system out of parts that304

are already known to work well in isolation.305

Prior published research, from a multitude of authors over the last few decades,306

has already demonstrated how many of the items listed above can be learnt in an307

unsupervised setting (see e.g. [Yur98, KM04, LP01, CS10, PD09, Mih07, KSPC13]308

for relevant background). All of the previously demonstrated results, however, were309

obtained in isolation, via research that assumed the pre-existence of surrounding310

infrastructure far beyond what we assume above. The approach proposed here may311

be understood as a combination, generalization and refinement these techniques, to312

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 471

create a system that can learn, more or less ab initio from a large corpus, with a final313

result of a working, usable natural language comprehension system.314

However, we must caution that the proposed approach is in no way a haphazard315

mash-up of techniques. There is a deep algorithmic commonality to the different prior316

methods we combine, which has not always been apparent in the prior literature due317

to the different emphases and technical vocabularies used in the research papers in318

question. In parallel with implementing the ideas presented here, we intend to workin319

fully formalizing the underlying mathematics of the undertaking, so that it becomes320

clear what approximations are being taken, and what avenues remain unexplored.321

Some fairly specific directions in this regard suggest themselves.322

All of the prior research alluded to above invokes some or another variation of323

maximum entropy principles, sometimes explicitly, but usually implicitly. In general,324

entropy maximization principles provide the foundation for learning systems such as325

(hidden) Markov models, Markov networks and Hopfield neural networks, and they326

connect indirectly with Bayesian probability based analyses. However, the actual327

task of maximizing the entropy is an NP-hard problem; forward progress depends328

on short-cuts, approximations and clever algorithms, some of which are of general329

nature, and some domain-dependent. Part of the task of refining the details of the330

language learning methodology presented here, is to explore various short-cuts and331

approximations to entropy maximization, and discover new, clever algorithms of332

this nature that are relevant to the language learning domain. As has been the case in333

physics and other domains, we suspect that progress here will be best achieved via a334

coupled exploration of experimental and mathematical aspects of the subject matter.335

27.4.1 A High Level Perspective on Language Learning336

On an abstract conceptual level, the approach proposed here depicts language learn-337

ing as an instance of a general learning loop such as:338

1. Group together linguistic entities (i.e. words or linguistic relationships, such339

as those described in the previous section) that display similar usage patterns340

(where one is looking at usage patterns that are compactly describable given341

one’s meta-language). Many but not necessarily all usage patterns for a given342

linguistic entity, will involve its use in conjunction with other linguistic entities.343

2. For each such grouping make a category label.344

3. Add these category labels to one’s meta-language345

4. Return to Step 1.346

It stands to reason that the result of this sort of learning loop, if successful, will be a347

hierarchically composed collection linguistic relationships possessing the following348

Linguistic Coherence Property: Linguistic entities are reasonably well char-
acterizable in terms of the compactly describable patterns observable in their
relationship with with other linguistic entities.

349

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

472 27 Language Learning via Unsupervised Corpus Analysis

Note that there is nothing intrinsically “deep” or hierarchical in this sort of linguis-350

tic coherence. However, the ability to learn the patterns relating linguistic entities351

with others, via a recursive hierarchical learning loop such as described above, is352

contingent on the presence of a fairly marked hierarchical structure in the linguis-353

tic data being studied. There is much evidence that such hierarchical structure does354

indeed exist in natural languages. The “deep learning” in our approach is embedded355

in the repeated cycles through the loop given above—each time one goes through356

the loop, the learning gets one level deeper.357

This sort of property has observed to hold for many linguistic entities, an obser-358

vation dating back at least to Saussure [dS77] and the start of structuralist linguistics.359

It is basically a fancier way of saying that the meanings of words and other linguistic360

constructs, may be found via their relationships to other words and linguistic con-361

structs. We are not committed to structuralism as a theoretical paradigm, and we362

have considerable respect for the aid that non-linguistic information—such as the363

sensorimotor data that comes from embodiment—can add to language, as should be364

apparent from the overall discussion in this book. However, the potential dramatic365

utility of non-linguistic information for language learning does not imply the impos-366

sibility or infeasibility of learning language from corpus data alone. It is inarguable367

that non-linguistic relationships comprise a significant portion of the everyday mean-368

ing of linguistic entities; but yet, redundancy is prevalent in natural systems, and we369

believe that purely linguistic relationships may well provide sufficient data for learn-370

ing of natural languages. If there are some aspects of natural language that cannot371

be learned via corpus analysis, it seems difficult to identify what these aspects are372

via armchair theorizing, and likely that they will only be accurately identified via373

pushing corpus linguistics as far as it can go.374

This generic learning process is a special case of the general process of symbol-375

ization, described in Chaotic Logic [Goe94] and elsewhere as a key aspect of general376

intelligence. In this process, a system finds patterns in itself and its environment, and377

then symbolizes these patterns via simple tokens or symbols that become part of the378

system’s native knowledge representation scheme (and hence parts of its “metalan-379

guage” for describing things to itself). Having represented a complex pattern as a380

simple symbolic token, it can then easily look at other patterns involving this patterns381

as a component.382

Note that in its generic format as stated above, the “language learning loop” is383

not restricted to corpus based analysis, but may also include extralinguistic aspects384

of usage patterns, such as gestures, tones of voice, and the physical and social con-385

text of linguistic communication. Linguistic and extra-linguistic factors may come386

together to comprise “usage patterns”. However, the restriction to corpus data does387

not necessarily denude the language learning loop of its power; it merely restricts one388

to particular classes of usage patterns, whose informativeness must be empirically389

determined.390

In principle, one might be able to create a functional language learning system391

based only on a very generic implementation of the above learning loops. In practice,392

however, biases toward particular sorts of usage patterns can be very valuable in393

guiding language learning. In a computational language learning context, it may be394

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 473

worthwhile to break down the language learning process into multiple instances of395

the basic language learning loops, each focused on different sorts of usage patterns,396

and coupled with each other in specific ways. This is in fact what we will propose397

here.398

Specifically, the language learning process proposed here involves:399

• One language learning loop for learning purely syntactic linguistic relationships400

(such as link types and lexical entries, described above), which are then used to401

provide input to a syntax parser.402

• One language learning loop for learning higher-level “syntactico-semantic” lin-403

guistic relationships (such as semantic relationships, idioms, and lexical functions,404

described above), which are extracted from the output of the syntax parser.405

These two loops are not independent of one-another; the second loop can provide406

feedback to the first, regarding the correctness of the extracted structures; then as407

the first loop produces more correct, confident results, the second loop can in turn408

become more confident in it’s output. In this sense, the two loops attack the same409

sort of slow-convergence issues that ‘deep learning’ tackles in neural-net training.410

The syntax parser itself, in this context, is used to extract directed acyclic graphs411

(dags), usually trees, from the graph of syntactic relationships associated with a sen-412

tence. These dags represent parses of the sentence. So the overall scope of the learning413

process proposed here is to learn a system of syntactic relationships that displays414

appropriate coherence and that, when fed into an appropriate parser, will yield415

parse trees that give rise to a system of syntactico-semantic relationships that416

displays appropriate coherence.417

27.4.2 Learning Syntax418

The process of learning syntax from a corpus may be understood fairly directly in419

terms of entropy maximization. As a simple example, consider the measurement of420

the entropy of the arrangement of words in a sentence. To a fair degree, this can421

be approximated by the sum of the mutual entropy between pairs of words. Yuret422

showed that by searching for and maximizing this sum of entropies, one obtains a423

tree structure that closely resembles that of a dependency parse [Yur98]. That is,424

the word pairs with the highest mutual entropy are more or less the same as the425

arrows in a dependency parse, such as that shown in Fig. 26.1. Thus, an initial task426

is to create a catalog of word-pairs with a large mutual entropy (mutual information,427

or MI) between them. This catalog can then be used to approximate the most-likely428

dependency parse of a sentence, although, at this stage, the link-types are as yet429

unknown.430

Finding dependency links using mutual information is just the first step to building431

a practical parser. The generation of high-MI word-pairs works well for isolating432

which words should be linked, but it does have several major drawbacks. First and433

foremost, the word-pairs do not come with any sort of classification; there is no link434

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_26

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

474 27 Language Learning via Unsupervised Corpus Analysis

type describing the dependency relationship between two words. Secondly, most435

words fall into classes (e.g. nouns, verbs, etc.), but the high-MI links do not tell436

us what these are. A compact, efficient parser appears to require this sort of type437

information.438

To discover syntactic link types, it is necessary to start grouping together words439

that appear in similar contexts. This can be done with clustering and similarity tech-440

niques, which appears to be sufficient to discover not only basic parts of speech441

(verbs, nouns, modifiers, determiners), but also link types. So, for example, the com-442

putation of word-pair MI is likely to reveal the following high-MI word pairs: “big443

car”, “fast car”, “expensive car”, “red car”. It is reasonable to group together the444

words big, expensive, fast and red into a single category, interpreted as modifiers to445

car. The grouping can be further refined if these same modifiers are observed with446

other words (e.g. “big bicycle”, “fast bicycle”, etc.). This has two effects: it not only447

reinforces the correctness of the original grouping of modifiers, but also suggests448

that perhaps cars and bicycles should be grouped together. Thus, one has discovered449

two classes of words: modifiers and nouns. In essence, one has crudely discovered450

parts of speech.451

The link between these two classes carries a type; the type of that link is defined452

by these two classes. The use of a pair of word classes to define a link type is a basic453

premise of categorial grammar [KSPC13]. In this example, a link between a modifier454

and a noun would be a type denoted as M\N in categorial grammar, M denoting the455

class of modifiers, and N the class of nouns. In the system of Link Grammar, this is456

replaced by a simple name, but its really one and the same thing. (In this case, the457

existing dictionaries use the A link for this relation, with A conjuring up ‘adjective’458

as a mnemonic). The simple-name is a boon for readability, as categorial grammars459

usually have very complex-looking link-type names: e.g. (NP\S)/NP for the simplest460

transitive verbs. Typing seems to be an inherent part of language; types must be461

extracted durng the learning process.462

The introduction of types here has mathematical underpinnings provided by type463

theory. An introduction to type theory can be found in [Pro13], and an application of464

type theory to linguistics can be found in [KSPC13]. This is a rather abstract work,465

but it sheds light on the nature of link types, word-classes, parts-of-speech and the466

like as formal types of type theory. This is useful in dispelling the seeming taint of467

ad hoc arbitrariness of clustering: in a linguistic context, it is not so much ad hoc468

as it is a way of guaranteeing that only certain words can appear in certain positions469

in grammatically correct sentences, a sort of constraint that seems to be an inherent470

part of language, and seems to be effectively formalizable via type theory.471

Word-clustering, as worked in the above example, can be viewed as another472

entropy-maximization technique. It is essentially a kind of factorization of depen-473

dent probabilities into most likely factors. By classifying a large number of words474

as ‘modifiers of nouns’, one is essentially admitting that they are equi-probable in475

that role, in the Markovian sense [Ash65] (equivalently, treating them as equally-476

weighted priors, in the Bayesian probability sense). That is, given the word “car”,477

we should treat big, fast, expensive and red as being equi-probable (in the absence of478

other information). Equi-probability is an axiom in Bayesian probability (the axiom479

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 475

of priors), but it derives from the principle of maximum entropy (as any other prob-480

ability assignment would have a lower entropy).481

We have described how link types may be learned in an unsupervised setting.482

Connector types are then trivially assigned to the left and right words of a word-pair.483

The dependency graph, as obtained by linking only those word pairs with a high484

MI, then allows disjuncts to be easily extracted, on a sentence-by-sentence basis. At485

this point, another stage of pattern recognition may be applied: Given a single word,486

appearing in many different sentences, one should presumably find that this word487

only makes use of a relatively small, limited set of disjuncts. It is then a counting488

exercise to determine which disjuncts are occurring the most often for this word:489

these then form this word’s lexical entry. (This “counting exercise” may also be490

thought of as an instance of frequent subgraph mining, as will be elaborated below).491

A second clustering step may then be applied: it’s presumably noticeable that492

many words use more-or-less the same disjuncts in syntactic constructions. These493

can then be grouped into the same lexical entry. However, we previously generated a494

different set of word groupings (into parts of speech), and one may ask: how does that495

grouping compare to this grouping? Is it close, or can the groupings be refined? If the496

groupings cannot be harmonized, then perhaps there is a certain level of detail that497

was previously missed: perhaps one of the groups should be split into several parts.498

Conversely, perhaps one of the groupings was incomplete, and should be expanded499

to include more words. Thus, there is a certain back-and-forth feedback between500

these different learning steps, with later steps reinforcing or refining earlier steps,501

forcing a new revision of the later steps.502

27.4.2.1 Loose Language503

A recognized difficulty with the direct application of Yuret’s observation (that the504

high-MI word-pair tree is essentially identical to the dependency parse tree) is the505

flexibility of the preposition in the English language [KM04]. The preposition is506

so widely used, in such a large variety of situations and contexts, that the mutual507

information between it, and any other word or word-set, is rather low (is unlikely508

and thus carries little information). The two-point, pair-wise mutual entropy provides509

a poor approximation to what the English language is doing in this particular case.510

It appears that the situation can be rescued with the use of a three-point mutual511

information (a special case of interaction information [Bel03]).512

The discovery and use of such constructs is described in [PD09]. A similar, related513

issue can be termed “the richness of the MV link type in Link Grammar”. This one514

link type, describing verb modifiers (which includes prepositions) can be applied in515

a very large class of situations; as a result, discovering this link type, while at the516

same time limiting its deployment to only grammatical sentences, may prove to be517

a bit of a challenge. Even in the manually maintained Link Grammar dictionaries, it518

can present a parsing challenge because so many narrower cases can often be treated519

with an MV link. In summary, some constructions in English are so flexible that520

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

476 27 Language Learning via Unsupervised Corpus Analysis

it can be difficult to discern a uniform set of rules for describing them; certainly,521

pair-wise mutual information seems insufficient to elucidate these cases.522

Curiously, these more challenging situations occur primarily with more complex523

sentence constructions. Perhaps the flexibility is associated with the difficulty that524

humans have with composing complex sentences; short sentences are almost ‘set525

phrases’, while longer sentences can be a semi-grammatical jumble. In any case, some526

of the trouble might be avoided by limiting the corpus to smaller, easier sentences at527

first, perhaps by working with children’s literature at first.528

27.4.2.2 Elaboration of the Syntactic Learning Loop529

We now reiterate the syntactic learning process described above in a more systematic530

way. By getting more concrete, we also make certain assumptions, and restrictions,531

some of which may end up getting changed or lifted in the course of implementation532

and detailed exploration of the overall approach. What is discussed in this section is533

merely one simple, initial approach to concretizing the core language learning loop534

we envision in a syntactic context.535

Syntax, as we consider it here, involves the following basic entities:536

• Words537

• Categories of words538

• “co-occurrence links”, each one defined as (in the simplest case) an ordered pair539

or triple of words, labeled with an uncertain truth value540

• “syntactic link types”, each one defined as a certain set of ordered pairs of words541

• “disjuncts”, each one associated with a particular word w, and consisting of an542

ordered set of link types involving the word w. That is, each of these links contains543

at least one word-pair containing w as first or second argument. (This nomencla-544

ture here comes from Link Grammar; each disjunct is a conjunction of link types.545

A word is associated with a set of disjuncts. In the course of parsing, one must546

choose between the multiple disjuncts associated with a word, to fulfill the con-547

straints required of an appropriate parse structure).548

An elementary version of the basic syntactic language learning loop described above549

would take the form.550

1. Search for high-MI word pairs. Define one’s usage links as the given co-551

occurrence links552

2. Cluster words into categories based on the similarity of their associated usage553

links554

• Note that this will likely be a tricky instance of clustering, and classical cluster-555

ing algorithms may not perform well. One interesting, less standard approach556

would be to use OpenCog’s MOSES algorithm [Loo06, Loo07c] to learn an557

array of program trees, each one serving as a recognizer for a single cluster,558

in the same general manner done with Genetic Programming in [BE07].559

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 477

3. Define initial syntactic link types from categories that are joined by large bundles560

of usage links561

• That is, if the words in category C1 have a lot of usage links to the words in562

category C2, then create a syntactic link type whose elements are (w1, w2),563

for all w1 ∈ C1, w2 ∈ C2.564

4. Associate each word with an extended set of usage links, consisting of: its existing565

usage links, plus the syntactic links that one can infer for it based on the categories566

the word belongs to. One may also look at chains of (e.g.) 2 syntactic links567

originating at the word.568

• For example, suppose cat ∈ C1 and C1 has syntactic link L1. Suppose569

(cat, eat) and (dog, run) are both in L1. Then if there is a sentence “The570

cat likes to run”, the link L1 lets one infer the syntactic link cat
L1→ run. The571

frequency of this syntactic link in a relevant corpus may be used to assign it572

an uncertain truth value.573

• Given the sentence “The cat likes to run in the park”, a chain of syntactic links574

such as cat
L1→ run

L2→ park may be constructed.575

5. Return to Step 2, but using the extended set of usage links produced in576

Step 4, with the goal of refining both clusters and the set of link types for accuracy.577

Initially, all categories contain one word each, and there is a unique link type for578

each pair of categories. This is an inefficeint representation of language, and so579

the goal of clustering is to have a relatively small set of clusters and link types,580

with many words/word-pairs assigned to each. This can be done by maximizing581

the sum of the logarithms of the sizes of the clusters and link types; that is, by582

maximing entropy. Since the category assignments depend on the link types, and583

vice versa, a very large number of iterations of the loop are likely to be required.584

Based on the current Link Grammar English dictionaries, one expects to discover585

hundreds of link types (or more, depending on how subtypes are counted), and586

perhaps a thousand word clusters (most of these corresponding to irregular verbs587

and idiomatic phrases).588

Many variants of this same sort of process are conceivable, and it’s currently unclear589

what sort of variant will work best. But this kind of process is what one obtains590

when one implements the basic language learning loop described above on a purely591

syntactic level.592

How might one integrate semantic understanding into this syntactic learning loop?593

Once one has semantic relationships associated with a word, one uses them to gen-594

erate new “usage links” for the word, and includes these usage links in the algorithm595

from Step 1 onwards. This may be done in a variety of different ways, and one may596

give different weightings to syntactic versus semantic usage links, resulting in the597

learning of different links.598

The above process would produce a large set of syntactic links between words.599

We then find a further series of steps. These may be carried out concurrently with600

the above steps, as soon as Step 4 has been reached for the first time.601

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

478 27 Language Learning via Unsupervised Corpus Analysis

1. This syntactic graph (with nodes as words and syntactic links joining them)602

may then be mined, using a variety of graph mining tools, to find common603

combinations of links. This gives the “disjuncts” mentioned above.604

2. Given the set of disjuncts, one carries out parsing using a process such as link605

parsing or word grammar parsing, thus arriving at a set of parses for the sentences606

in one’s reference corpus. Depending on the nature of one’s parser, these parses607

may be ranked according to semantic plausibility. Each parse may be viewed608

as a directed acyclic graph (dag), usually a tree, with words at the nodes and609

syntactic-link type labels on the links.610

3. One can now define new usage links for each word: namely, the syntactic links611

occurring in sentence parses, containing the word in question. These links may612

be weighted based on the weights of the parses they occur in.613

4. One can now return to Step 2 using the new usage links, alongside the previous614

ones. Weighting these usage links relative to the others may be done in various615

ways.616

Several subtleties have been ignored in the above, such as the proper discovery and617

treatment of idomatic phrases, the discovery of sentence boundaries, the handling of618

embedded data (price quotes, lists, chapter titles, etc.) as well as the potential speed619

bump that are prepositions. Fleshing out the details of this loop into a workable,620

efficient design is the primary engineering challenge. This will take significant time621

and effort.622

27.4.3 Learning Semantics623

Syntactic relationships provide only the shallowest interpretation of language;624

semantics comes next. One may view semantic relationships (including semantic625

relationships close to the syntax level, which we may call “syntactico-semantic” rela-626

tionships) as ensuing from syntactic relationships, via a similar but separate learning627

process to the one proposed above. Just as our approach to syntax learning is heavily628

influenced by our work with Link Grammar, our approach to semantics is heavily629

influenced by our work on the RelEx system [RVG05, LGE10, GPPG06, LGK+12],630

which maps the output of the Link Grammar parser into a more abstract, semantic631

form. Prototype systems [Goe10b, LGK+12] have also been written mapping the632

output of RelEx into even more abstract semantic form, consistent with the seman-633

tics of the Probabilistic Logic Networks [GIGH08] formalism as implemented in634

CogPrime. These systems are largely based on hand-coded rules, and thus not in the635

spirit of language learning pursued in this proposal. However, they display the same636

structure that we assume here; the difference being that here we specify a mechanism637

for learning the linguistic content that fills in the structure via unsupervised corpus638

learning, obviating the need for hand-coding.639

Specifically, we suggest that discovery of semantic relations requires the imple-640

mentation of something similar to [LP01], except that this work needs to be641

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 479

generalized from 2-point relations to 3-point and N-point relations, roughly as642

described in [PD09]. This allows the automatic, unsupervised recognition of synony-643

mous phrases, such as “Texas borders on Mexico” and “Texas is next to Mexico”, to644

extract the general semantic relation next_to(X,Y), and the fact that this relation can645

be expressed in one of several different ways.646

At the simplest level, in this approach, semantic learning proceeds by scanning647

the corpus for sentences that use similar or the same words, yet employ them in648

a different order, or have point substitutions of single words, or of small phrases.649

Sentences which are very similar, or identical, save for one word, offer up candi-650

dates for synonyms, or sometimes antonyms. Sentences which use the same words,651

but in seemingly different syntactic constructions, are candidates for synonymous652

sentences. These may be used to extract semantic relations: the recognition of sets653

of different syntactic constructions that carry the same meaning.654

In essence, similar contexts must be recognized, and then word and word-order655

differences between these other-wise similar contexts must be compared. There are656

two primary challenges: how to recognize similar contexts, and how to assign prob-657

abilities.658

The work of [PD09] articulates solutions to both challenges. For the first, it659

describes a general framework in which relations such as next_to(X,Y)can be under-660

stood as lambda-expressions λxλy.next_to(x, y), so that one can employ first-order661

logic constructions in place of graphical representations. This is partly a notational662

trick; it just shows how to split up input syntactic constructions into atoms and663

terms, for which probabilities can be assigned. For the second challenge, they show664

how probabilities can be assigned to these expressions, by making explicit use of665

the notions of conditional random fields (or rather, a certain special case, termed666

Markov Logic Networks). Conditional random fields, or Markov networks, are a667

certain mathematical formalism that provides the most general framework in which668

entropy maximization problems can be solved: roughly speaking, it can be understood669

as a means of properly distributing probabilities across networks. Unfortunately, this670

work is quite abstract and rather dense. Thus, a much easier understanding to the671

general idea can be obtained from [LP01]; unfortunately, the later fails to provide672

the general N-point case needed for semantic relations in general, and also fails to673

consider the use of maximum entropy principles to obtain similarity measures.674

The above can be used to extract synonymous constructions, and, in this way,675

semantic relations. However, neither of the above references deal with distinguishing676

different meanings for a given word. That is, while eats(X,Y) might be a learnable677

semantic relation, the sentence “He ate it” does not necessarily justify its use. Of678

course: “He ate it” is an idiomatic expression meaning “he crashed”, which should679

be associated with the semantic relation crash(X), not eat(X,Y). There are global680

textual clues that this may be the case: trouble resolving the reference “it”, and a681

lack of mention of foodstuffs in neighboring sentences. A viable yet simple algorithm682

for the disambiguation of meaning is offered by the Mihalcea algorithm [MTF04,683

Mih05, SM07]. This is an application of the (google) PageRank algorithm to word684

senses, taken across words appearing in multiple sentences. The premise is that the685

correct word-sense is the one that is most strongly supported by senses of nearby686

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

480 27 Language Learning via Unsupervised Corpus Analysis

words; a graph between word senses is drawn, and then solved as a Markov chain.687

In the original formulation, word senses are defined by appealing to WordNet, and688

affinity between word-senses is obtained via one of several similarity measures.689

Neither of these can be applied in learning a language de novo. Instead, these must690

both be deduced by clustering and splitting, again. So, for example, it is known that691

word senses correlate fairly strongly with disjuncts (based on authors unpublished692

experiments), and thus, a reasonable first cut is to presume that every different disjunct693

in a lexical entry conveys a different meaning, until proved otherwise. The above-694

described discovery of synonymous phrases can then be used to group different695

disjuncts into a single “word sense”. Disjuncts that remain ungrouped after this696

process are already considered to have distinct senses, and so can be used as distinct697

senses in the Mihalcea network.698

Sense similarity measures can then be developed by using the above-discovered699

senses, and measuring how well they correlate across different texts. That is, if the700

word “bell” occurs multiple times in a sequence of paragraphs, it is reasonable to701

assume that each of these occurrences are associated with the same meaning. Thus,702

each distinct disjunct for the word “bell” can then be presumed to still convey the703

same sense. One now asks, what words co-occur with the word “bell”? The frequent704

appearance of “chime” and “ring” can and should be noted. In essence, one is once-705

again computing word-pair mutual information, except that now, instead of limiting706

word-pairs to be words that are near each other, they can instead involve far-away707

words, several sentences apart. One can then expand the word sense of “bell” to708

include a list of co-occurring words (and indeed, this is the slippery slope leading to709

set phrases and eventually idioms).710

Failures of co-occurrences can also further strengthen distinct meanings. Con-711

sider “he chimed in” and “the bell chimed”. In both cases, chime is a verb. In the712

first sentence, chime carries the disjunct S-4 & K+ (here, K+ is the standard Link713

Grammar connector to particles) while the second has only the simpler disjunct S-.714

Thus, based on disjunct usage alone, one already suspects that these two have a715

different meaning. This is strengthened by the lack of occurrence of words such as716

“bell” or “ring” in the first case, with a frequent observation of words pertaining to717

talking.718

There is one final trick that must be applied in order to get reasonably rapid719

learning; this can be loosely thought of as “the sigmoid function trick of neural net-720

works”, though it may also be manifested in other ways not utilizing specific neural721

net mathematics. The key point is that semantics intrinsically involves a variety of722

uncertain, probabilistic and fuzzy relationships; but in order to learn a robust hierar-723

chy of semantic structures, one needs to iteratively crispen these fuzzy relationships724

into strict ones.725

In much of the above, there is a recurring need to categorize, classify and discover726

similarity. The naivest means of doing so is by counting, and applying basic proba-727

bility (Bayesian, Markovian) to the resulting counts to deduce likelihoods. Unfortu-728

nately, such formulas distribute probabilities in essentially linear ways (i.e. form a729

linear algebra), and thus have a rather poor ability to discriminate or distinguish (in730

the sense of receiver operating characteristics, of discriminating signal from noise).731

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 481

Consider the last example: the list of words co-occurring with chime, over the space732

of a few paragraphs, is likely to be tremendous. Most of this is surely noise. There is733

a trick to over-coming this that is deeply embedded in the theory of neural networks,734

and yet completely ignored in probabilistic (Bayesian, Markovian) networks: the735

sigmoid function. The sigmoid function serves to focus in on a single stimulus, and736

elevate its importance, and, at the same time, strongly suppress all other stimuli. In737

essence, the sigmoid function looks at two probabilities, say 0.55 and 0.45, and says738

“let’s pretend the first one is 0.9 and the second one is 0.1, and move forward from739

there”. It builds in a strong discrimination to all inputs. In the language of standard,740

text-book probability theory, such discrimination is utterly unwarranted; and indeed,741

it is. However, applying strong discrimination to learning can help speed learning by742

converting certain vague impressions into certainties. These certainties can then be743

built upon to obtain additional certainties, or to be torn apart, as needed.744

Thus, in all of the above efforts to gauge the similarity between different things, it745

is useful to have a sharp yes/no answer, rather than a vague muddling with likelihoods.746

In some of the above-described algorithms, this sharpness is already built in: so, Yuret747

approximates the mutual information of an entire sentence as the sum of mutual748

information between word pairs: the smaller, unlikely corrections are discarded.749

Clearly, they must also be revived in order to handle prepositions. Something similar750

must also be done in the extraction of synonymous phrases, semantic relations,751

and meaning; the domain is that much likelier to be noisy, and thus, the need to752

discriminate signal from noise that much more important.753

27.4.3.1 Elaboration of the Semantic Learning Loop754

We now provide a more detailed elaboration of a simple version of the general755

semantic learning process described above. The same caveat applies here as in our756

elaborated description of syntactic learning above: the specific algorithmic approach757

outlined here is a simple instantiation of the general approach we have in mind, which758

may well require refinement based on lessons learned during experimentation and759

further theoretical analysis.760

One way to do semantic learning, according to the approach outlined above, is as761

follows:762

1. An initial semantic corpus is posited, whose elements are parse graphs produced763

by the syntactic process described earlier764

2. A semantic relationship set (or rel-set) is computed from the semantic corpus,765

via calculating the frequent (or otherwise statistically informative) subgraphs766

occurring in the elements of the corpus. Each node of such a subgraph may767

contain a word, a category or a variable; the links of the subgraph are labeled768

with (syntactic, or semantic) link types. Each parse graph is annotated with the769

semantic graphs associated with the words it contains (explicitly: each word in770

a parse graph may be linked via a ReferenceLink to each variable or literal with771

a semantic graph that corresponds to that word in the context of the sentence772

underlying the parse graph.)773

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

482 27 Language Learning via Unsupervised Corpus Analysis

• For instance, the link combination v1
S→ v2

O→ v3 may commonly occur774

(representing the standard Subject-Verb-Object (SVO) structure)775

• In this case, for the sentence “The rock broke the window”, we would have776

links such as rock
Ref erenceLink→ v1 connecting the nodes (such as the “rock”777

node) in the parse structure with nodes (such as v1) in this associated semantic778

subgraph.779

3. Rel-sets are divided into categories based on the similarities of their associated780

semantic graphs.781

• This division into categories manifests the sigmoid-function-style crispening782

mentioned above. Each rel-set will have similarities to other rel-sets, to varying783

fuzzy degrees. Defining specific categories turns a fuzzy web of similarities784

into crisp categorial boundaries; which involves some loss of information, but785

also creates a simpler platform for further steps of learning.786

• Two semantic graphs may be called “associated” if they have a nonempty787

intersection. The intersection determines the type of association involved.788

Similarity assessment between graphs G and H may involve estimation of789

which graphs G and H are associated with in which ways.790

• For instance, “The cat ate the dog” and “The frog was eaten by the walrus”791

represent the semantic structure eat(cat,dog) in two different ways. In link792

parser terminology, they do so respectively via the subgraphs G1 = v1
S→793

v2
O→ v3 and G2 = v1

S→ v2
P→ v3

MV→ v4
J→ v5. These two semantic794

graphs will have a lot of the same associations. For instance, in our corpus795

we may have “The big cat ate the dog in the morning” (including big
A→ cat)796

and also “The big frog was eaten by the walrus in the morning” (including797

big
A→ frog), meaning that big

A→ v5 is a graph commonly associated with798

both G1 and G2. Due to having many commonly associated graphs like this,799

G1 and G2 are likely to be associated to a common cluster.800

4. Nodes referring to these categories are added to the parse graphs in the semantic801

corpus. Most simply, a category node C is assigned a link of type L pointing to802

another node x , if any element of C has a link of type L pointing to x . (More803

sophisticated methods of assigning links to category nodes may also be worth804

exploring.)805

• If G1 and G2 have been assigned to a common category C , then “I believe the806

pig ate the horse” and “I believe the law was invalidated by the revolution”807

will both appear as instantiations of the graph G3 = v1
S→ believe

CV→ C.808

This G3 is compact because of the recognition of C as a cluster, leading to its809

representation as a single symbol. The recognition of G3 will occur in Step 2810

the next time around the learning loop.811

5. Return to Step 2, with the newly enriched semantic corpus. As before, one wants812

to discover not too many and not too few categories; again, the appropriate813

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

27.4 A Methodology for Unsupervised Language Learning from a Large Corpus 483

solution to this problem appears to be entropy maximization. That is, during the814

frequent subgraph mining stages, one maintains counts of how often these occur815

in the corpus; from these, one constructs the equivalent of the mutual information816

associated with the subgraphs; categorization requires maximizing the sum of the817

log of the sizes of the categories.818

As noted earlier, these semantic relationships may be used in the syntactic phase of819

language understanding in two ways:820

• Semantic graphs associated with words may be considered as “usage links” and821

thus included as part of the data used for syntactic category formation.822

• During the parsing process, full or partial parses leading to higher-probability823

semantic graphs may be favored.824

27.5 The Importance of Incremental Learning825

The learning process described here builds up complex syntactic and semantic struc-826

tures from simpler ones. To start it, all one needs are basic before and after relation-827

ships derived from a corpus. Everything else is built up from there, given the assump-828

tion of appropriate syntactic and semantic formalisms and a semantics-guided syntax829

parser.830

As we have noted, the series of learning steps we propose falls into the broad831

category of “deep learning”, or of hierarchical modeling. That is, learning must occur832

at several levels at once, each reinforcing, and making use of results from another.833

Link types cannot be identified until word clusters are found, and word clusters cannot834

be found until word-pair relationships are discovered. However, once link-types are835

known, these can be then used to refine clusters and the selected word-pair relations.836

Further, the process of finding word clusters—both pre and post parsing—relies on837

a hierarchical build-up of clusters, each phase of clustering utilizing results of the838

previous “lower level” phrase.839

However, for this bootstrapping learning to work well, one will likely need to840

begin with simple language, so that the semantic relationships embodied in the text841

are not that far removed from the simple before/after relationships. The complexity842

of the texts may then be ramped up gradually. For instance, the needed effect might843

be achieved via sorting a very large corpus in order of increasing reading level.844

27.6 Integrating Language Learned via Corpus Analysis into845

CogPrime’s Experiential Learning846

Supposing everything in this chapter were implemented and tested and worked rea-847

sonably well as envisioned. What would this get us in terms of progress toward848

AGI?849

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

484 27 Language Learning via Unsupervised Corpus Analysis

Arguably, with a relatively modest additional effort, it could get us a natural850

language question answering system, answering a variety of questions based on the851

text corpus available to it. One would have to use the learned rules for language852

generation, but the methods of Chap. 28 would likely suffice for that.853

Such a dialogue system would be a valuable achievement in its own right, of854

scientific, commercial and humanistic interest—but of course, it wouldn’t be AGI.855

To get something approaching AGI from this sort of effort, one would have to uti-856

lize additional reasoning and concept creation algorithms to enable the answering857

of questions based on knowledge not stored explicitly in the provided corpus. The858

dialogue system would have to be able to piece together new answers from various859

fragmentary, perhaps contradictory pieces of information contain in the corpus. Ulti-860

mately, we suspect, one would need something like the CogPrime architecture, or861

something else with a comparable level of sophistication, to appropriately leverage862

the information extracted from texts via the learned language rules.863

An open question, as indicated above, is how much of language itself would a864

corpus based language learning system like the one outlined here miss, assuming a865

massive but realistic corpus (say, a significant fraction of the Web). This is unresolved866

and ultimately will only be determined via experiment. Our suspicion is that a very867

large percentage of language can be understood via these corpus-based methods. But868

there may be exceptions that would require an unrealistically large corpus size.869

As a simple example, consider the ability to interpret vaguely given spatial direc-870

tions like “Go right out the door, past a few curves in the road, then when you get871

to a hill with a big red house on it (well not that big, but bigger than most of the872

others you’ll see on the walk), start heading down toward the water, till the brush gets873

thick, then start heading left.... Follow the ground as it rises and eventually you’ll874

see the lake”. Of course, it is theoretically possible for an AGI system to learn to875

interpret directions like this purely via corpus analysis. But it seems the task would876

be a lot easier for an AGI endowed with a body so that it could actually experience877

routes like the one being described. And space and time are not the only source of878

relevant examples; social and emotional reasoning have a similar property. Learning879

to interpret language about these from reading is certainly possible, but one will have880

an easier time and do a better job if one is out in the world experiencing social and881

emotional life oneself.882

Even if there turn out to be significant limitations regarding what can be learned883

in practice about language via corpus analysis, though, it may still prove a valuable884

contributor to the mind of a CogPrime system. As compared to hand-coded rules,885

comparably abstract linguistic knowledge achieved via statistical corpus analysis886

should be much easier to integrate with the results of probabilistic inference and887

embodied learning, due to its probabilistic weighting and its connection with the888

specific examples that gave rise to it.889

319613_1_En_27_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 484 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_28

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Natural Language Generation

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Language generation, unsurprisingly, shares most of the key features of language comprehension discussed
in Chap. 26 —after all, the division between generation and comprehension is to some extent an artificial
convention, and the two functions are intimately bound up both in the human mind and in the CogPrime
architecture.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 28
Natural Language Generation

28.1 Introduction0

Language generation, unsurprisingly, shares most of the key features of language1

comprehension discussed in Chap. 26—after all, the division between generation2

and comprehension is to some extent an artificial convention, and the two functions3

are intimately bound up both in the human mind and in the CogPrime architecture.4

In this chapter we discuss language generation, in a manner similar to the previ-5

ous chapter’s treatment of language comprehension. First we discuss our currently6

implemented, “engineered” language generation system, and then we discuss some7

alternative approaches:8

• How a more experiential-learning based system might be made by retaining the9

basic structure of the engineered system but removing the “pre-wired” contents.10

• How a “Sem2Syn” system might be made, via reversing the Syn2Sem system11

described in Chap. 26. This is the subject of implementation effort, at time of12

writing.13

At the start of Chap. 26 we gave a high-level overview of a typical NL generation14

pipeline. Here we will focus largely but not entirely on the “syntactic and morpho-15

logical realization” stage, which we refer to for simplicity as “sentence generation”16

(taking a slight terminological liberty, as “sentence fragment generation” is also17

included here). All of the stages of language generation are important, and there is18

a nontrivial amount of feedback among them. However, there is also a significant19

amount of autonomy, such that it often makes sense to analyze each one separately20

and then tease out its interactions with the other stages.21

Co-authored with Ruiting Lian and Rui Liu.

B. Goertzel et al., Engineering General Intelligence, Part 2, 485
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_28,
© Atlantis Press and the authors 2014

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030-0_26

http://dx.doi.org/10.2991/978-94-6239-030-0_26

http://dx.doi.org/10.2991/978-94-6239-030-0_26

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

486 28 Natural Language Generation

28.2 SegSim for Sentence Generation22

The sentence generation approach currently taken in OpenCog (from 2009 to early23

2012), which we call SegSim, is relatively simple and is depicted in Fig. 28.1 and24

described as follows:25

1. The NL generation system stores a large set of pairs of the form (semantic struc-26

ture, syntactic/morphological realization).27

2. When it is given a new semantic structure to express, it first breaks this semantic28

structure into natural parts, using a set of simple syntactic-semantic rules.29

3. For each of these parts, it then matches the parts against its memory to find relevant30

pairs (which may be full or partial matches), and uses these pairs to generate a31

set of syntactic realizations (which may be sentences or sentence fragments).32

4. If the matching has failed, then (a) it returns to Step 2 and carries out the breakdown33

into parts again. But if this has happened too many times, then (b) it recourses to34

a different algorithm (most likely a search or optimization based approach, which35

is more computationally costly) to determine the syntactic realization of the part36

in question.37

5. If the above step generated multiple fragments, they are pieced together, and a38

certain rating function is used to judge if this has been done adequately (using39

criteria of grammaticality and expected comprehensibility, among others). If this40

fails, then Step 3 is tried again on one or more of the parts; or Step 2 is tried again.41

(Note that one option for piecing the fragments together is to string together a42

number of different sentences; but this may not be judged optimal by the rating43

function).44

6. Finally, a “cleanup” phase is conducted, in which correct morphological forms45

are inserted, and articles and certain other “function words” are inserted.46

The specific OpenCog software implementing the SegSim algorithm is called47

“NLGen”; this is an implementation of the SegSim concept that focuses on sentence48

generation from RelEx semantic relationship. In the current (early 2012) NLGen49

version, Step 1 is handled in a very simple way using a relational database; but this50

will be modified in future so as to properly use the AtomSpace. Work is currently51

underway to replace NLGen with a different “Sem2Syn” approach, that will be52

described at the end of this chapter. But discussion of NLGen is still instructive53

regarding the intersection of language generation concepts with OpenCog concepts.54

The substructure currently used in Step 2 is defined by the predicates of the55

sentence, i.e. we define one substructure for each predicate, which can be described56

as follows:57

Predicate(Argumenti (Modify j))58

where59

• 1 ≤ i ≤ m and 0 ≤ j ≤ n and m, n are integers60

• “Predicate” stands for the predicate of the sentence, corresponding to the variable61

$0 of the RelEx relationship _subj($0, $1) or _obj($0, $1)62

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28.2 SegSim for Sentence Generation 487

Fig. 28.1 A overview of the SegSim architecture for language generation

• Argumenti is the i-th semantic parameter related with the predicate63

• Modify j is the j-th modifier of the Argumenti .64

If there is more than one predicate, then multiple subnets are extracted analogously.65

For instance, given the sentence “I happily study beautiful mathematics in beau-66

tiful China with beautiful people”. The substructure can be defined as Fig. 28.2.67

For each of these substructures, Step 3 is supposed to match the substructures of68

a sentence against its global memory [which contains a large body of previously69

encountered (semantic structure, syntactic/morphological realization) pairs] to find70

the most similar or same substructures and the relevant syntactic relations to generate71

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

488 28 Natural Language Generation

Fig. 28.2 Example of a substructure

Fig. 28.3 Linkage of an example

a set of syntactic realizations, which may be sentences or sentence fragments. In our72

current implementation, a customized subgraph matching algorithm has been used73

to match the subnets from the parsed corpus at this step.74

If Step 3 generated multiple fragments, they must be pieced together. In Step 4, the75

Link Parser’s dictionary has been used for detecting the dangling syntactic links cor-76

responding to the fragments, which can be used to integrate the multiple fragments.77

For instance, in the example of Fig. 28.3, according to the last 3 steps, SegSim would78

generate two fragments: “the parser will ignore the sentence” and “whose length is79

too long”. Then it consults the Link Parser’s dictionary, and finds that “whose” has80

a connector “Mr-”, which is used for relative clauses involving “whose”, to connect81

to the previous noun “sentence”. Analogously, we can integrate the other fragments82

into a whole sentence.83AQ1

For instance, in the example of Fig. 28.3, according to the last 3 steps, SegSim84

would generate two fragments: “the parser will ignore the sentence” and “whose85

length is too long”. Then it consults the Link Parser’s dictionary, and finds that86

“whose” has a connector “Mr-”, which is used for relative clauses involving “whose”,87

to connect to the previous noun “sentence”. Analogously, we can integrate the other88

fragments into a whole sentence.89

Finally, a “cleanup” or “post-processing” phase is conducted, applying the cor-90

rect inflections to each word depending on the word properties provided by the91

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28.2 SegSim for Sentence Generation 489

input RelEx relations. For example, we can use the RelEx relation “DEFINITE-92

FLAG(cover, T)” to insert the article “the” in front of the word “cover”. We have93

considered five factors in this version of NLGen: article, noun plural, verb intense,94

possessive and query type (the latter which is only for interrogative sentences).95

In the “cleanup” step, we also use the chunk parser tool from OpenNLP1 for96

adjusting the position of an article being inserted. For instance, consider the proto-97

sentence “I have big red apple”. If we use the RelEx relation “noun_number(apple,98

singular)” to inflect the word “apple” directly, the final sentence will be “I have big99

red an apple”, which is not well-formed. So we use the chunk parser to detect the100

phrase “big red apple” first, then apply the article rule in front of the noun phrase.101

This is a pragmatic approach which may be replaced with something more elegant102

and principled in later revisions of the NLGen system.103

28.2.1 NLGen: Example Results104

NLGen is currently in a relatively early stage of development, and does not handle105

the full range of linguistic and semantic phenomena that it will when it’s completed.106

However, it can already express a variety of sentences encapsulating a variety of syn-107

tactic and semantic phenomena; in this section we will give some specific examples108

of what it can do.109

The SegSim approach performs sentence generation by matching portions of110

propositional input to a large corpus of parsed sentences, therefore, when the success-111

ful matches can be found in the corpus, it can generate some similar and well-formed112

sentences via the relevant syntactic structures.113

There currently do not exist any authoritative evaluation criteria for Natural Lan-114

guage Generation systems. Among many complicating factors here is the fact that115

different language generation systems have different kinds of inputs, depending on116

many things including their application area. So it’s complicated to compare the117

results of NLGen with those obtained by other systems.118

It is easier however to test whether NLGen is implementing SegSim successfully.119

One approach is to take a sentence, run it through RelEx to generate a set of relation-120

ships, and see if NLGen can regenerate the sentence from the relationship. We show121

here the results of some simple tests of this nature, performed with the current version122

of the system using a very small test corpus for similarity matching. Note: In each123

of these example results, the input of NLGen is the RelEx relationships produced by124

the sentence before “==>”; and the sentence to the right side of “==>” was one of125

the sentences generated by NLGen.126

Example 1:127

I study mathematics at Xiamen University.128

==> I study mathematics at Xiamen_University.129

1 http://opennlp.sourceforge.net/

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

http://opennlp.sourceforge.net/

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

490 28 Natural Language Generation

Example 2:130

The red block is next to the blue cup.131

==> The red block is next_to the blue cup.132

Example 3:133

Ruiting walked from the table to the door.134

==> Ruiting walked to the door from the table.135

Example 4:136

I intend to walk very slowly from Ben to Ruiting,137

with Hugo’s pencil in my hand.138

==> With Hugo’s pencil in my hand,139

I intend to walk very slowly from Ben to Ruiting.140

Example 5:141

I’d like you to tell me where the red ball is.142

==> I tell like you to ’d me where the red ball is.143

Example 6:144

I study at Xiamen University, which is located in China.145

==> I study at Xiamen_University.146

Example 7:147

What is next to the tree?148

==> What is next to the tree?149

Example 8:150

Where is the red ball?151

==> Where is the red ball?152

Example 9:153

Pass me the ball.154

==> Pass me the ball.155

Example 10:156

Tell Ben where the red ball is.157

==> Tell Ben where the red ball is.158

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28.2 SegSim for Sentence Generation 491

Fig. 28.4 RelEx relationships for Example 1

To make the process clearer, for Example 1 we also show the RelEx relationships159

produced from the sentence before the “==>”:160

For instance, in the example of Fig. 28.3, according to the last 3 steps, SegSim161

would generate two fragments: “the parser will ignore the sentence” and “whose162

length is too long”. Then it consults the Link Parser’s dictionary, and finds that163

“whose” has a connector “Mr-”, which is used for relative clauses involving “whose”,164

to connect to the previous noun “sentence”. Analogously, we can integrate the other165

fragments into a whole sentence.166

Figure 28.4 shows the relationships of Example 1 fed to NLGen as input. The167

types of the semantic relationships are documented in the RelEx’s wiki pages.2168

These examples illustrate some key points about the current version of NLGen. It169

works well on simple, commonplace sentences (Example 1, 2), though it may reorder170

the sentence fragments sometimes (Example 3, 4). On the other hand, because of its171

reliance on matching against a corpus, NLGen is incapable of forming good sentences172

with syntactic structures not found in the corpus (Example 5, 6). On a larger corpus173

these examples would have given successful results. In Example 5, the odd error is174

due to the presence of too many “_subj” RelEx relationships in the relationship-set175

corresponding to the sentence, which distracts the matching process when it attempts176

to find similar substructures in the small test corpus. Then from Example 7 to 10, we177

can see NLGen still works well for question sentences and imperative sentence if the178

substructures we extract can be matched, but the substructures may be similar with179

the assertive sentence, so we need to refine it in the “cleanup” step. For example:180

the substructures we extracted for the sentence “are you a student?” are the same as181

the ones for “you are a student?”, since the two sentences both have the same binary182

RelEx relationships:183

2 http://opencog.org/wiki/RelEx#Relations_and_Features

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

http://opencog.org/wiki/RelEx#Relations_and_Features

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

492 28 Natural Language Generation

_subj(be, you)184

_obj(be, student)185

which are used to guide the extraction of the substructures. So we need to refine the186

sentence via some grammatical rules in the post-processing phase, using the word187

properties from RelEx, like “TRUTH-QUERY-FLAG(be, T)” which means if that188

the referent “be” is a verb/event and the event is involved is a question.189

The particular shortcomings demonstrated in these examples are simple to remedy190

within the current NLGen framework, via simply expanding the corpus. However,191

to get truly general behavior from NLGen it will be necessary to insert some other192

generation method to cover those cases where similarity matching fails, as discussed193

above. The NLGen2 system created by Blake Lemoine [Lem10] is one possibility in194

this regard: based on RelEx and the link parser, it carries out rule-based generation195

using an implementation of Chomsky’s Merge operator. Integration of NLGen with196

NLGen2 is currently being considered. We note that the Merge operator is compu-197

tationally inefficient by nature, so that it will likely never be suitable for the primary198

sentence generation method in a language generation system. However, pairing NL-199

Gen for generation of familiar and routine utterances with a Merge-based approach200

for generation of complex or unfamiliar utterances, may prove a robust approach.201

28.3 Experiential Learning of Language Generation202

As in the case of language comprehension, there are multiple ways to create an203

experiential learning based language generation system, involving various levels of204

“wired in” knowledge. Our best guess is that for generation as for comprehension, a205

“tabula rasa” approach will prove computationally intractable for quite some time to206

come, and an approach in which some basic structures and processes are provided,207

and then filled out with content learned via experience, will provide the greatest odds208

of success.209

A highly abstracted version of SegSim may be formulated as follows:210

1. The AI system stores semantic and syntactic structures, and its control mechanism211

is biased to search for, and remember, linkages between them.212

2. When it is given a new semantic structure to express, it first breaks this semantic213

structure into natural parts, using inference based on whatever implications it has214

in its memory that will serve this purpose.215

3. Its inference control mechanism is biased to carry out inferences with the fol-216

lowing implication: For each of these parts, match it against its memory to find217

relevant pairs (which may be full or partial matches), and use these pairs to gener-218

ate a set of syntactic realizations (which may be sentences or sentence fragments).219

4. If the matching has failed to yield results with sufficient confidence, then (a) it220

returns to Step 2 and carries out the breakdown into parts again. But if this has221

happened too many times, then (b) it uses its ordinary inference control routine222

to try to determine the syntactic realization of the part in question.223

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28.3 Experiential Learning of Language Generation 493

5. If the above step generated multiple fragments, they are pieced together, and an224

attempt is made to infer, based on experience, whether the result will be effectively225

communicative. If this fails, then Step 3 is tried again on one or more of the parts;226

or Step 2 is tried again.227

6. Other inference-driven transformations may occur at any step of the process, but228

are particularly likely to occur at the end. In some languages these transformations229

may result in the insertion of correct morphological forms or other “function230

words”.231

What we suggest is that it may be interesting to supply a CogPrime system with this232

overall process, and let it fill in the rest by experiential adaptation. In the case that233

the system is learning to comprehend at the same time as it’s learning to generate,234

this means that its early-stage generations will be based on its rough, early-stage235

comprehension of syntax—but that’s OK. Comprehension and generation will then236

“grow up” together.237

28.4 Sem2Syn238

A subject of current research is the extension of the Syn2Sem approach mentioned239

above into a reverse-order, Sem2Syn system for language generation.240

Given that the Syn2Sem rules are expressed as ImplicationLinks, they can be241

reversed automatically and immediately—although, the reversed versions will not242

necessarily have the same truth values. So if a collection of Syn2Sem rules are learned243

from a corpus, then they can be used to automatically generate a set of Sem2Syn244

rules, each tagged with a probabilistic truth value. Application of the whole set of245

Sem2Syn rules to a given Atom-set in need of articulation, will result in a collection246

of link-parse links.247

To produce a sentence from such a collection of link-parse links, another process248

is also needed, which will select a subset of the collection that corresponds to a249

complete sentence, legally parsable via the link parser. The overall collection might250

naturally break down into more than one sentence.251

In terms of the abstracted version of SegSim given above, the primary difference252

between NLGen and SegSim lies in Step 3. Syn2Sem replaces the SegSim “data-store253

matching” algorithm with inference based on implications obtained from reversing254

the implications used for language comprehension.255

28.5 Conclusion256

There are many different ways to do language generation within OpenCog, ranging257

from pure experiential learning to a database-driven approach like NLGen. Each of258

these different ways may have value for certain applications, and it’s unclear which259

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

494 28 Natural Language Generation

ones may be viable in a human-level AGI context. Conceptually we would favor a260

pure experiential learning approach, but, we are currently exploring a “compromise”261

approach based on Sem2Syn. This is an area where experimentation is going to tell262

us more than abstract theory.263

319613_1_En_28_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 494 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 28

Query Refs. Details Required Author’s response

AQ1 Please provide high-resolution figure for Figs. 28.1, 28.2 and 28.3

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Embodied Language Processing

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract “Language” is an important abstraction—but one should never forget that it’s an abstraction. Language
evolved in the context of embodied action, and even the most abstract language is full of words and
phrases referring to embodied experience. Even our mathematics is heavily based on our embodied
experience—geometry is about space; calculus is about space and time; algebra is a sort of linguistic
manipulation generalized from experience-oriented language, etc.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 29
Embodied Language Processing

29.1 Introduction0

“Language” is an important abstraction—but one should never forget that it’s an1

abstraction. Language evolved in the context of embodied action, and even the most2

abstract language is full of words and phrases referring to embodied experience.3

Even our mathematics is heavily based on our embodied experience—geometry is4

about space; calculus is about space and time; algebra is a sort of linguistic manipu-5

lation generalized from experience-oriented language, etc. (see [LN00] for detailed6

arguments in this regard). To consider language in the context of human-like general7

intelligence, one needs to consider it in the context of embodied experience.8

There is a large literature on the importance of embodiment for child language9

learning, but perhaps the most eloquent case has been made by Michael Tomasello,10

in his excellent book Constructing a Language [Tom03]. Citing a host of relevant11

research by himself and others, Tomasello gives a very clear summary of the value12

of social interaction and embodiment for language learning in human children. And13

while he doesn’t phrase it in these terms, the picture he portrays includes central roles14

for reinforcement, imitative and corrective learning. Imitative learning is obvious: so15

much of embodied language learning has to do with the learner copying what it has16

heard other say in similar contexts. Corrective learning occurs every time a parent17

or peer rephrases something for a child.18

In this chapter, after some theoretical discussion of the nature of symbolism and19

the role of gesture and sound in language, we describe some computational exper-20

iments run with OpenCog controlling virtual pets in a virtual world, regarding the21

use of embodied experience for anaphor resolution and question-answering. These22

comprise an extremely simplistic example of the interplay between language and23

embodiment, but have the advantage of concreteness, since they were actually imple-24

mented and experimented with. Some of the specific OpenCog tools used in these25

Co-authored with Samir Araujo and Welter Silva.

B. Goertzel et al., Engineering General Intelligence, Part 2, 495
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_29,
© Atlantis Press and the authors 2014

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

496 29 Embodied Language Processing

experiments are no longer current (e.g. the use of RelEx2Frame, which is now26

deprecated in favor of alternative approaches to mapping parses into more abstract27

semantic relationships); but the basic principles and flow illustrated here are still28

relevant to current and future work.AQ1 29

29.2 Semiosis30

The foundation of communication is semiosis—the representation between the sig-31

nifier and the signified. Often the signified has to do with the external world or the32

communicating agent’s body; hence the critical role of embodiment in language.33

Thus, before turning to the topic of embodied language use and learning per se,34

we will briefly treat the related topic of how an AGI system may learn semiosis35

itself via its embodied experience. This is a large and rich topic, but we will restrict36

ourselves to giving a few relatively simple examples intended to make the principles37

clear. We will structure our discussion of semiotic learning according to Charles38

Sanders Peirce’s theory of semiosis [Pei34], in which there are three basic types of39

signs: icons, indices and symbols.40

In Peirce’s ontology of semiosis, an icon is a sign that physically resembles what41

it stands for. Representational pictures, for example, are icons because they look42

like the thing they represent. Onomatopoeic words are icons, as they sound like43

the object or fact they signify. The iconicity of an icon need not be immediate to44

appreciate. The fact that “kirikiriki” is iconic for a rooster’s crow is not obvious to45

English-speakers yet it is to many Spanish-speakers; and the the converse is true for46

“cock-a-doodle-doo.”47

Next, an index is a sign whose occurrence probabilistically implies the occurrence48

of some other event or object (for reasons other than the habitual usage of the sign49

in connection with the event or object among some community of communicating50

agents). The index can be the cause of the signified thing, or its consequence, or51

merely be correlated to it. For example, a smile on your face is an index of your happy52

state of mind. Loud music and the sound of many people moving and talking in a53

room is an index for a party in the room. On the whole, more contextual background54

knowledge is required to appreciate an index than an icon.55

Finally, any sign that is not an icon or index is a symbol. More explicitly, one may56

say that a symbol is a sign whose relation to the signified thing is conventional or57

arbitrary. For instance, the stop sign is a symbol for the imperative to stop; the word58

“dog” is a symbol for the concept it refers to.59

The distinction between the various types of signs is not always obvious, and some60

signs may have multiple aspects. For instance, the thumbs-up gesture is a symbol for61

positive emotion or encouragement. It is not an index—unlike a smile which is an62

index for happiness because smiling is intrinsically biologically tied to happiness,63

there is no intrinsic connection between the thumbs-up signal and positive emotion64

or encouragement. On the other hand, one might argue that the thumbs-up signal is65

very weakly iconic, in that its up-ness resembles the subjective up-ness of a positive66

emotion (note that in English an idiom for happiness is “feeling up”).67

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.2 Semiosis 497

Teaching an embodied virtual agent to recognize simple icons is a relatively68

straightforward learning task. For instance, suppose one wanted to teach an agent69

that in order to get the teacher to give it a certain type of object, it should go to a70

box full of pictures and select a picture of an object of that type, and bring it to the71

teacher. One way this may occur in an OpenCog-controlled agent is for the agent to72

learn a rule of the following form:73

ImplicationLink
ANDLink

ContextLink
Visual
SimilarityLink $X $Y

PredictiveImplicationLink
SequentialANDLink

ExecutionLinkgoto box
ExecutionLinkgrab$X
ExecutionLinkgoto teacher

EvaluationLinkgive me teacher$Y

74

While not a trivial learning problem, this is straightforward to a75

CogPrime-controlled agent that is primed to consider visual similarities as signifi-76

cant (i.e. is primed to consider the visual-appearance context within its search for77

patterns in its experience).78

Next, proceeding from icons to indices: Suppose one wanted to teach an agent79

that in order to get the teacher to give it a certain type of object, it should go to a80

box full of pictures and select a picture of an object that has commonly been used81

together with objects of that type, and bring it to the teacher. This is a combination82

of iconic and indexical semiosis, and would be achieved via the agent learning a rule83

of the form84

Implication85

AND86

Context87

Visual88

Similarity $X $Z89

Context90

Experience91

SpatioTemporalAssociation $Z $Y92

PredictiveImplication93

SequentialAnd94

Execution goto box95

Execution grab $X96

Execution goto teacher97

Evaluation give me teacher $Y98

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

498 29 Embodied Language Processing

Symbolism, finally, may be seen to emerge as a fairly straightforward extension99

of indexing. After all, how does an agent come to learn that a certain symbol refers100

to a certain entity? An advanced linguistic agent can learn this via explicit verbal101

instruction, e.g. one may tell it “The word ‘hideous’ means ‘very ugly’.” But in the102

early stages of language learning, this sort of instructional device is not available,103

and so the way an agent learns that a word is associated with an object or an action104

is through spatiotemporal association. For instance, suppose the teacher wants to105

teach the agent to dance every time the teacher says the word “dance”—a very106

simple example of symbolism. Assuming the agent already knows how to dance,107

this merely requires the agent learn the implication108

PredictiveImplication109

SequentialAND110

Evaluation say teacher me "dance"111

Execution dance112

give teacher me Reward113

And, once this has been learned, then simultaneously the relationship114

SpatioTemporalAssociation dance "dance"115

will be learned. What’s interesting is what happens after a number of associations of116

this nature have been learned. Then, the system may infer a general rule of the form117

Implication118

AND119

SpatioTemporalAssociation \$X \$Z120

HasType \$X GroundedSchema121

PredictiveImplication122

SequentialAND123

Evaluation say teacher me \$Z124

Execution \$X125

Evaluation give teacher me Reward126

This implication represents the general rule that if the teacher says a word corre-127

sponding to an action the agent knows how to do, and the agent does it, then the128

agent may get a reward from the teacher. Abstracting this from a number of pertinent129

examples is a relatively straightforward feat of probabilistic inference for the PLN130

inference engine.131

Of course, the above implication is overly simplistic, and would lead an agent to132

stupidly start walking every time its teacher used the word “walk” in conversation133

and the agent overheard it. To be useful in a realistic social context, the implication134

must be made more complex so as to include some of the pragmatic surround in135

which the teacher utters the word or phrase $Z.136

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.3 Teaching Gestural Communication 499

29.3 Teaching Gestural Communication137

Based on the ideas described above, it is relatively straightforward to teach virtually138

embodied agents the elements of gestural comunication. This is important for two139

reasons: gestural communication is extremely useful unto itself, as one sees from140

its role in communication among young children and primates [22]; and, gestural141

communication forms a foundation for verbal communication, during the typical142

course of human language learning [23]. Note for instance the study described in143

[22], which “reports empirical longitudinal data on the early stages of language144

development,” concluding that145

...the output systems of speech and gesture may draw on underlying brain mech-146

anisms common to both language and motor functions. We analyze the spontaneous147

interaction with their parents of three typically-developing children (2 M, 1 F) video-148

taped monthly at home between 10 and 23 months of age. Data analyses focused149

on the production of actions, representational and deictic gestures and words, and150

gesture-word combinations. Results indicate that there is a continuity between the151

production of the first action schemes, the first gestures and the first words pro-152

duced by children. The relationship between gestures and words changes over time.153

The onset of two-word speech was preceded by the emergence of gesture-word154

combinations.155

If young children learn language as a continuous outgrowth of gestural commu-156

nication, perhaps the same approach may be effective for (virtually or physically)157

embodied AI’s.158

An example of an iconic gesture occurs when one smiles explicitly to illustrate159

to some other agent that one is happy. Smiling is a natural expression of happiness,160

but of course one doesn’t always smile when one’s happy. The reason that explicit161

smiling is iconic is that the explicit smile actually resembles the unintentional smile,162

which is what it “stands for.”163

This kind of iconic gesture may emerge in a socially-embedded learning agent164

through a very simple logic. Suppose that when the agent is happy, it benefits from its165

nearby friends being happy as well, so that they may then do happy things together.166

And suppose that the agent has noticed that when it smiles, this has a statistical167

tendency to make its friends happy. Then, when it is happy and near its friends, it168

will have a good reason to smile. So through very simple probabilistic reasoning, the169

use of explicit smiling as a communicative tool may result. But what if the agent is170

not actually happy, but still wants some other agent to be happy? Using the reasoning171

from the prior paragraph, it will likely figure out to smile to make the other agent172

happy—even though it isn’t actually happy.173

Another simple example of an iconic gesture would be moving one’s hands174

towards one’s mouth, mimicking the movements of feeding oneself, when one wants175

to eat. Many analogous iconic gestures exist, such as doing a small solo part of a176

two-person dance to indicate that one wants to do the whole dance together with177

another person. The general rule an agent needs to learn in order to generate iconic178

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

500 29 Embodied Language Processing

gestures of this nature is that, in the context of shared activity, mimicking part of a179

process will sometimes serve the function of evoking that whole process.180

This sort of iconic gesture may be learned in essentially the same way as an181

indexical gesture such as a dog repeatedly drawing the owner’s attention to the182

owner’s backpack, when the dog wants to go outside. The dog doesn’t actually care183

about going outside with the backpack—he would just as soon go outside without184

it—but he knows the backpack is correlated with going outside, which is his actual185

interest.186

The general rule here is187

R :=188

Implication189

SimultaneousImplication190

Execution $X $Y191

PredictiveImplication $X $Y192

i.e. if doing $X often correlates with $Y, then maybe doing $X will bring about $Y.193

This sort of rule can bring about a lot of silly “superstitious” behavior but also can194

be particularly effective in social contexts, meaning in formal terms that195

Context196

near_teacher197

R198

holds with a higher truth value than R itself. This is a very small conglomeration199

of semantic nodes and links yet it encapsulates a very important communicational200

pattern: that if you want something to happen, and act out part of it—or something201

historically associated with it—around your teacher, then the thing may happen.202

Many other cases of iconic gesture are more complex and mix iconic with symbolic203

aspects. For instance, one waves one hand away from oneself, to try to get someone204

else to go away. The hand is moving, roughly speaking, in the direction one wants205

the other to move in. However, understanding the meaning of this gesture requires a206

bit of savvy or experience. One one does grasp it, however, then one can understand207

its nuances: For instance, if I wave my hand in an arc leading from your direction208

toward the direction of the door, maybe that means I want you to go out the door.209

Purely symbolic (or nearly so) gestures include the thumbs-up symbol mentioned210

above, and many others including valence-indicating symbols like a nodded head211

for YES, a shaken-side-to-side head for NO, and shrugged shoulders for “I don’t212

know.” Each of these valence-indicating symbols actually indicates a fairly complex213

concept, which is learned from experience partly via attention to the symbol itself.214

So, an agent may learn that the nodded head corresponds with situations where the215

teacher gives it a reward, and also with situations where the agent makes a request and216

the teacher complies. The cluster of situations corresponding to the nodded-head then217

forms the agent’s initial concept of “positive valence,” which encompasses, loosely218

speaking, both the good and the true.219

Summarizing our discussion of gestural communication: An awful lot of language220

exists between intelligent agents even if no word is ever spoken. And, our belief is221

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.3 Teaching Gestural Communication 501

that these sorts of non-verbal semiosis form the best possible context for the learning222

of verbal language, and that to attack verbal language learning outside this sort of223

context is to make an intrinsically-difficult problem even harder than it has to be.224

And this leads us to the final part of the chapter, which is a bit more speculative225

and adventuresome. The material in this section and the prior ones describes experi-226

ments of the sort we are currently carrying out with our virtual agent control software.227

We have not yet demonstrated all the forms of semiosis and non-linguistic commu-228

nication described in the last section using our virtual agent control system, but we229

have demonstrated some of them and are actively working on extending our sys-230

tem’s capabilities. In the following section, we venture a bit further into the realm of231

hypothesis and describe some functionalities that are beyond the scope of our current232

virtual agent control software, but that we hope to put into place gradually during233

the next 1–2 years. The basic goal of this work is to move from non-verbal to verbal234

communication.235

It is interesting to enumerate the aspects in which each of the above components236

appears to be capable of tractable adaptation via experiential, embodied learning:237

• Words and phrases that are found to be systematically associated with particular238

objects in the world, may be added to the “gazeteer list” used by the entity extractor.239

• The link parser dictionary may be automatically extended. In cases where the agent240

hears a sentence that is supposed to describe a certain situation, and realizes that241

in order for the sentence to be mapped into a set of logical relationships accurately242

describing the situation, it would be necessary for a certain word to have a certain243

syntactic link that it doesn’t have, then the link parser dictionary may be modified244

to add the link to the word. (On the other hand, creating new link parser link types245

seems like a very difficult sort of learning—not to say it is unaddressable, but it246

will not be our focus in the near term.)247

• Similar to with the link parser dictionary, if it is apparent that to interpret an248

utterance in accordance with reality a RelEx rule must be added or modified,249

this may be automatically done. The RelEx rules are expressed in the format of250

relatively simple logical implications between Boolean combinations of syntactic251

and semantic relationships, so that learning and modifying them is within the scope252

of a probabilistic logic system such as OpenCogPrime’s PLN inference engine.253

• The rules used by RelEx2Frame may be experientially modified quite analogously254

to those used by RelEx.255

• Our current statistical parse ranker ranks an interpretation of a sentence based256

on the frequency of occurrence of its component links across a parsed corpus.257

A deeper approach, however, would be to rank an interpretation based on its258

commonsensical plausibility, as inferred from experienced-world-knowledge as259

well as corpus-derived knowledge. Again, this is within the scope of what an260

inference engine such as PLN should be able to do.261

• Our word sense disambiguation and reference resolution algorithms involve prob-262

abilistic estimations that could be extended to refer to the experienced world as263

well as to a parsed corpus. For example, in assessing which sense of the noun264

“run” is intended in a certain context, the system could check whether stockings,265

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

502 29 Embodied Language Processing

or sports-events or series-of-events, are more prominent in the currently-observed266

situation. In assessing the sentence “The children kicked the dogs, and then they267

laughed,” the system could map “they” into “children” via experientially-acquired268

knowledge that children laugh much more often than dogs.269

• NLGen uses the link parser dictionary, treated above, and also uses rules analo-270

gous to (but inverse to) RelEx rules, mapping semantic relations into brief word-271

sequences. The “gold standard” for NLGen is whether, when it produces a sentence272

S from a set R of semantic relationships, the feeding of S into the language com-273

prehension subsystem produces R (or a close approximation) as output. Thus, as274

the semantic mapping rules in RelEx and RelEx2Frame adapt to experience, the275

rules used in NLGen must adapt accordingly, which poses an inference problem276

unto itself.277

All in all, when one delves in detail into the components that make up our hybrid278

statistical/rule-based NLP system, one sees there is a strong opportunity for expe-279

riential adaptive learning to substantially modify nearly every aspect of the NLP280

system, while leaving the basic framework intact.281

This approach, we suggest, may provide means of dealing with a number of282

problems that have systematically vexed existing linguistic approaches. One example283

is parse ranking for complex sentences: this seems almost entirely a matter of the284

ability to assess the semantic plausibility of different parses, and doing this based on285

statistical corpus analysis seems unreasonable. One needs knowledge about a world286

to ground reasoning about plausiblity.287

Another example is preposition disambiguation, a topic that is barely dealt with288

at all in the computational linguistics literature (see e.g. [33] for an indication of289

the state of the art). Consider the problem of assessing which meaning of “with” is290

intended in sentences like “I ate dinner with a fork”, “I ate dinner with my sister”, “I291

ate dinner with dessert.” In performing this sort of judgment, an embodied system292

may use knowledge about which interpretations have matched observed reality in293

the case of similar utterances it has processed in the past, and for which it has294

directly seen the situations referred to by the utterances. If it has seen in the past,295

through direct embodied experience, that when someone said “I ate cereal with a296

spoon,” they meant that the spoon was their tool not part of their food or their297

eating-partner; then when it hears “I ate dinner with a fork,” it may match “cereal”298

to “dinner” and “spoon” to “fork” (based on probabilistic similarity measurement)299

and infer that the interpretation of “with” in the latter sentence should also be to300

denote a tool. How does this approach to computational language understanding tie301

in with gestural and general semiotic learning as we discussed earlier? The study302

of child language has shown that early language use is not purely verbal by any303

means, but is in fact a complex combination of verbal and gestural communication304

[23]. With the exception of first bullet point (entity extraction) above, every one of305

our instances of experiential modification of our language framework listed above306

involves the use of an understanding of what situation actually exists in the world,307

to help the system identify what the logical relationships output by the NLP system308

are supposed to be in a certain context. But a large amount of early-stage linguistic309

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.3 Teaching Gestural Communication 503

communication is social in nature, and a large amount of the remainder has to do310

with the body’s relationship to physical objects. And, in understanding “what actually311

exists in the world” regarding social and physical relationships, a full understanding312

of gestural communication is important. So, the overall pathway we propose for313

achieving robust, ultimately human-level NLP functionality is as follows:314

• The capability for learning diverse instances of semiosis is established315

• Gestural communication is mastered, via nonverbal imitative/reinforcement/316

corrective learning mechanisms such as we utilized for our embodied virtual agents317

• Gestural communication, combined with observation of and action in the world318

and verbal interaction with teachers, allows the system to adapt numerous aspects319

of its initial NLP engine to allow it to more effectively interpret simple sentences320

pertaining to social and physical relationships321

• Finally, given the ability to effectively interpret and produce these simple and322

practical sentences, probabilistic logical inference allows the system to gradually323

extend this ability to more and more complex and abstract senses, incrementally324

adapting aspects of the NLP engine as its scope broadens.325

In this brief section we will mention another potentially important factor that we326

have intentionally omitted in the above analysis—but that may wind up being very327

important, and that can certainly be taken into account in our framework if this proves328

necessary. We have argued that gesture is an important predecessor to language in329

human children, and that incorporating it in AI language learning may be valuable.330

But there is another aspect of early language use that plays a similar role to gesture,331

which we have left out in the above discussion: this is the acoustic aspects of speech.332

Clearly, pre-linguistic children make ample use of communicative sounds of var-333

ious sorts. These sounds may be iconic, indexical or symbolic; and they may have a334

great deal of subtlety. Steven Mithen [Mit96] has argued that non-verbal utterances335

constitute a kind of proto-language, and that both music and language evolved out of336

this. Their role in language learning is well-known. We are uncertain as to whether337

an exclusive focus on text rather than speech would critically impair the language338

learning process of an AI system. We are fairly strongly convinced of the importance339

of gesture because it seems bound up with the importance of semiosis—gesture, it340

seems, is how young children learn flexible semiotic communication skills, and then341

these skills are gradually ported from the gestural to the verbal domain. Semiotically,342

on the other hand, phonology doesn’t seem to give anything special beyond what343

gesture gives. What it does give is an added subtlety of emotional expressiveness—344

something that is largely missing from virtual agents as implemented today, due to345

the lack of really fine-grained facial expressions. Also, it provides valuable clues346

to parsing, in that groups of words that are syntactically bound together are often347

phrased together acoustically.348

If one wished to incorporate acoustics into the framework described above, it349

would not be objectionably difficult on a technical level. Speech-to-text and text-to-350

speech software both exist, but neither have been developed with a view specifically351

toward conveyance of emotional information. One could approach the problem of352

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

504 29 Embodied Language Processing

assessing the emotional state of an utterance based on its sound as a supervised353

categorization problem, to be solved via supplying a machine learning algorithm with354

training data consisting of human-created pairs of the form (utterance, emotional355

valence). Similarly, one could tune the dependence of text-to-speech software for356

appropriate emotional expressiveness based on the same training corpus.357

29.4 Simple Experiments with Embodiment and Anaphor358

Resolution359

Now we turn to some fairly simple practical work that was done in 2008 with the360

OpenCog-based PetBrain software, involving the use of virtually embodied experi-361

ence to help with interpretation of linguistic utterances. This work has been super-362

seded somewhat by more recent work using OpenCog to control virtual agents; but363

the PetBrain work was especially clear and simple, so suitable in an expository sense364

for in-depth discussion here.365

One of the two ways the PetBrain related language processing to embodied expe-366

rience was via using the latter to resolve anaphoric references in text produced by367

human-controlled avatars.368

The PetBrain controlled agent lived in a world with many objects, each one with369

their own characteristics. For example, we could have multiple balls, with varying370

colors and sizes. We represent this in the OpenCog Atomspace via using multiple371

nodes: a single ConceptNode to represent the concept “ball”, a WordNode associated372

with the word “ball”, and numerous SemeNodes representing particular balls. There373

may of course also be ConceptNodes representing ball-related ideas not summarized374

in any natural language word, e.g. “big fat squishy balls,” “balls that can usefully be375

hit with a bat”, etc.376

As the agent interacts with the world, it acquires information about the objects377

it finds, through perceptions. The perceptions associated with a given object are378

stored as other nodes linked to the node representing the specific object instance. All379

this information is represented in the Atomspace using FrameNet-style relationships380

(exemplified in the next section).381

When the user says, e.g. “Grab the red ball”, the agent needs to figure out which382

specific ball the user is referring to—i.e. it needs to invoke the Reference Resolution383

(RR) process. RR uses the information in the sentence to select instances and also384

a few heuristic rules. Broadly speaking, Reference Resolution maps nouns in the385

user’s sentences to actual objects in the virtual world, based on world-knowledge386

obtained by the agent through perceptions.387

In this example, first the brain selects the ConceptNodes related to the word “ball”.388

Then it examines all individual instances associated with these concepts, using the389

determiners in the sentence along with other appropriate restrictions (in this example390

the determiner is the adjective “red”; and since the verb is “grab” it also looks for391

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.4 Simple Experiments with Embodiment and Anaphor Resolution 505

objects that can be fetched). If it finds more than one “fetchable red ball”, a heuristic392

is used to select one (in this case, it chooses the nearest instance).393

The agent also needs to map pronouns in the sentences to actual objects in the394

virtual world. For example, if the user says “I like the red ball. Grab it.”, the agent395

must map the pronoun “it” to a specific red ball. This process is done in two stages:396

first using anaphor resolution to associate the pronoun “it” with the previously heard397

noun “ball”; then using reference resolution to associate the noun “ball” with the398

actual object.399

The subtlety of anaphor resolution is that there may be more than one plausi-400

ble “candidate” noun corresponding to a given pronouns. As noted above, at time401

writing RelEx’s anaphor resolution system is somewhat simplistic and is based on402

the classical Hobbs algorithm [Hob78]. Basically, when a pronoun (it, he, she, they403

and so on) is identified in a sentence, the Hobbs algorithm searches through recent404

sentences to find the nouns that fit this pronoun according to number, gender and405

other characteristics. The Hobbs algorithm is used to create a ranking of candidate406

nouns, ordered by time (most recently mentioned nouns come first).407

We improved the Hobbs algorithm results by using the agent’s world-knowledge408

to help choose the best candidate noun. Suppose the agent heard the sentences:409

"The ball is red."410

"The stick is brown."411

and then it receives a third sentence412

"Grab it.".413

The anaphor resolver will build a list containing two options for the pronoun “it”414

of the third sentence: ball and stick. Given that the stick corresponds to the most415

recently mentioned noun, the agent will grab it instead of (as Hobbs would suggest)416

the ball.417

Similarly, if the agent’s history contains418

"From here I can see as tree and a ball."419

"Grab it."420

Hobbs algorithm returns as candidate nouns “tree” and “ball”, in this order. But421

using our integrative Reference Resolution process, the agent will conclude that a422

tree cannot be grabbed, so this candidate is discarded and “ball” is chosen.423

29.5 Simple Experiments with Embodiment and Question424

Answering425

The PetBrain was also capable of answering simple questions about its feel-426

ings/emotions (happiness, fear, etc.) and about the environment in which it lives.427

After a question is asked to the agent, it is parsed by RelEx and classified as either428

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

506 29 Embodied Language Processing

a truth question or a discursive one. After that, RelEx rewrites the given question as429

a list of Frames (based on FrameNet1 with some customizations), which represent430

its semantic content. The Frames version of the question is then processed by the431

agent and the answer is also written in Frames. The answer Frames are then sent432

to a module that converts it back to the RelEx format. Finally the answer, in RelEx433

format, is processed by the NLGen module, that generates the text of the answer434

in English. We will discuss this process here in the context of the simple question435

“What is next to the tree?”, which in an appropriate environment receives the answer436

“The red ball is next to the tree.”437

Question answering (QA) of course has a long history in AI [May04], and our438

approach fits squarely into the tradition of “deep semantic QA systems”; however it is439

innovative in its combination of dependency parsing with FrameNet and most impor-440

tantly in the manner of its integration of QA with an overall cognitive architecture441

for agent control.442

29.5.1 Preparing/Matching Frames443

In order to answer an incoming question, the agent tries to match the Frames list,444

created by RelEx, against the Frames stored in its own memory. In general these445

Frames could come from a variety of sources, including inference, concept creation446

and perception; but in the current PetBrain they primarily come from perception, and447

simple transformations of perceptions.448

However, the agent cannot use the incoming perceptual Frames in their origi-449

nal format because they lack grounding information (information that connects the450

mentioned elements to the real elements of the environment). So, two steps are then451

executed before trying to match the Frames: Reference Resolution (described above)452

and Frames Rewriting. Frames Rewriting is a process that changes the values of the453

incoming Frames elements into grounded values. Here is an example:454

Incoming Frame (Generated by RelEx)455

EvaluationLink456

DefinedFrameElementNode Color:Color457

WordInstanceNode ‘‘red@aaa’’458

EvaluationLink459

DefinedFrameElementNode Color:Entity460

WordInstanceNode ‘‘ball@bbb’’461

ReferenceLink462

WordInstanceNode ‘‘red@aaa’’463

WordNode ‘‘red’’464

1 http://framenet.icsi.berkeley.edu

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

http://framenet.icsi.berkeley.edu

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.5 Simple Experiments with Embodiment and Question Answering 507

After Reference Resolution465

ReferenceLink466

WordInstanceNode ‘‘ball@bbb’’467

SemeNode ‘‘ball_99’’468

Grounded Frame (After Rewriting)469

EvaluationLink470

DefinedFrameElementNode Color:Color471

ConceptNode ‘‘red’’472

EvaluationLink473

DefinedFrameElementNode Color:Entity474

SemeNode ‘‘ball_99’’475

Frame Rewriting serves to convert the incoming Frames to the same structure476

used by the Frames stored into the agent’s memory. After Rewriting, the new Frames477

are then matched against the agent’s memory and if all Frames were found in it, the478

answer is known by the agent, otherwise it is unknown.479

In the PetBrain system, if a truth question was posed and all Frames were matched480

successfully, the answer would be be “yes”; otherwise the answer is “no”. Mapping481

of ambiguous matching results into ambiguous responses were not handled in the482

PetBrain.483

If the question requires a discursive answer the process is slightly different.484

For known answers the matched Frames are converted into RelEx format by485

Frames2RelEx and then sent to NLGen, which prepares the final English text to486

be answered. There are two types of unknown answers. The first one is when at487

least one Frame cannot be matched against the agent’s memory and the answer is “I488

don’t know”. And the second type of unknown answer occurs when all Frames were489

matched successfully but they cannot be correctly converted into RelEx format or490

NLGen cannot identify the incoming relations. In this case the answer is “I know the491

answer, but I don’t know how to say it”.492

29.5.2 Frames2RelEx493

As mentioned above, this module is responsible for receiving a list of grounded494

Frames and returning another list containing the relations, in RelEx format, which495

represents the grammatical form of the sentence described by the given Frames. That496

is, the Frames list represents a sentence that the agent wants to say to another agent.497

NLGen needs an input in RelEx Format in order to generate an English version of498

the sentence; Frames2RelEx does this conversion.499

Currently, Frames2RelEx is implemented as a rule-based system in which the500

preconditions are the required frames and the output is one or more RelEx relations501

e.g.502

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

508 29 Embodied Language Processing

Fig. 29.1 Overview of current PetBrain language comprehension process

#Color(Entity,Color) =>503

present($2) .a($2) adj($2) _predadj($1, $2)504

definite($1) .n($1) noun($1) singular($1)505

.v(be) verb(be) punctuation(.) det(the)506

where the precondition comes before the symbol => and Color is a frame which has507

two elements: Entity and Color. Each element is interpreted as a variable Enti t y = $1508

and Color = $2. The effect, or output of the rule, is a list of RelEx relations. As509

in the case of RelEx2Frame, the use of hand-coded rules is considered a stopgap,510

and for a powerful AGI system based on this framework such rules will need to be511

learned via experience.512

29.5.3 Example of the Question Answering Pipeline513

Turning to the example “What is next to the tree?”, Fig. 29.1 illustrates the processes514

involved.515

The question is parsed by RelEx, which creates the frames indicating that the516

sentence is a question regarding a location reference (next) relative to an object517

(tree). The frame that represents questions is called Questioning and it contains the518

elements Manner that indicates the kind of question (truth-question, what, where,519

and so on), Message that indicates the main term of the question and Addressee520

that indicates the target of the question. To indicate that the question is related to521

a location, the Locative_relation frame is also created with a variable inserted in522

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.5 Simple Experiments with Embodiment and Question Answering 509

its element Figure, which represents the expected answer (in this specific case, the523

object that is next to the tree).524

The question-answer module tries to match the question frames in the Atomspace525

to fit the variable element. Suppose that the object that is next to the tree is the red526

ball. In this way, the module will match all the frames requested and realize that the527

answer is the value of the element Figure of the frame Locative_relation stored in528

the Atom Table. Then, it creates location frames indicating the red ball as the answer.529

These frames will be converted into RelEx format by the RelEx2Frames rule based530

system as described above, and NLGen will generate the expected sentence “the red531

ball is next to the tree”.532

29.5.4 Example of the PetBrain Language Generation Pipeline533

To illustrate the process of language generation using NLGen, as utilized in the534

context of PetBrain query response, consider the sentence “The red ball is near the535

tree”. When parsed by RelEx, this sentence is converted to:536

_obj(near, tree)537

_subj(near, ball)538

imperative(near)539

hyp(near)540

definite(tree)541

singular(tree)542

_to-do(be, near)543

_subj(be, ball)544

present(be)545

definite(ball)546

singular(ball)547

So, if sentences with this format are in the system’s experience, these relations are548

stored by NLGen and will be used to match future relations that must be converted549

into natural language. NLGen matches at an abstract level, so sentences like “The550

stick is next to the fountain” will also be matched even if the corpus contain only the551

sentence “The ball is near the tree”.552

If the agent wants to say that “The red ball is near the tree”, it must invoke553

NLGen with the above RelEx contents as input. However, the knowledge that the554

red ball is near the tree is stored as frames, and not as RelEx format. More specifi-555

cally, in this case the related frame stored is the Locative_relation one, containing556

the following elements and respective values: Figure → red ball, Ground → tree,557

Relation_t ype → near.558

So we must convert these frames and their elements’ values into the RelEx format559

accept by NLGen. For AGI purposes, a system must learn how to perform this560

conversion in a flexible and context-appropriate way. In our current system, however,561

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

510 29 Embodied Language Processing

we have implemented a temporary short-cut: a system of hand-coded rules, in which562

the preconditions are the required frames and the output is the corresponding RelEx563

format that will generate the sentence that represents the frames. The output of a564

rule may contains variables that must be replaced by the frame elements’ values.565

For the example above, the output _subj (be, ball) is generated from the rule output566

_subj (be, $var1) with the $var1 replaced by the Figure element value.567

Considering specifically question-answering (QA), the PetBrain’s Language568

Comprehension module represents the answer to a question as a list of frames. In569

this case, we may have the following situations:570

• The frames match a precondition and the RelEx output is correctly recognized by571

NLGen, which generates the expected sentence as the answer;572

• The frames match a precondition, but NLGen did not recognize the RelEx output573

generated. In this case, the answer will be “I know the answer, but I don’t know how574

to say it”, which means that the question was answered correctly by the Language575

Comphrehension, but the NLGen could not generate the correct sentence;576

• The frames didn’t match any precondition; then the answer will also be “I know577

the answer, but I don’t know how to say it”.578

• Finally, if no frames are generated as answer by the Language Comprehension579

module, the agent’s answer will be “I don’t know”.580

If the question is a truth-question, then NLGen is not required. In this case, the581

creation of frames as answer is considered as a “Yes”, otherwise, the answer will be582

“No” because it was not possible to find the corresponding frames as the answer.583

29.6 The Prospect of Massively Multiplayer Language Teaching584

Now we tie in the theme of embodied language learning with more general consid-585

erations regarding embodied experiential learning.586

Potentially, this may provide a means to facilitate robust language learning on the587

part of virtually embodied agents, and lead to an experientially-trained AGI language588

facility that can then be used to power other sorts of agents such as virtual babies,589

and ultimately virtual adult-human avatars that can communicate with experientially-590

grounded savvy rather than in the manner of chat-bots.591

As one concrete, evocative example, imagine millions of talking parrots spread592

across different online virtual worlds—all communicating in simple English. Each593

parrot has its own local memories, its own individual knowledge and habits and likes594

and dislikes—but there’s also a common knowledge-base underlying all the parrots,595

which includes a common knowledge of English.596

The interest of many humans in interacting with chatbots suggests that virtual597

talking parrots or similar devices would be likely to meet with a large and enthusiastic598

audience.599

Yes, humans interacting with parrots in virtual worlds can be expected to try to600

teach the parrots ridiculous things, obscene things, and so forth. But still, when it601

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

29.6 The Prospect of Massively Multiplayer Language Teaching 511

comes down to it, even pranksters and jokesters will have more fun with a parrot that602

can communicate better, and will prefer a parrot whose statements are comprehen-603

sible.604

And for a virtual parrot, the test of whether it has used English correctly, in a given605

instance, will come down to whether its human friends have rewarded it, and whether606

it has gotten what it wanted. If a parrot asks for food incoherently, it’s less likely to607

get food—and since the virtual parrots will be programmed to want food, they will608

have motivation to learn to speak correctly. If a parrot interprets a human-controlled609

avatar’s request “Fetch my hat please” incorrectly, then it won’t get positive feedback610

from the avatar—and it will be programmed to want positive feedback.611

And of course parrots are not the end of the story. Once the collective wisdom of612

throngs of human teachers has induced powerful language understanding in the col-613

lective bird-brain, this language understanding (and the commonsense understanding614

coming along with it) will be useful for many, many other purposes as well. Humanoid615

avatars—both human-baby avatars that may serve as more rewarding virtual compan-616

ions than parrots or other virtual animals; and language-savvy human-adult avatars617

serving various useful and entertaining functions in online virtual worlds and games.618

Once AIs have learned enough that they can flexibly and adaptively explore online619

virtual worlds and gather information from human-controlled avatars according to620

their own goals using their linguistic facilities, it’s easy to envision dramatic accel-621

eration in their growth and understanding.622

A baby AI has numerous disadvantages compared to a baby human being: it lacks623

the intricate set of inductive biases built into the human brain, and it also lacks a624

set of teachers with a similar form and psyche to it…and for that matter, it lacks625

a really rich body and world. However, the presence of thousands to millions of626

teachers constitutes a large advantage for the AI over human babies. And a flexible627

AGI framework will be able to effectively exploit this advantage. If nonlinguistic628

learning mechanisms like the ones we’ve described here, utilized in a virtually-629

embodied context, can go beyond enabling interestingly trainable virtual animals630

and catalyze the process of language learning—then, within a few years time, we631

may find ourselves significantly further along the path to AGI than most observers632

of the field currently expect.633

319613_1_En_29_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 511 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 29

Query Refs. Details Required Author’s response

AQ1 Please provide appropriate citation instead of [22, 23, 33]

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Natural Language Dialogue

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract Language evolved for dialogue—not for reading, writing or speechifying. So it’s natural that dialogue is
broadly considered a critical aspect of humanlike AGI—even to the extent that (for better or for worse) the
conversational “Turing Test” is the standard test of human-level AGI.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 30
Natural Language Dialogue

30.1 Introduction0

Language evolved for dialogue—not for reading, writing or speechifying. So it’s1

natural that dialogue is broadly considered a critical aspect of humanlike AGI—even2

to the extent that (for better or for worse) the conversational “Turing Test” is the3

standard test of human-level AGI.4 AQ1

Dialogue is a high-level functionality rather than a foundational cognitive process,5

and in the CogPrime approach it is something that must largely be learned via experi-6

ence rather than being programmed into the system. In that sense, it may seem odd to7

have a chapter on dialogue in a book section focused on engineering aspects of gen-8

eral intelligence. One might think: Dialogue is something that should emerge from an9

intelligent system in conjunction with other intelligent systems, not something that10

should need to be engineered. And this is certainly a reasonable perspective! We do11

think that, as a CogPrime system develops, it will develop its own approach to natural12

language dialogue, based on its own embodiment, environment and experience—with13

similarities and differences to human dialogue.14

However, we have also found it interesting to design a natural language dialogue15

system based on CogPrime, with the goal not of emulating human conversation, but16

rather of enabling interesting and intelligent conversational interaction with Cog-17

Prime systems. We call this system “ChatPrime” and will describe its architecture18

in this chapter. The components used in ChatPrime may also be useful for enabling19

CogPrime systems to carry out more humanlike conversation, via their incorpora-20

tion in learned schemata; but we will not focus on that aspect here. In addition to21

its intrinsic interest, consideration of ChatPrime sheds much light on the conceptual22

relationship between NLP and other aspects of CogPrime.23

We are very aware that there is an active subfield of computational linguistics24

focused on dialogue systems [Wah06, LDA05], however we will not draw signif-25

icantly on that literature here. Making practical dialogue systems in the absence26

of a generally functional cognitive engine is a subtle and difficult art, which has

B. Goertzel et al., Engineering General Intelligence, Part 2, 513
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_30,
© Atlantis Press and the authors 2014

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

514 30 Natural Language Dialogue

been addressed in a variety of ways; however, we have found that designing a27

dialogue system within the context of an integrative cognitive engine like CogPrime28

is a somewhat different sort of endeavor.29

30.1.1 Two Phases of Dialogue System Development30

In practical terms, we envision the ChatPrime system as possessing two phases of31

development:32

1. Phase 1:33

• “Lower levels” of NL comprehension and generation executed by a relatively34

traditional approach incorporating statistical and rule-based aspects (the RelEx35

and NLGen systems)36

• Dialogue control utilizes hand-coded procedures and predicates (SpeechAct-37

Schema and SpeechActTriggers) corresponding to fine-grained types of speech38

act39

• Dialogue control guided by general cognitive control system (OpenPsi, run-40

ning within OpenCog)41

• SpeechActSchema and SpeechActTriggers, in some cases, will internally con-42

sult probabilistic inference, thus supplying a high degree of adaptive intelli-43

gence to the conversation44

2. Phase 2:45

• “Lower levels” of NL comprehension and generation carried out within pri-46

mary cognition engine, in a manner enabling their underlying rules and prob-47

abilities to be modified based the system’s experience. Concretely, one way48

this could be done in OpenCog would be via49

– Implementing the RelEx and RelEx2Frame rules as PLN implications in50

the Atomspace51

– Implementing parsing via expressing the link parser dictionary as Atoms in52

the Atomspace, and using the SAT link parser to do parsing as an example53

of logical unification (carried out by a MindAgent wrapping an SAT solver)54

– Implementing NLGen within the OpenCog core, via making NLGen’s sen-55

tence database a specially indexed Atomspace, and wrapping the NLGen56

operations in a MindAgent57

• Reimplement the SpeechActSchema and SpeechActTriggers in an appropriate58

combination of Combo and PLN logical link types, so they are susceptible to59

modification via inference and evolution60

It’s worth noting that the work required to move from Phase 1 to Phase 2 is essen-61

tially software development and computer science algorithm optimization work,62

rather than computational linguistics or AI theory. Then after the Phase 2 system is63

built there will, of course, be significant work involved in “tuning” PLN, MOSES64

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

30.1 Introduction 515

and other cognitive algorithms to experientially adapt the various portions of the65

dialogue system that have been moved into the OpenCog core and refactored for66

adaptiveness.67

30.2 Speech Act Theory and its Elaboration68

We review here the very basics of speech act theory, and then the specific variant of69

speech act theory that we feel will be most useful for practical OpenCog dialogue70

system development.71

The core notion of speech act theory is to analyze linguistic behavior in terms of72

discrete speech acts aimed at achieving specific goals. This is a convenient theoretical73

approach in an OpenCog context, because it pushes us to treat speech acts just like74

any other acts that an OpenCog system may carry out in its world, and to handle75

speech acts via the standard OpenCog action selection mechanism.76

Searle, who originated speech act theory, divided speech acts according to the77

following (by now well known) ontology:78

• Assertives : The speaker commits herself to something being true. The sky is blue.79

• Directives: The speaker attempts to get the hearer to do something. Clean your80

room!81

• Commissives: The speaker commits to some future course of action. I will do it.82

• Expressives: The speaker expresses some psychological state. I’m sorry.83

• Declarations: The speaker brings about a different state of the world. The meeting84

is adjourned.85

Inspired by this ontology, Twitchell and Nunamaker (in their 2004 paper “Speech86

Act Profiling: A Probabilistic Method for Analyzing Persistent Conversations and87

Their Participants”) created a much more fine-grained ontology of 42 kinds of speech88

acts, called SWBD-DAMSL (DAMSL = Dialogue Act Markup in Several Layers).89

Nearly all of their 42 speech act types can be neatly mapped into one of Searle’s five90

high level categories, although a handful don’t fit Searle’s view and get categorized91

as “other”. Figures 30.1 and 30.2 depict the 42 acts and their relationship to Searle’s92

categories.93

30.3 Speech Act Schemata and Triggers94

In the suggested dialogue system design, multiple SpeechActSchema would be95

implemented, corresponding roughly to the 42 SWBD-DAMSL speech acts. The96

correspondence is “rough” because97

• We may wish to add new speech acts not in their list.98

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

516 30 Natural Language Dialogue

Fig. 30.1 The 42 DAMSL speech act categories

Fig. 30.2 Connecting the 42 DAMSL speech act categories to Searle’s five higher-level categories

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

30.3 Speech Act Schemata and Triggers 517

• Sometimes it may be most convenient to merge two or more of their speech acts into99

a single SpeechActSchema. For instance, it’s probably easiest to merge their YES100

ANSWER and NO ANSWER categories into a single TRUTH VALUE ANSWER101

schema, yielding affirmative, negative, and intermediate answers like “probably”,102

“probably not”, “I’m not sure”, etc.103

• Sometimes it may be best to split one of their speech acts into several, e.g. to sep-104

arately consider STATEMENTs which are responses to statements, versus state-105

ments that are unsolicited disbursements of “what’s on the agent’s mind”.106

Overall, the SWBD-DAMSL categories should be taken as guidance rather than107

doctrine. However, they are valuable guidance due to their roots in detailed analysis of108

real human conversations, and their role as a bridge between concrete conversational109

analysis and the abstractions of speech act theory.110

Each SpeechActSchema would take in an input consisting of a DialogueNode, a111

Node type possessing a collection of links to112

• A series of past statements by the agent and other conversation participants, with113

– each statement labeled according to the utterer114

– each statement uttered by the agent, labeled according to which SpeechAct-115

Schema was used to produce it, plus (see below) which SpeechActTrigger and116

which response generator was involved117

• A set of Atoms comprising the context of the dialogue. These Atoms may option-118

ally be linked to some of the Atoms representing some of the past statements. If119

they are not so linked, they are considered as general context.120

The enaction of SpeechActSchema would be carried out via PredictiveImplica-121

tionLinks embodying “Context AND Schema → Goal” schematic implications, of122

the general form123

PredictiveImplication124

AND125

Evaluation126

SpeechActTrigger T127

DialogueNode D128

Execution129

SpeechActSchema S130

DialogueNode D131

Evaluation132

Evaluation133

Goal G134

with135

ExecutionOutput136

SpeechActSchema S137

DialogueNode D138

UtteranceNode U139

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

518 30 Natural Language Dialogue

being created as a result of the enaction of the SpeechActSchema. (An UtteranceNode140

is a series of one or more SentenceNodes.)141

A single SpeechActSchema may be involved in many such implications, with142

different probabilistic weights, if it naturally has many different Trigger contexts.143

Internally each SpeechActSchema would contain a set of one or more response144

generators, each one of which is capable of independently producing a response145

based on the given input. These may also be weighted, where the weight determines146

the probability of a given response generation process being chosen in preference147

to the others, once the choice to enact that particular SpeechActSchema has already148

been made.149

30.3.1 Notes Toward Example SpeechActSchema150

To make the above ideas more concrete, let’s consider a few specific SpeechAct-151

Schema. We won’t fully specify them here, but will outline them sufficiently to152

make the ideas clear.153

30.3.1.1 TruthValueAnswer154

The TruthValueAnswer SpeechActSchema would encompass SWBD-DAMSL’s155

YES ANSWER and NO ANSWER, and also more flexible truth value based156

responses.157

Trigger context when the conversation partner produces an utterance that RelEx158

maps into a truth-value query (this is simple as truth-value-query is one of RelEx’s159

relationship types).160

Goal the simplest goal relevant here is pleasing the conversation partner, since the161

agent may have noticed in the past that other agents are pleased when their questions162

are answers. (More advanced agents may of course have other goals for answering163

questions, e.g. providing the other agent with information that will let it be more164

useful in future).165

Response generation schema for starters, this SpeechActSchema could simply oper-166

ate as follows. It takes the relationship (Atom) corresponding to the query, and uses167

it to launch a query to the pattern matcher or PLN backward chainer. Then based on168

the result, it produces a relationship (Atom) embodying the answer to the query, or169

else updates the truth value of the existing relationship corresponding to the answer170

to the query. This “answer” relationship has a certain truth value. The schema could171

then contain a set of rules mapping the truth values into responses, with a list of172

possible responses for each truth value range. For example a very high strength and173

high confidence truth value would be mapped into a set of responses like {definitely,174

certainly, surely, yes, indeed}.175

This simple case exemplifies the overall Phase 1 approach suggested here. The176

conversation will be guided by fairly simple heuristic rules, but with linguistic sophis-177

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

30.3 Speech Act Schemata and Triggers 519

tication in the comprehension and generation aspects, and potentially subtle inference178

invoked within the SpeechActSchema or (less frequently) the Trigger contexts. Then179

in Phase 2 these simple heuristic rules will be refactored in a manner rendering them180

susceptible to experiential adaptation.181

30.3.1.2 Statement: Answer182

The next few SpeechActSchema (plus maybe some similar ones not given here)183

are intended to collectively cover the ground of SWBD-DAMSL’s STATEMENT184

OPINION and STATEMENT NON-OPINION acts.185

Trigger context The trigger is that the conversation partner asks a wh-question.186

Goal Similar to the case of a TruthValueAnswer, discussed above.187

Response generation schema When a wh-question is received, one reasonable188

response is to produce a statement comprising an answer. The question Atom is189

posed to the pattern matcher or PLN, which responds with an Atom-set comprising190

a putative answer. The answer Atoms are then pared down into a series of sentence-191

sized Atom-sets, which are articulated as sentences by NLGen. If the answer Atoms192

have very low-confidence truth values, or if the Atomspace contains knowledge that193

other agents significantly disagree with the agent’s truth value assessments, then the194

answer Atom-set may have Atoms corresponding to “I think” or “In my opinion”195

etc. added onto it (this gives an instance of the STATEMENT NON-OPINION act).196

30.3.1.3 Statement: Unsolicited Observation197

Trigger context when in the presence of another intelligent agent (human or AI) and198

nothing has been said for a while, there is a certain probability of choosing to make199

a “random” statement.200

Goal 1 Unsolicited observations may be made with a goal of pleasing the other agent,201

as it may have been observed in the past that other agents are happier when spoken202

to.203

Goal 2 Unsolicited observations may be made with goals of increasing the agent’s204

own pleasure or novelty or knowledge—because it may have been observed that205

speaking often triggers conversations, and conversations are often more pleasurable206

or novel or educational than silence.207

Response generation schema: One option is a statement describing something in the208

mutual environment, another option is a statement derived from high-STI Atoms in209

the agent’s Atomspace. The particulars are similar to the “Statement: Answer” case.210

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

520 30 Natural Language Dialogue

30.3.1.4 Statement: External Change Notification211

Trigger context when in a situation with another intelligent agent, and something212

significant changes in the mutually perceived situation, a statement describing it213

may be made.214

Goal 1 External change notification utterances may be made for the same reasons as215

Unsolicited Observations, described above.216

Goal 2 The agent may think a certain external change is important to the other agent217

it is talking to, for some particular reason. For instance, if the agent sees a dog steal218

Bob’s property, it may wish to tell Bob about this.219

Goal 3 The change may be important to the agent itself—and it may want its conver-220

sation partner to do something relevant to an observed external change ... so it may221

bring the change to the partner’s attention for this reason. For instance, “Our friends222

are leaving. Please try to make them come back”.223

Response generation schema The Atom-set for expression characterizes the change224

observed. The particulars are similar to the “Statement: Answer” case.225

30.3.1.5 Statement: Internal Change Notification226

Trigger context 1 when the importance level of an Atom increases dramatically while227

in the presence of another intelligent agent, a statement expressing this Atom (and228

some of its currently relevant surrounding Atoms) may be made.229

Trigger context 2 when the truth value of a reasonably important Atom changes230

dramatically while in the presence of another intelligent agent, a statement expressing231

this Atom and its truth value may be made.232

Goal Similar goals apply here as to External Change Notification, considered above.233

Response generation schema Similar to the “Statement: External Change Notifica-234

tion” case.235

30.3.1.6 WHQuestion236

Trigger context being in the presence of an intelligent agent thought capable of237

answering questions.238

Goal 1 the general goal of increasing the agent’s total knowledge.239

Goal 2 the agent notes that, to achieve one of its currently important goals, it would240

be useful to possess a Atom fulfilling a certain specification.241

Response generation schema: Formulate a query whose answer would be an Atom242

fulfilling that specification, and then articulate this logical query as an English ques-243

tion using NLGen.244

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

30.4 Probabilistic Mining of Trigger Contexts 521

30.4 Probabilistic Mining of Trigger Contexts245

One question raised by the above design sketch is where the Trigger contexts come246

from. They may be hand-coded, but this approach may suffer from excessive brittle-247

ness. The approach suggested by Twitchell and Nunamaker’s work (which involved248

modeling human dialogues rather than automatically generating intelligent dia-249

logues) is statistical. That is, they suggest marking up a corpus of human dialogues250

with tags corresponding to the 42 speech acts, and learning from this annotated cor-251

pus a set of Markov transition probabilities indicating which speech acts are most252

likely to follow which others. In their approach the transition probabilities refer only253

to series of speech acts.254

In an OpenCog context one could utilize a more sophisticated training corpus in a255

more sophisticated way. For instance, suppose one wants to build a dialogue system256

for a game character conversing with human characters in a game world. Then one257

could conduct experiments in which one human controls a “human” game character,258

and another human puppeteers an “AI” game character. That is, the puppeteered char-259

acter funnels its perceptions to the AI system, but has its actions and verbalizations260

controlled by the human puppeteer. Given the dialogue from this sort of session, one261

could then perform markup according to the 42 speech acts.262

As a simple example, consider the following brief snippet of annotated263

conversation:

Speaker Utterance Speech act type

Ben Go get me the ball ad
AI Where is it? qw
Ben Over there [points] sd
AI By the table? qy
Ben Yeah ny
AI Thanks ft
AI I’ll get it now. commits

264

A DialogueNode object based on this snippet would contain the information in the265

table, plus some physical information about the situation, such as, in this case: predi-266

cates describing the relative locations of the two agents, the ball an the table (e.g. the267

two agents are very near each other, the ball and the table are very near each other,268

but these two groups of entities are only moderately near each other); and, predicates269

involving270

Then, one could train a machine learning algorithm such as MOSES to predict the271

probability of speech act type S1 occurring at a certain point in a dialogue history,272

based on the prior history of the dialogue. This prior history could include percepts273

and cognitions as well as utterances, since one has a record of the AI system’s274

perceptions and cognitions in the course of the marked-up dialogue.275

One question is whether to use the 42 SWBD-DAMSL speech acts for the creation276

of the annotated corpus, or whether instead to use the modified set of speech acts277

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

522 30 Natural Language Dialogue

created in designing SpeechActSchema. Either way could work, but we are mildly278

biased toward the former, since this specific SWBD-DAMSL markup scheme has279

already proved its viability for marking up conversations. It seems unproblematic to280

map probabilities corresponding to these speech acts into probabilities corresponding281

to a slightly refined set of speech acts. Also, this way the corpus would be valuable282

independently of ongoing low-level changes in the collection of SpeechActSchema.283

In addition to this sort of supervised training in advance, it will be important284

to enable the system to learn Trigger contexts online as a consequence of its life285

experience. This learning may take two forms:286

1. Most simply, adjustment of the probabilities associated with the PredictiveImpli-287

cationLinks between SpeechActTriggers and SpeechActSchema.288

2. More sophisticatedly, learning of new SpeechActTrigger predicates, using an289

algorithm such as MOSES for predicate learning, based on mining the history of290

actual dialogues to estimate fitness.291

In both cases the basis for learning is information regarding the extent to which292

system goals were fulfilled by each past dialogue. PredictiveImplications that corre-293

spond to portions of successful dialogues will be have their truth values increased,294

and those corresponding to portions of unsuccessful dialogues will have their truth295

values decreased. Candidate SpeechActTriggers will be valued based on the observed296

historical success of the responses they would have generated based on historically297

perceived utterances; and (ultimately) more sophisticatedly, based on the estimated298

success of the responses they generate. Note that, while somewhat advanced, this299

kind of learning is much easier than the procedure learning required to learn new300

SpeechActSchema.301

30.5 Conclusion302

While the underlying methods are simple, the above methods appear capable of303

producing arbitrarily complex dialogues about any subject that is represented by304

knowledge in the AtomSpace. There is no reason why dialogue produced in this305

manner should be indistinguishable from human dialogue; but it may nevertheless306

be humanly comprehensible, intelligent and insightful. What is happening in this sort307

of dialogue system is somewhat similar to current natural language query systems308

that query relational databases, but the “database” in question is a dynamically self-309

adapting weighted labeled hypergraph rather than a static relational database, and310

this difference means a much more complex dialogue system is required, as well as311

more flexible language comprehension and generation components.312

Ultimately, a CogPrime system—if it works as desired—will be able to learn313

increased linguistic functionality, and new languages, on its own. But this is not a314

prerequisite for having intelligent dialogues with a CogPrime system. Via building315

a ChatPrime type system, as outlined here, intelligent dialogue can occur with a316

CogPrime system while it is still at relatively early stages of cognitive development,317

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

30.5 Conclusion 523

and even while the underlying implementation of the CogPrime design is incomplete.318

This is not closely analogous to human cognitive and linguistic development, but, it319

can still be pursued in the context of a CogPrime development plan that follows the320

overall arc of human developmental psychology.321

319613_1_En_30_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 523 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 30

Query Refs. Details Required Author’s response

AQ1 No query

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

1 Part VIII
2 From Here to AGI

Layout: T1 Standard SC_PART Book ID: 319613_1_En Book ISBN: 978-94-6239-029-4
Part No.: Part VIII Date: 19-10-2013 Page: 39/39

Metadata of the chapter that will be visualized in
SpringerLink

Book Title Engineering General Intelligence, Part 2
Series Title 10077

Chapter Title Summary of Argument for the CogPrime Approach

Copyright Year 2014

Copyright HolderName Atlantis Press and the authors

Corresponding Author Family Name Goertzel
Particle

Given Name Ben
Suffix

Division

Organization

Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic ofChina

Email ben@goertzel.org

Author Family Name Pennachin
Particle

Given Name Cassio
Suffix

Division

Organization Igenesis Av. Prof. Mário

Address Belo Horizonte, Minas Gerais, Brazil

Email pennachin@gmail.com

Author Family Name Geisweiller
Particle

Given Name Nil
Suffix

Division

Organization

Address Samokov, Bulgaria

Email ngeiswei@gmail.com

Abstract By way of conclusion, we now return to the “key claims” that were listed at the end of Chap. 3 of Vol. 5.
Quite simply, this is a list of claims such that—roughly speaking—if the reader accepts these claims, they
should accept that the CogPrime approach to AGI is a viable one. On the other hand if the reader rejects
one or more of these claims, they may well find one or more aspects of CogPrime unacceptable for some
related reason. In Chap. 3 of Vol. 5 we merely listed these claims; here we briefly discuss each one in the
context of the intervening chapters, giving each one its own section or subsection.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 31
Summary of Argument for the CogPrime
Approach

31.1 Introduction0

By way of conclusion, we now return to the “key claims” that were listed at the1

end of Chap. 3 of Vol. 5. Quite simply, this is a list of claims such that—roughly2

speaking—if the reader accepts these claims, they should accept that the CogPrime3

approach to AGI is a viable one. On the other hand if the reader rejects one or more4

of these claims, they may well find one or more aspects of CogPrime unacceptable5

for some related reason. In Chap. 3 of Vol. 5 we merely listed these claims; here we6

briefly discuss each one in the context of the intervening chapters, giving each one7

its own section or subsection.8

As we clarified at the start of Vol. 5, we don’t fancy that we have provided an9

ironclad argument that the CogPrime approach to AGI is guaranteed to work as10

hoped, once it’s fully engineered, tuned and taught. Mathematics isn’t yet adequate11

to analyze the real-world behavior of complex systems like these; and we have12

not yet implemented, tested and taught enough of CogPrime to provide convincing13

empirical validation. So, most of the claims listed here have not been rigorously14

demonstrated, but only heuristically argued for. That is the reality of AGI work right15

now: one assembles a design based on the best combination of rigorous and heuristic16

arguments one can, then proceeds to create and teach a system according to the17

design, adjusting the details of the design based on experimental results as one goes18

along.For an uncluttered list of the claims, please refer back to Chap. 3 of Vol. 5; here19

we will review the claims integrated into the course of discussion.20

The following chapter, aimed at the more mathematically-minded reader, gives a21

list of formal propositions echoing many of the ideas in the chapter—propositions22

such that, if they are true, then the success of CogPrime as an architecture for general23

intelligence is likely.24 AQ1

B. Goertzel et al., Engineering General Intelligence, Part 2, 527
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_31,
© Atlantis Press and the authors 2014

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_3

http://dx.doi.org/10.2991/978-94-6239-027-0_3

http://dx.doi.org/10.2991/978-94-6239-027-0_3

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

528 31 Summary of Argument for the CogPrime Approach

31.2 Multi-Memory Systems25

The first of our key claims is that to achieve general intelligence in the context of26

human-intelligence-friendly environments and goals using feasible computational27

resources, it’s important that an AGI system can handle different kinds of memory28

(declarative, procedural, episodic, sensory, intentional, attentional) in customized29

but interoperable ways. The basic idea is that these different kinds of knowledge30

have very different characteristics, so that trying to handle them all within a single31

approach, while surely possible, is likely to be unacceptably inefficient.32

The tricky issue in formalizing this claim is that “single approach” is an ambiguous33

notion: for instance, if one has a wholly logic-based system that represents all forms of34

knowledge using predicate logic, then one may still have specialized inference control35

heuristics corresponding to the different kinds of knowledge mentioned in the claim.36

In this case one has “customized but interoperable ways” of handling the different37

kinds of memory, and one doesn’t really have a “single approach” even though38

one is using logic for everything. To bypass such conceptual difficulties, one may39

formalize cognitive synergy using a geometric framework as discussed in Appendix40

B, in which different types of knowledge are represented as metrized categories,41

and cognitive synergy becomes a statement about paths to goals being shorter in42

metric spaces combining multiple knowledge types than in those corresponding to43

individual knowledge types.44

In CogPrime we use a complex combination of representations, including the45

Atomspace for declarative, attentional and intentional knowledge and some episodic46

and sensorimotor knowledge, Combo programs for procedural knowledge, simula-47

tions for episodic knowledge, and hierarchical neural nets for some sensorimotor48

knowledge (and related episodic, attentional and intentional knowledge). In cases49

where the same representational mechanism is used for different types of knowl-50

edge, different cognitive processes are used, and often different aspects of the rep-51

resentation (e.g. attentional knowledge is dealt with largely by ECAN acting on52

AttentionValues and HebbianLinks in the Atomspace; whereas declarative knowl-53

edge is dealt with largely by PLN acting on TruthValues and logical links, also in the54

AtomSpace). So one has a mix of the “different representations for different memory55

types” approach and the “different control processes on a common representation56

for different memory types” approach.57

It’s unclear how closely dependent the need for a multi-memory approach is on58

the particulars of “human-friendly environments.” We argued in Chap. 9 of Vol. 559

that one factor militating in favor of a multi-memory approach is the need for multi-60

modal communication: declarative knowledge relates to linguistic communication;61

procedural knowledge relates to demonstrative communication; attentional knowl-62

edge relates to indicative communication; and so forth. But in fact the multi-memory63

approach may have a broader importance, even to intelligences without multimodal64

communication. This is an interesting issue but not particularly critical to the devel-65

opment of human-like, human-level AGI, since in the latter case we are specifically66

concerned with creating intelligences that can handle multimodal communication.67

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_9

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.2 Multi-Memory Systems 529

So if for no other reason, the multi-memory approach is worthwhile for handling68

multi-modal communication.69

Pragmatically, it is also quite clear that the human brain takes a multi-memory70

approach, e.g. with the cerebellum and closely linked cortical regions containing71

special structures for handling procedural knowledge, with special structures for han-72

dling motivational (intentional) factors, etc. And (though this point is certainly not73

definitive, it’s meaningful in the light of the above theoretical discussion) decades74

of computer science and narrow-AI practice strongly suggest that the “one mem-75

ory structure fits all” approach is not capable of leading to effective real-world76

approaches.77

31.3 Perception, Action and Environment78

The more we understand of human intelligence, the clearer it becomes how closely it79

has evolved to the particular goals and environments for which the human organism80

evolved. This is true in a broad sense, as illustrated by the above issues regarding81

multi-memory systems, and is also true in many particulars, as illustrated e.g. by82

Changizi’s [Cha09] evolutionary analysis of the human visual system. While it might83

be possible to create a human-like, human-level AGI by abstracting the relevant84

biases from human biology and behavior and explicitly encoding them in one’s AGI85

architecture, it seems this would be an inordinately difficult approach in practice,86

leading to the claim that to achieve human-like general intelligence, it’s important87

for an intelligent agent to have sensory data and motoric affordances that roughly88

emulate those available to humans. We don’t claim this is a necessity—just a dramatic89

convenience. And if one accepts this point, it has major implications for what sorts90

of paths toward AGI it makes most sense to follow.91

Unfortunately, though, the idea of a “human-like” set of goals and environments92

is fairly vague; and when you come right down to it, we don’t know exactly how93

close the emulation needs to be to form a natural scenario for the maturation of94

human-like, human-level AGI systems. One could attempt to resolve this issue via a95

priori theory, but given the current level of scientific knowledge it’s hard to see how96

that would be possible in any definitive sense... which leads to the conclusion that97

our AGI systems and platforms need to support fairly flexible experimentation with98

virtual-world and/or robotic infrastructures.99

Our own intuition is that currently neither current virtual world platforms, nor100

current robotic platforms, are quite adequate for the development of human-level,101

human-like AGI. Virtual worlds would need to become a lot more like robot simu-102

lators, allowing more flexible interaction with the environment, and more detailed103

control of the agent. Robots would need to become more robust at moving and104

grabbing—e.g. with Big Dog’s movement ability but the grasping capability of the105

best current grabber arms. We do feel that development of adequate virtual world or106

robotics platforms is quite possible using current technology, and could be done at107

fairly low cost if someone were to prioritize this. Even without AGI-focused prior-108

itization, it seems that the needed technological improvements are likely to happen109

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

530 31 Summary of Argument for the CogPrime Approach

during the next decade for other reasons. So at this point we feel it makes sense for110

AGI researchers to focus on AGI and exploit embodiment-platform improvements111

as they come along—at least, this makes sense in the case of AGI approaches (like112

CogPrime) that can be primarily developed in an embodiment-platform-independent113

manner.114

31.4 Developmental Pathways115

But if an AGI system is going to live in human-friendly environments, what should it116

do there? No doubt very many pathways leading from incompetence to adult-human-117

level general intelligence exist, but one of them is much better understood than any118

of the others, and that’s the one normal human children take. Of course, given their119

somewhat different embodiment, it doesn’t make sense to try to force AGI systems120

to take exactly the same path as human children, but having AGI systems follow a121

fairly close approximation to the human developmental path seems the smoothest122

developmental course... a point summarized by the claim that: To work toward adult123

human-level, roughly human-like general intelligence, one fairly easily comprehen-124

sible path is to use environments and goals reminiscent of human childhood, and125

seek to advance one’s AGI system along a path roughly comparable to that followed126

by human children.127

Human children learn via a rich variety of mechanisms; but broadly speaking one128

conclusion one may drawn from studying human child learning is that it may make129

sense to teach an AGI system aimed at roughly human-like general intelligence via130

a mix of spontaneous learning and explicit instruction, and to instruct it via a com-131

bination of imitation, reinforcement and correction, and a combination of linguistic132

and nonlinguistic instruction. We have explored exactly what this means in Chap. 13133

and others, via looking at examples of these types of learning in the context of virtual134

pets in virtual worlds, and exploring how specific CogPrime learning mechanisms135

can be used to achieve simple examples of these types of learning.136

One important case of learning that human children are particularly good at is137

language learning; and we have argued that this is a case where it may pay for AGI138

systems to take a route somewhat different from the one taken by human children.139

Humans seem to be born with a complex system of biases enabling effective language140

learning, and it’s not yet clear exactly what these biases are nor how they’re incorpo-141

rated into the learning process. It is very tempting to give AGI systems a “short cut”142

to language proficiency via making use of existing rule-based and statistical-corpus-143

analysis-based NLP systems; and we have fleshed out this approach sufficiently to144

have convinced ourselves it makes practical as well as conceptual sense, in the con-145

text of the specific learning mechanisms and NLP tools built into OpenCog. Thus146

we have provided a number of detailed arguments and suggestions in support of147

our claim that one effective approach to teaching an AGI system human language148

is to supply it with some in-built linguistic facility, in the form of rule-based and149

statistical-linguistics-based NLP systems, and then allow it to improve and revise150

this facility based on experience.151

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_13

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.5 Knowledge Representation 531

31.5 Knowledge Representation152

Many knowledge representation approaches have been explored in the AI literature,153

and ultimately many of these could be workable for human-level AGI if coupled154

with the right cognitive processes. The key goal for a knowledge representation155

for AGI should be naturalness with respect to the AGI’s cognitive processes—i.e.156

the cognitive processes shouldn’t need to undergo complex transformative gym-157

nastics to get information in and out of the knowledge representation in order to158

do their cognitive work. Toward this end we have come to a similar conclusion to159

some other researchers (e.g. Joscha Bach and Stan Franklin), and concluded that160

given the strengths and weaknesses of current and near-future digital computers,161

a (loosely) neural-symbolic network is a good representation for directly storing162

many kinds of memory, and interfacing between those that it doesn’t store directly.163

CogPrime’s AtomSpace is a neural-symbolic network designed to work nicely with164

PLN, MOSES, ECAN and the other key CogPrime cognitive processes; it supplies165

them with what they need without causing them undue complexities. It provides166

a platform that these cognitive processes can use to adaptively, automatically con-167

struct specialized knowledge representations for particular sorts of knowledge that168

they encounter.169

31.6 Cognitive Processes170

The crux of intelligence is dynamics, learning, adaptation; and so the crux of an AGI171

design is the set of cognitive processes that the design provides. These processes must172

collectively allow the AGI system to achieve its goals in its environments using the173

resources at hand. Given CogPrime’s multi-memory design, it’s natural to consider174

CogPrime’s cognitive processes in terms of which memory subsystems they focus175

on (although, this is not a perfect mode of analysis, since some of the cognitive176

processes span multiple memory types).177

31.6.1 Uncertain Logic for Declarative Knowledge178

One major decision made in the creation of CogPrime was that given the strengths and179

weaknesses of current and near-future digital computers, uncertain logic is a good180

way to handle declarative knowledge. Of course this is not obvious nor is it the only181

possible route. Declarative knowledge can potentially be handled in other ways; e.g.182

in a hierarchical network architecture, one can make declarative knowledge emerge183

automatically from procedural and sensorimotor knowledge, as is the goal in the184

Numenta and DeSTIN designs reviewed in Chap. 5 of Vol. 5. It seems clear that the185

human brain doesn’t contain anything closely parallel to formal logic—even though186

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

532 31 Summary of Argument for the CogPrime Approach

one can ground logic operations in neural-net dynamics as explored in Chap. 16 this187

sort of grounding leads to “uncertain logic enmeshed with a host of other cognitive188

dynamics” rather than “uncertain logic as a cleanly separable cognitive process.”189

But contemporary digital computers are not brains—they lack the human brain’s190

capacity for cheap massive parallelism, but have a capability for single-operation191

speed and precision far exceeding the brain’s. In this way computers and formal192

logic are a natural match (a fact that’s not surprising given that Boolean logic lies193

at the foundation of digital computer operations). Using uncertain logic is a sort of194

compromise between brainlike messiness and fuzziness, and computerlike precision.195

An alternative to using uncertain logic is using crisp logic and incorporating uncer-196

tainty as content within the knowledge base—this is what SOAR does, for example,197

and it’s not a wholly unworkable approach. But given that the vast mass of knowl-198

edge needed for confronting everyday human reality is highly uncertain, and that199

this knowledge often needs to be manipulated efficiently in real-time, it seems to us200

there is a strong argument for embedding uncertainty in the logic.201

Many approaches to uncertain logic exist in the literature, including probabilistic202

and fuzzy approaches, and one conclusion we reached in formulating CogPrime is203

that none of them was adequate on its own—leading us, for example, to the conclusion204

that to deal with the problems facing a human-level AGI, an uncertain logic must205

integrate imprecise probability and fuzziness with a broad scope of logical constructs.206

The arguments that both fuzziness and probability are needed seem hard to counter—207

these two notions of uncertainty are qualitatively different yet both appear cognitively208

necessary.209

The argument for using probability in an AGI system is assailed by some AGI210

researchers such as Pei Wang, but we are swayed by the theoretical arguments in favor211

of probability theory’s mathematically fundamental nature, as well as the massive212

demonstrated success of probability theory in various areas of narrow AI and applied213

science. However, we are also swayed by the arguments of Pei Wang, Peter Walley214

and others that using single-number probabilities to represent truth values leads to215

untoward complexities related to the tabulation and manipulation of amounts of evi-216

dence. This has led us to an imprecise probability based approach; and then technical217

arguments regarding the limitations of standard imprecise probability formalisms has218

led us to develop our own “indefinite probabilities” formalism.219

The PLN logic framework is one way of integrating imprecise probability and220

fuzziness in a logical formalism that encompasses a broad scope of logical constructs.221

It integrates term logic and predicate logic—a feature that we consider not necessary,222

but very convenient, for AGI. Either predicate or term logic on its own would suffice,223

but each is awkward in certain cases, and integrating them as done in PLN seems to224

result in more elegant handling of real-world inference scenarios. Finally, PLN also225

integrates intensional inference in an elegant manner that demonstrates integrative226

intelligence—it defines intension using pattern theory, which binds inference to pat-227

tern recognition and hence to other cognitive processes in a conceptually appropriate228

way.229

Clearly PLN is not the only possible logical formalism capable of serving a human-230

level AGI system; however, we know of no other existing, fleshed-out formalism231

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_16

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.6 Cognitive Processes 533

capable of fitting the bill. In part this is because PLN has been developed as part of an232

integrative AGI project whereas other logical formalisms have mainly been developed233

for other purposes, or purely theoretically. Via using PLN to control virtual agents,234

and integrating PLN with other cognitive processes, we have tweaked and expanded235

the PLN formalism to serve all the roles required of the “declarative cognition”236

component of an AGI system with reasonable elegance and effectiveness.237

31.6.2 Program Learning for Procedural Knowledge238

Even more so than declarative knowledge, procedural knowledge is represented in239

many different ways in the AI literature. The human brain also apparently uses240

multiple mechanisms to embody different kinds of procedures. So the choice of241

how to represent procedures in an AGI system is not particularly obvious. However,242

there is one particular representation of procedures that is particularly well-suited for243

current computer systems, and particularly well-tested in this context: programs. In244

designing CogPrime, we have acted based on the understanding that programs are245

a good way to represent procedures—including both cognitive and physical-action246

procedures, but perhaps not including low-level motor-control procedures.247

Of course, this begs the question of programs in what programming language,248

and in this context we have made a fairly traditional choice, using a special language249

called Combo that is essentially a minor variant of LISP, and supplying Combo with250

a set of customized primitives intended to reduce the length of the typical programs251

CogPrime needs to learn and use. What differentiates this use of LISP from many252

traditional uses of LISP in AI is that we are only using the LISP-ish representational253

style for procedural knowledge, rather than trying to use it for everything.254

One test of whether the use of Combo programs to represent procedural knowl-255

edge makes sense is whether the procedures useful for a CogPrime system in every-256

day human environments have short Combo representations. We have worked with257

Combo enough to validate that they generally do in the virtual world environment—258

and also in the physical-world environment if lower-level motor procedures are sup-259

plied as primitives. That is, we are not convinced that Combo is a good representation260

for the procedure a robot needs to do to move its fingers to pick up a cup, coordinating261

its movements with its visual perceptions. It’s certainly possible to represent this sort262

of thing in Combo, but Combo may be an awkward tool. However, if one represents263

low-level procedures like this using another method, e.g. learned cell assemblies in a264

hierarchical network like DeSTIN, then it’s very feasible to make Combo programs265

that invoke these low-level procedures, and encode higher-level actions like “pick up266

the cup in front of you slowly and quietly, then hand it to Jim who is standing next267

to you”.268

Having committed to use programs to represent many procedures,the next ques-269

tion is how to learn programs. One key conclusion we have come to via our empirical270

work in this area is that some form of powerful program normalization is essential.271

Without normalization, it’s too hard for existing learning algorithms to generalize272

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

534 31 Summary of Argument for the CogPrime Approach

from known, tested programs and draw useful uncertain conclusions about untested273

ones. We have worked extensively with a generalization of Holman’s “Elegant Nor-274

mal Form” in this regard.275

For learning normalized programs, we have come to the following conclusions:276

• For relatively straightforward procedure learning problems, hillclimbing with ran-277

dom restart and a strong Occam bias is an effective method278

• For more difficult problems that elude hillclimbing, probabilistic evolutionary279

program learning is an effective method.280

The probabilistic evolutionary program learning method we have worked with most281

in OpenCog is MOSES, and significant evidence has been gathered showing it to be282

dramatically more effective than genetic programming on relevant classes of prob-283

lems. However, more work needs to be done to evaluate its progress on complex and284

difficult procedure learning problems. Alternate, related probabilistic evolutionary285

program learning algorithms such as PLEASURE have also been considered and286

may be implemented and tested as well.287

31.6.3 Attention Allocation288

There is significant evidence that the brain uses some sort of “activation spread-289

ing” type method to allocate attention, and many algorithms in this spirit have been290

implemented and utilized in the AI literature. So, we find ourselves in agreement291

with many others that activation spreading is a reasonable way to handle attentional292

knowledge (though other approaches, with greater overhead cost, may provide bet-293

ter accuracy and may be appropriate in some situations). We also agree with many294

others who have chosen Hebbian learning as one route of learning associative295

relationships, with more sophisticated methods such as information-geometric ones296

potentially also playing a role.297

Where CogPrime differs from standard practice is in the use of an economic298

metaphor to regulate activation spreading. In this matter CogPrime is broadly in299

agreement with Eric Baum’s arguments about the value of economic methods in AI,300

although our specific use of economic methods is very different from his. Baum’s301

work (e.g. Hayek [Bau04]) embodies more complex and computationally expen-302

sive uses of artificial economics, whereas we believe that in the context of a neural-303

symbolic network, artificial economics is an effective approach to activation spread-304

ing; and CogPrime’s ECAN framework seeks to embody this idea. ECAN can also305

make use of more sophisticated and expensive uses of artificial currency when large306

amount of system resources are involved in a single choice, rendering the cost appro-307

priate.308

One major choice made in the CogPrime design is to focus on two kinds of atten-309

tion: processor (represented by ShortTermImportance) and memory (represented310

by LongTermImportance). This is a direct reflection of one of the key differences311

between the von Neumann architecture and the human brain: in the former but not312

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.6 Cognitive Processes 535

the latter, there is a strict separation between memory and processing in the underly-313

ing compute fabric. We carefully considered the possibility of using a larger variety314

of attention values, and in Chap. 5 we presented some mathematics and concepts that315

could be used in this regard, but for reasons of simplicity and computational efficiency316

we are currently using only STI and LTI in our OpenCogPrime implementation, with317

the possibility of extending further if experimentation proves it necessary.318

31.6.4 Internal Simulation and Episodic Knowledge319

For episodic knowledge, as with declarative and procedural knowledge, CogPrime320

has opted for a solution motivated by the particular strengths of contemporary digital321

computers. When the human brain runs through a “mental movie” of past experiences,322

it doesn’t do any kind of accurate physical simulation of these experiences. But that’s323

not because the brain wouldn’t benefit from such—it’s because the brain doesn’t know324

how to do that sort of thing! On the other hand, any modern laptop can run a reasonable325

Newtonian physics simulation of everyday events, and more fundamentally can recall326

and manage the relative positions and movements of items in an internal 3D landscape327

paralleling remembered or imagined real-world events. With this in mind, we believe328

that in an AGI context, simulation is a good way to handle episodic knowledge;329

and running an internal “world simulation engine” is an effective way to handle330

simulation.331

CogPrime can work with many different simulation engines; and since simulation332

technology is continually advancing independently of AGI technology, this is an area333

where AGI can buy some progressive advancement for free as time goes on. The334

subtle issues here regard interfacing between the simulation engine and the rest of335

the mind: mining meaningful information out of simulations using pattern mining336

algorithms; and more subtly, figuring out what simulations to run at what times in337

order to answer the questions most relevant to the AGI system in the context of338

achieving its goals. We believe we have architected these interactions in a viable339

way in the CogPrime design, but we have tested our ideas in this regard only in340

some fairly simple contexts regarding virtual pets in a virtual world, and much more341

remains to be done here.342

31.6.5 Low-Level Perception and Action343

The centrality or otherwise of low-level perception and action in human intelligence344

is a matter of ongoing debate in the AI community. Some feel that the essence of345

intelligence lies in cognition and/or language, with perception and action having346

the status of “peripheral devices.” Others feel that modeling the physical world and347

one’s actions in it is the essence of intelligence, with cognition and language emerging348

as side-effects of these more fundamental capabilities. The CogPrime architecture349

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_5

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

536 31 Summary of Argument for the CogPrime Approach

doesn’t need to take sides in this debate. Currently we are experimenting both in350

virtual worlds, and with real-world robot control. The value added by robotic versus351

virtual embodiment can thus be explored via experiment rather than theory, and may352

reveal nuances that no one currently foresees.353

As noted above, we are unconfident of CogPrime’s generic procedure learning or354

pattern recognition algorithms in terms of their capabilities to handle large amounts355

of raw sensorimotor data in real time, and so for robotic applications we advocate356

hybridizing CogPrime with a separate (but closely cross-linked) system better cus-357

tomized for this sort of data, in line with our general hypothesis that Hybridization of358

one’s integrative neural-symbolic system with a spatiotemporally hierarchical deep359

learning system is an effective way to handle representation and learning of low-360

level sensorimotor knowledge. While this general principle doesn’t depend on any361

particular approach, DeSTIN is one example of a deep learning system of this nature362

that can be effective in this context.363

We have not yet done any sophisticated experiments in this regard – our current364

experiments using OpenCog to control robots involve cruder integration of OpenCog365

with perceptual and motor subsystems, rather than the tight hybridization described366

in Chap. 8. Creating such a hybrid system is “just” a matter of software engineering,367

but testing such a system may lead to many surprises!368

31.6.6 Goals369

Given that we have characterized general intelligence as “the ability to achieve com-370

plex goals in complex environments,” it should be plain that goals play a central role371

in our work. However, we have chosen not to create a separate subsystem for inten-372

tional knowledge, and instead have concluded that one effective way to handle goals373

is to represent them declaratively, and allocate attention among them economically.374

An advantage of this approach is that it automatically provides integration between375

the goal system and the declarative and attentional knowledge systems.376

Goals and subgoals are related using logical links as interpreted and manipulated377

by PLN, and attention is allocated among goals using the STI dynamics of ECAN,378

and a specialized variant based on RFS’s (requests for service). Thus the mechanics379

of goal management is handled using uncertain inference and artificial economics,380

whereas the figuring-out of how to achieve goals is done integratively, relying heavily381

on procedural and episodic knowledge as well as PLN and ECAN.382

The combination of ECAN and PLN seems to overcome the well-known short-383

comings found with purely neural-net or purely inferential approaches to goals.384

Neural net approaches generally have trouble with abstraction, whereas logical385

approaches are generally poor at real-time responsiveness and at tuning their details386

quantitatively based on experience. At least in principle, our hybrid approach over-387

comes all these shortcomings; though of current, it has been tested only in fairly388

simple cases in the virtual world.389

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-030_8

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.7 Fulfilling the “Cognitive Equation” 537

31.7 Fulfilling the “Cognitive Equation”390

A key claim based on the notion of the “Cognitive Equation”posited in Chaotic391

Logic [Goe94] is that it is important for an intelligent system to have some way392

of recognizing large-scale patterns in itself, and then embodying these patterns as393

new, localized knowledge items in its memory. This dynamic introduces a feedback394

dynamic between emergent pattern and substrate, which is hypothesized to be crit-395

ical to general intelligence under feasible computational resources. It also ties in396

nicely with the notion of “glocal memory”—essentially positing a localization of397

some global memories, which naturally will result in the formation of some glocal398

memories. One of the key ideas underlying the CogPrime design is that given the use399

of a neural-symbolic network for knowledge representation, a graph-mining based400

“map formation” heuristic is one good way to do this.401

Map formation seeks to fulfill the Cognitive Equation quite directly, probably more402

directly than happens in the brain. Rather than relying on other cognitive processes403

to implicitly recognize overall system patterns and embody them in the system as404

localized memories (though this implicit recognition may also happen), the MapFor-405

mation MindAgent explicitly carries out this process. Mostly this is done using fairly406

crude greedy pattern mining heuristics, though if really subtle and important patterns407

seem to be there, more sophisticated methods like evolutionary pattern mining may408

also be invoked.409

It seems possible that this sort of explicit approach could be less efficient than410

purely implicit approaches; but, there is no evidence for this, and it may actually411

provide increased efficiency. And in the context of the overall CogPrime design, the412

explicit MapFormation approach seems most natural.413

31.8 Occam’s Razor414

The key role of “Occam’s Razor” or the urge for simplicity in intelligence has been415

observed by many before (going back at least to Occam himself, and probably ear-416

lier!), and is fully embraced in the CogPrime design. Our theoretical analysis of intel-417

ligence, presented in Chap. 3 of vol. 5 and elsewhere, portrays intelligence as closely418

tied to the creation of procedures that achieve goals in environments in the simplest419

possible way. And this quest for simplicity is present in many places throughout the420

CogPrime design, for instance421

• In MOSES and hillclimbing, where program compactness is an explicit component422

of program tree fitness423

• In PLN, where the backward and forward chainers explicitly favor shorter proof424

chains, and intensional inference explicitly characterizes entities in terms of their425

patterns (where patterns are defined as compact characterizations)426

• In pattern mining heuristics, which search for compact characterizations of data427

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

http://dx.doi.org/10.2991/978-94-6239-027-0_3

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

538 31 Summary of Argument for the CogPrime Approach

• In the forgetting mechanism, which seeks the smallest set of Atoms that will allow428

the regeneration of a larger set of useful Atoms via modestly-expensive application429

of cognitive processes430

• Via the encapsulation of procedural and declarative knowledge in simulations,431

which in many cases provide a vastly compacted form of storing real-world expe-432

riences.433

Like cognitive synergy and emergent networks, Occam’s Razor is not something that434

is implemented in a single place in the CogPrime design, but rather an overall design435

principle that underlies nearly every part of the system.436

31.8.1 Mind Geometry437

We now refer to the three mind-geometric principles outlined in Appendix B (part438

of the additional online appendices to the book), which are:439

• Syntax-semantics correlation440

• Cognitive geometrodynamics441

• Cognitive synergy.442

443

The key role of syntax-semantics correlation in CogPrime is clear. It plays an444

explicit role in MOSES. In PLN, it is critical to inference control, to the extent that445

inference control is based on the extraction of patterns from previous inferences. The446

syntactic structures are the inference trees, and the semantic structures are the infer-447

ential conclusions produced by the trees. History-guided inference control assumes448

that prior similar trees will be a good starting-point for getting results similar to prior449

ones—i.e. it assumes a reasonable degree of syntax-semantics correlation. Also,450

without a correlation between the core elements used to generate an episode, and451

the whole episode, it would be infeasible to use historical data mining to understand452

what core elements to use to generate a new episode—and creation of compact, easily453

manipulable seeds for generating episodes would not be feasible.454

Cognitive geometrodynamics is about finding the shortest path from the current455

state to a goal state, where distance is judged by an appropriate metric including var-456

ious aspects of computational effort. The ECAN and effort management frameworks457

attempt to enforce this, via minimizing the amount of effort spent by the system458

in getting to a certain conclusion. MindAgents operating primarily on one kind of459

knowledge (e.g. MOSES, PLN) may for a time seek to follow the shortest paths460

within their particular corresponding memory spaces; but then when they operate461

more interactively and synergetically, it becomes a matter of finding short paths in462

the composite mindspace corresponding to the combination of the various memory463

types.464

Finally, cognitive synergy is thoroughly and subtly interwoven throughout Cog-465

Prime. In a way the whole design is about cognitive synergy—it’s critical for the466

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.8 Occam’s Razor 539

design’s functionality that it’s important that the cognitive processes associated with467

different kinds of memory can appeal to each other for assistance in overcoming468

bottlenecks in a manner that: (a) works in “real time,” i.e. on the time scale of the469

cognitive processes internal processes; (b) enables each cognitive process to act in a470

manner that is sensitive to the particularities of each others’ internal representations.471

Recapitulating in a bit more depth, recall that another useful way to formulate472

cognitive synergy as follows. Each of the key learning mechanisms underlying Cog-473

Prime is susceptible to combinatorial explosions. As the problems they confront474

become larger and larger, the performance gets worse and worse at an exponential475

rate, because the number of combinations of items that must be considered to solve476

the problems grows exponentially with the problem size. This could be viewed as a477

deficiency of the fundamental design, but we don’t view it that way. Our view is that478

combinatorial explosion is intrinsic to intelligence. The task at hand is to dampen479

it sufficiently that realistically large problems can be solved, rather than to elimi-480

nate it entirely. One possible way to dampen it would be to design a single, really481

clever learning algorithm—one that was still susceptible to an exponential increase482

in computational requirements as problem size increases, but with a surprisingly483

small exponent. Another approach is the mirrorhouse approach: Design a bunch of484

learning algorithms, each focusing on different aspects of the learning process, and485

design them so that they each help to dampen each others’ combinatorial explosions.486

This is the approach taken within CogPrime. The component algorithms are clever487

on their own—they are less susceptible to combinatorial explosion than many com-488

peting approaches in the narrow-AI literature. But the real meat of the design lies in489

the intended interactions between the components, manifesting cognitive synergy.490

31.9 Cognitive Synergy491

To understand more specifically how cognitive synergy works in CogPrime, in the492

following subsections we will review some synergies related to the key compo-493

nents of CogPrime as discussed above. These synergies are absolutely critical to the494

proposed functionality of the CogPrime system. Without them, the cognitive mech-495

anisms are not going to work adequately well, but are rather going to succumb to496

combinatorial explosions. The other aspects of CogPrime - the cognitive architecture,497

the knowledge representation, the embodiment framework and associated develop-498

mental teaching methodology—are all critical as well, but none of these will yield499

the critical emergence of intelligence without cognitive mechanisms that effectively500

scale. And, in the absence of cognitive mechanisms that effectively scale on their501

own, we must rely on cognitive mechanisms that effectively help each other to scale.502

The reasons why we believe these synergies will exist are essentially qualitative:503

we have not proved theorems regarded these synergies, and we have observed them504

in practice only in simple cases so far. However, we do have some ideas regarding505

how to potentially prove theorems related to these synergies, and some of these are506

described in Appendix H.507

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

540 31 Summary of Argument for the CogPrime Approach

31.9.1 Synergies that Help Inference508

The combinatorial explosion in PLN is obvious: forward and backward chaining509

inference are both fundamentally explosive processes, reined in only by pruning510

heuristics. This means that for nontrivial complex inferences to occur, one needs511

really, really clever pruning heuristics. The CogPrime design combines simple512

heuristics with pattern mining, MOSES and economic attention allocation as pruning513

heuristics. Economic attention allocation assigns importance levels to Atoms, which514

helps guide pruning. Greedy pattern mining is used to search for patterns in the stored515

corpus of inference trees, to see if there are any that can be used as analogies for516

the current inference. And MOSES comes in when there is not enough information517

(from importance levels or prior inference history) to make a choice, yet exploring518

a wide variety of available options is unrealistic. In this case, MOSES tasks may be519

launched, pertinently to the leaves at the fringe of the inference tree, under consid-520

eration for expansion. For instance, suppose there is an Atom A at the fringe of the521

inference tree, and its importance hasn’t been assessed with high confidence, but a522

number of items B are known so that:523

MemberLink A B524

Then, MOSES may be used to learn various relationships characterizing A, based on525

recognizing patterns across the set of B that are suspected to be members of A. These526

relationships may then be used to assess the importance of A more confidently, or527

perhaps to enable the inference tree to match one of the patterns identified by pattern528

mining on the inference tree corpus. For example, if MOSES figures out that:529

SimilarityLink G A530

then it may happen that substituting G in place of A in the inference tree, results in531

something that pattern mining can identify as being a good (or poor) direction for532

inference.533

31.10 Synergies that Help MOSES534

MOSES’s combinatorial explosion is obvious: the number of possible programs of535

size N increases very rapidly with N. The only way to get around this is to utilize prior536

knowledge, and as much as possible of it. When solving a particular problem, the537

search for new solutions must make use of prior candidate solutions evaluated for that538

problem, and also prior candidate solutions (including successful and unsuccessful539

ones) evaluated for other related problems.540

But, extrapolation of this kind is in essence a contextual analogical inference541

problem. In some cases it can be solved via fairly straightforward pattern mining; but542

in subtler cases it will require inference of the type provided by PLN. Also, attention543

allocation plays a role in figuring out, for a given problem A, which problems B are544

likely to have the property that candidate solutions for B are useful information when545

looking for better solutions for A.546

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.10 Synergies that Help MOSES 541

31.10.1 Synergies that Help Attention Allocation547

Economic attention allocation, without help from other cognitive processes, is just a548

very simple process analogous to “activation spreading” and “Hebbian learning” in a549

neural network. The other cognitive processes are the things that allow it to more sen-550

sitively understand the attentional relationships between different knowledge items551

(e.g. which sorts of items are often usefully thought about in the same context, and552

in which order).553

31.10.2 Further Synergies Related to Pattern Mining554

Statistical, greedy pattern mining is a simple process, but it nevertheless can be biased555

in various ways by other, more subtle processes.556

For instance, if one has learned a population of programs via MOSES, addressing557

some particular fitness function, then one can study which items tend to be utilized558

in the same programs in this population. One may then direct pattern mining to559

find patterns combining these items found to be in the MOSES population. And560

conversely, relationships denoted by pattern mining may be used to probabilistically561

bias the models used within MOSES.562

Statistical pattern mining may also help PLN by supplying it with information to563

work on. For instance, conjunctive pattern mining finds conjunctions of items, which564

may then be combined with each other using PLN, leading to the formation of more565

complex predicates. These conjunctions may also be fed to MOSES as part of an566

initial population for solving a relevant problem.567

Finally, the main interaction between pattern mining and MOSES/PLN is that the568

former may recognize patterns in links created by the latter. These patterns may then569

be fed back into MOSES and PLN as data. This virtuous cycle allows pattern mining570

and the other, more expensive cognitive processes to guide each other. Attention571

allocation also gets into the game, by guiding statistical pattern mining and telling it572

which terms (and which combinations) to spend more time on.573

31.10.3 Synergies Related to Map Formation574

The essential synergy regarding map formation is obvious: Maps are formed based575

on the HebbianLinks created via PLN and simpler attentional dynamics, which are576

based on which Atoms are usefully used together, which is based on the dynamics of577

the cognitive processes doing the “using”. On the other hand, once maps are formed578

and encapsulated, they feed into these other cognitive processes. This synergy in579

particular is critical to the emergence of self and attention.580

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

542 31 Summary of Argument for the CogPrime Approach

What has to happen, for map formation to work well, is that the cognitive processes581

must utilize encapsulated maps in a way that gives rise overall to relatively clear clus-582

ters in the network of HebbianLinks. This will happen if the encapsulated maps are583

not too complex for the system’s other learning operations to understand. So, there584

must be useful coordinated attentional patterns whose corresponding encapsulated-585

map Atoms are not too complicated. This has to do with the system’s overall para-586

meter settings, but largely with the settings of the attention allocation component.587

For instance, this is closely tied in with the limited size of “attentional focus” (the588

famous 7± 2 number associated with humans’ and other mammals short term mem-589

ory capacity). If only a small number of Atoms are typically very important at a given590

point in time, then the maps formed by grouping together all simultaneously highly591

important things will be relatively small predicates, which will be easily reasoned592

about - thus keeping the “virtuous cycle” of map formation and comprehension going593

effectively.594

31.11 Emergent Structures and Dynamics595

We have spent much more time in this book on the engineering of cognitive processes596

and structures, than on the cognitive processes and structures that must emerge in an597

intelligent system for it to display human-level AGI. However, this focus should not598

be taken to represent a lack of appreciation for the importance of emergence. Rather,599

it represents a practical focus: engineering is what we must do to create a software600

system potentially capable of AGI, and emergence is then what happens inside the601

engineered AGI to allow it to achieve intelligence. Emergence must however be taken602

carefully into account when deciding what to engineer!603

One of the guiding ideas underlying the CogPrime design is that an AGI system604

with adequate mechanisms for handling the key types of knowledge mentioned above,605

and the capability to explicitly recognize large-scale pattern in itself, should upon606

sustained interaction with an appropriate environment in pursuit of appropri-607

ate goals, emerge a variety of complex structures in its internal knowledge network,608

including (but not limited to): a hierarchical network, representing both a spatiotem-609

poral hierarchy and an approximate “default inheritance” hierarchy, cross-linked;610

a heterarchical network of associativity, roughly aligned with the hierarchical net-611

work; a self network which is an approximate micro image of the whole network;612

and inter-reflecting networks modeling self and others, reflecting a “mirrorhouse”613

design pattern.614

The dependence of these posited emergences on the environment and goals of the615

AGI system should not be underestimated. For instance, PLN and pattern mining616

don’t have to lead to a hierarchical structured Atomspace, but if the AGI system617

is placed in an environment which is itself hierarchically structured, then they very618

likely will do so. And if this environment consists of hierarchically structured lan-619

guage and culture, then what one has is a system of minds with hierarchical networks,620

each reinforcing the hierarchality of each others’ networks. Similarly, integrated cog-621

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.11 Emergent Structures and Dynamics 543

nition doesn’t have to lead to mirrorhouse structures, but integrated cognition about622

situations involving other minds studying and predicting and judging each other, is623

very likely to do so. What is needed for appropriate emergent structures to arise in624

a mind, is mainly that the knowledge representation is sufficiently flexible to allow625

these structures, and the cognitive processes are sufficiently intelligent to observe626

these structures in the environment and then mirror them internally. Of course, it also627

doesn’t hurt if the internal structures and processes are at least slightly biased toward628

the origination of the particular high-level emergent structures that are characteristic629

of the system’s environment/goals; and this is indeed the case with CogPrime—630

biases toward hierarchical, heterarchical, dual and mirrorhouse networks are woven631

throughout the system design, in a thoroughgoing though not extremely systematic632

way.633

31.12 Ethical AGI634

Creating an AGI with guaranteeably ethical behavior seems an infeasible task; but635

of course, no human is guaranteeably ethical either, and in fact it seems almost636

guaranteed that in any moderately large group of humans there are going to be some637

with strong propensities for extremely unethical behaviors, according to any of the638

standard human ethical codes. One of our motivations in developing CogPrime has639

been the belief that an AGI system, if supplied with a commonsensically ethical goal640

system and an intentional component based on rigorous uncertain inference, should641

be able to reliably achieve a much higher level of commonsensically ethical behavior642

than any human being.643

Our explorations in the detailed design of CogPrime’s goal system have done644

nothing to degrade this belief. While we have not yet developed any CogPrime645

system to the point where experimenting with its ethics is meaningful, based on our646

understanding of the current design it seems to us that647

• A typical CogPrime system will display a much more consistent and less con-648

flicted and confused motivational system than any human being, due to its explicit649

orientation toward carrying out actions that (based on its knowledge) rationally650

seem most likely to lead to achievement of its goals651

• If a CogPrime system is given goals that are consistent with commonsensical652

human ethics (say, articulated in natural language), and then educated in an ethics-653

friendly environment such as a virtual or physical school, then it is reasonable to654

expect the CogPrime system will ultimately develop an advanced (human adult655

level or beyond) form of commmonsensical human ethics.656

Human ethics is itself wracked with inconsistencies, so one cannot expect a657

rationality-based AGI system to precisely mirror the ethics of any particular human658

individual or cultural system. But given the degree to which general intelligence rep-659

resents adaptation to its environment, and interpretation of natural language depends660

on life history and context, it seems very likely to us that a CogPrime system, if661

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

544 31 Summary of Argument for the CogPrime Approach

supplied with a human-commonsense-ethics based goal system and then raised by662

compassionate and intelligent humans in a school-type environment, would arrive at663

its own variant of human-commonsense-ethics. The AGI system’s ethics would then664

interact with human ethical systems in complex ways, leading to ongoing evolution665

of both systems and the development of new cultural and ethical patterns. Predicting666

the future is difficult even in the absence of radical advanced technologies, but our667

intuition is that this path has the potential to lead to beneficial outcomes for both668

human and machine intelligence.669

31.13 Toward Superhuman General Intelligence670

Human-level AGI is a difficult goal, relative to the current state of scientific under-671

standing and engineering capability, and most of this book has been focused on our672

ideas about how to achieve it. However, we also suspect the CogPrime architecture673

has the ultimate potential to push beyond the human level in many ways. As part674

of this suspicion we advance the claim that once sufficiently advanced, a CogPrime675

system should be able to radically self-improve via a variety of methods, including676

supercompilation and automated theorem-proving.677

Supercompilation allows procedures to be automatically replaced with equivalent678

but massively more time-efficient procedures. This is particularly valuable in that it679

allows AI algorithms to learn new procedures without much heed to their efficiency,680

since supercompilation can always improve the efficiency afterwards. So it is a real681

boon to automated program learning.682

Theorem-proving is difficult for current narrow-AI systems, but for an AGI system683

with a deep understanding of the context in which each theorem exists, it should be684

much easier than for human mathematicians. So we envision that ultimately an AGI685

system will be able to design itself new algorithms and data structures via proving686

theorems about which ones will best help it achieve its goals in which situations, based687

on mathematical models of itself and its environment. Once this stage is achieved,688

it seems that machine intelligence may begin to vastly outdo human intelligence,689

leading in directions we cannot now envision.690

While such projections may seem science-fictional, we note that the CogPrime691

architecture explicitly supports such steps. If human-level AGI is achieved within692

the CogPrime framework, it seems quite feasible that profoundly self-modifying693

behavior could be achieved fairly shortly thereafter. For instance, one could take a694

human-level CogPrime system and teach it computer science and mathematics, so695

that it fully understood the reasoning underlying its own design, and the whole math-696

ematics curriculum leading up the algorithms underpinning its cognitive processes.697

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

31.13 Toward Superhuman General Intelligence 545

31.13.1 Conclusion698

What we have sought to do in these pages is, mainly,699

• To Articulate a theoretical perspective on general intelligence, according to which700

the creation of a human-level AGI doesn’t require anything that extraordinary, but701

“merely” an appropriate combination of closely interoperating algorithms operat-702

ing on an appropriate multi-type memory system, utilized to enable a system in703

an appropriate body and environment to figure out how to achieve its given goals704

• To Describe a software design (CogPrime) that, according to this somewhat mun-705

dane but theoretically quite well grounded vision of general intelligence, appears706

likely (according to a combination of rigorous and heuristic arguments) to be able707

to lead to human-level AGI using feasible computational resources708

• To Describe some of the preliminary lessons we’ve learned via implementing and709

experimenting with aspects of the CogPrime design, in the OpenCog system.710

In this concluding chapter we have focused on the “combination of rigorous and711

heuristic arguments” that lead us to consider it likely that CogPrime has the potential712

to lead to human-level AGI using feasible computational resources.713

We also wish to stress that not all of our arguments and ideas need to be 100%714

correct in order for the project to succeed. The quest to create AGI is a mix of theory,715

engineering, and scientific and unscientific experimentation. If the current CogPrime716

design turns out to have significant shortcomings, yet still brings us a significant717

percentage of the way toward human-level AGI, the results obtained along the path718

will very likely give us clues about how to tweak the design to more effectively get the719

rest of the way there. And the OpenCog platform is extremely flexible and extensible,720

rather than being tied to the particular details of the CogPrime design. While we do721

have faith that the CogPrime design as described here has human-level AGI potential,722

we are also pleased to have a development strategy and implementation platform that723

will allow us to modify and improve the design in whatever suggestions are made724

by our ongoing experimentation.725

Many great achievements in history have seemed more magical before their first726

achievement than afterwards. Powered flight and spaceflight are the most obvious727

examples, but there are many others such as mobile telephony, prosthetic limbs, elec-728

tronically deliverable books, robotic factory workers, and so on. We now even have729

wireless transmission of power (one can recharge cellphones via wifi), though not730

yet as ambitiously as Tesla envisioned. We very strongly suspect that human-level731

AGI is in the same category as these various examples: an exciting and amazing732

achievement, which however is achievable via systematic and careful application of733

fairly mundane principles. We believe computationally feasible human-level intelli-734

gence is both complicated (involving many interoperating parts, each sophisticated735

in their own right) and complex (in the sense of involving many emergent dynam-736

ics and structures whose details are not easily predictable based on the parts of the737

system) ... but that neither the complication nor the complexity is an obstacle to738

engineering human-level AGI.739

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

546 31 Summary of Argument for the CogPrime Approach

Furthermore, while ethical behavior is a complex and subtle matter for humans740

or machines, we believe that the production of human-level AGIs that are not only741

intelligent but also beneficial to humans and other biological sentiences, is something742

that is probably tractable to achieve based on a combination of careful AGI design743

and proper AGI education and “parenting.” One of the motivations underlying our744

design has been to create an artificial mind that has broadly human-like intelligence,745

yet has a more rational and self-controllable motivational system than humans, thus746

ultimately having the potential for a greater-than-human degree of ethical reliability747

alongside its greater-than-human intelligence.748

In our view, what is needed to create human-level AGI is not a new scientific749

breakthrough, nor a miracle, but “merely” a sustained effort over a number of years750

by a moderate-sized team of appropriately-trained professionals, completing the751

implementation of the design in this book and then parenting and educating the752

resulting implemented system. CogPrime is by no means the only possible path to753

human-level AGI, but we believe it is considerably more fully thought-through and754

fleshed-out than any available alternatives. Actually, we would love to see CogPrime755

and a dozen alternatives simultaneously pursued – this may seem ambitious, but it756

would cost a fraction of the money currently spent on other sorts of science or engi-757

neering, let alone the money spent on warfare or decorative luxury items. We strongly758

suspect that, in hindsight, our human and digital descendants will feel amazed that759

their predecessors allocated so few financial and attentional resources to the creation760

of powerful AGI, and consequently took so long to achieve such a fundamentally761

straightforward thing.762

319613_1_En_31_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 546 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 31

Query Refs. Details Required Author’s response

AQ1 Kindly ensure the correctness of the renumbering of the external
citations from Vol. 5 of this book, and amend if necessary.

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References

AQ1
AQ2

0

[ABS+11] I.Arel, S.Berant, T. Slonim,A.Moyal,B.Li,K.Chai Sim,Acoustic spatiotemporal1

modeling using deep machine learning for robust phoneme recognition, in Afeka-2

AVIOS speech processing conference, 20113

[All83] James F. Allen, Maintaining knowledge about temporal. Intervals CACM 26,4

198–203 (1983)5

[AM01] J.S. Albus, A.M. Meystel, Engineering of Mind: An Introduction to the Science of6

Intelligent Systems (Wiley, New York, 2001)7

[Ama85] S. Amari, Differential-geometrical methods in statistics, Lecture notes in statistics8

(Springer, New York, 1985)9

[Ama98] S. Amari, Natural gradient works efficiently in learning. Neural Comput. 10, 251–10

276 (1998)11

[AN00] S.-I. Amari, N. Hiroshi, Methods of Information Geometry. AMS (Oxford Univer-12

sity Press, New York, 2000)13

[ARC09a] I. Arel, D. Rose, R. Coop, Destin: A scalable deep learning architecture with14

application to high-dimensional robust pattern recognition, inProceedings of AAAI15

Workshop on Biologically Inspired Cognitive Architectures, 200916

[ARC09b] I. Arel, D. Rose, R. Coop, A biologically-inspired deep learning architecture with17

application to high-dimensional pattern recognition, in Biologically Inspired Cog-18

nitive Architectures, 2009, AAAI Press, 200919

[ARK09] I. Arel, D. Rose, T. Karnowski, A deep learning architecture comprising homoge-20

neous cortical circuits for scalable spatiotemporal pattern inference, in NIPS 200921

Workshop on Deep Learning for Speech Recognition and Related Applications,22

200923

[Arn69] Rudolf Arnheim, Visual Thinking (University of California Press, Berkeley, 1969)24

[AS94] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in Proceed-25

ings of 20th International Conference Very Large Data, Bases, 199426

[Ash65] R.B. Ash, Information Theory (Dover Publications, New York, 1965)27

[Bau04] E.B. Baum, What is Thought? (MIT Press, Cambridge, 2004)28

[Bau06] E. Baum, A working hypothesis for general intelligence, in Advances in Artificial29

General Intelligence, 200630

[BE07] N. Boric, P.A. Estevez, Genetic programming-based clustering using an informa-31

tion theoretic fitness measure, ed. by D. Srinivasan, L.Wang, 2007 IEEE Congress32

on Evolutionary Computation, in IEEE Computational Intelligence Society, IEEE33

Press, pp. 31–38, Singapore, 25–28 Sept 200734

B. Goertzel et al., Engineering General Intelligence, Part 2, 547
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0,
© Atlantis Press and the authors 2014

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

548 References

[Bel03] A.J. Bell, The co-information lattice, Somewhere or other, in ICA 2003, Nara,35

Japan, 200336

[Ben94] B. Bennett, Spatial reasoningwith propositional logics. inPrinciples of Knowledge37

Representation and Reasoning: Proceedings of the 4th International Conference38

(KR94), Morgan Kaufmann, 1994, pp. 51–6239

[BF97] A. Blum, M. Furst, Fast planning through planning graph analysis. Artif. Intell.40

90 281–300 (1997)41

[BH10] M. Bundzel, S. Hashimoto, Object identification in dynamic images based on the42

memory-prediction theory of brain function. J. Intell. Learn. Syst. Appl. 2(4),43

212–220 (2010)44

[Bic08] D. Bickerton, Bastard Tongues (Hill and Wang, New York, 2008)45

[BKL06] A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neighbor, in Pro-46

ceedings of International Conference on Machine Learning, 200647

[BL99] A. Blum, J. Langford, Probabilistic planning in the graphplan framework, in 5th48

European Conference on Planning (ECP ’99), 199949

[Bor05] C. Borgelt, Keeping things simple: finding frequent item sets by recursive elimi-50

nation, in Workshop on Open Source Data Mining Software (OSDM’05). Chicago51

IL, 2005, pp. 66–7052

[Car06] P.F. Cara, Creativity and Artificial Intelligence: A Conceptual Blending Approach.53

Applications of Cognitive Linguistics (Mouton de Gruyter, Amsterdam, 2006)54

[Cas04] N.L. Cassimatis, Grammatical processing using the mechanisms of physical infer-55

ences, in Proceedings of the Twentieth-Sixth Annual Conference of the Cognitive56

Science, Society, 200457

[CB00] W.H. Calvin, D. Bickerton, Lingua ex Machina (MIT Press, London, 2000)58

[CFH97] E.Clementini, P.Di Felice,D.HernÃ¡ndez.Qualitative representation of positional59

information. Artif. Intell. 95, 317–356, (1997)60

[CGPH09] L. Coelho, B. Goertzel, C. Pennachin, C. Heward, Classifier ensemble based analy-61

sis of a genome-wide snp dataset concerning late-onset alzheimer disease, in Pro-62

ceedings of 8th IEEE International Conference on Cognitive Informatics, 200963

[Cha08] G. Chaitin, Algorithmic Information Theory (Cambridge University Press, Cam-64

bridge, 2008)65

[Cha09] M. Changizi, The Vision Revolution (BenBella Books, Hardcover, 2009)66

[Che97] K. Chellapilla, Evolving computer programs without subtree crossover, in IEEE67

Transactions on Evolutionary Computation, 199768

[Coh95] A.G. Cohn, A hierarchical representation of qualitative shape based on connection69

and convexity, in Proceedings of COSIT95, LNCS, Springer Verlag, 1995, pp.70

311–32671

[Cox61] R. Cox, The Algebra of Probable Inference (Johns Hopkins University Press, Bal-72

timore, 1961)73

[CS10] S.B. Cohen, N.A. Smith, Covariance in unsupervised learning of probabilistic74

grammars. J. Mach. Learn. Res. 11, 3117–3151 (2010)75

[CSZ06] O. Chapelle, B. Schakopf, A. Zien, Semi-Supervised Learning (MIT Press, Cam-76

bridge, 2006)77

[CXYM05] Yun Chi, Yi Xia, Yirong Yang, R.R. Muntz, Mining closed and maximal frequent78

subtrees from databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng.79

17, 190–202 (2005)80

[Dab99] A.G. Dabak, A Geometry for Detection Theory. PhD Thesis, Rice University,81

Houston, 199982

[Dea98] T. Deacon, The Symbolic Species (Norton, New York, 1998)83

[dF37] B. de Finetti, La prévision: ses lois logiques, ses sources subjectives, Annales de84

l’Institut Henri Poincaré, 193785

[DP09] Y. Djouadi, H. Prade, Interval-valued fuzzy formal concept analysis, in ISMIS ’09:86

Proceedings of the 18th International Symposium on Foundations of Intelligent87

Systems, (Springer, Berlin, 2009), pp. 592–60188

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 549

[dS77] F. de Saussure, Course in General Linguistics. Fontana/Collins, 1977. Orig. pub-89

lished 1916 as “Cours de linguistique générale”90

[EBJ+97] J. Elman, E. Bates, M. Johnson, A. Karmiloff-Smith, D. Parisi, K. Plunkett,91

Rethinking Innateness: A Connectionist Perspective on Development (MIT Press,92

Cambridge, 1997)93

[Ede93] G. Edelman, Neural darwinism: Selection and reentrant signaling in higher brain94

function. Neuron 10, 115–125 (1993)95

[FF92] Christian Freksa, Robert Fulton, Temporal reasoning based on semi-intervals.96

Artif. Intell. 54(1–2), 199–227 (1992)97

[FL12] J. Fishel, G. Loeb, Bayesian exploration for intelligent identification of textures.98

Frontiers in Neurorobotics 6(4) (2012). doi:10:338/fnbot.2012.0000499

[Fri98] R. Frieden, Physics from Fisher Information (Cambridge University Press, Cam-100

bridge, 1998)101

[FT02] G. Fauconnier,M. Turner, The Way We Think: Conceptual Blending and the Mind’s102

Hidden Complexities (Basic Books, New York, 2002)103

[Gar00] P. Gardenfors, Conceptual Spaces: The Geometry of Thought (MIT Press, Cam-104

bridge, 2000)105

[GBK04] S. Gustafson, E.K. Burke, G. Kendall, Sampling of unique structures and behav-106

iours in genetic programming, in European Conference on Genetic Programming,107

2004108

[GCPM06] B. Goertzel, L. Coelho, C. Pennachin, M. Mudada, Identifying Complex Biolog-109

ical Interactions based on Categorical Gene Expression Data, in Proceedings of110

Conference on Evolutionary Computing, Vancouver, CA, 2006111

[GE01] R. Goyal, M. Egenhofer, Similarity in cardinal directions, in Proceedings of the112

Seventh International Symposium on Spatial and Temporal Databases, Springer-113

Verlag, 2001, pp. 36–55114

[Gea05] B. Goertzel et al., Combinations of single nucleotide polymorphisms in neuroen-115

docrine effector and receptor genes predict chronic fatigue syndrome. Pharma-116

cogenomics 7, 467–474 (2005)117

[GEA08] B.Goertzel,C. Pennachin et al.,An integrativemethodology for teaching embodied118

non-linguistic agents, applied to virtual animals in second life, in Proceedings of119

the First Conference on AGI, IOS Press, 2008120

[Gea13] B. Goertzel et al., The cogprime architecture for embodied artificial general intel-121

ligence, in Proceedings of IEEE Symposium on Human-Level AI, Singapore, 2013122

[GGC+11] B. Goertzel, N. Geisweiller, L. Coelho, P. Janicic, C. Pennachin, Real World Rea-123

soning (Atlantis, Hardcover, 2011)124

[GH11] N. Garg, J. Henderson, Temporal restricted boltzmann machines for dependency125

parsing, in Proceedings of ACL, 2011126

[GI11] B. Goertzel, M. Iklé. Steps toward a geometry of mind, ed. by J. Schmidhuber,127

K. Thorisson, in Submision to AGI-11, Springer, 2011128

[GIGH08] B. Goertzel, M. Ikle, I. Goertzel, A. Heljakka, Probabilistic Logic Networks129

(Springer, Heidelberg, 2008)130

[GKD89] D.E. Goldberg, B. Korb, K. Deb, Messy genetic algorithms: Motivation, analysis,131

and first results. Complex Syst. 55, 493–530 (1989)132

[GL10] B. Goertzel, R. Lian, A probabilistic characterization of fuzzy semantics, in Pro-133

ceedings of ICAI-10, Beijing, 2010134

[GLdG+10] B. Goertzel, R. Lian, H. de Garis, S. Chen, I. Arel,World survey of artificial brains,135

part ii: biologically inspired cognitive architectures. Neurocomputing 74, 30–49136

(2010)137

[GMIH08] B. Goertzel, I. Goertzel, M. Iklé,A. Heljakka, Probabilistic Logic Networks138

(Springer, Heidelberg, 2008)139

[GN02] A. Gerevini, B. Nebel, Qualitative spatio-temporal reasoningwith rcc-8 and allen’s140

interval calculus: Computational complexity, ed. by F. vanHarmelen, inECAI, IOS141

Press, 2002, pp. 312–316142

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

http://dx.doi.org/10:338/fnbot.2012.00004

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

550 References

[Goe94] B. Goertzel, Chaotic Logic (Plenum, New York, 1994)143

[Goe06] B. Goertzel, The Hidden Pattern (Brown Walker, New York, 2006)144

[Goe08a] B. Goertzel, The pleasure algorithm. http://groups.google.com/group/opencog/145

files, 2008146

[Goe08b] B. Goertzel, A pragmatic path toward endowing virtually-embodied ais with147

human-level linguistic capability, in IEEE World Congress on Computational Intel-148

ligence (WCCI), 2008149

[Goe10a] B. Goertzel, Infinite-order probabilities and their application to modeling self-150

referential semantics, in Proceedings of Conference on Advanced Intelligence151

2010, Beijing, 2010152

[Goe10b] B. Goertzel et al., A general intelligence oriented architecture for embodied natural153

language processing, in Proceedings of the Third Conference on Artificial General154

Intelligence (AGI-10), Atlantis Press, 2010155

[Goe11a] B. Goertzel, Integrating a compositional spatiotemporal deep learning network156

with symbolic representation/reasoningwithin an integrative cognitive architecture157

via an intermediary semantic network, in Proceedings of AAAI Symposium on158

Cognitive Systems, 2011159

[Goe11b] B. Goertzel, Imprecise probability as a linking mechanism between deep learning,160

symbolic cognition and local feature detection in vision processing, inProceedings161

of AGI-11, 2011162

[GPPG06] B. Goertzel, H. Pinto, C. Pennachin, I.F. Goertzel, Using dependency parsing and163

probabilistic inference to extract relationships between genes, proteins and malig-164

nancies implicit among multiple biomedical research abstracts, in Proceedings of165

Bio-NLP 2006, 2006166

[GR00] Alfonso Gerevini, Jochen Renz, Combining topological and size information for167

spatial reasoning. Artif. Intell. 137, 2002 (2000)168

[GSW05] B.Ganter, G. Stumme, R.Wille,Formal Concept Analysis. Foundations and Appli-169

cations (Springer, Heidelberg, 2005)170

[HB06] J. Hawkins, S. Blakeslee, On Intelligence (Brown Walker, Boca Raton, 2006)171

[HDY+12] G. Hinton, L. Deng, G. Dahl, A.R. Mohamed, N. Jaitly, Andrew Sr., V. Van-172

houcke, P. Nguyen, T.S.B. Kingsbury, Deep neural networks for acoustic modeling173

in speech recognition, in IEEE Signal Processing Magazine, 2012174

[HH07] B. Hammer, P. Hitzler, eds., Perspectives of Neural-Symbolic Integration. Studies175

in Computational Intelligence vol. 77 (Springer, Heidelberg, 2007)176

[Hil89] D. Hillis, The Connection Machine (MIT Press, Cambridge, 1989)177

[HK02] D. Harel, Y. Koren, Graph Drawing by High-Dimensional Embedding (Springer,178

Berlin, 2002)179

[Hob78] J. Hobbs, Resolving pronoun references. Lingua 44, 311–338 (1978)180

[Hof79] D. Hofstadter,Godel, Escher, Bach: An Eternal Golden Braid (Basic Books, New181

York, 1979)182

[Hol75] J.H.Holland,Adaptation in Natural and Artificial Systems (University ofMichigan183

Press, Michigan, 1975)184

[Hud84] Richard Hudson, Word Grammar (Blackwell, Oxford, 1984)185

[Hud90] R. Hudson, English Word Grammar (Blackwell Press, Oxford, 1990)186

[Hud07a] Richard Hudson, Language Networks. The New Word Grammar (Oxford Univer-187

sity Press, Oxford, 2007)188

[Hud07b] R. Hudson, Language Networks: The New Word Grammar (Linguistics, Oxford,189

2007)190

[Hut99] G. Hutton, A tutorial on the universality and expressiveness of fold. J. Funct.191

Program. 9, 355–372 (1999)192

[Hut05a] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on Algo-193

rithmic Probability (Springer, Berlin, 2005a)194

[Hut05b] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on Algo-195

rithmic Probability (Springer, Berlin, 2005b)196

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

http://groups.google.com/group/opencog/files

http://groups.google.com/group/opencog/files

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 551

[HWP03] J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraph in the presence197

of isomorphism, inProceedings of the 3rd IEEE International Conference on Data198

Mining (ICDM), 2003, pp. 549–552199

[Jac03] R. Jackendoff, Foundations of Language: Brain, Meaning, Grammar, Evolution200

(Oxford University Press, Oxford, 2003)201

[JL08] D.J. Jilk, C. Lebiere, R.C. o’reilly, J.R. Anderson, SAL: an explicitly pluralistic202

cognitive architecture. J. Exp. Theor. Artif. Intell. 20, 197–218 (2008)203

[Joh05] M. Johnson, LATEX: A Developmental Cognitive Neuroscience (Wiley-Blackwell,204

Oxford, 2005)205

[Jol10] I.T. Joliffe, Principal Component Analysis (Springer, New York, 2010)206

[KA95] J.R. Koza, D. Andre, Parallel genetic programming on a network of transputers.207

Technical report, Stanford University, 1995208

[KAR10] T. Karnowski, I. Arel, D. Rose, Deep spatiotemporal feature learning with appli-209

cation to image classification, in The 9th International Conference on Machine210

Learning and Applications (ICMLA’10), 2010211

[KK01] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in Proceedings of the212

2001 IEEE International Conference on Data Mining, 2001, pp. 313–320213

[KM04] D. Klein, C.D. Manning, Corpus-based induction of syntactic structure: models of214

dependency and constituency, in ACL ’04 Proceedings of the 42nd Annual Meet-215

ing on Association for Computational Linguistics. Association for, Computational216

Linguistics, 2004, pp. 479–486217

[Koh01] T. Kohonen, Self-Organizing Maps (Springer, Berlin, 2001)218

[Koz92] J.R. Koza, Genetic Programming: On the Programming of Computers by Means219

of Natural Selection (MIT Press, Cambridge, 1992)220

[Koz94] J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs221

(MIT Press, Cambridge, 1994)222

[KSPC13] D. Kartsaklis, M. Sadrzadeh, S. Pulman, B. Coecke, Reasoning about meaning in223

natural language with compact closed categories and frobenius algebras, 2013224

[Kur09] Y. Kurata, 9-intersection calculi for spatial reasoning on the topological relations225

between multi-domain objects, in IJCAI Workshop on Spatial and Temporal Rea-226

soning, USA, Jun 2009227

[Kur12] R. Kurzweil, How to Create a Mind (Viking, New York, 2012)228

[LA93] C. Lebiere, J.R. Anderson, A connectionist implementation of the act-r production229

system, inProceedings of the Fifteenth Annual Conference of the Cognitive Science230

Society, 1993231

[Lai12] J.E. Laird, The Soar Cognitive Architecture (MIT Press, Cambridge, 2012)232

[LBH10] J. Lehmann, S. Bader, P. Hitzler, Extracting reduced logic programs from artificial233

neural networks. Appl. Intell. 32, 249–266 (2010)234

[LDA05] R. Lopez, C. Delgado, M. Araki, Spoken, Development and Assessment. Multilin-235

gual and Multimodal Dialogue Systems (Wiley, Hardcover, 2005)236

[Lem10] B. Lemoine, Nlgen2: a linguistically plausible, general purpose natural language237

generation system. http://www.louisiana.edu/??bal2277/NLGen2, 2010238

[Lev94] L. Levin, Randomness and nondeterminism, in The International Congress of239

Mathematicians, 1994240

[LGE10] R. Lian, B. Goertzel et al., Language generation via glocal similarity matching.241

Neurocomputing 72, 767–788 (2010)242

[LGK+12] R. Lian, B. Goertzel, S. Ke, J. OÕNeill, K. Sadeghi, S. Shiu, D.Wang, O.Watkins,243

G. Yu, Syntax-semantic mapping for general intelligence: Language comprehen-244

sion as hypergraph homomorphism, language generation as constraint satisfaction,245

in Artificial General Intelligence: Lecture Notes in Computer Science vol. 7716,246

Springer, 2012247

[LKP+05] S.H. Lee, J. Kim, F.C. Park, M. Kim, J.E. Bobrow, Newton-type algorithms for248

dynamics-based robot movement optimization. IEEE Trans. Rob. 21(4), 657–667249

(2005)250

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

http://www.louisiana.edu/??bal2277/NLGen2

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

552 References

[LLR09] W. Liu, S. Li, J. Renz, Combining rcc-8 with qualitative direction calculi: algo-251

rithms and complexity, in IJCAI, 2009252

[LMDK07] T.K. Landauer, D.S. McNamara, S. Dennis, W. Kintsch, Handbook of Latent253

Semantic Analysis (Psychology Press, London, 2007)254

[LN00] G. Lakoff, R. Nunez, Where Mathematics Comes From (Basic Books, New York,255

2000)256

[Loo06] M. Looks, Competent Program Evolution. PhD Thesis, Computer Science Depart-257

ment, Washington University, 2006258

[Loo07a] M. Looks, On the behavioral diversity of random programs, in Genetic and Evo-259

lutionary Computation Conference, 2007260

[Loo07b] M. Looks, Scalable estimation-of-distribution program evolution, in Genetic and261

Evolutionary Computation Conference, 2007262

[Loo07c] M. Looks, Meta-optimizing semantic evolutionary search, ed. by H. Lipson, in263

Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2007,264

London, England, UK, ACM, 2007, 2007, p. 626265

[Low99] D. Lowe, Object recognition from local scale-invariant features, in Proceedings of266

the International Conference on Computer Vision, 1999, pp. 1150–1157267

[LP01] D. Lin, P. Pantel, Dirt: Discovery of inference rules from text, in Proceedings of268

the Seventh ACM SIGKDD International Conference on Knowledge Discovery269

and Data Mining (KDD’01), ACM Press, 2001, pp. 323–328270

[LP02] W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin,271

2002)272

[Mai00] M.Maidl, The common fragment of ctl and ltl, in IEEE Symposium on Foundations273

of Computer Science, 2000, pp. 643–652274

[May04] M.T. Maybury, New Directions in Question Answering (MIT Press, Cambridge,275

2004)276

[Mea07] E.M. Reiman et al., Gab2 alleles modify alzheimer’s risk in apoe e4 carriers.277

Neuron 54(5), 713–720 (2007)278

[Mih05] R. Mihalcea, Unsupervised large-vocabulary word sense disambiguation with279

graph-based algorithms for sequence data labeling, inHLT ’05: Proceedings of the280

conference on Human Language Technology and Empirical Methods in Natural281

Language Processing. Association for Computational Linguistics, Morristown,282

NJ, USA, 2005, pp. 411–418283

[Mih07] R. Mihalcea, Word Sense Disambiguation. Encyclopedia of Machine Learning284

(Springer, New York, 2007)285

[Min88] M. Minsky, The Society of Mind (MIT Press, Cambridge, 1988)286

[Mit96] S. Mithen, The Prehistory of Mind (Thames and Hudson, London, 1996)287

[MS99] C.Manning, H. Scheutze,Foundations of Statistical Natural Language Processing288

(MIT Press, Cambridge, 1999)289

[MTF04] R. Mihalcea, P. Tarau, E. Figa, Pagerank on semantic networks, with application290

to word sense disambiguation, in COLING ’04: Proceedings of the 20th Interna-291

tional Conference on Computational Linguistics. Association for Computational292

Linguistics, Morristown, NJ, USA, 2004293

[OCC90] A. Ortony, G. Clore, A. Collins, The Cognitive Structure of Emotions (Cambridge294

University Press, Cambridge, 1990)295

[Ols95] J.R. Olsson, Inductive functional programming using incremental program trans-296

formation. Artif. Intell. 74, 55–83 (1995)297

[PAF00] H. Park, S. Amari, K. Fukumizu, Adaptive natural gradient learning algorithms298

for various stochastic models. Neural Comput. 13, 755–764 (2000)299

[Pal04] G.K. Palshikar, Fuzzy region connection calculus in finite discrete space domains.300

Appl. Soft Comput. 4(1), 13–23 (2004)301

[PCP00] C. Papageorgiou, T. Poggio,A trainable system for object detection, Int. J. Comput.302

Vision 38(1), 15–33 (2000)303

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

References 553

[PD09] H. Poon, P. Domingos, Unsupervised semantic parsing, in Proceedings of the 2009304

Conference on Empirical Methods in Natural Language Processing.Association305

for Computational Linguistics, Singapore Aug 2009, pp. 1–10306

[Pei34] C. Peirce, Collected papers: Pragmatism and Pragmaticism, vol. V (Harvard Uni-307

versity Press, Cambridge, 1934)308

[Pel05] M. Pelikan, Hierarchical Bayesian Optimization Algorithm: Toward a New Gen-309

eration of Evolutionary Algorithms (Springer, Heidelberg, 2005)310

[PJ88a] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible311

Inference (Morgan Kaufman, San Mateo, 1988)312

[PJ88b] S. Pinker, J. Mehler, Connections and Symbols (MIT Press, Cambridge, 1988)313

[Pro13] The Univalent Foundations Program, Homotopy Type Theory: Univalent Founda-314

tions of Mathematics. Institute for Advanced Study, 2013315

[RCC93] D.A. Randell, Z. Cui,A Spatial Logic Based on Regions and Connection (Springer,316

Berlin, 1993)317

[Ros99] J. Rosca, Genetic programming acquires solutions by combining top-down and318

bottom-up refinement, in Foundations of Generic Programming, 1999319

[Row90] J.Rowan,Subpersonalities: The People Inside Us (RoutledgePress, London, 1990)320

[RVG05] M. Ross, L. Vepstas, B. Goertzel, Relex semantic relationship extractor. http://321

opencog.org/wiki/RelEx, 2005322

[Sch06] J. Schmidhuber. Godel machines: Fully Self-referential Optimal Universal Self-323

improvers, ed. by B. Goertzel, C. Pennachin, in Artificial General Intelligence,324

2006, pp. 119–226325

[SDCCK08a] Steven Schockaert, Martine De Cock, Chris Cornelis, Etienne E. Kerre, Fuzzy326

region connection calculus: an interpretation based on closeness. Int. J. Approxi-327

mate Reasoning 48(1), 332–347 (2008)328

[SDCCK08b] Steven Schockaert, Martine De Cock, Chris Cornelis, Etienne E. Kerre, Fuzzy329

region connection calculus: representing vague topological information. Int. J.330

Approximate Reasoning 48(1), 314–331 (2008)331

[SM07] R.Sinha,R.Mihalcea,Unsupervisedgraph-basedword sense disambiguationusing332

measures of word semantic similarity, in ICSC ’07: Proceedings of the Interna-333

tional Conference on Semantic Computing. IEEE Computer Society, Washington,334

DC, USA, 2007, pp. 363–369335

[SM09] R. Sinha, R. Mihalcea, Unsupervised graph-based word sense disambiguation,336

ed. by N. Nicolov, J.B.R. Mitkov, in Current Issues in Linguistic Theory: Recent337

Advances in Natural Language Processing, 2009338

[SMI97] F.-R. Sinot, M. Fernandez, I. Mackie, Efficient reductions with director strings.339

Evolutionary Computation, 1997340

[SMK12] J. Stober, R. Miikkulainen, B. Kuipers, Learning geometry from sensorimotor341

experience, in Proceedings of the First Joint Conference on Development and342

Learning and Epigenetic Robotics, 2012343

[Sol64a] R. Solomonoff, A formal theory of inductive inference, part I. Inf. Control 7, 1–22344

(1964)345

[Sol64b] R. Solomonoff, A formal theory of inductive inference, part II. Inf. Control 7,346

224–254 (1964)347

[Spe96] L. Spector, Simultaneous Evolution of Programs and their Control Structures.348

Advances in Genetic Programming 2 (MIT Press, Cambridge, 1996)349

[SR04] M. Shanahan, D.A. Randell, A logic-based formulation of active visual perception,350

in Knowledge Representation, 2004351

[SS03] R.P. Salustowicz, J. Schmidhuber, Probabilistic incremental program evolution, in352

Lecture Notes in Computer Science vol. 2706, 2003353

[ST91] D. Sleator, D. Temperley, Parsing english with a link grammar. Technical report,354

Carnegie Mellon University Computer Science technical report CMU-CS-91-196,355

1991356

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

http://opencog.org/wiki/RelEx

http://opencog.org/wiki/RelEx

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

554 References

[ST93] D. Sleator, D. Temperley, Parsing english with a link grammar, inThird Interna-357

tional Workshop on Parsing Technologies, 1993358

[SV99] A.J. Storkey, R. Valabregue, The basins of attraction of a new hopfield learning359

rule. Neural Netw. 12, 869–876 (1999)360

[SW05] R. Shadmehr, S.P. Wise, The Computational Neurobiology of Reaching and Point-361

ing: A Foundation for Motor Learning (MIT Press, Cambridge, 2005)362

[SWM90] T. Starkweather, D. Whitley, K. Mathias, Optimization using disributed genetic363

algorithms, ed by H. Schwefel, R. Mannerin, in Parallel Problem Solving from364

Nature, 1990365

[SZ04] R. Sun, X. Zhang, Top-down versus bottom-up learning in cognitive skill acquisi-366

tion. Cognitive Syst. Res. 5, 63–89 (2004)367

[Tes59] L. Tesnière, Éléments de syntaxe structurale (Klincksieck, Paris, 1959)368

[Tom03] M. Tomasello, Constructing a Language: A Usage-Based Theory of, Language369

Acquisition (Harvard University Press, Cambridge, 2003)370

[TSH11] M. Tarifi, M. Sitharam, J. Ho, Learning hierarchical sparse representations using371

iterative dictionary learning and dimension reduction, in Proceedings of BICA372

2011, 2011373

[TVCC05] M. Tomassini, L. Vanneschi, P. Collard, M. Clergue, A study of fitness distance374

correlation as a difficulty measure in genetic programming. Evol. Comput. 13,375

212–239 (2005)376

[VK94] T. Veale, M. T. Keane, Metaphor and Memory and Meaning in Sapper: A Hybrid377

Model of Metaphor Interpretation, in Proceedings of the workshop on Hybrid378

Connectionist Systems of ECAI94, at the 11th European Conference on Artificial379

Intelligence, 1994380

[VO07] T.Veale,D.O’Donoghue,Computation and blending.Cogn. Linguist. 11, 253–281381

(2007)382

[Wah06] W. Wahlster, SmartKom: Foundations of Multimodal Dialogue Systems (Springer,383

New York, 2006)384

[Wan06] P. Wang, Rigid Flexibility: The Logic of Intelligence (Springer, New York, 2006)385

[WF05] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Tech-386

niques (Morgan Kaufmann, San Francisco, 2005)387

[Win95] S. Winter, Topological relations between discrete regions, in Advances in Spatial388

Databasesâ 4th International Symposium, SSD -5, Springer, 1995, pp. 310–327389

[Win00] Stephan Winter, Uncertain topological relations between imprecise regions. J.390

Geogr. Inf. Sci. 14(5), 411–430 (2000)391

[WKB05] N. Van De Weghe, B. Kuijpers, P. Bogaert, A qualitative trajectory calculus and392

the composition of its relations, inProceedings of GeoS, Springer, 2005, pp. 60–76393

[Yan10] K.-Y. Yan, A fuzzy-probabilistic calculus for vagueness, in Unpublished manu-394

script, 2010 (Submissions)395

[YKL+04] Sanghoon Yeo, Jinwook Kim, S.H. Lee, F.C. Park, W. Park, J. Kim, C. Park, I.396

Yeo, A modular object-oriented framework for hierarchical multi-resolution robot397

simulation. Robotica 22(2), 141–154 (2004)398

[Yur98] D. Yuret, Discovery of Linguistic Relations Using Lexical Attraction. PhD thesis,399

MIT, 1998400

[ZH10] R. Zou, L.B. Holder, Frequent subgraph mining on a single large graph using401

sampling techniques, in International Conference on Knowledge Discovery and402

Data Mining archive. Proceedings of the Eighth Workshop on Mining and Learning403

with Graphs. Washington DC, 2010, pp. 171–178404

[ZLLY08] X. Zhang, W. Liu, S. Li, M. Ying, Reasoning with cardinal directions: an efficient405

algorithm, in AAAI’08: Proceedings of the 23rd National Conference on Artificial406

Intelligence, AAAI Press, 2008, pp. 387–392407

[ZM06] S.-C. Zhu, D. Mumford, A stochastic grammar of images. Found. Trends Comput.408

Graph. Vis. 2, 259–362 (2006)409

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

0

Index1

A2

Attraction, 2833

C4

Central bank, 1075

CIM-Dynamics, 156

H7

HebbianLink, 1068

HPAN, 1569

I10

Indefinite probabilities, 27611

InferencePatternMiner, 32612

InferencePatternRepository, 32513

InferenceTreeNodes, 32514

Interaction channel, 16115

M16

MOSES, 240, 24317

P18

PEPL, 24019

PetBrain, 22120

R21

RFS, 12822

S23

SatisfyingSet, 28224

SpaceServer, 14725

T26

TimeServer, 14727

B. Goertzel et al., Engineering General Intelligence, Part 2, 555
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0,
© Atlantis Press and the authors 2014

319613_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 556 Layout: T1-Standard

A
ut

ho
r

Pr
oo

f

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter

Query Refs. Details Required Author’s response

AQ1 Please provide comlpete details for Refs. [KSPC13, SM197,
Yan10].

AQ2 Kindly note that only few index terms are provided for Chapters
1, 5, 6, 8, 13, 16, and 18, which are listed under "Index". Please
provide complete set of index for all the chapters.

MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character

new characters

through all characters to be deleted

through letter or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character or

where required

between characters or

words affected

through character or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly

__MACOSX/._EGI_vol2..pdf

