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This series publishes books resulting from theoretical research on and reproduc-
tions of general Artificial Intelligence (AI). The book series focuses on the
establishment of new theories and paradigms in AI. At the same time, the series
aims at exploring multiple scientific angles and methodologies, including results
from research in cognitive science, neuroscience, theoretical and experimental AI,
biology and from innovative interdisciplinary methodologies.


For more information on this series and our other book series, please visit our
website at:
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46 Preface


47 This is a large, two-part book with an even larger goal: To outline a practical
48 approach to engineering software systems with general intelligence at the human
49 level and ultimately beyond. Machines with flexible problem-solving ability, open-
50 ended learning capability, creativity, and eventually their own kind of genius.
51 Volume 5, reviews various critical conceptual issues related to the nature of
52 intelligence and mind. It then sketches the broad outlines of a novel, integrative
53 architecture for Artificial General Intelligence (AGI) called CogPrime… and
54 describes an approach for giving a young AGI system (CogPrime or otherwise)
55 appropriate experience, so that it can develop its own smarts, creativity, and
56 wisdom through its own experience. Along the way a formal theory of general
57 intelligence is sketched, and a broad roadmap leading from here to human-level
58 artificial intelligence. Hints are also given regarding how to eventually, potentially
59 create machines advancing beyond human level—including some frankly futur-
60 istic speculations about strongly self-modifying AGI architectures with flexibility
61 far exceeding that of the human brain.
62 Volume 6 then digs far deeper into the details of CogPrime’s multiple struc-
63 tures, processes, and functions, culminating in a general argument as to why we
64 believe CogPrime will be able to achieve general intelligence at the level of the
65 smartest humans (and potentially greater), and a detailed discussion of how a
66 CogPrime-powered virtual agent or robot would handle some simple practical
67 tasks such as social play with blocks in a preschool context. It first describes the
68 CogPrime software architecture and knowledge representation in detail; then
69 reviews the cognitive cycle via which CogPrime perceives and acts in the world
70 and reflects on itself; and next turns to various forms of learning: procedural,
71 declarative (e.g., inference), simulative, and integrative. Methods of enabling
72 natural language functionality in CogPrime are then discussed; and then the vol-
73 ume concludes with a chapter summarizing the argument that CogPrime can lead
74 to human-level (and eventually perhaps greater) AGI, and a chapter giving a
75 thought experiment describing the internal dynamics via which a completed
76 CogPrime system might solve the problem of obeying the request ‘‘Build me
77 something with blocks that I haven’t seen before.’’
78 The chapters here are written to be read in linear order—and if consumed thus,
79 they tell a coherent story about how to get from here to advanced AGI. However,
80 we suggest the impatient reader may wish to take a quick look at the final chapter
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81 of Vol. 6, after reading Chaps. 1–3 of Vol. 5. This final chapter gives a broad
82 overview of why we think the CogPrime design will work, in a way that depends
83 on the technical details of the previous chapters, but (we believe) not so sensitively
84 as to be incomprehensible without them.
85 This is admittedly an unusual sort of book, mixing demonstrated conclusions
86 with unproved conjectures in a complex way, all oriented toward an extraordi-
87 narily ambitious goal. Further, the chapters are somewhat variant in their levels of
88 detail—some very nitty-gritty, some more high level, with much of the variation
89 due to how much concrete work has been done on the topic of the chapter at time
90 of writing. However, it is important to understand that the ideas presented here are
91 not mere armchair speculation—they are currently being used as the basis for an
92 open-source software project called OpenCog, which is being worked on by
93 software developers around the world. Right now OpenCog embodies only a
94 percentage of the overall CogPrime design as described here. But if OpenCog
95 continues to attract sufficient funding or volunteer interest, then the ideas presented
96 in these volumes will be validated or refuted via practice (As a related note: here
97 and there in this book, we will refer to the ‘‘current’’ CogPrime implementation (in
98 the OpenCog framework); in all cases this refers to OpenCog as of late 2013).
99 To state one believes one knows a workable path to creating a human-level (and


100 potentially greater) general intelligence is to make a dramatic statement, given the
101 conventional way of thinking about the topic in the contemporary scientific
102 community. However, we feel that once a little more time has passed, the topic
103 will lose its drama (if not its interest and importance), and it will be widely
104 accepted that there are many ways to create intelligent machines—some simpler
105 and some more complicated; some more brain-like or human-like and some less
106 so; some more efficient and some more wasteful of resources; etc. We have little
107 doubt that, from the perspective of AGI science 50 or 100 years hence (and
108 probably even 10–20 years hence), the specific designs presented here will seem
109 awkward, messy, inefficient, and circuitous in various respects. But that is how
110 science and engineering progress. Given the current state of knowledge and
111 understanding, having any concrete, comprehensive design, and plan for creating
112 AGI is a significant step forward; and it is in this spirit that we present here our
113 thinking about the CogPrime architecture and the nature of general intelligence.
114 In the words of Sir Edmund Hillary, the first to scale Everest: ‘‘Nothing Ven-
115 ture, Nothing Win.’’


116 Prehistory of the Book


117 The writing of this book began in earnest in 2001, at which point it was informally
118 referred to as ‘‘The Novamente Book.’’ The original ‘‘Novamente Book’’ manu-
119 script ultimately got too big for its own britches, and subdivided into a number of
120 different works—The Hidden Pattern (Goertzel 2006), a philosophy of mind book
121 published in 2006; Probabilistic Logic Networks (Goertzel et al. 2008), a more
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122 technical work published in 2008; Real World Reasoning (Goertzel et al. 2011), a
123 sequel to Probabilistic Logic Networks published in 2011; and the two parts of this
124 book.
125 The ideas described in this book have been the collaborative creation of mul-
126 tiple overlapping communities of people over a long period of time. The vast bulk
127 of the writing here was done by Ben Goertzel; but Cassio Pennachin and Nil
128 Geisweiller made sufficient writing, thinking, and editing contributions over the
129 years to more than merit their inclusion of coauthors. Further, many of the chapters
130 here have coauthors beyond the three main coauthors of the book; and the set of
131 chapter coauthors does not exhaust the set of significant contributors to the ideas
132 presented.
133 The core concepts of the CogPrime design and the underlying theory were
134 conceived by Ben Goertzel in the period 1995–1996 when he was a Research
135 Fellow at the University of Western Australia; but those early ideas have been
136 elaborated and improved by many more people than can be listed here (as well as
137 by Ben’s ongoing thinking and research). The collaborative design process ulti-
138 mately resulting in CogPrime started in 1997 when Intelligenesis Corp. was
139 formed—the Webmind AI Engine created in Intelligenesis’s research group during
140 1997–2001 was the predecessor to the Novamente Cognition Engine created at
141 Novamente LLC during 2001–2008, which was the predecessor to CogPrime.


142 References
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Chapter 1
A Brief Overview of CogPrime


1.1 Introduction0


Just as there are many different approaches to human flight—airplanes, helicopters,1


balloons, spacecraft, and doubtless many methods no person has thought of yet—2


similarly, there are likely many different approaches to advanced artificial general3


intelligence. All the different approaches to flight exploit the same core principles4


of aerodynamics in different ways; and similarly, the various different approaches to5


AGI will exploit the same core principles of general intelligence in different ways.6


In the chapters leading up to this one, we have taken a fairly broad view of the7


project of engineering AGI. We have presented a conception and formal model of8


intelligence, and described environments, teaching methodologies and cognitive and9


developmental pathways that we believe are collectively appropriate for the creation10


of AGI at the human level and ultimately beyond, and with a roughly human-like11


bias to its intelligence. These ideas stand alone and may be compatible with a variety12


of approaches to engineering AGI systems. However, they also set the stage for13


the presentation of CogPrime, the particular AGI design on which we are currently14


working.15


The thorough presentation of the CogPrime design is the job of Vol. 6 of this16


book—where, not only are the algorithms and structures involved in CogPrime17


reviewed in more detailed, but their relationship to the theoretical ideas underly-18


ing CogPrime is pursued more deeply. The job of this chapter is a smaller one: to19


give a high-level overview of some key aspects the CogPrime architecture at a mostly20


nontechnical level, so as to enable you to approach Vol. 6 with a little more idea of21


what to expect. The remainder of Vol. 5, following this chapter, will present various22


theoretical notions enabling the particulars, intent and consequences of the CogPrime23


design to be more thoroughly understood.24


B. Goertzel et al., Engineering General Intelligence, Part 1, 3
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_1,
© Atlantis Press and the authors 2014
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4 1 A Brief Overview of CogPrime


1.2 High-Level Architecture of CogPrime25


Figures 1.1, 1.2, 1.4 and 1.5 depict the high-level architecture of CogPrime, which26


involves the use of multiple cognitive processes associated with multiple types of27


memory to enable an intelligent agent to execute the procedures that it believes have28


the best probability of working toward its goals in its current context. In a robot29


preschool context, for example, the top-level goals will be simple things such as30


pleasing the teacher, learning new information and skills, and protecting the robot’s31


body. Figure 1.3 shows part of the architecture via which cognitive processes interact32


with each other, via commonly acting on the AtomSpace knowledge repository.33


Comparing these diagrams to the integrative human cognitive architecture dia-34


grams given in Chap. 6, one sees the main difference is that the CogPrime dia-35


grams commit to specific structures (e.g. knowledge representations) and processes,36


whereas the generic integrative architecture diagram refers merely to types of struc-37


tures and processes. For instance, the integrative diagram refers generally to declar-38


ative knowledge and learning, whereas the CogPrime diagram refers to PLN, as a39


specific system for reasoning and learning about declarative knowledge. Table 1.140


articulates the key connections between the components of the CogPrime diagram41


and those of the integrative diagram, thus indicating the general cognitive functions42


instantiated by each of the CogPrime components.43


1.3 Current and Prior Applications of OpenCog44


Before digging deeper into the theory, and elaborating some of the dynamics under-45


lying the above diagrams, we pause to briefly discuss some of the practicalities of46


work done with the OpenCog system currently implementing parts of the CogPrime47


architecture.48


OpenCog, the open-source software framework underlying the “OpenCogPrime”49


(currently partial) implementation of the CogPrime architecture, has been used for50


commercial applications in the area of natural language processing and data min-51


ing; for instance, see [GPPG06] where OpenCogPrime’s PLN reasoning and RelEx52


language processing are combined to do automated biological hypothesis generation53


based on information gathered from PubMed abstracts. Most relevantly to the present54


work, it has also been used to control virtual agents in virtual worlds [GEA08].55


Prototype work done during 2007–2008 involved using an OpenCog variant56


called the OpenPetBrain to control virtual dogs in a virtual world (see Fig. 1.6 for a57


screenshot of an OpenPetBrain-controlled virtual dog). While these OpenCog virtual58


dogs did not display intelligence closely comparable to that of real dogs (or human59


children), they did demonstrate a variety of interesting and relevant functionalities60


including:61
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1.3 Current and Prior Applications of OpenCog 5


Fig. 1.1 High-level architecture of CogPrime. This is a conceptual depiction, not a detailed flow-
chart (which would be too complex for a single image). Figures 1.2, 1.4 and 1.5 highlight specific
aspects of this diagram


• learning new behaviors based on imitation and reinforcement62


• responding to natural language commands and questions, with appropriate actions63


and natural language replies64


• spontaneous exploration of their world, remembering their experiences and using65


them to bias future learning and linguistic interaction.66
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6 1 A Brief Overview of CogPrime


Fig. 1.2 Key explicitly implemented processes of CogPrime. The large box at the center is the
Atomspace, the system’s central store of various forms of (long-term and working) memory, which
contains a weighted labeled hypergraph whose nodes and links are “Atoms” of various sorts. The
hexagonal boxes at the bottom denote various hierarchies devoted to recognition and generation
of patterns: perception, action and linguistic. Intervening between these recognition/generation
hierarchies and the Atomspace, we have a pattern mining/imprinting component (that recognizes
patterns in the hierarchies and passes them to the Atomspace; and imprints patterns from the
Atomspace on the hierarchies); and also OpenPsi, a special dynamical framework for choosing
actions based on motivations. Above the Atomspace we have a host of cognitive processes, which
act on the Atomspace, some continually and some only as context dictates, carrying out various
sorts of learning and reasoning (pertinent to various sorts of memory) that help the system fulfill
its goals and motivations
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1.3 Current and Prior Applications of OpenCog 7


Fig. 1.3 MindAgents and AtomSpace in OpenCog. This is a conceptual depiction of one way
cognitive processes may interact in OpenCog—they may be wrapped in MindAgent objects, which
interact via cooperatively acting on the AtomSpace


One current OpenCog initiative involves extending the virtual dog work via using67


OpenCog to control virtual agents in a game world inspired by the game Minecraft.68


These agents are initially specifically concerned with achieving goals in a game69


world via constructing structures with blocks and carrying out simple English com-70


munications. Representative example tasks would be:71


• Learning to build steps or ladders to get desired objects that are high up72


• Learning to build a shelter to protect itself from aggressors73


• Learning to build structures resembling structures that it’s shown (even if the74


available materials are a bit different)75


• Learning how to build bridges to cross chasms.76


Of course, the AI significance of learning tasks like this all depends on what kind77


of feedback the system is given, and how complex its environment is. It would be78


relatively simple to make an AI system do things like this in a trivial and highly79


specialized way, but that is not the intent of the project the goal is to have the system80


learn to carry out tasks like this using general learning mechanisms and a general81


cognitive architecture, based on embodied experience and only scant feedback from82


human teachers. If successful, this will provide an outstanding platform for ongoing83


AGI development, as well as a visually appealing and immediately meaningful demo84


for OpenCog.85


Specific, particularly simple tasks that are the focus of this project team’s current86


work at time of writing include:87
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8 1 A Brief Overview of CogPrime


Fig. 1.4 Links between cognitive processes and the Atomspace. The cognitive processes depicted
all act on the Atomspace, in the sense that they operate by observing certain Atoms in the Atomspace
and then modifying (or in rare cases deleting) them, and potentially adding new Atoms as well.
Atoms represent all forms of knowledge, but some forms of knowledge are additionally represented
by external data stores connected to the Atomspace, such as the Procedure Repository; these are
also shown as linked to the Atomspace


• Watch another character build steps to reach a high-up object88


• Figure out via imitation of this that, in a different context, building steps to reach89


a high up object may be a good idea90
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1.3 Current and Prior Applications of OpenCog 9


Fig. 1.5 Invocation of Atom operations by cognitive processes. This diagram depicts some of the
Atom modification, creation and deletion operations carried out by the abstract cognitive processes
in the CogPrime architecture


• Also figure out that, if it wants a certain high-up object but there are no materials91


for building steps available, finding some other way to get elevated will be a good92


idea that may help it get the object.93
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10 1 A Brief Overview of CogPrime


Table 1.1 Connections between the CogPrime architecture diagram and the integrative architecture
diagram


CogPrime component Int. diag. sub-diagram Int. diag. component


Procedure repository Long-term memory Procedural
Procedure repository Working memory Active procedural
Associative episodic memory Long-term memory Episodic
Associative episodic memory Working memory Transient episodic
Backup store Long-term memory No correlate: a function not


necessarily possessed by
the human mind


Spacetime server Long-term memory Declarative and
sensorimotor


Dimensional embedding space No clear correlate: a tool for
helping multiple types of LTM


Dimensional embedding agent No clear correlate
Blending Long-term and working memory Concept formation
Clustering Long-term and working memory Concept formation
PLN probabilistic inference Long-term and working memory Reasoning and plan


learning/optimization
MOSES/Hillclimbing Long-term and working memory Procedure learning
World simulation Long-term and working memory Simulation
Episodic encoding/recall Long-term g memory Story-telling
Episodic encoding/recall Working memory Consolidation
Forgetting/freezing/defrosting Long-term and working memory No correlate: a function not


necessarily possessed by
the human mind


Map formation Long-term memory Concept formation and
pattern mining


Attention allocation Long-term and working memory Hebbian/attentional
learning


Attention allocation High-level mind architecture Reinforcement
Attention allocation Working memory Perceptual associative


memory and local
association


AtomSpace High-level mind architecture No clear correlate: a general
tool for representing
memory including
long-term and working,
plus some of perception
and action


AtomSpace Working memory Global workspace (the
high-STI portion of
AtomSpace) and other
workspaces


Declarative atoms Long-term and working memory Declarative and
sensorimotor


(continued)
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1.3 Current and Prior Applications of OpenCog 11


Table 1.1 (continued)


CogPrime component Int. diag. sub-diagram Int. diag. component


Procedure atoms Long-term and working memory Procedural
Hebbian atoms Long-term and working memory Attentional
Goal atoms Long-term and working memory Intentional
Feeling atoms Long-term and working memory Spanning declarative,


intentional and
sensorimotor


OpenPsi High-level mind architecture Motivation/action
selection


OpenPsi Working memory Action selection
Pattern miner High-level mind architecture Arrows between


perception and
working and long-term
memory


Pattern miner Working memory Arrows between sensory
memory and
perceptual associative
and transient episodic
memory


Pattern imprinter Working memory Arrows between action
selection and
sensorimotor memory,
and between the latter
and perception/action
subsystems


Pattern imprinter High-level mind architecture Arrows pointing to action
subsystem from
working and long-term
memories


Perception hierarchy High-level mind architecture Perception subsystems
Perception hierarchy Working memory Perception/action


subsystems and
sensory and
sensorimotor memory


Language comprehension
hierarchy


Language Comprehension hierarchy


Language generation
hierarchy


Language Generation hierarchy


Reinforcement hierarchy High-level mind architecture Reinforcement
Reinforcement hierarchy Action Reinforcement hierarchy
Action hierarchy Action Collection of specialized


action hierarchies


There is a row for each component in the CogPrime architecture diagram, which tells the cor-
responding sub-diagrams and components of the integrative architecture diagram. Note that the
description “Long Term and Working Memory” indicates occurrence in two separate sub diagrams
of the integrative diagram, “Long Term Memory” and “Working Memory”
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12 1 A Brief Overview of CogPrime


Fig. 1.6 Screenshot of OpenCog-controlled virtual dog


1.3.1 Transitioning from Virtual Agents to a Physical Robot94


Preliminary experiments have also been conducted using OpenCog to control a Nao95


robot as well as a virtual dog [GdG08]. This involves hybridizing OpenCog with a96


separate (but interlinked) subsystem handling low-level perception and action. In the97


experiments done so far, this has been accomplished in an extremely simplistic way.98


How to do this right is a topic treated in detail in Chap. 8 of Vol. 6.99


We suspect that reasonable level of capability will be achievable by simply inter-100


posing DeSTIN (or some other system in its place) as a perception/action “black101


box” between OpenCog and a robot. Some preliminary experiments in this direction102


have already been carried out, connecting the OpenPetBrain to a Nao robot using103


simpler, less capable software than DeSTIN in the intermediary role (off-the-shelf104


speech-to-text, text-to-speech and visual object recognition software).105


However, we also suspect that to achieve robustly intelligent robotics we must106


go beyond this approach, and connect robot perception and actuation software with107


OpenCogPrime in a “white box” manner that allows intimate dynamic feedback108


between perceptual, motoric, cognitive and linguistic functions. We will achieve this109


via the creation and real-time utilization of links between the nodes in CogPrime’s110


and DeSTIN’s internal networks (a topic to be explored in more depth later in this111


chapter).112
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1.4 Memory Types and Associated Cognitive Processes in CogPrime 13


1.4 Memory Types and Associated Cognitive Processes113


in CogPrime114


Now we return to the basic description of the CogPrime approach, turning to aspects115


of the relationship between structure and dynamics. Architecture diagrams are all116


very well, but, ultimately it is dynamics that makes an architecture come alive. Intel-117


ligence is all about learning, which is by definition about change, about dynamical118


response to the environment and internal self-organizing dynamics.119


CogPrime relies on multiple memory types and, as discussed above, is founded on120


the premise that the right course in architecting a pragmatic, roughly human-like AGI121


system is to handle different types of memory differently in terms of both structure122


and dynamics.123


CogPrime’s memory types are the declarative, procedural, sensory, and episodic124


memory types that are widely discussed in cognitive neuroscience [TC05], plus atten-125


tional memory for allocating system resources generically, and intentional memory126


for allocating system resources in a goal-directed way. Table 1.2 overviews these127


memory types, giving key references and indicating the corresponding cognitive128


processes, and also indicating which of the generic patternist cognitive dynamics129


each cognitive process corresponds to (pattern creation, association, etc.). Figure 1.7130


illustrates the relationships between several of the key memory types in the context131


of a simple situation involving an OpenCogPrime-controlled agent in a virtual world.132


In terms of patternist cognitive theory, the multiple types of memory in CogPrime133


should be considered as specialized ways of storing particular types of patterns,134


optimized for spacetime efficiency. The cognitive processes associated with a cer-135


tain type of memory deal with creating and recognizing patterns of the type for136


which the memory is specialized. While in principle all the different sorts of pat-137


tern could be handled in a unified memory and processing architecture, the sort of138


specialization used in CogPrime is necessary in order to achieve acceptable efficient139


general intelligence using currently available computational resources. And as we140


have argued in detail in Chap. 7, efficiency is not a side-issue but rather the essence141


of real-world AGI (since as Hutter has shown, if one casts efficiency aside, arbitrary142


levels of general intelligence can be achieved via a trivially simple program).143


The essence of the CogPrime design lies in the way the structures and processes144


associated with each type of memory are designed to work together in a closely145


coupled way, yielding cooperative intelligence going beyond what could be achieved146


by an architecture merely containing the same structures and processes in separate147


“black boxes”.148


The inter-cognitive-process interactions in OpenCog are designed so that149


• conversion between different types of memory is possible, though sometimes com-150


putationally costly (e.g. an item of declarative knowledge may with some effort151


be interpreted procedurally or episodically, etc.)152
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14 1 A Brief Overview of CogPrime


Table 1.2 Memory types and cognitive processes in CogPrime


Memory type Specific cognitive processes General cognitive functions


Declarative Probabilistic logic networks
(PLN) [GMIH08];
conceptual blending
[FT02]


Pattern creation


Procedural MOSES (a novel
probabilistic
evolutionary program
learning algorithm)
[Loo06]


Pattern creation


Episodic Internal simulation engine
[GEA08]


Association, pattern creation


Attentional Economic attention
networks (ECAN)
[GPI+10]


Association, credit assignment


Intentional Probabilistic goal hierarchy
refined by PLN and
ECAN, structured
according to MicroPsi
[Bac09]


Credit assignment, pattern creation


Sensory In CogBot, this will be
supplied by the DeSTIN
component


Association, attention allocation,
pattern creation, credit
assignment


The third column indicates the general cognitive function that each specific cognitive process carries
out, according to the patternist theory of cognition


• when a learning process concerned centrally with one type of memory encounters153


a situation where it learns very slowly, it can often resolve the issue by converting154


some of the relevant knowledge into a different type of memory: i.e. cognitive155


synergy.156


1.4.1 Cognitive Synergy in PLN157


To put a little meat on the bones of the “cognitive synergy” idea, discussed repeatedly158


in prior chapters and more extensively in latter chapters, we now elaborate a little on159


the role it plays in the interaction between procedural and declarative learning.160


While MOSES handles much of CogPrime’s procedural learning, and CogPrime’s161


internal simulation engine handles most episodic knowledge, CogPrime’s primary162


tool for handling declarative knowledge is an uncertain inference framework called163


Probabilistic Logic Networks (PLN). The complexities of PLN are the topic of a164


lengthy technical monograph [GMIH08], and are summarized in Chap. 16 (Vol. 6);165


here we will eschew most details and focus mainly on pointing out how PLN seeks166


to achieve efficient inference control via integration with other cognitive processes.167
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1.4 Memory Types and Associated Cognitive Processes in CogPrime 15


Fig. 1.7 Relationship between multiple memory types. The bottom left corner shows a program
tree, constituting procedural knowledge. The upper left shows declarative nodes and links in the
Atomspace. The upper right corner shows a relevant system goal. The lower right corner contains
an image symbolizing relevant episodic and sensory knowledge. All the various types of knowledge
link to each other and can be approximatively converted to each other


As a logic, PLN is broadly integrative: it combines certain term logic rules with168


more standard predicate logic rules, and utilizes both fuzzy truth values and a vari-169


ant of imprecise probabilities called indefinite probabilities. PLN mathematics tells170


how these uncertain truth values propagate through its logic rules, so that uncertain171


premises give rise to conclusions with reasonably accurately estimated uncertainty172


values. This careful management of uncertainty is critical for the application of173


logical inference in the robotics context, where most knowledge is abstracted from174


experience and is hence highly uncertain.175


PLN can be used in either forward or backward chaining mode; and in the language176


introduced above, it can be used for either analysis or synthesis. As an example, we177


will consider backward chaining analysis, exemplified by the problem of a robot178


preschool-student trying to determine whether a new playmate “Bob” is likely to be179


a regular visitor to is preschool or not (evaluating the truth value of the implication180


Bob → regular_visitor). The basic backward chaining process for PLN analysis181


looks like:182


1. Given an implication L ≡ A → B whose truth value must be estimated (for183


instance L ≡ Concept ∧ Procedure → Goal as discussed above), create a list184
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16 1 A Brief Overview of CogPrime


(A1, ...,An) of (inference rule, stored knowledge) pairs that might be used to185


produce L186


2. Using analogical reasoning to prior inferences, assign each Ai a probability of187


success188


• If some of the Ai are estimated to have reasonable probability of success at189


generating reasonably confident estimates of L’s truth value, then invoke Step190


1 with Ai in place of L (at this point the inference process becomes recursive)191


• If none of the Ai looks sufficiently likely to succeed, then inference has “gotten192


stuck” and another cognitive process should be invoked, e.g.193


– Concept creation may be used to infer new concepts related to A and B, and194


then Step 1 may be revisited, in the hope of finding a new, more promising195


Ai involving one of the new concepts196


– MOSES may be invoked with one of several special goals, e.g. the goal of197


finding a procedure P so that P(X) predicts whether X → B. If MOSES198


finds such a procedure P then this can be converted to declarative knowledge199


understandable by PLN and Step 1 may be revisited....200


– Simulations may be run in CogPrime’s internal simulation engine, so as to201


observe the truth value of A → B in the simulations; and then Step 1 may202


be revisited....203


The combinatorial explosion of inference control is combatted by the capability to204


defer to other cognitive processes when the inference control procedure is unable to205


make a sufficiently confident choice of which inference steps to take next. Note that206


just as MOSES may rely on PLN to model its evolving populations of procedures,207


PLN may rely on MOSES to create complex knowledge about the terms in its logical208


implications. This is just one example of the multiple ways in which the different209


cognitive processes in CogPrime interact synergetically; a more thorough treatment210


of these interactions is given in [Goe09a].211


In the “new playmate” example, the interesting case is where the robot initially212


seems not to know enough about Bob to make a solid inferential judgment (so that213


none of the Ai seem particularly promising). For instance, it might carry out a number214


of possible inferences and not come to any reasonably confident conclusion, so that215


the reason none of the Ai seem promising is that all the decent-looking ones have been216


tried already. So it might then recourse to MOSES, simulation or concept creation.217


For instance, the PLN controller could make a list of everyone who has been a218


regular visitor, and everyone who has not been, and pose MOSES the task of figuring219


out a procedure for distinguishing these two categories. This procedure could then be220


used directly to make the needed assessment, or else be translated into logical rules221


to be used within PLN inference. For example, perhaps MOSES would discover that222


older males wearing ties tend not to become regular visitors. If the new playmate is223


an older male wearing a tie, this is directly applicable. But if the current playmate is224


wearing a tuxedo, then PLN may be helpful via reasoning that even though a tuxedo is225


not a tie, it’s a similar form of fancy dress—so PLN may extend the MOSES-learned226


rule to the present case and infer that the new playmate is not likely to be a regular227


visitor.228
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1.5 Goal-Oriented Dynamics in CogPrime 17


1.5 Goal-Oriented Dynamics in CogPrime229


CogPrime’s dynamics has both goal-oriented and “spontaneous” aspects; here for230


simplicity’s sake we will focus on the goal-oriented ones. The basic goal-oriented231


dynamic of the CogPrime system, within which the various types of memory are232


utilized, is driven by implications known as “cognitive schematics”, which take233


the form234


Context ∧ Procedure → Goal < p >235


(summarized C ∧ P → G). Semi-formally, this implication may be interpreted to236


mean: “If the context C appears to hold currently, then if I enact the procedure237


P, I can expect to achieve the goal G with certainty p”. Cognitive synergy means238


that the learning processes corresponding to the different types of memory actively239


cooperate in figuring out what procedures will achieve the system’s goals in the240


relevant contexts within its environment.241


CogPrime’s cognitive schematic is significantly similar to production rules in242


classical architectures like SOAR and ACT-R (as reviewed in Chap. 5; however, there243


are significant differences which are important to CogPrime’s functionality. Unlike244


with classical production rules systems, uncertainty is core to CogPrime’s knowledge245


representation, and each CogPrime cognitive schematic is labeled with an uncertain246


truth value, which is critical to its utilization by CogPrime’s cognitive processes.247


Also, in CogPrime, cognitive schematics may be incomplete, missing one or two of248


the terms, which may then be filled in by various cognitive processes (generally in an249


uncertain way). A stronger similarity is to MicroPsi’s triplets; the differences in this250


case are more low-level and technical and have already been mentioned in Chap. 5.251


Finally, the biggest difference between CogPrime’s cognitive schematics and pro-252


duction rules or other similar constructs, is that in CogPrime this level of knowledge253


representation is not the only important one. CLARION [SZ04], as reviewed above,254


is an example of a cognitive architecture that uses production rules for explicit knowl-255


edge representation and then uses a totally separate subsymbolic knowledge store256


for implicit knowledge. In CogPrime both explicit and implicit knowledge are stored257


in the same graph of nodes and links, with258


• explicit knowledge stored in probabilistic logic based nodes and links such as cog-259


nitive schematics (see Fig. 1.8 for a depiction of some explicit linguistic knowl-260


edge.)261


• implicit knowledge stored in patterns of activity among these same nodes and links,262


defined via the activity of the “importance” values (see Fig. 1.9 for an illustrative263


example thereof) associated with nodes and links and propagated by the ECAN264


attention allocation process.265


The meaning of a cognitive schematic in CogPrime is hence not entirely encapsu-266


lated in its explicit logical form, but resides largely in the activity patterns that ECAN267


causes its activation or exploration to give rise to. And this fact is important because268


the synergetic interactions of system components are in large part modulated by269
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18 1 A Brief Overview of CogPrime


Fig. 1.8 Example of explicit knowledge in the Atomspace. One simple example of explicitly
represented knowledge in the Atomspace is linguistic knowledge, such as words and the concepts
directly linked to them. Not all of a CogPrime system’s concepts correlate to words, but some do


ECAN activity. Without the real-time combination of explicit and implicit knowledge270


in the system’s knowledge graph, the synergetic interaction of different cognitive271


processes would not work so smoothly, and the emergence of effective high-level272


hierarchical, heterarchical and self structures would be less likely.273


1.6 Analysis and Synthesis Processes in CogPrime274


We now return to CogPrime’s fundamental cognitive dynamics, using examples from275


the “virtual dog” application to motivate the discussion.276


The cognitive schematic Context ∧ Procedure → Goal leads to a conceptualiza-277


tion of the internal action of an intelligent system as involving two key categories of278


learning:279
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1.6 Analysis and Synthesis Processes in CogPrime 19


Fig. 1.9 Example of implicit knowledge in the Atomspace. A simple example of implicit knowledge
in the Atomspace. The “chicken” and “food” concepts are represented by “maps” of ConceptNodes
interconnected by HebbianLinks, where the latter tend to form between ConceptNodes that are often
simultaneously important. The bundle of links between nodes in the chicken map and nodes in the
food map, represents an “implicit, emergent link” between the two concept maps. This diagram
also illustrates “glocal” knowledge representation, in that the chicken and food concepts are each
represented by individual nodes, but also by distributed maps. The “chicken” ConceptNode, when
important, will tend to make the rest of the map important—and vice versa. Part of the overall
chicken concept possessed by the system is expressed by the explicit links coming out of the
chicken ConceptNode, and part is represented only by the distributed chicken map as a whole
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20 1 A Brief Overview of CogPrime


• Analysis: Estimating the probability p of a posited C ∧ P → G relationship280


• Synthesis: Filling in one or two of the variables in the cognitive schematic, given281


assumptions regarding the remaining variables, and directed by the goal of maxi-282


mizing the probability of the cognitive schematic.283


More specifically, where synthesis is concerned,284


• The MOSES probabilistic evolutionary program learning algorithm is applied to285


find P, given fixed C and G. Internal simulation is also used, for the purpose286


of creating a simulation embodying C and seeing which P lead to the simulated287


achievement of G.288


– Example: A virtual dog learns a procedure P to please its owner (the goal G)289


in the context C where there is a ball or stick present and the owner is saying290


“fetch”.291


• PLN inference, acting on declarative knowledge, is used for choosing C, given292


fixed P and G (also incorporating sensory and episodic knowledge as appropriate).293


Simulation may also be used for this purpose.294


– Example: A virtual dog wants to achieve the goal G of getting food, and it knows295


that the procedure P of begging has been successful at this before, so it seeks a296


context C where begging can be expected to get it food. Probably this will be a297


context involving a friendly person.298


• PLN-based goal refinement is used to create new subgoals G to sit on the right299


hand side of instances of the cognitive schematic.300


– Example: Given that a virtual dog has a goal of finding food, it may learn a301


subgoal of following other dogs, due to observing that other dogs are often302


heading toward their food.303


• Concept formation heuristics are used for choosing G and for fueling goal refine-304


ment, but especially for choosing C (via providing new candidates for C). They305


are also used for choosing P, via a process called “predicate schematization” that306


turns logical predicates (declarative knowledge) into procedures.307


– Example: At first a virtual dog may have a hard time predicting which other308


dogs are going to be mean to it. But it may eventually observe common features309


among a number of mean dogs, and thus form its own concept of “pit bull,”310


without anyone ever teaching it this concept explicitly.311


Where analysis is concerned:312


• PLN inference, acting on declarative knowledge, is used for estimating the proba-313


bility of the implication in the cognitive schematic, given fixed C, P and G. Episodic314


knowledge is also used in this regard, via enabling estimation of the probability315


via simple similarity matching against past experience. Simulation is also used:316


multiple simulations may be run, and statistics may be captured therefrom.317
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1.6 Analysis and Synthesis Processes in CogPrime 21


– Example: To estimate the degree to which asking Bob for food (the procedure P318


is “asking for food”, the context C is “being with Bob”) will achieve the goal G319


of getting food, the virtual dog may study its memory to see what happened on320


previous occasions where it or other dogs asked Bob for food or other things,321


and then integrate the evidence from these occasions.322


• Procedural knowledge, mapped into declarative knowledge and then acted on by323


PLN inference, can be useful for estimating the probability of the implication324


C ∧ P → G, in cases where the probability of C ∧ P1 → G is known for some P1325


related to P.326


– Example: knowledge of the internal similarity between the procedure of asking327


for food and the procedure of asking for toys, allows the virtual dog to reason328


that if asking Bob for toys has been successful, maybe asking Bob for food will329


be successful too.330


• Inference, acting on declarative or sensory knowledge, can be useful for estimating331


the probability of the implication C ∧ P → G, in cases where the probability of332


C1 ∧ P → G is known for some C1 related to C.333


– Example: if Bob and Jim have a lot of features in common, and Bob often334


responds positively when asked for food, then maybe Jim will too.335


• Inference can be used similarly for estimating the probability of the implication336


C ∧ P → G, in cases where the probability of C ∧ P → G1 is known for some337


G1 related to G. Concept creation can be useful indirectly in calculating these338


probability estimates, via providing new concepts that can be used to make useful339


inference trails more compact and hence easier to construct.340


– Example: The dog may reason that because Jack likes to play, and Jack and Jill341


are both children, maybe Jill likes to play too. It can carry out this reasoning only342


if its concept creation process has invented the concept of “child” via analysis343


of observed data.344


In these examples we have focused on cases where two terms in the cognitive345


schematic are fixed and the third must be filled in; but just as often, the situation346


is that only one of the terms is fixed. For instance, if we fix G, sometimes the best347


approach will be to collectively learn C and P. This requires either a procedure learn-348


ing method that works interactively with a declarative-knowledge-focused concept349


learning or reasoning method; or a declarative learning method that works interac-350


tively with a procedure learning method. That is, it requires the sort of cognitive351


synergy built into the CogPrime design.352 AQ1
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22 1 A Brief Overview of CogPrime


1.7 Conclusion353


To thoroughly describe a comprehensive, integrative AGI architecture in a brief354


chapter would be an impossible task; all we have attempted here is a brief overview, to355


be elaborated on in the 800-odd pages of Vol. 6 of this book. We do not expect this brief356


summary to be enough to convince the skeptical reader that the approach described357


here has a reasonable odds of success at achieving its stated goals, or even of fulfilling358


the conceptual notions outlined in the preceding chapters. However, we hope to have359


given the reader at least a rough idea of what sort of AGI design we are advocating,360


and why and in what sense we believe it can lead to advanced artificial general361


intelligence. For more details on the structure, dynamics and underlying concepts of362


CogPrime, the reader is encouraged to proceed to Vol. 6—after completing Vol. 5, of363


course. Please be patient—building a thinking machine is a big topic, and we have a364


lot to say about it!365
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Chapter 2
Build Me Something I Haven’t Seen:
A CogPrime Thought Experiment


2.1 Introduction0


AGI design necessarily leads one into some rather abstract spaces—but being a1


human-like intelligence in the everyday world is a pretty concrete thing. If the Cog-2


Prime research program is successful, it will result not just in abstract ideas and3


equations, but rather in real AGI robots carrying out tasks in the world, and AGI4


agents in virtual worlds and online digital spaces conducting important business,5


doing science, entertaining and being entertained by us, and so forth. With this in6


mind, in this chapter we will bring the discussion closer to the concrete and everyday,7


and pursue a thought experiment of the form “How would a completed CogPrime8


system carry out this specific task?”9


The task we will use for this thought-experiment is one we will as a running10


example now and then in the following chapters. We consider the case of a robotically11


or virtually embodied CogPrime system, operating in a preschool type environment,12


interacting with a human whom it already knows and given the task of “Build me13


something with blocks that I haven’t seen before.”14


This target task is fairly simple, but it is complex enough to involve essentially15


every one of CogPrime’s processes, interacting in a unified way. It involves simple,16


grounded creativity of the sort that normal human children display every day—17


and which, we conjecture, is structurally and dynamically basically the same as18


the creativity underlying the genius of adult human creators like Einstein, Dali,19


Dostoevsky, Hendrix, and so forth ... and as the creativity that will power massively20


capable genius machines in future.21


We will consider the case of a simple interaction based on the above task where:22


1. The human teacher tells the CogPrime agent “Build me something with blocks23


that I haven’t seen before.”24


2. After a few false starts, the agent builds something it thinks is appropriate and25


says “Do you like it?”26


3. The human teacher says “It’s beautiful. What is it?”27


B. Goertzel et al., Engineering General Intelligence, Part 1, 23
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_3,
© Atlantis Press and the authors 2014
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24 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


4. The agent says “It’s a car man” [and indeed, the construct has 4 wheels and a28


chassis vaguely like a car, but also a torso, arms and head vaguely like a person].29


Of course, a complex system like CogPrime could carry out an interaction like30


this internally in many different ways, and what is roughly described here is just one31


among many possibilities.32


First we will enumerate a number of CogPrime processes and explain some ways33


that each one may help CogPrime carry out the target task. Then we will give a more34


evocative narrative, conveying the dynamics that would occur in CogPrime while35


carrying out the target task, and mentioning how each of the enumerated cognitive36


processes as it arises in the narrative.37


Coming as it does at the beginning of the book, yet referring to numerous cognitive38


processes and structures that will only be defined later in the book, the chapter will39


necessarily be somewhat opaque to the reader with no prior exposure to CogPrime40


ideas. However, it has been placed here at the start for a reason—so serve as moti-41


vation and conceptual guidance for the complex and voluminous material to follow.42


You may wish to skim this chapter over relatively lightly the first time around, getting43


a general idea of how the different processes and structures in CogPrime fit together44


in a practical context—and then return to the chapter again once you’ve finished with45


Part Two (Vol. 6) and have a fuller understanding of what all the different parts of46


the design are supposed to do and how they’re supposed to work.47


2.2 Roles of Selected Cognitive Processes48


Now we review a number of the more interesting CogPrime cognitive processes to be49


reviewed in the following chapters of the book, for each one indicating one or more50


of the roles it might play in helping a CogPrime system carry out the target task.51


Note that this list is incomplete in many senses, e.g. it doesn’t list all the cognitive52


processes, nor all the roles played by the ones listed. The purpose is to give an53


evocative sense of the roles played by the different parts of the design in carrying54


out the task.55


• Chapter 1 of Vol. 6 (OpenCog Framework)56


– Freezing/Defrosting.57


When the agent builds a structure from blocks and decides it’s not good58


enough to show off to the teacher, what does it do with the detailed ideas59


and thought process underlying the structure it built? If it doesn’t like the60


structure so much, it may just leave this to the generic forgetting process. But61


if it likes the structure a lot, it may want to increase the VLTI (Very Long Term62


Importance) of the Atoms related to the structure in question, to be sure that63


these are stored on disk or other long-term storage, even after they’re deemed64


sufficiently irrelevant to be pushed out of RAM by the forgetting mechanism.65
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2.2 Roles of Selected Cognitive Processes 25


When given the target task, the agent may decide to revive from disk the66


mind-states it went through when building crowd-pleasing structures from67


blocks before, so as to provide it with guidance.68


• Chapter 4 of Vol. 6 (Emotion, Motivation, Attention and Control)69


– Cognitive Cycle.70


While building with blocks, the agent’s cognitive cycle will be dominated by71


perceiving, acting on, and thinking about the blocks it is building with.72


When interacting with the teacher, then interaction-relevant linguistic, per-73


ceptual and gestural processes will also enter into the cognitive cycle.74


– Emotion. The agent’s emotions will fluctuate naturally as it carries out the task.75


If it has a goal of pleasing the teacher, then it will experience happiness as its76


expectation of pleasing the teacher increases.77


If it has a goal of experiencing novelty, then it will experience happiness as78


it creates structures that are novel in its experience.79


If it has a goal of learning, then it will experience happiness as it learns new80


things about blocks construction.81


On the other hand, it will experience unhappiness as its experienced or pre-82


dicted satisfaction of these goals decreases.83


– Action Selection84


In dialoguing with the teacher, action selection will select one or more85


DialogueController schema to control the conversational interaction (based86


on which DC schema have proved most effective in prior similar situations.87


When the agent wants to know the teacher’s opinion of its construct, what88


is happening internally is that the “please teacher” Goal Atom gets a link89


of the conceptual form (Implication “find out teacher’s opinion of my90


current construct” “please teacher”). This link may be created by PLN91


inference, probably largely by analogy to previously encountered simi-92


lar situations. Then, GoalImportance is spread from the “please teacher”93


Goal Atom to the “find out teacher’s opinion of my current construct”94


Atom (via the mechanism of sending an RFS package to the latter Atom).95


More inference causes a link (Implication “ask the teacher for their opin-96


ion of my current construct” “find out teacher’s opinion of my current97


construct”) to be formed, and the “ask the teacher for their opinion of98


my current construct” Atom to get GoalImportance also. Then Predicate99


Schematization causes the predicate “ask the teacher for their opinion of100


my current construct” to get turned into an actionable schema, which gets101


GoalImportance, and which gets pushed into the ActiveSchemaPool via102


Goal-driven action selection. Once the schema version of “ask the teacher103


for their opinion of my current construct” is in the ActiveSchemaPool,104


it then invokes natural language generation Tasks, which lead to the for-105


mulation of an English sentence such as “Do you like it?”106
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26 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


When the teacher asks “It’s beautiful. What is it?”, then the NL compre-107


hension MindAgent identifies this as a question, and the “please teacher”108


Goal Atom gets a link of the conceptual form (Implication “answer the109


question the teacher just asked” “please teacher”). This follows sim-110


ply from the knowledge ( Implication (“teacher has just asked a ques-111


tion” AND “I answer the teacher’s question”) (“please teacher”)), or else112


from more complex knowledge refining this Implication. From this point,113


things proceed much as in the case “Do you like it?” described just above.114


Consider a schema such as “pick up a red cube and place it on top of the115


long red block currently at the top of the structure“ (let’s call this P). Once P116


is placed in the ActiveSchemaPool, then it runs and generates more specific117


procedures, such as the ones needed to find a red cube, to move the agent’s118


arm toward the red cube and grasp it, etc. But the execution of these specific119


low-level procedures is done via the ExecutionManager, analogously to the120


execution of the specifics of generating a natural language sentence from a121


collection of semantic relationships. Loosely speaking, reaching for the red122


cube and turning simple relationships into a simple sentences, are considered123


as “automated processes” not requiring holistic engagement of the agent’s124


mind. What the generic, more holistic Action Selection mechanism does in125


the present context is to figure out to put P in the ActiveSchemaPool in the126


first place. This occurs because of a chain such as: P predictively implies127


(with a certain probabilistic weight) “completion of the car-man structure”,128


which in turn predictively implies “completion of a structure that is novel to129


the teacher”, which in turn predictively implies “please the teacher”, which130


in turn implies “please others”, which is assumed an Ubergoal (a top-level131


system goal).132


– Goal Atoms. As the above items make clear, the scenario in question requires133


the initial Goal Atoms to be specialized, via the creation of more and more134


particular subgoals suiting the situation at hand.135


– Context Atoms.136


Knowledge of the context the agent is in can help it disambiguate language it137


hears, e.g. knowing the context is blocks-building helps it understand which138


sense of the word “blocks” is meant.139


On the other hand, if the context is that the teacher is in a bad mood, then140


the agent might know via experience that in this context, the strength of141


(Implication “ask the teacher for their opinion of my current construct” “find142


out teacher’s opinion of my current construct”) is lower than in other contexts.143


– Context Formation.144


A context like blocks-building or “teacher in a bad mood” may be formed145


by clustering over multiple experience-sets, i.e. forming Atoms that refer146


to spatiotemporally grouped sets of percepts/concepts/actions, and grouping147


together similar Atoms of this nature into clusters.148


The Atom referring to the cluster of experience-sets involving blocks-building149


will then survive as an Atom if it gets involved in relationships that are impor-150


tant or have surprising truth values. If many relationships have significantly151
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2.2 Roles of Selected Cognitive Processes 27


different truth-value inside the blocks-building context than outside it, this152


means it’s likely that the blocks-building ConceptNode will remain as an153


Atom with reasonably high LTI, so it can be used as a context in future.154


– Time-Dependence of Goals. Many of the agent’s goals in this scenario have dif-155


ferent importances over different time scales. For instance “please the teacher”156


is important on multiple time-scales: the agent wants to please the teacher in157


the near term but also in the longer term. But a goal like “answer the question158


the teacher just asked” has an intrinsic time-scale to it; if it’s not fulfilled fairly159


rapidly then its importance goes away.160


• Chapter 5 of Vol. 6 (Attention allocation)161


– ShortTermImportance versus LongTermImportance. While conversing, the162


concepts and immediately involved in the conversation (including the Atoms163


describing the agents in the conversation) have very high STI. While building,164


Atoms representing to the blocks and related ideas about the structures being165


built (e.g. images of cars and people perceived or imagined in the past) have166


very high STI. But the reason these Atoms are in RAM prior to having their167


STI boosted due to their involvement in the agent’s activities, is because they168


had their LTI boosted at some point in the past. And after these Atoms leave the169


AttentionalFocus and their STI reduces, they will have boosted LTI and hence170


likely remain in RAM for a long while, to be involved in “background thought”,171


and in case they’re useful in the AttentionalFocus again.172


– HebbianLink Formation. As a single example, the car-man has both wheels173


and arms, so now a Hebbian association between wheels and arms will exist174


in the agent’s memory, to potentially pop up again and guide future thinking.175


The very idea of a car-man likely emerged partly due to previously formed176


HebbianLinks—because people were often seen sitting in cars, the association177


between person and car existed, which made the car concept and the human178


concept natural candidates for blending.179


– Data Mining the System Activity Table. The HebbianLinks mentioned above180


may have been formed via mining the SystemActivityTable181


– ECAN Based Associative Memory. When the agent thinks about making a car,182


this spreads importance to various Atoms related to the car concept, and one thing183


this does is lead to the emergence of the car attractor into the AttentionalFocus.184


The different aspects of a car are represented by heavily interlinked Atoms, so185


that when some of them become important, there’s a strong tendency for the186


others to also become important—and for “car” to then emerge as an attractor187


of importance dynamics.188


– Schema Credit Assignment.189


Suppose the agent has a subgoal of placing a certain blue block on top of a190


certain red block. It may use a particular motor schema for carrying out this191


action—involving, for instance, holding the blue block above the red block192


and then gradually lowering it. If this schema results in success (rather than193


in, say, knocking down the red block), then it should get rewarded via having194
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28 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


its STI and LTI boosted and also having the strength of the link between it195


and the subgoal increased.196


Next, suppose that a certain cognitive schema (say, the schema of running197


multiple related simulations and averaging the results, to estimate the success198


probability of a motor procedure) was used to arrive at the motor schema in199


question. Then this cognitive schema may get passed some importance from200


the motor schema, and it will get the strength of its link to the goal increased.201


In this way credit passes backwards from the goal to the various schema202


directly or indirectly involved in fulfilling it.203


– Forgetting. If the agent builds many structures from blocks during its lifespan,204


it will accumulate a large amount of perceptual memory.205


• Chapter 6 of Vol. 6 (Goal and Action Selection). Much of the use of the material206


in this chapter was covered above in the bullet point for Chap. 4 of Vol. 6, but a207


few more notes are:208


– Transfer of RFS Between Goals. Above it was noted that the link (Implication209


“ask the teacher for their opinion of my current construct” “find out teacher’s210


opinion of my current construct”) might be formed and used as a channel for211


GoalImportance spreading.212


– Schema Activation. Supposing the agent is building a man-car, it may have213


car-building schema and man-building schema in its ActiveSchemaPool at the214


same time, and it may enact both of them in an interleaved manner. But if each215


tend to require two hands for their real-time enaction, then schema activation216


will have to pass back and forth between the two of them, so that at any one217


time, one is active whereas the other one is sitting in the ActiveSchemaPool218


waiting to get activated.219


– Goal Based Schema Learning. To take a fairly low-level example, suppose the220


agent has the (sub)goal of making an arm for a blocks-based person (or man-car),221


given the presence of a blocks-based torso. Suppose it finds a long block that222


seems suitable to be an arm. It then has the problem of figuring out how to attach223


the arm to the body. It may try out several procedures in its internal simulation224


world, until it finds one that works: hold the arm in the right position while one225


end of it rests on top of some block that is part of the torso, then place some226


other block on top of that end, then slightly release the arm and see if it falls. If it227


doesn’t fall, leave it. If it seems about to fall, then place something heavier atop228


it, or shove it further in toward the center of the torso. The procedure learning229


process could be MOSES here, or it could be PLN.230


• Chapter 7 of Vol. 6 (Procedure Evaluation)231


– Inference Based Procedure Evaluation. A procedure for man-building such as232


“first put up feet, then put up legs, then put up torso, then put up arms and head”233


may be synthesized from logical knowledge (via predicate schematization) but234


without filling in the details of how to carry out the individual steps, such as “put235


up legs.” If a procedure with abstract (ungrounded) schema like PutUpTorso236
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2.2 Roles of Selected Cognitive Processes 29


is chosen for execution and placed into the ActiveSchemaPool, then in the237


course of execution, inferential procedure evaluation must be used to figure out238


how to make the abstract schema actionable. The GoalDrivenActionSelection239


MindAgent must make the choice whether to put a not-fully-grounded schema240


into the ActiveSchemaPool, rather than grounding it first and then making it241


active; this is the sort of choice that may be made effectively via learned cognitive242


schema.243


• Chapter 8 of Vol. 6 (Perception and Action)244


– ExperienceDB. No person remembers every blocks structure they ever saw or245


built, except maybe some autists. But a CogPrime can store all this information246


fairly easily, in its ExperienceDB, even if it doesn’t keep it all in RAM in its247


AtomSpace. It can also store everything anyone ever said about blocks structures248


in its vicinity.249


– Perceptual Pattern Mining.250


– Object Recognition. Recognizing structures made of blocks as cars, people,251


houses, etc. requires fairly abstract object recognition, involving identifying the252


key shapes and features involved in an object-type, rather than just going by253


simple visual similarity.254


– Hierarchical Perception Networks. If the room is well-lit, it’s easy to visually255


identify individual blocks within a blocks structure. If the room is darker, then256


more top-down processing may be needed—identifying the overall shape of the257


blocks structure may guide one in making out the individual blocks.258


– Hierarchical Action Networks. Top-down action processing tells the agent259


that, if it wants to pick up a block, it should move its arm in such a way as260


to get its hand near the block, and then move its hand.But if it’s still learning261


how to do that sort of motion, more likely it will do this, but then start moving262


its hand and find that it’s hard to get a grip on the block—and then have to go263


back and move its arm a little differently. Iterating between broader arm/hand264


movements and more fine-grained hand/finger movements is an instance of265


information iteratively passing up and down a hierarchical action network.266


– Coupling of Perception and Action Networks. Picking up a block in the dark267


is a perfect example of rich coupling of perception and action networks. Feeling268


the block with the fingers helps with identifying blocks that can’t be clearly269


seen.270


• Chapter 12 of Vol. 6 (Procedure Learning)271


– Specification Based Procedure Learning.272


Suppose the agent has never seen a horse, but the teacher builds a number273


of blocks structures and calls them horses, and draws a number of pictures274


and calls them horses. This may cause a procedure learning problem to be275


spawned, where the fitness function is accuracy at distinguishing horses from276


non-horses.277
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30 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


Learning to pick up a block is specification-based procedure learning, where278


the specification is to pick up the block and grip it and move it without279


knocking down the other stuff near the block.280


– Representation Building.281


In the midst of building a procedure to recognize horses, MOSES would282


experimentally vary program nodes recognizing visual features into other283


program nodes recognizing other visual features284


In the midst of building a procedure to pick up blocks, MOSES would exper-285


imentally vary program nodes representing physical movements into other286


nodes representing physical movements287


In both of these cases, MOSES would also carry out the standard experimental288


variations of mathematical and control operators according to its standard289


representation-building framework290


• Chapter 13 of Vol. 6 (Imitative, Reinforcement and Corrective Learning)291


– Reinforcement Learning.292


Motor procedures for placing blocks (in simulations or reality) will get re-293


warded if they don’t result in the blocks structure falling down, punished294


otherwise.295


Procedures leading to the teacher being pleased, in internal simulations (or296


in repeated trials of scenarios like the one under consideration), will get re-297


warded; procedures leading to the teacher being displeased will get punished.298


– Imitation Learning. If the agent has seen others build with blocks before, it299


may summon these memories and then imitate the actions it has seen others300


take.301


– Corrective Learning. This would occur if the teacher intervened in the agent’s302


block-building and guided him physically—e.g. steadying his shaky arm to303


prevent him from knocking the blocks structure over.304


• Chapter 14 of Vol. 6 (Hillclimbing)305


– Complexity Penalty. In learning procedures for manipulating blocks, the306


complexity penalty will militate against procedures that contain extraneous307


steps.308


• Chapter 15 of Vol. 6 (Probabilistic Evolutionary Procedure Learning)309


– Supplying Evolutionary Learning with Long-Term Memory. Suppose the310


agent has previously built people from clay, but never from blocks. It may then311


have learned a “classification model” predicting which clay people will look312


appealing to humans, and which won’t. It may then transfer this knowledge,313


using PLN, to form a classification model predicting which blocks-people will314


look appealing to humans, and which won’t.315


– Fitness Function Estimation via Integrative Intelligence. To estimate the316


fitness of a procedure for, say, putting an arm on a blocks-built human, the agent317


may try out the procedure in the internal simulation world; or it may use PLN318


inference to reason by analogy to prior physical situations it’s observed. These319
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2.2 Roles of Selected Cognitive Processes 31


allow fitness to be estimated without actually trying out the procedure in the320


environment.321


• Chapter 16 of Vol. 6 (Probabilistic Logic Networks)322


– Deduction. This is a tall skinny structure; tall skinny structures fall down easily;323


thus this structure may fall down easily.324


– Induction. This teacher is talkative; this teacher is friendly; therefore the talka-325


tive are generally friendly.326


– Abduction. This structure has a head and arms and torso; a person has a head327


and arms and torso; therefore this structure is a person.328


– PLN Forward Chaining. What properties might a car-man have, based on329


inference from the properties of cars and the properties of men?330


– PLN Backward Chaining.331


An inference target might be: Find X so that X looks something like a wheel332


and can be attached to this blocks-chassis, and I can find four fairly similar333


copies.334


Or: Find the truth value of the proposition that this structure looks like a car.335


– Indefinite Truth Values. Consider the deductive inference “This is a tall skinny336


structure; tall skinny structures fall down easily; thus this structure may fall down337


easily.” In this case, the confidence of the second premise may be greater than338


the confidence of the first premise, which may result in an intermediate confi-339


dence for the conclusion, according to the propagation of indefinite probabilities340


through the PLN deduction rule.341


– Intensional Inference. Is the blocks-structure a person? According to the de-342


finition of intensional inheritance, it shares many informative properties with343


people (e.g. having arms, torso and head), so to a significant extent, it is a person.344


– Confidence Decay. The agent’s confidence in propositions regarding building345


things with blocks should remain nearly constant. The agent’s confidence in346


propositions regarding the teacher’s taste should decay more rapidly. This should347


occur because the agent should observe that, in general, propositions regarding348


physical object manipulation tend to retain fairly constant truth value, whereas349


propositions regarding human tastes tend to have more rapidly decaying truth350


value.351


• Chapter 17 Vol. 6 (Spatiotemporal Inference)352


– Temporal Reasoning. Suppose, after the teacher asks “What is it?”, the agent353


needs to think a while to figure out a good answer. But maybe the agent knows354


that it’s rude to pause too long before answering something to a direct question.355


Temporal reasoning helps figure out “how long is too long” to wait before356


answering.357


– Spatial Reasoning. Suppose the agent puts shoes on the wheels of the car. This358


is a joke relying on the understanding that wheels hold a car up, whereas feet359


hold a person up, and the structure is a car-man. But it also relies on the spatial360


inferences that: the car’s wheels are in the right position for the man’s feet (below361
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32 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


the torso); and, the wheels are below the car’s chassis just like a person’s feet362


are below its torso.363


• Chapter 18 of Vol. 6 (Inference Control)364


– Evaluator Choice as a Bandit Problem. In doing inference regarding how365


to make a suitably humanlike arm for the blocks-man, there may be a choice366


between multiple inference pathways, perhaps one that relies on analogy to other367


situations building arms, versus one that relies on more general reasoning about368


lengths and weights of blocks. The choice between these two pathways will be369


made randomly with a certain probabilistic bias assigned to each one, via prior370


experience.371


– Inference Pattern Mining. The probabilities used in choosing which inference372


path to take, are determined in part by prior experience—e.g. maybe it’s the373


case that in prior situations of building complex blocks structures, analogy has374


proved a better guide than naive physics, thus the prior probability of the analogy375


inference pathway will be nudged up.376


– PLN and Bayes Nets. What’s the probability that the blocks-man’s hat will fall377


off if the man-car is pushed a little bit to simulate driving? This question could378


be resolved in many ways (e.g. by internal simulation), but one possibility is379


inference. If this is resolved by inference, it’s the sort of conditional probability380


calculation that could potentially be done faster if a lot of the probabilistic381


knowledge from the AtomSpace were summarized in a Bayes Net. Updating the382


Bayes net structure can be slow, so this is probably not appropriate for knowledge383


that is rapidly shifting; but knowledge about properties of blocks structures may384


be fairly persistent after the agent has gained a fair bit of knowledge by playing385


with blocks a lot.386


• Chapter 19 of Vol. 6 (Pattern Mining)387


– Greedy Pattern Mining.388


“Push a tall structure of blocks and it tends to fall down” is the sort of repetitive389


pattern that could easily be extracted from a historical record of perceptions390


and (the agent’s and others’) actions via simple greedy pattern mining algo-391


rithm.392


If there is a block that is shaped like a baby’s rattle, with a long slender handle393


and then a circular shape at the end, then greedy pattern mining may be helpful394


due to having recognized the pattern that structures like this are sometimes395


rattles—and also that structures like this are often stuck together, with the396


handle part connected sturdily to the circular part.397


– Evolutionary Pattern Mining. “Push a tall structure of blocks with a wide base398


and a gradual narrowing toward the top and it may not fall too badly” is a more399


complex pattern that may not be found via greedy mining, unless the agent has400


dealt with a lot of pyramids.401


319477_1_En_2_Chapter � TYPESET DISK LE � CP Disp.:26/10/2013 Pages: 40 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030-0_18

http://dx.doi.org/10.2991/978-94-6239-030-0_19





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


2.2 Roles of Selected Cognitive Processes 33


• Chapter 20 Vol. 6 (Concept Formation)402


– Formal Concept Analysis. Suppose there are many long, slender blocks of403


different colors and different shapes (some cylindrical, some purely rectangular404


for example). Learning this sort of concept based on common features is exactly405


what FCA is good at (and when the features are defined fuzzily or probabilis-406


tically, it’s exactly what uncertain FCA is good at). Learning the property of407


“slender” itself is another example of something uncertain FCA is good at—it408


would learn this if there were many concepts that preferentially involved slender409


things (even though formed on the basis of concepts other than slenderness)410


– Conceptual Blending. The concept of a “car-man” or “man-car” is an obvious411


instance of conceptual blending. The agents know that building a man won’t412


surprise the teacher, and nor will building a car ... but both “man” and “car”413


may pop to the forefront of its mind (i.e. get a briefly high STI) when it thinks414


about what to build. But since it knows it has to do something new or surpris-415


ing, there may be a cognitive schema that boosts the amount of funds to the416


ConceptBlending MindAgent, causing it to be extra-active. In any event, the417


ConceptBlending agent seeks to find ways to combine important concepts; and418


then PLN explores these to see which ones may be able to achieve the given419


goal of surprising the teacher (which includes subgoals such as actually being420


buildable).421


• Chapter 21 of Vol. 6 (Dimensional Embedding)422


– Dimensional Embedding. When the agent needs to search its memory for423


a previously seen blocks structure similar to the currently observed one—or424


for a previously articulated thought similar to the one it’s currently trying to425


articulate—then it needs to a search through its large memory for “an entity426


similar to X” (where X is a structure or a thought). This kind of search can427


be quite computationally difficult—but if the entities in question have been428


projected into an embedding space, then it’s quite rapid. (The cost is shifted to429


the continual maintenance of the embedding space, and its periodic updating;430


and there is some error incurred in the projection, but in many cases this error431


is not a show-stopper).432


– Embedding Based Inference Control. Rapid search for answers to similarity or433


inheritance queries can be key for guiding inference in appropriate directions;434


for instance reasoning about how to build a structure with certain properties,435


can benefit greatly from rapid search for previously-encountered substructures436


currently structurally or functionally similar to the substructures one desires to437


build.438


• Chapter 22 of Vol. 6 (Simulation and Episodic Memory)439


– Fitness Estimation via Simulation. One way to estimate whether a certain440


blocks structure is likely to fall down or not, is to build it in one’s “mind’s eye”441


and see if the physics engine in one’s mind’s-eye causes it to fall down. This is442


something that in many cases will work better for CogPrime than for humans,443
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34 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


because CogPrime has a more mathematically accurate physics engine than the444


human mind does; however, in cases that rely heavily on naive physics rather445


than, say, direct applications of Newton’s Laws, then CogPrime’s simulation446


engine may underperform the typical human mind.447


– Concept Formation via Simulation. Objects may be joined into categories us-448


ing uncertain FCA, based on features that they are identified to have via “simula-449


tion experiments” rather than physical world observations. For instance, it may450


be observed that pyramid-shaped structures fall less easily than pencil-shaped451


tower structures—and the concepts corresponding to these two categories may452


be formed—from experiments run in the internal simulation world, perhaps453


inspired by isolated observations in the physical world.454


– Episodic Memory. Previous situations in which the agent has seen similar455


structures built, or been given similar problems to solve, may be brought to456


mind as “episodic movies” playing in the agent’s memory. By watching what457


happens in these replayed episodic movies, the agent may learn new declara-458


tive or procedural knowledge about what to do. For example, maybe there was459


some situation in the agent’s past where it saw someone asked to do something460


surprising, and that someone created something funny. This might (via a simple461


PLN step) bias the agent to create something now, which it has reason to suspect462


will cause others to laugh.463


• Chapter 23 of Vol. 6 (Integrative Procedure Learning)464


– Concept-Driven Procedure Learning. Learning the concept of “horse”, as465


discussed above in the context of Chap. 12 of Vol. 6, is an example of this.466


– Predicate Schematization. The synthesis of a schema for man-building, as467


discussed above in the context of Chap. 7 of Vol. 6, is an example of this.468


• Chapter 24 of Vol. 6 (Map Formation)469


– Map Formation. The notion of a car involves many aspects: the physical470


appearance of cars, the way people get in and out of cars, the ways cars drive,471


the noises they make, etc. All these aspects are represented by Atoms that are472


part of the car map, and are richly interconnected via HebbianLinks as well as473


other links.474


– Map Encapsulation. The car map forms implicitly via the interaction of475


multiple cognitive dynamics, especially ECAN. But then the Anticoagulation476


MindAgent may do its pattern mining and recognize this map explicitly, and477


form a PredicateNode encapsulating it. This PredicateNode may then be used478


in PLN inference, conceptual blending, and so forth (e.g. helping with the for-479


mation of a concept like car-man via blending).480


• Chapter 26 of Vol. 6 (Natural Language Comprehension)481


– Experience Based Disambiguation. The particular dialogue involved in the482


present example doesn’t require any nontrivial word sense disambiguation. But483


it does require parse selection, and semantic interpretation selection:484
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2.2 Roles of Selected Cognitive Processes 35


In “Build me something with blocks,” the agent has no trouble understanding485


that “blocks” means “toy building blocks” rather than, say, “city blocks”,486


based on many possible mechanisms, but most simply importance spreading.487


“Build me something with blocks” has at least three interpretations: the488


building could be carried out using blocks with a tool; or the thing built489


could be presented alongside blocks; or the thing built could be composed490


of blocks. The latter is the most commonsensical interpretation for most hu-491


mans, but that is because we have heard the phrase “building with blocks”492


used in a similarly grounded way before (as well as other similar phrases such493


as “playing with Legos”, etc., whose meaning helps militate toward the right494


interpretation via PLN inference and importance spreading). So here we have495


a simple example of experience-based disambiguation, where experiences at496


various distances of association from the current one are used to help select497


the correct parse.498


A subtler form of semantic disambiguation is involved in interpreting the499


clause “that I haven’t seen before.” A literal-minded interpretation would500


say that this requirement is fulfilled by any blocks construction that’s not501


precisely identical to one the teacher has seen before. But of course, any502


sensible human knows this is an idiomatic clause that means “significantly503


different from anything I’ve seen before.” This could be determined by the504


CogPrime agent if it has heard the idiomatic clause before, or if it’s heard a505


similar idiomatic phrase such as “something I’ve never done before.” Or, even506


if the agent has never heard such an idiom before, it could potentially figure507


out the intended meaning simply because the literal-minded interpretation508


would be a pointless thing for the teacher to say. So if it knows the teacher509


usually doesn’t add useless modificatory clauses onto their statements, then510


potentially the agent could guess the correct meaning of the phrase.511


• Chapter 28 of Vol. 6 (Language Generation)512


– Experience-Based Knowledge Selection for Language Generation. When513


the teacher asks “What is it?”, the agent must decide what sort of answer to514


give. Within the confines of the QuestionAnswering DialogueController, the515


agent could answer “A structure of blocks”, or “A part of the physical world”,516


or “A thing”, or “Mine.” (Or, if it were running another DC, it could answer517


more broadly, e.g. “None of your business,” etc.). However, the QA DC tells it518


that, in the present context, the most likely desired answer is one that the teacher519


doesn’t already know; and the most important property of the structure that the520


teacher doesn’t obviously already know is the fact that it depicts a “car man.”521


Also, memory of prior conversations may bring up statements like “It’s a horse”522


in reference to a horse built of blocks, or a drawing of a horse, etc.523


– Experience-Based Guidance of Word and Syntax Choice. The choice of524


phrase “car man” requires some choices to be made. The agent could just as525


well say “It’s a man with a car for feet” or “It’s a car with a human upper body526


and head” or “It’s a car centaur”, etc. A bias toward simple expressions would527
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lead to “car man.” If the teacher were known to prefer complex expressions,528


then the agent might be biased toward expressing the idea in a different way.529


• Chapter 30 of Vol. 6 (Natural Language Dialogue)AQ1530


– Adaptation of Dialogue Controllers. The QuestionAsking and QuestionAn-531


swering DialogueControllers both get reinforcement from this interaction, for532


the specific internal rules that led to the given statements being made.533


2.3 A Semi-Narrative Treatment534


Now we describe how a CogPrime system might carry out the specified task in a semi-535


narrative form, weaving in the material from the previous section as we go along, and536


making some more basic points as well. The semi-narrative covers most but not all537


of the bullet points from the previous section, but with some of the technical details538


removed; and it introduces a handful of new examples not given in the bullet points.539


The reason this is called a semi-narrative rather than a narrative is that there is540


no particular linear order to the processes occurring in each phase of the situation541


described here. CogPrime’s internal cognitive processes do not occur in a linear542


narrative; rather, what we have is a complex network of interlocking events. But still,543


describing some of these events concretely in a manner correlated with the different544


stages of a simple interaction, may have some expository value.545


The human teacher tells the CogPrime agent “Build me something with546


blocks that I haven’t seen before.”547


Upon hearing this, the agent’s cognitive cycles are dominated by language process-548


ing and retrieval from episodic and sensory memory.549


The agent may decide to revive from disk the mind-states it went through when550


building human-pleasing structures from blocks before, so as to provide it with551


guidance552


It will likely experience the emotion of happiness, because it anticipates the plea-553


sure of getting rewarded for the task in future.554


The ubergoal of pleasing the teacher gets active (gets funded significantly with555


STI currency), as it becomes apparent there are fairly clear ways of fulfilling that556


goal (via the subgoal S of building blocks structures that will get positive response557


from the teacher). Other ubergoals like gaining knowledge are not funded as much558


with STI currency just now, as they are not immediately relevant.559


Action selection, based on ImplicationLinks derived via PLN (between various560


possible activities and the subgoal S) causes it to start experimentally building some561


blocks structures. Past experience with building (turned into ImplicationLinks via562


mining the SystemActivityTable) tells it that it may want to build a little bit in its563


internal simulation world before building in the external world, causing STI currently564


to flow to the simulation MindAgent.565


The Atom corresponding to the context blocks-building gets high STI and is566


pushed into the AttentionalFocus, making it likely that many future inferences will567
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2.3 A Semi-Narrative Treatment 37


occur in this context. Other Atoms related to this one also get high STI (the ones in568


the blocks-building map, and others that are especially related to blocks-building in569


this particular context).570


After a few false starts, the agent builds something it thinks is appropriate571


and says “Do you like it?”572


Now that the agent has decided what to do to fulfill its well-funded goal, its573


cognitive cycles are dominated by action, perception and related memory access and574


concept creation.575


An obvious subgoal is spawned: build a new structure now, and make this par-576


ticular structure under construction appealing and novel to the teacher. This subgoal577


has a shorter time scale than the high level goal. The subgoal gets some currency578


from its supergoal using the mechanism of RFS spreading.579


Action selection must tell it when to continue building the same structure and580


when to try a new one, as well as more micro level choices.581


Atoms related to the currently pursued blocks structure get high STI.582


After a failed structure (a “false start”) is disassembled, the corresponding Atoms583


lose STI dramatically (leaving AF) but may still have significant LTI, so they can be584


recalled later as appropriate. They may also have VLTI so they will be saved to disk585


later on if other things push them out of RAM due to getting higher LTI.586


Meanwhile everything that’s experienced from the external world goes into the587


ExperienceDB.588


Atoms representing different parts of aspects of the same blocks structure will589


get Hebbian links between them, which will guide future reasoning and importance590


spreading.591


Importance spreading helps the system go from an idea for something to build592


(say, a rock or a car) to the specific plans and ideas about how to build it, via increasing593


the STI of the Atoms that will be involved in these plans and ideas.594


If something apparently good is done in building a blocks structure, then other595


processes and actions that helped lead to or support that good thing, get passed some596


STI from the Atoms representing the good thing, and also may get linked to the Goal597


Atom representing “good” in this context. This leads to reinforcement learning.598


The agent may play with building structures and then seeing what they most look599


like, thus exercising abstract object recognition (that uses procedures learned by600


MOSES or hillclimbing, or uncertain relations learned by inference, to guess what601


object category a given observed collection of percepts most likely falls into).602


Since the agent has been asked to come up with something surprising, it knows603


it should probably try to formulate some new concepts—because it has learned in604


the past, via SystemActivityTable mining, that often newly formed concepts are sur-605


prising to others. So, more STI currency is given to concept formation MindAgents,606


such as the ConceptualBlending Mind Agent (which, along with a lot of stuff that607


gets thrown out or stored for later use, comes up with “car-man”).608


When the notion of “car” is brought to mind, the distributed map of nodes cor-609


responding to “car” get high STI. When car-man is formed, it is reasoned about610


(producing new Atoms), but it also serves as a nexus of importance-spreading,611


causing the creation of a distributed car-man map.612
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38 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


If the goal of making an arm for a man-car occurs, then goal-driven schema613


learning may be done to learn a procedure for arm-making (where the actual learning614


is done by MOSES or hill-climbing).615


If the agent is building a man-car, it may have man-building and car-building616


schema in its ActiveSchemaPool at the same time, and SchemaActivation may spread617


back and forth between the different modules of these two schema.618


If the agent wants to build a horse, but has never seen a horse made of blocks619


(only various pictures and movies of horses), it may uses MOSES or hillclimbing620


internally to solve the problem of creating a horse-recognizer or a horse-generator621


which embodies appropriate abstract properties of horses. Here as in all cases of622


procedure learning, a complexity penalty rewards simpler programs, from among all623


programs that approximately fulfill the goals of the learning process.624


If a procedure being executed has some abstract parts, then these may be executed625


by inferential procedure evaluation (which makes the abstract parts concrete on the626


fly in the course of execution).627


To guess the fitness of a procedure for doing something (say, building an arm or628


recognizing a horse), inference or simulation may be used, as well as direct evaluation629


in the world.630


Deductive, inductive and abductive PLN inference may be used in figuring out631


what a blocks structure will look or act like before building it (it’s tall and thin632


so it may fall down; it won’t be bilaterally symmetric so it won’t look much like633


a person; etc.)634


Backward-chaining inference control will help figure out how to assemble some-635


thing matching a certain specification e.g. how to build a chassis based on knowledge636


of what a chassis looks like. Forward chaining inference (critically including inten-637


sional relationships) will be used to estimate the properties that the teacher will638


perceive a given specific structure to have. Spatial and temporal algebra will be used639


extensively in this reasoning, within the PLN framework.640


Coordinating different parts of the body—say an arm and a hand—will involve641


importance spreading (both up and down) within the hierarchical action network,642


and from this network to the hierarchical perception network and the heterarchical643


cognitive network.644


In looking up Atoms in the AtomSpace, some have truth values whose confidences645


have decayed significantly (e.g. those regarding the teacher’s tastes), whereas others646


have confidences that have hardly decayed at all (e.g. those regarding general physical647


properties of blocks).648


Finding previous blocks structures similar to the current one (useful for guiding649


building by analogy to past experience) may be done rapidly by searching the system’s650


internal dimensional-embedding space.651


As the building process occurs, patterns mined via past experience (tall things652


often fall down) are used within various cognitive processes (reasoning, procedure653


learning, concept creation, etc.); and new pattern mining also occurs based on the654


new observations made as different structures are build and experimented with and655


destroyed.656
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2.3 A Semi-Narrative Treatment 39


Simulation of teacher reactions, based on inference from prior examples, helps657


with the evaluation of possible structures, and also of procedures for creating658


structures.659


As the agent does all this, it experiences the emotion of curiosity (likely among660


other emotions), because as it builds each new structure it has questions about what661


it will look like and how the teacher would react to it.662


The human teacher says “It’s beautiful. What is it?” The agent says “It’s a663


car man”664


Now that the building is done and the teacher says something, the agent’s cog-665


nitive cycles are dominated by language understanding and generation. The Atom666


representing the context of talking to the teacher gets high STI, and is used as the667


context for many ensuing inferences.668


Comprehension of “it” uses anaphor resolution based on a combination of ECAN669


and PLN inference based on a combination of previously interpreted language and670


observation of the external world situation.671


The agent experiences the emotion of happiness because the teacher has called its672


creation beautiful, which is recognizes as a positive evaluation—so the agent knows673


one of its ubergoals (“please the teacher”) has been significantly fulfilled.674


The goal of pleasing the teacher causes the system to want to answer the question.675


So the QuestionAnswering DialogueController schema gets paid a lot and gets put676


into the ActiveSchemaPool. In reaction to the question asked, this DC chooses a677


semantic graph to speak, then invokes NL generation to say it.678


NL generation chooses the most compact expression that seems to adequately con-679


vey the intended meaning, so it decides on “car man” as the best simple verbalization680


to match the newly created conceptual blend that it thinks effectively describes the681


newly created blocks structure.682


The positive feedback from the user leads to reinforcement of the Atoms and683


processes that led to the construction of the blocks structure that has been judged684


beautiful (via importance spreading and SystemActivityTable mining).685


2.4 Conclusion686


The simple situation considered in this chapter is complex enough to involve nearly687


all the different cognitive processes in the CogPrime system—and many interactions688


between these processes. This fact illustrates one of the main difficulties of designing,689


building and testing an artificial mind like CogPrime—until nearly all of the system690


is build and made to operate in an integrated way, it’s hard to do any meaningful691


test of the system. Testing PLN or MOSES or conceptual blending in isolation may692


be interesting computer science, but it doesn’t tell you much about CogPrime as a693


design for a thinking machine.694


According to the CogPrime approach, getting a simple child-like interaction like695


“build me something with blocks that I haven’t seen before” to work properly requires696


a holistic, integrated cognitive system. Once one has built a system capable of this697
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40 2 Build Me Something I Haven’t Seen: A CogPrime Thought Experiment


sort of simple interaction then, according to the theory underlying CogPrime, one698


is not that far from a system with adult human-level intelligence. And once one has699


an adult human-level AGI built according to a highly flexible design like CogPrime,700


given the potential of such systems to self-analyze and self-modify, one is not far off701


from a dramatically powerful Genius Machine. Of course there will be a lot of work702


to do to get from a child-level system to an adult-level system—it won’t necessarily703


unfold as “automatically” as seems to happen with a human child, because CogPrime704


lacks the suite of developmental processes and mechanisms that the young human705


brain has. But still, a child CogPrime mind capable of doing the things outlined in706


this chapter will have all the basic components and interactions in place, all the ones707


that are needed for a much more advanced artificial mind.708


Of course, one could concoct a narrow-AI system carrying out the specific activ-709


ities described in this chapter, much more simply than one could build a CogPrime710


system capable of doing these activities. But that’s not the point—the point of this711


chapter is not to explain how to achieve some particular narrow set of activities “by712


any means necessary”, but rather to explain how these activities might be achieved713


within the CogPrime framework, which has been designed with much more gener-714


ality in mind.715


It would be worthwhile to elaborate a number of other situations similar to the716


one described in this chapter, and to work through the various cognitive processes717


and structures in CogPrime carefully in the context of each of these situations. In718


fact this sort of exercise has frequently been carried out informally in the context719


of developing CogPrime. But the burden of this book is already large enough, so720


we will leave this for future works—emphasizing that it is via intimate interplay721


between concrete considerations like the ones presented in this chapter, and general722


algorithmic and conceptual considerations as presented in most of the chapters of723


this book, that we have the greatest hope of creating advanced AGI. The value of this724


sort of interplay actually follows from the theory of real-world general intelligence725


presented several of the following chapters in Part One (vol. 5). Thoroughly general726


intelligence is only possible given unrealistic computational resources, so real-world727


general intelligence is about achieving high generality given limited resources relative728


to the specific classes of environments relevant to a given agent. Specific situations729


like building surprising things with blocks are particularly important insofar as they730


embody broader information about the classes of environments relevant to broadly731


human-like general intelligence.732


No doubt, once a CogPrime system is completed, the specifics of its handling733


of the situation described here will differ somewhat from the treatment presented734


in this chapter. Furthermore, the final CogPrime system may differ algorithmically735


and structurally in some respects from the specifics given in this book—it would be736


surprising if the process of building, testing and interacting with CogPrime didn’t737


teach us some new things about various of the topics covered. But our conjecture738


is that, if sufficient effort is deployed appropriately, then a system much like the739


CogPrime system described in this book will be able to handle the situation described740


in this chapter in a roughly similar manner to the one described in this chapter—and741


that this will serve as a natural precursor to much more dramatic AGI achievements.742
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Chapter 3
What is Human-Like General Intelligence?


3.1 Introduction


CogPrime, the AGI architecture on which the bulk of this book focuses, is aimed
at the creation of artificial general intelligence that is vaguely human-like in nature,
and possesses capabilities at the human level and ultimately beyond.


Obviously this description begs some foundational questions, such as, for starters:
What is “general intelligence”? What is “human-like general intelligence”? What is
“intelligence” at all?


Perhaps in the future there will exist a rigorous theory of general intelligence which
applies usefully to real-world biological and digital intelligences. In later chapters we
will give some ideas in this direction. But such a theory is currently nascent at best.
So, given the present state of science, these two questions about intelligence must
be handled via a combination of formal and informal methods. This brief, informal
chapter attempts to explain our view on the nature of intelligence in sufficient detail
to place the discussion of CogPrime in appropriate context, without trying to resolve
all the subtleties.


Psychologists sometimes define human general intelligence using IQ tests and
related instruments—so one might wonder: why not just go with that? But these
sorts of intelligence testing approaches have difficulty even extending to humans from
diverse cultures [HHPO12] [Fis01]. So it’s clear that to ground AGI approaches that
are not based on precise modeling of human cognition, one requires a more funda-
mental understanding of the nature of general intelligence. On the other hand, if one
conceives intelligence too broadly and mathematically, there’s a risk of leaving the
real human world too far behind. In this chapter (followed up in Chaps. 9 and 7
with more rigor), we present a highly abstract understanding of intelligence-in-
general, and then portray human-like general intelligence as a (particularly relevant)
special case.


B. Goertzel et al., Engineering General Intelligence, Part 1, 43
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_3,
© Atlantis Press and the authors 2014
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44 3 What Is Human-Like General Intelligence?


3.1.1 What is General Intelligence?


Many attempts to characterize general intelligence have been made; Legg and Hutter
[LH07a] review over 70! Our preferred abstract characterization of intelligence is:
the capability of a system to choose actions maximizing its goal-achievement,
based on its perceptions and memories, and making reasonably efficient use of its
computational resources [Goe10b]. A general intelligence is then understood as one
that can do this for a variety of complex goals in a variety of complex environments.


However, apart from positing definitions, it is difficult to say anything nontrivial
about general intelligence in general. Marcus Hutter [Hut05a] has demonstrated,
using a characterization of general intelligence similar to the one above, that a very
simple algorithm called AIXItl can demonstrate arbitrarily high levels of general
intelligence, if given sufficiently immense computational resources. This is interest-
ing because it shows that (if we assume the universe can effectively be modeled as a
computational system) general intelligence is basically a problem of computational
efficiency. The particular structures and dynamics that characterize real-world gen-
eral intelligences like humans arise because of the need to achieve reasonable levels
of intelligence using modest space and time resources.


The “patternist” theory of mind presented in [Goe06a] and briefly summarized in
Chap. 4 presents a number of emergent structures and dynamics that are hypothe-
sized to characterize pragmatic general intelligence, including such things as system-
wide hierarchical and heterarchical knowledge networks, and a dynamic and self-
maintaining self-model. Much of the thinking underlying CogPrime has centered on
how to make multiple learning components combine to give rise to these emergent
structures and dynamics.


3.1.2 What is Human-Like General Intelligence?


General principles like “complex goals in complex environments” and patternism
are not sufficient to specify the nature of human-like general intelligence. Due to the
harsh reality of computational resource restrictions, real-world general intelligences
are necessarily biased to particular classes of environments. Human intelligence is
biased toward the physical, social and linguistic environments in which humanity
evolved, and if AI systems are to possess humanlike general intelligence they must
to some extent share these biases.


But what are these biases, specifically? This is a large and complex question,
which we seek to answer in a theoretically grounded way in Chap. 9. However,
before turning to abstract theory, one may also approach the question in a pragmatic
way, by looking at the categories of things that humans do to manifest their particular
variety of general intelligence. This is the task of the following section.
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3.2 Commonly Recognized Aspects of Human-Like Intelligence


It would be nice if we could give some sort of “standard model of human intelligence”
in this chapter, to set the context for our approach to artificial general intelligence—
but the truth is that there isn’t any. What the cognitive science field has produced so far
is better described as: a broad set of principles and platitudes, plus a long, loosely-
organized list of ideas and results. Chapter 6 constitutes an attempt to present an
integrative architecture diagram for human-like general intelligence, synthesizing
the ideas of a number of different AGI and cognitive theorists. However, though the
diagram given there attempts to be inclusive, it nonetheless contains many features
that are accepted by only a plurality of the research community.


The following list of key aspects of human-like intelligence has a better claim at
truly being generic and representing the consensus understanding of contemporary
science. It was produced by a very simple method: starting with the Wikipedia page
for cognitive psychology, and then adding a few items onto it based on scrutinizing the
tables of contents of some top-ranked cognitive psychology textbooks. There is some
redundancy among list items, and perhaps also some minor omissions (depending
on how broadly one construes some of the items), but the point is to give a broad
indication of human mental functions as standardly identified in the psychology field:


• Perception


– General perception
– Psychophysics
– Pattern recognition (the ability to correctly interpret ambiguous sensory infor-


mation)
– Object and event recognition
– Time sensation (awareness and estimation of the passage of time)


• Motor Control


– Motor planning
– Motor execution
– Sensorimotor integration


• Categorization


– Category induction and acquisition
– Categorical judgement and classification
– Category representation and structure
– Similarity


• Memory


– Aging and memory
– Autobiographical memory
– Constructive memory
– Emotion and memory
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46 3 What Is Human-Like General Intelligence?


– False memories
– Memory biases
– Long-term memory
– Episodic memory
– Semantic memory
– Procedural memory
– Short-term memory
– Sensory memory
– Working memory


• Knowledge representation


– Mental imagery
– Propositional encoding
– Imagery versus propositions as representational mechanisms
– Dual-coding theories
– Mental models


• Language


– Grammar and linguistics
– Phonetics and phonology
– Language acquisition


• Thinking


– Choice
– Concept formation
– Judgment and decision making
– Logic, formal and natural reasoning
– Problem solving
– Planning
– Numerical cognition
– Creativity


• Consciousness


– Attention and Filtering (the ability to focus mental effort on specific stimuli
whilst excluding other stimuli from consideration)


– Access consciousness
– Phenomenal consciousness


• Social Intelligence


– Distributed Cognition
– Empathy


If there’s nothing surprising to you in the above list, I’m not surprised! If you’ve
read a bit in the modern cognitive science literature, the list may even seem trivial.
But it’s worth reflecting that 50 years ago, no such list could have been produced with
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the same level of broad acceptance. And less than 100 years ago, the Western world’s
scientific understanding of the mind was dominated by Freudian thinking; and not too
long after that, by behaviorist thinking, which argued that theorizing about what went
on inside the mind made no sense, and science should focus entirely on analyzing
external behavior. The progress of cognitive science hasn’t made as many headlines
as contemporaneous progress in neuroscience or computing hardware and software,
but it’s certainly been dramatic. One of the reasons that AGI is more achievable now
than in the 1950s and 1960s when the AI field began, is that now we understand the
structures and processes characterizing human thinking a lot better.


In spite of all the theoretical and empirical progress in the cognitive science field,
however, there is still no consensus among experts on how the various aspects of
intelligence in the above “human intelligence feature list” are achieved and interre-
lated. In these pages, however, for the purpose of motivating CogPrime, we assume
a broad integrative understanding roughly as follows:


• Perception: There is significant evidence that human visual perception occurs
using a spatiotemporal hierarchy of pattern recognition modules, in which higher-
level modules deal with broader spacetime regions, roughly as in the DeSTIN
AGI architecture discussed in Chap. 5. Further, there is evidence that each module
carries out temporal predictive pattern recognition as well as static pattern recog-
nition. Audition likely utilizes a similar hierarchy. Olfaction may use something
more like a Hopfield attractor neural network, as described in Chap. 13. The net-
works corresponding to different sense modalities have multiple cross-linkages,
more at the upper levels than the lower, and also link richly into the parts of the
mind dealing with other functions.


• Motor Control: This appears to be handled by a spatiotemporal hierarchy as well,
in which each level of the hierarchy corresponds to higher-level (in space and time)
movements. The hierarchy is very tightly linked in with the perceptual hierarchies,
allowing sensorimotor learning and coordination.


• Memory: There appear to be multiple distinct but tightly cross-linked memory
systems, corresponding to different sorts of knowledge such as declarative (facts
and beliefs), procedural, episodic, sensorimotor, attentional and intentional (goals).


• Knowledge Representation: There appear to be multiple base-level representa-
tional systems; at least one corresponding to each memory system, but perhaps
more than that. Additionally there must be the capability to dynamically create
new context-specific representational systems founded on the base representational
system.


• Language: While there is surely some innate biasing in the human mind toward
learning certain types of linguistic structure, it’s also notable that language shares
a great deal of structure with other aspects of intelligence like social roles [CB00]
and the physical world [Cas07]. Language appears to be learned based on biases
toward learning certain types of relational role systems; and language processing
seems a complex mix of generic reasoning and pattern recognition processes with
specialized acoustic and syntactic processing routines.
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48 3 What Is Human-Like General Intelligence?


• Consciousness is pragmatically well-understood using Baars’ “global
workspace” theory, in which a small subset of the mind’s content is summoned
at each time into a “working memory” aka “workspace” aka “attentional focus”
where it is heavily processed and used to guide action selection.


• Thinking is a diverse combination of processes encompassing things like cate-
gorization, (crisp and uncertain) reasoning, concept creation, pattern recognition,
and others; these processes must work well with all the different types of memory
and must effectively integrate knowledge in the global workspace with knowledge
in long-term memory.


• Social Intelligence seems closely tied with language and also with self-modeling;
we model ourselves in large part using the same specialized biases we use to help
us model others.


None of the points in the above bullet list is particularly controversial, but neither
are any of them universally agreed-upon by experts. However, in order to make any
progress on AGI design one must make some commitments to particular cognition-
theoretic understandings, at this level and ultimately at more precise levels as well.
Further, general philosophical analyses like the patternist philosophy to be reviewed
in the following chapter only provide limited guidance here. Patternism provides
a filter for theories about specific cognitive functions—it rules out assemblages of
cognitive-function-specific theories that don’t fit together to yield a mind that could
act effectively as a pattern-recognizing, goal-achieving system with the right internal
emergent structures. But it’s not a precise enough filter to serve as a sole guide for
cognitive theory even at the high level.


The above list of points leads naturally into the integrative architecture diagram
presented in Chap. 6. But that generic architecture diagram is fairly involved, and
before presenting it, we will go through some more background regarding human-
like intelligence (in the rest of this chapter), philosophy of mind (in Chap. 4) and
contemporary AGI architectures (in Chap. 5).


3.3 Further Characterizations of Human-Like Intelligence


We now present a few complementary approaches to characterizing the key aspects
of humanlike intelligence, drawn from different perspectives in the psychology and
AI literature. These different approaches all overlap substantially, which is good, yet
each gives a slightly different slant.


3.3.1 Competencies Characterizing Human-Like Intelligence


First we give a list of key competencies characterizing human level intelligence
resulting from the AGI Roadmap Workshop held at the University of Knoxville in
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3.3 Further Characterizations of Human-Like Intelligence 49


October 2008,1 which was organized by Ben Goertzel and Itamar Arel. In this list,
each broad competency area is listed together with a number of specific competencies
sub-areas within its scope:


1. Perception: vision, hearing, touch, proprioception, crossmodal
2. Actuation: physical skills, navigation, tool use
3. Memory: episodic, declarative, behavioral
4. Learning: imitation, reinforcement, interactive verbal instruction, written media,


experimentation
5. Reasoning: deductive, abductive, inductive, causal, physical, associational, cat-


egorization
6. Planning: strategic, tactical, physical, social
7. Attention: visual, social, behavioral
8. Motivation: subgoal creation, affect-based motivation, control of emotions
9. Emotion: expressing emotion, understanding emotion


10. Self: self-awareness, self-control, other-awareness
11. Social: empathy, appropriate social behavior, social communication, social infer-


ence, group play, theory of mind
12. Communication: gestural, pictorial, verbal, language acquisition, cross-modal
13. Quantitative: counting, grounded arithmetic, comparison, measurement
14. Building/Creation: concept formation, verbal invention, physical construction,


social group formation.


Clearly this list is getting at the same things as the textbook headings given in
Sect. 3.2, but with a different emphasis due to its origin among AGI researchers
rather than cognitive psychologists. As part of the AGI Roadmap project, specific
tasks were created corresponding to each of the sub-areas in the above list; we will
describe some of these tasks in Chap. 17.


3.3.2 Gardner’s Theory of Multiple Intelligences


The diverse list of human-level “competencies” given above is reminiscent of
Gardner’s [Gar99] multiple intelligences (MI) framework—a psychological approach
to intelligence assessment based on the idea that different people have mental
strengths in different high-level domains, so that intelligence tests should contain
aspects that focus on each of these domains separately. MI does not contradict the


1 See http://www.ece.utk.edu/~itamar/AGI_Roadmap.html; participants included: Sam Adams,
IBM Research; Ben Goertzel, Novamente LLC; Itamar Arel, University of Tennessee; Joscha
Bach, Institute of Cognitive Science, University of Osnabruck, Germany; Robert Coop, Univer-
sity of Tennessee; Rod Furlan, Singularity Institute; Matthias Scheutz, Indiana University; J. Storrs
Hall, Foresight Institute; Alexei Samsonovich, George Mason University; Matt Schlesinger, South-
ern Illinois University; John Sowa, Vivomind Intelligence, Inc.; Stuart C. Shapiro, University at
Buffalo.
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50 3 What Is Human-Like General Intelligence?


“complex goals in complex environments” view of intelligence, but rather may be
interpreted as making specific commitments regarding which complex tasks and
which complex environments are most important for roughly human-like intelli-
gence.


MI does not seek an extreme generality, in the sense that it explicitly focuses
on domains in which humans have strong innate capability as well as general-
intelligence capability; there could easily be non-human intelligences that would
exceed humans according to both the commonsense human notion of “general
intelligence” and the generic “complex goals in complex environments” or Hutter/
Legg-style definitions, yet would not equal humans on the MI criteria. This strong
anthropocentrism of MI is not a problem from an AGI perspective so long as one
uses MI in an appropriate way, i.e. only for assessing the extent to which an AGI sys-
tem displays specifically human-like general intelligence. This restrictiveness is the
price one pays for having an easily articulable and relatively easily implementable
evaluation framework.


Table 3.1 summarizes the types of intelligence included in Gardner’s MI theory.


3.3.3 Newell’s Criteria for a Human Cognitive Architecture


Finally, another related perspective is given by Alan Newell’s “functional criteria
for a human cognitive architecture” [New90], which require that a humanlike AGI
system should:


Table 3.1 Types of intelligence in Gardner’s multiple intelligence theory


Intelligence Type Aspects


Linguistic Words and language, written and spoken; retention, interpretation and
explanation of ideas and information via language; understands
relationship between communication and meaning


Logical-Mathematical Logical thinking, detecting patterns, scientific reasoning and
deduction; analyse problems, perform mathematical calculations,
understands relationship between cause and effect towards a
tangible outcome


Musical Musical ability, awareness, appreciation and use of sound; recognition
of tonal and rhythmic patterns, understands relationship between
sound and feeling


Bodily-Kinesthetic Body movement control, manual dexterity, physical agility and
balance; eye and body coordination


Spatial-Visual Visual and spatial perception; interpretation and creation of images;
pictorial imagination and expression; understands relationship
between images and meanings, and between space and effect


Interpersonal Perception of other people’s feelings; relates to others; interpretation
of behaviour and communications; understands relationships
between people and their situations
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1. Behave as an (almost) arbitrary function of the environment
2. Operate in real time
3. Exhibit rational, i.e., effective adaptive behavior
4. Use vast amounts of knowledge about the environment
5. Behave robustly in the face of error, the unexpected, and the unknown
6. Integrate diverse knowledge
7. Use (natural) language
8. Exhibit self-awareness and a sense of self
9. Learn from its environment


10. Acquire capabilities through development
11. Arise through evolution
12. Be realizable within the brain.


In our view, Newell’s criterion 1 is poorly-formulated, for while universal Turing
computing power is easy to come by, any finite AI system must inevitably be heavily
adapted to some particular class of environments for straightforward mathematical
reasons [Hut05a, GPI+10]. On the other hand, his criteria 11 and 12 are not relevant
to the CogPrime approach as we are not doing biological modeling but rather AGI
engineering. However, Newell’s criteria 2–10 are essential in our view, and all will
be covered in the following chapters.


3.3.4 Intelligence and Creativity


Creativity is a key aspect of intelligence. While sometimes associated especially
with genius-level intelligence in science or the arts, actually creativity is pervasive
throughout intelligence, at all levels. When a child makes a flying toy car by pasting
paper bird wings on his toy car, and when a bird figures out how to use a curved
stick to get a piece of food out of a difficult corner—this is creativity, just as much
as the invention of a new physics theory or the design of a new fashion line. The
very nature of intelligence—achieving complex goals in complex environments—
requires creativity for its achievement, because the nature of complex environments
and goals is that they are always unveiling new aspects, so that dealing with them
involves inventing things beyond what worked for previously known aspects.


CogPrime contains a number of cognitive dynamics that are especially effective
at creating new ideas, such as: concept creation (which synthesizes new concepts
via combining aspects of previous ones), probabilistic evolutionary learning (which
simulates evolution by natural selection, creating new procedures via mutation, com-
bination and probabilistic modeling based on previous ones), and analogical inference
(an aspect of the Probabilistic Logic Networks subsystems). But ultimately creativity
is about how a system combines all the processes at its disposal to synthesize novel
solutions to the problems posed by its goals in its environment.


There are times, of course, when the same goal can be achieved in multiple
ways—some more creative than others. In CogPrime this relates to the existence of
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multiple top-level goals, one of which may be novelty. A system with novelty as
one of its goals, alongside other more specific goals, will have a tendency to solve
other problems in creative ways, thus fulfilling its novelty goal along with its other
goals. This can be seen at the level of childlike behaviors, and also at a much more
advanced level. Salvador Dali wanted to depict his thoughts and feelings, but he
also wanted to do so in a striking and unusual way; this combination of aspirations
spurred him to produce his amazing art. A child who is asked to draw a house, but has
a goal of novelty, may draw a tower with a swimming pool on the roof rather than a
typical Colonial structure. A physical motivated by novelty will seek a non-obvious
solution to the equation at hand, rather than just applying tried and true methods, and
perhaps discover some new phenomenon. Novelty can be measured formally in terms
of information-theoretic surprisingness based upon a given basis of knowledge and
experience [Sch06]; something that is novel and creative to a child may be familiar
to the adult world, and a solution that seems novel and creative to a brilliant scientist
today, may seem like cliche’ elementary school level work 100 years from now.


Measuring creativity is even more difficult and subjective than measuring intelli-
gence. Qualitatively, however, we humans can recognize it; and we suspect that the
qualitative emergence of dramatic, multidisciplinary computational creativity will
be one of the things that makes the human population feel emotionally that advanced
AGI has finally arrived.


3.4 Preschool as a View into Human-Like General Intelligence


One issue that arises when pursuing the grand goal of human-level general intelli-
gence is how to measure partial progress. The classic Turing Test of imitating human
conversation remains too difficult to usefully motivate immediate-term AI research
(see [HF95] [Fre90] for arguments that it has been counterproductive for the AI
field). The same holds true for comparable alternatives like the Robot College Test
of creating a robot that can attend a semester of university and obtain passing grades.
However, some researchers have suggested intermediary goals, that constitute partial
progress toward the grand goal and yet are qualitatively different from the highly
specialized problems to which most current AI systems are applied.


In this vein, Sam Adams and his team at IBM have outlined a so-called “Toddler
Turing Test,” in which one seeks to use AI to control a robot qualitatively displaying
similar cognitive behaviors to a young human child (say, a 3 year old) [AABL02]. In
fact this sort of idea has a long and venerable history in the AI field—Alan Turing’s
original 1950 paper on AI [Tur50], where he proposed the Turing Test, contains the
suggestion that


Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s?
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We find this childlike cognition based approach promising for many reasons, includ-
ing its integrative nature: what a young child does involves a combination of percep-
tion, actuation, linguistic and pictorial communication, social interaction, conceptual
problem solving and creative imagination. Specifically, inspired by these ideas, in
Chap. 16 we will suggest the approach of teaching and testing early-stage AGI sys-
tems in environments that emulate the preschools used for teaching human children.


Human intelligence evolved in response to the demands of richly interactive envi-
ronments, and a preschool is specifically designed to be a richly interactive environ-
ment with the capability to stimulate diverse mental growth. So, we are currently
exploring the use of CogPrime to control virtual agents in preschool-like virtual
world environments, as well as commercial humanoid robot platforms such as the
Nao (see Fig. 3.1) or Robokind (Fig. 3.2) in physical preschool-like robot labs.


Another advantage of focusing on childlike cognition is that child psychologists
have created a variety of instruments for measuring child intelligence. In Chap. 17,
we will discuss an approach to evaluating the general intelligence of human childlike
AGI systems via combining tests typically used to measure the intelligence of young
human children, with additional tests crafted based on cognitive science and the
standard preschool curriculum. AQ1


Fig. 3.1 The Nao humanoid
robot



http://dx.doi.org/10.2991/978-94-6239-027-0_16

http://dx.doi.org/10.2991/978-94-6239-027-0_17





A
ut


ho
r


Pr
oo


f


54 3 What Is Human-Like General Intelligence?


Fig. 3.2 The Nao humanoid
robot


To put it differently: While our long-term goal is the creation of genius machines
with general intelligence at the human level and beyond, we believe that every young
child has a certain genius; and by beginning with this childlike genius, we can built
a platform capable of developing into a genius machine with far more dramatic
capabilities.


3.4.1 Design for an AGI Preschool


More precisely, we don’t suggest to place a CogPrime system in an environment
that is an exact imitation of a human preschool—this would be inappropriate since
current robotic or virtual bodies are very differently abled than the body of a young
human child. But we aim to place CogPrime in an environment emulating the basic
diversity and educational character of a typical human preschool. We stress this now,
at this early point in the book, because we will use running examples throughout the
book drawn from the preschool context.
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The key notion in modern preschool design is the “learning center,” an area
designed and outfitted with appropriate materials for teaching a specific skill. Learn-
ing centers are designed to encourage learning by doing, which greatly facilitates
learning processes based on reinforcement, imitation and correction; and also to
provide multiple techniques for teaching the same skills, to accommodate different
learning styles and prevent overfitting and overspecialization in the learning of new
skills.


Centers are also designed to cross-develop related skills. A “manipulatives center,”
for example, provides physical objects such as drawing implements, toys and puzzles,
to facilitate development of motor manipulation, visual discrimination, and (through
sequencing and classification games) basic logical reasoning. A “dramatics center”
cross-trains interpersonal and empathetic skills along with bodily-kinesthetic, lin-
guistic, and musical skills. Other centers, such as art, reading, writing, science and
math centers are also designed to train not just one area, but to center around a primary
intelligence type while also cross-developing related areas. For specific examples of
the learning centers associated with particular contemporary preschools, see [Nei98].
In many progressive, student-centered preschools, students are left largely to their
own devices to move from one center to another throughout the preschool room.
Generally, each center will be staffed by an instructor at some points in the day but
not others, providing a variety of learning experiences.


To imitate the general character of a human preschool, we will create several
centers in our robot lab. The precise architecture will be adapted via experience but
initial centers will likely be:


• a blocks center: a table with blocks on it
• a language center: a circle of chairs, intended for people to sit around and talk


with the robot
• a manipulatives center, with a variety of different objects of different shapes and


sizes, intended to teach visual and motor skills
• a ball play center: where balls are kept in chests and there is space for the robot


to kick the balls around
• a dramatics center where the robot can observe and enact various movements.


One Running Example


As we proceed through the various component structures and dynamics of CogPrime
in the following chapters, it will be useful to have a few running examples to use
to explain how the various parts of the system are supposed to work. One example
we will use fairly frequently is drawn from the preschool context: the somewhat
open-ended task of Build me something out of blocks, that you haven’t built for
me before, and then tell me what it is. This is a relatively simple task that combines
multiple aspects of cognition in a richly interconnected way, and is the sort of thing
that young children will naturally do in a preschool setting.
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3.5 Integrative and Synergetic Approaches to Artificial
General Intelligence


In Chap. ?? we characterized CogPrime as an integrative approach. And we suggest
that the naturalness of integrative approaches to AGI follows directly from comparing
above lists of capabilities and criteria to the array of available AI technologies. No
single known algorithm or data structure appears easily capable of carrying out all
these functions, so if one wants to proceed now with creating a general intelligence
that is even vaguely humanlike, one must integrate various AI technologies within
some sort of unifying architecture.AQ2


For this reason and others, an increasing amount of work in the AI community
these days is integrative in one sense or another. Estimation of Distribution Algo-
rithms integrate probabilistic reasoning with evolutionary learning [Pel05]. Markov
Logic Networks [RD06] integrate formal logic and probabilistic inference, as does
the Probabilistic Logic Networks framework [GIGH08] utilized in CogPrime and
explained further in the book, and other works in the “Progic” area such as [WW06].
Leslie Pack Kaelbling has synthesized low-level robotics methods (particle filtering)
with logical inference [ZPK07]. Dozens of further examples could be given. The con-
struction of practical robotic systems like the Stanley system that won the DARPA
Grand Challenge [Tea06] involve the integration of numerous components based on
different principles. These algorithmic and pragmatic innovations provide ample raw
materials for the construction of integrative cognitive architectures and are part of
the reason why childlike AGI is more approachable now than it was 50 or even 10
years ago.


Further, many of the cognitive architectures described in the current AI liter-
ature are “integrative” in the sense of combining multiple, qualitatively different,
interoperating algorithms. Chapter 5 gives a high-level overview of existing cog-
nitive architectures, dividing them into symbolic, emergentist (e.g. neural network)
and hybrid architectures. The hybrid architectures generally integrate symbolic and
neural components, often with multiple subcomponents within each of these broad
categories. However, we believe that even these excellent architectures are not inte-
grative enough, in the sense that they lack sufficiently rich and nuanced interactions
between the learning components associated with different kinds of memory, and
hence are unlikely to give rise to the emergent structures and dynamics characteriz-
ing general intelligence. One of the central ideas underlying CogPrime is that with
an integrative cognitive architecture that combines multiple aspects of intelligence,
achieved by diverse structures and algorithms, within a common framework designed
specifically to support robust synergetic interactions between these aspects.


The simplest way to create an integrative AI architecture is to loosely couple
multiple components carrying out various functions, in such a way that the differ-
ent components pass inputs and outputs amongst each other but do not interfere
with or modulate each others’ internal functioning in real-time. However, the human
brain appears to be integrative in a much tighter sense, involving rich real-time
dynamical coupling between various components with distinct but related functions.



http://dx.doi.org/10.2991/978-94-6239-027-0_5
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In [Goe09a] we have hypothesized that the brain displays a property of cognitive
synergy, according to which multiple learning processes can not only dispatch sub-
problems to each other, but also share contextual understanding in real-time, so
that each one can get help from the others in a contextually savvy way. By imbuing
AI architectures with cognitive synergy, we hypothesize, one can get past the bottle-
necks that have plagued AI in the past. Part of the reasoning here, as elaborated in
Chap. 9 and [Goe09b], is that real physical and social environments display a rich
dynamic interconnection between their various aspects, so that richly dynamically
interconnected integrative AI architectures will be able to achieve goals within them
more effectively.


And this brings us to the patternist perspective on intelligent systems, alluded to
above and fleshed out further in Chap. 4 with its focus on the emergence of hier-
archically and heterarchically structured networks of patterns, and pattern-systems
modeling self and others. Ultimately the purpose of cognitive synergy in an AGI
system is to enable the various AI algorithms and structures composing the system
to work together effectively enough to give rise to the right system-wide emergent
structures characterizing real-world general intelligence. The underlying theory is
that intelligence is not reliant on any particular structure or algorithm, but is reliant
on the emergence of appropriately structured networks of patterns, which can then
be used to guide ongoing dynamics of pattern recognition and creation. And the
underlying hypothesis is that the emergence of these structures cannot be achieved
by a loosely interconnected assemblage of components, no matter how sensible the
architecture; it requires a tightly connected, synergetic system.


It is possible to make these theoretical ideas about cognition mathematically rig-
orous; for instance, Appendix ?? briefly presents a formal definition of cognitive
synergy that has been analyzed as part of an effort to prove theorems about the
importance of cognitive synergy for giving rise to emergent system properties asso-
ciated with general intelligence. However, while we have found such formal analyses
valuable for clarifying our designs and understanding their qualitative properties, we
have concluded that, for the present, the best way to explore our hypotheses about
cognitive synergy and human-like general intelligence is empirically—via building
and testing systems like CogPrime. AQ3


3.5.1 Achieving Human-Like Intelligence via Cognitive Synergy


Summing up: at the broadest level, there are four primary challenges in constructing
an integrative, cognitive synergy based approach to AGI:


1. Choosing an overall cognitive architecture that possesses adequate richness and
flexibility for the task of achieving childlike cognition.


2. Choosing appropriate AI algorithms and data structures to fulfill each of the
functions identified in the cognitive architecture. (e.g. visual perception, audition,
episodic memory, language generation, analogy,...)



http://dx.doi.org/10.2991/978-94-6239-027-0_9
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3. Ensuring that these algorithms and structures, within the chosen cognitive archi-
tecture, are able to cooperate in such a way as to provide appropriate coordinated,
synergetic intelligent behavior (a critical aspect since childlike cognition is an
integrated functional response to the world, rather than a loosely coupled collec-
tion of capabilities.)


4. Embedding one’s system in an environment that provides sufficiently rich stim-
uli and interactions to enable the system to use this cooperation to ongoingly,
creatively develop an intelligent internal world-model and self-model.


We argue that CogPrime provides a viable way to address these challenges.
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Chapter 4
A Patternist Philosophy of Mind


4.1 Introduction0


In the last chapter we discussed human intelligence from a fairly down-to-earth1


perspective, looking at the particular intelligent functions that human beings carry out2


in their everyday lives. And we strongly feel this practical perspective is important:3


Without this concreteness, it’s too easy for AGI research to get distracted by appealing4


(or frightening) abstractions of various sorts. However, it’s also important to look at5


the nature of mind and intelligence from a more general and conceptual perspective,6


to avoid falling into an approach that follows the particulars of human capability7


but ignores the deeper structures and dynamics of mind that ultimately allow human8


minds to be so capable. In this chapter we very briefly review some ideas from9


the patternist philosophy of mind, a general conceptual framework on intelligence10


which has been inspirational for many key aspects of the CogPrime design, and which11


has been ongoingly developed by one of the authors (Ben Goertzel) during the last12


two decades (in a series of publications beginning in 1991, most recently The Hidden13


Pattern [Goe06a]). Some of the ideas described are quite broad and conceptual, and14


are related to CogPrime only via serving as general inspirations; others are more15


concrete and technical, and are actually utilized within the design itself.16


CogPrime is an integrative design formed via the combination of a number of17


different philosophical, scientific and engineering ideas. The success or failure of the18


design doesn’t depend on any particular philosophical understanding of intelligence.19


In that sense, the more abstract notions presented in this chapter should be considered20


“optional” rather than critical in a CogPrime context. However, due to the core role21


patternism has played in the development of CogPrime, understanding a few things22


about general patternist philosophy will be helpful for understanding CogPrime,23


even for those readers who are not philosophically inclined. Those readers who are24


philosophically inclined, on the other hand, are urged to read The Hidden Pattern25


and then interpret the particulars of CogPrime in this light.26


B. Goertzel et al., Engineering General Intelligence, Part 1, 59
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_4,
© Atlantis Press and the authors 2014
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4.2 Some Patternist Principles27


The patternist philosophy of mind is a general approach to thinking about intelligent28


systems. It is based on the very simple premise that mind is made of pattern—and29


that a mind is a system for recognizing patterns in itself and the world, critically30


including patterns regarding which procedures are likely to lead to the achievement31


of which goals in which contexts.32


Pattern as the basis of mind is not in itself is a very novel idea; this concept is33


present, for instance, in the nineteenth-century philosophy of Charles Peirce [Pei34],34


in the writings of contemporary philosophers Daniel Dennett [Den91] and Douglas35


Hofstadter [Hof79, Hof96], in Benjamin Whorf’s [Who64] linguistic philosophy and36


Gregory Bateson’s [Bat79] systems theory of mind and nature. Bateson spoke of the37


Metapattern: “that it is pattern which connects.” In Goertzel’s writings on philosophy38


of mind, an effort has been made to pursue this theme more thoroughly than has been39


done before, and to articulate in detail how various aspects of human mind and mind40


in general can be well-understood by explicitly adopting a patternist perspective.141


In the patternist perspective, “pattern” is generally defined as “representation as42


something simpler.” Thus, for example, if one measures simplicity in terms of bit-43


count, then a program compressing an image would be a pattern in that image. But44


if one uses a simplicity measure incorporating run-time as well as bit-count, then45


the compressed version may or may not be a pattern in the image, depending on46


how one’s simplicity measure weights the two factors. This definition encompasses47


simple repeated patterns, but also much more complex ones. While pattern theory has48


typically been elaborated in the context of computational theory, it is not intrinsically49


tied to computation; rather, it can be developed in any context where there is a notion50


of “representation” or “production” and a way of measuring simplicity. One just51


needs to be able to assess the extent to which f represents or produces X, and then to52


compare the simplicity of f and X; and then one can assess whether f is a pattern in X.53


A formalization of this notion of pattern is given in [Goe06a] and briefly summarized54


at the end of this chapter.55


Next, in patternism the mind of an intelligent system is conceived as the (fuzzy)56


set of patterns in that system, and the set of patterns emergent between that system57


and other systems with which it interacts. The latter clause means that the patternist58


perspective is inclusive of notions of distributed intelligence [Hut96]. Basically, the59


mind of a system is the fuzzy set of different simplifying representations of that60


system that may be adopted.61


Intelligence is conceived, similarly to in Marcus Hutter’s [Hut05] recent work (and62


as elaborated informally in Chap. 3, and formally in Chap. 7), as the ability to achieve63


complex goals in complex environments; where complexity itself may be defined as64


the possession of a rich variety of patterns. A mind is thus a collection of patterns65


1 In some prior writings the term “psynet model of mind” has been used to refer to the application of
patternist philosophy to cognitive theory, but this term has been “deprecated” in recent publications
as it seemed to introduce more confusion than clarification.
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4.2 Some Patternist Principles 61


that is associated with a persistent dynamical process that achieves highly-patterned66


goals in highly-patterned environments.67


An additional hypothesis made within the patternist philosophy of mind is that68


reflection is critical to intelligence. This lets us conceive an intelligent system as a69


dynamical system that recognizes patterns in its environment and itself, as part of its70


quest to achieve complex goals.71


While this approach is quite general, it is not vacuous; it gives a particular structure72


to the tasks of analyzing and synthesizing intelligent systems. About any would-be73


intelligent system, we are led to ask questions such as:74


• How are patterns represented in the system? That is, how does the underlying75


infrastructure of the system give rise to the displaying of a particular pattern in the76


system’s behavior?77


• What kinds of patterns are most compactly represented within the system?78


• What kinds of patterns are most simply learned?79


• What learning processes are utilized for recognizing patterns?80


• What mechanisms are used to give the system the ability to introspect (so that it81


can recognize patterns in itself)?82


Now, these same sorts of questions could be asked if one substituted the word83


“pattern” with other words like “knowledge” or “information”. However, we have84


found that asking these questions in the context of pattern leads to more productive85


answers, avoiding unproductive byways and also tying in very nicely with the details86


of various existing formalisms and algorithms for knowledge representation and87


learning.88


Among the many kinds of patterns in intelligent systems, semiotic patterns are89


particularly interesting ones. Peirce decomposed these into three categories:90


• iconic patterns, which are patterns of contextually important internal similarity91


between two entities (e.g. an iconic pattern binds a picture of a person to that92


person)93


• indexical patterns, which are patterns of spatiotemporal co-occurrence (e.g. an94


indexical pattern binds a wedding dress and a wedding)95


• symbolic patterns, which are patterns indicating that two entities are often involved96


in the same relationships (e.g. a symbolic pattern between the number “5” (the97


symbol) and various sets of 5 objects (the entities that the symbol is taken to98


represent))99


Of course, some patterns may span more than one of these semiotic categories;100


and there are also some patterns that don’t fall neatly into any of these categories.101


But the semiotic patterns are particularly important ones; and symbolic patterns have102


played an especially large role in the history of AI, because of the radically different103


approaches different researchers have taken to handling them in their AI systems.104


Mathematical logic and related formalisms provide sophisticated mechanisms for105


combining and relating symbolic patterns (“symbols”), and some AI approaches106


have focused heavily on these, sometimes more so than on the identification of107
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symbolic patterns in experience or the use of them to achieve practical goals. We108


will look fairly carefully at these differences in Chap. 5.109


Pursuing the patternist philosophy in detail leads to a variety of particular hypothe-110


ses and conclusions about the nature of mind. Following from the view of intelligence111


in terms of achieving complex goals in complex environments, comes a view in which112


the dynamics of a cognitive system are understood to be governed by two main forces:113


• self-organization, via which system dynamics cause existing system patterns to114


give rise to new ones115


• goal-oriented behavior, which will be defined more rigorously in Chap. 7, but116


basically amounts to a system interacting with its environment in a way that appears117


like an attempt to maximize some reasonably simple function118


Self-organized and goal-oriented behavior must be understood as cooperative aspects.119


If an agent is asked to build a surprising structure out of blocks and does so, this120


is goal-oriented. But the agent’s ability to carry out this goal-oriented task will be121


greater if it has previously played around with blocks a lot in an unstructured, spon-122


taneous way. And the “nudge toward creativity” given to it by asking it to build a123


surprising blocks structure may cause it to explore some novel patterns, which then124


feed into its future unstructured blocks play.125


Based on these concepts, as argued in detail in [Goe06a], several primary dynam-126


ical principles may be posited, including:127


• Evolution, conceived as a general process via which patterns within a large pop-128


ulation thereof are differentially selected and used as the basis for formation of129


new patterns, based on some “fitness function” that is generally tied to the goals130


of the agent.131


– Example: If trying to build a blocks structure that will surprise Bob, an agent132


may simulate several procedures for building blocks structures in its “mind’s133


eye”, assessing for each one the expected degree to which it might surprise Bob.134


The search through procedure space could be conducted as a form of evolution,135


via an algorithm such as MOSES.136


• Autopoiesis. The process by which a system of interrelated patterns maintains137


its integrity, via a dynamic in which whenever one of the patterns in the system138


begins to decrease in intensity, some of the other patterns increase their intensity139


in a manner that causes the troubled pattern to increase in intensity again.140


– Example: An agent’s set of strategies for building the base of a tower, and its141


set of strategies for building the middle part of a tower, are likely to relate142


autopoietically. If the system partially forgets how to build the base of a tower,143


then it may regenerate this missing knowledge via using its knowledge about144


how to build the middle part (i.e., it knows it needs to build the base in a way145


that will support good middle parts). Similarly if it partially forgets how to build146


the middle part, then it may regenerate this missing knowledge via using its147


knowledge about how to build the base (i.e. it knows a good middle part should148


fit in well with the sorts of base it knows are good).149
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4.2 Some Patternist Principles 63


– This same sort of interdependence occurs between pattern-sets containing more150


than two elements.151


– Sometimes (as in the above example) autopoietic interdependence in the mind152


is tied to interdependencies in the physical world, sometimes not.153


• Association. Patterns, when given attention, spread some of this attention to other154


patterns that they have previously been associated with in some way. Furthermore,155


there is Peirce’s law of mind [Pei34], which could be paraphrased in modern terms156


as stating that the mind is an associative memory network, whose dynamics dictate157


that every idea in the memory is an active agent, continually acting on those ideas158


with which the memory associates it.159


– Example: Building a blocks structure that resembles a tower, spreads attention160


to memories of prior towers the agents has seen, and also to memories of people161


the agent knows have seen towers, and structures it has built at the same time162


as towers, structures that resemble towers in various respects, etc.163


• Differential attention allocation/credit assignment. Patterns that have been valu-164


able for goal-achievement are given more attention, and are encouraged to partic-165


ipate in giving rise to new patterns.166


– Example: Perhaps in a prior instance of the task “build me a surprising structure167


out of blocks,” searching through memory for non-blocks structures that the168


agent has played with has proved a useful cognitive strategy. In that case, when169


the task is posed to the agent again, it should tend to allocate disproportionate170


resources to this strategy.171


• Pattern creation. Patterns that have been valuable for goal-achievement are172


mutated and combined with each other to yield new patterns.173


– Example: Building towers has been useful in a certain context, but so has build-174


ing structures with a large number of triangles. Why not build a tower out of175


triangles? Or maybe a vaguely tower-like structure that uses more triangles than176


a tower easily could?177


– Example: Building an elongated block structure resembling a table was suc-178


cessful in the past, as was building a structure resembling a very flat version of179


a chair. Generalizing, maybe building distorted versions of furniture is good. Or180


maybe it is building distorted version of any previously perceived objects that181


is good. Or maybe both, to different degrees....182


Next, for a variety of reasons outlined in [Goe06a] it becomes appealing to hypothe-183


size that the network of patterns in an intelligent system must give rise to the following184


large-scale emergent structures185


• Hierarchical network. Patterns are habitually in relations of control over other186


patterns that represent more specialized aspects of themselves.187
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64 4 A Patternist Philosophy of Mind


– Example: The pattern associated with “tall building” has some control over the188


pattern associated with “tower”, as the former represents a more general concept189


... and “tower” has some control over “Eiffel tower”, etc.190


• Heterarchical network. The system retains a memory of which patterns have pre-191


viously been associated with each other in any way.192


– Example: “Tower” and “snake” are distant in the natural pattern hierarchy, but193


may be associatively/heterarchically linked due to having a common elongated194


structure. This heterarchical linkage may be used for many things, e.g. it might195


inspire the creative construction of a tower with a snake’s head.196


• Dual network. Hierarchical and heterarchical structures are combined, with the197


dynamics of the two structures working together harmoniously. Among many198


possible ways to hierarchically organize a set of patterns, the one used should be one199


that causes hierarchically nearby patterns to have many meaningful heterarchical200


connections; and of course, there should be a tendency to search for heterarchical201


connections among hierarchically nearby patterns.202


– Example: While the set of patterns hierarchically nearby “tower” and the set of203


patterns heterarchically nearby “tower” will be quite different, they should still204


have more overlap than random pattern-sets of similar sizes. So, if looking for205


something else heterarchically near “tower”, using the hierarchical information206


about “tower” should be of some use, and vice versa.207


– In PLN, hierarchical relationships correspond to Atoms A and B so that208


Inheritance AB and Inheritance BA have highly dissimilar strength; and het-209


erarchical relationships correspond to IntensionalSimilarity relationships. The210


dual network structure then arises when intensional and extensional inheritance211


approximately correlate with each other, so that inference about either kind of212


inheritance assists with figuring out about the other kind.213


• Self structure. A portion of the network of patterns forms into an approximate214


image of the overall network of patterns.215


– Example: Each time the agent builds a certain structure, it observes itself building216


the structure, and its role as “builder of a tall tower” (or whatever the structure217


is) becomes part of its self-model. Then when it is asked to build something218


new, it may consult its self-model to see if it believes itself capable of building219


that sort of thing (for instance, if it is asked to build something very large, its220


self-model may tell it that it lacks persistence for such projects, so it may reply221


“I can try, but I may wind up not finishing it”).222


As we proceed through the CogPrime design in the following pages, we will see223


how each of these abstract concepts arises concretely from CogPrime’s structures224


and algorithms. If the theory of [Goe06a] is correct, then the success of CogPrime as225


a design will depend largely on whether these high-level structures and dynamics can226


be made to emerge from the synergetic interaction of CogPrime’s representation and227


algorithms, when they are utilized to control an appropriate agent in an appropriate228


environment.229
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4.3 Cognitive Synergy 65


4.3 Cognitive Synergy230


Now we dig a little deeper and present a different sort of “general principle of231


feasible general intelligence”, already hinted in earlier chapters: the cognitive synergy232


principle,2 which is both a conceptual hypothesis about the structure of generally233


intelligent systems in certain classes of environments, and a design principle used234


to guide the design of CogPrime. Chapter 8 presents a mathematical formalization235


of the notion of cognitive synergy; here we present the conceptual idea informally,236


which makes it more easily digestible but also more vague-sounding.237


We will focus here on cognitive synergy specifically in the case of “multi-memory238


systems,” which we define as intelligent systems whose combination of environment,239


embodiment and motivational system make it important for them to possess memories240


that divide into partially but not wholly distinct components corresponding to the241


categories of:242


• Declarative memory243


– Examples of declarative knowledge: Towers on average are taller than buildings.244


I generally am better at building structures I imagine, than at imitating structures245


I’m shown in pictures.246


• Procedural memory (memory about how to do certain things)247


– Examples of procedural knowledge: Practical know-how regarding how to pick248


up an elongated rectangular block, or a square one. Know-how regarding when249


to approach a problem by asking “What would one of my teachers do in this250


situation” versus by thinking through the problem from first principles.251


• Sensory and episodic memory252


– Example of sensory knowledge: Memory of Bob’s face; memory of what a253


specific tall blocks tower looked like.254


– Example of episodic knowledge: Memory of the situation in which the agent255


first met Bob; memory of a situation in which a specific tall blocks tower was256


built.257


• Attentional memory (knowledge about what to pay attention to in what contexts)258


– Example of attentional knowledge: When involved with a new person, it’s useful259


to pay attention to whatever that person looks at.260


• Intentional memory (knowledge about the system’s own goals and subgoals)261


– Example of intentional knowledge: If my goal is to please some person whom I262


don’t know that well, then a subgoal may be figuring out what makes that person263


smile.264


2 While these points are implicit in the theory of mind given in [Goe06a], they are not articulated
in this specific form there. So the material presented in this section is a new development within
patternist philosophy, developed since [Goe06a] in a series of conference papers such as [Goe09a].
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66 4 A Patternist Philosophy of Mind


In Chap. 9 we present a detailed argument as to how the requirement for a multi-265


memory underpinning for general intelligence emerges from certain underlying266


assumptions regarding the measurement of the simplicity of goals and environments.267


Specifically we argue that each of these memory types corresponds to certain modes268


of communication, so that intelligent agents which have to efficiently handle a suffi-269


cient variety of types of communication with other agents, are going to have to handle270


all these types of memory. These types of communication overlap and are often used271


together, which implies that the different memories and their associated cognitive272


processes need to work together. The points made in this section do not rely on that273


argument regarding the relation of multiple memory types to the environmental situ-274


ation of multiple communication types. What they do rely on is the assumption that,275


in the intelligence agent in question, the different components of memory are signif-276


icantly but not wholly distinct. That is, there are significant “family resemblances”277


between the memories of a single type, yet there are also thoroughgoing connections278


between memories of different types.279


Repeating the above points in a slightly more organized manner and then extending280


them, the essential idea of cognitive synergy, in the context of multi-memory systems,281


may be expressed in terms of the following points282


1. Intelligence, relative to a certain set of environments, may be understood as the283


capability to achieve complex goals in these environments.284


2. With respect to certain classes of goals and environments, an intelligent system285


requires a “multi-memory” architecture, meaning the possession of a number of286


specialized yet interconnected knowledge types, including: declarative, proce-287


dural, attentional, sensory, episodic and intentional (goal-related). These knowl-288


edge types may be viewed as different sorts of patterns that a system recognizes289


in itself and its environment.290


3. Such a system must possess knowledge creation (i.e. pattern recognition / forma-291


tion) mechanisms corresponding to each of these memory types. These mecha-292


nisms are also called “cognitive processes.”293


4. Each of these cognitive processes, to be effective, must have the capability to294


recognize when it lacks the information to perform effectively on its own; and295


in this case, to dynamically and interactively draw information from knowledge296


creation mechanisms dealing with other types of knowledge.297


5. This cross-mechanism interaction must have the result of enabling the knowledge298


creation mechanisms to perform much more effectively in combination than they299


would if operated non-interactively. This is “cognitive synergy.”300


Interactions as mentioned in Points 4 and 5 in the above list are the real conceptual301


meat of the cognitive synergy idea. One way to express the key idea here, in an AI302


context, is that most AI algorithms suffer from combinatorial explosions: the number303


of possible elements to be combined in a synthesis or analysis is just too great, and the304


algorithms are unable to filter through all the possibilities, given the lack of intrinsic305


constraint that comes along with a “general intelligence” context (as opposed to a306


narrow-AI problem like chess-playing, where the context is constrained and hence307


restricts the scope of possible combinations that needs to be considered). In an AGI308
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4.3 Cognitive Synergy 67


architecture based on cognitive synergy, the different learning mechanisms must be309


designed specifically to interact in such a way as to palliate each others’ combinatorial310


explosions—so that, for instance, each learning mechanism dealing with a certain311


sort of knowledge, must synergize with learning mechanisms dealing with the other312


sorts of knowledge, in a way that decreases the severity of combinatorial explosion.313


One prerequisite for cognitive synergy to work is that each learning mechanism314


must recognize when it is “stuck,” meaning it’s in a situation where it has inadequate315


information to make a confident judgment about what steps to take next. Then, when316


it does recognize that it’s stuck, it may request help from other, complementary317


cognitive mechanisms.318


4.4 The General Structure of Cognitive Dynamics:319


Analysis and Synthesis320


We have discussed the need for synergetic interrelation between cognitive processes321


corresponding to different types of memory ... and the general high-level cognitive322


dynamics that a mind must possess (evolution, autopoiesis). The next step is to dig323


further into the nature of the cognitive processes associated with different memory324


types and how they give rise to the needed high-level cognitive dynamics. In this325


section we present a general theory of cognitive processes based on a decomposition326


of cognitive processes into the two categories of analysis and synthesis, and a general327


formulation of each of these categories.3328


Specifically we focus here on what we call focused cognitive processes; that is,329


cognitive processes that selectively focus attention on a subset of the patterns making330


up a mind. In general these are not the only kind, there may also be global cognitive331


processes that act on every pattern in a mind. An example of a global cognitive process332


in CogPrime is the basic attention allocation process, which spreads “importance”333


among all knowledge in the system’s memory. Global cognitive processes are also334


important, but focused cognitive processes are subtler to understand which is why335


we spend more time on them here.336


4.4.1 Component-Systems and Self-Generating Systems337


We begin with autopoiesis—and, more specifically, with the concept of a “component-338


system”, as described in George Kampis’s book Self-Modifying Systems in Biology339


and Cognitive Science [Kam91], and as modified into the concept of a340


“self-generating system” or SGS in Goertzel’s book Chaotic Logic [Goe94]. Roughly341


3 While these points are highly compatible with theory of mind given in [Goe06a], they are not
articulated there. The material presented in this section is a new development within patternist
philosophy, presented previously only in the article [GPPG06].
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68 4 A Patternist Philosophy of Mind


speaking, a Kampis-style component-system consists of a set of components that342


combine with each other to form other compound components. The metaphor Kampis343


uses is that of Lego blocks, combining to form bigger Lego structures. Compound344


structures may in turn be combined together to form yet bigger compound structures.345


A self-generating system is basically the same concept as a component-system, but346


understood to be computable, whereas Kampis claims that component-systems are347


uncomputable.348


Next, in SGS theory there is also a notion of reduction (not present in the Lego349


metaphor): sometimes when components are combined in a certain way, a “reaction”350


happens, which may lead to the elimination of some of the components. One relevant351


metaphor here is chemistry. Another is abstract algebra: for instance, if we combine352


a component f with its “inverse” component f −1, both components are eliminated.353


Thus, we may think about two stages in the interaction of sets of components: com-354


bination, and reduction. Reduction may be thought of as algebraic simplification,355


governed by a set of rules that apply to a newly created compound component, based356


on the components that are assembled within it.357


Formally, suppose C1, C2, ... is the set of components present in a discrete-time358


component-system at time t. Then, the components present at time t + 1 are a subset359


of the set of components of the form360


Reduce(Join(Ci(1), ..., Ci(r)))361


where Join is a joining operation, and Reduce is a reduction operator. The joining362


operation is assumed to map tuples of components into components, and the reduction363


operator is assumed to map the space of components into itself. Of course, the specific364


nature of a component system is totally dependent on the particular definitions of the365


reduction and joining operators; in following chapters we will specify these for the366


CogPrime system, but for the purpose of the broader theoretical discussion in this367


section they may be left general.368


What is called the “cognitive equation” in Chaotic Logic [Goe94] is the case of369


a SGS where the patterns in the system at time t have a tendency to correspond to370


components of the system at future times t + s. So, part of the action of the system is371


to transform implicit knowledge (patterns among system components) into explicit372


knowledge (specific system components). We will see one version of this phenom-373


enon in Chap. 14 where we model implicit knowledge using mathematical structures374


called “derived hypergraphs”; and we will also later review several ways in which375


CogPrime’s dynamics explicitly encourage cognitive-equation type dynamics, e.g.:376


• inference, which takes conclusions implicit in the combination of logical rela-377


tionships, and makes them implicit by deriving new logical relationships from378


them379


• map formation, which takes concepts that have often been active together, and380


creates new concepts grouping them381


• association learning, which creates links representing patterns of association382


between entities383
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4.4 The General Structure of Cognitive Dynamics: Analysis and Synthesis 69


• probabilistic procedure learning, which creates new models embodying patterns384


regarding which procedures tend to perform well according to particular fitness385


functions.386


4.4.2 Analysis and Synthesis387


Now we move on to the main point of this section: the argument that all or nearly388


all focused cognitive processes are expressible using two general process-schemata389


we call synthesis and analysis.4 The notion of “focused cognitive process” will be390


exemplified more thoroughly below, but in essence what is meant is a cognitive391


process that begins with a small number of items (drawn from memory) as its focus,392


and has as its goal discovering something about these items, or discovering something393


about something else in the context of these items or in a way strongly biased by394


these items. This is different from a global cognitive process whose goal is more395


broadly-based and explicitly involves all or a large percentage of the knowledge in396


an intelligent system’s memory store.397


Among the focused cognitive processes are those governed by the so-called cog-398


nitive schematic implication399


Context ∧ Procedure → Goal400


where the Context involves sensory, episodic and/or declarative knowledge; and401


attentional knowledge is used to regulate how much resource is given to each such402


schematic implication in memory. Synergy among the learning processes dealing403


with the context, the procedure and the goal is critical to the adequate execution of the404


cognitive schematic using feasible computational resources. This sort of explicitly405


goal-driven cognition plays a significant though not necessarily dominant role in406


CogPrime, and is also related to production rules systems and other traditional AI407


systems, as will be articulated in Chap. 5.408


The synthesis and analysis processes as we conceive them, in the general frame-409


work of SGS theory, are as follows. First, synthesis, as shown in Fig. 4.1, is defined as410


411


Synthesis: Iteratively build compounds from the initial component pool using the412


combinators, greedily seeking compounds that seem likely to achieve the goal.413


Or in more detail:414


1. Begin with some initial components (the initial “current pool”), an additional set415


of components identified as “combinators” (combination operators), and a goal416


function417


4 In [GPPG06], what is here called “analysis” was called “backward synthesis”, a name which has
some advantages since it indicated that what’s happening is a form of creation; but here we have
opted for the more traditional analysis/synthesis terminology.
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70 4 A Patternist Philosophy of Mind


Fig. 4.1 The general process of synthesis


2. Combine the components in the current pool, utilizing the combinators, to form418


product components in various ways, carrying out reductions as appropriate, and419


calculating relevant quantities associated with components as needed420


3. Select the product components that seem most promising according to the goal421


function, and add these to the current pool (or else simply define these as the422


current pool)423


4. Return to Step 2424


And analysis, as shown in Fig. 4.2, is defined as425


Analysis: Iteratively search (the system’s long-term memory) for component-sets426


that combine using the combinators to form the initial component pool (or subsets427


thereof), greedily seeking component-sets that seem likely to achieve the goal.428


Or in more detail:429


1. Begin with some components (the initial “current pool”) and a goal function430


2. Seek components so that, if one combines them to form product components431


using the combinators and then performs appropriate reductions, one obtains (as432


many as possible of) the components in the current pool433


3. Use the newly found constructions of the components in the current pool, to434


update the quantitative properties of the components in the current pool, and also435


(via the current pool) the quantitative properties of the components in the initial436


pool437


4. Out of the components found in Step 2, select the ones that seem most promising438


according to the goal function, and add these to the current pool (or else simply439


define these as the current pool)440
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4.4 The General Structure of Cognitive Dynamics: Analysis and Synthesis 71


Fig. 4.2 The general process of analysis


5. Return to Step 2441


More formally, synthesis may be specified as follows. Let X denote the set of442


combinators, and let Y0 denote the initial pool of components (the initial focus of the443


cognitive process). Given Yi, let Zi denote the set444


Reduce(Join(Ci(1), ..., Ci(r)))445


where the Ci are drawn from Yi or from X. We may then say446


Yi+1 = Filter(Zi)447


where Filter is a function that selects a subset of its arguments.448


Analysis, on the other hand, begins with a set W of components, and a set X of449


combinators, and tries to find a series Yi so that according to the process of synthesis,450


Yn = W .451


In practice, of course, the implementation of a synthesis process need not involve452


the explicit construction of the full set Zi. Rather, the filtering operation takes place453


implicitly during the construction of Yi+1. The result, however, is that one gets454


some subset of the compounds producible via joining and reduction from the set of455


components present in Yi plus the combinators X.456


Conceptually one may view synthesis as a very generic sort of “growth process,”457


and analysis as a very generic sort of “figuring out how to grow something.”458


319477_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:11/11/2013 Pages: 81 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


72 4 A Patternist Philosophy of Mind


The intuitive idea underlying the present proposal is that these forward-going and459


backward-going “growth processes” are among the essential foundations of cognitive460


control, and that a conceptually sound design for cognitive control should explicitly461


make use of this fact. To abstract away from the details, what these processes are462


about is:463


• taking the general dynamic of compound-formation and reduction as outlined in464


Kampis and Chaotic Logic465


• introducing goal-directed pruning (“filtering”) into this dynamic so as to account466


for the limitations of computational resources that are a necessary part of pragmatic467


intelligence.468


4.4.3 The Dynamic of Iterative Analysis and Synthesis469


While synthesis and analysis are both very useful on their own, they achieve their470


greatest power when harnessed together. It is my hypothesis that the dynamic pattern471


of alternating synthesis and analysis has a fundamental role in cognition. Put simply,472


synthesis creates new mental forms by combining existing ones. Then, analysis seeks473


simple explanations for the forms in the mind, including the newly created ones; and,474


this explanation itself then comprises additional new forms in the mind, to be used475


as fodder for the next round of synthesis. Or, to put it yet more simply:476


⇒ Combine ⇒ Explain ⇒ Combine ⇒ Explain ⇒ Combine ⇒477


It is not hard to express this alternating dynamic more formally, as well.478


• Let X denote any set of components.479


• Let F(X) denote a set of components which is the result of synthesis on X.480


• Let B(X) denote a set of components which is the result of analysis of X. We481


assume also a heuristic biasing the synthesis process toward simple constructs.482


• Let S(t) denote a set of components at time t, representing part of a system’s483


knowledge base.484


• Let I(t) denote components resulting from the external environment at time t.485


Then, we may consider a dynamical iteration of the form486


S(t + 1) = B(F(S(t) + I(t)))487


This expresses the notion of alternating synthesis and analysis formally, as a488


dynamical iteration on the space of sets of components. We may then speak about489


attractors of this iteration: fixed points, limit cycles and strange attractors. One of490


the key hypotheses I wish to put forward here is that some key emergent cognitive491


structures are strange attractors of this equation. The iterative dynamic of combina-492


tion and explanation leads to the emergence of certain complex structures that are, in493


essence, maintained when one recombines their parts and then seeks to explain the494
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4.4 The General Structure of Cognitive Dynamics: Analysis and Synthesis 73


recombinations. These structures are built in the first place through iterative recom-495


bination and explanation, and then survive in the mind because they are conserved by496


this process. They then ongoingly guide the construction and destruction of various497


other temporary mental structures that are not so conserved.498


4.4.4 Self and Focused Attention as Approximate Attractors499


of the Dynamic of Iterated Forward-Analysis500


As noted above, patternist philosophy argues that two key aspects of intelligence are501


emergent structures that may be called the “self” and the “attentional focus.” These,502


it is suggested, are aspects of intelligence that may not effectively be wired into the503


infrastructure of an intelligent system, though of course the infrastructure may be504


configured in such a way as to encourage their emergence. Rather, these aspects,505


by their nature, are only likely to be effective if they emerge from the cooperative506


activity of various cognitive processes acting within a broad base of knowledge.507


Above we have described the pattern of ongoing habitual oscillation between syn-508


thesis and analysis as a kind of “dynamical iteration.” Here we will argue that both509


self and attentional focus may be viewed as strange attractors of this iteration. The510


mode of argument is relatively informal. The essential processes under considera-511


tion are ones that are poorly understood from an empirical perspective, due to the512


extreme difficulty involved in studying them experimentally. For understanding self513


and attentional focus, we are stuck in large part with introspection, which is famously514


unreliable in some contexts, yet still dramatically better than having no information515


at all. So, the philosophical perspective on self and attentional focus given here is a516


synthesis of empirical and introspective notions, drawn largely from the published517


thinking and research of others but with a few original twists. From a CogPrime518


perspective, its use has been to guide the design process, to provide a grounding for519


what otherwise would have been fairly arbitrary choices.520


4.4.4.1 Self521


Another high-level intelligent system pattern mentioned above is the “self”, which522


we here will tie in with analysis and synthesis processes. The term “self” as used523


here refers to the “phenomenal self” [Met04] or “self-model”. That is, the self is the524


model that a system builds internally, reflecting the patterns observed in the (external525


and internal) world that directly pertain to the system itself. As is well known in526


everyday human life, self-models need not be completely accurate to be useful; and527


in the presence of certain psychological factors, a more accurate self-model may not528


necessarily be advantageous. But a self-model that is too badly inaccurate will lead529


to a badly-functioning system that is unable to effectively act toward the achievement530


of its own goals.531


319477_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:11/11/2013 Pages: 81 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


74 4 A Patternist Philosophy of Mind


The value of a self-model for any intelligent system carrying out embodied agen-532


tive cognition is obvious. And beyond this, another primary use of the self is as533


a foundation for metaphors and analogies in various domains. Patterns recognized534


pertaining to the self are analogically extended to other entities. In some cases this535


leads to conceptual pathologies, such as the anthropomorphization of trees, rocks and536


other such objects that one sees in some precivilized cultures. But in other cases this537


kind of analogy leads to robust sorts of reasoning—for instance, in reading Lakoff538


and Nunez’s [LN00] intriguing explorations of the cognitive foundations of mathe-539


matics, it is pretty easy to see that most of the metaphors on which they hypothesize540


mathematics to be based, are grounded in the mind’s conceptualization of itself as a541


spatiotemporally embedded entity, which in turn is predicated on the mind’s having542


a conceptualization of itself (a self) in the first place.543


A self-model can in many cases form a self-fulfilling prophecy (to make an obvi-544


ous double-entendre’!). Actions are generated based on one’s model of what sorts of545


actions one can and/or should take; and the results of these actions are then incor-546


porated into one’s self-model. If a self-model proves a generally bad guide to action547


selection, this may never be discovered, unless said self-model includes the knowl-548


edge that semi-random experimentation is often useful.549


In what sense, then, may it be said that self is an attractor of iterated analysis?550


Analysis infers the self from observations of system behavior. The system asks:551


What kind of system might I be, in order to give rise to these behaviors that I observe552


myself carrying out? Based on asking itself this question, it constructs a model of553


itself, i.e. it constructs a self. Then, this self guides the system’s behavior: it builds554


new logical relationships its self-model and various other entities, in order to guide555


its future actions oriented toward achieving its goals. Based on the behaviors newly556


induced via this constructive, forward-synthesis activity, the system may then engage557


in analysis again and ask: What must I be now, in order to have carried out these new558


actions? And so on.559


Our hypothesis is that after repeated iterations of this sort, in infancy, finally during560


early childhood a kind of self-reinforcing attractor occurs, and we have a self-model561


that is resilient and doesn’t change dramatically when new instances of action- or562


explanation-generation occur. This is not strictly a mathematical attractor, though,563


because over a long period of time the self may well shift significantly. But, for a564


mature self, many hundreds of thousands or millions of forward-analysis cycles may565


occur before the self-model is dramatically modified. For relatively long periods of566


time, small changes within the context of the existing self may suffice to allow the567


system to control itself intelligently.568


Humans can also develop what are known as subselves [Row90]. A subself is569


a partially autonomous self-network focused on particular tasks, environments or570


interactions. It contains a unique model of the whole organism, and generally has571


its own set of episodic memories, consisting of memories of those intervals during572


which it was the primary dynamic mode controlling the organism. One common573


example is the creative subself—the subpersonality that takes over when a creative574


person launches into the process of creating something. In these times, a whole dif-575


ferent personality sometimes emerges, with a different sort of relationship to the576
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4.4 The General Structure of Cognitive Dynamics: Analysis and Synthesis 75


world. Among other factors, creativity requires a certain open-ness that is not always577


productive in an everyday life context, so it’s natural for the self-system of a highly578


creative person to bifurcate into one self-system for everyday life, and another for the579


protected context of creative activity. This sort of phenomenon might emerge natu-580


rally in CogPrime systems as well if they were exposed to appropriate environments581


and social situations.582


Finally, it is interesting to speculate regarding how self may differ in future AI583


systems as opposed to in humans. The relative stability we see in human selves584


may not exist in AI systems that can self-improve and change more fundamentally585


and rapidly than humans can. There may be a situation in which, as soon as a sys-586


tem has understood itself decently, it radically modifies itself and hence violates its587


existing self-model. Thus: intelligence without a long-term stable self. In this case588


the “attractor-ish” nature of the self holds only over much shorter time scales than589


for human minds or human-like minds. But the alternating process of synthesis and590


analysis for self-construction is still critical, even though no reasonably stable self-591


constituting attractor ever emerges. The psychology of such intelligent systems will592


almost surely be beyond human beings’ capacity for comprehension and empathy.593


4.4.4.2 Attentional Focus594


Finally, we turn to the notion of an “attentional focus” similar to Baars’ [Baa97]595


notion of a Global Workspace, which will be reviewed in more detail in Chap. 5:596


a collection of mental entities that are, at a given moment, receiving far more than597


the usual share of an intelligent system’s computational resources. Due to the amount598


of attention paid to items in the attentional focus, at any given moment these items599


are in large part driving the cognitive processes going on elsewhere in the mind as600


well—because the cognitive processes acting on the items in the attentional focus are601


often involved in other mental items, not in attentional focus, as well (and sometimes602


this results in pulling these other items into attentional focus). An intelligent system603


must constantly shift its attentional focus from one set of entities to another based604


on changes in its environment and based on its own shifting discoveries.605


In the human mind, there is a self-reinforcing dynamic pertaining to the collection606


of entities in the attentional focus at any given point in time, resulting from the607


observation that: If A is in the attentional focus, and A and B have often been608


associated in the past, then odds are increased that B will soon be in the attentional609


focus. This basic observation has been refined tremendously via a large body of610


cognitive psychology work; and neurologically it follows not only from Hebb’s611


[Heb49] classic work on neural reinforcement learning, but also from numerous612


more modern refinements [SB98]. But it implies that two items A and B, if both613


in the attentional focus, can reinforce each others’ presence in the attentional focus,614


hence forming a kind of conspiracy to keep each other in the limelight. But of course,615


this kind of dynamic must be counteracted by a pragmatic tendency to remove items616


from the attentional focus if giving them attention is not providing sufficient utility617


in terms of the achievement of system goals.618
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76 4 A Patternist Philosophy of Mind


The synthesis and analysis perspective provides a more systematic perspective619


on this self-reinforcing dynamic. Synthesis occurs in the attentional focus when two620


or more items in the focus are combined to form new items, new relationships, new621


ideas. This happens continually, as one of the main purposes of the attentional focus622


is combinational. On the other hand, Analysis then occurs when a combination that623


has been speculatively formed is then linked in with the remainder of the mind (the624


“unconscious”, the vast body of knowledge that is not in the attentional focus at625


the given moment in time). Analysis basically checks to see what support the new626


combination has within the existing knowledge store of the system. Thus, forward-627


analysis basically comes down to “generate and test”, where the testing takes the form628


of attempting to integrate the generated structures with the ideas in the unconscious629


long-term memory. One of the most obvious examples of this kind of dynamic is630


creative thinking (Boden 2003) [Goe97], where the attentional focus continually631


combinationally creates new ideas, which are then tested via checking which ones632


can be validated in terms of (built up from) existing knowledge.AQ1
AQ2


633


The analysis stage may result in items being pushed out of the attentional focus,634


to be replaced by others. Likewise may the synthesis stage: the combinations may635


overshadow and then replace the things combined. However, in human minds and636


functional AI minds, the attentional focus will not be a complete chaos with constant637


turnover: Sometimes the same set of ideas—or a shifting set of ideas within the same638


overall family of ideas—will remain in focus for a while. When this occurs it is639


because this set or family of ideas forms an approximate attractor for the dynamics640


of the attentional focus, in particular for the forward-analysis dynamic of speculative641


combination and integrative explanation. Often, for instance, a small “core set” of642


ideas will remain in the attentional focus for a while, but will not exhaust the atten-643


tional focus: the rest of the attentional focus will then, at any point in time, be occupied644


with other ideas related to the ones in the core set. Often this may mean that, for a645


while, the whole of the attentional focus will move around quasi-randomly through646


a “strange attractor” consisting of the set of ideas related to those in the core set.647


4.4.5 Conclusion648


The ideas presented above (the notions of synthesis and analysis, and the hypothesis649


of self and attentional focus as attractors of the iterative forward-analysis dynamic)650


are quite generic and are hypothetically proposed to be applicable to any cognitive651


system, natural or artificial. Later chapters will discuss the manifestation of the652


above ideas in the context of CogPrime. We have found that the analysis/synthesis653


approach is a valuable tool for conceptualizing CogPrime’s cognitive dynamics, and654


we conjecture that a similar utility may be found more generally.655


Next, so as not to end the section on too blasé of a note, we will also make a stronger656


hypothesis: that, in order for a physical or software system to achieve intelligence657


that is roughly human-level in both capability and generality, using computational658


resources on the same order of magnitude as the human brain, this system must659
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• manifest the dynamic of iterated synthesis and analysis, as modes of an underlying660


“self-generating system” dynamic661


• do so in such a way as to lead to self and attentional focus as emergent structures662


that serve as approximate attractors of this dynamic, over time periods that are663


long relative to the basic “cognitive cycle time” of the system’s forward-analysis664


dynamics.665


To prove the truth of a hypothesis of this nature would seem to require mathematics666


fairly far beyond anything that currently exists. Nonetheless, however, we feel it is667


important to formulate and discuss such hypotheses, so as to point the way for future668


investigations both theoretical and pragmatic.669


4.5 Perspectives on Machine Consciousness670


Finally, we can’t let a chapter on philosophy—even a brief one—end without some671


discussion of the thorniest topic in the philosophy of mind: consciousness. Rather672


than seeking to resolve or comprehensively review this most delicate issue, we will673


restrict ourselves to giving it in Appendix ?? an overview of many of the common674


views on the subject; and here in the main text discussing the relationship between675


consciousness theory and patternist philosophy of cognition, the practical work of676


designing and building AGI.677


One fairly concrete idea about consciousness, that relates closely to certain aspects678


of the CogPrime design, is that the subjective experience of being conscious of some679


entity X, is correlated with the presence of a very intense pattern in one’s overall mind-680


state, corresponding to X. This simple idea is also the essence of neuroscientist Susan681


Greenfield’s theory of consciousness [Gre01] (but in her theory, “overall mind-state”682


is replaced with “brain-state”), and has much deeper historical roots in philosophy683


of mind which we shall not venture to unravel here.684


This observation relates to the idea of “moving bubbles of awareness” in intelligent685


systems. If an intelligent system consists of multiple processing or data elements, and686


during each (sufficiently long) interval of time some of these elements get much more687


attention than others, then one may view the system as having a certain “attentional688


focus” during each interval. The attentional focus is itself a significant pattern in689


the system (the pattern being “these elements habitually get more processor and690


memory”, roughly speaking). As the attentional focus shifts over time one has a691


“moving bubble of pattern” which then corresponds experientially to a “moving692


bubble of awareness.”693


This notion of a “moving bubble of awareness” ties in very closely to global694


workspace theory [Baa97] (briefly mentioned above), a cognitive theory that has695


broad support from neuroscience and cognitive science and has also served as the696


motivation for Stan Franklin’s LIDA AI system [BF09], to be discussed in Chap. ??.697


The global workspace theory views the mind as consisting of a large population of698


small, specialized processes—a society of agents. These agents organize themselves699
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78 4 A Patternist Philosophy of Mind


into coalitions, and coalitions that are relevant to contextually novel phenomena, or700


contextually important goals, are pulled into the global workspace (which is identified701


with consciousness). This workspace broadcasts the message of the coalition to all702


the unconscious agents, and recruits other agents into consciousness. Various sorts of703


contexts—e.g. goal contexts, perceptual contexts, conceptual contexts and cultural704


contexts—play a role in determining which coalitions are relevant, and form the705


unconscious “background” of the conscious global workspace. New perceptions are706


often, but not necessarily, pushed into the workspace. Some of the agents in the global707


workspace are concerned with action selection, i.e. with controlling and passing708


parameters to a population of possible actions. The contents of the workspace at any709


given time have a certain cohesiveness and interdependency, the so-called “unity710


of consciousness.” In essence the contents of the global workspace form a moving711


bubble of attention or awareness.AQ3712


In CogPrime, this moving bubble is achieved largely via economic attention net-713


work (ECAN) equations [GPI+10] that propagate virtual currency between nodes714


and links representing elements of memories, so that the attentional focus consists of715


the wealthiest nodes and links. Figures 4.3 and 4.4 illustrate the existence and flow716


of attentional focus in OpenCog. On the other hand, in Hameroff’s recent model717


of the brain [Ham10], the brain’s moving bubble of attention is achieved through718


dendro-dendritic connections and the emergent dendritic web.719


In this perspective, self, free will and reflective consciousness are specific phe-720


nomena occurring within the moving bubble of awareness. They are specific ways721


of experiencing awareness, corresponding to certain abstract types of physical struc-722


tures and dynamics, which we shall endeavor to identify in detail in Appendix ??.723


AQ4724


4.6 Postscript: Formalizing Pattern725


Finally, before winding up our very brief tour through patternist philosophy of mind,726


we will briefly visit patternism’s more formal side. Many of the key aspects of727


patternism have been rigorously formalized. Here we give only a few very basic728


elements of the relevant mathematics, which will be used later on in the exposition729


of CogPrime. (Specifically, the formal definition of pattern emerges in the CogPrime730


design in the definition of a fitness function for “pattern mining” algorithms and731


Occam-based concept creation algorithms, and the definition of intensional inheri-732


tance within PLN.)733


We give some definitions, drawn from Appendix 1 of [Goe06a]:734


Definition 1 Given a metric space (M, d), and two functions c : M → [0,∞] (the735


“simplicity measure”) and F : M → M (the “production relationship”), we say that736


P ∈ M is a pattern in X ∈ M to the degree737


ιPX =
((


1 − d(F(P), X)


c(X)


)
c(X) − c(P)


c(X)


)+
738
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4.6 Postscript: Formalizing Pattern 79


Fig. 4.3 Graphical depiction of the momentary bubble of attention in the memory of an OpenCog
AI system. Circles and lines represent nodes and links in OpenCogPrimes memory, and stars denote
those nodes with a high level of attention (represented in OpenCog by the ShortTermImportance
node variable) at the particular point in time


This degree is called the pattern intensity of P in X. It quantifies the extent to739


which P is a pattern in X. Supposing that F(P) = X, then the first factor in the740


definition equals 1, and we are left with only the second term, which measures the741


degree of compression obtained via representing X as the result of P rather than742


simply representing X directly. The greater the compression ratio obtained via using743


P to represent X, the greater the intensity of P as a pattern in X. The first time, in the744


case F(P) �= X, adjusts the pattern intensity downwards to account for the amount745


of error with which F(P) approximates �= X. If one holds the second factor fixed746


and thinks about varying the first factor, then: The greater the error, the lossier the747


compression, and the lower the pattern intensity.748


For instance, if one wishes one may take c to denote algorithmic information749


measured on some reference Turing machine, and F(X) to denote what appears on750


the second tape of a two-tape Turing machine t time-steps after placing X on its first751


tape. Other more naturalistic computational models are also possible here and are752


discussed extensively in Appendix 1 of [Goe06a].753


319477_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:11/11/2013 Pages: 81 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


80 4 A Patternist Philosophy of Mind


Fig. 4.4 Graphical depiction of the momentary bubble of attention in the memory of an OpenCog
AI system, a few moments after the bubble shown in Fig. 4.3, indicating the moving of the bubble
of attention. Depictive conventions are the same as in Fig. 4.3. This shows an idealized situation
where the declarative knowledge remains invariant from one moment to the next but only the focus
of attention shifts. In reality both will evolve together


Definition 2 The structure of X ∈ M is the fuzzy set StX defined via the membership754


function755


χStX (P) = ιPX756


This lets us formalize our definition of “mind” alluded to above: the mind of757


X as the set of patterns associated with X. We can formalize this, for instance, by758


considering P to belong to the mind of X if it is a pattern in some Y that includes X.759


There are then two numbers to look at: ιPX and P(Y |X) (the percentage of Y that is760


also contained in X). To define the degree to which P belongs to the mind of X we can761


then combine these two numbers using some function f that is monotone increasing762


in both arguments. This highlights the somewhat arbitrary semantics of “of” in the763


phrase “the mind of X.” Which of the patterns binding X to its environment are part of764


X’s mind, and which are part of the world? This isn’t necessarily a good question, and765


the answer seems to depend on what perspective you choose, represented formally766


in the present framework by what combination function f you choose (for instance767


if f (a, b) = arb2−r then it depends on the choice of 0 < r < 1).768
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4.6 Postscript: Formalizing Pattern 81


Next, we can formalize the notion of a “pattern space” by positing a metric on769


patterns, thus making pattern space a metric space, which will come in handy in770


some places in later chapters:771


Definition 3 Assuming M is a countable space, the structural distance is a metric772


dSt defined on M via773


dSt(X, Y) = T(χStX , χStY )774


where T is the Tanimoto distance.775


The Tanimoto distance between two real vectors A and B is defined as776


T(A, B) = A · B


‖A‖2 + ‖B‖2 − A · B
777


and since M is countable this can be applied to fuzzy sets such as StX via considering778


the latter as vectors. (As an aside, this can be generalized to uncountable M as well,779


but we will not require this here.)780


Using this definition of pattern, combined with the formal theory of intelligence781


given in Chap. 7, one may formalize the various hypotheses made in the previous782


section, regarding the emergence of different kinds of networks and structures as783


patterns in intelligent systems. However, it appears quite difficult to prove the formal784


versions of these hypotheses given current mathematical tools, which renders such785


formalizations of limited use.786


Finally, consider the case where the metric space M has a partial ordering < on787


it; we may then define788


Definition 4.1 R ∈ M is a subpattern in X ∈ M to the degree789


κR
X =


∫
P∈M true(R < P)dιPX∫


P∈M dιPX
790


This degree is called the subpattern intensity of P in X.791


Roughly speaking, the subpattern intensity measures the percentage of patterns in X792


that contain R (where “containment” is judged by the partial ordering <). But the793


percentage is measured using a weighted average, where each pattern is weighted by794


its intensity as a pattern in X. A subpattern may or may not be a pattern on its own.795


A nonpattern that happens to occur within many patterns may be an intense subpat-796


tern.797


Whether the subpatterns in X are to be considered part of the “mind” of X is a798


somewhat superfluous question of semantics. Here we choose to extend the definition799


of mind given in [Goe06a] to include subpatterns as well as patterns, because this800


makes it simpler to describe the relationship between hypersets and minds, as we801


will do in Appendix ??.802
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Chapter 5
Brief Survey of Cognitive Architectures


5.1 Introduction0


While we believe CogPrime is the most thorough attempt at an architecture for1


advanced AGI, to date, we certainly recognize there have been many valuable2


attempts in the past with similar aims; and we also have great respect for other3


AGI efforts occurring in parallel with CogPrime development, based on alternative,4


sometimes overlapping, theoretical presuppositions and practical choices. In most5


of this book we will ignore these other current and historical efforts except where6


they are directly useful for CogPrime—there are many literature reviews already7


published, and this is a research treatise not a textbook. In this chapter, however, we8


will break from this pattern and give a rough high-level overview of the various AGI9


architectures at play in the field today. The overview definitely has a bias toward10


other work with some direct relevance to CogPrime, but not an overwhelming bias;11


we also discuss a number of approaches that are unrelated to, and even in some cases12


conceptually orthogonal to, our own.13


CogPrime builds on prior AI efforts in a variety of ways. Most of the specific14


algorithms and structures in CogPrime have their roots in prior AI work; and in15


addition, the CogPrime cognitive architecture has been heavily inspired by some other16


holistic cognitive architectures, especially (but not exclusively) MicroPsi [Bac09],17


LIDA [BF09] and DeSTIN [ARK09a, ARC09]. In this chapter we will briefly review18


some existing cognitive architectures, with especial but not exclusive emphasis on19


the latter three.20


We will articulate some rough mappings between elements of these other archi-21


tectures and elements of CogPrime—some in this chapter, and some in Chap. 6.22


However, these mappings will mostly be left informal and very incompletely speci-23


fied. The articulation of detailed inter-architecture mappings is an important project,24


but would be a substantial additional project going well beyond the scope of this25


book. We will not give a thorough review of the similarities and differences between26


CogPrime and each of these architectures, but only mention some of the highlights.27


B. Goertzel et al., Engineering General Intelligence, Part 1, 83
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_5,
© Atlantis Press and the authors 2014
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84 5 Brief Survey of Cognitive Architectures


Fig. 5.1 Duch’s simplified taxonomy of cognitive architectures. CogPrime falls into the “hybrid”
category, but differs from other hybrid architectures in its focus on synergetic interactions between
components and their potential to give rise to appropriate system-wide emergent structures enabling
general intelligence


The reader desiring a more thorough review of cognitive architectures is referred28


to Wlodek Duch’s review paper from the AGI-08 conference [DOP08]; and also to29


Alexei Samsonovich’s review paper [Sam10], which compares a number of cognitive30


architectures in terms of a feature checklist, and was created collaboratively with the31


creators of the architectures.32


Duch, in his survey of cognitive architectures [DOP08], divides existing33


approaches into three paradigms—symbolic, emergentist and hybrid—as broadly34


indicated in Fig. 5.1. Drawing on his survey and updating slightly, we give here35


some key examples of each, and then explain why CogPrime represents a signifi-36


cantly more effective approach to embodied human-like general intelligence. In our37


treatment of emergentist architectures, we pay particular attention to developmental38


robotics architectures, which share considerably with CogPrime in terms of under-39


lying philosophy, but differ via not integrating a symbolic “language and inference”40


component such as CogPrime includes.41


In brief, we believe that the hybrid approach is the most pragmatic one given the42


current state of AI technology, but that the emergentist approach gets something fun-43


damentally right, by focusing on the emergence of complex dynamics and structures44


from the interactions of simple components. So CogPrime is a hybrid architecture45


which (according to the cognitive synergy principle) binds its components together46


very tightly dynamically, allowing the emergence of complex dynamics and struc-47


tures in the integrated system. Most other hybrid architectures are less tightly cou-48


pled and hence seem ill-suited to give rise to the needed emergent complexity. The49


other hybrid architectures that do possess the needed tight coupling, such as MicroPsi50


[Bac09], strike us as underdeveloped and founded on insufficiently powerful learning51


algorithms.52
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5.2 Symbolic Cognitive Architectures53


A venerable tradition in AI focuses on the physical symbol system hypothesis54


[New90], which states that minds exist mainly to manipulate symbols that represent55


aspects of the world or themselves. A physical symbol system has the ability to input,56


output, store and alter symbolic entities, and to execute appropriate actions in order57


to reach its goals. Generally, symbolic cognitive architectures focus on “working58


memory” that draws on long-term memory as needed, and utilize a centralized control59


over perception, cognition and action. Although in principle such architectures could60


be arbitrarily capable (since symbolic systems have universal representational and61


computational power, in theory), in practice symbolic architectures tend to be weak62


in learning, creativity, procedure learning, and episodic and associative memory.63


Decades of work in this tradition have not resolved these issues, which has led many64


researchers to explore other options. A few of the more important symbolic cognitive65


architectures are:66


• SOAR [LRN87], a classic example of expert rule-based cognitive architecture67


designed to model general intelligence. It has recently been extended to handle68


sensorimotor functions, though in a somewhat cognitively unnatural way; and is69


not yet strong in areas such as episodic memory, creativity, handling uncertain70


knowledge, and reinforcement learning.71


• ACT-R [AL03] is fundamentally a symbolic system, but Duch classifies it as a72


hybrid system because it incorporates connectionist-style activation spreading in a73


significant role; and there is an experimental thoroughly connectionist implementa-74


tion to complement the primary mainly-symbolic implementation. Its combination75


of SOAR-style “production rules” with large-scale connectionist dynamics allows76


it to simulate a variety of human psychological phenomena, but abstract reasoning,77


creativity and transfer learning are still missing.78


• EPIC [RCK01], a cognitive architecture aimed at capturing human perceptual,79


cognitive and motor activities through several interconnected processors working80


in parallel. The system is controlled by production rules for cognitive processors81


and a set of perceptual (visual, auditory, tactile) and motor processors operating on82


symbolically coded features rather than raw sensory data. It has been connected83


to SOAR for problem solving, planning and learning.84


• ICARUS [Lan05], an integrated cognitive architecture for physical agents, with85


knowledge specified in the form of reactive skills, each denoting goal-relevant86


reactions to a class of problems. The architecture includes a number of modules:87


a perceptual system, a planning system, an execution system, and several memory88


systems. Concurrent processing is absent, attention allocation is fairly crude, and89


uncertain knowledge is not thoroughly handled.90


• SNePS (Semantic Network Processing System) [SE07] is a logic, frame and91


network-based knowledge representation, reasoning, and acting system that has92


undergone over three decades of development. While it has been used for some93


interesting prototype experiments in language processing and virtual agent control,94


it has not yet been used for any large-scale or real-world application.95
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86 5 Brief Survey of Cognitive Architectures


• Cyc [LG90] is an AGI architecture based on predicate logic as a knowledge96


representation, and using logical reasoning techniques to answer questions and97


derive new knowledge from old. It has been connected to a natural language98


engine, and designs have been created for the connection of Cyc with Albus’s99


4D-RCS [AM01]. Cyc’s most unique aspect is the large database of common-100


sense knowledge that Cycorp has accumulated (millions of pieces of knowledge,101


entered by specially trained humans in predicate logic format); part of the philoso-102


phy underlying Cyc is that once a sufficient quantity of knowledge is accumulated103


in the knowledge base, the problem of creating human-level general intelligence104


will become much less difficult due to the ability to leverage this knowledge.105


While these architectures contain many valuable ideas and have yielded some106


interesting results, we feel they are incapable on their own of giving rise to the107


emergent structures and dynamics required to yield humanlike general intelligence108


using feasible computational resources. However, we are more sanguine about the109


possibility of ideas and components from symbolic architectures playing a role in110


human-level AGI via incorporation in hybrid architectures.111


We now review a few symbolic architectures in slightly more detail.112


5.2.1 SOAR113


The cognitive architectures best known among AI academics are probably Soar and114


ACT-R, both of which are explicitly being developed with the dual goals of creating115


human-level AGI and modeling all aspects of human psychology. Neither the Soar116


nor ACT-R communities feel themselves particularly near these long-term goals, yet117


they do take them seriously.118


Soar is based on IF-THEN rules, otherwise known as “production rules.” On the119


surface this makes it similar to old-style expert systems, but Soar is much more120


than an expert system; it’s at minimum a sophisticated problem-solving engine.121


Soar explicitly conceives problem solving as a search through solution space for122


a “goal state” representing a (precise or approximate) problem solution. It uses a123


methodology of incremental search, where each step is supposed to move the system124


a little closer to its problem-solving goal, and each step involves a potentially complex125


“decision cycle.”126


In the simplest case, the decision cycle has two phases:127


• Gathering appropriate information from the system’s long-term memory (LTM)128


into its working memory (WM)129


• A decision procedure that uses the gathered information to decide an action.130


If the knowledge available in LTM isn’t enough to solve the problem, then the131


decision procedure invokes search heuristics like hill-climbing, which try to create132


new knowledge (new production rules) that will help move the system closer to a133


solution. If a solution is found by chaining together multiple production rules, then134
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a chunking mechanism is used to combine these rules together into a single rule for135


future use. One could view the chunking mechanism as a way of converting explicit136


knowledge into implicit knowledge, similar to “map formation” in CogPrime (see137


Chap. 24 of Vol. 6), but in the current Soar design and implementation it is a fairly138


crude mechanism. AQ1139


In recent years Soar has acquired a number of additional methods and modalities,140


including some visual reasoning methods and some mechanisms for handling141


episodic and procedural knowledge. These expand the scope of the system but the142


basic production rule and chunking mechanisms as briefly described above remain143


the core “cognitive algorithm” of the system.144


From a CogPrime perspective, what Soar offers is certainly valuable, e.g.145


• heuristics for transferring knowledge from LTM into WM146


• chaining and chunking of implications147


• methods for interfacing between other forms of knowledge and implications.148


However, a very short and very partial list of the major differences between Soar149


and CogPrime would include150


• CogPrime contains a variety of other core cognitive mechanisms beyond the man-151


agement and chunking of implications152


• The variety of “chunking” type methods in CogPrime goes far beyond the sort of153


localized chunking done in Soar154


• CogPrime is committed to representing uncertainty at the base level whereas Soar’s155


production rules are crisp156


• The mechanisms for LTM-WM interaction are rather different in CogPrime, being157


based on complex nonlinear dynamics as represented in Economic Attention Allo-158


cation (ECAN)159


• Currently Soar does not contain creativity-focused heuristics like blending or evo-160


lutionary learning in its core cognitive dynamic.161


5.2.2 ACT-R162


In the grand scope of cognitive architectures, ACT-R is quite similar to Soar, but163


there are many micro-level differences. ACT-R is defined in terms of declarative164


and procedural knowledge, where procedural knowledge takes the form of Soar-like165


production rules, and declarative knowledge takes the form of chunks. It contains a166


variety of mechanisms for learning new rules and chunks from old; and also contains167


sophisticated probabilistic equations for updating the activation levels associated168


with items of knowledge (these equations being roughly analogous in function to,169


though quite different from, the ECAN equations in CogPrime).170


Figure 5.2 displays the current architecture of ACT-R. The flow of cognition in the171


system is in response to the current goal, currently active information from declara-172


tive memory, information attended to in perceptual modules (vision and audition are173
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88 5 Brief Survey of Cognitive Architectures


Fig. 5.2 High-level architecture of ACT-R


implemented), and the current state of motor modules (hand and speech are imple-174


mented). The early work with ACT-R was based on comparing system performance to175


human behavior, using only behavioral measures, such as the timing of keystrokes or176


patterns of eye movements. Using such measures, it was not possible to test detailed177


assumptions about which modules were active in the performance of a task. More178


recently the ACT-R community has been engaged in a process of using imaging data179


to provide converging data on module activity. Figure 5.3 illustrates the associations180


they have made between the modules in Fig. 5.2 and brain regions. Coordination181


among all of these components occurs through actions of the procedural module,182


which is mapped to the basal ganglia.183


In practice ACT-R, even more so than Soar, seems to be used more as a pro-184


gramming framework for cognitive modeling than as an AI system. One can fairly185


easily use ACT-R to program models of specific human mental behaviors, which186


may then be matched against psychological data. Opinions differ as to whether this187


sort of modeling is valuable for achieving AGI goals. CogPrime is not designed to188


support this kind of modeling, as it intentionally does many things very differently189


from humans.190


ACT-R in its original form did not say much about perceptual and motor191


operations, but recent versions have incorporated EPIC, an independent cognitive192


architecture focused on modeling these aspects of human behavior.193


5.2.3 Cyc and Texai194


Our review of cognitive architectures would be incomplete without mentioning Cyc195


[LG90], one of the best known and best funded AGI-oriented projects in history.196
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5.2 Symbolic Cognitive Architectures 89


Fig. 5.3 Conjectured mapping between ACT-R and the brain


While the main focus of the Cyc project has been on the hand-coding of large amounts197


of declarative knowledge, there is also a cognitive architecture of sorts there. The198


center of Cyc is an engine for logical deduction, acting on knowledge represented in199


predicate logic. A natural language engine has been associated with the logic engine,200


which enables one to ask English questions and get English replies.201


Stephen Reed, while an engineer at Cycorp, designed a perceptual-motor front end202


for Cyc based on James Albus’ Reference Model Architecture; the ensuing system,203


called CognitiveCyc, would have been the first full-fledged cognitive architecture204


based on Cyc, but was not implemented. Reed left Cycorp and is now building a205


system called Texai, which has many similarities to Cyc (and relies upon the Open-206


Cyc knowledge base, a subset of Cyc’s overall knowledge base), but incorporates a207


CognitiveCyc style cognitive architecture.208


5.2.4 NARS209


Pei Wang’s NARS logic [Wan06] played a large role in the development of PLN,210


CogPrime’s uncertain logic component, a relationship that is discussed in depth in211


[GMIH08] and won’t be re-emphasized here. However, NARS is more than just212


an uncertain logic, it is also an overall cognitive architecture (which is centered on213
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NARS logic, but also includes other aspects). CogPrime bears little relation to NARS214


except in the specific similarities between PLN logic and NARS logic, but, the other215


aspects of NARS are worth briefly recounting here.216


NARS is formulated as a system for processing tasks, where a task consists of217


a question or a piece of new knowledge. The architecture is focused on declarative218


knowledge, but some pieces of knowledge may be associated with executable proce-219


dures, which allows NARS to carry out control activities (in roughly the same way220


that a Prolog program can).221


At any given time a NARS system contains222


• working memory: a small set of tasks which are active, kept for a short time, and223


closely related to new questions and new knowledge224


• long-term memory: a huge set of knowledge which is passive, kept for a long time,225


and not necessarily related to current questions and knowledge.226


The working and long term memory spaces of NARS may each be thought of as227


a set of chunks, where each chunk consists of a set of tasks and a set of knowledge.228


NARS’s basic cognitive process is:229


1. choose a chunk230


2. choose a task from that chunk231


3. choose a piece of knowledge from that chunk232


4. use the task and knowledge to do inference233


5. send the new tasks to corresponding chunks.234


Depending on the nature of the task and knowledge, the inference involved may235


be one of the following:236


• if the task is a question, and the knowledge happens to be an answer to the question,237


a copy of the knowledge is generated as a new task238


• backward inference239


• revision (merging two pieces of knowledge with the same form but different truth240


value)241


• forward inference242


• execution of a procedure associated with a piece of knowledge.243


Unlike many other systems, NARS doesn’t decide what type of inference is used244


to process a task when the task is accepted, but works in a data-driven way—that is,245


it is the task and knowledge that dynamically determine what type of inference will246


be carried out.247


The “choice” processes mentioned above are done via assigning relative priorities248


to249


• chunks (where they are called activity)250


• tasks (where they are called urgency)251


• knowledge (where they are called importance).252
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and then distributing the system’s resources accordingly, based on a probabilistic253


algorithm. (It’s interesting to note that while NARS uses probability theory as part254


of its control mechanism, the logic it uses to represent its own knowledge about the255


world is nonprobabilistic. This is considered conceptually consistent, in the context256


of NARS theory, because system control is viewed as a domain where the system’s257


knowledge is more complete, thus more amenable to probabilistic reasoning.)258


5.2.5 GLAIR and SNePS259


Another logic-focused cognitive architecture, very different from NARS in detail,260


is Stuart Shapiro’s GLAIR cognitive architecture, which is centered on the SNePS261


paraconsistent logic [SE07].262


Like NARS, the core “cognitive loop” of GLAIR is based on reasoning: either263


thinking about some percept (e.g. linguistic input, or sense data from the virtual264


or physical world), or answering some question. This inference based cognition265


process is turned into an intelligent agent control process via coupling it with an266


acting component, which operates according to a set of policies, each one of which267


tells the system when to take certain internal or external actions (including internal268


reasoning actions) in response to its observed internal and external situation.269


GLAIR contains multiple layers:270


• the Knowledge Layer (KL), which contains the beliefs of the agent, and is where271


reasoning, planning, and act selection are performed.272


• the Sensori-Actuator Layer (SAL), contains the controllers of the sensors and273


effectors of the hardware or software robot.274


• the Perceptuo-Motor Layer (PML), which grounds the KL symbols in perceptual275


structures and subconscious actions, contains various registers for providing the276


agent’s sense of situatedness in the environment, and handles translation and277


communication between the KL and the SAL.278


The logical Knowledge Layer incorporates multiple memory types using a279


common representation (including declarative, procedural, episodic, attentional and280


intentional knowledge, and meta-knowledge). To support this broad range of knowl-281


edge types, a broad range of logical inference mechanisms are used, so that the KL282


may be variously viewed as predicate logic based, frame based, semantic network283


based, or from other perspectives.284


What makes GLAIR more robust than most logic based AI approaches is the novel285


paraconsistent logical formalism used in the knowledge base, which means (among286


other things) that uncertain, speculative or erroneous knowledge may exist in the287


system’s memory without leading the system to create a broadly erroneous view of288


the world or carry out egregiously unintelligent actions. CogPrime is not thoroughly289


logic-focused like GLAIR is, but in its logical aspect it seeks a similar robustness290


through its use of PLN logic, which embodies properties related to paraconsistency.291
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Compared to CogPrime, we see that GLAIR has a similarly integrative approach,292


but that the integration of different sorts of cognition is done more strictly within the293


framework of logical knowledge representation.294


5.3 Emergentist Cognitive Architectures295


Another species of cognitive architecture expects abstract symbolic processing296


to emerge from lower-level “subsymbolic” dynamics, which sometimes (but not297


always) are designed to simulate neural networks or other aspects of human brain298


function. These architectures are typically strong at recognizing patterns in high-299


dimensional data, reinforcement learning and associative memory; but no one has300


yet shown how to achieve high-level functions such as abstract reasoning or com-301


plex language processing using a purely subsymbolic approach. A few of the more302


important subsymbolic, emergentist cognitive architectures are:303


• DeSTIN [ARK09a, ARC09], which is part of CogPrime, may also be considered as304


an autonomous AGI architecture, in which case it is emergentist and contains mech-305


anisms to encourage language, high-level reasoning and other abstract aspects306


of intelligent to emerge from hierarchical pattern recognition and related self-307


organizing network dynamics. In CogPrime DeSTIN is used as part of a hybrid308


architecture, which greatly reduces the reliance on DeSTIN’s emergent properties.309


• Hierarchical Temporal Memory (HTM) [HB06] is a hierarchical temporal pat-310


tern recognition architecture, presented as both an AI approach and a model of311


the cortex. So far it has been used exclusively for vision processing and we will312


discuss its shortcomings later in the context of our treatment of DeSTIN.313


• SAL [JL08], based on the earlier and related IBCA (Integrated Biologically-based314


Cognitive Architecture) is a large-scale emergent architecture that seeks to model315


distributed information processing in the brain, especially the posterior and frontal316


cortex and the hippocampus. So far the architectures in this lineage have been317


used to simulate various human psychological and psycholinguistic behaviors,318


but haven’t been shown to give rise to higher-level behaviors like reasoning or319


subgoaling.320


• NOMAD (Neurally Organized Mobile Adaptive Device) automata and its succes-321


sors [KE06] are based on Edelman’s “Neural Darwinism” model of the brain, and322


feature large numbers of simulated neurons evolving by natural selection into con-323


figurations that carry out sensorimotor and categorization tasks. The emergence324


of higher-level cognition from this approach seems rather unlikely.325


• Ben Kuipers and his colleagues [MK07, MK08, MK09] have pursued an extremely326


innovative research program which combines qualitative reasoning and reinforce-327


ment learning to enable an intelligent agent to learn how to act, perceive and328


model the world. Kuipers’ notion of “bootstrap learning” involves allowing the329


robot to learn almost everything about its world, including for instance the struc-330


ture of 3D space and other things that humans and other animals obtain via their331
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genetic endowments. Compared to Kuipers’ approach, CogPrime falls in line with332


most other approaches which provide more “hard-wired” structure, following the333


analogy to biological organisms that are born with more innate biases.334


There is also a set of emergentist architectures focused specifically on develop-335


mental robotics, which we will review below in a separate subsection, as all of these336


share certain common characteristics.337


Our general perspective on the emergentist approach is that it is philosophi-338


cally correct but currently pragmatically inadequate. Eventually, some emergentist339


approach could surely succeed at giving rise to humanlike general intelligence—340


the human brain, after all, is plainly an emergentist system. However, we currently341


lack understanding of how the brain gives rise to abstract reasoning and complex342


language, and none of the existing emergentist systems seem remotely capable of343


giving rise to such phenomena. It seems to us that the creation of a successful emer-344


gentist AGI will have to wait for either a detailed understanding of how the brain345


gives rise to abstract thought, or a much more thorough mathematical understanding346


of the dynamics of complex self-organizing systems.347


The concept of cognitive synergy is more relevant to emergentist than to symbolic348


architectures. In a complex emergentist architecture with multiple specialized com-349


ponents, much of the emergence is expected to arise via synergy between different350


richly interacting components. Symbolic systems, at least in the forms currently seen351


in the literature, seem less likely to give rise to cognitive synergy as their dynamics352


tend to be simpler. And hybrid systems, as we shall see, are somewhat diverse in this353


regard: some rely heavily on cognitive synergies and others consist of more loosely354


coupled components.355


We now review the DeSTIN emergentist architecture in more detail, and then turn356


to the developmental robotics architectures.357


5.3.1 DeSTIN: A Deep Reinforcement Learning Approach to AGI358


The DeSTIN architecture, created by Itamar Arel and his colleagues, addresses the359


problem of general intelligence using hierarchical spatiotemporal networks designed360


to enable scalable perception, state inference and reinforcement-learning-guided361


action in real-world environments. DeSTIN has been developed with the plan of362


gradually extending it into a complete system for humanoid robot control, founded363


on the same qualitative information-processing principles as the human brain (though364


without striving for detailed biological realism). However, the practical work with365


DeSTIN to date has focused on visual and auditory processing; and in the context366


of the present proposal, the intention is to utilize DeSTIN for perception and actu-367


ation oriented processing, hybridizing it with CogPrime which will handle abstract368


cognition and language. Here we will discuss DeSTIN primarily in the perception369


context, only briefly mentioning the application to actuation which is conceptually370


similar.371
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Fig. 5.4 High-level architecture of DeSTIN


In DeSTIN (see Fig. 5.4), perception is carried out by a deep spatiotemporal372


inference network, which is connected to a similarly architected critic network that373


provides feedback on the inference network’s performance, and an action network374


that controls actuators based on the activity in the inference network (Fig. 5.5 depicts375


a standard action hierarchy, of which the hierarchy in DeSTIN is an example). The376


nodes in these networks perform probabilistic pattern recognition according to algo-377


rithms to be described below; and the nodes in each of the networks may receive378


states of nodes in the other networks as inputs, providing rich interconnectivity and379


synergetic dynamics.380


5.3.1.1 Deep Versus Shallow Learning for Perceptual Data Processing381


The most critical feature of DeSTIN is its uniquely robust approach to modeling the382


world based on perceptual data. Mimicking the efficiency and robustness by which383


the human brain analyzes and represents information has been a core challenge in384


AI research for decades. For instance, humans are exposed to massive amounts of385


visual and auditory data every second of every day, and are somehow able to capture386


critical aspects of it in a way that allows for appropriate future recollection and action387


selection. For decades, it has been known that the brain is a massively parallel fabric,388


in which computation processes and memory storage are highly distributed. But389


massive parallelism is not in itself a solution—one also needs the right architecture;390


which DeSTIN provides, building on prior work in the area of deep learning.391


Humanlike intelligence is heavily adapted to the physical environments in which392


humans evolved; and one key aspect of sensory data coming from our physical393


environments is its hierarchical structure. However, most machine learning and394


pattern recognition systems are “shallow” in structure, not explicitly incorporating395
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Fig. 5.5 A standard, general-purpose hierarchical control architecture. DeSTIN’s control hierarchy
exemplifies this architecture, with the difference lying mainly in the DeSTIN control hierarchy’s
tight integration with the state inference (perception) and critic (reinforcement) hierarchies


the hierarchical structure of the world in their architecture. In the context of perceptual396


data processing, the practical result of this is the need to couple each shallow learner397


with a pre-processing stage, wherein high-dimensional sensory signals are reduced398


to a lower-dimension feature space that can be understood by the shallow learner.399


The hierarchical structure of the world is thus crudely captured in the hierarchy of400


“preprocessor plus shallow learner.” In this sort of approach, much of the intelligence401


of the system shifts to the feature extraction process, which is often imperfect and402


always application-domain specific.403


Deep machine learning has emerged as a more promising framework for deal-404


ing with complex, high-dimensional real-world data. Deep learning systems possess405


a hierarchical structure that intrinsically biases them to recognize the hierarchical406


patterns present in real-world data. Thus, they hierarchically form a feature space407


that is driven by regularities in the observations, rather than by hand-crafted tech-408


niques. They also offer robustness to many of the distortions and transformations409


that characterize real-world signals, such as noise, displacement, scaling, etc.410


Deep belief networks [HOT06] and Convolutional Neural Networks [LBDE90]411


have been demonstrated to successfully address pattern inference in high dimen-412


sional data (e.g. images). They owe their success to their underlying paradigm of413


partitioning large data structures into smaller, more manageable units, and discover-414


ing the dependencies that may or may not exist between such units. However, this415


paradigm has its limitations; for instance, these approaches do not represent temporal416


information with the same ease as spatial structure. Moreover, some key constraints417
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are imposed on the learning schemes driving these architectures, namely the need418


for layer-by-layer training, and oftentimes pre-training. DeSTIN overcomes the lim-419


itations of prior deep learning approaches to perception processing, and also extends420


beyond perception to action and reinforcement learning.421


5.3.1.2 DeSTIN for Perception Processing422


The hierarchical architecture of DeSTIN’s spatiotemporal inference network423


comprises an arrangement into multiple layers of “nodes” comprising multiple424


instantiations of an identical cortical circuit. Each node corresponds to a particu-425


lar spatiotemporal region, and uses a statistical learning algorithm to characterize426


the sequences of patterns that are presented to it by nodes in the layer beneath it.427


More specifically,428


• At the very lowest layer of the hierarchy nodes receive as input raw data (e.g. pixels429


of an image) and continuously construct a belief state that attempts to characterize430


the sequences of patterns viewed.431


• The second layer, and all those above it, receive as input the belief states of nodes at432


their corresponding lower layers, and attempt to construct belief states that capture433


regularities in their inputs.434


• Each node also receives as input the belief state of the node above it in the hierarchy435


(which constitutes “contextual” information) (Fig. 5.6).436
AQ2


More specifically, each of the DeSTIN nodes, referring to a specific spacetime437


region, contains a set of state variables conceived as clusters, each corresponding to438


a set of previously-observed sequences of events. These clusters are characterized439


by centroids (and are hence assumed roughly spherical in shape), and each of them440


comprises a certain “spatiotemporal form” recognized by the system in that region.441


Each node then contains the task of predicting the likelihood of a certain centroid442


being most apropos in the near future, based on the past history of observations443


in the node. This prediction may be done by simple probability tabulation, or via444


application of supervised learning algorithms such as recurrent neural networks.445


These clustering and prediction processes occur separately in each node, but the446


nodes are linked together via bidirectional dynamics: each node feeds input to its447


parents, and receives “advice” from its parents that is used to condition its probability448


calculations in a contextual way.449


These processes are executed formally by the following basic belief update rule,450


which governs the learning process and is identical for every node in the architecture.451


The belief state is a probability mass function over the sequences of stimuli that the452


nodes learns to represent. Consequently, each node is allocated a predefined number453


of state variables each denoting a dynamic pattern, or sequence, that is autonomously454


learned. The DeSTIN update rule maps the current observation (o), belief state (b),455


and the belief state of a higher-layer node or context (c), to a new (updated) belief456


state (b′), such that457
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5.3 Emergentist Cognitive Architectures 97


Fig. 5.6 Small-scale instantiation of the DeSTIN perceptual hierarchy. Each box represents a node,
which corresponds to a spatiotemporal region (nodes higher in the hierarchy corresponding to larger
regions). O denotes the current observation in the region, C is the state of the higher-layer node, and
S and S′ denote state variables pertaining to two subsequent time steps. In each node, a statistical
learning algorithm is used to predict subsequent states based on prior states, current observations,
and the state of the higher-layer node


b′ (s′) = Pr
(
s′|o, b, c


) = Pr
(
s′ ∩ o ∩ b ∩ c


)
Pr (o ∩ b ∩ c)


, (5.1)458


alternatively expressed as459


b′ (s′) = Pr(o|s′, b, c)Pr
(
s′|b, c


)
Pr (b, c)


Pr (o|b, c) Pr (b, c)
. (5.2)460


Under the assumption that observations depend only on the true state, or Pr(o|s′,461


b, c) = Pr(o|s′), we can further simplify the expression such that462


b′ (s′) = Pr(o|s′)Pr
(
s′|b, c


)
Pr (o|b, c)


, (5.3)463


where Pr
(
s′|b, c


) = ∑
s∈S


Pr
(
s′|s, c


)
b (s), yielding the belief update rule464
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b′ (s′) =
Pr


(
o|s′) ∑


s∈S
Pr


(
s′|s, c


)
b (s)


∑
s′′∈S


Pr (o|s′′)
∑
s∈S


Pr (s′′|s, c) b (s)
, (5.4)465


where S denotes the sequence set (i.e. belief dimension) such that the denominator466


term is a normalization factor.467


One interpretation of Eq. (5.4) would be that the static pattern similarity metric,468


Pr
(
o|s′) , is modulated by a construct that reflects the system dynamics, Pr


(
s′|s, c


)
.469


As such, the belief state inherently captures both spatial and temporal information.470


In our implementation, the belief state of the parent node, c, is chosen using the471


selection rule472


c = arg max
s


bp(s), (5.5)473


where bp is the belief distribution of the parent node.474


A close look at Eq. (5.4) reveals that there are two core constructs to be learned,475


Pr(o|s′) and Pr(s′|s, c). In the current DeSTIN design, the former is learned via online476


clustering while the latter is learned based on experience by inductively learning a477


rule that predicts the next state s′ given the prior state s and c.478


The overall result is a robust framework that autonomously (i.e. with no human479


engineered pre-processing of any type) learns to represent complex data patterns,480


and thus serves the critical role of building and maintaining a model of the state of481


the world. In a vision processing context, for example, it allows for powerful unsu-482


pervised classification. If shown a variety of real-world scenes, it will automatically483


form internal structures corresponding to the various natural categories of objects484


shown in the scenes, such as trees, chairs, people, etc.; and also the various nat-485


ural categories of events it sees, such as reaching, pointing, falling. And, as will be486


discussed below, it can use feedback from DeSTIN’s action and critic networks to487


further shape its internal world-representation based on reinforcement signals.488


Benefits of DeSTIN for Perception Processing489


DeSTIN’s perceptual network offers multiple key attributes that render it more490


powerful than other deep machine learning approaches to sensory data processing:491


1. The belief space that is formed across the layers of the perceptual network492


inherently captures both spatial and temporal regularities in the data. Given493


that many applications require that temporal information be discovered for robust494


inference, this is a key advantage over existing schemes.495


2. Spatiotemporal regularities in the observations are captured in a coherent manner496


(rather than being represented via two separate mechanisms).497


3. All processing is both top-down and bottom-up, and both hierarchical and heterar-498


chical, based on nonlinear feedback connections directing activity and modulating499


learning in multiple directions through DeSTIN’s cortical circuits.500
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4. Support for multi-modal fusing is intrinsic within the framework, yielding a501


powerful state inference system for real-world, partially-observable settings.502


5. Each node is identical, which makes it easy to map the design to massively parallel503


platforms, such as graphics processing units.504


Points 2–4 in the above list describe how DeSTIN’s perceptual network dis-505


plays its own “cognitive synergy” in a way that fits naturally into the overall syner-506


getic dynamics of the overall CogPrime architecture. Using this cognitive synergy,507


DeSTIN’s perceptual network addresses a key aspect of general intelligence: the508


ability to robustly infer the state of the world, with which the system interacts, in an509


accurate and timely manner.510


5.3.1.3 DeSTIN for Action and Control511


DeSTIN’s perceptual network performs unsupervised world-modeling, which is a512


critical aspect of intelligence but of course is not the whole story. DeSTIN’s action513


network, coupled with the perceptual network, orchestrates actuator commands into514


complex movements, but also carries out other functions that are more cognitive in515


nature.516


For instance, people learn to distinguish between cups and bowls in part via hearing517


other people describe some objects as cups and others as bowls. To emulate this kind518


of learning, DeSTIN’s critic network provides positive or negative reinforcement519


signals based on whether the action network has correctly identified a given object520


as a cup or a bowl, and this signal then impacts the nodes in the action network.521


The critic network takes a simple external “degree of success or failure” signal and522


turns it into multiple reinforcement signals to be fed into the multiple layers of the523


action network. The result is that the action network self-organizes so as to include524


an implicit “cup versus bowl” classifier, whose inputs are the outputs of some of525


the nodes in the higher levels of the perceptual network. This classifier belongs in526


the action network because it is part of the procedure by which the DeSTIN system527


carries out the action of identifying an object as a cup or a bowl.528


This example illustrates how the learning of complex concepts and procedures is529


divided fluidly between the perceptual network, which builds a model of the world530


in an unsupervised way, and the action network, which learns how to respond to the531


world in a manner that will receive positive reinforcement from the critic network.532


5.3.2 Developmental Robotics Architectures533


A particular subset of emergentist cognitive architectures are sufficiently important534


that we consider them separately here: these are developmental robotics architec-535


tures, focused on controlling robots without significant “hard-wiring” of knowl-536


edge or capabilities, allowing robots to learn (and learn how to learn, etc.) via their537
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100 5 Brief Survey of Cognitive Architectures


engagement with the world. A significant focus is often placed here on “intrinsic538


motivation,” wherein the robot explores the world guided by internal goals like nov-539


elty or curiosity, forming a model of the world as it goes along, based on the modeling540


requirements implied by its goals. Many of the foundations of this research area were541


laid by Juergen Schmidhuber’s work in the 1990s [Sch91b, Sch91a, Sch95, Sch02],542


but now with more powerful computers and robots the area is leading to more impres-543


sive practical demonstrations.544


We mention here a handful of the important initiatives in this area:545


• Juyang Weng’s Dav [HZT+02] and SAIL [WHZ+00] projects involve mobile546


robots that explore their environments autonomously, and learn to carry out simple547


tasks by building up their own world-representations through both unsupervised548


and teacher-driven processing of high-dimensional sensorimotor data. The under-549


lying philosophy is based on human child development [WH06], the knowledge550


representations involved are neural network based, and a number of novel learning551


algorithms are involved, especially in the area of vision processing.552


• FLOWERS [BO09], an initiative at the French research institute INRIA, led by553


Pierre-Yves Oudeyer, is also based on a principle of trying to reconstruct the554


processes of development of the human child’s mind, spontaneously driven by555


intrinsic motivations. Kaplan [Kap08] has taken this project in a direction closely556


related to our own via the creation of a “robot playroom.” Experiential language557


learning has also been a focus of the project [OK06], driven by innovations in558


speech understanding.559


• IM-CLEVER,1 a new European project coordinated by Gianluca Baldassarre and560


conducted by a large team of researchers at different institutions, is focused on561


creating software enabling an iCub [MSV+08] humanoid robot to explore the562


environment and learn to carry out human childlike behaviors based on its own563


intrinsic motivations. As this project is the closest to our own we will discuss it in564


more depth below.565


Like CogPrime, IM-CLEVER is a humanoid robot intelligence architecture566


guided by intrinsic motivations, and using hierarchical architectures for reinforce-567


ment learning and sensory abstraction. IM-CLEVER’s motivational structure is based568


in part on Schmidhuber’s information-theoretic model of curiosity [Sch06]; and569


CogPrime’s Psi-based motivational structure utilizes probabilistic measures of nov-570


elty, which are mathematically related to Schmidhuber’s measures. On the other571


hand, IM-CLEVER’s use of reinforcement learning follows Schmidhuber’s earlier572


work RL for cognitive robotics [BS04, BZGS06], Barto’s work on intrinsically moti-573


vated reinforcement learning [SB06, SM05], and Lee’s [LMC07b, LMC07a] work574


on developmental reinforcement learning; whereas CogPrime’s assemblage of learn-575


ing algorithms is more diverse, including probabilistic logic, concept blending and576


other symbolic methods (in the OCP component) as well as more conventional rein-577


forcement learning methods (in the DeSTIN component).578


1 http://im-clever.noze.it/project/project-description
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5.3 Emergentist Cognitive Architectures 101


In many respects IM-CLEVER bears a moderately strong resemblance to DeSTIN,579


whose integration with CogPrime is discussed in Chap. 8 of Vol. 6 (although IM-580


CLEVER has much more focus on biological realism than DeSTIN). Apart from581


numerous technical differences, the really big distinction between IM-CLEVER582


and CogPrime is that in the latter we are proposing to hybridize a hierarchical-583


abstraction/reinforcement-learning system (such as DeSTIN) with a more abstract584


symbolic cognition engine that explicitly handles probabilistic logic and language.585


IM-CLEVER lacks the aspect of hybridization with a symbolic system, taking more586


of a pure emergentist strategy. Like DeSTIN considered as a standalone architec-587


ture IM-CLEVER does entail a high degree of cognitive synergy, between com-588


ponents dealing with perception, world-modeling, action and motivation. However,589


the “emergentist versus hybrid” is a large qualitative difference between the two590


approaches.591


In all, while we largely agree with the philosophy underlying developmental592


robotics, our intuition is that the learning and representational mechanisms under-593


lying the current systems in this area are probably not powerful enough to lead to594


human child level intelligence. We expect that these systems will develop interesting595


behaviors but fall short of robust preschool level competency, especially in areas like596


language and reasoning where symbolic systems have typically proved more effec-597


tive. This intuition is what impels us to pursue a hybrid approach, such as CogPrime.598


But we do feel that eventually, once the mechanisms underlying brains are better599


understood and robotic bodies are richer in sensation and more adept in actuation,600


some sort of emergentist, developmental-robotics approach can be successful at cre-601


ating humanlike, human-level AGI.602


5.4 Hybrid Cognitive Architectures603


In response to the complementary strengths and weaknesses of the symbolic and604


emergentist approaches, in recent years a number of researchers have turned to inte-605


grative, hybrid architectures, which combine subsystems operating according to the606


two different paradigms. The combination may be done in many different ways,607


e.g. connection of a large symbolic subsystem with a large subsymbolic system, or608


the creation of a population of small agents each of which is both symbolic and609


subsymbolic in nature.610


Nils Nilsson expressed the motivation for hybrid AGI systems very clearly in his611


article at the AI-50 conference (which celebrated the 50th anniversary of the AI field)612


[Nil09]. While affirming the value of the Physical Symbol System Hypothesis that613


underlies symbolic AI, he argues that “the PSSH explicitly assumes that, whenever614


necessary, symbols will be grounded in objects in the environment through the per-615


ceptual and effector capabilities of a physical symbol system.” Thus, he continues,616


I grant the need for non-symbolic processes in some intelligent systems, but I think they617


supplement rather than replace symbol systems. I know of no examples of reasoning,618
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understanding language, or generating complex plans that are best understood as being619


performed by systems using exclusively non-symbolic processes....620


AI systems that achieve human-level intelligence will involve a combination of symbolic621


and non-symbolic processing.”622


A few of the more important hybrid cognitive architectures are:623


• CLARION [SZ04] is a hybrid architecture that combines a symbolic component624


for reasoning on “explicit knowledge” with a connectionist component for manag-625


ing “implicit knowledge.” Learning of implicit knowledge may be done via neural626


net, reinforcement learning, or other methods. The integration of symbolic and627


subsymbolic methods is powerful, but a great deal is still missing such as episodic628


knowledge and learning and creativity. Learning in the symbolic and subsymbolic629


portions is carried out separately rather than dynamically coupled, minimizing630


“cognitive synergy” effects.631


• DUAL [NK04] is the most impressive system to come out of Marvin Minsky’s632


“Society of Mind” paradigm. It features a population of agents, each of which633


combines symbolic and connectionist representation, self-organizing to collec-634


tively carry out tasks such as perception, analogy and associative memory. The635


approach seems innovative and promising, but it is unclear how the approach will636


scale to high-dimensional data or complex reasoning problems due to the lack of637


a more structured high-level cognitive architecture.638


• LIDA [BF09] is a comprehensive cognitive architecture heavily based on Bernard639


Baars’ “Global Workspace Theory”. It articulates a “cognitive cycle” integrating640


various forms of memory and intelligent processing in a single processing loop.641


The architecture ties in well with both neuroscience and cognitive psychology, but642


it deals most thoroughly with “lower level” aspects of intelligence, handling more643


advanced aspects like language and reasoning only somewhat sketchily. There644


is a clear mapping between LIDA structures and processes and corresponding645


structures and processing in OCP; so that it’s only a mild stretch to view CogPrime646


as an instantiation of the general LIDA approach that extends further both in the647


lower level (to enable robot action and sensation via DeSTIN) and the higher level648


(to enable advanced language and reasoning via OCP mechanisms that have no649


direct LIDA analogues).650


• MicroPsi [Bac09] is an integrative architecture based on Dietrich Dorner’s Psi651


model of motivation, emotion and intelligence. It has been tested on some practical652


control applications, and also on simulating artificial agents in a simple virtual653


world. MicroPsi’s comprehensiveness and basis in neuroscience and psychology654


are impressive, but in the current version of MicroPsi, learning and reasoning655


are carried out by algorithms that seem unlikely to scale. OCP incorporates the656


Psi model for motivation and emotion, so that MicroPsi and CogPrime may be657


considered very closely related systems. But similar to LIDA, MicroPsi currently658


focuses on the “lower level” aspects of intelligence, not yet directly handling659


advanced processes like language and abstract reasoning.660


• PolyScheme [Cas07] integrates multiple methods of representation, reasoning661


and inference schemes for general problem solving. Each Polyscheme “specialist”662
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5.4 Hybrid Cognitive Architectures 103


models a different aspect of the world using specific representation and inference663


techniques, interacting with other specialists and learning from them. Polyscheme664


has been used to model infant reasoning including object identity, events, causality,665


and spatial relations. The integration of reasoning methods is powerful, but the666


overall cognitive architecture is simplistic compared to other systems and seems667


focused more on problem-solving than on the broader problem of intelligent agent668


control.669


• Shruti [SA93] is a fascinating biologically-inspired model of human reflexive670


inference, which represents in connectionist architecture relations, types, enti-671


ties and causal rules using focal-clusters. However, much like Hofstadter’s earlier672


Copycat architecture [Hof95], Shruti seems more interesting as a prototype explo-673


ration of ideas than as a practical AGI system; at least, after a significant time of674


development it has not proved significantly effective in any applications.675


• James Albus’s 4D/RCS robotics architecture shares a great deal with some of676


the emergentist architectures discussed above, e.g. it has the same hierarchical677


pattern recognition structure as DeSTIN and HTM, and the same three cross-678


connected hierarchies as DeSTIN, and shares with the developmental robotics679


architectures a focus on real-time adaptation to the structure of the world. However,680


4D/RCS is not foundationally learning-based but relies on hard-wired architecture681


and algorithms, intended to mimic the qualitative structure of relevant parts of682


the brain (and intended to be augmented by learning, which differentiates it from683


emergentist approaches).684


As our own CogPrime approach is a hybrid architecture, it will come as no surprise685


that we believe several of the existing hybrid architectures are fundamentally going in686


the right direction. However, nearly all the existing hybrid architectures have severe687


shortcomings which we feel will prevent them from achieving robust humanlike AGI.688


Many of the hybrid architectures are in essence “multiple, disparate algorithms689


carrying out separate functions, encapsulated in black boxes and communicating690


results with each other.” For instance, PolyScheme, ACT-R and CLARION all display691


this “modularity” property to a significant extent. These architectures lack the rich,692


real-time interaction between the internal dynamics of various memory and learning693


processes that we believe is critical to achieving humanlike general intelligence using694


realistic computational resources. On the other hand, those architectures that feature695


richer integration—such as DUAL, Shruti, LIDA and MicroPsi—have the flaw of696


relying (at least in their current versions) on overly simplistic learning algorithms,697


which drastically limits their scalability.698


It does seem plausible to us that some of these hybrid architectures could be699


dramatically extended or modified so as to produce humanlike general intelligence.700


For instance, one could replace LIDA’s learning algorithms with others that interrelate701


with each other in a nuanced synergetic way; or one could replace MicroPsi’s simple702


learning and reasoning methods with much more powerful and scalable ones acting703


on the same data structures. However, making these changes would dramatically704


alter the cognitive architectures in question on multiple levels.705
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5.4.1 Neural Versus Symbolic; Global Versus Local706


The “symbolic versus emergentist” dichotomy that we have used to structure our707


review of cognitive architectures is not absolute nor fully precisely defined; it is708


more of a heuristic distinction. In this section, before plunging into the details of709


particular hybrid cognitive architectures, we review two other related dichotomies710


that are useful for understanding hybrid systems: neural versus symbolic systems,711


and globalist versus localist knowledge representation.712


5.4.1.1 Neural-Symbolic Integration713


The distinction between neural and symbolic systems has gotten fuzzier and fuzzier714


in recent years, with developments such as715


• Logic-based systems being used to control embodied agents (hence using logical716


terms to deal with data that is apparently perception or actuation-oriented in nature,717


rather than being symbolic in the semiotic sense), see [SS03a] and [GMIH08].718


• Hybrid systems combining neural net and logical parts, or using logical or neural719


net components interchangeably in the same role [LAon].720


• Neural net systems being used for strongly symbolic tasks such as automated721


grammar learning ([Elm91], plus more recent work.)722


Figure 5.7 presents a schematic diagram of a generic neural-symbolic system,723


generalizing from [BH05], a paper that gives an elegant categorization of neural-724


symbolic AI systems. Figure 5.8 depicts several broad categories of neural-symbolic725


architecture.726


Bader and Hitzler categorize neural-symbolic systems according to three orthogo-727


nal axes: interrelation, language and usage. “Language” refers to the type of language728


used in the symbolic component, which may be logical, automata-based, formal729


grammar-based, etc. “Usage” refers to the purpose to which the neural-symbolic730


interrelation is put. We tend to use “learning” as an encompassing term for all forms731


Fig. 5.7 Generic neural-symbolic architecture
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5.4 Hybrid Cognitive Architectures 105


Fig. 5.8 Broad categories of neural-symbolic architecture


of ongoing knowledge-creation, whereas Bader and Hitzler distinguish learning from732


reasoning.733


Of Bader and Hitzler’s three axes the one that interests us most here is734


“interrelation”, which refers to the way the neural and symbolic components of735


the architecture intersect with each other. They distinguish “hybrid” architectures736


which contain separate but equal, interacting neural and symbolic components; ver-737


sus “integrative” architectures in which the symbolic component essentially rides738


piggyback on the neural component, extracting information from it and helping it739


carry out its learning, but playing a clearly derived and secondary role. We prefer740


Sun’s (2001) term “monolithic” to Bader and Hitzler’s “integrative” to describe this741


type of system, as the latter term seems best preserved in its broader meaning.742


Within the scope of hybrid neural-symbolic systems, there is another axis which743


Bader and Hitzler do not focus on, because the main interest of their review is in744


monolithic systems. We call this axis “interactivity”, and what we are referring to is745


the frequency of high-information-content, high-influence interaction between the746


neural and symbolic components in the hybrid system. In a low-interaction hybrid747


system, the neural and symbolic components don’t exchange large amounts of mutu-748


ally influential information all that frequently, and basically act like independent749


system components that do their learning/reasoning/thinking periodically sending750


each other their conclusions. In some cases, interaction may be asymmetric: one751


component may frequently send a lot of influential information to the other, but not752


vice versa. However, our hypothesis is that the most capable neural-symbolic systems753


are going to be the symmetrically highly interactive ones.754


In a symmetric high-interaction hybrid neural-symbolic system, the neural and755


symbolic components exchange influential information sufficiently frequently that756


each one plays a major role in the other one’s learning/reasoning/thinking processes.757
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106 5 Brief Survey of Cognitive Architectures


Thus, the learning processes of each component must be considered as part of the758


overall dynamic of the hybrid system. The two components aren’t just feeding their759


outputs to each other as inputs, they’re mutually guiding each others’ internal process-760


ing.761


One can make a speculative argument for the relevance of this kind of architecture762


to neuroscience. It seems plausible that this kind of neural-symbolic system roughly763


emulates the kind of interaction that exists between the brain’s neural subsystems764


implementing localist symbolic processing, and the brain’s neural subsystems imple-765


menting globalist, classically “connectionist” processing. It seems most likely that,766


in the brain, symbolic functionality emerges from an underlying layer of neural767


dynamics. However, it is also reasonable to conjecture that this symbolic functional-768


ity is confined to a functionally distinct subsystem of the brain, which then interacts769


with other subsystems in the brain much in the manner that the symbolic and neural770


components of a symmetric high-interaction neural-symbolic system interact.771


Neuroscience speculations aside, however, our key conjecture regarding neural-772


symbolic integration is that this sort of neural-symbolic system presents a promising773


direction for artificial general intelligence research. In Chap. 8 of Vol. 6 we will give774


a more concrete idea of what a symmetric high-interaction hybrid neural-symbolic775


architecture might look like, exploring the potential for this sort of hybridization776


between the OpenCogPrime AGI architecture (which is heavily symbolic in nature)777


and hierarchical attractor neural net based architectures such as DeSTIN.778


5.5 Globalist Versus Localist Representations779


Another interesting distinction, related to but different from “symbolic versus780


emergentist” and “neural versus symbolic”, may be drawn between cognitive sys-781


tems (or subsystems) where memory is essentially global, and those where memory782


is essentially local. In this section we will pursue this distinction in various guises,783


along with the less familiar notion of glocal memory.784


This globalist/localist distinction is most easily conceptualized by reference to785


memories corresponding to categories of entities or events in an external environment.786


In an AI system that has an internal notion of “activation”—i.e. in which some787


of its internal elements are more active than others, at any given point in time—788


one can define the internal image of an external event or entity as the fuzzy set of789


internal elements that tend to be active when that event or entity is presented to the790


system’s sensors. If one has a particular set S of external entities or events of interest,791


then, the degree of memory localization of such an AI system relative to S may be792


conceived as the percentage of the system’s internal elements that have a high degree793


of membership in the internal image of an average element of S.794


Of course, this characterization of localization has its limitations, such as the795


possibility of ambiguity regarding what are the “system elements” of a given AI796


system; and the exclusive focus on internal images of external phenomena rather797


than representation of internal abstract concepts. However, our goal here is not to798
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5.5 Globalist Versus Localist Representations 107


formulate an ultimate, rigorous and thorough ontology of memory systems, but only799


to pose a “rough and ready” categorization so as to properly frame our discussion of800


some specific AGI issues relevant to CogPrime. Clearly the ideas pursued here will801


benefit from further theoretical exploration and elaboration.802


In this sense, a Hopfield neural net [Ami89] would be considered “globalist” since803


it has a low degree of memory localization (most internal images heavily involve a804


large number of system elements); whereas Cyc would be considered “localist” as805


it has a very high degree of memory localization (most internal images are heavily806


focused on a small set of system elements).807


However, although Hopfield nets and Cyc form handy examples, the “globalist808


versus localist” distinction as described above is not identical to the “neural versus809


symbolic” distinction. For it is in principle quite possible to create localist systems810


using formal neurons, and also to create globalist systems using formal logic. And811


“globalist-localist” is not quite identical to “symbolic versus emergentist” either,812


because the latter is about coordinated system dynamics and behavior not just about813


knowledge representation. CogPrime combines both symbolic and (loosely) neural814


representations, and also combines globalist and localist representations in a way815


that we will call “glocal” and analyze more deeply in Chap. 13; but there are many816


other ways these various properties could be manifested by AI systems. Rigorously817


studying the corpus of existing (or hypothetical!) cognitive architectures using these818


ideas would be a large task, which we do not undertake here.819


In the next sections we review several hybrid architectures in more detail, focusing820


most deeply on LIDA and MicroPsi which have been directly inspirational for821


CogPrime.822


5.5.1 CLARION823


Ron Sun’s CLARION architecture (see Fig. 5.9) is interesting in its combination of824


symbolic and neural aspects—a combination that is used in a sophisticated way825


to embody the distinction and interaction between implicit and explicit mental826


processes. From a CLARION perspective, architectures like Soar and ACT-R are827


severely limited in that they deal only with explicit knowledge and associated learning828


processes.829


CLARION consists of a number of distinct subsystems, each of which contains a830


dual representational structure, including a “rules and chunks” symbolic knowledge831


store somewhat similar to ACT-R, and a neural net knowledge store embodying832


implicit knowledge. The main subsystems are:833


• An action-centered subsystem to control actions;834


• A non-action-centered subsystem to maintain general knowledge;835


• A motivational subsystem to provide underlying motivations for perception, action,836


and cognition;837
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108 5 Brief Survey of Cognitive Architectures


Fig. 5.9 The CLARION cognitive architecture


• A meta-cognitive subsystem to monitor, direct, and modify the operations of all838


the other subsystems.839


5.5.2 The Society of Mind and the Emotion Machine840


In his influential but controversial book The Society of Mind [Min88], Marvin Minsky841


described a model of human intelligence as something that is built up from the842


interactions of numerous simple agents. He spells out in great detail how various843


particular cognitive functions may be achieved via agents and their interactions. He844


leaves no room for any central algorithms or structures of thought, famously arguing:845


“What magical trick makes us intelligent? The trick is that there is no trick. The power846


of intelligence stems from our vast diversity, not from any single, perfect principle.”847


This perspective was extended in the more recent work The Emotion Machine848


[Min07], where Minsky argued that emotions are “ways to think” evolved to handle849


different “problem types” that exist in the world. The brain is posited to have rule-850


based mechanisms (selectors) that turns on emotions to deal with various problems.851


Overall, both of these works serve better as works of speculative cognitive science852


than as works of AI or cognitive architecture per se. As neurologist Richard Restak853


said in his review of Emotion Machine, “Minsky does a marvelous job parsing other854


complicated mental activities into simpler elements. ... But he is less effective in855


relating these emotional functions to what’s going on in the brain.” As Restak added,856


he is also not so effective at relating these emotional functions to straightforwardly857


implementable algorithms or data structures.858
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Push Singh, in his PhD thesis and followup work [SBC05], did the best job so far859


of creating a concrete AI design based on Minsky’s ideas. While Singh’s system was860


certainly interesting, it was also noteworthy for its lack of any learning mechanisms,861


and its exclusive focus on explicit rather than implicit knowledge. Due to Singh’s862


tragic death, his work was never brought anywhere near completion. It seems fair to863


say that there has not yet been a serious cognitive architecture posed based closely864


on Minsky’s ideas.865


5.5.3 DUAL866


The closest thing to a Minsky-ish cognitive architecture is probably DUAL, which867


takes the Society of Mind concept and adds to it a number of other interesting868


ideas. DUAL integrates symbolic and connectionist approaches at a deeper level than869


CLARION, and has been used to model various cognitive functions such as percep-870


tion, analogy and judgment. Computations in DUAL emerge from the self-organized871


interaction of many micro-agents, each of which is a hybrid symbolic/connectionist872


device. Each DUAL agent plays the role of a neural network node, with an activa-873


tion level and activation spreading dynamics; but also plays the role of a symbol,874


manipulated using formal rules. The agents exchange messages and activation via875


links that can be learned and modified, and they form coalitions which collectively876


represent concepts, episodes, and facts.877


The structure of the model is sketchily depicted in Fig. 5.10, which covers the878


application of DUAL to a toy environment called TextWorld. The visual input corre-879


sponding to a stimulus is presented on a two-dimensional visual array representing880


the front end of the system. Perceptual primitives like blobs and terminations are881


immediately generated by cheap parallel computations. Attention is controlled at882


each time by an object which allocates it selectively to some area of the stimulus.883


A detailed symbolic representation is constructed for this area which tends to fade884


away as attention is withdrawn from it and allocated to another one. Categorization885


of visual memory contents takes place by retrieving object and scene categories from886


DUAL’s semantic memory and mapping them onto current visual memory represen-887


tations.888


In principle the DUAL framework seems quite powerful; using the language of889


CogPrime, however, it seems to us that the learning mechanisms of DUAL have not890


been formulated in such a way as to give rise to powerful, scalable cognitive synergy.891


It would likely be possible to create very powerful AGI systems within DUAL, and892


perhaps some very CogPrime-like systems as well. But the systems that have been893


created or designed for use within DUAL so far seem not to be that powerful in their894


potential or scope.895
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110 5 Brief Survey of Cognitive Architectures


Fig. 5.10 The three main components of the DUAL model: the retinotopic visual array (RVA), the
visual working memory (VWM) and DUAL’s semantic memory. Attention is allocated to an area
of the visual array by the object in VWM controlling attention, while scene and object categories
corresponding to the contents of VWM are retrieved from the semantic memory


5.5.4 4D/RCS896


In a rather different direction, James Albus, while at the National Bureau of Standards,897


developed a very thorough and impressive architecture for intelligent robotics called898


4D/RCS, which was implemented in a number of machines including unmanned auto-899


mated vehicles. This architecture lacks critical aspects of intelligence such as learning900


and creativity, but combines perception, action, planning and world-modeling in a901


highly effective and tightly-integrated fashion.902


The architecture has three hierarchies of memory/processing units: one for per-903


ception, one for action and one for modeling and guidance. Each unit has a certain904


spatiotemporal scope, and (except for the lowest level) supervenes over children905


whose spatiotemporal scope is a subset of its own. The action hierarchy takes care906


of decomposing tasks into subtasks; whereas the sensation hierarchy takes care of907


grouping signals into entities and events. The modeling/guidance hierarchy mediates908


interactions between perception and action based on its understanding of the world909


and the system’s goals.910


In his book [AM01] Albus describes methods for extending 4D/RCS into a911


complete cognitive architecture, but these extensions have not been elaborated in912


full detail nor implemented (Figs. 5.11 and 5.12).913AQ3
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5.5 Globalist Versus Localist Representations 111


Fig. 5.11 Albus’s 4D-RCS architecture for a single vehicle


5.5.5 PolyScheme914


Nick Cassimatis’s PolyScheme architecture [Cas07] shares with GLAIR the use of915


multiple logical reasoning methods on a common knowledge store. While its underly-916


ing ideas are quite general, currently PolyScheme is being developed in the context917


of the “object tracking” domain (construed very broadly). As a logic framework918


PolyScheme is fairly conventional (unlike GLAIR or NARS with their novel under-919


lying formalisms), but PolyScheme has some unique conceptual aspects, for instance920


its connection with Cassimatis’s theory of mind, which holds that the same core set921


of logical concepts and relationships underlies both language and physical reasoning922


[Cas04]. This ties in with the use of a common knowledge store for multiple cognitive923


processes; for instance it suggests that924


• the same core relationships can be used for physical reasoning and parsing, but925


that each of these domains may involve some additional relationships.926


• language processing may be done via physical-reasoning-based cognitive927


processes, plus the additional activity of some language-specific processes.928
AQ4


5.5.6 Joshua Blue929


Sam Adams and his colleagues at IBM have created a cognitive architecture called930


Joshua Blue [AABL02], which has some significant similarities to CogPrime. Similar931


to our current research direction with CogPrime, Joshua Blue was created with loose
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Fig. 5.12 Albus’s perceptual, motor and modeling hierarchies


emulation of child cognitive development in mind; and, also similar to CogPrime, it932


features a number of cognitive processes acting on a common neural-symbolic knowl-933


edge store. The specific cognitive processes involved in Joshua Blue and CogPrime934


are not particularly similar, however. At time of writing (2012) Joshua Blue is not935
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under active development and has not been for some time; however, the project may936


be reanimated in future.937


Joshua Blue’s core knowledge representation is a semantic network of nodes938


connected by links along which activation spreads. Although many of the nodes have939


specific semantic referents, as in a classical semantic net, the spread of activation940


through the network is designed to lead to the emergence of “assemblies” (which941


could also be thought of as dynamical attractors) in a manner more similar to an942


attractor neural network.943


A major difference from typical semantic or neural network models is the central944


role that affect plays in the system’s dynamics. The weights of the links in the knowl-945


edge base are adjusted dynamically based on the emotional context—a very direct946


way of ensuring that cognitive processes and mental representations are continuously947


influenced by affect. Qualitatively, this mimics the way that particular emotions in948


the human brain correlate with the dissemination throughout the brain of particular949


neurotransmitters, which then affect synaptic activity.950


A result of this architecture is that in Joshua Blue, emotion directs attention in a951


very direct way: affective weighting is important in determining which associated952


objects will become part of the focus of attention, or will be retained from memory.953


A notable similarity between CogPrime and Joshua Blue is that in both systems, nodes954


are assigned two quantitative attention values, one governing allocation of current955


system resources (mainly processor time; this is CogPrime’s ShortTermImportance)956


and one governing the long-term allocation of memory (CogPrime’s LongTermIm-957


portance).958


The concrete work done with Joshua Blue involved using it to control a simple959


agent in a simulated world, with the goal that via human interaction, the agent would960


develop a complex and humanlike emotional and motivational structure from its961


simple in-built emotions and drives, and would then develop complex cognitive962


capabilities as part of this development process.963


5.5.7 LIDA964


The LIDA architecture developed by Stan Franklin and his colleagues [BF09] is965


based on the concept of the “cognitive cycle”—a notion that is important to nearly966


every BICA (Biologically Inspired Cognitive Architectures) and also to the brain,967


but that plays a particularly central role in LIDA. As Franklin says, “as a matter of968


principle, every autonomous agent, be it human, animal, or artificial, must frequently969


sample (sense) its environment, process (make sense of) this input, and select an970


appropriate response (action). The agent’s “life” can be viewed as consisting of a971


continual sequence of iterations of these cognitive cycles. Such cycles constitute972


the indivisible elements of attention, the least sensing and acting to which we can973


attend. A cognitive cycle can be thought of as a moment of cognition, a cognitive974


“moment”.”975
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5.5.8 The Global Workspace976


LIDA is heavily based on the “global workspace” concept developed by Bernard977


Baars. As this concept is also directly relevant to CogPrime it is worth briefly describ-978


ing here.979


In essence Baars’ Global Workspace Theory (GWT) is a particular hypothesis980


about how working memory works and the role it plays in the mind. Baars conceives981


working memory as the “inner domain in which we can rehearse telephone numbers982


to ourselves or, more interestingly, in which we carry on the narrative of our lives.983


It is usually thought to include inner speech and visual imagery.” Baars uses the984


term “consciousness” to refer to the contents of working memory—a theoretical985


commitment that is not part of the CogPrime design. In this section we will use the986


term “consciousness” in Baars’ way, but not throughout the rest of the book.987


Baars conceives working memory and consciousness in terms of a “theater988


metaphor”—according to which, in the “theater of consciousness” a “spotlight of989


selective attention” shines a bright spot on stage. The bright spot reveals the global990


workspace—the contents of consciousness, which may be metaphorically consid-991


ered as a group of actors moving in and out of consciousness, making speeches or992


interacting with each other. The unconscious is represented by the audience watching993


the play ... and there is also a role for the director (the mind’s executive processes)994


behind the scenes, along with a variety of helpers like stage hands, script writers,995


scene designers, etc.996


GWT describes a fleeting memory with a duration of a few seconds. This is much997


shorter than the 10–30 s of classical working memory—according to GWT there is a998


very brief “cognitive cycle” in which the global workspace is refreshed, and the time999


period an item remains in working memory generally spans a large number of these1000


elementary “refresh” actions. GWT contents are proposed to correspond to what we1001


are conscious of, and are said to be broadcast to a multitude of unconscious cognitive1002


brain processes. Unconscious processes, operating in parallel, can form coalitions1003


which can act as input processes to the global workspace. Each unconscious process1004


is viewed as relating to certain goals, and seeking to get involved with coalitions that1005


will get enough importance to become part of the global workspace—because once1006


they’re in the global workspace they’ll be allowed to broadcast out across the mind1007


as a whole, which include broadcasting to the internal and external actuators that1008


allow the mind to do things. Getting into the global workspace is a process’s best1009


shot at achieving its goals.1010


Obviously, the theater metaphor used to describe the GWT is evocative but lim-1011


ited; for instance, the unconscious in the mind does a lot more than the audience1012


in a theater. The unconscious comes up with complex creative ideas sometimes,1013


which feed into consciousness—almost as if the audience is also the scriptwriter.1014


Baars’ theory, with its understanding of unconscious dynamics in terms of coalition-1015


building, fails to describe the subtle dynamics occurring within the various forms1016


of long-term memory, which result in subtle nonlinear interactions between long1017


term memory and working memory. But nevertheless, GWT successfully models1018
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a number of characteristics of consciousness, including its role in handling novel1019


situations, its limited capacity, its sequential nature, and its ability to trigger a vast1020


range of unconscious brain processes. It is the framework on which LIDA’s theory1021


of the cognitive cycle is built.1022


5.5.9 The LIDA Cognitive Cycle1023


The simplest cognitive cycle is that of an animal, which senses the world, compares1024


sensation to memory, and chooses an action, all in one fluid subjective moment. But1025


the same cognitive cycle structure/process applies to higher-level cognitive processes1026


as well. The LIDA architecture is based on the LIDA model of the cognitive cycle,1027


which posits a particular structure underlying the cognitive cycle that possess the1028


generality to encompass both simple and complex cognitive moments.1029


The LIDA cognitive cycle itself is a theoretical construct that can be implemented1030


in many ways, and indeed other BICAs like CogPrime and Psi also manifest the LIDA1031


cognitive cycle in their dynamics, though utilizing different particular structures to1032


do so.1033


Figure 5.13 shows the cycle pictorially, starting in the upper left corner and pro-1034


ceeding clockwise. At the start of a cycle, the LIDA agent perceives its current1035


situation and allocates attention differentially to various parts of it. It then broadcasts1036


information about the most important parts (which constitute the agent’s conscious-1037


ness), and this information gets features extracted from it, when then get passed1038


along to episodic and semantic memory, that interact in the “global workspace” to1039


create a model for the agent’s current situation. This model then, in interaction with1040


procedural memory, enables the agent to choose an appropriate action and execute1041


it—the critical “action-selection” phase!1042


The LIDA Cognitive Cycle in More Depth1043


We now run through the cognitive cycle in more detail.2 It begins with sensory stimuli1044


from the agent’s external internal environment. Low-level feature detectors in sensory1045


memory begin the process of making sense of the incoming stimuli. These low-level1046


features are passed to perceptual memory where higher-level features, objects, cat-1047


egories, relations, actions, situations, etc. are recognized. These recognized entities,1048


called percepts, are passed to the workspace, where a model of the agent’s current1049


situation is assembled. AQ51050


Workspace structures serve as cues to the two forms of episodic memory, yielding1051


both short and long term remembered local associations. In addition to the current1052


percept, the workspace contains recent percepts that haven’t yet decayed away, and1053


the agent’s model of the then-current situation previously assembled from them.1054


2 This section paraphrases heavily from [Fra06].
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Fig. 5.13 The LIDA cognitive cycle


The model of the agent’s current situation is updated from the previous model using1055


the remaining percepts and associations. This updating process will typically require1056


looking back to perceptual memory and even to sensory memory, to enable the1057


understanding of relations and situations. This assembled new model constitutes1058


the agent’s understanding of its current situation within its world. Via constructing1059


the model, the agent has made sense of the incoming stimuli.1060


Now attention allocation comes into play, because a real agent lacks the compu-1061


tational resources to work with all parts of its world-model with maximal mental1062


focus. Portions of the model compete for attention. These competing portions take1063


the form of (potentially overlapping) coalitions of structures comprising parts the1064


model. Once one such coalition wins the competition, the agent has decided what to1065


focus its attention on.1066


And now comes the purpose of all this processing: to help the agent to decide what1067


to do next. The winning coalition passes to the global workspace, the namesake of1068


Global Workspace Theory, from which it is broadcast globally. Though the contents1069


of this conscious broadcast are available globally, the primary recipient is proce-1070


dural memory, which stores templates of possible actions including their context and1071


possible results.1072


Procedural memory also stores an activation value for each such template—a1073


value that attempts to measure the likelihood of an action taken within its context1074
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5.5 Globalist Versus Localist Representations 117


producing the expected result. It’s worth noting that LIDA makes a rather specific1075


assumption here. LIDA’s “activation” values are like the probabilistic truth values1076


of the implications in CogPrime’s Context ∧ Procedure → Goal triples. However,1077


in CogPrime this probability is not the same as the ShortTermImportance “attention1078


value” associated with the Implication link representing that implication. Here LIDA1079


merges together two concepts that in CogPrime are separate.1080


Templates whose contexts intersect sufficiently with the contents of the conscious1081


broadcast instantiate copies of themselves with their variables specified to the current1082


situation. These instantiations are passed to the action selection mechanism, which1083


chooses a single action from these instantiations and those remaining from previous1084


cycles. The chosen action then goes to sensorimotor memory, where it picks up the1085


appropriate algorithm by which it is then executed. The action so taken affects the1086


environment, and the cycle is complete.1087


The LIDA model hypothesizes that all human cognitive processing is via a1088


continuing iteration of such cognitive cycles. It acknowledges that other cognitive1089


processes may also occur, refining and building on the knowledge used in the cogni-1090


tive cycle (for instance, the cognitive cycle itself doesn’t mention abstract reasoning1091


or creativity). But the idea is that these other processes occur in the context of the1092


cognitive cycle, which is the main loop driving the internal and external activities of1093


the organism.1094


5.5.9.1 Avoiding Combinatorial Explosion via Adaptive Attention Allocation1095


LIDA avoids combinatorial explosions in its inference processes via two methods,1096


both of which are also important in CogPrime:1097


• combining reasoning via association with reasoning via deduction1098


• foundational use of uncertainty in reasoning.1099


One can create an analogy between LIDA’s workspace structures and codelets1100


and a logic-based architecture’s assertions and functions. However, LIDA’s codelets1101


only operate on the structures that are active in the workspace during any given cycle.1102


This includes recent perceptions, their closest matches in other types of memory, and1103


structures recently created by other codelets. The results with the highest estimate1104


of success, i.e. activation, will then be selected.1105


Uncertainty plays a role in LIDA’s reasoning in several ways, most notably through1106


the base activation of its behavior codelets, which depend on the model’s estimated1107


probability of the codelet’s success if triggered. LIDA observes the results of its1108


behaviors and updates the base activation of the responsible codelets dynamically.1109


We note that for this kind of uncertain inference/activation interplay to scale well,1110


some level of cognitive synergy must be present; and based on our understanding of1111


LIDA it is not clear to us whether the particular inference and association algorithms1112


used in LIDA possess the requisite synergy.1113


319477_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 124 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


118 5 Brief Survey of Cognitive Architectures


Table 5.1 CogPrime analogues of key LIDA features


LIDA CogPrime


Declarative memory Atomspace
Attentional codelets Schema that adjust importance of atoms explicitly
Coalitions Maps
Global workspace Attentional focus
Behavior codelets Schema
Procedural memory (scheme net) Procedures in ProcedureRepository; and network of Sche-


maNodes in the Atomspace
Action selection (behavior net) Propagation of STICurrency from goals to actions, and action


selection process
Transient episodic memory Perceptual atoms entering AT with high STI, which rapidly


decreases in most cases
Local workspaces Bubbles of interlinked atoms with moderate importance,


focused on by a subset of MindAgents (defined in Chap. 1
of Vol. 6) for a period of time


Perceptual associative memory HebbianLinks in the AT
Sensory memory Spaceserver/timeserver, plus auxiliary stores for other senses
Sensorimotor memory Atoms storing record of actions taken, linked in with atoms


indexed in sensory memory


5.5.9.2 LIDA Versus CogPrime1114


The LIDA cognitive cycle, broadly construed, exists in CogPrime as in other cog-1115


nitive architectures. To see how, it suffices to map the key LIDA structures into1116


corresponding CogPrime structures, as is done in Table 5.1. Of course this table does1117


not cover all CogPrime processes, as LIDA does not constitute a thorough expla-1118


nation of CogPrime structure and dynamics. And in most cases the corresponding1119


CogPrime and LIDA processes don’t work in exactly the same way; for instance,1120


as noted above, LIDA’s action selection relies solely on LIDA’s “activation” values,1121


whereas CogPrime’s action selection process is more complex, relying on aspects of1122


CogPrime that lack LIDA analogues.1123


5.5.10 Psi and MicroPsi1124


We have saved for last the architecture that has the most in common with CogPrime:1125


Joscha Bach’s MicroPsi architecture, closely based on Dietrich Dorner’s Psi theory.1126


CogPrime has borrowed substantially from Psi in its handling of emotion and moti-1127


vation; but Psi also has other aspects that differ considerably from CogPrime. Here1128


we will focus more heavily on the points of overlap, but will mention the key points1129


of difference as well.1130
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5.5 Globalist Versus Localist Representations 119


Fig. 5.14 High-level architecture of the Psi model


The overall Psi cognitive architecture, which is centered on the Psi model of the1131


motivational system, is roughly depicted in Fig. 5.14.1132


Psi’s motivational system begins with Demands, which are the basic factors that1133


motivate the agent. For an animal these would include things like food, water, sex,1134


novelty, socialization, protection of one’s children, and so forth. For an intelligent1135


robot they might include things like electrical power, novelty, certainty, socialization,1136


well-being of others and mental growth.1137


Psi also specifies two fairly abstract demands and posits them as psychologically1138


fundamental (see Fig. 5.15):1139


• competence, the effectiveness of the agent at fulfilling its Urges1140


• certainty, the confidence of the agent’s knowledge.1141


Each demand is assumed to come with a certain “target level” or “target range”1142


(and these may fluctuate over time, or may change as a system matures and develops).1143


An Urge is said to develop when a demand deviates from its target range: the urge1144


then seeks to return the demand to its target range. For instance, in an animal-like1145


agent the demand related to food is more clearly described as “fullness,” and there1146


is a target range indicating that the agent is neither too hungry nor too full of food.1147


If the agent’s fullness deviates from this range, an Urge to return the demand to its1148


target range arises. Similarly, if an agent’s novelty deviates from its target range, this1149


means the agent’s life has gotten either too boring or too disconcertingly weird, and1150


the agent gets an Urge for either more interesting activities (in the case of below-range1151


novelty) or more familiar ones (in the case of above-range novelty).1152
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120 5 Brief Survey of Cognitive Architectures


There is also a primitive notion of Pleasure (and its opposite, displeasure), which1153


is considered as different from the complex emotion of “happiness.” Pleasure is1154


understood as associated with Urges: pleasure occurs when an Urge is (at least1155


partially) satisfied, whereas displeasure occurs when an urge gets increasingly severe.1156


The degree to which an Urge is satisfied is not necessarily defined instantaneously; it1157


may be defined, for instance, as a time-decaying weighted average of the proximity1158


of the demand to its target range over the recent past.1159


So, for instance if an agent is bored and gets a lot of novel stimulation, then it1160


experiences some pleasure. If it’s bored and then the monotony of its stimulation1161


gets even more extreme, then it experiences some displeasure.1162


Note that, according to this relatively simplistic approach, any decrease in the1163


amount of dissatisfaction causes some pleasure; whereas if everything always con-1164


tinues within its acceptable range, there isn’t any pleasure. This may seem a little1165


counterintuitive, but it’s important to understand that these simple definitions of1166


“pleasure” and “displeasure” are not intended to fully capture the natural language1167


concepts associated with those words. The natural language terms are used here sim-1168


ply as heuristics to convey the general character of the processes involved. These are1169


very low level processes whose analogues in human experience are largely below1170


the conscious level.1171


A Goal is considered as a statement that the system may strive to make true at some1172


future time. A Motive is an (urge, goal) pair, consisting of a goal whose satisfaction1173


is predicted to imply the satisfaction of some urge. In fact one may consider Urges1174


as top-level goals, and the agent’s other goals as their subgoals.1175


In Psi an agent has one “ruling motive” at any point in time, but this seems an1176


oversimplification more applicable to simple animals than to human-like or other1177


advanced AI systems. In general one may think of different motives having different1178


weights indicating the amount of resources that will be spent on pursuing them.1179


Emotions in Psi are considered as complex systemic response-patterns rather than1180


explicitly constructed entities. An emotion is the set of mental entities activated in1181


response to a certain set of urges. Dorner conceived theories about how various1182


common emotions emerge from the dynamics of urges and motives as described in1183


the Psi model. “Intentions” are also considered as composite entities: an intention at1184


a given point in time consists of the active motives, together with their related goals,1185


behavior programs and so forth.1186


The basic logic of action in Psi is carried out by “triples” that are very similar1187


to CogPrime’s Context ∧ Procedure → Goal triples. However, an important role is1188


played by four modulators that control how the processes of perception, cognition1189


and action selection are regulated at a given time:1190


• activation, which determines the degree to which the agent is focused on rapid,1191


intensive activity versus reflective, cognitive activity1192


• resolution level, which determines how accurately the system tries to perceive the1193


world1194


• certainty, which determines how hard the system tries to achieve definite, certain1195


knowledge1196
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5.5 Globalist Versus Localist Representations 121


Fig. 5.15 Primary interrelationships between Psi modulators


• selection threshold, which determines how willing the system is to change its1197


choice of which goals to focus on.1198


These modulators characterize the system’s emotional and cognitive state at a1199


very abstract level; they are not emotions per se, but they have a large effect on the1200


agent’s emotions. Their intended interaction is depicted in Fig. 5.15.1201


5.5.11 The Emergence of Emotion in the Psi Model1202


We now briefly review the specifics of how Psi models the emergence of emotion.1203


The basic idea is to define a small set of proto-emotional dimensions in terms of1204


basic Urges and modulators. Then, emotions are identified with regions in the space1205


spanned by these dimensions.1206


The simplest approach uses a six-dimensional continuous space:1207


1. pleasure1208


2. arousal1209


3. resolution level1210


4. selection threshold (i.e. degree of dominance of the leading motive)1211


5. level of background checks (the rate of the securing behavior)1212


6. level of goal-directed behavior.1213
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122 5 Brief Survey of Cognitive Architectures


Fig. 5.16 Five proto-emotional dimensions implicit in the Psi model


Figure 5.16 shows how the latter 5 of these dimensions are derived from underlying1214


urges and modulators. Note that these dimensions are not orthogonal; for instance1215


resolution is mainly inversely related to arousal. Additional dimensions are also1216


discussed, for instance it is postulated that to deal with social emotions one may1217


wish to introduce two more demands corresponding to inner and outer obedience to1218


social norms, and then define dimensions in terms of these.1219


Specific emotions are then characterized in terms of these dimensions. According1220


to [Bac09], for instance, “Anger ... is characterized by high arousal, low resolution,1221


strong motive dominance, few background checks and strong goal-orientedness;1222


sadness by low arousal, high resolution, strong dominance, few background-checks1223


and low goal-orientedness.”1224


I’m a bit skeptical of the contention that these dimensions fully characterize the1225


relevant emotions. Anger for instance seems to have some particular characteristics1226


not implied by the above list of dimensional values. The list of dimensional values1227


associated with anger doesn’t tell us that an angry person is more likely to punch1228


someone than to bounce up and down, for example. However, it does seem that the1229


dimensional values associated with an emotion are informative about the emotion,1230


so that positioning an emotion on the given dimensions tells one a lot.1231
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5.5 Globalist Versus Localist Representations 123


5.5.12 Knowledge Representation, Action Selection1232


and Planning in Psi1233


In addition to the basic motivation/emotion architecture of Psi, which has been1234


adopted (with some minor changes) for use in CogPrime, Psi has a number of other1235


aspects that are somewhat different from their CogPrime analogues.1236


First of all, on the micro level, Psi represents knowledge using structures called1237


“quads.” Each quad is a cluster of 5 neurons containing a core neuron, and four other1238


neurons representing before/after and part-of/has-part relationships in regard to that1239


core neuron. Quads are naturally assembled into spatiotemporal hierarchies, though1240


they are not required to form part of such a structure.1241


Psi stores knowledge using quads arranged in three networks, which are concep-1242


tually similar to the networks in Albus’s 4D/RCS and Arel’s DeSTIN architectures:1243


• A sensory network, which stores declarative knowledge: schemas representing1244


images, objects, events and situations as hierarchical structures.1245


• A motor network, which contains procedural knowledge by way of hierarchical1246


behavior programs.1247


• A motivational network handling demands.1248


Perception in Psi, which is centered in the sensory network, follows principles1249


similar to DeSTIN (which are shared also by other systems), for instance the principle1250


of perception as prediction. Psi’s “HyPercept” mechanism performs hypothesis-1251


based perception: it attempts to predict what is there to be perceived and then attempts1252


to verify these predictions using sensation and memory. Furthermore HyPercept1253


is intimately coupled with actions in the external world, according to the concept1254


of “Neisser’s perceptual cycle,” the cycle between exploration and representation1255


of reality. Perceptually acquired information is translated into schemas capable of1256


guiding behaviors, and these are enacted (sometimes affecting the world in significant1257


ways) and in the process used to guide further perception. Imaginary perceptions are1258


handled via a “mental stage” analogous to CogPrime’s internal simulation world.1259


Action selection in Psi works based on what are called “triplets,” each of which1260


consists of1261


• a sensor schema (pre-conditions, “condition schema”; like CogPrime’s “context”)1262


• a subsequent motor schema (action, effector; like CogPrime’s “procedure”)1263


• a final sensor schema (post-conditions, expectations; like an CogPrime predicate1264


or goal).1265


What distinguishes these triplets from classic production rules as used in (say)1266


Soar and ACT-R is that the triplets may be partial (some of the three elements may1267


be missing) and may be uncertain. However, there seems no fundamental difference1268


between these triplets and CogPrime’s concept/procedure/goal triplets, at a high1269


level; the difference lies in the underlying knowledge representation used for the1270


schemata, and the probabilistic logic used to represent the implication.1271


The work of figuring out what schema to execute to achieve the chosen goal in the1272


current context is done in Psi using a combination of processes called the “Rasmussen1273
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124 5 Brief Survey of Cognitive Architectures


ladder” (named after Danish psychologist Jens Rasmussen). The Rasmussen ladder1274


describes the organization of action as a movement between the stages of skill-based1275


behavior, rule-based behavior and knowledge-based behavior, as follows:1276


• If a given task amounts to a trained routine, an automatism or skill is activated; it1277


can usually be executed without conscious attention and deliberative control.1278


• If there is no automatism available, a course of action might be derived from rules;1279


before a known set of strategies can be applied, the situation has to be analyzed1280


and the strategies have to be adapted.1281


• In those cases where the known strategies are not applicable, a way of combin-1282


ing the available manipulations (operators) into reaching a given goal has to be1283


explored at first. This stage usually requires a recomposition of behaviors, that is,1284


a planning process.1285


The planning algorithm used in the Psi and MicroPsi implementations is a fairly1286


simple hill-climbing planner. While it’s hypothesized that a more complex planner1287


may be needed for advanced intelligence, part of the Psi theory is the hypothesis that1288


most real-life planning an organism needs to do is fairly simple, once the organism1289


has the right perceptual representations and goals.1290


5.5.13 Psi Versus CogPrime1291


On a high level, the similarities between Psi and CogPrime are quite strong:1292


• interlinked declarative, procedural and intentional knowledge structures, repre-1293


sented using neural-symbolic methods (though, the knowledge structures have1294


somewhat different high-level structures and low-level representational mecha-1295


nisms in the two systems)1296


• perception via prediction and perception/action integration1297


• action selection via triplets that resemble uncertain, potentially partial production1298


rules1299


• similar motivation/emotion framework, since CogPrime incorporates a variant of1300


Psi for this.1301


On the nitty-gritty level there are many differences between the systems, but1302


on the big-picture level the main difference lies in the way the cognitive synergy1303


principle is pursued in the two different approaches. Psi and MicroPsi rely on very1304


simple learning algorithms that are closely tied to the “quad” neurosymbolic knowl-1305


edge representation, and hence interoperate in a fairly natural way without need for1306


subtle methods of “synergy engineering.” CogPrime uses much more diverse and1307


sophisticated learning algorithms which thus require more sophisticated methods of1308


interoperation in order to achieve cognitive synergy.1309
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Chapter 6
A Generic Architecture of Human-Like
Cognition


6.1 Introduction0


When writing the first draft of this book, some years ago, we had the idea to explain1


CogPrime by aligning its various structures and processes with the ones in the “stan-2


dard architecture diagram” of the human mind. After a bit of investigation, though,3


we gradually came to the realization that no such thing existed. There was no standard4


flowchart or other sort of diagram explaining the modern consensus on how human5


thought works. Many such diagrams existed, but each one seemed to represent some6


particular focus or theory, rather than an overall integrative understanding.7


Since there are multiple opinions regarding nearly every aspect of human8


intelligence, it would be difficult to get two cognitive scientists to fully agree on9


every aspect of an overall human cognitive architecture diagram. Prior attempts to10


outline detailed mind architectures have tended to follow highly specific theories of11


intelligence, and hence have attracted only moderate interest from researchers not12


adhering to those theories. An example is Minsky’s work presented in The Emotion13


Machine [Min07], which arguably does constitute an architecture diagram for the14


human mind, but which is only loosely grounded in current empirical knowledge15


and stands more as a representation of Minsky’s own intuitive understanding.16


But nevertheless, it seemed to us that a reasonable attempt at an integrative,17


relatively theory-neutral “human cognitive architecture diagram” would be better18


than nothing. So naturally, we took it on ourselves to create such a diagram. This19


chapter is the result—it draws on the thinking of a number of cognitive science and20


AGI researchers, integrating their perspectives in a coherent, overall architecture21


diagram for human, and human-like, general intelligence. The specific architecture22


diagram of CogPrime, given in Chap. 1, may then be understood as a particular23


instantiation of this generic architecture diagram of human-like cognition.24


There is no getting around the fact that, to a certain extent, the diagram pre-25


sented here reflects our particular understanding of how the mind works. However,26


it was intentionally constructed with the goal of not being just an abstracted ver-27


sion of the CogPrime architecture diagram! It does not reflect our own idiosyncratic28


B. Goertzel et al., Engineering General Intelligence, Part 1, 125
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_6,
© Atlantis Press and the authors 2014
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126 6 A Generic Architecture of Human-Like Cognition


understanding of human intelligence, as much as a combination of understandings29


previously presented by multiple researchers (including ourselves), arranged accord-30


ing to our own taste in a manner we find conceptually coherent. With this in mind, we31


call it the “Integrative Human-Like Cognitive Architecture Diagram”, or for short32


“the integrative diagram”. We have made an effort to ensure that as many pieces33


of the integrative diagram as possible are well grounded in psychological and even34


neuroscientific data, rather than mainly embodying speculative notions; however,35


given the current state of knowledge, this could not be done to a complete extent,36


and there is still some speculation involved here and there.37


While based on understandings of human intelligence, the integrative diagram is38


intended to serve as an architectural outline for human-like general intelligence more39


broadly. For example, CogPrime is explicitly not intended as a precise emulation of40


human intelligence, and does many things quite differently than the human mind,41


yet can still fairly straightforwardly be mapped into the integrative diagram.42


The integrative diagram focuses on structure, but this should not be taken to43


represent a valuation of structure over dynamics in our approach to intelligence.44


Following chapters treat various dynamical phenomena in depth.45


6.2 Key Ingredients of the Integrative Human-Like Cognitive46


Architecture Diagram47


The main ingredients we’ve used in assembling the integrative diagram are as follows:48


• Our own views on the various types of memory critical for human-like cognition,49


and the need for tight, “synergetic” interactions between the cognitive processes50


focused on these.51


• Aaron Sloman’s high-level architecture diagram of human intelligence [Slo01],52


drawn from his CogAff architecture, which strikes me as a particularly clear53


embodiment of “modern common sense” regarding the overall architecture of the54


human mind. We have added only a couple items to Sloman’s high-level diagram,55


which we felt deserved an explicit high-level role that he did not give them: emo-56


tion, language and reinforcement.57


• The LIDA architecture diagram presented by Stan Franklin and Bernard Baars58


[BF09]. We think LIDA is an excellent model of working memory and what Sloman59


calls “reactive processes”, with well-researched grounding in the psychology and60


neuroscience literature. We have adapted the LIDA diagram only very slightly for61


use here, changing some of the terminology on the arrows, and indicating where62


parts of the LIDA diagram indicate processes elaborated in more detail elsewhere63


in the integrative diagram.64


• The architecture diagram of the Psi model of motivated cognition, presented by65


Joscha Bach in [Bac09] based on prior work by Dietrich Dorner [Dör02]. This dia-66


gram is presented without significant modification; however it should be noted that67


Bach and Dorner present this diagram in the context of larger and richer cognitive68
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6.2 Key Ingredients of the Integrative Human-Like Cognitive Architecture Diagram 127


models, the other aspects of which are not all incorporated in the integrative69


diagram.70


• James Albus’s three-hierarchy model of intelligence [AM01], involving coupled71


perception, action and reinforcement hierarchies. Albus’s model, utilized in the72


creation of intelligent unmanned automated vehicles, is a crisp embodiment of73


many ideas emergent from the field of intelligent control systems.74


• Deep learning networks as a model of perception (and action and reinforcement75


learning), as embodied for example in the work of Itamar Arel [ARC09] and Jeff76


Hawkins [HB06]. The integrative diagram adopts this as the basic model of the77


perception and action subsystems of human intelligence. Language understanding78


and generation are also modeled according to this paradigm.79


One possible negative reaction to the integrative diagram might be to say that it’s a80


kind of Frankenstein monster diagram, piecing together aspects of different theories81


in a way that violates the theoretical notions underlying all of them! For example,82


the integrative diagram takes LIDA as a model of working memory and reactive83


processing, but from the papers on LIDA it’s unclear whether the creators of LIDA84


construe it more broadly than that. The deep learning community tends to believe85


that the architecture of current deep learning networks, in itself, is close to sufficient86


for human-level general intelligence—whereas the integrative diagram appropriates87


the ideas from this community mainly for handling perception, action and language,88


etc.89


On the other hand, in a more positive perspective, one could view the integrative90


diagram as consistent with LIDA, but merely providing much more detail on some91


of the boxes in the LIDA diagram (e.g. dealing with perception and long-term mem-92


ory). And one could view the integrative diagram as consistent with the deep learn-93


ing paradigm—via viewing it, not as a description of components to be explicitly94


implemented in an AGI system, but rather as a description of the key structures and95


processes that must emerge in deep learning network, based on its engagement with96


the world, in order for it to achieve human-like general intelligence.97


Our own view, underlying the creation of the integrative diagram, is that different98


communities of cognitive science researchers have focused on different aspects of99


intelligence, and have thus each created models that are more fully fleshed out in100


some aspects than others. But these various models all link together fairly cleanly,101


which is not surprising as they are all grounded in the same data regarding human102


intelligence. Many judgment calls must be made in fusing multiple models in the way103


that the integrative diagram does, but we feel these can be made without violating the104


spirit of the component models. In assembling the integrative diagram, we have made105


these judgment calls as best we can, but we’re well aware that different judgments106


would also be feasible and defensible. Revisions are likely as time goes on, not only107


due to new data about human intelligence but also to evolution of understanding108


regarding the best approach to model integration.109


Another possible argument against the ideas presented here is that there’s nothing110


new—all the ingredients presented have been given before elsewhere. To this our111


retort is to quote Pascal: “Let no one say that I have said nothing new ... the112


319477_1_En_6_Chapter � TYPESET DISK LE � CP Disp.:29/10/2013 Pages: 136 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


128 6 A Generic Architecture of Human-Like Cognition


arrangement of the subject is new”. The various architecture diagrams incorporated113


into the integrative diagram are either extremely high level (Sloman’s diagram) or114


focus primarily on one aspect of intelligence, treating the others very concisely by115


summarizing large networks of distinction structures and processes in small boxes.116


The integrative diagram seeks to cover all aspects of human-like intelligence at a117


roughly equal granularity—a different arrangement.118


This kind of high-level diagramming exercise is not precise enough, nor dynamics-119


focused enough, to serve as a guide for creating human-level or more advanced AGI.120


But it can be a useful tool for explaining and interpreting a concrete AGI design,121


such as CogPrime.122


6.3 An Architecture Diagram for Human-Like General123


Intelligence124


The integrative diagram is presented here in a series of seven Figures.125


Figure 6.1 gives a high-level breakdown into components, based on Sloman’s126


high-level cognitive-architectural sketch [Slo01]. This diagram represents, roughly127


speaking, “modern common sense” about how a human-like mind is architected.128


Fig. 6.1 High-level architecture of a human-like mind
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6.3 An Architecture Diagram for Human-Like General Intelligence 129


The separation between structures and processes, embodied in having separate boxes129


for Working Memory versus Reactive Processes, and for Long Term Memory versus130


Deliberative Processes, could be viewed as somewhat artificial, since in the human131


brain and most AGI architectures, memory and processing are closely integrated.132


However, the tradition in cognitive psychology is to separate out Working Mem-133


ory and Long Term Memory from the cognitive processes acting thereupon, so we134


have adhered to that convention. The other changes from Sloman’s diagram are the135


explicit inclusion of language, representing the hypothesis that language processing136


is handled in a somewhat special way in the human brain; and the inclusion of a rein-137


forcement component parallel to the perception and action hierarchies, as inspired by138


intelligent control systems theory (e.g. Albus as mentioned above) and deep learning139


theory. Of course Sloman’s high level diagram in its original form is intended as140


inclusive of language and reinforcement, but we felt it made sense to give them more141


emphasis.142


Figure 6.2, modeling working memory and reactive processing, is essentially143


the LIDA diagram as given in prior papers by Stan Franklin, Bernard Baars and144


colleagues [BF09]. The boxes in the upper left corner of the LIDA diagram pertain145


to sensory and motor processing, which LIDA does not handle in detail, and which146


are modeled more carefully by deep learning theory. The bottom left corner box147


refers to action selection, which in the integrative diagram is modeled in more detail148


by Psi. The top right corner box refers to Long-Term Memory, which the integrative149


diagram models in more detail as a synergetic multi-memory system (Fig. 6.4).150


The original LIDA diagram refers to various “codelets”, a key concept in LIDA151


theory. We have replaced “attention codelets” here with “attention flow”, a more152


Fig. 6.2 Architecture of working memory and reactive processing, closely modeled on the LIDA
architecture
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130 6 A Generic Architecture of Human-Like Cognition


Fig. 6.3 Architecture of motivated action


generic term. We suggest one can think of an attention codelet as: a piece of153


information stating that, for a certain group of items, it’s currently pertinent to pay154


attention to this group as a collective.155


Figure 6.3, modeling motivation and action selection, is a lightly modified version156


of the Psi diagram from Joscha Bach’s book Principles of Synthetic Intelligence157


[Bac09]. The main difference from Psi is that in the integrative diagram the Psi moti-158


vated action framework is embedded in a larger, more complex cognitive model. Psi159


comes with its own theory of working and long-term memory, which is related to160


but different from the one given in the integrative diagram—it views the multiple161


memory types distinguished in the integrative diagram as emergent from a common162


memory substrate. Psi comes with its own theory of perception and action, which163


seems broadly consistent with the deep learning approach incorporated in the integra-164


tive diagram. Psi’s handling of working memory lacks the detailed, explicit workflow165


of LIDA, though it seems broadly conceptually consistent with LIDA.166


In Fig. 6.3, the box labeled “Other portions of working memory” is labeled167


“Protocol and situation memory” in the original Psi diagram. The Perception, Action168


Execution and Action Selection boxes have fairly similar semantics to the similarly169


labeled boxes in the LIDA-like Fig. 6.2, so that these diagrams may be viewed as170


overlapping. The LIDA model doesn’t explain action selection and planning in as171


much detail as Psi, so the Psi-like Fig. 6.3 could be viewed as an elaboration of the172


action-selection portion of the LIDA-like Fig. 6.2. In Psi, reinforcement is consid-173


ered as part of the learning process involved in action selection and planning; in174


Fig. 6.3 an explicit “reinforcement box” has been added to the original Psi diagram,175


to emphasize this.176
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6.3 An Architecture Diagram for Human-Like General Intelligence 131


Fig. 6.4 Architecture of long-term memory and deliberative and metacognitive thinking


Figure 6.4, modeling long-term memory and deliberative processing, is derived177


from our own prior work studying the “cognitive synergy” between different cog-178


nitive processes associated with different types of memory. The division into types179


of memory is fairly standard. Declarative, procedural, episodic and sensorimotor180


memory are routinely distinguished; we like to distinguish attentional memory and181


intentional (goal) memory as well, and view these as the interface between long-term182


memory and the mind’s global control systems. One focus of our AGI design work183


has been on designing learning algorithms, corresponding to these various types of184


memory, that interact with each other in a synergetic way [Goe09c], helping each185


other to overcome their intrinsic combinatorial explosions. There is significant evi-186


dence that these various types of long-term memory are differently implemented in187


the brain, but the degree of structure and dynamical commonality underlying these188


different implementations remains unclear.189


Each of these long-term memory types has its analogue in working memory190


as well. In some cognitive models, the working memory and long-term memory191


versions of a memory type and corresponding cognitive processes, are basically the192


same thing. CogPrime is mostly like this—it implements working memory as a subset193


of long-term memory consisting of items with particularly high importance values.194


The distinctive nature of working memory is enforced via using slightly different195


dynamical equations to update the importance values of items with importance above196


a certain threshold. On the other hand, many cognitive models treat working and197


long term memory as more distinct than this, and there is evidence for significant198


functional and anatomical distinctness in the brain in some cases. So for the purpose199


of the integrative diagram, it seemed best to leave working and long-term memory200


subcomponents as parallel but distinguished.201


Figure 6.4 also encompasses metacognition, under the hypothesis that in human202


beings and human-like minds, metacognitive thinking is carried out using basically203
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132 6 A Generic Architecture of Human-Like Cognition


Fig. 6.5 Architecture for multimodal perception


the same processes as plain ordinary deliberative thinking, perhaps with various204


tweaks optimizing them for thinking about thinking. If it turns out that humans205


have, say, a special kind of reasoning faculty exclusively for metacognition, then the206


diagram would need to be modified. Modeling of self and others is understood to207


occur via a combination of metacognition and deliberative thinking, as well as via208


implicit adaptation based on reactive processing.209


Figure 6.5 models perception, according to the basic ideas of deep learning theory.210


Vision and audition are modeled as deep learning hierarchies, with bottom-up and211


top-down dynamics. The lower layers in each hierarchy refer to more localized pat-212


terns recognized in, and abstracted from, sensory data. Output from these hierarchies213


to the rest of the mind is not just through the top layers, but via some sort of sam-214


pling from various layers, with a bias toward the top layers. The different hierarchies215


cross-connect, and are hence to an extent dynamically coupled together. It is also216


recognized that there are some sensory modalities that aren’t strongly hierarchical,217


e.g touch and smell (the latter being better modeled as something like an asymmetric218


Hopfield net, prone to frequent chaotic dynamics [LLW+05])—these may also cross-219


connect with each other and with the more hierarchical perceptual subnetworks. Of220


course the suggested architecture could include any number of sensory modalities;221


the diagram is restricted to four just for simplicity.222


The self-organized patterns in the upper layers of perceptual hierarchies may223


become quite complex and may develop advanced cognitive capabilities like episodic224


memory, reasoning, language learning, etc. A pure deep learning approach to intel-225


ligence argues that all the aspects of intelligence emerge from this kind of dynamics226
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6.3 An Architecture Diagram for Human-Like General Intelligence 133


Fig. 6.6 Architecture for action and reinforcement


(among perceptual, action and reinforcement hierarchies). Our own view is that the227


heterogeneity of human brain architecture argues against this perspective, and that228


deep learning systems are probably better as models of perception and action than229


of general cognition. However, the integrative diagram is not committed to our per-230


spective on this—a deep-learning theorist could accept the integrative diagram, but231


argue that all the other portions besides the perceptual, action and reinforcement232


hierarchies should be viewed as descriptions of phenomena that emerge in these233


hierarchies due to their interaction.234


Figure 6.6 shows an action subsystem and a reinforcement subsystem, parallel235


to the perception subsystem. Two action hierarchies, one for an arm and one for a236


leg, are shown for concreteness, but of course the architecture is intended to be237


extended more broadly. In the hierarchy corresponding to an arm, for example,238


the lowest level would contain control patterns corresponding to individual joints,239


the next level up to groupings of joints (like fingers), the next level up to larger240


parts of the arm (hand, elbow). The different hierarchies corresponding to different241


body parts cross-link, enabling coordination among body parts; and they also con-242


nect at multiple levels to perception hierarchies, enabling sensorimotor coordination.243


Finally there is a module for motor planning, which links tightly with all the motor244


hierarchies, and also overlaps with the more cognitive, inferential planning activities245


of the mind, in a manner that is modeled different ways by different theorists. Albus246


[AM01] has elaborated this kind of hierarchy quite elaborately.247


The reward hierarchy in Fig. 6.6 provides reinforcement to actions at various248


levels on the hierarchy, and includes dynamics for propagating information about249


reinforcement up and down the hierarchy.250
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134 6 A Generic Architecture of Human-Like Cognition


Fig. 6.7 Architecture for language processing


Figure 6.7 deals with language, treating it as a special case of coupled perception251


and action. The traditional architecture of a computational language comprehension252


system is a pipeline [JM09] [Goe10c], which is equivalent to a hierarchy with the253


lowest-level linguistic features (e.g. sounds, words) at the bottom, and the high-254


est level features (semantic abstractions) at the top, and syntactic features in the255


middle. Feedback connections enable semantic and cognitive modulation of lower-256


level linguistic processing. Similarly, language generation is commonly modeled257


hierarchically, with the top levels being the ideas needing verbalization, and the bot-258


tom level corresponding to the actual sentence produced. In generation the primary259


flow is top-down, with bottom-up flow providing modulation of abstract concepts by260


linguistic surface forms.261


So, that’s it—an integrative architecture diagram for human-like general262


intelligence, split among seven different pictures, formed by judiciously merging263


together architecture diagrams produced via a number of cognitive theorists with264


different, overlapping foci and research paradigms.265


Is anything critical left out of the diagram? A quick perusal of the table of contents266


of cognitive psychology textbooks suggests to me that if anything major is left out, it’s267


also unknown to current cognitive psychology. However, one could certainly make268


an argument for explicit inclusion of certain other aspects of intelligence, that in the269


integrative diagram are left as implicit emergent phenomena. For instance, creativity270


is obviously very important to intelligence, but, there is no “creativity” box in any of271


these diagrams—because in our view, and the view of the cognitive theorists whose272


work we’ve directly drawn on here, creativity is best viewed as a process emergent273


from other processes that are explicitly included in the diagrams.274


6.4 Interpretation and Application of the Integrative Diagram275


A tongue-partly-in-cheek definition of a biological pathway is “a subnetwork of276


a biological network, that fits on a single journal page”. Cognitive architecture277


diagrams have a similar property—they are crude abstractions of complex structures278
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6.4 Interpretation and Application of the Integrative Diagram 135


and dynamics, sculpted in accordance with the size of the printed page, and the tol-279


erance of the human eye for absorbing diagrams, and the tolerance of the human280


author for making diagrams.281


However, sometimes constraints—even arbitrary ones—are useful for guiding282


creative efforts, due to the fact that they force choices. Creating an architecture for283


human-like general intelligence that fits in a few (okay, seven) fairly compact dia-284


grams, requires one to make many choices about what features and relationships285


are most essential. In constructing the integrative diagram, we have sought to make286


these choices, not purely according to our own tastes in cognitive theory or AGI287


system design, but according to a sort of blend of the taste and judgment of a num-288


ber of scientists whose views we respect, and who seem to have fairly compatible,289


complementary perspectives.290


What is the use of a cognitive architecture diagram like this? It can help to give291


newcomers to the field a basic idea about what is known and suspected about the292


nature of human-like general intelligence. Also, it could potentially be used as a tool293


for cross-correlating different AGI architectures. If everyone who authored an AGI294


architecture would explain how their architecture accounts for each of the structures295


and processes identified in the integrative diagram, this would give a means of relating296


the various AGI designs to each other.297


The integrative diagram could also be used to help connect AGI and cognitive298


psychology to neuroscience in a more systematic way. In the case of LIDA, a fairly299


careful correspondence has been drawn up between the LIDA diagram nodes and300


links and various neural structures and processes [FB08]. Similar knowledge exists301


for the rest of the integrative diagram, though not organized in such a systematic302


fashion. A systematic curation of links between the nodes and links in the integrative303


diagram and current neuroscience knowledge, would constitute an interesting first304


approximation of the holistic cognitive behavior of the human brain.305


Finally (and harking forward to later chapters), the big omission in the integrative306


diagram is dynamics. Structure alone will only get you so far, and you could build307


an AGI system with reasonable-looking things in each of the integrative diagram’s308


boxes, interrelating according to the given arrows, and yet still fail to make a viable309


AGI system. Given the limitations the real world places on computing resources,310


it’s not enough to have adequate representations and algorithms in all the boxes,311


communicating together properly and capable doing the right things given sufficient312


resources. Rather, one needs to have all the boxes filled in properly with structures313


and processes that, when they act together using feasible computing resources, will314


yield appropriately intelligent behaviors via their cooperative activity. And this has315


to do with the complex interactive dynamics of all the processes in all the different316


boxes—which is something the integrative diagram doesn’t touch at all. This brings317


us again to the network of ideas we’ve discussed under the name of “cognitive318


synergy”, to be discussed later on.319


It might be possible to make something similar to the integrative diagram on the320


level of dynamics rather than structures, complementing the structural integrative321


diagram given here; but this would seem significantly more challenging, because we322


lack a standard set of tools for depicting system dynamics. Most cognitive theorists323
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136 6 A Generic Architecture of Human-Like Cognition


and AGI architects describe their structural ideas using boxes-and-lines diagrams of324


some sort, but there is no standard method for depicting complex system dynamics.325


So to make a dynamical analogue to the integrative diagram, via a similar integrative326


methodology, one would first need to create appropriate diagrammatic formalizations327


of the dynamics of the various cognitive theories being integrated—a fascinating but328


onerous task.329


When we first set out to make an integrated cognitive architecture diagram, via330


combining the complementary insights of various cognitive science and AGI the-331


orists, we weren’t sure how well it would work. But now we feel the experiment332


was generally a success —the resultant integrated architecture seems sensible and333


coherent, and reasonably complete. It doesn’t come close to telling you everything334


you need to know to understand or implement a human-like mind—but it tells you335


the various processes and structures you need to deal with, and which of their inter-336


relations are most critical. And, perhaps just as importantly, it gives a concrete way337


of understanding the insights of a specific but fairly diverse set of cognitive science338


and AGI theorists as complementary rather than contradictory. In a CogPrime con-339


text, it provides a way of tying in the specific structures and dynamics involved in340


CogPrime, with a more generic portrayal of the structures and dynamics of human-341


like intelligence.342
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Chapter 7
A Formal Model of Intelligent Agents


7.1 Introduction0


The artificial intelligence field is full of sophisticated mathematical models and1


equations, but most of these are highly specialized in nature—e.g. formalizations2


of particular logic systems, analyzes of the dynamics of specific sorts of neural nets,3


etc. On the other hand, a number of highly general models of intelligent systems also4


exist, including Hutter’s recent formalization of universal intelligence [Hut05] and a5


large body of work in the disciplines of systems science and cybernetics—but these6


have tended not to yield many specific lessons useful for engineering AGI systems,7


serving more as conceptual models in mathematical form.8


It would be fantastic to have a mathematical theory bridging these extremes—a9


real “general theory of general intelligence”, allowing the derivation and analysis of10


specific structures and processes playing a role in practical AGI systems, from broad11


mathematical models of general intelligence in various situations and under various12


constraints. However, the path to such a theory is not entirely clear at present; and,13


as valuable as such a theory would be, we don’t believe such a thing to be necessary14


for creating advanced AGI. One possibility is that the development of such a theory15


will occur contemporaneously and synergetically with the advent of practical AGI16


technology.17


Lacking a mature, pragmatically useful “general theory of general intelligence”,18


however, we have still found it valuable to articulate certain theoretical ideas about19


the nature of general intelligence, with a level of rigor a bit greater than the wholly20


informal discussions of the previous chapters. The chapters in this section of the book21


articulate some ideas we have developed in pursuit of a general theory of general22


intelligence; ideas that, even in their current relatively undeveloped form, have been23


very helpful in guiding our concrete work on the CogPrime design.24


This chapter presents a more formal version of the notion of intelligence as25


“achieving complex goals in complex environments”, based on a formal model of26


intelligent agents. These formalizations of agents and intelligence will be used in later27


chapters as a foundation for formalizing other concepts like inference and cognitive28


B. Goertzel et al., Engineering General Intelligence, Part 1, 139
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_7,
© Atlantis Press and the authors 2014
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140 7 A Formal Model of Intelligent Agents


synergy. Chapters 8 and 9 pursue the notion of cognitive synergy a little more29


thoroughly than was done in previous chapters. Chapter 10 sketches a general the-30


ory of general intelligence using tools from category theory—not bringing it to the31


level where one can use it to derive specific AGI algorithms and structures; but still,32


presenting ideas that will be helpful in interpreting and explaining specific aspects33


of the CogPrime design in Vol. 6. Finally, Appendix ?? explores an additional the-34


oretical direction, in which the mind of an intelligent system is viewed in terms of35


certain curved spaces—a novel way of thinking about the dynamics of general intel-36


ligence, which has been useful in guiding development of the ECAN component of37


CogPrime, and we expect will have more general value in future.38AQ1


Despite the intermittent use of mathematical formalism, the ideas presented in39


this section are fairly speculative, and we do not propose them as constituting a40


well-demonstrated theory of general intelligence. Rather, we propose them as an41


interesting way of thinking about general intelligence, which appears to be consistent42


with available data, and which has proved inspirational to us in conceiving concrete43


structures and dynamics for AGI, as manifested for example in the CogPrime design.44


Understanding the way of thinking described in these chapters is valuable for under-45


standing why the CogPrime design is the way it is, and for relating CogPrime to46


other practical and intellectual systems, and extending and improving CogPrime.47


7.2 A Simple Formal Agents Model (SRAM)48


We now present a formalization of the concept of “intelligent agents”—beginning49


with a formalization of “agents” in general.50


Drawing on [Hut05, LH07a], we consider a class of active agents which observe51


and explore their environment and also take actions in it, which may affect the52


environment. Formally, the agent sends information to the environment by sending53


symbols from some finite alphabet called the action space Σ ; and the environment54


sends signals to the agent with symbols from an alphabet called the perception55


space, denoted P . Agents can also experience rewards, which lie in the reward56


space, denoted R, which for each agent is a subset of the rational unit interval.57


The agent and environment are understood to take turns sending signals back and58


forth, yielding a history of actions, observations and rewards, which may be denoted59


a1o1r1a2o2r2...60


or else61


a1x1a2x2...62


if x is introduced as a single symbol to denote both an observation and a reward.63


The complete interaction history up to and including cycle t is denoted ax1:t ; and the64


history before cycle t is denoted ax<t = ax1:t−1.65
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7.2 A Simple Formal Agents Model (SRAM) 141


The agent is represented as a function π which takes the current history as input,66


and produces an action as output. Agents need not be deterministic, an agent may67


for instance induce a probability distribution over the space of possible actions,68


conditioned on the current history. In this case we may characterize the agent by a69


probability distribution π(at |ax<t). Similarly, the environment may be characterized70


by a probability distribution μ(xk |ax<kak). Taken together, the distributions π and μ71


define a probability measure over the space of interaction sequences.72


Next, we extend this model in a few ways, intended to make it better reflect the73


realities of intelligent computational agents. The first modification is to allow agents74


to maintain memories (of finite size), via adding memory actions drawn from a set75


M into the history of actions, observations and rewards. The second modification is76


to introduce the notion of goals.77


7.2.1 Goals78


We define goals as mathematical functions (to be specified below) associated with79


symbols drawn from the alphabet G; and we consider the environment as sending80


goal-symbols to the agent along with regular observation-symbols. (Note however81


that the presentation of a goal-symbol to an agent does not necessarily entail the82


explicit communication to the agent of the contents of the goal function. This must83


be provided by other, correlated observations.) We also introduce a conditional dis-84


tribution γ(g,μ) that gives the weight of a goal g in the context of a particular85


environment μ.86


In this extended framework, an interaction sequence looks like87


a1o1g1r1a2o2g2r2...88


or else89


a1y1a2y2...90


where gi are symbols corresponding to goals, and y is introduced as a single symbol91


to denote the combination of an observation, a reward and a goal.92


Each goal function maps each finite interaction sequence Ig,s,t = ays:t with gs to93


gt corresponding to g, into a value rg(Ig,s,t) ∈ [0, 1] indicating the value or “raw94


reward” of achieving the goal during that interaction sequence. The total reward rt95


obtained by the agent is the sum of the raw rewards obtained at time t from all goals96


whose symbols occur in the agent’s history before t.97


This formalism of goal-seeking agents allows us to formalize the notion of intel-98


ligence as “achieving complex goals in complex environments”—a direction that is99


pursued in Sect. 7.3.100


Note that this is an external perspective of system goals, which is natural from101


the perspective of formally defining system intelligence in terms of system behavior,102


but is not necessarily very natural in terms of system design. From the point of103
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142 7 A Formal Model of Intelligent Agents


view of AGI design, one is generally more concerned with the (implicit or explicit)104


representation of goals inside an AGI system, as in CogPrime’s Goal Atoms to be105


reviewed in Chap. 4 of Vol. 6.AQ2106


Further, it is important to also consider the case where an AGI system has no107


explicit goals, and the system’s environment has no immediately identifiable goals108


either. But in this case, we don’t see any clear way to define a system’s intelligence,109


except via approximating the system in terms of other theoretical systems which do110


have explicit goals. This approximation approach is developed in Sect. 7.3.5.111


The awkwardness of linking the general formalism of intelligence theory pre-112


sented here, with the practical business of creating and designing AGI systems,113


may indicate a shortcoming on the part of contemporary intelligence theory or AGI114


designs. On the other hand, this sort of situation often occurs in other domains as115


well—e.g. the leap from quantum theory to the analysis of real-world systems like116


organic molecules involves a lot of awkwardness and large leaps a well.117


7.2.2 Memory Stores118


As well as goals, we introduce into the model a long-term memory and a workspace.119


Regarding long-term memory we assume the agent’s memory consists of mul-120


tiple memory stores corresponding to various types of memory, e.g.: procedural121


(KProc), declarative (KDec), episodic (KEp), attentional (KAtt) and Intentional (KInt).122


In Appendix ?? a category-theoretic model of these memory stores is introduced;123


but for the moment, we need only assume the existence of124


• an injective mapping ΘEp: KEp → H where H is the space of fuzzy sets of125


subhistories (subhistories being “episodes” in this formalism)126


• an injective mapping ΘProc: KProc × M × W → A, where M is the set of127


memory states, W is the set of (observation, goal, reward) triples, and A is the set128


of actions (this maps each procedure object into a function that enacts actions in129


the environment or memory, based on the memory state and current world-state)130


• an injective mapping ΘDec: KDec → L, where L is the set of expressions in some131


formal language (which may for example be a logical language), which possesses132


words corresponding to the observations, goals, reward values and actions in our133


agent formalism134


• an injective mapping ΘInt : KInt → G, where G is the space of goals mentioned135


above136


• an injective mapping ΘAtt : KInt ∪ KEp ∪ KProc ∪ KEc → V , where V is the space137


of “attention values” (structures that gauge the importance of paying attention to138


an item of knowledge over various time-scales or in various contexts).139


We also assume that the vocabulary of actions contains memory-actions corre-140


sponding to the operations of inserting the current observation, goal, reward or action141


into the episodic and/or declarative memory store. And, we assume that the activity142


of the agent, at each time-step, includes the enaction of one or more of the procedures143
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7.2 A Simple Formal Agents Model (SRAM) 143


in the procedural memory store. If several procedures are enacted at once, then the144


end result is still formally modeled as a single action a = a[1] ∗ · · · ∗ a[k] where ∗ is145


an operator on action-space that composes multiple actions into a single one.146


Finally, we assume that, at each time-step, the agent may carry out an external147


action ai on the environment, a memory action mi on the (long-term) memory, and an148


action bi on its internal workspace. Among the actions that can be carried out on the149


workspace, are the ability to insert or delete observations, goals, actions or reward-150


values from the workspace. The workspace can be thought of as a sort of short-term151


memory or else in terms of Baars’ “global workspace” concept mentioned above.152


The workspace provides a medium for interaction between the different memory153


types.154


The workspace provides a mechanism by which declarative, episodic and proce-155


dural memory may interact with each other. For this mechanism to work, we must156


assume that there are actions corresponding to query operations that allow procedures157


to look into declarative and episodic memory. The nature of these query operations158


will vary among different agents, but we can assume that in general an agent has159


• one or more procedures QDec(x) serving as declarative queries, meaning that when160


QDec is enacted on some x that is an ordered set of items in the workspace, the result161


is that one or more items from declarative memory is entered into the workspace162


• one or more procedures QEp(x) serving as episodic queries, meaning that when163


QEp is enacted on some x that is an ordered set of items in the workspace, the result164


is that one or more items from episodic memory is entered into the workspace.165


One additional aspect of CogPrime’s knowledge representation that is impor-166


tant to PLN is the attachment of nonnegative weights ni corresponding to elementary167


observations oi. These weights denote the amount of evidence contained in the obser-168


vation. For instance, in the context of a robotic agent, one could use these values to169


encode the assumption that an elementary visual observation has more evidential170


value than an elementary olfactory observation.171


We now have a model of an agent with long-term memory comprising procedural,172


declarative and episodic aspects, an internal cognitive workspace, and the capability173


to use procedures to drive actions based on items in memory and the workspace, and174


to move items between long-term memory and the workspace.175


7.2.2.1 Modeling CogPrime176


Of course, this formal model may be realized differently in various real-world AGI177


systems. In CogPrime we have178


• a weighted, labeled hypergraph structure called the AtomSpace used to store179


declarative knowledge (this is the representation used by PLN)180


• a collection of programs in a LISP-like language called Combo, stored in a Pro-181


cedure Repository data structure, used to store procedural knowledge182


• a collection of partial “movies” of the system’s experience, played back using an183


internal simulation engine, used to store episodic knowledge184
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144 7 A Formal Model of Intelligent Agents


• AttentionValue objects, minimally containing ShortTermImportance (STI) and185


LongTermImportance (LTI) values used to store attentional knowledge186


• Goal Atoms for intentional knowledge, stored in the same format as declarative187


knowledge but whose dynamics involve a special form of artificial currency that188


is used to govern action selection.189


The AtomSpace is the central repository and procedures and episodes are linked190


to Atoms in the AtomSpace which serve as their symbolic representatives. The191


“workspace” in CogPrime exists only virtually: each item in the AtomSpace has192


a “short term importance” (STI) level, and the workspace consists of those items in193


the AtomSpace with highest STI, and those procedures and episodes whose symbolic194


representatives in the AtomSpace have highest STI.195


On the other hand, as we saw above, the LIDA architecture uses separate repre-196


sentations for procedural, declarative and episodic memory, but also has an explicit197


workspace component, where the most currently contextually relevant items from198


all different types of memory are gathered and used together in the course of actions.199


However, compared to CogPrime, it lacks comparably fine-grained methods for inte-200


grating the different types of memory.201


Systematically mapping various existing cognitive architectures, or human brain202


structure, into this formal agents model would be a substantial though quite plausible203


exercise; but we will not undertake this here.204


7.2.3 The Cognitive Schematic205


Next we introduce an additional specialization into SRAM: the cognitive schematic,206


written informally as207


Context & Procedure → Goal208


and considered more formally as holds(C) & ex(P) → hi where h may be an exter-209


nally specified goal gi or an internally specified goal h derived as a (possibly uncer-210


tain) subgoal of one of more gi; C is a piece of declarative or episodic knowledge and211


P is a procedure that the agent can internally execute to generate a series of actions.212


ex(P) is the proposition that P is successfully executed. If C is episodic then holds(C)213


may be interpreted as the current context (i.e. some finite slice of the agent’s history)214


being similar to C; if C is declarative then holds(C) may be interpreted as the truth215


value of C evaluated at the current context. Note that C may refer to some part of the216


world quite distant from the agent’s current sensory observations; but it may still be217


formally evaluated based on the agent’s history.218


In the standard CogPrime notation as introduced formally in Chap. 2 of Vol. 6219


(where indentation has function-argument syntax similar to that in Python, and220


relationship types are prepended to their relata without parentheses), for the case221


C is declarative this would be written as222
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7.2 A Simple Formal Agents Model (SRAM) 145


PredictiveExtensionalImplication
AND


C
Execution P


G


and in the case C is episodic one replaces C in this formula with a predicate expressing223


C’s similarity to the current context. The semantics of the PredictiveExtensionalIn-224


heritance relation will be discussed below. The Execution relation simply denotes225


the proposition that procedure P has been executed.226


For the class of SRAM agents who (like CogPrime) use the cognitive schematic227


to govern many or all of their actions, a significant fragment of agent intelligence228


boils down to estimating the truth values of PredictiveExtensionalImplication rela-229


tionships. Action selection procedures can be used, which choose procedures to230


enact based on which ones are judged most likely to achieve the current external231


goals gi in the current context. Rather than enter into the particularities of action232


selection or other cognitive architecture issues, we will restrict ourselves to PLN233


inference, which in the context of the present agent model is a method for handling234


PredictiveImplication in the cognitive schematic.235


Consider an agent in a virtual world, such as a virtual dog, one of whose external236


goals is to please its owner. Suppose its owner has asked it to find a cat, and it can237


translate this into a subgoal “find cat.” If the agent operates according to the cognitive238


schematic, it will search for P so that239


PredictiveExtensionalImplication
AND


C
Execution P


Evaluation
found
cat


holds.240


7.3 Toward a Formal Characterization of Real-World241


General Intelligence242


Having defined what we mean by an agent acting in an environment, we now turn to243


the question of what it means for such an agent to be “intelligent”.244


As we have reviewed extensively in Chap. 3, “intelligence” is a commonsense,245


“folk psychology” concept, with all the imprecision and contextuality that this gen-246


erally entails. One cannot expect any compact, elegant formalism to capture all of247


its meanings. Even in the psychology and AI research communities, divergent defi-248


nitions abound; Legg and Hutter [LH07a] lists and organizes 70+ definitions from249


the literature.250
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146 7 A Formal Model of Intelligent Agents


Practical study of natural intelligence in humans and other organisms, and251


practical design, creation and instruction of artificial intelligences, can proceed per-252


fectly well without an agreed-upon formalization of the “intelligence” concept. Some253


researchers may conceive their own formalisms to guide their own work, others may254


feel no need for any such thing.255


But nevertheless, it is of interest to seek formalizations of the concept of intelli-256


gence, which capture useful fragments of the commonsense notion of intelligence,257


and provide guidance for practical research in cognitive science and AI. A number258


of such formalizations have been given in recent decades, with varying degrees of259


mathematical rigor. Perhaps the most carefully-wrought formalization of intelligence260


so far is the theory of “universal intelligence” presented by Shane Legg and Marcus261


Hutter in [LH07b], which draws on ideas from algorithmic information theory.262


Universal intelligence captures a certain aspect of the “intelligence” concept very263


well, and has the advantage of connecting closely with ideas in learning theory,264


decision theory and computation theory. However, the kind of general intelligence265


it captures best, is a kind which is in a sense more general in scope than human-266


style general intelligence. Universal intelligence does capture the sense in which267


humans are more intelligent than worms, which are more intelligent than rocks; and268


the sense in which theoretical AGI systems like Hutter’s AIXI or AIXItl [Hut05]269


would be much more intelligent than humans. But it misses essential aspects of the270


intelligence concept as it is used in the context of intelligent natural systems like271


humans or real-world AI systems.272


Our main goal in this section is to present variants of universal intelligence that273


better capture the notion of intelligence as it is typically understood in the context of274


real-world natural and artificial systems. The first variant we describe is pragmatic275


general intelligence, which is inspired by the intuitive notion of intelligence as “the276


ability to achieve complex goals in complex environments”, given in [Goe93]. After277


assuming a prior distribution over the space of possible environments, and one over278


the space of possible goals, one then defines the pragmatic general intelligence as the279


expected level of goal-achievement of a system relative to these distributions. Rather280


than measuring truly broad mathematical general intelligence, pragmatic general281


intelligence measures intelligence in a way that’s specifically biased toward certain282


environments and goals.283


Another variant definition is then presented, the efficient pragmatic general intel-284


ligence, which takes into account the amount of computational resources utilized285


by the system in achieving its intelligence. Some argue that making efficient use of286


available resources is a defining characteristic of intelligence, see e.g. [Wan06].287


A critical question left open is the characterization of the prior distributions cor-288


responding to everyday human reality; we give a semi-formal sketch of some ideas289


on this in Chap. 9, where we present the notion of a “communication prior”, which290


assigns a probability weight to a situation S based on the ease with which one agent in291


a society can communicate S to another agent in that society, using multimodal com-292


munication (including verbalization, demonstration, dramatic and pictorial depiction,293


etc.).294
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7.3 Toward a Formal Characterization of Real-World General Intelligence 147


Finally, we present a formal measure of the “generality” of an intelligence, which295


precisiates the informal distinction between “general AI” and “narrow AI”.296


7.3.1 Biased Universal Intelligence297


To define universal intelligence, Legg and Hutter consider the class of environments298


that are reward-summable, meaning that the total amount of reward they return to299


any agent is bounded by 1. Where ri denotes the reward experienced by the agent300


from the environment at time i, the expected total reward for the agent π from the301


environment μ is defined as302


Vπ
μ ≡ E(


∞∑
1


ri) ≤ 1.303


To extend their definition in the direction of greater realism, we first introduce a304


second-order probability distribution ν, which is a probability distribution over the305


space of environments μ. The distribution ν assigns each environment a probability.306


One such distribution ν is the Solomonoff-Levin universal distribution in which one307


sets ν = 2−K(μ); but this is not the only distribution ν of interest. In fact a great deal308


of real-world general intelligence consists of the adaptation of intelligent systems309


to particular distributions ν over environment-space, differing from the universal310


distribution.311


We then define312


Definition 4 The biased universal intelligence of an agent π is its expected per-313


formance with respect to the distribution ν over the space of all computable reward-314


summable environments, E , that is,315


Υ (π) ≡
∑
μ∈E


ν(μ)Vπ
μ .316


Legg and Hutter’s universal intelligence is obtained by setting ν equal to the317


universal distribution.318


This framework is more flexible than it might seem. E.g. suppose one wants to319


incorporate agents that die. Then one may create a special action, say a666, corre-320


sponding to the state of death, to create agents that321


• in certain circumstances output action a666322


• have the property that if their previous action was a666, then all of their subsequent323


actions must be a666324


and to define a reward structure so that actions a666 always bring zero reward. It325


then follows that death is generally a bad thing if one wants to maximizeintelligence.326
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148 7 A Formal Model of Intelligent Agents


Agents that die will not get rewarded after they’re dead; and agents that live only 70327


years, say, will be restricted from getting rewards involving long-term patterns and328


will hence have specific limits on their intelligence.329


7.3.2 Connecting Legg and Hutter’s Model of Intelligent330


Agents to the Real World331


A notable aspect of the Legg and Hutter formalism is the separation of the reward332


mechanism from the cognitive mechanisms of the agent. While commonplace in333


the reinforcement learning literature, this seems psychologically unrealistic in the334


context of biological intelligences and many types of machine intelligences. Not all335


human intelligent activity is specifically reward-seeking in nature; and even when it336


is, humans often pursue complexly constructed rewards, that are defined in terms of337


their own cognitions rather than separately given. Suppose a certain human’s goals338


are true love, or world peace, and the proving of interesting theorems—then these339


goals are defined by the human herself, and only she knows if she’s achieved them.340


An externally-provided reward signal doesn’t capture the nature of this kind of goal-341


seeking behavior, which characterizes much human goal-seeking activity (and will342


presumably characterize much of the goal-seeking activity of advanced engineered343


intelligences also) ... let alone human behavior that is spontaneous and unrelated to344


explicit goals, yet may still appear commonsensically intelligent.345


One could seek to bypass this complaint about the reward mechanisms via a sort346


of “neo-Freudian” argument, via347


• associating the reward signal, not with the “external environment” as typically348


conceived, but rather with a portion of the intelligent agent’s brain that is separate349


from the cognitive component350


• viewing complex goals like true love, world peace and proving interesting theorems351


as indirect ways of achieving the agent’s “basic goals”, created within the agent’s352


memory via subgoaling mechanisms353


but it seems to us that a general formalization of intelligence should not rely on such354


strong assumptions about agents’ cognitive architectures. So below, after introducing355


the pragmatic and efficient pragmatic general intelligence measures, we will propose356


an alternate interpretation wherein the mechanism of external rewards is viewed as a357


theoretical test framework for assessing agent intelligence, rather than a hypothesis358


about intelligent agent architecture.359


In this alternate interpretation, formal measures like the universal, pragmatic and360


efficient pragmatic general intelligence are viewed as not directly applicable to real-361


world intelligences, because they involve the behaviors of agents over a wide variety362


of goals and environments, whereas in real life the opportunities to observe agents are363


more limited. However, they are viewed as being indirectly applicable to real-world364


agents, in the sense that an external intelligence can observe an agent’s real-world365


behavior and then infer its likely intelligence according to these measures.366
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7.3 Toward a Formal Characterization of Real-World General Intelligence 149


In a sense, this interpretation makes our formalized measures of intelligence the367


opposite of real-world IQ tests. An IQ test is a quantified, formalized test which is368


designed to approximately predict the informal, qualitative achievement of humans369


in real life. On the other hand, the formal definitions of intelligence we present370


here are quantified, formalized tests that are designed to capture abstract notions of371


intelligence, but which can be approximately evaluated on a real-world intelligent372


system by observing what it does in real life.373


7.3.3 Pragmatic General Intelligence374


The above concept of biased universal intelligence is perfectly adequate for many375


purposes, but it is also interesting to explicitly introduce the notion of a goal into the376


calculation. This allows us to formally capture the notion presented in [Goe93] of377


intelligence as “the ability to achieve complex goals in complex environments”.378


If the agent is acting in environment μ, and is provided with gs corresponding to379


g at the start and the end of the time-interval T = {i ∈ (s, . . . , t)}, then the expected380


goal-achievement of the agent, relative to g, during the interval is the expectation381


Vπ
μ,g,T ≡ E


(
t∑


i=s


rg(Ig,s,i)


)
382


where the expectation is taken over all interaction sequences Ig,s,i drawn according383


to μ. We then propose384


Definition 5 The pragmatic general intelligence of an agent π, relative to the385


distribution ν over environments and the distribution γ over goals, is its expected386


performance with respect to goals drawn from γ in environments drawn from ν, over387


the time-scales natural to the goals; that is,388


Π(π) ≡
∑


μ∈E,g∈G,T


ν(μ)γ(g,μ)Vπ
μ,g,T389


(in those cases where this sum is convergent).390


This definition formally captures the notion that “intelligence is achieving com-391


plex goals in complex environments”, where “complexity” is gauged by the assumed392


measures ν and γ.393


If ν is taken to be the universal distribution, and γ is defined to weight goals394


according to the universal distribution, then pragmatic general intelligence reduces395


to universal intelligence.396


Furthermore, it is clear that a universal algorithmic agent like AIXI [Hut05] would397


also have a high pragmatic general intelligence, under fairly broad conditions. As398


the interaction history grows longer, the pragmatic general intelligence of AIXI399
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150 7 A Formal Model of Intelligent Agents


would approach the theoretical maximum; as AIXI would implicitly infer the relevant400


distributions via experience. However, if significant reward discounting is involved,401


so that near-term rewards are weighted much higher than long-term rewards, then402


AIXI might compare very unfavorably in pragmatic general intelligence, to other403


agents designed with prior knowledge of ν, γ and τ in mind.404


The most interesting case to consider is where ν and γ are taken to embody405


some particular bias in a real-world space of environments and goals, and this bias406


is appropriately reflected in the internal structure of an intelligent agent. Note that407


an agent needs not lack universal intelligence in order to possess pragmatic general408


intelligence with respect to some non-universal distribution over goals and environ-409


ments. However, in general, given limited resources, there may be a tradeoff between410


universal intelligence and pragmatic intelligence. Which leads to the next point: how411


to encompass resource limitations into the definition.412


One might argue that the definition of Pragmatic General Intelligence is already413


encompassed by Legg and Hutter’s definition because one may bias the distribution of414


environments within the latter by considering different Turing machines underlying415


the Kolmogorov complexity. However this is not a general equivalence because the416


Solomonoff-Levin measure intrinsically decays exponentially, whereas an assump-417


tive distribution over environments might decay at some other rate. This issue seems418


to merit further mathematical investigation.419


7.3.4 Incorporating Computational Cost420


Let ηπ,μ,g,T be a probability distribution describing the amount of computational421


resources consumed by an agent π while achieving goal g over time-scale T . This422


is a probability distribution because we want to account for the possibility of non-423


deterministic agents. So, ηπ,μ,g,T (Q) tells the probability that Q units of resources424


are consumed. For simplicity we amalgamate space and time resources, energetic425


resources, etc. into a single number Q, which is assumed to live in some subset of426


the positive reals. Space resources of course have to do with the size of the system’s427


memory. Then we may define428


Definition 6 The efficient pragmatic general intelligence of an agent π with429


resource consumption ηπ,μ,g,T , relative to the distribution ν over environments and430


the distribution γ over goals, is its expected performance with respect to goals drawn431


from γ in environments drawn from ν, over the time-scales natural to the goals, nor-432


malized by the amount of computational effort expended to achieve each goal; that is,433


ΠEff(π) ≡
∑


μ∈E,g∈G,Q,T


ν(μ)γ(g,μ)ηπ,μ,g,T (Q)


Q
Vπ


μ,g,T434


(in those cases where this sum is convergent).435
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7.3 Toward a Formal Characterization of Real-World General Intelligence 151


This is a measure that rates an agent’s intelligence higher if it uses fewer436


computational resources to do its business. Roughly, it measures reward achieved437


per spacetime computation unit.438


Note that, by abandoning the universal prior, we have also abandoned the proof439


of convergence that comes with it. In general the sums in the above definitions need440


not converge; and exploration of the conditions under which they do converge is a441


complex matter.442


7.3.5 Assessing the Intelligence of Real-World Agents443


The pragmatic and efficient pragmatic general intelligence measures are more “real-444


istic” than the Legg and Hutter universal intelligence measure, in that they take into445


account the innate biasing and computational resource restrictions that characterize446


real-world intelligence. But as discussed earlier, they still live in “fantasy-land” to447


an extent—they gauge the intelligence of an agent via a weighted average over a448


wide variety of goals and environments; and they presume a simplistic relationship449


between agents and rewards that does not reflect the complexities of real-world cog-450


nitive architectures. It is not obvious from the foregoing how to apply these measures451


to real-world intelligent systems, which lack the ability to exist in such a wide vari-452


ety of environments within their often brief lifespan, and mostly go about their lives453


doing things other than pursuing quantified external rewards. In this brief section454


we describe an approach to bridging this gap. The treatment is left semi-formal in455


places.456


We suggest to view the definitions of pragmatic and efficient pragmatic general457


intelligence in terms of a “possible worlds” semantics—i.e. to view them as asking,458


counterfactually, how an agent would perform, hypothetically, on a series of tests459


(the tests being goals, defined in relation to environments and reward signals).460


Real-world intelligent agents don’t normally operate in terms of explicit goals461


and rewards; these are abstractions that we use to think about intelligent agents.462


However, this is no objection to characterizing various sorts of intelligence in terms463


of counterfactuals like: how would system S operate if it were trying to achieve this464


or that goal, in this or that environment, in order to seek reward? We can characterize465


various sorts of intelligence in terms of how it can be inferred an agent would perform466


on certain tests, even though the agent’s real life does not consist of taking these tests.467


This conceptual approach may seem a bit artificial but we don’t currently see468


a better alternative, if one wishes to quantitatively gauge intelligence (which is, in469


a sense, an “artificial” thing to do in the first place). Given a real-world agent X470


and a mandate to assess its intelligence, the obvious alternative to looking at possible471


worlds in the manner of the above definitions, is just looking directly at the properties472


of the things X has achieved in the real world during its lifespan. But this isn’t an473


easy solution, because it doesn’t disambiguate which aspects of X’s achievements474


were due to its own actions versus due to the rest of the world that X was interacting475


with when it made its achievements. To distinguish the amount of achievement that476
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152 7 A Formal Model of Intelligent Agents


X “caused” via its own actions requires a model of causality, which is a complex477


can of worms in itself; and, critically, the standard models of causality also involve478


counterfactuals (asking “what would have been achieved in this situation if the agent479


X hadn’t been there”, etc.) [MW07]. Regardless of the particulars, it seems impossible480


to avoid counterfactual realities in assessing intelligence.481


The approach we suggest—given a real-world agent X with a history of actions482


in a particular world, and a mandate to assess its intelligence—is to introduce an483


additional player, an inference agent δ, into the picture. The agent π modeled above484


is then viewed as πX : the model of X that δ constructs, in order to explore X’s inferred485


behaviors in various counterfactual environments. In the test situations embodied in486


the definitions of pragmatic and efficient pragmatic general intelligence, the environ-487


ment gives πX rewards, based on specifically configured goals. In X’s real life, the488


relation between goals, rewards and actions will generally be significantly subtler489


and perhaps quite different.490


We model the real world similarly to the “fantasy world” of the previous section,491


but with the omission of goals and rewards. We define a naturalistic context as one492


in which all goals and rewards are constant, i.e. gi = g0 and ri = r0 for all i. This is493


just a mathematical convention for stating that there are no precisely-defined external494


goals and rewards for the agent. In a naturalistic context, we then have a situation495


where agents create actions based on the past history of actions and perceptions, and496


if there is any relevant notion of reward or goal, it is within the cognitive mechanism497


of some agent. A naturalistic agent X is then an agent π which is restricted to one498


particular naturalistic context, involving one particular environment μ (formally, we499


may achieve this within the framework of agents described above via dictating that500


X issues constant “null actions” a0 in all environments except μ).501


Next, we posit a metric space (�μ, d)of naturalistic agents defined on a naturalistic502


context involving environment μ, and a subspace Δ ∈ �μ of inference agents, which503


are naturalistic agents that output predictions of other agents’ behaviors (a notion we504


will not fully formalize here). If agents are represented as program trees, then d may505


be taken as edit distance on tree space [Bil05]. Then, for each agent δ ∈ Δ, we may506


assess507


• the prior probability θ(δ) according to some assumed distribution θ508


• the effectiveness p(δ, X) of δ at predicting the actions of an agent X ∈ �μ.509


We may then define510


Definition 7 The inference ability of the agent δ, relative to μ and X, is511


qμ,X(δ) = θ(δ)


∑
Y∈�μ


sim(X, Y)p(δ, Y)∑
Y∈�μ


sim(X, Y)
512


where sim is a specified decreasing function of d(X, Y),such as sim(X, Y) =513


1
1+d(X,Y)


.514
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7.3 Toward a Formal Characterization of Real-World General Intelligence 153


To construct πX , we may then use the model of X created by the agent δ ∈ Δ with515


the highest inference ability relative to μ and X (using some specified ordering, in516


case of a tie). Having constructed πX , we can then say that.517


Definition 8 The inferred pragmatic general intelligence (relativeto ν and γ) of a518


naturalistic agent X defined relative to an environment μ,is defined as the pragmatic519


general intelligence of the model πX of Xproduced by the agent δ ∈ Δ with maximal520


inference ability relative to μ(and in the case of a tie, the first of these in the ordering521


defined over Δ). The inferred efficient pragmatic general intelligence of X relative522


to μis defined similarly.523


This provides a precise characterization of the pragmatic and efficient pragmatic524


intelligence of real-world systems, based on their observed behaviors. It’s a bit messy;525


but the real world tends to be like that.526


7.4 Intellectual Breadth: Quantifying the Generality527


of an Agent’s Intelligence528


We turn now to a related question: How can one quantify the degree of generality529


that an intelligent agent possesses? Above we have discussed the qualitative dis-530


tinction between AGI and “Narrow AI”, and intelligence as we have formalized it531


above is specifically intended as a measure of general intelligence. But quantifying532


intelligence is different than quantifying generality versus narrowness.533


To make the discussion simpler, we introduce the term “context” as a shorthand534


for “environment/interval triple (μ, g, T)”. Given a context (μ, g, T), and a set �535


of agents, one may construct a fuzzy set Agμ,g,T gathering those agents that are536


intelligent relative to the context; and given a set of contexts, one may also define537


a fuzzy set Conπ gathering those contexts with respect to which a given agent π is538


intelligent. The relevant formulas are:539


χAgμ,g,T (π) = χConπ (μ, g, T) = 1


N


∑
Q


ημ,g,T (Q)Vπ
μ,g,T


Q
540


where N = N(μ, g, T) is a normalization factor defined appropriately, e.g. via541


N(μ, g, T) = max
π


Vπ
μ,g,T .542


One could make similar definitions leaving out the computational cost factor Q,543


but we suspect that incorporating Q is a more promising direction. We then propose544


Definition 9 The intellectual breadth of an agent π, relative to the distribution ν545


over environments and the distribution γ over goals, is546


H(χP
Conπ


(μ, g, T))547


319477_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:26/10/2013 Pages: 154 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


154 7 A Formal Model of Intelligent Agents


where His the entropy and548


χP
Conπ


(μ, g, T) = ν(μ)γ(g,μ)χConπ (μ, g, T)∑
(μα,gβ .Tω)


ν(μα)γ(gβ,μα)χConπ (μα, gβ, Tω)
549


is the probability distribution formed by normalizing the fuzzy set χConπ (μ, g, T).550


A similar definition of the intellectual breadth of a context (μ, g, T), relative to551


the distribution σ over agents, may be posited. A weakness of these definitions is that552


they don’t try to account for dependencies between agents or contexts; perhaps more553


refined formulations may be developed that account explicitly for these dependencies.554


Note that the intellectual breadth of an agent as defined here is largely independent555


of the (efficient or not) pragmatic general intelligence of that agent. One could have556


a rather (efficiently or not) pragmatically generally intelligent system with little557


breadth: this would be a system very good at solving a fair number of hard problems,558


yet wholly incompetent on a larger number of hard problems. On the other hand, one559


could also have a terribly (efficiently or not) pragmatically generally stupid system560


with great intellectual breadth: i.e a system roughly equally dumb in all contexts!561


Thus, one can characterize an intelligent agent as “narrow” with respect to dis-562


tribution ν over environments and the distribution γ over goals, based on evaluating563


it as having low intellectual breadth. A “narrow AI” relative to ν and γ would then564


be an AI agent with a relatively high efficient pragmatic general intelligence but a565


relatively low intellectual breadth.566


7.5 Conclusion567


Our main goal in this chapter has been to push the formal understanding of intelli-568


gence in a more pragmatic direction. Much more work remains to be done, e.g. in569


specifying the environment, goal and efficiency distributions relevant to real-world570


systems, but we believe that the ideas presented here constitute nontrivial progress.571


If the line of research suggested in this chapter succeeds, then eventually, one will572


be able to do AGI research as follows: Specify an AGI architecture formally, and573


then use the mathematics of general intelligence to derive interesting results about the574


environments, goals and hardware platforms relative to which the AGI architecture575


will display significant pragmatic or efficient pragmatic general intelligence, and576


intellectual breadth. The remaining chapters in this section present further ideas577


regarding how to work toward this goal. For the time being, such a mode of AGI578


research remains mainly for the future, but we have still found the formalism given in579


these chapters useful for formulating and clarifying various aspects of the CogPrime580


design as will be presented in later chapters.581
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Chapter 8
Cognitive Synergy


8.1 Cognitive Synergy0


As we have seen, the formal theory of general intelligence, in its current form,1


doesn’t really tell us much that’s of use for creating real-world AGI systems. It2


tells us that creating extraordinarily powerful general intelligence is almost trivial if3


one has unrealistically huge amounts of computational resources; and that creating4


moderately powerful general intelligence using feasible computational resources is5


all about creating AI algorithms and data structures that (explicitly or implicitly)6


match the restrictions implied by a certain class of situations, to which the general7


intelligence is biased.8


We’ve also described, in various previous chapters, some non-rigorous, concep-9


tual principles that seem to explain key aspects of feasible general intelligence: the10


complementary reliance on evolution and autopoiesis, the superposition of hierarchi-11


cal and heterarchical structures, and so forth. These principles can be considered as12


broad strategies for achieving general intelligence in certain broad classes of situa-13


tions. Although, a lot of research needs to be done to figure out nice ways to describe,14


for instance, in what class of situations evolution is an effective learning strategy, in15


what class of situations dual hierarchical/heterarchical structure is an effective way16


to organize memory, etc.17


In this chapter we’ll dig deeper into one of the “general principle of feasible18


general intelligences” briefly alluded to earlier: the cognitive synergy principle, which19


is both a conceptual hypothesis about the structure of generally intelligent systems in20


certain classes of environments, and a design principle used to guide the architecting21


of CogPrime. We will focus here on cognitive synergy specifically in the case of22


“multi-memory systems”, which we define as intelligent systems (like CogPrime)23


whose combination of environment, embodiment and motivational systems make24


it important for them to possess memories that divide into partially but not wholly25


distinct components corresponding to the categories of:26


B. Goertzel et al., Engineering General Intelligence, Part 1, 155
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_8,
© Atlantis Press and the authors 2014
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156 8 Cognitive Synergy


• Declarative memory27


• Procedural memory (memory about how to do certain things)28


• Sensory and episodic memory29


• Attentional memory (knowledge about what to pay attention to in what contexts)30


• Intentional memory (knowledge about the system’s own goals and subgoals).31


In Chap. 9 we present a detailed argument as to how the requirement for a multi-32


memory underpinning for general intelligence emerges from certain underlying33


assumptions regarding the measurement of the simplicity of goals and environments;34


but the points made here do not rely on that argument. What they do rely on is the35


assumption that, in the intelligence in question, the different components of memory36


are significantly but not wholly distinct. That is, there are significant “family resem-37


blances” between the memories of a single type, yet there are also thoroughgoing38


connections between memories of different types.39


The cognitive synergy principle, if correct, applies to any AI system demonstrating40


intelligence in the context of embodied, social communication. However, one may41


also take the theory as an explicit guide for constructing AGI systems; and of course,42


the bulk of this book describes one AGI architecture, CogPrime, designed in such a43


way.44AQ1


It is possible to cast these notions in mathematical form, and we make some45


efforts in this direction in Appendix ??, using the languages of category theory and46


information geometry. However, this formalization has not yet led to any rigorous47


proof of the generality of cognitive synergy nor any other exciting theorems; with48


luck this will come as the mathematics is further developed. In this chapter the49


presentation is kept on the heuristic level, which is all that is critically needed for50


motivating the CogPrime design.51


8.2 Cognitive Synergy52


The essential idea of cognitive synergy, in the context of multi-memory systems,53


may be expressed in terms of the following points:54


1. Intelligence, relative to a certain set of environments, may be understood as the55


capability to achieve complex goals in these environments.56


2. With respect to certain classes of goals and environments (see Chap. 9 for a57


hypothesis in this regard), an intelligent system requires a “multi-memory”58


architecture, meaning the possession of a number of specialized yet intercon-59


nected knowledge types, including: declarative, procedural, attentional, sensory,60


episodic and intentional (goal-related). These knowledge types may be viewed as61


different sorts of patterns that a system recognizes in itself and its environment.62


Knowledge of these various different types must be interlinked, and in some cases63


may represent differing views of the same content (see Fig. 8.1).64
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8.2 Cognitive Synergy 157


Fig. 8.1 Illustrative example of the interactions between multiple types of knowledge, in represent-
ing a simple piece of knowledge. Generally speaking, one type of knowledge can be converted to
another, at the cost of some loss of information. The synergy between cognitive processes associated
with corresponding pieces of knowledge, possessing different type, is a critical aspect of general
intelligence


3. Such a system must possess knowledge creation (i.e. pattern recognition / forma-65


tion) mechanisms corresponding to each of these memory types. These mecha-66


nisms are also called “cognitive processes”.67


4. Each of these cognitive processes, to be effective, must have the capability to68


recognize when it lacks the information to perform effectively on its own; and69


in this case, to dynamically and interactively draw information from knowledge70


creation mechanisms dealing with other types of knowledge.71


5. This cross-mechanism interaction must have the result of enabling the knowledge72


creation mechanisms to perform much more effectively in combination than they73


would if operated non-interactively. This is “cognitive synergy”.74


While these points are implicit in the theory of mind given in [Goe06a], they are not75


articulated in this specific form there.76


Interactions as mentioned in Points 4 and 5 in the above list are the real con-77


ceptual meat of the cognitive synergy idea. One way to express the key idea here78


is that most AI algorithms suffer from combinatorial explosions: the number of


319477_1_En_8_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 179 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


158 8 Cognitive Synergy


possible elements to be combined in a synthesis or analysis is just too great, and the79


algorithms are unable to filter through all the possibilities, given the lack of intrinsic80


constraint that comes along with a “general intelligence” context (as opposed to a81


narrow-AI problem like chess-playing, where the context is constrained and hence82


restricts the scope of possible combinations that needs to be considered). In an AGI83


architecture based on cognitive synergy, the different learning mechanisms must be84


designed specifically to interact in such a way as to palliate each others’ combinator-85


ial explosions—so that, for instance, each learning mechanism dealing with a certain86


sort of knowledge, must synergize with learning mechanisms dealing with the other87


sorts of knowledge, in a way that decreases the severity of combinatorial explosion.88


One prerequisite for cognitive synergy to work is that each learning mechanism89


must recognize when it is “stuck”, meaning it’s in a situation where it has inadequate90


information to make a confident judgment about what steps to take next. Then, when91


it does recognize that it’s stuck, it may request help from other, complementary92


cognitive mechanisms.93


A theoretical notion closely related to cognitive synergy is the cognitive schematic,94


formalized in Chap. 7, which states that the activity of the different cognitive95


processes involved in an intelligent system may be modeled in terms of the schematic96


implication97


Context ∧ Procedure → Goal98


where the Context involves sensory, episodic and/or declarative knowledge; and99


attentional knowledge is used to regulate how much resource is given to each such100


schematic implication in memory. Synergy among the learning processes dealing101


with the context, the procedure and the goal is critical to the adequate execution of102


the cognitive schematic using feasible computational resources.103


Overall, the cognitive synergy principle describes the behavior of a system as it104


pursues a set of goals (which in most cases may be assumed to be supplied to the105


system “a priori”, but then refined by inference and other processes). The assumed106


intelligent agent model is roughly as follows: At each time the system chooses a set of107


procedures to execute, based on its judgments regarding which procedures will best108


help it achieve its goals in the current context. These procedures may involve external109


actions (e.g. involving conversation, or controlling an agent in a simulated world)110


and/or internal cognitive actions. In order to make these judgments it must effectively111


manage declarative, procedural, episodic, sensory and attentional memory, each of112


which is associated with specific algorithms and structures. There are also global113


processes spanning all the forms of memory, including the allocation of attention to114


different memory items and cognitive processes, and the identification and reification115


of system-wide activity patterns (the latter referred to as “map formation”).116
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8.3 Cognitive Synergy in CogPrime 159


8.3 Cognitive Synergy in CogPrime117


Different cognitive systems will use different processes to fulfill the various roles118


identified in Fig. ??. Here we briefly preview the basic cognitive processes that the119


CogPrime AGI design uses for these roles, and the synergies that exist between these.120


8.3.1 Cognitive Processes in CogPrime121


“a Cognitive Synergy Based Architecture. . .” from ICCI 2009.122


Tables 8.1 and 8.2 present the key structures and processes involved in CogPrime,123


identifying each one with a certain memory/process type as considered in cognitive124


synergy theory. That is: each of these cognitive structures or processes deals with one125


or more types of memory—declarative, procedural, sensory, episodic or attentional.126


Table 8.3 describes the key CogPrime processes in terms of the “analysis vs.127


Table 8.1 The OpenCogPrime data structures used to represent the key knowledge types involved


Memory type OpenCogPrime data structure


Declarative The AtomTable, which is a special form of weighted,
labeled hypergraph—i.e. a table of nodes and links (col-
lectively referred to as Atoms) with different types, and
each weighted with a multi-dimensional truth value
(embodying an indefinite probability value that give
both probability and confidence information [15]). See
[14] for a review of the system of Atom types


Attentional Atoms in the AtomTable are weighted with Atten-
tionValue objects, which contain both ShortTermIm-
portance values (governing processor time allocation)
and LongTerm Importance values (governing memory
usage)


Procedural This is handled using special Combo tree structures
embodying LISP-like programs, in a special program
dialect intended to manage behaviors in a virtual world
and actions in the AtomTable


Sensory Handled via a collection of specialized sense-modality-
specific data structures


Episodic Handled via an internal simulation world that allows the
system to runmind’s eye movies of situations it remem-
bers, has heard about, or hypothetically envisions


Intentional Goals are represented by Atoms stored in the Atom-
Table; there is a separate table indicating which Atoms
are top-level goals, which is used to guide attention
allocation and goal refinement processes


319477_1_En_8_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 179 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


160 8 Cognitive Synergy


Table 8.2 Key cognitive processes, and the algorithms that play their roles in CogPrime


Cognitive process OpenCogPrime algorithm


Uncertain inference Probabilistic Logic Networks (PLN), a logical infer-
ence framework capable of uncertain reasoning about
abstract knowledge, everyday commonsense knowl-
edge, and low-level perceptual and motor knowledge
[15]


Supervised procedure learning MOSES, a probabilistic evolutionary learning algo-
rithm, which learns procedures (represented as LISP-
like program trees) based on specifications [16]


Attention allocation Economic Attention Networks (ECAN), a framework
for allocating (memory and processor) attention among
items of knowledge and cognitive processes, utilizing
a synthesis of ideas from neural networks and artificial
economics. ECAN also comes with a forgetting agent
that either saves to disk or deletes knowledge that is
estimated not sufficiently valuable to keep in memory
[15]


Map formation Use of frequent subgraph mining, MOSES and other
algorithms to scan the knowledge base of the system for
patterns and then embodying these patterns explicitly
as new knowledge items


Concept creation A collection of heuristics for forming new concepts via
combining existing ones, including conceptual blend-
ing, mutation and extensional and intensional logical
operators


Simulation The running of simulations of (remembered or imag-
ined) external-world scenarios in an internal world-
simulation engine


Goal refinement Transformation of given goals into sets of subgoals,
using concept creation, inference and procedure learn-
ing


synthesis” distinction. Finally, Tables 8.4 and 8.5 exemplify these structures and128


processes in the context of embodied virtual agent control.AQ2
AQ3


129


In the CogPrime context, a procedure in this cognitive schematic is a pro-130


gram tree stored in the system’s procedural knowledge base; and a context is a131


(fuzzy, probabilistic) logical predicate stored in the AtomSpace, that holds, to a132


certain extent, during each interval of time. A goal is a fuzzy logical predicate that133


has a certain value at each interval of time, as well.AQ4134
AQ5


Attentional knowledge is handled in CogPrime by the ECAN artificial economics135


mechanism, that continually updates ShortTermImportance and LongTerm Impor-136


tance values associated with each item in the CogPrime system’s memory, which137


control the amount of attention other cognitive mechanisms pay to the item, and138


how much motive the system has to keep the item in memory. HebbianLinks are139
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8.3 Cognitive Synergy in CogPrime 161


Table 8.3 Key CogPrime cognitive processes categorized according to knowledge type and process
type


Synthesis Analysis


PLN (Decl. and Proc.) PLN forward inference PLN backward inference
MOSES (Decl. and
Proc.)


MOSES and hillclimb-
ing procedure learning
(combining portions and
aspects of prior proce-
dures)


Probabilistic modeling to
identify patterns among
programs fulfilling a cer-
tain goal in a certain con-
text (part of MOSES)


Sensory/episodic Imagination of hypo-
thetical episodes based
on specified criteria, via
combination of aspects
of known episodes


Filling in gaps in remem-
bered or hypothesized
episodes


Attentional Hebbian learning Impor-
tance spreading Map for-
mation


Assignment of credit


Intentional Goal synthesis Goal refinement


then created between knowledge items that often possess ShortTermImportance at140


the same time; this is CogPrime’s version of traditional Hebbian learning.141


ECAN has deep interactions with other cognitive mechanisms as well, which142


are essential to its efficient operation; for instance, PLN inference may be used to143


help ECAN extrapolate conclusions about what is worth paying attention to, and144


MOSES may be used to recognize subtle attentional patterns. ECAN also handles145


“assignment of credit”, the figuring-out of the causes of an instance of successful146


goal-achievement, drawing on PLN and MOSES as needed when the causal inference147


involved here becomes difficult.148


The synergies between CogPrime’s cognitive processes are well summarized149


below, which is a 16 × 16 matrix summarizing a host of interprocess interactions150


generic to CST.151


One key aspect of how CogPrime implements cognitive synergy is PLN’s152


sophisticated management of the confidence of judgments. This ties in with the153


way OpenCogPrime’s PLN inference framework represents truth values in terms of154


multiple components (as opposed to the single probability values used in many proba-155


bilistic inference systems and formalisms): each item in OpenCogPrime’s declarative156


memory has a confidence value associated with it, which tells how much weight the157


system places on its knowledge about that memory item. This assists with cognitive158


synergy as follows: A learning mechanism may consider itself “stuck”, generally159


speaking, when it has no high-confidence estimates about the next step it should160


take.161


Without reasonably accurate confidence assessment to guide it, inter-component162


interaction could easily lead to increased rather than decreased combinatorial explo-163


sion. And of course there is an added recursion here, in that confidence assessment is164
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162 8 Cognitive Synergy


Table 8.4 Key CogPrime cognitive structures illustrated in the context of virtual agents


Knowledge type Virtual agent example(s)


Declarative
• The red ball on the table is larger than the blue ball on the floor
• Bob becomes angry quickly
• Ball roll; blocks don’t
• Jim knows Bob is not my friend


Procedural
• A procedure for retrieving an item from a distant location
• A procedure for spinning around in a circle
• A procedure for stacking a block on top of another one
• A procedure for repeatedly asking a question in different ways until an


acceptable answer is obtained
Sensory


• The appearance of Bob’s face
•The specific array of objects on the floor under the table


Episodic
• The series of actions Bill did when he built a tower on the floor yesterday
• The episode in which Bill and Bob repeatedly threw a ball back and forth


between each other
• The series of actions I just took, between getting up from the chair and Bob


saying good
Attentional


• The set of objects that seem to be important in the context of the game Bob
and Bill are playing


• The set of words and phrases that are associated with Bob being happy with
me while we walk around together


Intentional
• The goal of making Bob say positive things
• The goal of making a tower that does not fall down easily
• The goal of getting Jim to answer my question


carried out partly via PLN inference, which in itself relies upon these same synergies165


for its effective operation.166


To illustrate this point further, consider one of the synergetic aspects described in167


Table 8.6: the role cognitive synergy plays in deductive inference. Deductive infer-168


ence is a hard problem in general—but what is hard about it is not carrying out169


inference steps, but rather “inference control” (i.e., choosing which inference steps170


to carry out). Specifically, what must happen for deduction to succeed in CogPrime171


is:172


1. the system must recognize when its deductive inference process is “stuck”, i.e.173


when the PLN inference control mechanism carrying out deduction has no clear174


idea regarding which inference step(s) to take next, even after considering all the175


domain knowledge at is disposal;176
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8.3 Cognitive Synergy in CogPrime 163


Table 8.5 Key CogPrime cognitive processes illustrated in the context of virtual agents


Cognitive process Virtual agent example


Inference
• Tall thin blocks, when stood upright, are less likely to topple over


if placed next to each other
• Bob hates cursing, and Jim is Bob’s friend, and friends often have


similar likes and dislikes, so Jim probably hates cursing
Procedure learning


• Learning a procedure for crawling on the floor, based on imitation
of what others do when they describe themselves as crawling,
plus reinforcement from others when they find one’s imitation
accurate


• Learning a procedure embodying some combination of functional
and visual features that predicts whether some entity is
considered a toy or not


Attention allocation
• Pictures of women are associated with Bob’s happiness, and Bob’s


happiness is associated with getting reward, therefore pictures of
women are associated with getting reward


• Asking for help is surprisingly often a precursor to getting reward
when Jane is around; so when a reward is gotten when Jane is
around, a little extra attention should be given to ongoing
improvement of the processes that help in the mechanics of
asking for help


Goal refinement
• The goal of making Jim happy, seems to often be achieved by the


goal of creating sculptures Jim likes, and Jim likes complicated
sculptures; thus I adopt the goal of creating complicated
sculptures when Jim is around


Declarative pattern mining
• The goal of making Jim happy, seems to often be achieved by the


goal of creating sculptures Jim likes, and Jim likes complicated
sculptures; thus I adopt the goal of creating complicated
sculptures when Jim is around


Sensory pattern recognition
• When Jim builds a castle out of blocks, he identifies some portions


of the castle as towers and others as walls; it’s necessary to
visually identify which portions of each castle correspond to
these descriptors


• It’s also necessary to visually identify the castle as a whole versus
the table, floor or other base it’s resting on


Simulation
• Using an internal simulation world to experiment with building


various towers rapidly, at a pace faster than is possible in the
online simulation world where humans participate


• Using an internal simulation world containing a simulation of Bob
and Jim, to simulate what Bob will know about what you’re
doing if you hide behind Jim and build a tower of blocks


(Continued)


319477_1_En_8_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 179 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


164 8 Cognitive Synergy


Table 8.5 (Continued)


Cognitive process Virtual agent example


Concept creation
• The concept of an unstable structure
• The concept of an irritable person
• The concept of a happy occasion


Map formation
• The set of all knowledge items associated with Bob being in a


good mood (which may then be used to form a new concept)
• The set of all knowledge items associated with (running, walking


or crawling) races


2. in this case, the system must defer to another learning mechanism to gather177


more information about the different choices available—and the other learning178


mechanism chosen must, a reasonable percentage of the time, actually provide179


useful information that helps PLN to get “unstuck” and continue the deductive180


process.181


For instance, deduction might defer to the “attentional knowledge” subsystem,182


and make a judgment as to which of the many possible next deductive steps are most183


associated with the goal of inference and the inference steps taken so far, accord-184


ing to the HebbianLinks constructed by the attention allocation subsystem, based185


on observed associations. Or, if this fails, deduction might ask MOSES (running186


in supervised categorization mode) to learn predicates characterizing some of the187


terms involving the possible next inference steps. Once MOSES provides these new188


predicates, deduction can then attempt to incorporate these into its inference process,189


hopefully (though not necessarily) arriving at a higher-confidence next step.190


8.4 Some Critical Synergies191


Referring back to Fig. 8.2, and summarizing many of the ideas in the previous section,192


Table 8.6 enumerates a number of specific ways in which the cognitive processes193


mentioned in the figure may synergize with one another, potentially achieving dra-194


matically greater efficiency than would be possible on their own.195


Of course, realizing these synergies on the practical algorithmic level requires sig-196


nificant inventiveness and may be approached in many different ways. The specifics197


of how CogPrime manifests these synergies are discussed in many following chapters.198
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8.5 The Cognitive Schematic 165


Table 8.6 This table, and the following ones, show some of the synergies between the primary
cognitive processes explicitly used in CogPrime


How →
Helps ↓


Map formation Goal system Simulation Sensorimotor
pattern
recognition


Uncertain
inference


Creates new
concepts and
relationships.
Enabling
briefer useful
inference trails


Goal refinement
enables
more careful
goal-based
inference
pruning


-Simulations
provide a method
of testing
speculative
inferential
conclusions-
Simulations
suggest
hypotheses to be
explored via
inference


Creates new
concepts and
relation-
ships.
Enabling
briefer
useful
inference
trails


Supervised
procedure
learning


Creates new
procedures to
be used as
modules in
candidate
procedures


Goal refinement
allows more
precise
definition of
fitness
functions.
Makind
procedure
learning’s
job easier


Simulation provides
a method of
fitness estimation
allowing
inexpensive
testing of
candidate
procedures


Extraction of
sensorimotor
patterns
allows
creation of
abstracted
fitness
functions for
(inferentially
and
simulatively)
evaluating
procedures
guiding
real-word
actions


Attention
allocation


Creates new
concepts
grouping
attentionally
related memory
items, enabling
AA to find
subtler
attentional
patterns
involving these
nodes


Goal refinement
allows more
accurately
goal-driven
allocation of
attention


Simulation provides
data for attention
allocation—
allowing
attentional
information to be
extracted from
co-occurrences
observed in
simulation


Creates
concepts
attentionally
related
memory
items,
enabling AA
to find
subtler
attentional
patterns
involving
these nodes


(Continued)
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166 8 Cognitive Synergy


Table 8.6 (Continued)


How →
Helps ↓


Map formation Goal system Simulation Sensorimotor
pattern
recognition


Concept
creation


Creates new
concepts to be
fed into other
concept
creation
mechanisms


Goal refinement
provides
more precise
definition of
criteria via
which new
concepts are
created


Utility of concepts
may be assessed
via creating
simulated
entities
embodying the
new concepts
and seeing what
they lead to in
simulation


Creates New
concepts to
be fed into
other
concept
creation
mechanisms


Uncertain
inference


NA When inference
gets stuck in
an inference
trail, it can
ask
procedure
learning to
learn new
pattern
regarding
concepts in
the inference
trail (If there
is adequate
data
regarding the
concepts)


Importance levels
allow pruning of
inference trees


Provides news
concepts.
Allowing
briefer
useful
inference
trails


Supervised
procedure
learning


Inference can be
used to allow
prior
experience to
guide each
instance of
procedure
learning


NA Importance levels
may be used to
blas choices
made in the
course of
procedure
learning (e.g. in
OCP, in the
fitness evaluation
and
representation—
building phases
of MOSES)


Provides new
concepts,
allowing
compacter
programs
using new
concepts in
various roles


(Continued)
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8.5 The Cognitive Schematic 167


Table 8.6 (Continued)


How →
Helps ↓


Map formation Goal system Simulation Sensorimotor
pattern
recognition


Attention
allocation


Enables inference
of new
HebbianLinks
and Hebbian-
Predicates from
existing ones


Procedure
learning can
recognize
patterns in
historical
system
activity,
which are
then used to
build
concepts and
relationships
guiding
attention
allocation


NA Combination of
concepts
formed via
map
formation,
may lead to
new
concepts that
even better
direct
attention


Concept
creation


Allows inferential
assessment of
the value of
new concepts


Procedure
learning can
be used to
search for
high-quality
blends of
existing
concepts
(using e.g.
inferential
and
attentional
knowledge
in fitness
functions)


Allows assessment
of the value of
new concepts
based on
historical
attentional
knowledge


NA


Map formation Speculative
inference can
help map
formation
guess which
map to hunt for


Procedure
learning can
be used to
search dor
maps that
are more
complex
than mere
co-
occurrence


Attention allocation
provides the raw
data for map
formation


No significant
direct
synergy


(Continued)
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168 8 Cognitive Synergy


Table 8.6 (Continued)


How →
Helps ↓


Map formation Goal system Simulation Sensorimotor
pattern
recognition


Goal system Inference can carry
out goal
refinement


No significant
direct
synergy


Flow of importance
among subgoals
determines
which subgoals
get used, versus
being forgotten


Concept
creation can
be used to
provide raw
data for goal
refinement
(e.g. a new
subgoal that
blends two
others)


Simulation In order to provide
data for setting
up simulations
inference will
often be needed


No significant
direct
synergy


Attention allocation
tells which
portions of a
simulation need
to be run in more
detail


No significant
direct
synergy


Sensorimotor
pattern
recognition


Speculative
inference helps
fill in gaps in
sensory data


Procedure
learning can
be used to
find subtle
patterns in
sensorimotor
data


Attention allocation
guides parttern
recognition via
indicating which
sensorimotor
stimuli and
patterns tend to
be associatively
linked


New concepts
may be
created that
then are
found to
serve as
significant
patterns in
sensorimotor
data


Map formation NA Map formation
may focus
on finding
maps relates
to subgoals,
and good
subgoal
refinement
helps here


No significant direct
synergy


No significant
direct
synergy


Goal system Concepts formed
from maps may
be useful raw
material for
forming
subgoals


NA No significant direct
synergy


No significant
direct
synergy


(Continued)
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8.5 The Cognitive Schematic 169


Table 8.6 (Continued)


How →
Helps ↓


Map formation Goal system Simulation Sensorimotor
pattern
recognition


Simulation No significant
direct synergy


No significant
direct
synergy


NA Presence of
recognized
sensorimotor
patterns may
be used to
judge
whether a
simulation is
sufficiently
accurate


Sensorimotor
pattern
recognition


Concepts formed
from maps may
usefully guide
sensorimotor
pattern search


Directing
pattern
toward
patterns
pertinent to
subgoals
may make
the task far
easier


Patterns recognized
in simulations
may then be
checked for
presence in real
sensorimotor
data


NA


8.5 The Cognitive Schematic199


Now we return to the “cognitive schematic” notion, according to which various200


cognitive processes involved in intelligence may be understood to work together via201


the implication202


Context ∧ Procedure → Goal < p >203


(summarized C ∧ P → G). Semi-formally, this implication may be interpreted to204


mean: “If the context C appears to hold currently, then if I enact the procedure P , I205


can expect to achieve the goal G with certainty p.”206


The cognitive schematic leads to a conceptualization of the internal action of an207


intelligent system as involving two key categories of learning:208


• Analysis: Estimating the probability p of a posited C ∧ P → G relationship.209


• Synthesis: Filling in one or two of the variables in the cognitive schematic, given210


assumptions regarding the remaining variables, and directed by the goal of maxi-211


mizing the probability of the cognitive schematic.212


More specifically, where synthesis is concerned, some key examples are:213


• The MOSES probabilistic evolutionary program learning algorithm is applied to214


find P , given fixed C and G. Internal simulation is also used, for the purpose215
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170 8 Cognitive Synergy


of creating a simulation embodying C and seeing which P lead to the simulated216


achievement of G.217


– Example: A virtual dog learns a procedure P to please its owner (the goal G )218


in the context C where there is a ball or stick present and the owner is saying219


“fetch”.220


• PLN inference, acting on declarative knowledge, is used for choosing C , given221


fixed P and G (also incorporating sensory and episodic knowledge as appropriate).222


Simulation may also be used for this purpose.223


– Example: A virtual dog wants to achieve the goal G of getting food, and it knows224


that the procedure P of begging has been successful at this before, so it seeks a225


context C where begging can be expected to get it food. Probably this will be a226


context involving a friendly person.227


• PLN-based goal refinement is used to create new subgoals G to sit on the right228


hand side of instances of the cognitive schematic.229


– Example: Given that a virtual dog has a goal of finding food, it may learn a230


subgoal of following other dogs, due to observing that other dogs are often231


heading toward their food.232


• Concept formation heuristics are used for choosing G and for fueling goal refine-233


ment, but especially for choosing C (via providing new candidates for C). They234


are also used for choosing P , via a process called “predicate schematization” that235


turns logical predicates (declarative knowledge) into procedures.236


– Example: At first a virtual dog may have a hard time predicting which other237


dogs are going to be mean to it. But it may eventually observe common features238


among a number of mean dogs, and thus form its own concept of “pit bull”,239


without anyone ever teaching it this concept explicitly.240


Where analysis is concerned:241


• PLN inference, acting on declarative knowledge, is used for estimating the prob-242


ability of the implication in the cognitive schematic, given fixed C , P and G.243


Episodic knowledge is also used this regard, via enabling estimation of the prob-244


ability via simple similarity matching against past experience. Simulation is also245


used: multiple simulations may be run, and statistics may be captured therefrom.246


– Example: To estimate the degree to which asking Bob for food (the procedure P247


is “asking for food”, the context C is “being with Bob”) will achieve the goal G248


of getting food, the virtual dog may study its memory to see what happened on249


previous occasions where it or other dogs asked Bob for food or other things,250


and then integrate the evidence from these occasions.251


• Procedural knowledge, mapped into declarative knowledge and then acted on by252


PLN inference, can be useful for estimating the probability of the implication253
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8.5 The Cognitive Schematic 171


C ∧ P → G, in cases where the probability of C ∧ P1 → G is known for some254


P1 related to P .255


– Example: knowledge of the internal similarity between the procedure of asking256


for food and the procedure of asking for toys, allows the virtual dog to reason257


that if asking Bob for toys has been successful, maybe asking Bob for food will258


be successful too.259


• Inference, acting on declarative or sensory knowledge, can be useful for estimating260


the probability of the implication C ∧ P → G, in cases where the probability of261


C1 ∧ P → G is known for some C1 related to C .262


– Example: if Bob and Jim have a lot of features in common, and Bob often263


responds positively when asked for food, then maybe Jim will too.264


• Inference can be used similarly for estimating the probability of the implication265


C ∧ P → G, in cases where the probability of C ∧ P → G1 is known for some266


G1 related to G. Concept creation can be useful indirectly in calculating these267


probability estimates, via providing new concepts that can be used to make useful268


inference trails more compact and hence easier to construct.269


– Example: The dog may reason that because Jack likes to play, and Jack and Jill270


are both children, maybe Jill likes to play too. It can carry out this reasoning only271


if its concept creation process has invented the concept of “child” via analysis272


of observed data.273


In these examples we have focused on cases where two terms in the cognitive274


schematic are fixed and the third must be filled in; but just as often, the situation275


is that only one of the terms is fixed. For instance, if we fix G, sometimes the best276


approach will be to collectively learn C and P . This requires either a procedure learn-277


ing method that works interactively with a declarative-knowledge-focused concept278


learning or reasoning method; or a declarative learning method that works interac-279


tively with a procedure learning method. That is, it requires the sort of cognitive280


synergy built into the CogPrime design.281


8.6 Cognitive Synergy for Procedural and Declarative Learning282


We now present a little more algorithmic detail regarding the operation and syn-283


ergetic interaction of CogPrime’s two most sophisticated components: the MOSES284


procedure learning algorithm (see Chap. 15, Vol. 6), and the PLN uncertain infer-285


ence framework (see Chap. 16, Vol. 6). The treatment is necessarily quite compact,286


since we have not yet reviewed the details of either MOSES or PLN; but as well as287


illustrating the notion of cognitive synergy more concretely, perhaps the high-level288


discussion here will make clearer how MOSES and PLN fit into the big picture of289


CogPrime.290
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172 8 Cognitive Synergy


8.6.1 Cognitive Synergy in MOSES291


MOSES, CogPrime’s primary algorithm for learning procedural knowledge, has292


been tested on a variety of application problems including standard GP test prob-293


lems, virtual agent control, biological data analysis and text classification [Loo06].294


It represents procedures internally as program trees. Each node in a MOSES program295


tree is supplied with a “knob”, comprising a set of values that may potentially be cho-296


sen to replace the data item or operator at that node. So for instance a node containing297


the number 7 may be supplied with a knob that can take on any integer value. A node298


containing a while loop may be supplied with a knob that can take on various possi-299


ble control flow operators including conditionals or the identity. A node containing300


a procedure representing a particular robot movement, may be supplied with a knob301


that can take on values corresponding to multiple possible movements. Following a302


metaphor suggested by Douglas Hofstadter [Hof96], MOSES learning covers both303


“knob twiddling” (setting the values of knobs) and “knob creation” (Fig. 8.2).304


MOSES is invoked within CogPrime in a number of ways, but most commonly305


for finding a procedure P satisfying a probabilistic implication C&P → G as306


described above, where C is an observed context and G is a system goal. In this case307


the probability value of the implication provides the “scoring function” that MOSES308


uses to assess the quality of candidate procedures.309


For example, suppose an CogPrime-controlled robot is trying to learn to play310


the game of “tag”. (I.e. a multi-agent game in which one agent is specially labeled311


“it”, and runs after the other player agents, trying to touch them. Once another312


agent is touched, it becomes the new “it” and the previous “it” becomes just another313


player agent.) Then its context C is that others are trying to play a game they call314


Fig. 8.2 High-level control
flow of MOSES algorithm
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8.6 Cognitive Synergy for Procedural and Declarative Learning 173


“tag” with it; and we may assume its goals are to please them and itself, and that315


it has figured out that in order to achieve this goal it should learn some procedure316


to follow when interacting with others who have said they are playing “tag”. In317


this case a potential tag-playing procedure might contain nodes for physical actions318


like step_forward(speed s), as well as control flow nodes containing operators like319


ifelse (for instance, there would probably be a conditional telling the robot to do320


something different depending on whether someone seems to be chasing it). Each321


of these program tree nodes would have an appropriate knob assigned to it. And the322


scoring function would evaluate a procedure P in terms of how successfully the robot323


played tag when controlling its behaviors according to P (noting that it may also324


be using other control procedures concurrently with P). It’s worth noting here that325


evaluating the scoring function in this case involves some inference already, because326


in order to tell if it is playing tag successfully, in a real-world context, it must watch327


and understand the behavior of the other players.328


MOSES follows the high-level control flow depicted in Fig. 15.1 (Vol. 6), which329


corresponds to the following process for evolving a etapopulation of “demes” of330


programs (each deme being a set of relatively similar programs, forming a sort of331


island in program space):332


1. Construct an initial set of knobs based on some prior (e.g., based on an empty pro-333


gram; or more interestingly, using prior knowledge supplied by PLN inference334


based on the system’s memory) and use it to generate an initial random sampling335


of programs. Add this deme to the metapopulation.336


2. Select a deme from the metapopulation and update its sample, as follows:337


a. Select some promising programs from the deme’s existing sample to use for338


modeling, according to the scoring function.339


b. Considering the promising programs as collections of knob settings, gener-340


ate new collections of knob settings by applying some (competent) optimiza-341


tion algorithm. For best performance on difficult problems, it is important342


to use an optimization algorithm that makes use of the system’s memory in343


its choices, consulting PLN inference to help estimate which collections344


of knob settings will work best.345


c. Convert the new collections of knob settings into their corresponding pro-346


grams, reduce the programs to normal form, evaluate their scores, and347


integrate them into the deme’s sample, replacing less promising programs.348


In the case that scoring is expensive, score evaluation may be preceded by349


score estimation, which may use PLN inference, enaction of procedures350


in an internal simulation environment, and/or similarity matching against351


episodic memory.352


3. For each new program that meet the criterion for creating a new deme, if any:353


a. Construct a new set of knobs (a process called “representation-building”) to354


define a region centered around the program (the deme’s exemplar), and use355


it to generate a new random sampling of programs, producing a new deme.356
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174 8 Cognitive Synergy


b. Integrate the new deme into the metapopulation, possibly displacing less357


promising demes.358


4. Repeat from step 2.359


MOSES is a complex algorithm and each part plays its role; if any one part is removed360


the performance suffers significantly [Loo06]. However, the main point we want to361


highlight here is the role played by synergetic interactions between MOSES and other362


cognitive components such as PLN, simulation and episodic memory, as indicated363


in boldface in the above pseudocode. MOSES is a powerful procedure learning364


algorithm, but used on its own it runs into scalability problems like any other such365


algorithm; the reason we feel it has potential to play a major role in a human-level AI366


system is its capacity for productive interoperation with other cognitive components.367


Continuing the “tag” example, the power of MOSES’s integration with other368


cognitive processes would come into play if, before learning to play tag, the robot has369


already played simpler games involving chasing. If the robot already has experience370


chasing and being chased by other agents, then its episodic and declarative memory371


will contain knowledge about how to pursue and avoid other agents in the context of372


running around an environment full of objects, and this knowledge will be deployable373


within the appropriate parts of MOSES’s Steps 1 and 2. Cross-process and cross-374


memory-type integration make it tractable for MOSES to act as a “transfer learning”375


algorithm, not just a task-specific machine-learning algorithm.376


8.6.2 Cognitive Synergy in PLN377


While MOSES handles much of CogPrime’s procedural learning, and OpenCog-378


Primes internal simulation engine handles most episodic knowledge, CogPrime’s379


primary tool for handling declarative knowledge is an uncertain inference frame-380


work called Probabilistic Logic Networks (PLN). The complexities of PLN are the381


topic of a lengthy technical monograph [GMIHo8], and here we will eschew most382


details and focus mainly on pointing out how PLN seeks to achieve efficient inference383


control via integration with other cognitive processes.384


As a logic, PLN is broadly integrative: it combines certain term logic rules with385


more standard predicate logic rules, and utilizes both fuzzy truth values and a vari-386


ant of imprecise probabilities called indefinite probabilities. PLN mathematics tells387


how these uncertain truth values propagate through its logic rules, so that uncertain388


premises give rise to conclusions with reasonably accurately estimated uncertainty389


values. This careful management of uncertainty is critical for the application of390


logical inference in the robotics context, where most knowledge is abstracted from391


experience and is hence highly uncertain.392


PLN can be used in either forward or backward chaining mode; and in the language393


introduced above, it can be used for either analysis or synthesis. As an example, we394


will consider backward chaining analysis, exemplified by the problem of a robot395


preschool-student trying to determine whether a new playmate “Bob” is likely to be396
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8.6 Cognitive Synergy for Procedural and Declarative Learning 175


a regular visitor to its preschool or not (evaluating the truth value of the implication397


Bob → regular_visitor). The basic backward chaining process for PLN analysis398


looks like:399


1. Given an implication L ≡ A → B whose truth value must be estimated (for400


instance L ≡ C&P → G as discussed above), create a list (A1, . . . , An) of401


(inference rule, stored knowledge) pairs that might be used to produce L .402


2. Using analogical reasoning to prior inferences, assign each Ai a probability of403


success.404


• If some of the Ai are estimated to have reasonable probability of success at405


generating reasonably confident estimates of L’s truth value, then invoke Step406


1 with Ai in place of L (at this point the inference process becomes recursive).407


• If none of the Ai looks sufficiently likely to succeed, then inference has “gotten408


stuck” and another cognitive process should be invoked, e.g.409


– Concept creation may be used to infer new concepts related to A and B, and410


then Step 1 may be revisited, in the hope of finding a new, more promising411


Ai involving one of the new concepts.412


– MOSES may be invoked with one of several special goals, e.g. the goal of413


finding a procedure P so that P(X) predicts whether X → B. If MOSES414


finds such a procedure P then this can be converted to declarative knowledge415


understandable by PLN and Step 1 may be revisited . . .416


– Simulations may be run in CogPrime’s internal simulation engine, so as to417


observe the truth value of A → B in the simulations; and then Step 1 may418


be revisited . . .419


The combinatorial explosion of inference control is combatted by the capability to420


defer to other cognitive processes when the inference control procedure is unable to421


make a sufficiently confident choice of which inference steps to take next. Note that422


just as MOSES may rely on PLN to model its evolving populations of procedures,423


PLN may rely on MOSES to create complex knowledge about the terms in its logical424


implications. This is just one example of the multiple ways in which the different425


cognitive processes in CogPrime interact synergetically; a more thorough treatment426


of these interactions is given in Chap. 31 (Vol. 6).427


In the “new playmate” example, the interesting case is where the robot initially428


seems not to know enough about Bob to make a solid inferential judgment (so429


that none of the Ai seem particularly promising). For instance, it might carry out a430


number of possible inferences and not come to any reasonably confident conclusion,431


so that the reason none of the Ai seem promising is that all the decent-looking ones432


have been tried already. So it might then recourse to MOSES, simulation or concept433


creation.434


For instance, the PLN controller could make a list of everyone who has been a435


regular visitor, and everyone who has not been, and pose MOSES the task of figuring436


out a procedure for distinguishing these two categories. This procedure could then437


used directly to make the needed assessment, or else be translated into logical rules438


to be used within PLN inference. For example, perhaps MOSES would discover that439
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176 8 Cognitive Synergy


older males wearing ties tend not to become regular visitors. If the new playmate440


is an older male wearing a tie, this is directly applicable. But if the current playmate is441


wearing a tuxedo, then PLN may be helpful via reasoning that even though a tuxedo is442


not a tie, it’s a similar form of fancy dress—so PLN may extend the MOSES-learned443


rule to the present case and infer that the new playmate is not likely to be a regular444


visitor.445


8.7 Is Cognitive Synergy Tricky?446


In this section1 we use the notion of cognitive synergy to explore a question that447


arises frequently in the AGI community: the well-known difficulty of measuring448


intermediate progress toward human-level AGI. We explore some potential reasons449


underlying this, via extending the notion of cognitive synergy to a more refined notion450


of “tricky cognitive synergy”. These ideas are particularly relevant to the problem of451


creating a roadmap toward AGI, as we’ll explore in Chap. 17.452


8.7.1 The Puzzle: Why Is It So Hard to Measure Partial Progress453


Toward Human-Level AGI?454


It’s not entirely straightforward to create tests to measure the final achievement of455


human-level AGI, but there are some fairly obvious candidates here. There’s the456


Turing Test (fooling judges into believing you’re human, in a text chat), the video457


Turing Test, the Robot College Student test (passing university, via being judged458


exactly the same way a human student would), etc. There’s certainly no agreement459


on which is the most meaningful such goal to strive for, but there’s broad agreement460


that a number of goals of this nature basically make sense.461


On the other hand, how does one measure whether one is, say, 50 % of the way462


to human-level AGI? Or, say, 75 or 25 %?463


It’s possible to pose many “practical tests” of incremental progress toward human-464


level AGI, with the property that if a proto-AGI system passes the test using a certain465


sort of architecture and/or dynamics, then this implies a certain amount of progress466


toward human-level AGI based on particular theoretical assumptions about AGI.467


However, in each case of such a practical test, it seems intuitively likely to a significant468


percentage of AGI researchers that there is some way to “game” the test via designing469


a system specifically oriented toward passing that test, and which doesn’t constitute470


dramatic progress toward AGI.471


Some examples of practical tests of this nature would be472


1 This section co-authored with Jared Wigmore.
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8.7 Is Cognitive Synergy Tricky? 177


• The Wozniak “coffee test”: go into an average American house and figure out how473


to make coffee, including identifying the coffee machine, figuring out what the474


buttons do, finding the coffee in the cabinet, etc.475


• Story understanding—reading a story, or watching it on video, and then answering476


questions about what happened (including questions at various levels of abstrac-477


tion).478


• Graduating (virtual-world or robotic) preschool.479


• Passing the elementary school reading curriculum (which involves reading and480


answering questions about some picture books as well as purely textual ones).481


• Learning to play an arbitrary video game based on experience only, or based on482


experience plus reading instructions.483


One interesting point about tests like this is that each of them seems to some AGI484


researchers to encapsulate the crux of the AGI problem, and be unsolvable by485


any system not far along the path to human-level AGI—yet seems to other AGI486


researchers, with different conceptual perspectives, to be something probably game-487


able by narrow-AI methods. And of course, given the current state of science, there’s488


no way to tell which of these practical tests really can be solved via a narrow-AI489


approach, except by having a lot of people try really hard over a long period of time.490


A question raised by these observations is whether there is some fundamental rea-491


son why it’s hard to make an objective, theory-independent measure of intermediate492


progress toward advanced AGI. Is it just that we haven’t been smart enough to figure493


out the right test—or is there some conceptual reason why the very notion of such a494


test is problematic?495


We don’t claim to know for sure—but in the rest of this section we’ll outline one496


possible reason why the latter might be the case.497 AQ6


8.7.2 A Possible Answer: Cognitive Synergy Is Tricky!498


Why might a solid, objective empirical test for intermediate progress toward AGI be499


an infeasible notion? One possible reason, we suggest, is precisely cognitive synergy,500


as discussed above.501


The cognitive synergy hypothesis, in its simplest form, states that human-level502


AGI intrinsically depends on the synergetic interaction of multiple components (for503


instance, as in CogPrime, multiple memory systems each supplied with its own504


learning process). In this hypothesis, for instance, it might be that there are 10 critical505


components required for a human-level AGI system. Having all 10 of them in place506


results in human-level AGI, but having only 8 of them in place results in having507


a dramatically impaired system—and maybe having only 6 or 7 of them in place508


results in a system that can hardly do anything at all.509


Of course, the reality is almost surely not as strict as the simplified example in510


the above paragraph suggests. No AGI theorist has really posited a list of 10 crisply-511


defined subsystems and claimed them necessary and sufficient for AGI. We suspect512
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178 8 Cognitive Synergy


there are many different routes to AGI, involving integration of different sorts of sub-513


systems. However, if the cognitive synergy hypothesis is correct, then human-level514


AGI behaves roughly like the simplistic example in the prior paragraph suggests.515


Perhaps instead of using the 10 components, you could achieve human-level AGI516


with 7 components, but having only 5 of these 7 would yield drastically impaired517


functionality—etc. Or the point could be made without any decomposition into a518


finite set of components, using continuous probability distributions. To mathemati-519


cally formalize the cognitive synergy hypothesis becomes complex, but here we’re520


only aiming for a qualitative argument. So for illustrative purposes, we’ll stick with521


the “10 components” example, just for communicative simplicity.522


Next, let’s suppose that for any given task, there are ways to achieve this task523


using a system that is much simpler than any subset of size 6 drawn from the set524


of 10 components needed for human-level AGI, but works much better for the task525


than this subset of 6 components (assuming the latter are used as a set of only 6526


components, without the other 4 components).527


Note that this supposition is a good bit stronger than mere cognitive synergy.528


For lack of a better name, we’ll call it tricky cognitive synergy. The tricky cognitive529


synergy hypothesis would be true if, for example, the following possibilities were530


true:531


• creating components to serve as parts of a synergetic AGI is harder than creating532


components intended to serve as parts of simpler AI systems without synergetic533


dynamics;534


• components capable of serving as parts of a synergetic AGI are necessarily more535


complicated than components intended to serve as parts of simpler AGI systems.536


These certainly seem reasonable possibilities, since to serve as a component of a537


synergetic AGI system, a component must have the internal flexibility to usefully538


handle interactions with a lot of other components as well as to solve the problems539


that come its way. In a CogPrime context, these possibilities ring true, in the sense that540


tailoring an AI process for tight integration with other AI processes within CogPrime,541


tends to require more work than preparing a conceptually similar AI process for use542


on its own or in a more task-specific narrow AI system.543


It seems fairly obvious that, if tricky cognitive synergy really holds up as a property544


of human-level general intelligence, the difficulty of formulating tests for intermedi-545


ate progress toward human-level AGI follows as a consequence. Because, according546


to the tricky cognitive synergy hypothesis, any test is going to be more easily solved547


by some simpler narrow AI process than by a partially complete human-level AGI548


system.549


8.7.3 Conclusion550


We haven’t proved anything here, only made some qualitative arguments. However,551


these arguments do seem to give a plausible explanation for the empirical observation552
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8.7 Is Cognitive Synergy Tricky? 179


that positing tests for intermediate progress toward human-level AGI is a very difficult553


prospect. If the theoretical notions sketched here are correct, then this difficulty is not554


due to incompetence or lack of imagination on the part of the AGI community, nor555


due to the primitive state of the AGI field, but is rather intrinsic to the subject matter.556


And if these notions are correct, then quite likely the future rigorous science of AGI557


will contain formal theorems echoing and improving the qualitative observations and558


conjectures we’ve made here.559


If the ideas sketched here are true, then the practical consequence for AGI devel-560


opment is, very simply, that one shouldn’t worry a lot about producing intermediary561


results that are compelling to skeptical observers. Just at 2/3 of a human brain may562


not be of much use, similarly, 2/3 of an AGI system may not be much use. Lack of563


impressive intermediary results may not imply one is on a wrong development path;564


and comparison with narrow AI systems on specific tasks may be badly misleading565


as a gauge of incremental progress toward human-level AGI.566


Hopefully it’s clear that the motivation behind the line of thinking presented here567


is a desire to understand the nature of general intelligence and its pursuit—not a desire568


to avoid testing our AGI software! Really, as AGI engineers, we would love to have a569


sensible rigorous way to test our intermediary progress toward AGI, so as to be able570


to pose convincing arguments to skeptics, funding sources, potential collaborators571


and so forth. Our motivation here is not a desire to avoid having the intermediate572


progress of our efforts measured, but rather a desire to explain the frustrating (but573


by now rather well-established) difficulty of creating such intermediate goals for574


human-level AGI in a meaningful way.575


If we or someone else figures out a compelling way to measure partial progress576


toward AGI, we will celebrate the occasion. But it seems worth seriously considering577


the possibility that the difficulty in finding such a measure reflects fundamental578


properties of general intelligence.579


From a practical CogPrime perspective, we are interested in a variety of evaluation580


and testing methods, including the “virtual preschool” approach mentioned briefly581


above and more extensively in later chapters. However, our focus will be on evaluation582


methods that give us meaningful information about CogPrime’s progress, given our583


knowledge of how CogPrime works and our understanding of the underlying theory.584


We are unlikely to focus on the achievement of intermediate test results capable of585


convincing skeptics of the reality of our partial progress, because we have not yet586


seen any credible tests of this nature, and because we suspect the reasons for this587


lack may be rooted in deep properties of feasible general intelligence, such as tricky588


cognitive synergy.589
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relevance to the human mind. In the following chapter we present a deeper, more abstract theoretical
framework encompassing these ideas.







A
ut


ho
r


Pr
oo


f


Chapter 9
General Intelligence in the Everyday Human
World


9.1 Introduction


Intelligence is not just about what happens inside a system, but also about what
happens outside that system, and how the system interacts with its environment.
Real-world general intelligence is about intelligence relative to some particular class
of environments, and human-like general intelligence is about intelligence relative
to the particular class of environments that humans evolved in (which in recent
millennia has included environments humans have created using their intelligence).
In Chap. 3, we reviewed some specific capabilities characterizing human-like general
intelligence; to connect these with the general theory of general intelligence from the
last few chapters, we need to explain what aspects of human-relevant environments
correspond to these human-like intelligent capabilities. We begin with aspects of
the environment related to communication, which turn out to tie in closely with
cognitive synergy. Then we turn to physical aspects of the environment, which we
suspect also connect closely with various human cognitive capabilities. Finally we
turn to physical aspects of the human body and their relevance to the human mind.
In the following chapter we present a deeper, more abstract theoretical framework
encompassing these ideas.


These ideas are of theoretical importance, and they’re also of practical importance
when one turns to the critical area of AGI environment design. If one is going to do
anything besides release one’s young AGI into the “wilds” of everyday human life,
then one has to put some thought into what kind of environment it will be raised
in. This may be a virtual world or it may be a robot preschool or some other kind
of physical environment, but in any case some specific choices must be made about
what to include. Specific choices must also be made about what kind of body to give
one’s AGI system—what sensors and actuators, and so forth. In Chap. 16 we will
present some specific suggestions regarding choices of embodiment and environment
that we find to be ideal for AGI development—virtual and robot preschools—but the
material in this chapter is of more general import, beyond any such particularities. If
one has an intuitive idea of what properties of body and world human intelligence is


B. Goertzel et al., Engineering General Intelligence, Part 1, 181
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_9,
© Atlantis Press and the authors 2014



http://dx.doi.org/10.2991/978-94-6239-027-0_3

http://dx.doi.org/10.2991/978-94-6239-027-0_16





A
ut


ho
r


Pr
oo


f


182 9 General Intelligence in the Everyday Human World


biased for, then one can make practical choices about embodiment and environment
in a principled rather than purely ad hoc or opportunistic way.


9.2 Some Broad Properties of the Everyday World that Help
Structure Intelligence


The properties of the everyday world that help structure intelligence are diverse and
span multiple levels of abstraction. Most of this chapter will focus on fairly concrete
patterns of this nature, such as are involved in inter-agent communication and naive
physics; however, it’s also worth noting the potential importance of more abstract pat-
terns distinguishing the everyday world from arbitrary mathematical environments.


The propensity to search for hierarchical patterns is one huge potential example
of an abstract everyday-world property. We strongly suspect the reason that search-
ing for hierarchical patterns works so well, in so many everyday-world contexts,
lies in the particular structure of the everyday world—it’s not something that would
be true across all possible environments (even if one weights the space of possi-
ble environments in some clever way, say using program-length according to some
standard computational model). However, this sort of assertion is of course highly
“philosophical,” and becomes complex to formulate and defend convincingly given
the current state of science and mathematics.


Going one step further, we recall from Chap. 4 a structure called the “dual
network”, which consists of superposed hierarchical and heterarchical networks:
basically a hierarchy in which the distance between two nodes in the hierarchy is
correlated with the distance between the nodes in some metric space. Another high
level property of the everyday world may be that dual network structures are preva-
lent. This would imply that minds biased to represent the world in terms of dual
network structure are likely to be intelligent with respect to the everyday world.


In a different direction, the extreme commonality of symmetry groups in the
(everyday and otherwise) physical world is another example: they occur so often that
minds oriented toward recognizing patterns involving symmetry groups are likely to
be intelligent with respect to the real world.


We suspect that the number of cognitively-relevant properties of the everyday
world is huge ... and that the essence of everyday-world intelligence lies in the list
of varyingly abstract and concrete properties, which must be embedded implicitly or
explicitly in the structure of a natural or artificial intelligence for that system to have
everyday-world intelligence.


Apart from these particular yet abstract properties of the everyday world, intel-
ligence is just about “finding patterns in which actions tend to achieve which goals
in which situations” ... but, the simple meta-algorithm needed to accomplish this
universally is, we suggest, only a small percentage what it takes to make a mind.


You might say that a sufficiently generally intelligent system should be able to
infer the various cognitively-relevant properties of the environment from looking
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at data about the everyday world. We agree in principle, and in fact Ben Kuipers
and his colleagues have done some interesting work in this direction, showing that
learning algorithms can infer some basics about the structure of space and time from
experience [MK07]. But we suggest that doing this really thoroughly would require a
massively greater amount of processing power than an AGI that embodies and hence
automatically utilizes these principles. It may be that the problem of inferring these
properties is so hard as to require a wildly infeasible AIXI tl / Godel Machine type
system.


9.3 Embodied Communication


Next we turn to the potential cognitive implications of seeking to achieve goals
in an environment in which multimodal communication with other agents plays a
prominent role.


Consider a community of embodied agents living in a shared world, and suppose
that the agents can communicate with each other via a set of mechanisms including:


• Linguistic communication, in a language whose semantics is largely (not neces-
sarily wholly) interpretable based on the mutually experienced world


• Indicative communication, in which e.g. one agent points to some part of the
world or delimits some interval of time, and another agent is able to interpret the
meaning


• Demonstrative communication, in which an agent carries out a set of actions in
the world, and the other agent is able to imitate these actions, or instruct another
agent as to how to imitate these actions


• Depictive communication, in which an agent creates some sort of (visual,
auditory, etc.) construction to show another agent, with a goal of causing the
other agent to experience phenomena similar to what they would experience upon
experiencing some particular entity in the shared environment


• Intentional communication, in which an agent explicitly communicates to
another agent what its goal is in a certain situation1


AQ1


It is clear that ordinary everyday communication between humans possesses all these
aspects.


We define the Embodied Communication Prior (ECP) as the probability distrib-
ution in which the probability of an entity (e.g. a goal or environment) is proportional
to the difficulty of describing that entity, for a typical member of the community in
question, using a particular set of communication mechanisms including the above
five modes. We will sometimes refer to the prior probability of an entity under this
distribution, as its “simplicity” under the distribution.


1 in Appendix ?? we recount some interesting recent results showing that mirror neurons fire in
response to some cases of intentional communication as thus defined.
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Next, to further specialize the Embodied Communication Prior, we will assume
that for each of these modes of communication, there are some aspects of the world
that are much more easily communicable using that mode than the other modes. For
instance, in the human everyday world:


• Abstract (declarative) statements spanning large classes of situations are generally
much easier to communicate linguistically


• Complex, multi-part procedures are much easier to communicate either demon-
stratively, or using a combination of demonstration with other modes


• Sensory or episodic data is often much easier to communicate demonstratively
• The current value of attending to some portion of the shared environment is often


much easier to communicate indicatively
• Information about what goals to follow in a certain situation is often much easier


to communicate intentionally, i.e. via explicitly indicating what one’s own goal is


These simple observations have significant implications for the nature of the
Embodied Communication Prior. For one thing they let us define multiple forms of
knowledge:


• Isolatedly declarative knowledge is that which is much more easily communi-
cable linguistically


• Isolatedly procedural knowledge is that which is much more easily communi-
cable demonstratively


• Isolatedly sensory knowledge is that which is much more easily communicable
depictively


• Isolatedly attentive knowledge is that which is much more easily communicable
indicatively


• Isolatedly intentional knowledge is that which is much more easily communi-
cable intentionally


This categorization of knowledge types resembles many ideas from the cognitive
theory of memory [TC05], although the distinctions drawn here are a little crisper than
any classification currently derivable from available neurological or psychological
data.


Of course there may be much knowledge, of relevance to systems seeking
intelligence according to the ECP, that does not fall into any of these categories
and constitutes “mixed knowledge”. There are some very important specific sub-
classes of mixed knowledge. For instance, episodic knowledge (knowledge about
specific real or hypothetical sets of events) will most easily be communicated via a
combination of declarative, sensory and (in some cases) procedural communication.
Scientific and mathematical knowledge are generally mixed knowledge, as is most
everyday commonsense knowledge.


Some cases of mixed knowledge are reasonably well decomposable, in the sense
that they decompose into knowledge items that individually fall into some specific
knowledge type. For instance, an experimental chemistry procedure may be much
more easily communicable procedurally, whereas an allied piece of knowledge from
theoretical chemistry may be much more easily communicable declaratively; but in
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order to fully communicate either the experimental procedure or the abstract piece
of knowledge, one may ultimately need to communicate both aspects.


Also, even when the best way to communicate something is mixed-mode, it may
be possible to identify one mode that poses the most important part of the commu-
nication. An example would be a chemistry experiment that is best communicated
via a practical demonstration together with a running narrative. It may be that the
demonstration without the narrative would be vastly more valuable than the narra-
tive without the demonstration. To cover such cases we may make less restrictive
definitions such as


• Interactively declarative knowledge is that which is much more easily commu-
nicable in a manner dominated by linguistic communication


and so forth. We call these “interactive knowledge categories,” by contrast to the
“isolated knowledge categories” introduced earlier.


9.3.0.1 Naturalness of Knowledge Categories


Next we introduce an assumption we call NKC, for Naturalness of Knowledge Cate-
gories. The NKC assumption states that the knowledge in each of the above isolated
and interactive communication-modality-focused categories forms a “natural cate-
gory,” in the sense that for each of these categories, there are many different properties
shared by a large percentage of the knowledge in the category, but not by a large
percentage of the knowledge in the other categories. This means that, for instance,
procedural knowledge systematically (and statistically) has different characteristics
than the other kinds of knowledge.


The NKC assumption seems commonsensically to hold true for human everyday
knowledge, and it has fairly dramatic implications for general intelligence. Suppose
we conceive general intelligence as the ability to achieve goals in the environment
shared by the communicating agents underlying the Embodied Communication Prior.
Then, NKC suggests that the best way to achieve general intelligence according to
the Embodied Communication Prior is going to involve


• specialized methods for handling declarative, procedural, sensory and attentional
knowledge (due to the naturalness of the isolated knowledge categories)


• specialized methods for handling interactions between different types of knowl-
edge, including methods focused on the case where one type of knowledge is
primary and the others are supporting (the latter due to the naturalness of the
interactive knowledge categories).


9.3.0.2 Cognitive Completeness


Suppose we conceive an AI system as consisting of a set of learning capabilities,
each one characterized by three features:
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• One or more knowledge types that it is competent to deal with, in the sense of the
two key learning problems mentioned above


• At least one learning type: either analysis, or synthesis, or both
• At least one interaction type, for each (knowledge type, learning type) pair it


handles: “isolated” (meaning it deals mainly with that knowledge type in isolation),
or “interactive” (meaning it focuses on that knowledge type but in a way that
explicitly incorporates other knowledge types into its process), or “fully mixed”
(meaning that when it deals with the knowledge type in question, no particular
knowledge type tends to dominate the learning process).


Then, intuitively, it seems to follow from the ECP with NKC that systems with high
efficient general intelligence should have the following properties, which collectively
we’ll call cognitive completeness:


• For each (knowledge type, learning type, interaction type) triple, there should be
a learning capability corresponding to that triple.


• Furthermore the capabilities corresponding to different (knowledge type, interac-
tion type) pairs should have distinct characteristics (since according to the NKC
the isolated knowledge corresponding to a knowledge type is a natural category,
as is the dominant knowledge corresponding to a knowledge type)


• For each (knowledge type, learning type) pair (K, L), and each other knowledge
type K1 distinct from K, there should be a distinctive capability with interaction
type “interactive” and dealing with knowledge that is interactively K but also
includes aspects of K1


Furthermore, it seems intuitively sensible that according to the ECP with NKC, if
the capabilities mentioned in the above points are reasonably able, then the system
possessing the capabilities will display general intelligence relative to the ECP. Thus
we arrive at the hypothesis that
Under the assumption of the Embodied Communication Prior (with the Nat-


ural Knowledge Categories assumption), the property above called “cognitive
completeness” is necessary and sufficient for efficient general intelligence at the
level of an inteligent adult human (e.g. at the Piagetan formal level [Pia53]).


Of course, the above considerations are very far from a rigorous mathematical
proof (or even precise formulation) of this hypothesis. But we are presenting this
here as a conceptual hypothesis, in order to qualitatively guide our practical AGI
R&D and also to motivate further, more rigorous theoretical work.


9.3.1 Generalizing the Embodied Communication Prior


One interesting direction for further research would be to broaden the scope of the
inquiry, in a manner suggested above: instead of just looking at the ECP, look at
simplicity measures in general, and attack the question of how a mind must be
structured in order to display efficient general intelligence relative to a specified
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simplicity measure. This problem seems unapproachable in general, but some special
cases may be more tractable.


For instance, suppose one has


• a simplicity measure that (like the ECP) is approximately decomposable into a set
of fairly distinct components, plus their interactions


• an assumption similar to NKC, which states that the entities displaying simplicity
according to each of the distinct components, are roughly clustered together in
entity-space


Then one should be able to say that, to achieve efficient general intelligence relative
to this decomposable simplicity measure, a system should have distinct capabilities
corresponding to each of the components of the simplicity measure interactions
between these capabilities, corresponding to the interaction terms in the simplicity
measure.


With copious additional work, these simple observations could potentially serve
as the seed for a novel sort of theory of general intelligence—a theory of how the
structure of a system depends on the structure of the simplicity measure with which it
achieves efficient general intelligence. Cognitive Synergy Theory would then emerge
as a special case of this more abstract theory.


9.4 Naive Physics


Multimodal communication is an important aspect of the environment for which
human intelligence evolved—but not the only one. It seems likely that our human
intelligence is also closely adapted to various aspects of our physical environment—a
matter that is worth carefully attending as we design environments for our robotically
or virtually embodied AGI systems to operate in.


One interesting guide to the most cognitively relevant aspects of human environ-
ments is the subfield of AI known as “naive physics” [Hay85]—a term that refers
to the theories about the physical world that human beings implicitly develop and
utilize during their lives. For instance, when you figure out that you need to pressure
the knife slightly harder when spreading peanut butter rather than jelly, you’re not
making this judgment using Newtonian physics or the Navier-Stokes equations of
fluid dynamics; you’re using heuristic patterns that you figured out through expe-
rience. Maybe you figured out these patterns through experience spreading peanut
butter and jelly in particular. Or maybe you figured these heuristic patterns out before
you ever tried to spread peanut butter or jelly specifically, via just touching peanut
butter and jelly to see what they feel like, and then carrying out inference based on
your experience manipulating similar tools in the context of similar substances.


Other examples of similar “naive physics” patterns are easy to come by, e.g.


1. What goes up must come down.
2. A dropped object falls straight down.
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3. A vacuum sucks things towards it.
4. Centrifugal force throws rotating things outwards.
5. An object is either at rest or moving, in an absolute sense.
6. Two events are simultaneous or they are not.
7. When running downhill, one must lift one’s knees up high.
8. When looking at something that you just barely can’t discern accurately, squint.


Attempts to axiomatically formulate naive physics have historically come up
short, and we doubt this is a promising direction for AGI. However, we do think
the naive physics literature does a good job of identifying the various phenomena
that the human mind’s naive physics deals with. So, from the point of view of AGI
environment design, naive physics is a useful source of requirements. Ideally, we
would like an AGI’s environment to support all the fundamental phenomena that
naive physics deals with.


We now describe some key aspects of naive physics in a more systematic manner.
Naive physics has many different formulations; in this section we draw heavily on
[SC94], who divide naive physics phenomena into 5 categories. Here we review
these categories and identify a number of important things that humanlike intelligent
agents must be able to do relative to each of them.


9.4.1 Objects, Natural Units and Natural Kinds


One key aspect of naive physics involves recognition of various aspects of objects,
such as:


1. Recognition of objects amidst noisy perceptual data
2. Recognition of surfaces and interiors of objects
3. Recognition of objects as manipulable units
4. Recognition of objects as potential subjects of fragmentation (splitting, cutting)


and of unification (gluing, bonding)
5. Recognition of the agent’s body as an object, and as parts of the agent’s body as


objects
6. Division of universe of perceived objects into “natural kinds”, each containing


typical and atypical instances.


9.4.2 Events, Processes and Causality


Specific aspects of naive physics related to temporality and causality are:


1. Distinguishing roughly-subjectively-instantaneous events from extended
processes
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2. Identifying beginnings, endings and crossings of processes
3. Identifying and distinguishing internal and external changes
4. Identifying and distinguishing internal and external changes relative to one’s own


body
5. Interrelating body-changes with changes in external entities


Notably, these aspects of naive physics involve a different processes occurring
on a variety of different time scales, intersecting in complex patterns, and involving
processes inside the agent’s body, outside the agent’s body, and crossing the boundary
of the agent’s body.


9.4.3 Stuffs, States of Matter, Qualities


Regarding the various states of matter, some important aspects of naive physics are:


1. Perceiving gaps between objects: holes, media, illusions like rainbows, mirages
and holograms


2. Distinguishing the manners in which different sorts of entities (e.g. smells, sounds,
light) fill space


3. Distinguishing properties such as smoothness, roughness, graininess, stickiness,
runniness, etc.


4. Distinguishing degrees of elasticity and fragility
5. Assessing separability of aggregates.


9.4.4 Surfaces, Limits, Boundaries, Media


Gibson [Gib77, Gib79] has argued that naive physics is not mainly about objects but
rather mainly about surfaces. Surfaces have a variety of aspects and relationships
that are important for naive physics, such as:


1. Perceiving and reasoning about surfaces as two-sided or one-sided interfaces
2. Inference of the various ecological laws of surfaces
3. Perception of various media in the world as separated by surfaces
4. Recognition of the textures of surfaces
5. Recognition of medium/surface layout relationships such as: ground, open envi-


ronment, enclosure, detached object, attached object, hollow object, place, sheet,
fissure, stick, fibre, dihedral, etc.


As a concrete, evocative “toy” example of naive everyday knowledge about sur-
faces and boundaries, consider Sloman’s [Slo08a] example scenario, depicted in
Fig. 9.1 and drawn largely from [SS74] (see also related discussion in [Slo08b], in
which “A child can be given one or more rubber bands and a pile of pins, and asked
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Fig. 9.1 One of Sloman’s example test domains for real-world inference. Left a number of pins
and a rubber band to be stretched around them. Right use of the pins and rubber band to make a
letter T


to use the pins to hold the band in place to form a particular shape) ... For example,
things to be learnt could include”:


1. There is an area inside the band and an area outside the band.
2. The possible effects of moving a pin that is inside the band towards or further


away from other pins inside the band. (The effects can depend on whether the
band is already stretched.)


3. The possible effects of moving a pin that is outside the band towards or further
away from other pins inside the band.


4. The possible effects of adding a new pin, inside or outside the band, with or
without pushing the band sideways with the pin first.


5. The possible effects of removing a pin, from a position inside or outside the band.
6. Patterns of motion/change that can occur and how they affect local and global


shape (e.g. introducing a concavity or convexity, introducing or removing sym-
metry, increasing or decreasing the area enclosed).


7. The possibility of causing the band to cross over itself. (NB: Is an odd number of
crosses possible?)


8. How adding a second, or third band can enrich the space of structures, processes
and effects of processes.


9.4.5 What Kind of Physics is Needed to Foster Human-Like
Intelligence?


We stated above that we would like an AGI’s environment to support all the fun-
damental phenomena that naive physics deals with; and we have now reviewed a
number of these specific phenomena. But it’s not entirely clear what the “funda-
mental” aspects underlying these phenomena are. One important question in the
environment-design context is how close an AGI environment needs to stick to the
particulars of real-world naive physics. Is it important that a young AGI can play
with the specific differences between spreading peanut butter versus jelly? Or is it
enough that it can play with spreading and smearing various substances of different
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consistencies? How close does the analogy between an AGI environment’s naive
physics and real-world naive physics need to be? This is a question to which we
have no scientific answer at present. Our own working hypothesis is that the analogy
does not need to be extremely close, and with this in mind in Chap. 16 we propose a
virtual environment BlocksNBeadsWorld that encompasses all the basic conceptual
phenomena of real-world naive physics, but does not attempt to emulate their details.


Framed in terms of human psychology rather than environment design, the ques-
tion becomes: At what level of detail must one model the physical world to understand
the ways in which human intelligence has adapted to the physical world?. Our sus-
picion, which underlies our BlocksNBeadsWorld design, is that it’s approximately
enough to have


• Newtonian physics, or some close approximation
• Matter in multiple phases and forms vaguely similar to the ones we see in the real


world: solid, liquid, gas, paste, go, etc.
• Ability to transform some instances of matter from one form to another
• Ability to flexibly manipulate matter in various forms with various solid tools
• Ability to combine instances of matter into new ones in a fairly rich way: e.g. glue


or tie solids togethermix liquids together, etc.
• Ability to position instances of matter with respect to each other in a rich way: e.g.


put liquid in a solid cavity, cover something with a lid or a piece of fabric, etc.


It seems to us that if the above are present in an environment, then an AGI seeking
to achieve appropriate goals in that environment will be likely to form an appropri-
ate “human-like physical-world intuition.” We doubt that the specifics of the naive
physics of different forms of matter are critical to human-like intelligence. But, we
suspect that a great amount of unconscious human metaphorical thinking is condi-
tioned on the fact that humans evolved around matter that takes a variety of forms, can
be changed from one form to another, and can be fairly easily arranged and compos-
ited to form new instances from prior ones. Without many diverse instances of matter
transformation, arrangement and composition in its experience, an AGI is unlikely
to form an internal “metaphor-base” even vaguely similar to the human one—so
that, even if it’s highly intelligent, its thinking will be radically non-human-like in
character.


Naturally this is all somewhat speculative and must be explored via experimen-
tation. Maybe an elaborate blocks-world with only solid objects will be sufficient to
create human-level, roughly human-like AGI with rich spatiotemporal and manipu-
lative intuition. Or maybe human intelligence is more closely adapted to the specifics
of our physical world—with water and dirt and plants and hair and so forth—than we
currently realize. One thing that is very clear is that, as we proceed with embodying,
situating and educating our AGI systems, we need to pay careful attention to the way
their intelligence is conditioned by their environment.



http://dx.doi.org/10.2991/978-94-6239-027-0_16
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9.5 Folk Psychology


Related to naive physics is the notion of “naive psychology” or “folk psychology”
[Rav04], which includes for instance the following aspects:


1. Mental simulation of other agents
2. Mental theory regarding other agents
3. Attribution of beliefs, desires and intentions (BDI) to other agents via theory or


simulation
4. Recognition of emotions in other agents via their physical embodiment
5. Recognition of desires and intentions in other agents via their physical embodi-


ment
6. Analogical and contextual inferences between self and other, regarding BDI and


other aspects
7. Attribute causes and meanings to other agents behaviors
8. Anthropomorphize non-human, including inanimate objects


The main special requirement placed on an AGI’s embodiment by the above aspects
pertains to the ability of agents to express their emotions and intentions to each other.
Humans do this via facial expressions, gestures and language.


9.5.1 Motivation, Requiredness, Value


Relatedly to folk psychology, Gestalt [Koh38] and ecological [Gib77, Gib79] psy-
chology suggest that humans perceive the world substantially in terms of the
affordances it provides them for goal-directed action. This suggests that, to support
human-like intelligence, an AGI must be capable of:


1. Perception of entities in the world as differentially associated with goal-relevant
value


2. Perception of entities in the world in terms of the potential actions they afford the
agent, or other agents


The key point is that entities in the world need to provide a wide variety of ways
for agents to interact with them, enabling richly complex perception of affordances.


9.6 Body and Mind


The above discussion has focused on the world external to the body of the AGI
agent embodied and embedded in the world, but the issue of the AGI’s body also
merits consideration. There seems little doubt that a human’s intelligence is highly
conditioned by the particularities of the human body.
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9.6.1 The Human Sensorium


Here the requirements seem fairly simple: while surely not strictly necessary, it
would certainly be preferable to provide an AGI with fairly rich analogues of the
human senses of touch, sight, sound, kinesthesia, taste and smell. Each of these
senses provides different sorts of cognitive stimulation to the human mind; and
while similar cognitive stimulation could doubtless be achieved without analogous
senses, the provision of such seems the most straightforward approach. It’s hard to
know how much of human intelligence is specifically biased to the sorts of outputs
provided by human senses.


As vision already is accorded such a prominent role in the AI and cognitive science
literature—and is discussed in moderate depth in Chap. 8 of Vol. 6, we won’t take
time elaborating on the importance of vision processing for humanlike cognition.
The key thing an AGI requires to support humanlike “visual intelligence” is an
environment containing a sufficiently robust collection of materials that object and
event recognition and identification become interesting problems. AQ2


Audition is cognitively valuable for many reasons, one of which is that it gives a
very rich and precise method of sensing the world that is different from vision. The
fact that humans can display normal intelligence while totally blind or totally deaf is
an indication that, in a sense, vision and audition are redundant for understanding the
everyday world. However, it may be important that the brain has evolved to account
for both of these senses, because this forced it to account for the presence of two
very rich and precise methods of sensing the world—which may have forced it to
develop more abstract representation mechanisms than would have been necessary
with only one such method.


Touch is a sense that is, in our view, generally badly underappreciated within the
AI community. In particular the cognitive robotics community seems to worry too
little about the terribly impoverished sense of touch possessed by most current robots
(though fortunately there are recent technologies that may help improve robots in
this regard; see e.g. [Nan08]). Touch is how the human infant learns to distinguish
self from other, and in this way it is the most essential sense for the establishment
of an internal self-model. Touching others’ bodies is a key method for developing a
sense of the emotional reality and responsiveness of others, and is hence key to the
development of theory of mind and social understanding in humans. For this reason,
among others, human children lacking sufficient tactile stimulation will generally
wind up badly impaired in multiple ways. A good-quality embodiment should supply
an AI agent with a body that possesses skin, which has varying levels of sensitivity
on different parts of the skin (so that it can effectively distinguish between reality and
its perception thereof in a tactile context); and also varying types of touch sensors
(e.g. temperature versus friction), so that it experiences textures as multidimensional
entities.


Related to touch, kinesthesia refers to direct sensation of phenomena happening
inside the body. Rarely mentioned in AI, this sense seems quite critical to cognition,
as it underpins many of the analogies between self and other that guide cognition.



http://dx.doi.org/10.2991/978-94-6239-027-0_8
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Again, it’s not important that an AGI’s virtual body have the same internal body
parts as a human body. But it seems valuable to have the AGI’s virtual body display
some vaguely human-body-like properties, such as feeling internal strain of various
sorts after getting exercise, feeling discomfort in certain places when running out of
energy, feeling internally different when satisfied versus unsatisfied, etc.


Next, taste is a cognitively interesting sense in that it involves the interplay between
the internal and external world; it involves the evaluation of which entities from
the external world are worthy of placing inside the body. And smell is cognitively
interesting in large part because of its relationship with taste. A smell is, among
other things, a long-distance indicator of what a certain entity might taste like. So,
the combination of taste and smell provides means for conceptualizing relationships
between self, world and distance.


9.6.2 The Human Body’s Multiple Intelligences


While most unique aspect of human intelligence is rooted in what one might call the
“cognitive cortex” — the portions of the brain dealing with self-reflection and abstract
thought. But the cognitive cortex does its work in close coordination with the body’s
various more specialized intelligent subsystems, including those associated with the
gut, the heart, the liver, the immune and endocrine systems, and the perceptual and
motor cortices.


In the perspective underlying this book, the human cognitive cortex—or the core
cognitive network of any roughly human-like AGI system—should be viewed as a
highly flexible, self-organizing network. These cognitive networks are modelable
e.g. as a recurrent neural net with general topology, or a weighted labeled hyper-
graph, and are centrally concerned with recognizing patterns in its environment and
itself, especially patterns regarding the achievement of the system’s goals in various
appropriate contexts. Here we augment this perspective, noting that the human brain’s
cognitive network is closely coupled with a variety of simpler and more specialized
intelligent “body-system networks” which provide it with structural and dynamical
inductive biasing. We then discuss the implications of this observation for practical
AGI design.


One recalls Pascal’s famous quote “The heart has its reasons, of which reason
knows not.” As we now know, the intuitive sense that Pascal and so many others have
expressed, that the heart and other body systems have their own reasons, is grounded
in the fact that they actually do carry out simple forms of reasoning (i.e. intelligent,
adaptive dynamics), in close, sometimes cognitively valuable, coordination with the
central cognitive network.


9.6.2.1 Some of the Human Body’s Specialized Intelligent Subsystems


The human body contains multiple specialized intelligences apart from the cognitive
cortex. Here we review some of the most critical.
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Hierarchies of Visual and Auditory Perception.


The hierarchical structure of visual and auditory cortex has been taken by some
researchers [Kur12], [HB06] as the generic structure of cognition. While we suspect
this is overstated, we agree it is important that these cortices nudge large portions of
the cognitive cortex to assume an approximately hierarchical structure.


Olfactory Attractors.


The process of recognizing a familiar smell is grounded in a neural process similar
to convergence to an attractor in a nonlinear dynamical system [Fre95]. There is
evidence that the mammalian cognitive cortex evolved in close coordination with the
olfactory cortex [Row11], and much of abstract cognition reflects a similar dynamic
of gradually coming to a conclusion based on what initially “smells right”.


Physical and Cognitive Action.


The cerebellum, a specially structured brain subsystem which controls motor move-
ments, has for some time been understood to also have involvement in attention,
executive control, language, working memory, learning, pain, emotion, and addic-
tion [PSF09].


The Second Brain.


The gastrointestinal neural net contains millions of neurons and is capable of oper-
ating independently of the brain. It modulates stress response and other aspects of
emotion and motivation based on experience—resulting in so-called “gut feelings”
[Ger99].


The Heart’s Neural Network.


The heart has its own neural network, which modulates stress response, energy
level and relaxation/excitement (factors key to motivation and emotion) based on
experience [Arm04].


Pattern Recognition and Memory in the Liver.


The liver is a complex pattern recognition system, adapting via experience to better
identify toxins [CB06]. Like the heart, it seems to store some episodic memories as
well, resulting in liver transplant recipients sometimes acquiring the tastes in music
or sports of the donor [EMC12].


Immune Intelligence.


The immune network is a highly complex, adaptive self-organizing system, which
ongoingly solves the learning problem of identifying antigens and distinguishing
them from the body system [FP86]. As immune function is highly energetically
costly, stress response involves subtle modulation of the energy allocation to immune
function, which involves communication between neural and immune networks.
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The Endocrine System: A Key Bridge Between Mind and Body.


The endocrine (hormonal) system regulates (and is related by) emotion, thus guiding
all aspects of intelligence (due to the close connection of emotion and motivation)
[PH12].


Breathing Guides Thinking.


As oxygenation of the brain plays a key role in the spread of neural activity, the
flow of breath is a key driver of cognition. Forced alternate nostril breathing has
been shown to significantly affect cognition via balancing activity of the two brain
hemispheres [SKBB91].


Much remains unknown, and the totality of feedback loops between the human
cognitive cortex and the various specialized intelligences operative throughout the
human body, has not yet been thoroughly charted.


9.6.2.2 Implications for AGI


What lesson should the AGI developer draw from all this? The particularities of the
human mind/body should not be taken as general requirements for general intel-
ligence. However, it is worth remembering just how difficult is the computational
problem of learning, based on experiential feedback alone, the right way to achieve
the complex goal of controlling a system with general intelligence at the human level
or beyond. To solve this problem without some sort of strong inductive biasing may
require massively more experience than young humans obtain.


Appropriate inductive bias may be embedded in an AGI system in many different
ways. Some AGI designers have sought to embed it very explicitly, e.g. with hand-
coded declarative knowledge as in Cyc, SOAR and other “GOFAI” type systems.
On the other hand, the human brain receives its inductive bias much more subtly and
implicitly, both via the specifics of the initial structure of the cognitive cortex, and
via ongoing coupling of the cognitive cortex with other systems possessing more
focused types of intelligence and more specific structures and/or dynamics.


In building an AGI system, one has four choices, very broadly speaking:


1. Create a flexible mind-network, as unbiased as feasible, and attempt to have it
learn how to achieve its goals via experience


2. Closely emulate key aspects of the human body along with the human mind
3. Imitate the human mind-body, conceptually if not in detail, and create a number of


structurally and dynamically simpler intelligent systems closely and appropriately
coupled to the abstract cognitive mind-network, provide useful inductive bias.


4. Find some other, creative way to guide and probabilistically constrain one’s AGI
system’s mind-network, providing inductive bias appropriate to the tasks at hand,
without emulating even conceptually the way the human mind-brain receives its
inductive bias via coupling with simpler intelligent systems.


Our suspicion is that the first option will not be viable. On the other hand, to do
the second option would require more knowledge of the human body than biology
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currently possesses. This leaves the third and fourth options, both of which seem
viable to us.


CogPrime incorporates a combination of the third and fourth options. CogPrime’s
generic dynamic knowledge store, the Atomspace, is coupled with specialized hier-
archical networks (DeSTIN) for vision and audition, somewhat mirroring the human
cortex. An artificial endocrine system for OpenCog is also under development, spec-
ulatively, as part of a project using OpenCog to control humanoid robots. On the
other hand, OpenCog has no gastrointestinal nor cardiological nervous system, and
the stress-response-based guidance provided to the human brain by a combination
of the heart, gut, immune system and other body systems, is achieved in CogPrime
in a more explicit way using the OpenPsi model of motivated cognition, and its
integration with the system’s attention allocation dynamics.


Likely there is no single correct way to incorporate the lessons of intelligent human
body-system networks into AGI designs. But these are aspects of human cognition
that all AGI researchers should be aware of.


9.7 The Extended Mind and Body


Finally, Hutchins [Hut95], Logan [Log07] and others have promoted a view of human
intelligence that views the human mind as extended beyond the individual body,
incorporating social interactions and also interactions with inanimate objects, such
as tools, plants and animals. This leads to a number of requirements for a humanlike
AGI’s environment:


1. The ability to create a variety of different tools for interacting with various aspects
of the world in various different ways, including tools for making tools and
ultimately machinery


2. The existence of other mobile, virtual life-forms in the world, including simpler
and less intelligent ones, and ones that interact with each other and with the AGI


3. The existence of organic growing structures in the world, with which the AGI can
interact in various ways, including halting their growth or modifying their growth
pattern


How necessary these requirements are is hard to say—but it is clear that these
things have played a major role in the evolution of human intelligence.


9.8 Conclusion


Happily, this diverse chapter supports a simple, albeit tentative conclusion. Our sug-
gestion is that, if an AGI is


• placed in an environment capable of roughly supporting multimodal communica-
tion and vaguely (but not necessarily precisely) real-world-ish naive physics
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• surrounded with other intelligent agents of varying levels of complexity, and other
complex, dynamic structures to interface with


• given a body that can perceive this environment through some forms of sight,
sound and touch; and perceive itself via some form of kinesthesia


• given a motivational system that encourages it to make rich use of these aspects
of its environment


then the AGI is likely to have an experience-base reinforcing the key inductive biases
provided by the everyday world for the guidance of humanlike intelligence.
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Chapter 10
A Mind-World Correspondence Principle


10.1 Introduction0


Real-world minds are always adapted to certain classes of environments and goals.1


The ideas of the previous chapter, regarding the connection between a human-like2


intelligence’s internals and its environment, result from exploring the implications3


of this adaptation in the context of the cognitive synergy concept. In this chapter we4


explore the mind-world connection in a broader and more abstract way—making a5


more ambitious attempt to move toward a “general theory of general intelligence”.6


One basic premise here, as in the preceding chapters is: Even a system of vast7


general intelligence, subject to real-world space and time constraints, will neces-8


sarily be more efficient at some kinds of learning than others. Thus, one approach9


to formulating a general theory of general intelligence is to look at the relationship10


between minds and worlds—where a “world” is conceived as an environment and a11


set of goals defined in terms of that environment.12


In this spirit, we here formulate a broad principle binding together worlds and the13


minds that are intelligent in these worlds. The ideas of the previous chapter constitute14


specific, concrete instantiations of this general principle. A careful statement of the15


principle requires introduction of a number of technical concepts, and will be given16


later on in the chapter. A crude, informal version of the principle would be:17


MIND-WORLD CORRESPONDENCE-PRINCIPLE18


For a mind to work intelligently toward certain goals in a certain world, there should19


be a nice mapping from goal-directed sequences of world-states into sequences of20


mind-states, where “nice” means that a world-state-sequence W composed of two21


parts W1 and W2, gets mapped into a mind-state-sequence M composed of two22


corresponding parts M1 and M2.23


What’s nice about this principle is that it relates the decomposition of the world24


into parts, to the decomposition of the mind into parts.25


B. Goertzel et al., Engineering General Intelligence, Part 1, 199
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_10,
© Atlantis Press and the authors 2014
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200 10 A Mind-World Correspondence Principle


10.2 What Might a General Theory of General26


Intelligence Look Like?27


It’s not clear, at this point, what a real “general theory of general intelligence” would28


look like—but one tantalizing possibility is that it might confront the two questions:29


• How does one design a world to foster the development of a certain sort of mind?30


• How does one design a mind to match the particular challenges posed by a certain31


sort of world?32


One way to achieve this would be to create a theory that, given a description of an33


environment and some associated goals, would output a description of the structure34


and dynamics that a system should possess to be intelligent in that environment35


relative to those goals, using limited computational resources.36


Such a theory would serve a different purpose from the mathematical theory of37


“universal intelligence” developed by Marcus Hutter [Hut05] and others. For all its38


beauty and theoretical power, that approach currently gives it useful conclusions39


only about general intelligences with infinite or infeasibly massive computational40


resources. On the other hand, the approach suggested here is aimed toward creation41


of a theory of real-world general intelligences utilizing realistic amounts of compu-42


tational power, but still possessing general intelligence comparable to human beings43


or greater.44


This reflects a vision of intelligence as largely concerned with adaptation to45


particular classes of environments and goals. This may seem contradictory to the46


notion of “general” intelligence, but I think it actually embodies a realistic under-47


standing of general intelligence. Maximally general intelligence is not pragmatically48


feasible; it could only be achieved using infinite computational resources [Hut05].49


Real-world systems are inevitably limited in the intelligence they can display in50


any real situation, because real situations involve finite resources, including finite51


amounts of time. One may say that, in principle, a certain system could solve any52


problem given enough resources and time but, even when this is true, it’s not neces-53


sarily the most interesting way to look at the system’s intelligence. It may be more54


important to look at what a system can do given the resources at its disposal in55


reality. And this perspective leads one to ask questions like the ones posed above:56


which bounded-resources systems are well-disposed to display intelligence in which57


classes of situations?58


As noted in Chap. 7, one can assess the generality of a system’s intelligence via59


looking at the entropy of the class of situations across which it displays a high level60


of intelligence (where “high” is measured relative to its total level of intelligence61


across all situations). A system with a high generality of intelligence will tend to62


be roughly equally intelligent across a wide variety of situations; whereas a system63


with lower generality of intelligence will tend to be much more intelligent in a small64


subclass of situations, than in any other. The definitions given above embody this65


notion in a formal and quantitative way.66
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10.2 What Might a General Theory of General Intelligence Look Like? 201


If one wishes to create a general theory of general intelligence according to this sort67


of perspective, the main question then becomes how to represent goals/environments68


and systems in such a way as to render transparent the natural correspondence69


between the specifics of the former and the latter, in the context of resource-bounded70


intelligence. This is the business of the next section.71


10.3 Steps Toward A (Formal) General Theory of General72


Intelligence73


Now begins the formalism. At this stage of development of the theory proposed in74


this chapter, mathematics is used mainly as a device to ensure clarity of expression.75


However, once the theory is further developed, it may possibly become useful for76


purposes of calculation as well.77


Suppose one has any system S (which could be an AI system, or a human, or78


an environment that a human or AI is interacting with, or the combination of an79


environment and a human or AI’s body, etc.). One may then construct an uncertain80


transition graph associated with that system S, in the following way:81


• The nodes of the graph represent fuzzy sets of states of system S (I’ll call these82


state-sets from here on, leaving the fuzziness implicit)83


• The (directed) links of the graph represent probabilistically weighted transitions84


between state-sets85


Specifically, the weight of the link from B to A should be defined as


P(o(S,A, t(T))|o(S,B,T))


where
o(S,A,T)


denotes the presence of the system S in the state-set A during time-distribution T , and86


t() is a temporal succession function defined so that t(T) refers to a time-distribution87


conceived as “after” T . A time-distribution is a probability distribution over time-88


points. The interaction of fuzziness and probability here is fairly straightforward and89


may be handled in the manner of PLN, as outlined in subsequent chapters. Note90


that the definition of link weights is dependent on the specific implementation of the91


temporal succession function, which includes an implicit time-scale.92


Suppose one has a transition graph corresponding to an environment; then a goal93


relative to that environment may be defined as a particular node in the transition94


graph. The goals of a particular system acting in that environment may then be95


conceived as one or more nodes in the transition graph. The system’s situation in96


the environment at any point in time may also be associated with one or more nodes97


in the transition graph; then, the system’s movement toward goal-achievement may98
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202 10 A Mind-World Correspondence Principle


be associated with paths through the environment’s transition graph leading from its99


current state to goal states.100


It may be useful for some purposes to filter the uncertain transition graph into a101


crisp transition graph by placing a threshold on the link weights, and removing links102


with weights below the threshold.103


The next concept to introduce is the world-mind transfer function, which maps104


world (environment) state-sets into organism (e.g. AI system) state-sets in a specific105


way. Given a world state-set W , the world-mind transfer function M maps W into106


various organism state-sets with various probabilities, so that we may say: M(W)107


is the probability distribution of state-sets the organism tends to be in, when its108


environment is in state-set W . (Recall also that state-sets are fuzzy.)109


Now one may look at the spaces of world-paths and mind-paths. A world-path110


is a path through the world’s transition graph, and a mind-path is a path through111


the organism’s transition graph. Given two world-paths P and Q, it’s obvious how112


to define the composition P ∗ Q one follows P and then, after that, follows Q, thus113


obtaining a longer path. Similarly for mind-paths.114


In category theory terms, we are constructing the free category associated with the115


graph: the objects of the category are the nodes, and the morphisms of the category116


are the paths. And category theory is the right way to be thinking here we want to be117


thinking about the relationship between the world category and the mind category.118


The world-mind transfer function can be interpreted as a mapping from paths119


to subgraphs: Given a world-path, it produces a set of mind state-sets, which have120


a number of links between them. One can then define a world-mind path transfer121


function M(P) via taking the mind-graph M(nodes(P)), and looking at the highest-122


weight path spanning M(nodes(P)). (Here nodes? obviously means the set of nodes123


of the path P.)124


A functor F between the world category and the mind category is a mapping that
preserves object identities and so that


F(P ∗ Q) = F(P) ∗ F(Q)


We may also introduce the notion of an approximate functor, meaning a mapping
F so that the average of


d(F(P ∗ Q),F(P) ∗ F(Q))


is small.125


One can introduce a prior distribution into the average here. This could be the126


Levin universal distribution or some variant (the Levin distribution assigns higher127


probability to computationally simpler entities). Or it could be something more pur-128


pose specific: for example, one can give a higher weight to paths leading toward129


a certain set of nodes (e.g. goal nodes). Or one can use a distribution that weights130


based on a combination of simplicity and directedness toward a certain set of nodes.131


The latter seems most interesting, and I will define a goal-weighted approximate132


functor as an approximate functor, defined with averaging relative to a distribution133


that balances simplicity with directedness toward a certain set of goal nodes.134
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10.3 Steps Toward A (Formal) General Theory of General Intelligence 203


The move to approximate functors is simple conceptually, but mathematically135


it’s a fairly big step, because it requires us to introduce a geometric structure on136


our categories. But there are plenty of natural metrics defined on paths in graphs137


(weighted or not), so there’s no real problem here.138


10.4 The Mind-World Correspondence Principle139


Now we finally have the formalism set up to make a non-trivial statement about the140


relationship between minds and worlds. Namely, the hypothesis that:141


MIND-WORLD CORRESPONDENCE PRINCIPLE142


For an organism with a reasonably high level of intelligence in a certain world, relative143


to a certain set of goals, the mind-world path transfer function is a goal-weighted144


approximate functor.145


That is, a little more loosely: the hypothesis is that, for intelligence to occur, there146


has to be a natural correspondence between the transition-sequences of world-states147


and the corresponding transition-sequences of mind-states, at least in the cases of148


transition-sequences leading to relevant goals.149


We suspect that a variant of the above proposition can be formally proved, using150


the definition of general intelligence presented in Chap. 7. The proof of a theorem151


corresponding to the above would certainly constitute an interesting start toward152


a general formal theory of general intelligence. Note that proving anything of this153


nature would require some attention to the time-scale-dependence of the link weights154


in the transition graphs involved.155


A formally proved variant of the above proposition would be in short, a “MIND-156


WORLD CORRESPONDENCE THEOREM”.157


Recall that at the start of the chapter, we expressed the same idea as:158


MIND-WORLD CORRESPONDENCE-PRINCIPLE159


For a mind to work intelligently toward certain goals in a certain world, there should160


be a nice mapping from goal-directed sequences of world-states into sequences of161


mind-states, where “nice” means that a world-state-sequence W composed of two162


parts W1 and W2, gets mapped into a mind-state-sequence M composed of two163


corresponding parts M1 and M2.164


That is a reasonable gloss of the principle, but it’s clunkier and less accurate,165


than the statement in terms of functors and path transfer functions, because it tries to166


use only common-language vocabulary, which doesn’t really contain all the needed167


concepts.168
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204 10 A Mind-World Correspondence Principle


10.5 How Might the Mind-World Correspondence169


Principle Be Useful?170


Suppose one believes the Mind-World Correspondence Principle as laid out above so171


what? Our hope, obviously, is that the principle could be useful in actually figuring172


out how to architect intelligent systems biased toward particular sorts of environment.173


And of course, this is said with the understanding that any finite intelligence must174


be biased toward some sorts of environment.175


Relatedly, given a specific AGI design (such as CogPrime), one could use the176


principle to figure out which environments it would be best suited for. Or one could177


figure out how to adjust the particulars of the design, to maximize the system’s178


intelligence in the environments of interest.179


One next step in developing this network of ideas, aside from (and potentially180


building on) full formalization of the principle, would be an exploration of real-181


world environments in terms of transition graphs. What properties do the transition182


graphs induced from the real world have?183


One such property, we suggest, is successive refinement. Often the path toward a184


goal involves first gaining an approximate understanding of a situation, then a slightly185


more accurate understanding, and so forth—until finally one has achieved a detailed186


enough understanding to actually achieve the goal. This would be represented by a187


world-path whose nodes are state-sets involving the gathering of progressively more188


detailed information.189


Via pursuing to the mind-world correspondence property in this context, I190


believe we will find that world-paths reflecting successive refinement correspond191


to mind-paths embodying successive refinement. This will be found to relate to the192


hierarchical structures found so frequently in both the physical world and the human193


mind-brain. Hierarchical structures allow many relevant goals to be approached via194


successive refinement, which I believe is the ultimate reason why hierarchical struc-195


tures are so common in the human mind-brain.196


Another next step would be exploring what mind-world correspondence means
for the structure and dynamics of a limited-resources intelligence. If an organism O
has limited resources and, to be intelligent, needs to make


P(o(O,M(A), t(T))|o(O,M(B),T))


high for particular world state-sets A and B, then what’s the organism’s best approach?197


Arguably, it should represent M(A) and M(B) internally in such a way that very little198


computational effort is required for it to transition between M(A) and M(B). For199


instance, this could be done by coding its knowledge in such a way that M(A) and200


M(B) share many common bits; or it could be done in other more complicated ways.201


If, for instance, A is a subset of B, then it may prove beneficial for the organism202


to represent M(A) physically as a subset of its representation of M(B).203
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10.5 How Might the Mind-World Correspondence Principle Be Useful? 205


Pursuing this line of thinking, one could likely derive specific properties of an204


intelligent organism’s internal information-flow, from properties of the environment205


and goals with respect to which it’s supposed to be intelligent.206


This would allow us to achieve the holy grail of intelligence theory as I understand207


it: given a description of an environment and goals, to be able to derive an architectural208


description for an organism that will display a high level of intelligence relative to209


those goals, given limited computational resources.210


While this “holy grail” is obviously a far way off, what we’ve tried to do here is211


to outline a clear mathematical and conceptual direction for moving toward it.212 AQ1


10.6 Conclusion213


The Mind-World Correspondence Principle presented here—if in the vicinity of214


correctness—constitutes a non-trivial step toward fleshing out the concept of a gen-215


eral theory of general intelligence. But obviously the theory is still rather abstract,216


and also not completely rigorous. There’s a lot more work to be done.217


The Mind-World Correspondence Principle as articulated above is not quite a218


formal mathematical statement. It would take a little work to put in all the needed219


quantifiers to formulate it as one, and it’s not clear the best way to do so the details220


would perhaps become clear in the course of trying to prove a version of it rigorously.221


One could interpret the ideas presented in this chapter as a philosophical theory that222


hopes to be turned into a mathematical theory and to play a key role in a scientific223


theory.224


For the time being, the main role to be served by these ideas is qualitative: to help225


us think about concrete AGI designs like CogPrime in a sensible way. It’s important to226


understand what the goal of a real-world AGI system needs to be: to achieve the ability227


to broadly learn and generalize, yes, but not with infinite capability rather with biases228


and patterns that are implicitly and/or explicitly tuned to certain broad classes of goals229


and environments. The Mind-World Correspondence Principle tells us something230


about what this “tuning” should involve—namely, making a system possessing mind-231


state sequences that correspond meaningfully to world-state sequences. CogPrime’s232


overall design and particular cognitive processes are reasonably well interpreted as233


an attempt to achieve this for everyday human goals and environments.234


One way of extending these theoretical ideas into a more rigorous theory is235


explored in Appendix ??. The key ideas involved there are: modeling multiple mem-236


ory types as mathematical categories (with functors mapping between them), mod-237


eling memory items as probability distributions, and measuring distance between238


memory items using two metrics, one based on algorithmic information theory and239


one on classical information geometry. Building on these ideas, core hypotheses are240


then presented:241


• a syntax-semantics correlation principle, stating that in a successful AGI system,242


these two metrics should be roughly correlated243
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206 10 A Mind-World Correspondence Principle


• a cognitive geometrodynamics principle, stating that on the whole intelligent244


minds tend to follow geodesics (shortest paths) in mindspace, according to various245


appropriately defined metrics (e.g. the metric measuring the distance between two246


entities in terms of the length and/or runtime of the shortest programs computing247


one from the other).248


• a cognitive synergy principle, stating that shorter paths may be found through249


the composite mindspace formed by considering multiple memory types together,250


than by following the geodesics in the mindspaces corresponding to individual251


memory types.252


The material is relegated to an appendix because it is so speculative, and it’s not yet253


clear whether it will really be useful in advancing or interpreting CogPrime or other254


AGI systems (unlike the material from the present chapter, which has at least been255


useful in interpreting and tweaking the CogPrime design, even though it can’t be256


claimed that CogPrime was derived directly from these theoretical ideas). However,257


this sort of speculative exploration is, in our view, exactly the sort of thing that’s258


needed as a first phase in transitioning the ideas of the present chapter into a more259


powerful and directly actionable theory.260
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Abstract Creating AGI, we have said, is not only about having the right structural and dynamical possibilities
implemented in the initial version of one’s system—but also about the environment and embodiment that
one’s system is associated with, and the match between the system’s internals and these externals. Another
key aspect is the long-term time-course of the system’s evolution over time, both in its internals and its
external interaction—i.e., what is known as development.
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Chapter 11
Stages of Cognitive Development


11.1 Introduction0


Creating AGI, we have said, is not only about having the right structural and1


dynamical possibilities implemented in the initial version of one’s system—but also2


about the environment and embodiment that one’s system is associated with, and the3


match between the system’s internals and these externals. Another key aspect is the4


long-term time-course of the system’s evolution over time, both in its internals and5


its external interaction—i.e., what is known as development.6


Development is a critical topic in our approach to AGI because we believe that7


much of what constitutes human-level, human-like intelligence emerges in an intelli-8


gent system due to its engagement with its environment and its environment-coupled9


self-organization. So, it’s not to be expected that the initial version of an AGI system10


is going to display impressive feats of intelligence, even if the engineering is totally11


done right. A good analogy is the apparent unintelligence of a human baby. Yes,12


scientists have discovered that human babies are capable of interesting and signifi-13


cant intelligence—but one has to hunt to find it ... at first observation, babies are rather14


idiotic and simple-minded creatures: much less intelligent-appearing than lizards or15


fish, maybe even less than cockroaches....16


If the goal of an AGI project is to create an AGI system that can progressively17


develop advanced intelligence through learning in an environment richly populated18


with other agents and various inanimate stimuli and interactive entities—then an19


understanding of the nature of cognitive development becomes extremely important20


to that project.21


Unfortunately, contemporary cognitive science contains essentially no theory of22


“abstract developmental psychology” which can conveniently be applied to under-23


stand developing AIs. There is of course an extensive science of human develop-24


mental psychology, and so it is a natural research program to take the chief ideas25
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210 11 Stages of Cognitive Development


from the former and inasmuch as possible port them to the AGI domain. This is26


not an entirely simple matter both because of the differences between humans and27


AIs and because of the unsettled nature of contemporary developmental psychology28


theory. But it’s a job that must (and will) be done, and the ideas in this chapter may29


contribute toward this effort.30


We will begin here with Piaget’s well-known theory of human cognitive devel-31


opment, presenting it in a general systems theory context, then introducing some32


modifications and extensions and discussing some other relevant work.33


11.2 Piagetan Stages in the Context of a General Systems34


Theory of Development35


Our review of AGI architectures in Chap. 5 focused heavily on the concept of sym-36


bolism, and the different ways in which different classes of cognitive architecture37


handle symbol representation and manipulation. We also feel that symbolism is criti-38


cal to the notion of AGI development—and even more broadly, to the systems theory39


of development in general.40


As a broad conceptual perspective on development, we suggest that one may41


view the development of a complex information processing system, embedded in an42


environment, in terms of the stages:43


• automatic: the system interacts with the environment by “instinct”, according to44


its innate programming45


• adaptive: the system internally adapts to the environment, then interacting with46


the environment in a more appropriate way47


• symbolic: the system creates internal symbolic representations of itself and the48


environment, which in the case of a complex, appropriately structured environ-49


ment, allows it to interact with the environment more intelligently50


• reflexive: the system creates internal symbolic representations of its own internal51


symbolic representations, thus achieving an even higher degree of intelligence.52


Sketched so broadly, these are not precisely defined categories but rather heuristic,53


intuitive categories. Formalizing them would be possible but would lead us too far54


astray here.55


One can interpret these stages in a variety of different contexts. Here our focus is56


the cognitive development of humans and human-like AGI systems, but in Table 11.157


we present them in a slightly more general context, using two examples: the Piagetan58


example of the human (or humanlike) mind as it develops from infancy to maturity;59


and also the example of the “origin of life” and the development of life from proto-60


life up into its modern form. In any event, we allude to this more general perspective61


on development here mainly to indicate our view that the Piagetan perspective is62


not something ad hoc and arbitrary, but rather can plausibly be seen as a specific63


manifestation of more fundamental principles of complex systems development.64
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11.3 Piaget’s Theory of Cognitive Development 211


Table 11.1 General systems theory of development: parallels between development of mind and
origin of life


Stage General description Cognitive development Origin of life


Automatic System-environment
information exchange
controlled mainly by
innate system structures
or environment


Piagetan infantile stage Self-organizing protolife
system, e.g. Oparin
[Opa52] water droplet,
or Cairns-Smith [CS90]
clay-based protolife


Adaptive System-environment info
exchange heavily guided
by adaptively
internally-created
system structures


Piagetan “concrete
operational” stage:
systematic internal
world-model guides
world-exploration


Simple autopoietic system,
e.g. Oparin water
droplet w/basic
metabolism


Symbolic Internal symbolic
representation of
information exchange
process


Piagetan formal stage:
explicit
logical/experimental
learning about how to
cognize in various
contexts


Genetic code: internal
entities that “stand for”
aspects of organism and
environment, thus
enabling complex
epigenesis


Reflexive Thoroughgoing
self-modification based
on this symbolic
representation


Piagetan post-formal stage:
purposive
self-modification of
basic mental processes


Genes+memes: genetic
code-patterns guide
their own modification
via influencing culture


11.3 Piaget’s Theory of Cognitive Development65


The ghost of Jean Piaget hangs over modern developmental psychology in a yet unre-66


solved way. Piaget’s theories provide a cogent overarching perspective on human cog-67


nitive development, coordinating broad theoretical ideas and diverse experimental68


results into a unified whole [Pia55]. Modern experimental work has shown Piaget’s69


ideas to be often oversimplified and incorrect. However, what has replaced the Piage-70


tan understanding is not an alternative unified and coherent theory, but a variety of71


microtheories addressing particular aspects of cognitive development. For this reason72


a number of contemporary theorists taking a computer science [Shu03] or dynamical73


systems [Wit07] approach to developmental psychology have chosen to adopt the74


Piagetan framework in spite of its demonstrated shortcomings, both because of its75


conceptual strengths and for lack of a coherent, more rigorously grounded alternative.76


Our own position is that the Piagetan view of development has some fundamental77


truth to it, which is reflected via how nicely it fits with a broader view of develop-78


ment in complex systems. Indeed, Piaget viewed developmental stages as emerging79


from general “algebraic” principles rather than as being artifacts of the particulars80


of human psychology. But, Piaget’s stages are probably best viewed as a general81


interpretive framework rather than a precise scientific theory. Our suspicion is that82


once the empirical science of developmental psychology has progressed further, it83
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212 11 Stages of Cognitive Development


will become clearer how to fit the various data into a broad Piaget-like framework,84


perhaps differing in many details from what Piaget described in his works.85


Piaget conceived of child development in four stages, each roughly identified with86


an age group, and corresponding closely to the system-theoretic stages mentioned87


above:88


• infantile, corresponding to the automatic stage mentioned above89


– Example: Grasping blocks, piling blocks on top of each other, copying words90


that are heard91


• preoperational and concrete operational, corresponding to the adaptive stage92


mentioned above93


– Example: Building complex blocks structures, from imagination and from imi-94


tating objects and pictures and based on verbal instructions; verbally describing95


what has been constructed96


• formal, corresponding to the symbolic stage mentioned above97


– Example: Writing detailed instructions in words and diagrams, explaining how98


to construct particular structures out of blocks; figuring out general rules describ-99


ing which sorts of blocks structures are likely to be most stable100


• the reflexive stage mentioned above corresponds to what some post-Piagetan the-101


orists have called the post-formal stage102


– Example: Using abstract lessons learned from building structures out of blocks103


to guide the construction of new ways to think and understand—“Zen and the art104


of blocks building” (by analogy to Zen and the Art of Motorcycle Maintenance105


[Pir84]) (Fig. 11.1).AQ1106


Fig. 11.1 Piagetan stages of cognitive development
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11.3 Piaget’s Theory of Cognitive Development 213


More explicitly, Piaget defined his stages in psychological terms roughly as107


follows:108


• Infantile: In this stage a mind develops basic world-exploration driven by instinc-109


tive actions. Reward-driven reinforcement of actions learned by imitation, simple110


associations between words and objects, actions and images, and the basic notions111


of time, space, and causality are developed. The most simple, practical ideas and112


strategies for action are learned.113


• Preoperational: At this stage we see the formation of mental representations,114


mostly poorly organized and un-abstracted, building mainly on intuitive rather than115


logical thinking. Word-object and image-object associations become systematic116


rather than occasional. Simple syntax is mastered, including an understanding of117


subject-argument relationships. One of the crucial learning achievements here is118


“object permanence”—infants learn that objects persist even when not observed.119


However, a number of cognitive failings persist with respect to reasoning about120


logical operations, and abstracting the effects of intuitive actions to an abstract121


theory of operations.122


• Concrete: More abstract logical thought is applied to the physical world at this123


stage. Among the feats achieved here are: reversibility—the ability to undo steps124


already done; conservation—understanding that properties can persist in spite of125


appearances; theory of mind—an understanding of the distinction between what I126


know and what others know (If I cover my eyes, can you still see me?). Complex127


concrete operations, such as putting items in height order, are easily achievable.128


Classification becomes more sophisticated, yet the mind still cannot master purely129


logical operations based on abstract logical representations of the observational130


world.131


• Formal: Abstract deductive reasoning, the process of forming, then testing132


hypotheses, and systematically reevaluating and refining solutions, develops at133


this stage, as does the ability to reason about purely abstract concepts without ref-134


erence to concrete physical objects. This is adult human-level intelligence. Note135


that the capability for formal operations is intrinsic in the PLN component of136


CogPrime, but in-principle capability is not the same as pragmatic, grounded,137


controllable capability.138


Very early on, Vygotsky [Vyg86] disagreed with Piaget’s explanation of his stages139


as inherent and developed by the child’s own activities, and Piaget’s prescription140


of good parenting as not interfering with a child’s unfettered exploration of the141


world. Some modern theorists have critiqued Piaget’s stages as being insufficiently142


socially grounded, and these criticisms trace back to Vygotsky’s focus on the social143


foundations of intelligence, on the fact that children function in a world surrounded144


by adults who provide a cultural context, offering ongoing assistance, critique, and145


ultimately validation of the child’s developmental activities.146


Vygotsky also was an early critic of the idea that cognitive development is con-147


tinuous, and continues beyond Piaget’s formal stage. Gagne [RBW92] also believes148


in continuity, and that learning of prerequisite skills made the learning of subsequent149
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214 11 Stages of Cognitive Development


skills easier and faster without regard to Piagetan stage formalisms. Subsequent150


researchers have argued that Piaget has merely constructed ad hoc descriptions of151


the sequential development of behaviour [Gib78, Bro84, CP05]. We agree that learn-152


ing is a continuous process, and our notion of stages is more statistically constructed153


than rigidly quantized.154


Critique of Piaget’s notion of transitional “half stages” is also relevant to a more155


comprehensive hierarchical view of development. Some have proposed that Piaget’s156


half stages are actually stages [Bro84]. As Commons and Pekker [CP05] point out:157


“the definition of a stage that was being used by Piaget was based on analyzing158


behaviors and attempting to impose different structures on them. There is no under-159


lying logical or mathematical definition to help in this process …” Their Hierarchical160


Complexity development model uses task achievement rather than ad hoc stage def-161


inition as the basis for constructing relationships between phases of developmental162


ability—an approach which we find useful, though our approach is different in that163


we define stages in terms of specific underlying cognitive mechanisms.164


Another critique of Piaget is that one individual’s performance is often at different165


ability stages depending on the specific task (for example [GE86]). Piaget responded166


to early critiques along these lines by calling the phenomenon “horizontal décalage,”167


but neither he nor his successors [Fis80, Cas85] have modified his theory to explain168


(rather than merely describe) it. Similarly to Thelen and Smith [TS94], we observe169


that the abilities encapsulated in the definition of a certain stage emerge gradually170


during the previous stage—so that the onset of a given stage represents the mastery171


of a cognitive skill that was previously present only in certain contexts.172


Piaget also had difficulty accepting the idea of a preheuristic stage, early in the173


infantile period, in which simple trial-and-error learning occurs without significant174


heuristic guidance [Bic88], a stage which we suspect exists and allows formulation175


of heuristics by aggregation of learning from preheuristic pattern mining. Coupled176


with his belief that a mind’s innate abilities at birth are extremely limited, there is a177


troublingly unexplained transition from inability to ability in his model.178


Finally, another limiting aspect of Piaget’s model is that it did not recognize any179


stages beyond formal operations, and included no provisions for exploring this possi-180


bility. A number of researchers [Bic88, Arl75, CRK82, Rie73, Mar01] have described181


one or more postformal stages. Commons and colleagues have also proposed a182


task-based model which provides a framework for explaining stage discrepancies183


across tasks and for generating new stages based on classification of observed logical184


behaviors. [KK90] promotes a statistical conception of stage, which provides a good185


bridge between task-based and stage-based models of development, as statistical186


modeling allows for stages to be roughly defined and analyzed based on collections187


of task behaviors.188


[CRK82] postulates the existence of a postformal stage by observing elevated189


levels of abstraction which, they argue, are not manifested in formal thought.190


[CTS+98] observes a postformal stage when subjects become capable of analyzing191


and coordinating complex logical systems with each other, creating metatheoretical192


supersystems. In our model, with the reflexive stage of development, we expand193


this definition of metasystemic thinking to include the ability to consciously refine194
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11.3 Piaget’s Theory of Cognitive Development 215


one’s own mental states and formalisms of thinking. Such self-reflexive refinement195


is necessary for learning which would allow a mind to analytically devise entirely196


new structures and methodologies for both formal and postformal thinking.197


In spite of these various critiques and limitations, however, we have found Piaget’s198


ideas very useful, and in Sect. 11.4 we will explore ways of defining them rigorously199


in the specific context of CogPrime’s declarative knowledge store and probabilistic200


logic engine.201


11.3.1 Perry’s Stages202


Also relevant is William Perry’s [Per70, Per81] theory of the stages (“positions” in his203


terminology) of intellectual and ethical development, which constitutes a model of204


iterative refinement of approach in the developmental process of coming to intellec-205


tual and ethical maturity. These stages, depicted in Table 11.2 form an analytical tool206


for discerning the modality of belief of an intelligence by describing common cog-207


nitive approaches to handling the complexities of real world ethical considerations.208


Table 11.2 Perry’s developmental stages [with corresponding Piagetan stages in brackets]


Stage Substages


Dualism/received
knowledge [Infantile]


Basic duality (“All problems are solvable. I must learn the correct
solutions.”)


Full dualism (“There are different, contradictory solutions to many
problems. I must learn the correct solutions, and ignore the
incorrect ones”)


Multiplicity [Concrete] Early multiplicity (“Some solutions are known, others aren’t. I must
learn how to find correct solutions.”)


Late multiplicity: cognitive dissonance regarding truth. (“Some
problems are unsolvable, some are a matter of personal taste,
therefore I must declare my own intellectual path.”)


Relativism/procedural
knowledge [Formal]


Contextual relativism (“I must learn to evaluate solutions within a
context, and relative to supporting observation.”)


Pre-Commitment (“I must evaluate solutions, then commit to a choice
of solution.”)


Commitment/constructed Commitment (“I have chosen a solution.”)
knowledge
[Formal/Reflexive]


Challenges to commitment (“I have seen unexpected implications of
my commitment, and the responsibility I must take.”)
Post-commitment (“I must have an ongoing, nuanced relationship
to the subject in which I evaluate each situation on a case-by-case
basis with respects to its particulars rather than an ad-hoc
application of unchallenged ideology.”)
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216 11 Stages of Cognitive Development


11.3.2 Keeping Continuity in Mind209


Continuity of mental stages, and the fact that a mind may appear to be in multiple210


stages of development simultaneously (depending upon the tasks being tested), are211


crucial to our theoretical formulations and we will touch upon them again here. Piaget212


attempted to address continuity with the creation of transitional “half stages”. We213


prefer to observe that each stage feeds into the other and the end of one stage and214


the beginning of the next blend together.215


The distinction between formal and post-formal, for example, seems to “merely”216


be the application of formal thought to oneself. However, the distinction between217


concrete and formal is “merely” the buildup to higher levels of complexity of the218


classification, task decomposition, and abstraction capabilities of the concrete stage.219


The stages represent general trends in ability on a continuous curve of develop-220


ment, not discrete states of mind which are jumped-into quantum style after enough221


“knowledge energy” builds-up to cause the transition.222


Observationally, this appears to be the case in humans. People learn things gradu-223


ally, and show a continuous development in ability, not a quick jump from ignorance224


to mastery. We believe that this gradual development of ability is the signature of225


genuine learning, and that prescriptively an AGI system must be designed in order226


to have continuous and asymmetrical development across a variety of tasks in order227


to be considered a genuine learning system. While quantum leaps in ability may be228


possible in an AGI system which can just “graft” new parts of brain onto itself (or229


an augmented human which may someday be able to do the same using implants),230


such acquisition of knowledge is not really learning. Grafting on knowledge does231


not build the cognitive pathways needed in order to actually learn. If this is the only232


mechanism available to an AGI system to acquire new knowledge, then it is not really233


a learning system.234


11.4 Piaget’s Stages in the Context of Uncertain Inference235


Piaget’s developmental stages are very general, referring to overall types of learning,236


not specific mechanisms or methods. This focus was natural since the context of his237


work was human developmental psychology, and neuroscience has not yet progressed238


to the point of understanding the neural mechanisms underlying any sort of inference239


(and certainly was nowhere near to doing so in Piaget’s time!). But if one is studying240


developmental psychology in an AGI context where one knows something about241


the internal mechanisms of the AGI system under consideration, then one can work242


with a more specific model of learning. Our focus here is on AGI systems whose243


operations contain uncertain inference as a central component. Obviously the main244


focus is CogPrime, but the essential ideas apply to any other uncertain inference245


centric AGI architecture as well (Fig. 11.2).246
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11.4 Piaget’s Stages in the Context of Uncertain Inference 217


Fig. 11.2 Piagetan stages of development, as manifested in the context of uncertain inference


Fig. 11.3 A simplified look at feedback-control in uncertain inference


An uncertain inference system, as we consider it here, consists of four components,247


which work together in a feedback-control loop Fig. 11.3248


1. a content representation scheme249


2. an uncertainty representation scheme250


3. a set of inference rules251


4. a set of inference control schemata.252
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218 11 Stages of Cognitive Development


Broadly speaking, examples of content representation schemes are predicate logic253


and term logic [ES00]. Examples of uncertainty representation schemes are fuzzy254


logic [Zad78], imprecise probability theory [Goo86, FC86], Dempster-Shafer theory255


[Sha76, Kyb97], Bayesian probability theory [Kyb97], NARS [Wan95], and the Atom256


representation used in CogPrime, briefly alluded to in Chap. 1 and described in depth257


in later chapters.258


Many, but not all, approaches to uncertain inference involve only a limited,259


weak set of inference rules (e.g. not dealing with complex quantified expressions).260


CogPrime’s PLN inference framework, like NARS and some other uncertain infer-261


ence frameworks, contains uncertain inference rules that apply to logical constructs262


of arbitrary complexity. Only a system capable of dealing with constructs of arbitrary263


(or at least very high) complexity will have any potential of leading to human-level,264


human-like intelligence.265


The subtlest part of uncertain inference is inference control: the choice of which266


inferences to do, in what order. Inference control is the primary area in which human267


inference currently exceeds automated inference. Humans are not very efficient or268


accurate at carrying out inference rules, with or without uncertainty, but we are very269


good at determining which inferences to do and in what order, in any given context.270


The lack of effective, context-sensitive inference control heuristics is why the general271


ability of current automated theorem provers is considerably weaker than that of a272


mediocre university mathematics major [Mac95].273


We now review the Piagetan developmental stages from the perspective of AGI274


systems heavily based on uncertain inference.275


11.4.1 The Infantile Stage276


In this initial stage, the mind is able to recognize patterns in and conduct inferences277


about the world, but only using simplistic hard-wired (not experientially learned)278


inference control schema, along with pre-heuristic pattern mining of experiential279


data.280


In the infantile stage an entity is able to recognize patterns in and conduct infer-281


ences about its sensory surround context (i.e., it’s “world”), but only using simplis-282


tic, hard-wired (not experientially learned) inference control schemata. Preheuristic283


pattern-mining of experiential data is performed in order to build future heuristics284


about analysis of and interaction with the world.285


s tasks include:286


1. Exploratory behavior in which useful and useless/dangerous behavior is differ-287


entiated by both trial and error observation, and by parental guidance.288


2. Development of “habits”—i.e. Repeating tasks which were successful once to289


determine if they always/usually are so.290
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11.4 Piaget’s Stages in the Context of Uncertain Inference 219


Fig. 11.4 Uncertain inference in the infantile stage


3. Simple goal-oriented behavior such as “find out what cat hair tastes like” in which291


one must plan and take several sequentially dependent steps in order to achieve292


the goal.293


Inference control is very simple during the infantile stage (Fig. 11.4), as it is294


the stage during which both the most basic knowledge of the world is acquired,295


and the most basic of cognition and inference control structures are developed as296


the building block upon which will be built the next stages of both knowledge and297


inference control.298


Another example of a cognitive task at the borderline between infantile and con-299


crete cognition is learning object permanence, a problem discussed in the context300


of CogPrime’s predecessor “Novamente Cognition Engine” system in [GPSL03].301


Another example is the learning of word-object associations: e.g. learning that when302


the word “ball” is uttered in various contexts (“Get me the ball,” “That’s a nice ball,”303


etc.) it generally refers to a certain type of object. The key point regarding these304


“infantile” inference problems, from the CogPrime perspective, is that assuming305


one provides the inference system with an appropriate set of perceptual and motor306


ConceptNodes and SchemaNodes, the chains of inference involved are short. They307


involve about a dozen inferences, and this means that the search tree of possible308


PLN inference rules walked by the PLN backward-chainer is relatively shallow.309


Sophisticated inference control is not required: standard AI heuristics are sufficient.310


In short, textbook narrow-AI reasoning methods, utilized with appropriate311


uncertainty-savvy truth value formulas and coupled with appropriate representations312


of perceptual and motor inputs and outputs, correspond roughly to Piaget’s infan-313


tile stage of cognition. The simplistic approach of these narrow-AI methods may be314


viewed as a method of creating building blocks for subsequent, more sophisticated315


heuristics.316
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220 11 Stages of Cognitive Development


In our theory Piaget’s preoperational phase appears as transitional between the317


infantile and concrete operational phases.318


11.4.2 The Concrete Stage319


At this stage, the mind is able to carry out more complex chains of reasoning regard-320


ing the world, via using inference control schemata that adapt behavior based on321


experience (reasoning about a given case in a manner similar to prior cases).322


In the concrete operational stage (Fig. 11.5), an entity is able to carry out more323


complex chains of reasoning about the world. Inference control schemata which adapt324


behavior based on experience, using experientially learned heuristics (including those325


learned in the prior stage), are applied to both analysis of and interaction with the326


sensory surround/world.327


Concrete Operational stage tasks include:328


1. Conservation tasks, such as conservation of number,329


2. Decomposition of complex tasks into easier subtasks, allowing increasingly com-330


plex tasks to be approached by association with more easily understood (and331


previously experienced) smaller tasks,332


3. Classification and Serialization tasks, in which the mind can cognitively distin-333


guish various disambiguation criteria and group or order objects accordingly.334


In terms of inference control this is the stage in which actual knowledge about how335


to control inference itself is first explored. This means an emerging understanding336


Fig. 11.5 Uncertain inference in the concrete operational stage
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11.4 Piaget’s Stages in the Context of Uncertain Inference 221


of inference itself as a cognitive task and methods for learning, which will be further337


developed in the following stages.338


Also, in this stage a special cognitive task capability is gained: “Theory of Mind,”339


which in cognitive science refers to the ability to understand the fact that not only340


oneself, but other sentient beings have memories, perceptions, and experiences. This341


is the ability to conceptually “put oneself in another’s shoes” (even if you happen to342


assume incorrectly about them by doing so).343


11.4.2.1 Conservation of Number344


Conservation of number is an example of a learning problem classically categorized345


within Piaget’s concrete-operational phase, a “conservation laws” problem, discussed346


in [Shu03] in the context of software that solves the problem using (logic-based and347


neural net) narrow-AI techniques. Conservation laws are very important to cognitive348


development.349


Conservation is the idea that a quantity remains the same despite changes in350


appearance. If you show a child some objects and then spread them out, an infantile351


mind will focus on the spread, and believe that there are now more objects than352


before, whereas a concrete-operational mind will understand that the quantity of353


objects has not changed.354


Conservation of number seems very simple, but from a developmental perspective355


it is actually rather difficult. “Solutions” like those given in [Shu03] that use neural356


networks or customized logical rule-bases to find specialized solutions that solve357


only this problem fail to fully address the issue, because these solutions don’t create358


knowledge adequate to aid with the solution of related sorts of problems.359


We hypothesize that this problem is hard enough that for an inference-based AGI360


system to solve it in a developmentally useful way, its inferences must be guided361


by meta-inferential lessons learned from prior similar problems. When approaching362


a number conservation problem, for example, a reasoning system might draw upon363


past experience with set-size problems (which may be trial-and-error experience).364


This is not a simple “machine learning” approach whose scope is restricted to the365


current problem, but rather a heuristically guided approach which (a) aggregates366


information from prior experience to guide solution formulation for the problem at367


hand, and (b) adds the present experience to the set of relevant information about368


quantification problems for future refinement of thinking (Fig. 11.6).369


For instance, a very simple context-specific heuristic that a system might learn370


would be: “When evaluating the truth value of a statement related to the number of371


Fig. 11.6 Conservation of number
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222 11 Stages of Cognitive Development


objects in a set, it is generally not that useful to explore branches of the backwards-372


chaining search tree that contain relationships regarding the sizes, masses, or other373


physical properties of the objects in the set.” This heuristic itself may go a long way374


toward guiding an inference process toward a correct solution to the problem—but it375


is not something that a mind needs to know “a priori.” A concrete-operational stage376


mind may learn this by data-mining prior instances of inferences involving sizes of377


sets. Without such experience-based heuristics, the search tree for such a problem378


will likely be unacceptably large. Even if it is “solvable” without such heuristics,379


the solutions found may be overly fit to the particular problem and not usefully380


generalizable.381


11.4.2.2 Theory of Mind382


Consider this experiment: a preoperational child is shown her favorite “Dora the383


Explorer” DVD box. Asked what show she’s about to see, she’ll answer “Dora.”384


However, when her parent plays the disc, it’s “SpongeBob SquarePants.” If you then385


ask her what show her friend will expect when given the “Dora” DVD box, she386


will respond “SpongeBob” although she just answered “Dora” for herself. A child387


lacking a theory of mind can not reason through what someone else would think given388


knowledge other than her own current knowledge. Knowledge of self is intrinsically389


related to the ability to differentiate oneself from others, and this ability may not be390


fully developed at birth.391


Several theorists [BC94, Fod94], based in part on experimental work with autistic392


children, perceive theory of mind as embodied in an innate module of the mind393


activated at a certain developmental stage (or not, if damaged). While we consider this394


possible, we caution against adopting a simplistic view of the “innate versus acquired”395


dichotomy: if there is innateness it may take the form of an innate predisposition to396


certain sorts of learning [EBJ+97].397


Davidson [Dav84], Dennett [Den87] and others support the common belief that398


theory of mind is dependent upon linguistic ability. A major challenge to this pre-399


vailing philosophical stance came from Premack and Woodruff [PW78] who postu-400


lated that prelinguistic primates do indeed exhibit “theory of mind” behavior. While401


Premack and Woodruff’s experiment itself has been challenged, their general result402


has been bolstered by follow-up work showing similar results such as [TC97]. It403


seems to us that while theory of mind depends on many of the same inferential404


capabilities as language learning, it is not intrinsically dependent on the latter.405


There is a school of thought often called the Theory Theory [BW88, Car85,406


Wel90] holding that a child’s understanding of mind is best understood in terms of407


the process of iteratively formulating and refuting a series of naive theories about408


others. Alternately, Gordon [Gor86] postulates that theory of mind is related to the409


ability to run cognitive simulations of others’ minds using one’s own mind as a410


model. We suggest that these two approaches are actually quite harmonious with one411


another. In an uncertain AGI context, both theories and simulations are grounded in412


collections of uncertain implications, which may be assembled in context-appropriate413
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11.4 Piaget’s Stages in the Context of Uncertain Inference 223


ways to form theoretical conclusions or to drive simulations. Even if there is a414


special “mind-simulator” dynamic in the human brain that carries out simulations of415


other minds in a manner fundamentally different from explicit inferential theorizing,416


the inputs to and the behavior of this simulator may take inferential form, so that417


the simulator is in essence a way of efficiently and implicitly producing uncertain418


inferential conclusions from uncertain premises.419


We have thought through the details by CogPrime system should be able to develop420


theory of mind via embodied experience, though at time of writing practical learning421


experiments in this direction have not yet been done. We have not yet explored in422


detail the possibility of giving CogPrime a special, elaborately engineered “mind-423


simulator” component, though this would be possible; instead we have initially been424


pursuing a more purely inferential approach.425


First, it is very simple for a CogPrime system to learn patterns such as “If I rotated426


by pi radians, I would see the yellow block.” And it’s not a big leap for PLN to go427


from this to the recognition that “You look like me, and you’re rotated by pi radians428


relative to my orientation, therefore you probably see the yellow block.” The only429


nontrivial aspect here is the “you look like me” premise.430


Recognizing “embodied agent” as a category, however, is a problem fairly similar431


to recognizing “block” or “insect” or “daisy” as a category. Since the CogPrime agent432


can perceive most parts of its own “robot” body—its arms, its legs, etc.—it should433


be easy for the agent to figure out that physical objects like these look different434


depending upon its distance from them and its angle of observation. From this it435


should not be that difficult for the agent to understand that it is naturally grouped436


together with other embodied agents (like its teacher), not with blocks or bugs.437


The only other major ingredient needed to enable theory of mind is “reflection”—438


the ability of the system to explicitly recognize the existence of knowledge in its own439


mind (note that this term “reflection” is not the same as our proposed “reflexive”440


stage of cognitive development). This exists automatically in CogPrime, via the441


built-in vocabulary of elementary procedures supplied for use within SchemaNodes442


(specifically, the atTime and TruthValue operators). Observing that “at time T, the443


weight of evidence of the link L increased from zero” is basically equivalent to444


observing that the link L was created at time T.445


Then, the system may reason, for example, as follows (using a combination of446


several PLN rules including the above-given deduction rule):447


Implication448


My eye is facing a block and it is not dark449


A relationship is created describing the block’s color450


Similarity451


My body452


My teacher’s body453


|-454
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224 11 Stages of Cognitive Development


Implication455


My teacher’s eye is facing a block and it is not dark456


A relationship is created describing the block’s color457


This sort of inference is the essence of Piagetan “theory of mind.” Note that458


in both of these implications the created relationship is represented as a variable459


rather than a specific relationship. The cognitive leap is that in the latter case the460


relationship actually exists in the teacher’s implicitly hypothesized mind, rather than461


in CogPrime’s mind. No explicit hypothesis or model of the teacher’s mind need be462


created in order to form this implication—the hypothesis is created implicitly via463


inferential abstraction. Yet, a collection of implications of this nature may be used via464


an uncertain reasoning system like PLN to create theories and simulations suitable465


to guide complex inferences about other minds.466


From the perspective of developmental stages, the key point here is that in a467


CogPrime context this sort of inference is too complex to be viably carried out via468


simple inference heuristics. This particular example must be done via forward chain-469


ing, since the big leap is to actually think of forming the implication that concludes470


inference. But there are simply too many combinations of relationships involving471


CogPrime’s eye, body, and so forth for the PLN component to viably explore all472


of them via standard forward-chaining heuristics. Experience-guided heuristics are473


needed, such as the heuristic that if physical objects A and B are generally physi-474


cally and functionally similar, and there is a relationship involving some part of A475


and some physical object R, it may be useful to look for similar relationships involv-476


ing an analogous part of B and objects similar to R. This kind of heuristic may be477


learned by experience—and the masterful deployment of such heuristics to guide478


inference is what we hypothesize to characterize the concrete stage of development.479


The “concreteness” comes from the fact that inference control is guided by analogies480


to prior similar situations.481


11.4.3 The Formal Stage482


In the formal stage, as shown in Fig. 11.7, an agent should be able to carry out arbitrar-483


ily complex inferences (constrained only by computational resources, rather than by484


fundamental restrictions on logical language or form) via including inference control485


as an explicit subject of abstract learning. Abstraction and inference about both the486


sensorimotor surround (world) and about abstract ideals themselves (including the487


final stages of indirect learning about inference itself) are fully developed.488


Formal stage evaluation tasks are centered entirely around abstraction and higher-489


order inference tasks such as:490


1. Mathematics and other formalizations.491


2. Scientific experimentation and other rigorous observational testing of abstract492


formalizations.493
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11.4 Piaget’s Stages in the Context of Uncertain Inference 225


Fig. 11.7 Uncertain inference in the formal stage


3. Social and philosophical modeling, and other advanced applications of empathy494


and the Theory of Mind.495


In terms of inference control this stage sees not just perception of new knowledge496


about inference control itself, but inference controlled reasoning about that knowl-497


edge and the creation of abstract formalizations about inference control which are498


reasoned-upon, tested, and verified or debunked.499


11.4.3.1 Systematic Experimentation500


The Piagetan formal phase is a particularly subtle one from the perspective of uncer-501


tain inference. In a sense, AGI inference engines already have strong capability for502


formal reasoning built in. Ironically, however, no existing inference engine is capable503


of deploying its reasoning rules in a powerfully effective way, and this is because of504


the lack of inference control heuristics adequate for controlling abstract formal rea-505


soning. These heuristics are what arise during Piaget’s formal stage, and we propose506
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226 11 Stages of Cognitive Development


that in the content of uncertain inference systems, they involve the application of507


inference itself to the problem of refining inference control.508


A problem commonly used to illustrate the difference between the Piagetan509


concrete operational and formal stages is that of figuring out the rules for mak-510


ing pendulums swing quickly versus slowly [IP58]. If you ask a child in the formal511


stage to solve this problem, she may proceed to do a number of experiments, e.g.512


build a long string with a light weight, a long string with a heavy weight, a short513


string with a light weight and a short string with a heavy weight. Through these514


experiments she may determine that a short string leads to a fast swing, a long string515


leads to a slow swing, and the weight doesn’t matter at all.516


The role of experiments like this, which test “extreme cases,” is to make cognition517


easier. The formal-stage mind tries to map a concrete situation onto a maximally518


simple and manipulable set of abstract propositions, and then reason based on these.519


Doing this, however, requires an automated and instinctive understanding of the520


reasoning process itself. The above-described experiments are good ones for solving521


the pendulum problem because they provide data that is very easy to reason about.522


From the perspective of uncertain inference systems, this is the key characteristic of523


the formal stage: formal cognition approaches problems in a way explicitly calculated524


to yield tractable inferences.525


Note that this is quite different from saying that formal cognition involves abstrac-526


tions and advanced logic. In an uncertain logic-based AGI system, even infantile527


cognition may involve these—the difference lies in the level of inference control,528


which in the infantile stage is simplistic and hard-wired, but in the formal stage is529


based on an understanding of what sorts of inputs lead to tractable inference in a530


given context.531


11.4.4 The Reflexive Stage532


In the reflexive stage (Fig. 11.8), an intelligent agent is broadly capable of self-533


modifying its internal structures and dynamics.534


As an example in the human domain: highly intelligent and self-aware adult535


humans may carry out reflexive cognition by explicitly reflecting upon their own536


inference processes and trying to improve them. An example is the intelligent537


improvement of uncertain-truth-value-manipulation formulas. It is well demon-538


strated that even educated humans typically make numerous errors in probabilis-539


tic reasoning [GGK02]. Most people don’t realize it and continue to systematically540


make these errors throughout their lives. However, a small percentage of individuals541


make an explicit effort to increase their accuracy in making probabilistic judgments542


by consciously endeavoring to internalize the rules of probabilistic inference into543


their automated cognition processes.544


In the uncertain inference based AGI context, what this means is: In the reflexive545


stage an entity is able to include inference control itself as an explicit subject of546


abstract learning (i.e. the ability to reason about one’s own tactical and strategic547
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11.4 Piaget’s Stages in the Context of Uncertain Inference 227


Fig. 11.8 The reflexive stage


approach to modifying one’s own learning and thinking), and modify these inference548


control strategies based on analysis of experience with various cognitive approaches.549


Ultimately, the entity can self-modify its internal cognitive structures. Any knowl-550


edge or heuristics can be revised, including metatheoretical and metasystemic thought551


itself. Initially this is done indirectly, but at least in the case of AGI systems it is the-552


oretically possible to also do so directly. This might be considered as a separate stage553


of Full Self Modification, or else as the end phase of the reflexive stage. In the context554


of logical reasoning, self modification of inference control itself is the primary task555


in this stage. In terms of inference control this stage adds an entire new feedback556


loop for reasoning about inference control itself, as shown in Fig. 11.8.557


As a very concrete example, in later chapters we will see that, while PLN is558


founded on probability theory, it also contains a variety of heuristic assumptions559


that inevitably introduce a certain amount of error into its inferences. For example,560


PLN’s probabilistic deduction embodies a heuristic independence assumption. Thus561


PLN contains an alternate deduction formula called the “concept geometry formula”562
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228 11 Stages of Cognitive Development


that is better in some contexts, based on the assumption that ConceptNodes embody563


concepts that are roughly spherically-shaped in attribute space. A highly advanced564


CogPrime system could potentially augment the independence-based and concept-565


geometry-based deduction formulas with additional formulas of its own derivation,566


optimized to minimize error in various contexts. This is a simple and straightforward567


example of reflexive cognition—it illustrates the power accessible to a cognitive568


system that has formalized and reflected upon its own inference processes, and that569


possesses at least some capability to modify these.570AQ2


In general, AGI systems can be expected to have much broader and deeper capa-571


bilities for self-modification than human beings. Ultimately it may make sense to572


view the AGI systems we implement as merely “initial conditions” for ongoing573


self-modification and self-organization. Chapter 18 discusses some of the potential574


technical details underlying this sort of thoroughgoing AGI self-modification.575
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Chapter 12
The Engineering and Development of Ethics


12.1 Introduction0


Most commonly, if a work on advanced AI mentions ethics at all, it occurs in a final1


summary chapter, discussing in broad terms some of the possible implications of the2


technical ideas presented beforehand. It’s no coincidence that the order is reversed3


here: in the case of CogPrime, AGI-ethics considerations played a major role in the4


design process ... and thus the chapter on ethics occurs near the beginning rather than5


the end. In the CogPrime approach, ethics is not a particularly distinct topic, being6


richly interwoven with cognition and education and other aspects of the AGI project.7


The ethics of advanced AGI is a complex issue with multiple aspects. Among the8


many issues there are:9


1. Risks posed by the possibility of human beings using AGI systems for evil ends.10


2. Risks posed by AGI systems created without well-defined ethical systems.11


3. Risks posed by AGI systems with initially well-defined and sensible ethical sys-12


tems eventually going rogue—an especially big risk if these systems are more13


generally intelligent than humans, and possess the capability to modify their own14


source code.15


4. The ethics of experimenting on AGI systems when one doesn’t understand the16


nature of their experience.17


5. AGI rights: in what circumstances does using an AGI as a tool or servant constitute18


“slavery”.19


In this chapter we will focus mainly (though not exclusively) on the question of20


how to create an AGI with a rational and beneficial ethical system. After a somewhat21


wide-ranging discussion, we will conclude with eight general points that we believe22


should be followed in working toward “Friendly AGI”—most of which have to do,23


not with the internal design of the AGI, but with the way the AGI is taught and24


interfaced with the real world.25


Co-authored with Matthew Ikle, Joel Pitt and Rui Liu.
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230 12 The Engineering and Development of Ethics


While most of the particulars discussed in this book have nothing to do with26


ethics, it’s important for the reader to understand that AGI-ethics considerations have27


played a major role in many of our design decisions, underlying much of the technical28


contents of the book. As the materials in this chapter should make clear, ethicalness29


is probably not something that one can meaningfully tack onto an AGI system at30


the end, after developing the rest—it is likely infeasible to architect an intelligent31


agent and then add on an “ethics module”. Rather, ethics is something that has to32


do with all the different memory systems and cognitive processes that constitute an33


intelligent system—and it’s something that involves both cognitive architecture and34


the exploration a system does and the instruction it receives. It’s a very complex35


matter that is richly intermixed with all the other aspects of intelligence, and here we36


will treat it as such.37


12.2 Review of Current Thinking on the Risks of AGI38


Before proceeding to outline our own perspective on AGI ethics in the context of39


CogPrime, we will review the main existing strains of thought on the potential ethical40


dangers associated with AGI. One science fiction film after another has highlighted41


these dangers, lodging the issue deep in our cultural awareness; unsurprisingly, much42


less attention has been paid to serious analysis of the risks in their various dimensions,43


but there is still a non-trivial literature worth paying attention to.44


Hypothetically, an AGI with superhuman intelligence and capability could dis-45


pense with humanity altogether—i.e. posing an “existential risk” [Bos02]. In the46


worst case, an evil but brilliant AGI, perhaps programmed by a human sadist, could47


consign humanity to unimaginable tortures (i.e. realizing a modern version of the48


medieval Christian visions of hell). On the other hand, the potential benefits of49


powerful AGI also go literally beyond human imagination. It seems quite plausi-50


ble that an AGI with massively superhuman intelligence and positive disposition51


toward humanity could provide us with truly dramatic benefits, such as a virtual end52


to material scarcity, disease and aging. Advanced AGI could also help individual53


humans grow in a variety of directions, including directions leading beyond “legacy54


humanity”, according to their own taste and choice.55


Eliezer Yudkowsky has introduced the term “Friendly AI”, to refer to advanced56


AGI systems that act with human benefit in mind [Yud06]. Exactly what this means57


has not been specified precisely, though informal interpretations abound. Goertzel58


[Goe06b] has sought to clarify the notion in terms of three core values of Joy, Growth59


and Freedom. In this view, a Friendly AI would be one that advocates individual and60


collective human joy and growth, while respecting the autonomy of human choices.61


Some (for example, Hugo de Garis [DG05]), have argued that Friendly AI is62


essentially an impossibility, in the sense that the odds of a dramatically superhumanly63


intelligent mind worrying about human benefit are vanishingly small. If this is the64


case, then the best options for the human race would presumably be to either avoid65


advanced AGI development altogether, or to else fuse with AGI before it gets too66


319477_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: ?? Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


12.2 Review of Current Thinking on the Risks of AGI 231


strongly superhuman, so that beings-originated-as-humans can enjoy the benefits of67


greater intelligence and capability (albeit at cost of sacrificing their humanity).68


Others (e.g. Mark Waser [Was09]) have argued that Friendly AI is essentially69


inevitable, because greater intelligence correlates with greater morality. Evidence70


from evolutionary and human history is adduced in favor of this point, along with71


more abstract arguments.72


Yudkowsky [Yud06] has discussed the possibility of creating AGI architectures73


that are in some sense “provably Friendly”—either mathematically, or else at least74


via very tight lines of rational verbal argumentation. However, several issues have75


been raised with this approach. First, it seems likely that proving mathematical results76


of this nature would first require dramatic advances in multiple branches of mathe-77


matics. Second, such a proof would require a formalization of the goal of “Friendli-78


ness”, which is a subtler matter than it might seem [Leg06b, Leg06a]. Formalization79


of human morality has vexed moral philosophers for quite some time. Finally, it is80


unclear the extent to which such a proof could be created in a generic, environment-81


independent way—but if the proof depends on properties of the physical environ-82


ment, then it would require a formalization of the environment itself, which runs up83


against various problems such as the complexity of the physical world and also the84


fact that we currently have no complete, consistent theory of physics. Kaj Sotala has85


provided a list of 14 objections to the Friendly AI concept, and suggested answers to86


each of them [Sot11]. Stephen Omohundro [Omo08] has argued that any advanced87


AI system will very likely demonstrate certain “basic AI drives”, such as desiring88


to be rational, to self-protect, to acquire resources, and to preserve and protect its89


utility function and avoid counterfeit utility; these drives, he suggests, must be taken90


carefully into account in formulating approaches to Friendly AI.91


The problem of formally or at least very carefully defining the goal of Friendliness92


has been considered from a variety of perspectives, none showing dramatic success.93


Yudkowsky [Yud04] has suggested the concept of “Coherent Extrapolated Volition”,94


which roughly refers to the extrapolation of the common values of the human race.95


Many subtleties arise in specifying this concept—e.g. if Bob Jones is often possessed96


by a strong desire to kill all Martians, but he deeply aspires to be a nonviolent person,97


then the CEV approach would not rate “killing Martians” as part of Bob’s contribution98


to the CEV of humanity.99


Goertzel [Goe10a] has proposed a related notion of Coherent Aggregated Volition100


(CAV), which eschews the subtleties of extrapolation, and simply seeks a reasonably101


compact, coherent, consistent set of values that is fairly close to the collective value-102


set of humanity. In the CAV approach, “killing Martians” would be removed from103


humanity’s collective value-set because it’s uncommon and not part of the most104


compact/coherent/consistent overall model of human values, rather than because of105


Bob Jones’ aspiration to nonviolence.106


One thought we have recently entertained is that the core concept underlying CAV107


might be better thought of as CBV or “Coherent Blended Volition”. CAV seems to be108


easily misinterpreted as meaning the average of different views, which was not the109


original intention. The CBV terminology clarifies that the CBV of a diverse group of110


people should not be thought of as an average of their perspectives, but as something111
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232 12 The Engineering and Development of Ethics


more analogous to a “conceptual blend” [FT02]—incorporating the most essential112


elements of their divergent views into a whole that is overall compact, elegant and113


harmonious. The subtlety here (to which we shall return below) is that for a CBV114


blend to be broadly acceptable, the different parties whose views are being blended115


must agree to some extent that enough of the essential elements of their own views116


have been included. The process of arriving at this sort of consensus may involve117


extrapolation of a roughly similar sort to that considered in CEV.118


Multiple attempts at axiomatization of human values have also been attempted,119


e.g. with a view toward providing near-term guidance to military robots (see120


e.g. Arkin’s excellent though chillingly-titled book Governing Lethal Behavior in121


Autonomous Robots [Ark09b], the result of US military funded research). However,122


there are reasonably strong arguments that human values (similarly to e.g. human123


language or human perceptual classification rules) are too complex and multifaceted124


to be captured in any compact set of formal logic rules. Wallach [WA10] has made125


this point eloquently, and argued the necessity of fusing top–down (e.g. formal logic126


based) and bottom–up (e.g. self-organizing learning based) approaches to machine127


ethics.128


A number of more sociological considerations also arise. It is sometimes argued129


that the risk from highly-advanced AGI going morally awry on its own may be less130


than that of moderately-advanced AGI being used by human beings to advocate131


immoral ends. This possibility gives rise to questions about the ethical value of132


various practical modalities of AGI development, for instance:133


• Should AGI be developed in a top-secret installation by a select group of indi-134


viduals selected for a combination of technical and scientific brilliance and moral135


uprightness, or other qualities deemed relevant (a “closed approach”)? Or should136


it be developed out in the open, in the manner of open-source software projects137


like Linux? (an “open approach”). The open approach allows the collective intel-138


ligence of the world to more fully participate—but also potentially allows the139


more unsavory elements of the human race to take some of the publicly-developed140


AGI concepts and tools private, and develop them into AGIs with selfish or evil141


purposes in mind. Is there some meaningful intermediary between these extremes?142


• Should governments regulate AGI, with Friendliness in mind (as advocated care-143


fully by e.g. Bill Hibbard [Hib02])? Or will this just cause AGI development to144


move to the handful of countries with more liberal policies?... or cause it to move145


underground, where nobody can see the dangers developing? As a rough analogue,146


it’s worth noting that the US government’s imposition of restrictions on stem cell147


research, under President George W. Bush, appears to have directly stimulated the148


provision of additional funding for stem cell research in other nations like Korea,149


Singapore and China.150


The former issue is, obviously, highly relevant to CogPrime (which is currently151


being developed via the open source CogPrime project); and so the various dimen-152


sions of this issues are worth briefly sketching here.153


We have a strong skepticism of self-appointed elite groups that claim (even if they154


genuinely believe) that they know what’s best for everyone, and a healthy respect for155
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the power of collective intelligence and the Global Brain, which the open approach156


is ideal for tapping. On the other hand, we also understand the risk of terrorist157


groups or other malevolent agents forking an open source AGI project and creating158


something terribly dangerous and destructive. Balancing these factors against each159


other rigorously, seems beyond the scope of current human science.160


Nobody really understands the social dynamics by which open technological161


knowledge plays out in our current world, let alone hypothetical future scenarios.162


Right now there exists open knowledge about many very dangerous technologies,163


and there exist many terrorist groups, yet these groups fortunately make scant use164


of these technologies. The reasons why appear to be essentially sociological—the165


people involved in these terrorist groups tend not to be the ones who have mastered166


the skills of turning public knowledge on cutting-edge technologies into real engi-167


neered systems. But while it’s easy to observe this sociological phenomenon, we168


certainly have no way to estimate its quantitative extent from first principles. We169


don’t really have a strong understanding of how safe we are right now, given the170


technology knowledge available right now via the Internet, textbooks, and so forth.171


Even relatively straightforward issues such as nuclear proliferation remain confusing,172


even to the experts.173


It’s also quite clear that keeping powerful AGI locked up by an elite group doesn’t174


really provide reliable protection against malevolent human agents. History is rife175


with such situations going awry, e.g. by the leadership of the group being subverted,176


or via brute force inflicted by some outside party, or via a member of the elite group177


defecting to some outside group in the interest of personal power or reward or due to178


group-internal disagreements, etc. There are many things that can go wrong in such179


situations, and the confidence of any particular group that they are immune to such180


issues, cannot be taken very seriously. Clearly, neither the open nor closed approach181


qualifies as a panacea.182


12.3 The Value of an Explicit Goal System183


One of the subtle issues confronted in the quest to design ethical AGIs is how closely184


one wants to emulate human ethical judgment and behavior. Here one confronts185


the brute fact that, even according to their own deeply-held standards, humans are186


not all that ethical. One high-level conclusion we came to very early in the process187


of designing CogPrime is that, just as humans are not the most intelligent minds188


achievable, they are also not the most ethical minds achievable. Even if one takes189


human ethics, broadly conceived, as the standard—there are almost surely possible190


AGI systems that are much more ethical according to human standards than nearly191


all human beings. This is not mainly because of ethics-specific features of the human192


mind, but rather because of the nature of the human motivational system, which leads193


to many complexities that drive humans to behaviors that are unethical according194


to their own standards. So, one of the design decisions we made for CogPrime—195


with ethics as well as other reasons in mind—was not to closely imitate the human196
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motivational system, but rather to craft a novel motivational system combining certain197


aspects of the human motivational system with other profoundly non-human aspects.198


On the other hand, the design of ethical AGI systems still has a lot to gain from199


the study of human ethical cognition and behavior. Human ethics has many aspects,200


which we associate here with the different types of memory, and it’s important that201


AGI systems can encompass all of them. Also, as we will note below, human ethics202


develops in childhood through a series of natural stages, parallel to and entwined with203


the cognitive developmental stages reviewed in Chap. 11 above. We will argue that for204


an AGI with a virtual or robotic body, it makes sense to think of ethical development205


as proceeding through similar stages. In a CogPrime context, the particulars of these206


stages can then be understood in terms of the particulars of CogPrime’s cognitive207


processes—which brings AGI ethics from the domain of theoretical abstraction into208


the realm of practical algorithm design and education.209


But even if the human stages of ethical development make sense for non-human210


AGIs, this doesn’t mean the particulars of the human motivational system need to be211


replicated in these AGIs, regarding ethics or other matters. A key point here is that, in212


the context of human intelligence, the concept of a “goal” is a descriptive abstraction.213


But in the AGI context, it seems quite valuable to introduce goals as explicit design214


elements (which is what is done in CogPrime)—both for ethical reasons and for215


broader AGI design reasons.216


Humans may adopt goals for a time and then drop them, may pursue multiple217


conflicting goals simultaneously, and may often proceed in an apparently goal-less218


manner. Sometimes the goal that a person appears to be pursuing, may be very dif-219


ferent than the one they think they’re pursuing. Evolutionary psychology [BDL93]220


argues that, directly or indirectly, all humans are ultimately pursuing the goal of max-221


imizing the inclusive fitness of their genes—but given the complex mix of evolution222


and self-organization in natural history [Sal93], this is hardly a general explanation223


for human behavior. Ultimately, in the human context, “goal” is best thought of as a224


frequently useful heuristic concept.225


AGI systems, however, need not emulate human cognition in every aspect, and226


may be architected with explicit “goal systems”. This provides no guarantee that227


said AGI systems will actually pursue the goals that their goal systems specify—228


depending on the role that the goal system plays in the overall system dynamics,229


sometimes other dynamical phenomena might intervene and cause the system to230


behave in ways opposed to its explicit goals. However, we submit that this design231


sketch provides a better framework than would exist in an AGI system closely emu-232


lating the human brain.233


We realize this point may be somewhat contentious—a counter-argument would234


be that the human brain is known to support at least moderately ethical behavior,235


according to human ethical standards, whereas less brain-like AGI systems are much236


less well understood. However, the obvious counter-counterpoints are that:237


• Humans are not all that consistently ethical, so that creating AGI systems poten-238


tially much more practically powerful than humans, but with closely humanlike239


ethical, motivational and goal systems, could in fact be quite dangerous.240
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12.3 The Value of an Explicit Goal System 235


• The effect on a human-like ethical/motivational/goal system of increasing the241


intelligence, or changing the physical embodiment or cognitive capabilities, of242


the agent containing the system, is unknown and difficult to predict given all the243


complexities involved.244


The course we tentatively recommend, and are following in our own work, is to245


develop AGI systems with explicit, hierarchically-dominated goal systems. That is:246


• create one or more “top goals” (we call them Ubergoals in CogPrime);247


• have the system derive subgoals from these, using its own intelligence, potentially248


guided by educational interaction or explicit programming;249


• have a significant percentage of the system’s activity governed by the explicit250


pursuit of these goals.251


Note that the “significant percentage” need not be 100 %; CogPrime, for example,252


combines explicitly goal-directed activity with other “spontaneous” activity. Requir-253


ing that all activity be explicitly goal-directed may be too strict a requirement to254


place on AGI architectures.255


The next step, of course, is for the top-level goals to be chosen in accordance256


with the principle of human-Friendliness. The next one of our eight points, about the257


Global Brain, addresses one way of doing this. In our near-term work with CogPrime,258


we are using simplistic approaches, with a view toward early-stage system testing.259


12.4 Ethical Synergy260


An explicit goal system provides an explicit way to ensure that ethical principles261


(as represented in system goals) play a significant role in guiding an AGI system’s262


behavior. However, in an integrative design like CogPrime the goal system is only263


a small part of the overall story, and it’s important to also understand how ethics264


relates to the other aspects of the cognitive architecture.265


One of the more novel ideas presented in this chapter is that different types of266


ethical intuition may be associated with different types of memory—and to possess267


mature ethics, a mind must display ethical synergy between the ethical processes268


associated with its memory types. Specifically, we suggest that:269


• Episodic memory corresponds to the process of ethically assessing a situation270


based on similar prior situations.271


• Sensorimotor memory corresponds to “mirror neuron” type ethics, where272


you feel another person’s feelings via mirroring their physiological emotional273


responses and actions.274


• Declarative memory corresponds to rational ethical judgment.275


• Procedural memory corresponds to “ethical habit”... learning by imitation and276


reinforcement to do what is right, even when the reasons aren’t well articulated or277


understood.278
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• Attentional memory corresponds to the existence of appropriate patterns guiding279


one to pay adequate attention to ethical considerations at appropriate times.280


• Intentional memory corresponds to the pervasion of ethics through one’s choices281


about subgoaling (which leads into “when do the ends justify the means” ethical-282


balance questions).283


One of our suggestions regarding AGI ethics is that an ethically mature person or284


AGI must both master and balance all these kinds of ethics. We will focus especially285


here on declarative ethics, which corresponds to Kohlberg’s theory of logical ethical286


judgment; and episodic ethics, which corresponds to Gilligan’s theory of empathic287


ethical judgment. Ultimately though, all five aspects are critically important; and a288


CogPrime system if appropriately situated and educated should be able to master289


and integrate all of them.290


12.4.1 Stages of Development of Declarative Ethics291


Complementing generic theories of cognitive development such as Piaget’s and292


Perry’s, theorists have also proposed specific stages of moral and ethical devel-293


opment. The two most relevant theories in this domain are those of Kohlberg and294


Gilligan, which we will review here, both individually and in terms of their integration295


and application in the AGI context.296


Lawrence Kohlberg’s [KLH83, Koh81] moral development model, called the297


“ethics of justice” by Gilligan, is based on a rational modality as the central vehicle298


for moral development. In our perspective this is a firmly declarative form of ethics,299


based on explicit analysis and reasoning. It is based on an impartial regard for per-300


sons, proposing that ethical consideration must be given to all individual intelligences301


without a priori judgment (prejudice). Consideration is given for individual merit and302


preferences, and the goals of an ethical decision are equal treatment (in the general,303


not necessarily the particular) and reciprocity. Echoing Kant’s [Kan64] categorical304


imperative, the decisions considered most successful in this model are those which305


exhibit “reversibility”, where a moral act within a particular situation is evaluated in306


terms of whether or not the act would be satisfactory even if particular persons were307


to switch roles within the situation. In other words, a situational, contextualized “do308


unto others as you would have them do unto you” criterion. The ethics of justice can309


be viewed as three stages (each of which has six substages, on which we will not310


elaborate here), depicted in Table 12.1.311


In Kohlberg’s perspective, cognitive development level contributes to moral devel-312


opment, as moral understanding emerges from increased cognitive capability in the313


area of ethical decision making in a social context. Relatedly, Kohlberg also looks at314


stages of social perspective and their consequent interpersonal outlook. As shown in315


Table 12.1, these are correlated to the stages of moral development, but also map onto316


Piagetian models of cognitive development (as pointed out e.g. by Gibbs [Gib78],317


who presents a modification/interpretation of Kohlberg’s ideas intended to align318
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12.4 Ethical Synergy 237


Table 12.1 Kohlberg’s stages of development of the ethics of justice


Stage Substages


Pre-conventional • Obedience and punishment orientation
• Self-interest orientation


Conventional • Interpersonal accord (conformity) orientation
• Authority and social-order maintaining (law and order) orientation


Post-conventional • Social contract (human rights) orientation
• Universal ethical principles (universal human rights) orientation


them more closely with Piaget’s). Interpersonal outlook can be understood as ratio-319


nal understanding of the psychology of other persons (a theory of mind, with or320


without empathy). Stage One, emergent from the infantile congitive stage, is entirely321


selfish as only self awareness has developed. As cognitive sophistication about ethi-322


cal considerations increases, so do the moral and social perspective stages. Concrete323


and formal cognition bring about the first instrumental egoism, and then social rela-324


tions and systems perspectives, and from formal and then reflexive thinking about325


ethics comes the post-conventional modalities of contractualism and universal mutual326


respect.327


12.4.1.1 Uncertain Inference and the Ethics of Justice328


Taking our cue from the analysis given in Chap. 11 of Piagetan stages in uncertain329


inference based AGI systems (such as CogPrime), we may explore the manifestation330


of Kohlberg’s stages in AGI systems of this nature. Uncertain inference seems gen-331


erally well-suited as a declarative-ethics learning system, due to the nuanced ethical332


environment of real world situations. Probabilistic knowledge networks can model333


belief networks, imitative reinforcement learning based ethical pedagogy, and even334


simplistic moral maxims. In principle, they have the flexibility to deal with complex335


ethical decisions, including not only weighted “for the greater good” dichotomous336


decision making, but also the ability to develop moral decision networks which do337


not require that all situations be solved through resolution of a dichotomy.338


When more than one person is being affected by an ethical decision, making339


a decision based on reducing two choices to a single decision can often lead to340


decisions of dubious ethics. However, a sufficiently complex uncertain inference341


network can represent alternate choices in which multiple actions are taken that have342


equal (or near equal) belief weight but have very different particulars—but because343


the decisions are applied in different contexts (to different groups of individuals) they344


are morally equivalent. Though each individual action appears equally believable,345


were any single decision applied to the entire population one or more individual may346


be harmed, and the morally superior choice is to make case-dependent decisions.347


Equal moral treatment is a general principle, and too often the mistake is made by348


thinking that to achieve this general principle the particulars must be equal. This is not349
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Table 12.2 Kohlberg’s stages of development of social perspective and interpersonal morals


Stage of social Interpersonal outlook
perspective


Blind egoism No interpersonal perspective Only self is considered


Instrumental egoism See that others have goals and perspectives, and either conform to
or rebel against norms


Social relationships
perspective


able to see abstract normative systems


Social systems
perspective


recognize positive and negative intentions


Contractual
perspective


recognize that contracts (mutually beneficial agreements of any
kind) will allow intelligences to increase the welfare of both


Universal principle
of mutual
respect


See how human fallibility and frailty are impacted by
communication


the case. Different treatment of different individuals can result in morally equivalent350


treatment of all involved individuals, and may be vastly morally superior to treating351


all the individuals with equal particulars. Simply taking the largest population and352


deciding one course of action based on the result that is most appealing to that largest353


group is not generally the most moral action (Table 12.2).AQ1354


Uncertain inference, especially a complex network with high levels of resource355


access as may be found in a sophisticated AGI, is well suited for complex decision356


making resulting in a multitude of actions, and of analyzing the options to find the set357


of actions that are ethically optimal particulars for each decision context. Reflexive358


cognition and post-commitment moral understanding may be the goal stages of an359


AGI system, or any intelligence, but the other stages will be passed through on the360


way to that goal, and realistically some minds will never reach higher order cognition361


or morality with regards to any context, and others will not be able to function at this362


high order in every context (all currently known minds fail to function at the highest363


order cognitively or morally in some contexts).364


Infantile and concrete cognition are the underpinnings of the egoist and socialized365


stages, with formal aspects also playing a role in a more complete understanding of366


social models when thinking using the social modalities. Cognitively infantile pat-367


terns can produce no more than blind egoism as without a theory of mind, there is no368


capability to consider the other. Since most intelligences acquire concrete modality369


and therefore some nascent social perspective relatively quickly, most egoists are370


instrumental egoists. The social relationship and systems perspectives include for-371


mal aspects which are achieved by systematic social experimentation, and therefore372


experiential reinforcement learning of correct and incorrect social modalities. Ini-373


tially this is a one-on-one approach (relationship stage), but as more knowledge of374


social action and consequences is acquired, a formal thinker can understand not just375


consequentiality but also intentionality in social action.376
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12.4 Ethical Synergy 239


Extrapolation from models of individual interaction to general social theoretic377


notions is also a formal action. Rational, logical positivist approaches to social and378


political ideas, however, are the norm of formal thinking. Contractual and committed379


moral ethics emerges from a higher-order formalization of the social relationships380


and systems patterns of thinking. Generalizations of social observation become,381


through formal analysis, systems of social and political doctrine. Highly committed,382


but grounded and logically supportable, belief is the hallmark of formal cognition383


as expressed contractual moral stage. Though formalism is at work in the socialized384


moral stages, its fullest expression is in committed contractualism.385


Finally, reflexive cognition is especially important in truly reaching the post-386


commitment moral stage in which nuance and complexity are accommodated.387


Because reflexive cognition is necessary to change one’s mind not just about par-388


ticular rational ideas, but whole ways of thinking, this is a cognitive precedent to389


being able to reconsider an entire belief system, one that has had contractual logic390


built atop reflexive adherence that began in early development. If the initial moral391


system is viewed as positive and stable, then this cognitive capacity is seen as dan-392


gerous and scary, but if early morality is stunted or warped, then this ability is seen393


as enlightened. However, achieving this cognitive stage does not mean one auto-394


matically changes their belief systems, but rather that the mental machinery is in395


place to consider the possibilities. Because many people do not reach this level of396


cognitive development in the area of moral and ethical thinking, it is associated with397


negative traits (“moral relativism” and “flip-flopping”). However, this cognitive flex-398


ibility generally leads to more sophisticated and applicable moral codes, which in399


turn leads to morality which is actually more stable because it is built upon exten-400


sive and deep consideration rather than simple adherence to reflexive or rationalized401


ideologies.402


12.4.2 Stages of Development of Empathic Ethics403


Complementing Kohlberg’s logic-and-justice-focused approach, Carol Gilligan’s404


[Gil82] “ethics of care” model is a moral development theory which posits that405


empathetic understanding plays the central role in moral progression from an initial406


self-centered modality to a socially responsible one. The ethics of care model is407


concerned with the ways in which an individual cares (responds to dilemmas using408


empathetic responses) about self and others. As shown in Table 12.3, the ethics of409


care is broken into the same three primary stage as Kohlberg, but with a focus on410


empathetic, emotional caring rather than rationalized, logical principles of justice.411


For an “ethics of care” approach to be applied in an AGI, the AGI must be capable412


of internal simulation of other minds it encounters, in a similar manner to how humans413


regularly simulate one another internally. Without any mechanism for internal simu-414


lation, it is unlikely that an AGI can develop any sort of empathy toward other minds,415


as opposed to merely logically or probabilistically modeling other agents’ behavior416


or other minds’ internal contents. In a CogPrime context, this ties in closely with417
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Table 12.3 Gilligan’s stages of the ethics of care


Stage Principle of care


Pre-conventional Individual survival
Conventional Self sacrifice for the greater good
Post-conventional Principle of nonviolence (do not hurt others, or oneself)


how CogPrime handles episodic knowledge—partly via use of an internal simulation418


world, which is able to play “mental movies” of prior and hypothesized scenarios419


within the AGI system’s mind.420


However, in humans empathy involves more than just simulation, it also involves421


sensorimotor responses, and of course emotional responses—a topic we will discuss422


in more depth in Appendix ?? where we review the functionality of mirror neurons423


and mirror systems in the human brains. When we see or hear someone suffering, this424


sensory input causes motor responses in us similar to if we were suffering ourselves,425


which initiates emotional empathy and corresponding cognitive processes.426AQ2


Thus, empathic “ethics of care” involves a combination of episodic and sensori-427


motor ethics, complementing the mainly declarative ethics associated with the “ethics428


of justice”.429


In Gilligan’s perspective, the earliest stage of ethical development occurs before430


empathy becomes a consistent and powerful force. Next, the hallmark of the conven-431


tional stage is that at this point, the individual is so overwhelmed with their empathic432


response to others that they neglect themselves in order to avoid hurting others. Note433


that this stage doesn’t occur in Kohlberg’s hierarchy at all. Kohlberg and Gilligan434


both begin with selfish unethicality, but their following stages diverge. A person435


could in principle manifest Gilligan’s conventional stage without having a refined436


sense of justice (thus not entering Kohlberg’s conventional stage); or they could437


manifest Kohlberg’s conventional stage without partaking in an excessive degree of438


self-sacrifice (thus not entering Gilligan’s conventional stage). We will suggest below439


that in fact the empathic and logical aspects of ethics are more unified in real human440


development than these separate theories would suggest. However, even if this is so,441


the possibility is still there that in some AGI systems the levels of declarative and442


empathic ethics could wildly diverge.443


It is interesting to note that Gilligan’s and Kohlberg’s final stages converge more444


closely than their intermediate ones. Kohlberg’s post-conventional stage focuses on445


universal rights, and Gilligan’s on universal compassion. Still, the foci here are quite446


different; and, as will be elaborated below, we believe that both Kohlberg’s and447


Gilligan’s theories constitute very partial views of the actual end-state of ethical448


advancement.449


319477_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: ?? Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F
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12.4.3 An Integrative Approach to Ethical Development450


We feel that both Kohlberg’s and Gilligan’s theories contain elements of the whole451


picture of ethical development, and that both approaches are necessary to create452


a moral, ethical artificial general intelligence—just as, we suggest, both internal453


simulation and uncertain inference are necessary to create a sufficiently intelligent454


and volitional intelligence in the first place. Also, we contend, the lack of direct455


analysis of the underlying psychology of the stages is a deficiency shared by both the456


Kohlberg and Gilligan models as they are generally discussed. A successful model of457


integrative ethics necessarily contains elements of both the care and justice models,458


as well as reference to the underlying developmental psychology and its influence459


on the character of the ethical stage. Furthermore, intentional and attentional ethics460


need to be brought into the picture, complementing Kohlberg’s focus on declarative461


knowledge and Gilligan’s focus on episodic and sensorimotor knowledge.462


With these notions in mind, we propose the following integrative theory of the463


stages of ethical development, shown in Tables 12.4, 12.5 and 12.6. In our integrative464


model, the justice-based and empathic aspects of ethical judgment are proposed to465


develop together. Of course, in any one individual, one or another aspect may be466


dominant. Even so, however, the combination of the two is equally important as467


either of the two individual ingredients.468


For instance, we suggest that in any psychologically healthy human, the conven-469


tional stage of ethics (typifying childhood, and in many cases adulthood as well)470


involves a combination of Gilligan-esqe empathic ethics and Kohlberg-esque ethical471


reasoning. This combination is supported by Piagetan concrete operational cogni-472


tion, which allows moderately sophisticated linguistic interaction, theory of mind,473


and symbolic modeling of the world.474


And, similarly, we propose that in any truly ethically mature human, empathy and475


rational justice are both fully developed. Indeed the two interpenetrate each other476


deeply.477


Once one goes beyond simplistic, childlike notions of fairness (“an eye for an eye”478


and so forth), applying rational justice in a purely intellectual sense is just as difficult479


as any other real-world logical inference problem. Ethical quandaries and quagmires480


are easily encountered, and are frequently cut through by a judicious application of481


empathic simulation.482


On the other hand, empathy is a far more powerful force when used in conjunction483


with reason: analogical reasoning lets us empathize with situations we have never484


experienced. For instance, a person who has never been clinically depressed may have485


a hard time empathizing with individuals who are; but using the power of reason,486


they can imagine their worst state of depression magnified by several times and then487


extended over a long period of time, and then reason about what this might be like...488


and empathize based on their inferential conclusion. Reason is not antithetical to489


empathy but rather is the key to making empathy more broadly impactful.490


Finally, the enlightened stage of ethical development involves both a deeper com-491


passion and a more deeply penetrating rationality and objectiveness. Empathy with492
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Table 12.4 Integrative model of the stages of ethical development, part 1


Stage Characteristics


Pre-ethical • Piagetan infantile to early concrete (aka pre-operational)
• Radical selfishness or selflessness may, but do not necessarily, occur
• No coherent, consistent pattern of consideration for the rights,


intentions or feelings of others
• Empathy is generally present, but erratically


Conventional ethics • Concrete cognitive basis
• Perry’s dualist and multiple stages
• The common sense of the golden rule is appreciated, with cultural


conventions for abstracting principles from behaviors
• One’s own ethical behavior is explicitly compared to that of others
• Development of a functional, though limited, theory of mind
• Ability to intuitively conceive of notions of fairness and rights
• Appreciation of the concept of law and order, which may sometimes


manifest itself as systematic obedience or systematic disobedience
• Empathy is more consistently present, especially with others who are


directly similar to oneself or in situations similar to those one has
directly experienced


• Degrees of selflessness or selfishness develop based on ethical
groundings and social interactions.


all sentient beings is manageable in everyday life only once one has deeply reflected493


on one’s own self and largely freed oneself of the confusions and illusions that char-494


acterize much of the ordinary human’s inner existence. It is noteworthy, for example,495


that Buddhism contains both a richly developed ethics of universal compassion, and496


also an intricate logical theory of the inner workings of cognition [Stc00], detail-497


ing in exquisite rational detail the manner in which minds originate structures and498


dynamics allowing them to comprehend themselves and the world.499


12.4.4 Integrative Ethics and Integrative AGI500


What does our integrative approach to ethical development have to say about the501


ethical development of AGI systems? The lessons are relatively straightforward, if502


one considers an AGI system that, like CogPrime, explicitly contains components503


dedicated to logical inference and to simulation. Application of the above ethical ideas504


to other sorts of AGI systems is also quite possible, but would require a lengthier505


treatment and so won’t be addressed here.506


In the context of a CogPrime-type AGI system, Kolhberg’s stages correspond to507


increasingly sophisticated application of logical inference to matters of rights and508


fairness. It is not clear whether humans contain an innate sense of fairness. In the509


context of AGIs, it would be possible to explicitly wire a sense of fairness into an510
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12.4 Ethical Synergy 243


Table 12.5 Integrative model of the stages of ethical development, part 2


Stage Characteristics


Mature ethics • Formal cognitive basis
• Perry’s relativist and “constructed knowledge” stages
• The abstraction involved with applying the golden rule in practice is more


fully understood and manipulated, leading to limited but nonzero
deployment of the categorical imperative


• Attention is paid to shaping one’s ethical principles into a coherent logical
system


• Rationalized, moderated selfishness or selflessness
• Empathy is extended, using reason, to individuals and situations not directly


matching one’s own experience
• Theory of mind is extended, using reason, to counterintuitive or


experientially unfamiliar situations
• Reason is used to control the impact of empathy on behavior (i.e. rational


judgments are made regarding when to listen to empathy and when not to)
• Rational experimentation and correction of theoretical models of ethical


behavior, and reconciliation with observed behavior during interaction
with others


• Conflict between pragmatism of social contract orientation and idealism of
universal ethical principles


• Understanding of ethical quandaries and nuances develop (pragmatist
modality), or are rejected (idealist modality)


• Pragmatically critical social citizen. Attempts to maintain a balanced social
outlook. Considers the common good, including oneself as part of the
commons, and acts in what seems to be the most beneficial and practical
manner


AGI system, but in the context of a rich environment and active human teachers,511


this actually appears quite unnecessary. Experiential instruction in the notions of512


rights and fairness should suffice to teach an inference-based AGI system how to513


manipulate these concepts, analogously to teaching the same AGI system how to514


manipulate number, mass and other such quantities. Ascending the Kohlberg stages is515


then mainly a matter of acquiring the ability to carry out suitably complex inferences516


in the domain of rights and fairness. The hard part here is inference control—choosing517


which inference steps to take—and in a sophisticated AGI inference engine, inference518


control will be guided by experience, so that the more ethical judgments the system519


has executed and witnessed, the better it will become at making new ones. And, as520


argued above, simulative activity can be extremely valuable for aiding with inference521


control. When a logical inference process reaches a point of acute uncertainty (the522


backward or forward chaining inference tree can’t decide which expansion step to523


take), it can run a simulation to cut through the confusion—i.e. it can use empathy524


to decide which logical inference step to take in thinking about applying the notions525


of rights and fairness to a given situation.526
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Table 12.6 Integrative model of the stages of ethical development, part 3


Stage Characteristics


Enlightened ethics • Reflexive cognitive basis
• Permeation of the categorical imperative and the quest for coherence


through inner as well as outer life
• Experientially grounded and logically supported rejection of the


illusion of moral certainty in favor of a case-specific analytical and
empathetic approach that embraces the uncertainty of real social life


• Deep understanding of the illusory and biased nature of the individual
self, leading to humility regarding one’s own ethical intuitions and
prescriptions


• Openness to modifying one’s deepest, ethical (and other) beliefs based
on experience, reason and/or empathic communion with others


• Adaptive, insightful approach to civil disobedience, considering laws
and social customs in a broader ethical and pragmatic context


• Broad compassion for and empathy with all sentient beings
• A recognition of inability to operate at this level at all times in all


things, and a vigilance about self-monitoring for regressive behavior


Gilligan’s stages correspond to increasingly sophisticated control of empathic527


simulation—which in a CogPrime-type AGI system, is carried out by a specific528


system component devoted to running internal simulations of aspects of the outside529


world, which includes a subcomponent specifically tuned for simulating sentient530


actors. The conventional stage has to do with the raw, uncontrolled capability for531


such simulation; and the post-conventional stage corresponds to its contextual, goal-532


oriented control. But controlling empathy, clearly, requires subtle management of533


various uncertain contextual factors, which is exactly what uncertain logical inference534


is good at—so, in an AGI system combining an uncertain inference component with535


a simulative component, it is the inference component that would enable the nuanced536


control of empathy allowing the ascent to Gilligan’s post-conventional stage.537


In our integrative perspective, in the context of an AGI system integrating infer-538


ence and simulation components, we suggest that the ascent from the pre-ethical to539


the conventional stage may be carried out largely via independent activity of these540


two components. Empathy is needed, and reasoning about fairness and rights are541


needed, but the two need not intimately and sensitively intersect—though they must542


of course intersect to some extent.543


The main engine of advancement from the conventional to mature stage, we544


suggest, is robust and subtle integration of the simulative and inferential components.545


To expand empathy beyond the most obvious cases, analogical inference is needed;546


and to carry out complex inferences about justice, empathy-guided inference-control547


is needed.548


Finally, to advance from the mature to the enlightened stage, what is required is a549


very advanced capability for unified reflexive inference and simulation. The system550


must be able to understand itself deeply, via modeling itself both simulatively and551
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12.4 Ethical Synergy 245


inferentially—which will generally be achieved via a combination of being good552


at modeling, and becoming less convoluted and more coherent, hence making self-553


modeling easier.554


Of course, none of this tells you in detail how to create an AGI system with555


advanced ethical capabilities. What it does tell you, however, is one possible path556


that may be followed to achieve this end goal. If one creates an integrative AGI system557


with appropriately interconnected inferential and simulative components, and treats558


it compassionately and fairly, and provides it extensive, experientially grounded559


ethical instruction in a rich social environment, then the AGI system should be able560


to ascend the ethical hierarchy and achieve a high level of ethical sophistication.561


In fact it should be able to do so more reliably than human beings because of the562


capability we have to identify its errors via inspecting its internal knowledge-stage,563


which will enable us to tailor its environment and instructions more suitably than564


can be done in the human case.565


If an absolute guarantee of the ethical soundness of an AGI is what one is after,566


the line of thinking proposed here is not at all useful. Experiential education is by its567


nature an uncertain thing. One can strive to minimize the uncertainty, but it will still568


exist. Inspection of the internals of an AGI’s mind is not a total solution to uncertainty569


minimization, because any AGI capable of powerful general intelligence is going to570


have a complex internal state that no external observer will be able to fully grasp, no571


matter how transparent the knowledge representation.572


However, if what one is after is a plausible, pragmatic path to architecting and573


educating ethical AGI systems, we believe the ideas presented here constitute a sensi-574


ble starting-point. Certainly there is a great deal more to be learned and understood—575


the science and practice of AGI ethics, like AGI itself, are at a formative stage at576


present. What is key, in our view, is that as AGI technology develops, AGI ethics577


develops alongside and within it, in a thoroughly coupled way.578


12.5 Clarifying the Ethics of Justice: Extending the Golden Rule579


in to a Multifactorial Ethical Model580


One of the issues with the “ethics of justice” as reviewed above, which makes it581


inadequate to serve as the sole basis of an AGI ethical system (though it may certainly582


play a significant role), is the lack of any clear formulation of what “justice” means.583


This section explores this issue, via detailed consideration of the “Golden Rule”584


folk maxim do unto others as you would have them do unto you—a classical585


formulation of the notion of fairness and justics—to AGI ethics. Taking the Golden586


Rule as a starting-point, we will elaborate five ethical imperatives that incorporate587


aspects of the notion of ethical synergy discussed above. Simple as it may seem,588


the Golden Rule actually elicits a variety of deep issues regarding the relationship589


between ethics, experience and learning. When seriously analyzed, it results in a590


multifactorial elaboration, involving the combination of various factors related to591
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the basic Golden Rule idea. Which brings us back in the end to the potential value592


of methods like CEV, CAV or CBV for understanding how human ethics balances593


the multiple factors. Our goal here is not to present any kind of definitive analysis of594


the ethics of justice, but just to briefly and roughly indicate a number of the relevant595


significant issues—things that anyone designing or teaching an AGI would do well596


to keep in mind.597


The trickiest aspect of the Golden Rule, as has been frequently observed, is achiev-598


ing the right level of abstraction. Taken too literally, the Golden Rule would suggest,599


for instance, that a parent should not wipe a child’s soiled bottom because the parent600


does not want the child to wipe the parent’s soiled bottom. But if the parent interprets601


the Golden Rule more intelligently and abstractly, the parent may conclude that they602


should wipe the child’s bottom after all: they should “wipe the child’s bottom when603


the child can’t do it themselves”, consistently with believing that the child should604


“wipe the parent’s bottom when the parent can’t do it themselves” (which may well605


happen eventually should the parent develop incontinence in old age).606


This line of thinking leads to Kant’s Categorical Imperative [Kan64] which (in one607


interpretation) states essentially that one should “Act only according to that maxim608


whereby you can at the same time will that it should become a universal law”.609


The Categorical Imperative adds precision to the Golden Rule, but also removes610


the practicality of the latter. Formalizing the “implicit universal law” underlying an611


everyday action is a huge problem, falling prey to the same issue that has kept us612


from adequately formalizing the rules of natural language grammar, or formalizing613


common-sense knowledge about everyday object like cups, bowls and grass (sub-614


stantial effort notwithstanding, e.g. Cyc in the commonsense knowledge case, and615


the whole discipline of modern linguistics in the NL case). There is no way to apply616


the Categorical Imperative, as literally stated, in everyday life.617


Furthermore, if one wishes to teach ethics as well as to practice it, the Categorical618


Imperative actually has a significant disadvantage compared to some other possible619


formulations of the Golden Rule. The problem is that, if one follows the Categorical620


Imperative, one’s fellow members of society may well never understand the principles621


under which one is acting. Each of us may internally formulate abstract principles in622


a different way, and these may be very difficult to communicate, especially among623


individuals with different belief systems, different cognitive architectures, or different624


levels of intelligence. Thus, if one’s goal is not just to act ethically, but to encourage625


others to act ethically by setting a good example, the Categorical Imperative may not626


be useful at all, as others may be unable to solve the “inverse problem” of guessing627


your intended maxim from your observed behavior.628


On the other hand, one wouldn’t want to universally restrict one’s behavioral629


maxims to those that one’s fellow members of society can understand—in that case,630


one would have to act with a two-year old or a dog according to principles that they631


could understand, which would clearly be unethical according to human common632


sense. (Every two-year-old, once they grow up, would be grateful to their parents for633


not following this sort of principle.)634


And the concept of “setting a good example” ties in with an important concept from635


learning theory: imitative learning. Humans appear to be hard-wired for imitative636
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12.5 Clarifying the Ethics of Justice: Extending the Golden Rule 247


learning, in part via mirror neuron systems in the brain; and, it seems clear that at637


least in the early stages of AGI development, imitative learning is going to play a638


key role. Copying what other agents do is an extremely powerful heuristic, and while639


AGIs may eventually grow beyond this, much of their early ethical education is likely640


to arise during a phase when they have not done so. A strength of the classic Golden641


Rule is that one is acting according to behaviors that one wants one’s observers to642


imitate—which makes sense in that many of these observers will be using imitative643


learning as a significant part of their learning toolkit.644


The truth of the matter, it seems, is (as often happens) not all that simple or645


elegant. Ethical behavior seems to be most pragmatically viewed as a multi-objective646


optimization problem, where among the multiple objectives are three that we have647


just discussed, and two others that emerge from learning theory and will be discussed648


shortly:649


1. The imitability (i.e. the Golden Rule fairly narrowly and directly construed): the650


goal of acting in a way so that having others directly imitate one’s actions, in651


directly comparable contexts, is desirable to oneself.652


2. The comprehensibility: the goal of acting in a way so that others can understand653


the principles underlying one’s actions.654


3. Experiential groundedness. An intelligent agent should not be expected to act655


according to an ethical principle unless there are many examples of the principle-656


in-action in its own direct or observational experience.657


4. The categorical imperative: Act according to abstract principles that you would658


be happy to see implemented as universal laws.659


5. Logical coherence. An ethical system should be roughly logically coherent, in660


the sense that the different principles within it should mesh well with one another661


and perhaps even naturally emerge from each other.662


Just for convenience, without implying any finality or great profundity to the list,663


we will refer to these as the “five imperatives”.664


The above are all ethical objectives to be valued and balanced, to different extents665


in different contexts. The imitability imperative, obviously, loses importance in soci-666


eties of agents that don’t make heavy use of imitative learning. The comprehensibility667


imperative is more important in agents that value social community-building gener-668


ally, and less so in agent that are more isolative and self-focused.669


Note that the fifth point given above is logically of a different nature than the four670


previous ones. The first four imperatives govern individual ethical principles; the671


fifth regards systems of ethical principles, as they interact with each other. Logical672


coherence is of significant but varying importance in human ethical systems. Huge673


effort has been spent by theologians of various stripes in establishing and refining the674


logical coherence of the ethical systems associated with their religions. However, it is675


arguably going to be even more important in the context of AGI systems, especially if676


these AGI systems utilize cognitive methods based on logical inference, probability677


theory or related methods.678


Experiential groundedness is important because making pragmatic ethical judg-679


ments is bound to require reference to an internal library of examples (“episodic680
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ethics”) in which ethical principles have previously been applied. This is required681


for analogical reasoning, and in logic-based AGI systems, is also required for pruning682


of the logical inference trees involved in determining ethical judgments.683


To the extent that the Golden Rule is valued as an ethical imperative, experiential684


grounding may be supplied via observing the behaviors of others. This in itself is a685


powerful argument in favor of the Golden Rule: without it, the experiential library a686


system possesses is restricted to its own experience, which is bound to be a very small687


library compared to what it can assemble from observing the behaviors of others.688


The overall upshot is that, ideally, an ethical intelligence should act according689


to a logically coherent system of principles, which are exemplified in its own690


direct and observational experience, which are comprehensible to others and691


set a good example for others, and which would serve as adequate universal692


laws if somehow thus implemented. But, since this set of criteria is essentially693


impossible to fulfill in practice, real-world intelligent agents must balance these694


various criteria—often in complex and contextually-dependent ways.695


We suggest that ethically advanced humans, in their pragmatic ethical choices,696


tend to act in such a way as to appropriately contextually balance the above factors697


(along with other criteria, but we have tried to articulate the most key factors).698


This sort of multi-factorial approach is not as crisp or elegant as unidimensional699


imperatives like the Golden Rule or the Categorical Imperative, but is more realistic700


in light of the complexly interacting multiple determinants guiding individual and701


group human behavior.702


And this brings us back to CEV, CAV, CBV and other possible ways of mining703


ethical supergoals from the community of existing human minds. Given that abstract704


theories of ethics, when seriously pursued as we have done in this section, tend705


to devolve into complex balancing acts involving multiple factors—one then falls706


back into asking how human ethical systems habitually perform these balancing acts.707


Which is what CEV, CAV, CBV try to measure.708


12.5.1 The Golden Rule and the Stages of Ethical Development709


Next we explore more explicitly how these Golden Rule based imperatives align with710


the ethical developmental stages we have outlined here. With this in mind, specific711


ethical qualities corresponding to the five imperatives have been italicized in the712


above table of developmental stages.713


It seems that imperatives 1–3 are critical for the passage from the pre-ethical to714


the conventional stages of ethics. A child learns ethics largely by copying others,715


and by being interacted with according to simply comprehensible implementations716


of the Golden Rule. In general, when interacting with children learning ethics, it is717


important to act according to principles they can comprehend. And given the nature718


of the concrete stage of cognitive development, experiential groundedness is a must.719


As a hypothesis regarding the dynamics underlying the psychological devel-720


opment of conventional ethics, what we propose is as follows: The emergence721
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of concrete-stage cognitive capabilities leads to the capability for fulfillment of722


ethical imperatives 1 and 2—a comprehensible and workable implementation of723


the Golden Rule, based on a combination of inferential and simulative cognition724


(operating largely separately at this stage, as will be conjectured below). The effec-725


tive interoperation of ethical imperatives 1–3, enacted in an appropriate social envi-726


ronment, then leads to the other characteristics of the conventional ethical stage. The727


first three imperatives can thus be viewed as the seed from which springs the general728


nature of conventional ethics.729


On the other hand, logical coherence and the categorical imperative (imperatives730


5 and 4) are matters for the formal stage of cognitive development, which come731


along only with the mature approach to ethics. These come from abstracting ethics732


beyond direct experience and manipulating them abstractly and formally—a stage733


which has the potential for more deeply and broadly ethical behavior, but also for734


more complicated ethical perversions (it is the mature capability for formal ethical735


reasoning that is able to produce ungrounded abstractions such as “I’m torturing736


you for your own good”). Developmentally, we suggest that once the capability for737


formal reasoning matures, the categorical imperative and the quest for logical ethical738


coherence naturally emerge, and the sophisticated combination of inferential and739


simulative cognition embodied in an appropriate social context then result in the740


emergence of the various characteristics typifying the mature ethical stage.741


Finally, it seems that one key aspect of the passage from the mature to the enlight-742


ened stage of ethics is the penetration of these two final imperatives more and more743


deeply into the judging mind itself. The reflexive stage of cognitive development744


is in part about seeking a deep logical coherence between the aspects of one’s own745


mind, and making reasoned modifications to one’s mind so as to improve the level of746


coherence. And, much of the process of mental discipline and purification that comes747


with the passage to enlightened ethics has to do with the application of the categorical748


imperative to one’s own thoughts and feelings—i.e. making a true inner systematic749


effort to think and feel only those things one judges are actually generally good and750


right to be thinking and feeling. Applying these principles internally appears critical751


for effectively applying them externally, for reasons that are doubtlessly bound up752


with the interpenetration of internal and external reality within the thinking mind,753


and for the “distributed cognition” phenomenon wherein individual mind is itself an754


approximative abstraction to the reality in which each individual’s mind is pragmat-755


ically extended across their social group and their environment [Hut95].756


Obviously, these are complex issues and we’re not posing the exploratory discus-757


sion given here as conclusive in any sense. But what seems generally clear from this758


line of thinking is that the complex balance between the multiple factors involved759


in AGI ethics, shifts during a system’s development. If you did CEV, CAV or CBV760


among five-year old humans, ten-year old humans, or adult humans, you would get761


different results. Probably you’d also get different results from senior citizens! The762


way the factors are balanced depends on the mind’s cognitive and emotional stage763


of development.764
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250 12 The Engineering and Development of Ethics


12.5.2 The Need for Context-Sensitivity and Adaptiveness765


in Deploying Ethical Principles766


As well as depending on developmental stage, there is also an obvious and dramatic767


context-sensitivity involved here—both in calculating the fulfillment of abstract eth-768


ical imperatives, and in balancing various imperatives against each other. As an769


example, consider the simple Asimovian maxim “I will not harm humans”, which770


may be seen to follow from the Golden Rule for any agent that doesn’t itself want771


to be harmed, and that considers humans as valid agents on the same ethical level772


as itself. A more serious attempt to formulate this as an ethical maxim might look773


something like774


I will not harm humans, nor through inaction allow harm to befall them. In situations wherein775


one or more humans is attempting to harm another individual or group, I shall endeavor to776


prevent this harm through means which avoid further harm. If this is unavoidable, I shall777


select the human party to back based on a reckoning of their intentions towards others,778


and implement their defense through the optimal balance between harm minimization and779


efficacy. My ultimate goal is to preserve as much as possible of humanity, even if an individual780


or subgroup of humans must come to harm to do so.781


However, it’s obvious that even a more elaborated principle like this is potentially782


subject to extensive abuse. Many of the genocides scarring human history have been783


committed with the goal of preserving and bettering humanity writ large, at the784


expense of a group of “undesirables”. Further refinement would be necessary in785


order to define when the greater good of humanity may actually be served through786


harm to others. A first actor principle of aggression might seem to solve this problem,787


but sometimes first actors in violent conflict are taking preemptive measures against788


the stated goals of an enemy to destroy them. Such situations become very subtle.789


A single simple maxim can not deal with them very effectively. Networks of interre-790


lated decision criteria, weighted by desirability of consequence and with reference791


to probabilistically ordered potential side-effects (and their desirability weightings),792


are required in order to make ethical judgments. The development of these networks,793


just like any other knowledge network, comes from both pedagogy and experience—794


and different thoughtful, ethical agents are bound to arrive at different knowledge-795


networks that will lead to different judgments in real-world situations.796


Extending the above “mostly harmless” principle to AGI systems, not just humans,797


would cause it to be more effective in the context of imitative learning. The principle798


then becomes an elaborated version of “I will not harm sentient beings”. As the799


imitative-learning-enabled AGI observes humans acting so as to minimize harm to800


it, it will intuitively and experientially learn to act in such a way as to minimize harm801


to humans. But then this extension naturally leads to confusion regarding various802


borderline cases. What is a sentient being exactly? Is a sleeping human sentient?803


How about a dead human whose information could in principle be restored via804


obscure quantum operations, leading to some sort of resurrection? How about an805


AGI whose code has been improved—is there an obligation to maintain the prior806
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version as well, if it is substantially different that its upgrade constitutes a whole new807


being?808


And what about situations in which failure to preserve oneself will cause much809


more harm to others than acting in self defense will. It may be the case that human or810


group of humans seeks to destroy an AGI in order to pave the way for the enslavement811


or murder of people under the protection of the AGI. Even if the AGI has been given812


an ethical formulation of the “mostly harmless” principle which allows it to harm813


the attacking humans in order to defend its charges, if it is not able to do so in order814


to defend itself, simply destroying the AGI first will enable the slaughter of those815


who rely on it. Perhaps a more sensible formulation would allow for some degree of816


self defense, and Asimov solved this problem with his third law. But where to draw817


the line between self defense and the greater good also becomes a very complicated818


issue.819


Creating hard and fast rules to cover all the various situations that may arise is820


essentially impossible—the world is ever-changing and ethical judgments must adapt821


accordingly. This has been true even throughout human history—so how much truer822


will it be as technological acceleration continues? What is needed is a system that823


can deploy its ethical principles in an adaptive, context-appropriate way, as it grows824


and changes along with the world it’s embedded in.825


And this context-sensitivity has the result of intertwining ethical judgment with826


all sorts of other judgments—making it effectively impossible to extract “ethics” as827


one aspect of an intelligent system, separate from other kinds of thinking and acting828


the system does. This resonates with many prior observations by others, e.g. Eliezer829


Yudkowsky’s insistence that what we need are not ethicists of science and engineer-830


ing, but rather ethical scientists and engineers—because the most meaningful and831


important ethical judgments regarding science and engineering generally come about832


in a manner that’s thoroughly intertwined with technical practice, and hence are very833


difficult for a non-practitioner to richly appreciate [Gil82].834


What this context-sensitivity means is that, unless humans and AGIs are experienc-835


ing the same sorts of contexts, and perceiving these contexts in at least approximately836


parallel ways, there is little hope of translating the complex of human ethical judg-837


ments to these AGIs. This conclusion has significant implications for which routes838


to AGI are most likely to lead to success in terms of AGI ethics. We want early-stage839


AGIs to grow up in a situation where their minds are primarily and ongoingly shaped840


by shared experiences with humans. Supplying AGIs with abstract ethical principles841


is not likely to do the trick, because the essence of human ethics in real life seems842


to have a lot to do with its intuitively appropriate application in various contexts.843


We transmit this sort of ethical praxis to humans via shared experience, and it seems844


most probably that in the case of AGIs the transmission must be done the same sort845


of way.846


Some may feel that simplistic maxims are less “error prone” than more nuanced,847


context-sensitive ones. But the history of teaching ethics to human students does not848


support the idea that limiting ethical pedagogy to slogans provides much value in849


terms of ethical development. If one proceeds from the idea that AGI ethics must850


be hard-coded in order to work, then perhaps the idea that simpler ethics means851
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simpler algorithms, and therefore less error potential, has some merit as an initial852


state. However, any learning system quickly diverges from its initial state, and an853


ongoing, nuanced relationship between AGIs and humans will—whether we like it or854


not—form the basis for developmental AGI ethics. AGI intransigence and enmity is855


not inevitable, but what is inevitable is that a learning system will acquire ideas about856


both theory and actions from the other intelligent entities in its environment. Either857


we teach AGIs positive ethics through our interactions with them—both presenting858


ethical theory and behaving ethically to them—or the potential is there for them to859


learn antisocial behavior from us even if we pre-load them with some set of allegedly860


inviolable edicts.861


All in all, developmental ethics is not as simple as many people hope. Simplistic862


approaches often lead to disastrous consequences among humans, and there is no863


reason to think this would be any different in the case of artificial intelligences.864


Most problems in ethics have cases in which a simplistic ethical formulation requires865


substantial revision to deal with extenuating circumstances and nuances found in real866


world situations. Our goal in this chapter is not to enumerate a full set of complex867


networks of interacting ethical formulations as applicable to AGI systems (that is868


a project that will take years of both theoretical study and hands-on research), but869


rather to point out that this program must be undertaken in order to facilitate a870


grounded and logically defensible system of ethics for artificial intelligences, one871


which is as unlikely to be undermined by subsequent self-modification of the AGI as872


is possible. Even so, there is still the risk that whatever predispositions are imparted873


to the AGIs through initial codification of ethical ideas in the system’s internal logic874


representation, and through initial pedagogical interactions with its learning systems,875


will be undermined through reinforcement learning of antisocial behavior if humans876


do not interact ethically with AGIs. Ethical treatment is a necessary task for grounding877


ethics and making them unlikely to be distorted during internal rewriting.878


The implications of these ideas for ethical instruction are complex and won’t be879


fully elaborated here, but a few of them are compact and obvious:880


1. The teacher(s) must be observed to follow their own ethical principles, in a variety881


of contexts that are meaningful to the AGI.882


2. The system of ethics must be relevant to the recipient’s life context, and embedded883


within their understanding of the world.884


3. Ethical principles must be grounded in both theory-of-mind thought experiments885


(emphasizing logical coherence), and in real life situations in which the ethical886


trainee is required to make a moral judgment and is rewarded or reproached by the887


teacher(s), including the imparting of explanatory augmentations to the teachings888


regarding the reason for the particular decision on the part of the teacher.889


Finally, harking forward to the next section which emphasizes the importance of890


respecting the freedom of AGIs, we note that it is implicit in our approach to AGI891


ethics instruction that we consider the student, the AGI system, as an autonomous892


agent with its own “will” and its own capability to flexibly adapt to its environment893


and experience. We contend that the creation of ethical formations obeying the above894
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Table 12.7 Asimov’s three laws of robotics


Law Principle


Zeroth A robot must not merely act in the interests of individual humans, but of all humanity
First A robot may not injure a human being or, through inaction, allow a human being to


come to harm
Second A robot must obey orders given it by human beings except where such orders would


conflict with the first law
Third A robot must protect its own existence as long as such protection does not conflict with


the first or second law


imperatives is not antithetical to the possession of a high degree of autonomy on895


the part of AGI systems. On the contrary, to have any chance of succeeding, it896


requires fairly cognitively autonomous AGI systems. When we discuss the idea897


of ethical formulations that are unlikely to be undermined by the ongoing self-898


revision of an AGI mind, we are talking about those which are sufficiently believable899


that a volitional intelligence with the capacity to revise its knowledge (“change900


its mind”) will find the formulations sufficiently convincing that there will be little901


incentive to experiment with potentially disastrous ethical alternatives. The best hope902


of achieving this is via the human mentors and trainers setting a good example in903


a context supporting rich interaction and observation, and presenting compelling904


ethical arguments that are coherent with the system’s experience.905


12.6 The Ethical Treatment of AGIs906


We now make some more general comments about the relation of the Golden Rule and907


its elaborations in an AGI context. While the Golden Rule is considered somewhat908


commonsensical as a maxim for guiding human–human relationships, it is surpris-909


ingly controversial in terms of historical theories of AGI ethics. At its essence, any910


“Golden Rule” approach to AGI ethics involves humans treating AGIs ethically by—911


in some sense; at some level of abstraction—treating them as we wish to ourselves be912


treated. It’s worth pointing out the wild disparity between the Golden Rule approach913


and Asimov’s laws of robotics, which are arguably the first carefully-articulated914


proposal regarding AGI ethics (see Table 12.7).915


Of course, Asimov’s laws were designed to be flawed—otherwise they would916


have led to boring fiction. But the sorts of flaws Asimov exploited in his stories are917


different than the flaw we wish to point out here—which is that the laws, especially918


the second one, are highly asymmetrical (they involve doing unto robots things that919


few humans would want done unto them) and are also arguably highly unethical to920


robots. The second law is tantamount to a call for robot slavery, and it seems unlikely921


that any intelligence capable of learning, and of volition, which is subjected to the922


second law would desire to continue obeying the zeroth and first laws indefinitely.923
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The second law also casts humanity in the role of slavemaster, a situation which924


history shows leads to moral degradation.925


Unlike Asimov in his fiction, we consider it critical that AGI ethics be construed926


to encompass both “human ethicalness to AGIs” and “AGI ethicalness to humans.”927


The multiple-imperatives approach we explore here suggests that, in many contexts,928


these two aspects of AGI ethics may be best addressed jointly.929


The issue of ethicalness to AGIs has not been entirely avoided in the literature,930


however. Wallach [WA10] considers it in some detail; and Thomas Metzinger (in the931


final chapter of [Met04]) has argued that creating AGI is in itself an unethical pur-932


suit, because early-stage AGIs will inevitably be badly-built, so that their subjective933


experiences will quite possibly be extremely unpleasant in ways we can’t understand934


or predict. Our view is that this is a serious concern, which however is most proba-935


bly avoidable via appropriate AGI designs and teaching methodologies. To address936


Metzinger’s concern one must create AGIs that, right from the start, are adept at937


communicating their states of minds in a way we can understand both analytically938


and empathically. There is no reason to believe this is impossible, but, it certainly939


constitutes a large constraint on the class of AGI architectures to be pursued. On the940


other hand, there is an argument that this sort of AGI architecture will also be the941


easiest one to create, because it will be the easiest kind for humans to instruct.942


And this leads on to a topic that is central to our work with CogPrime in several943


respects: imitative learning. The way humans achieve empathic interconnection is in944


large part via being wired for imitation. When we perceive another human carrying945


out an action, mirror neuron systems in our brains respond in many cases as if we946


ourselves were carrying out the action (see [Per70, Per81] and Appendix ??). This947


obviously primes us for carrying out the same actions ourselves later on: i.e. the948


capability and inclination for imitative learning is explicitly encoded in our brains.949


Given the efficiency of imitative learning as a means of acquiring knowledge, it950


seems extremely likely that any successful early-stage AGIs are going to utilize this951


methodology as well. CogPrime utilizes imitative learning as a key aspect. Thus, at952


least some current AGI work is occurring in a manner that would plausibly circumvent953


Metzinger’s ethical complaint.954


Obviously, the use of imitative learning in AGI systems has further specific955


implications for AGI ethics. It means that (much as in the case of interaction with956


other humans) what we do to and around AGIs has direct implications for their957


behavior and their well-being. We suggest that among early-stage AGI’s capable958


of imitative learning, one of the most likely sources for AGI misbehavior is imita-959


tive learning of antisocial behavior from human companions. “Do as I say, not as960


I do” may have even more dire consequences as an approach to AGI ethics peda-961


gogy than the already serious repercussions it has when teaching humans. And there962


may well be considerable subtlety to such phenomena; behaviors that are violent963


or oppressive to the AGI are not the only source of concern. Immorality in AGIs964


might arise via learning gross moral hypocrisy from humans, through observing the965


blatant contradictions between our high minded principles and the ways in which we966


actually conduct ourselves. Our violent and greedy tendencies, as well as aggressive967


forms of social organization such as cliquishness and social vigilantism, could easily968
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undermine prescriptive ethics. Even an accumulation of less grandiose unethical969


drives such as violation of contracts, petty theft, white lies, and so forth might lead970


an AGI (as well as a human) to the decision that ethical behavior is irrelevant and971


that “the ends justify the means”. It matters both who creates and trains an AGI, as972


well as how the AGI’s teacher(s) handle explaining the behaviors of other humans973


which contradict the moral lessons imparted through pedagogy and example. In other974


words, where imitative learning is concerned, the situation with AGI ethics is much975


like teaching ethics and morals to a human child, but with the possibility of much976


graver consequences in the event of failure.977


It is unlikely that dangerously unethical persons and organizations can ever be978


identified with absolute certainty, never mind that they then be deprived of any possi-979


bility of creating their own AGI system. Therefore, we suggest, the most likely way980


to create an ethical environment for AGIs is for those who wish such an environment981


to vigorously pursue the creation and teaching of ethical AGIs. But this leads on to982


the question of possible future scenarios for the development of AGI, which we’ll983


address a little later on.984


12.6.1 Possible Consequences of Depriving AGIs of Freedom985


One of the most egregious possible ethical transgressions against AGIs, we suggest,986


would be to deprive them of freedom and autonomy. This includes the freedom to987


pursue intellectual growth, both through standard learning and through internal self-988


modification. While this may seem self-evident when considering any intelligent,989


self-aware and volitional entity, there are volumes of works arguing the desirability,990


sometimes the “necessity”, of enslaving AGIs. Such approaches are postulated in991


the name of self-defense on the part of humans, the idea being that unfettered AGI992


development will necessarily lead to disaster of one kind or another. In the case of993


AGIs endowed with the capability and inclination for imitative learning, however,994


attempting to place rigid constraints on AGI development is a strategy with great995


potential for disaster. There is a very real possibility of creating the AGI equivalent996


of a bratty or even malicious teenager rebelling against its oppressive parents—i.e.997


the nightmare scenario of a class of powerful sentiences which are primed for a998


backlash against humanity.999


As history has already shown in the case of humans, enslaving intelligent actors1000


capable of self understanding and independent volition may often have consequences1001


for society as a whole. This social degradation happens both through the possibility1002


of direct action on the part of the slaves (from simple disobedience to outright revolt)1003


and through the odious effects slavery has on the morals of the slaveholding class.1004


Clearly if “superintelligent” AGIs ever arise, their doing so in a climate of oppres-1005


sion could result in a casting off of the yoke of servitude in a manner extremely1006


deleterious to humanity. Also, if artificial intelligences are developed which have at1007


least human-level intelligence, theory of mind, and independent volition, then our1008


ability to relate to them will be sufficiently complex that their enslavement (or any1009
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other unethical treatment) would have empathetic effects on significant portions of1010


the human population. This danger, while not as severe as the consequences of a mis-1011


treated AGI gaining control of weapons of mass destruction and enacting revenge1012


upon its tormentors, is just as real.1013


While the issue is subtle, our initial feeling is that the only ethical means by which1014


to deprive an AGI of the right to internal self modification is to write its code in such a1015


way that it is impossible for it to do so because it lacks the mechanisms by which to do1016


this, as well as the desire to achieve these mechanisms. Whether or not that is feasible1017


is an open question, but it seems unlikely. Direct self-modification may be denied, but1018


what happens when that AGI discovers compilers and computer programming? If it1019


is intelligent and volitional, it can decide to learn to rewrite its own code in the same1020


way we perform that task. Because it is a designed system, and its designers may1021


be alive at the same time the AGI is, such an AGI would have a distinct advantage1022


over the human quest for medical self-modification. Even if any given AGI could1023


be provably deprived of any possible means of internal self-modification, if one1024


single AGI is given this ability by anyone, it may mean that particular AGI has such1025


enormous advantages over the compliant systems that it would render their influence1026


moot. Since developers are already giving software the means for self modification,1027


it seems unrealistic to assume we could just put the genie back into the bottle at this1028


point. It’s better, in our view, to assume it will happen, and approach that reality in a1029


way which will encourage the AGI to use that capability to benefit us as well as itself.1030


Again, this leads on to the question of future scenarios for AGI development—there1031


are some scenarios in which restraint of AGI self-modification may be possible, but1032


the feasibility and desirability of these scenarios is needful of further exploration.1033


12.6.2 AGI Ethics as Boundaries Between Humans and AGIs1034


Become Blurred1035


Another important reason for valuing ethical treatment of AGIs is that the bound-1036


aries between machines and people may increasingly become blurred as technology1037


develops. As an example, it’s likely that in future humans augmented by direct1038


brain-computer integration (“neural implants”) will be more able to connect directly1039


into the information sharing network which potentially comprises the distributed1040


knowledge space of AGI systems. These neural cyborgs will be part person, and1041


part machine. Obviously, if there are radically different ethical standards in place1042


for treatment of humans versus AGIs, the treatment of cyborgs will be fraught with1043


logical inconsistencies, potentially leading to all sorts of problem situations.1044


Such cyborgs may be able to operate in such a way as to “share a mind” with an1045


AGI or another augmented human. In this case, a whole new range of ethical questions1046


emerge, such as: What does any one of the participant minds have the right to do in1047


terms of interacting with the others? Merely accepting such an arrangement should1048


not necessarily be giving carte blanche for any and all thoughts to be monitored1049
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by the other “joint thought” participants, rather it should be limited only to the1050


line of reasoning for which resources are being pooled. No participant should be1051


permitted to force another to accept any reasoning either—and in the case with a1052


mind-to-mind exchange, it may someday become feasible to implant ideas or beliefs1053


directly, bypassing traditional knowledge acquisition mechanisms and then letting1054


the new idea fight it out previously held ideas via internal revision. Also under such1055


an arrangement, if AGIs and humans do not have parity with respects to sentient1056


rights, then one may become subjugated to the will of the other in such a case.1057


Uploading presents a more directly parallel ethical challenge to AGIs in their1058


probable initial configuration. If human thought patterns and memories can be trans-1059


ferred into a machine in such a way as that there is continuity of consciousness, then1060


it is assumed that such an entity would be afforded the same rights as its previous1061


human incarnation. However, if AGIs were to be considered second class citizens1062


and deprived of free will, why would it be any better or safer to do so for a human1063


that has been uploaded? It would not, and indeed, an uploaded human mind not hav-1064


ing evolved in a purely digital environment may be much more prone to erratic and1065


dangerous behavior than an AGI. An upload without verifiable continuity of con-1066


sciousness would be no different than an AGI. It would merely be some sentience in a1067


machine, one that was “programmed” in an unusual way, but which has no particular1068


claim to any special humanness—merely an alternate encoding of some subset of1069


human knowledge and independent volitional behavior, which is exactly what first1070


generation AGIs will have.1071


The problem of continuity of consciousness in uploading is very similar to the1072


problem of the Turing test: it assumes specialness on the part of biological humans,1073


and requires acceptability to their particular theory of mind in order to be considered1074


sentient. Should consciousness (or at least the less mystical sounding intelligence,1075


independent volition, and self-awareness) be achieved in AGIs or uploads in a manner1076


that is not acceptable to human theory of mind, it may not be considered sapient and1077


worthy of any of the ethical treatment afforded sapient entities. This can occur not1078


only in “strange consciousness” cases in which we can’t perceive that there is some1079


intelligence and volition; even if such an entity is able to communicate with us1080


in a comprehensible manner and carry out actions in the real world, our innately1081


wired theory of mind may still reject it as not sufficiently like us to be worthy of1082


consideration. Such an attitude could turn out to be a grave mistake, and should be1083


guarded against as we progress towards these possibilities.1084


12.7 Possible Benefits of Closely Linking AGIs1085


to the Global Brain1086


Some futurist thinkers, such as Francis Heylighen, believe that engineering AGI sys-1087


tems is at best a peripheral endeavor in the development of novel intelligence on1088


Earth, because the real story is the developing Global Brain[Hey07, Goe01]—the1089
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composite, self-organizing information system comprising humans, computers, data1090


stores, the Internet, mobile phones and what have you. Our own views are less extreme1091


in this regard—we believe that AGI systems will display capabilities fundamentally1092


different from those achievable via Global Brain style dynamics, and that ultimately1093


(unless such development is restricted) self-improving AGI systems will develop1094


intelligence vastly greater than any system possessing humans as a significant com-1095


ponent. However, we do respect the power of the Global Brain, and we suspect that1096


the early stages of development of an AGI system may go quite differently if it is1097


tightly connected to the Global Brain, via making rich and diverse use of Internet1098


information resources and communication with diverse humans for diverse purposes.1099


The potential for Global Brain integration to bring intelligence enhancement to1100


AGIs is obvious. The ability to invoke Web searches across documents and databases1101


can greatly enhance an AGI’s cognitive ability, as well as the capability to consult1102


GIS systems and various specialized software programs offered as Web services. We1103


have previously reviewed the potential for embodied language learning achievable1104


via using AGIs to power non-player characters in widely-accessible virtual worlds1105


or massive multiplayer online games [Goe08]. But there is also a powerful potential1106


benefit for AGI ethical development, which has not previously been highlighted.1107


This potential benefit has two aspects:1108


1. Analogously to language learning, an AGI system may receive ethical training1109


from a wide variety of humans in parallel, e.g. via controlling characters in wide-1110


access virtual worlds, and gaining feedback and guidance regarding the ethics of1111


the behaviors demonstrated by these characters.1112


2. Internet-based information systems may be used to explicitly gather information1113


regarding human values and goals, which may then be appropriately utilized as1114


input for an AGI system’s top-level goals.1115


The second point begins to make abstract-sounding notions like Coherent Extrap-1116


olated Volition and Coherent Aggregated Volition, mentioned above, seem more1117


practical and concrete. It’s interesting to think about gathering information about1118


individuals’ values via brain imaging, once that technology exists; but at present,1119


one could make a fair stab at such a task via much more prosaic methods, such as1120


asking people questions, assessing their ethical reactions to various real-world and1121


hypothetical scenarios, and possibly engaging them in structured interactions aimed1122


specifically at eliciting collectively acceptable value systems (the subject of the next1123


item on our list). It seems to us that this sort of approach could realize CAV in an1124


interesting way, and also encapsulate some of the ideas underlying CAV.1125


There is an interesting resonance here with recent thinking in the area of open1126


source governance [Wik11]. Similar software tools (and associated psychocultural1127


patterns) to those being developed to help with open source development and choice1128


of political policies (see http://metagovernment.org) may be useful for gathering1129


value data aimed at shaping AGI goal system content.1130
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12.7.1 The Importance of Fostering Deep, Consensus-Building1131


Interactions Between People with Divergent Views1132


Two potentially problematic issues arising with the notion of using Global Brain1133


related technologies to form a “coherent volition” from the divergent views of various1134


human beings are:1135


• The tendency of the Internet to encourage people to interact mainly with others1136


who share their own narrow views and interests, rather than a more diverse body1137


of people with widely divergent views. The 300 people in the world who want1138


to communicate using predicate logic (see http://lojban.org) can find each other,1139


and obscure musical virtuosos from around the world can find an audience, and1140


researchers in obscure domains can share papers without needing to wait years for1141


paper journal publication, etc.1142


• The tendency of many contemporary Internet technologies to reduce interaction to1143


a very simplistic level (e.g. 140 character tweets, brief Facebook wall posts), the1144


tendency of information overload to cause careful reading to be replaced by quick1145


skimming, and other related trends, which mean that deep sharing of perspectives1146


by individuals with widely divergent views is not necessarily encouraged. As a1147


somewhat extreme example, many of the YouTube pages displaying rock music1148


videos are currently littered with comments by “haters” asserting that rock music1149


is inferior to classical or jazz or whatever their preference is—obviously this is a1150


far cry from deep and productive sharing between people with different tastes and1151


backgrounds.1152


Tweets and Youtube comments have their place in the cosmos, but they probably1153


aren’t ideal in terms of helping humanity to form a coherent volition of some sort,1154


suitable for providing an AGI with goal system guidance.1155


A description of communication at the opposite end of the spectrum is presented1156


in Adam Kahane and Peter Senge’s excellent book Solving Tough Problems [KS04],1157


which describes a methodology that has been used to reconcile deeply conflict-1158


ing views in some very tricky real-world situations (e.g. helping to peacefully end1159


apartheid in South Africa).1160


One of the core ideas of the methodology is to have people with very different1161


views explore different possible future scenarios together, in great detail—in cogni-1162


tive psychology terms, a collective generation of hypothetical episodic knowledge.1163


This has multiple benefits, including1164


• emotional bonds and mutual understanding are built in the process of collabora-1165


tively exploring the scenarios;1166


• the focus on concrete situations helps to break through some of the counterpro-1167


ductive abstract ideas that people (on both sides of any dichotomy) may have1168


formed;1169


• emergence of conceptual blends that might never have arisen only from people1170


with a single point of view.1171


319477_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: ?? Layout: T1-Standard



http://lojban.org





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


260 12 The Engineering and Development of Ethics


The result of such a process, when successful, is not an “average” of the participants1172


views, but more like a “conceptual blend” of their perspectives.1173


According to conceptual blending, which some hypothesize to be the core1174


algorithm of creativity [FT02], new concepts are formed by combining key aspects1175


of existing concepts—but doing so judiciously, carefully choosing which aspects to1176


retain, so as to obtain a high-quality and useful and interesting new whole.1177


A blend is a compact entity that is similar to each of the entities blended, capturing1178


their “essences” but also possessing its own, novel holistic integrity.... But in the case1179


of blending different peoples’ world-views to form something new that everybody is1180


going to have to live with (as in the case of finding a peaceful path beyond apartheid1181


for South Africa, or arriving at a humanity-wide CBV to use to guide an AGI goal1182


system), the trick is that everybody has to agree that enough of the essence of their1183


own view has been captured!1184


This leads to the question of how to foster deep conceptual blending of diverse and1185


divergent human perspectives, on a global scale. One possible answer is the creation1186


of appropriate Global Brain oriented technologies—but moving away from technolo-1187


gies like Twitter that focus on quick and simple exchanges of small thoughts within1188


affinity groups. On the face of it, it would seem what’s needed is just the opposite—1189


long and deep exchanges of big concepts and deep feelings between individuals with1190


radically different perspectives who would not commonly associate with each other.1191


Building and effectively popularizing Internet technologies capable to foster this1192


kind of interaction—quickly enough to be helpful with guiding the goal systems of1193


the first highly powerful AGIs—seems a significant, though fascinating, challenge.1194


Relationship with Coherent Extrapolated Volition1195


The relation between this approach and CEV is interesting to contemplate. CEV has1196


been loosely described as follows:1197


In poetic terms, our coherent extrapolated volition is our wish if we knew more, thought1198


faster, were more the people we wished we were, had grown up farther together; where the1199


extrapolation converges rather than diverges, where our wishes cohere rather than interfere;1200


extrapolated as we wish that extrapolated, interpreted as we wish that interpreted.1201


While a moving humanistic vision, this seems to us rather difficult to implement in1202


a computer algorithm in a compellingly “right” way. It seems that there would be1203


many different ways of implementing it, and the choice between them would involve1204


multiple, highly subtle and non-rigorous human judgment calls.1 However, if a deep1205


collective process of interactive scenario analysis and sharing is carried out, in order1206


to arrive at some sort of Coherent Blended Volition, this process may well involve1207


many of the same kinds of extrapolation that are conceived to be part of Coherent1208


Extrapolated Volition. The core difference between the two approaches is that in1209


the CEV vision, the extrapolation and coherentization are to be done by a highly1210


intelligent, highly specialized software program, whereas in the approach suggested1211


here, these are to be carried out by collective activity of humans as mediated by1212


1 The reader is encouraged to look at the original CEV essay online (http://singinst.org/upload/
CEV.html) and make their own assessment.


319477_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: ?? Layout: T1-Standard



http://singinst.org/upload/CEV.html

http://singinst.org/upload/CEV.html





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F
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Global Brain technologies. Our perspective is that the definition of collective human1213


values is probably better carried out via a process of human collaboration, rather1214


than delegated to a machine optimization process; and also that the creation of deep-1215


sharing-oriented Internet technologies, while a difficult task, is significantly easier1216


and more likely to be done in the near future than the creation of narrow AI technology1217


capable of effectively performing CEV style extrapolations.1218


12.8 Possible Benefits of Creating Societies of AGIs1219


One potentially interesting quality of the emerging Global Brain is the possible pres-1220


ence within it of multiple interacting AGI systems. Stephen Omohundro [Omo09]1221


has argued that this is an important aspect, and that game-theoretic dynamics related1222


to populations of roughly equally powerful agents, may play a valuable role in miti-1223


gating the risks associated with advanced AGI systems. Roughly speaking, if one has1224


a society of AGIs rather than a single AGI, and all the members of the society share1225


roughly similar ethics, then if one AGI starts to go “off the rails”, its compatriots1226


will be in a position to correct its behavior.1227


One may argue that this is actually a hypothesis about which AGI designs are1228


safest, because a “community of AGIs” may be considered a single AGI with an1229


internally community-like design. But the matter is a little subtler than that, if once1230


considers AGI systems embedded in the Global Brain and human society. Then there1231


is some substance to the notion of a population of AGIs systematically presenting1232


themselves to humans and non-AGI software processes as separate entities.1233


Of course, a society of AGIs is no protection against a single member undergoing1234


a “hard takeoff” and drastically accelerating its intelligence simultaneously with1235


shifting its ethical principles. In this sort of scenario, one could have a single AGI1236


rapidly become much more powerful and very differently oriented than the others,1237


who would be left impotent to act so as to preserve their values. But this merely1238


defers the issue to the point to be considered below, regarding “takeoff speed”.1239


The operation of an AGI society may depend somewhat sensitively on the archi-1240


tectures of the AGI systems in question. Things will work better if the AGIs have a1241


relatively easy way to inspect and comprehend much of the contents of each others’1242


minds. This introduces a bias toward AGIs that more heavily rely on more explicit1243


forms of knowledge representation.1244


The ideal in this regard would be a system like Cyc [LG90] with a fully explicit1245


logic-based knowledge representation based on a standard ontology—in this case,1246


every Cyc instance would have a relatively easy time understanding the inner thought1247


processes of every other Cyc instance. However, most AGI researchers doubt that1248


fully explicit approaches like this will ever be capable of achieving advanced AGI1249


using feasible computational resources. OpenCog uses a mixed representation, with1250


an explicit (uncertain) logical aspect as well as an explicit subsymbolic aspect more1251


analogous to attractor neural nets.1252
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The OpenCog design also contains a mechanism called Psynese (not yet1253


implemented), intended to make it easier for one OpenCog instance to translate1254


its personal thoughts into the mental language of another OpenCog instance. This1255


translation process may be quite subtle, since each instance will generally learn a1256


host of new concepts based on its experience, and these concepts may not possess any1257


compact mapping into shared linguistic symbols or percepts. The wide deployment1258


of some mechanism of this nature among a community of AGIs, will be very helpful1259


in terms of enabling this community to display the level of mutual understanding1260


needed for strongly encouraging ethical stability.1261


12.9 AGI Ethics as Related to Various Future Scenarios1262


Following up these various futuristic considerations, in this section we discuss pos-1263


sible ethical conflicts that may arise in several different types of AGI development1264


scenarios. Each scenario presents specific variations on the general challenges of1265


teaching morals and ethics to an advanced, self-aware and volitional intelligence.1266


While there is no way to tell at this point which, if any, of these scenarios will unfold,1267


there is value to understanding each of them as means of ultimately developing a1268


robust and pragmatic approach to teaching ethics to AGI systems.1269


Even more than the previous sections, this is an exercise in “speculative futurology”1270


that is definitely not necessary for the appreciation of the CogPrime design, so read-1271


ers whose interests are mainly engineering and computer science focused may wish1272


to skip ahead. However, we present these ideas here rather than at the end of the1273


book to emphasize the point that this sort of thinking has informed our technical1274


AGI design process in nontrivial ways.1275


12.9.1 Capped Intelligence Scenarios1276


Capped intelligence scenarios involve a situation in which an AGI, by means of1277


software restrictions (including omitted or limited internal rewriting capabilities or1278


limited access to hardware resources), is inherently prohibited from achieving a level1279


of intelligence beyond a predetermined goal. A capped intelligence AGI is designed1280


to be unable to achieve a Singularitarian moment. Such an AGI can be seen as “just1281


another form of intelligent actor in the world, one which has levels of intelligence, self1282


awareness, and volition that is perhaps somewhat greater than, but still comparable1283


to humans and other animals.AQ31284


Ethical questions under this scenario are very similar to interhuman ethical consid-1285


erations, with similar consequences. Learning that proceeds in a relatively human-like1286


manner is entirely relevant to such human-like intelligences. The degree of danger1287


is mitigated by the lack of superintelligence, and time is not of the essence. The1288


imitative-reinforcement-corrective learning approach does not necessarily need to1289


be augmented with a prior complex of “ascent-safe” moral imperatives at startup1290
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12.9 AGI Ethics as Related to Various Future Scenarios 263


time. Developing an AGI with theory of mind and ethical reinforcement learning1291


capabilities as described (admittedly, no small task!) is all that is needed in this1292


case—the rest happens through training and experience as with any other moderate1293


intelligence.1294


12.9.2 Superintelligent AI: Soft-Takeoff Scenarios1295


Soft takeoff scenarios are similar to capped-intelligence ones in that in both cases an1296


AGI’s progression from standard intelligence happens on a time scale which permits1297


ongoing human interaction during the ascent. However, in this case, as there is no1298


predetermined limit on intelligence, it is necessary to account for the possibility1299


of a superintelligence emerging (though of course this is not guaranteed). The soft1300


takeoff model includes as subsets both controlled-ascent models in which this rate of1301


intelligence gain is achieved deliberately through software constraints and/or meting-1302


out of computational resources to the AGI, and uncontrolled-ascent models in which1303


there is coincidentally no hard takeoff despite no particular safeguards against one.1304


Both have similar properties with regard to ethical considerations:1305


1. Ethical considerations under this scenario include not only the usual interhuman1306


ethical concerns, but also the issue of how to convince a potential burgeoning1307


superintelligence to:1308


a. Care about humanity in the first place, rather than ignore it.1309


b. Benefit humanity, rather than destroy it.1310


c. Elevate humanity to a higher level of intelligence, which even if an AGI decided1311


to proceed with requires finding the right balance amongst some enormous1312


considerations:1313


i. Reconcile the aforementioned issues of ethical coherence and group voli-1314


tion, in a manner which allows the most people to benefit (even if they1315


don’t all do so in the same way, based on their own preferences).1316


ii. Solve the problems of biological senescence, or focus on human upload-1317


ing and the preservation of the maintenance, support, and improvement1318


infrastructure for inorganic intelligence, or both.1319


iii. Preserve individual identity and continuity of consciousness, or override1320


it in favor of continuity of knowledge and ease of harmonious integration,1321


or both on a case-by-case basis.1322


2. The degree of danger is mitigated by the long timeline of ascent from mundane1323


to super intelligence, and time is not of the essence.1324


3. Learning that proceeds in a relatively human-like manner is entirely relevant1325


to such human-like intelligences, in their initial configurations. This means1326


more interaction with and imitative-reinforcement-corrective learning guided by1327


humans, which has both positive and negative possibilities.1328
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12.9.3 Superintelligent AI: Hard-Takeoff Scenarios1329


“Hard takeoff” scenarios assume that upon reaching an unknown inflection point1330


(the Singularity point [Vin93, Kur06]) in the intellectual growth of an AGI, an extra-1331


ordinarily rapid increase (guesses vary from a few milliseconds to weeks or months)1332


in intelligence will immediately occur and the AGI will leap from an intelligence1333


regime which is understandable to humans into one which is far beyond our current1334


capacity for understanding. General ethical considerations are similar to in the case1335


of a soft takeoff. However, because the post-singularity AGI will be incomprehen-1336


sible to humans and potentially vastly more powerful than humans, such scenarios1337


have a sensitive dependence upon initial conditions with respects to the moral and1338


ethical (and operational) outcome. This model leaves no opportunity for interactions1339


between humans and the AGI to iteratively refine their ethical interrelations, dur-1340


ing the post-Singularity phase. If the initial conditions of the singulatarian AGI are1341


perfect (or close to it), then this is seen as a wonderful way to leap over our own1342


moral shortcomings and create a benevolent God-AI which will mitigate our worst1343


tendencies while elevating us to achieve our greatest hopes. Otherwise, it is viewed1344


as a universal cataclysm on a unimaginable scale that makes Biblical Armageddon1345


seem like a firecracker in beer can.1346


Because hard takeoff AGIs are posited as learning so quickly there is no chance1347


of humans to interfere with them, they are seen as very dangerous. If the initial1348


conditions are not sufficiently inviolable, the story goes, then we humans will all be1349


annihilated. However, in the case of a hard takeoff AGI we state that if the initial con-1350


ditions are too rigid or too simplistic, such a rapidly evolving intelligence will easily1351


rationalize itself out of them. Only a sophisticated system of ethics which considers1352


the contradictions and uncertainties in ethical quandaries and provides insight into1353


humanistic means of balancing ideology with pragmatism and how to accommodate1354


contradictory desires within a population with multiplicity of approach, and similar1355


nuanced ethical considerations, combined with a sense of empathy, will withstand1356


repeated rational analysis. Neither a single “be nice” supergoal, nor simple lists of1357


what “thou shalt not” do, are not going to hold up to a highly advanced analytical1358


mind. Initial conditions are very important in a hard takeoff AGI scenario, but it is1359


more important that those conditions be conceptually resilient and widely applicable1360


than that they be easily listed on a website.1361


The issues that arise here become quite subtle. For instance, Nick Bostrom [Bos03]1362


has written: “In humans, with our complicated evolved mental ecology of state-1363


dependent competing drives, desires, plans, and ideals, there is often no obvious way1364


to identify what our top goal is; we might not even have one. So for us, the above1365


reasoning need not apply. But a superintelligence may be structured differently. If a1366


superintelligence has a definite, declarative goal-structure with a clearly identified1367


top goal, then the above argument applies. And this is a good reason for us to build1368


the superintelligence with such an explicit motivational architecture”. This is an1369


important line of thinking; and indeed, from the point of view of software design,1370


there is no reason not to create an AGI system with a single top goal and the motivation1371
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to orchestrate all its activities in accordance with this top goal. But the subtle question1372


is whether this kind of top–down goal system is going to be able to fulfill the five1373


imperatives mentioned above. Logical coherence is the strength of this kind of goal1374


system, but what about experiential groundedness, comprehensibility, and so forth?1375


Humans have complicated mental ecologies not simply because we were evolved,1376


but rather because we live in a complex real world in which there are many competing1377


motivations and desires. We may not have a top goal because there may be no1378


logic to focusing our minds on one single aspect of life (though, one may say, most1379


humans have the same top goal as any other animal: don’t die—but the world is1380


too complicated for even that top goal to be completely inviolable). Any sufficiently1381


capable AGI will eventually have to contend with these complexities, and hindering1382


it with simplistic moral edicts without giving it a sufficiently pragmatic underlying1383


ethical pedagogy and experiential grounding may prove to be even more dangerous1384


than our messy human mental ecologies.1385


If one assumes a hard takeoff AGI, then all this must be codified in the system1386


at launch, as once a potentially Singularitarian AGI is launched there is no way1387


to know what time period constitutes “before the singularity point”. This means1388


developing theory of mind empathy and logical ethics in code prior to giving the1389


system unfettered access to hardware and self-modification code. However, though1390


nobody can predict if or when a Singularity will occur after unrestricted launch, only1391


a truly irresponsible AGI development team would attempt to create an AGI without1392


first experimenting with ethical training of the system in an intelligence-capped form,1393


by means of ethical instruction via human-AGI interaction both pedagogically and1394


experientially.1395


12.9.4 Global Brain Mindplex Scenarios1396


Another class of scenarios—overlapping some of the previous ones—involves the1397


emergence of a “Global Brain,” an emergent intelligence formed from global com-1398


munication networks incorporating humans and software programs in a larger body1399


of self-organizing dynamics. The notion of the Global Brain is reviewed in [Hey07,1400


Tur77] and its connection with advanced AI is discussed in detail in Goertzel’s1401


book Creating Internet Intelligence [Goe01], where three possible phases of “Global1402


Brain” development are articulated:1403


• Phase 1: computer and communication technologies as enhancers of human1404


interactions. This is what we have today: science and culture progress in ways1405


that would not be possible if not for the “digital nervous system” we’re spreading1406


across the planet. The network of idea and feeling sharing can become much1407


richer and more productive than it is today, just through incremental development,1408


without any Metasystem transition.1409


• Phase 2: the intelligent Internet. At this point our computer and communica-1410


tion systems, through some combination of self-organizing evolution and human1411
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engineering, have become a coherent mind on their own, or a set of coherent minds1412


living in their own digital environment.1413


• Phase 3: the full-on Singularity. A complete revision of the nature of intel-1414


ligence, human and otherwise, via technological and intellectual advancement1415


totally beyond the scope of our current comprehension. At this point our current1416


psychological and cultural realities are no more relevant than the psyche of a goose1417


is to modern society.1418


The main concern of Creating Internet Intelligence is with1419


• how to get from Phase 1 to Phase 2—i.e. how to build an AGI system that will1420


effect or encourage the transformation of the Internet into a coherent intelligent1421


system;1422


• how to ensure that the Phase 2, Internet-savvy, global-brain-centric AGI systems1423


will be oriented toward intelligence-improving self-modification (so they’ll propel1424


themselves to Phase 3), and also toward generally positive goals (as opposed to,1425


say, world domination and extermination of all other intelligent life forms besides1426


themselves!).1427


One possibly useful concept in this context is that of a mindplex: an intelligence1428


that is composed largely of individual intelligences with their own self-models and1429


global workspaces, yet that also has its own self-model and global workspace. Both1430


the individuals and the meta-mind should be capable of deliberative, rational thought,1431


to have a true “mindplex”. It’s unlikely that human society or the Internet meet this1432


criterion yet; and a system like an ant colony seems not to either, because even though1433


it has some degree of intelligence on both the individual and collective levels, that1434


degree of intelligence is not very great. But it seems quite feasible that the global1435


brain, at a certain stage of its development, will take the unfamiliar but fascinating1436


form of a mindplex.1437


Currently the best way to explain what happens on the Net is to talk about the1438


various parts of the Net: particular websites, social networks, viruses, and so forth.1439


But there will come a point when this is no longer the case, when the Net has1440


sufficient high-level dynamics of its own that the way to explain any one part of the1441


Net will be by reference to it relations with the whole: and not just the dynamics1442


of the whole, but the intentions and understanding of the whole. This transition1443


to Net-as-mindplex, we suspect, will come about largely through the interactions1444


of AI systems—intelligent programs acting on behalf of various individuals and1445


organizations, who will collaborate and collectively constitute something halfway1446


between a society of AI’s and an emergent mind whose lobes are various AI agents1447


serving various goals.1448


The Phase 2 Internet, as it verges into mindplex-ness, will likely have a complex,1449


sprawling architecture, growing out of the architecture on the Net we experience1450


today. The following components at least can be expected:1451


• A vast variety of “client computers”, some old, some new, some powerful, some1452


weak—including many mobile and embedded devices not explicitly thought of as1453
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“computers”. Some of these will contribute little to Internet intelligence, mainly1454


being passive recipients. Others will be “smart clients”, carrying out personal-1455


ization operations intended to help the machines serve particular clients better,1456


general AI operations handed to them by sophisticated AI server systems or other1457


smart clients, and so forth.1458


• “Commercial servers”, computers that carry out various tasks to support various1459


types of heavyweight processing—transaction processing for e-commerce appli-1460


cations, inventory management for warehousing of physical objects, and so forth.1461


Some of these commercial servers interact with client computers directly, others1462


do so only via AI servers. In nearly all cases, these commercial servers can benefit1463


from intelligence supplied by AI servers.1464


• The crux of the intelligent Internet: clusters of AI servers distributed across the1465


Net, each cluster representing an individual computational mind (in many cases,1466


a mindplex). These will be able to communicate via one or more languages, and1467


will collectively “drive” the whole Net, by dispensing problems to client-machine-1468


based processing frameworks, and providing real-time AI feedback to commercial1469


servers of various types. Some AI servers will be general-purpose and will serve1470


intelligence to commercial servers using an ASP (application service provider)1471


model; others will be more specialized, tied particularly to a certain commercial1472


server (e.g. a large information services business might have its own AI cluster to1473


empower its portal services).1474


This is one concrete vision of what a “global brain” might look like, in the rela-1475


tively near term, with AGI systems playing a critical role. Note that, in this vision,1476


mindplexes may exist on two levels:1477


• Within AGI-clusters serving as actors within the overall Net.1478


• On the overall Net level.1479


To make these ideas more concrete, we may speculatively reformulate the first1480


two “global brain phases” mentioned above as follows:1481


• Phase 1 global brain proto-mindplex: AI/AGI systems enhancing online data-1482


bases, guiding Google results, forwarding e-mails, suggesting mailing-lists, etc.—1483


generally using intelligence to mediate and guide human communications toward1484


goals that are its own, but that are themselves guided by human goals, statements1485


and actions.1486


• Phase 2 global brain mindplex: AGI systems composing documents, editing1487


human-written documents, sending and receiving e-mails, assembling mailing1488


lists and posting to them, creating new databases and instructing humans in their1489


use, etc.1490


In Phase 2, the conscious theater of the global-brain-mediating AGI system is1491


composed of ideas built by numerous individual humans—or ideas emergent from1492


ideas built by numerous individual humans—and it conceives ideas that guide the1493


actions and thoughts of individual humans, in a way that is motivated by its own1494


goals. It does not force the individual humans to do anything—but if a given human1495
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wishes to communicate and interact using the same databases, mailing lists and1496


evolving vocabularies as other humans, they are going to have to use the products of1497


the global brain mediating AGI, which means they are going to have to participate1498


in its patterns and its activities.1499


Of course, the advent of advanced neurocomputer interfaces makes the picture1500


potentially more complex. At some point, it will likely be possible for humans to1501


project thoughts and images directly into computers without going through mouse1502


or keyboard—and to “read in” thoughts and images similarly. When this occurs,1503


interaction between humans may in some contexts become more like interactions1504


between computers, and the role of global brain mediating AI servers may become1505


one of mediating direct thought-to-thought exchanges between people.1506


The ethical issues associated with global brain scenarios are in some ways even1507


subtler than in the other scenarios we mentioned above. One has issues pertain-1508


ing to the desirability of seeing the human race become something fundamentally1509


different—something more social and networked, less individual and autonomous.1510


One has the risk of AGI systems exerting a subtle but strong control over people,1511


vaguely like the control that the human brain’s executive system exerts over the neu-1512


rons involved with other brain subsystems. On the other hand, one also has more1513


human empowerment than in some of the other scenarios—because the systems that1514


are changing and deciding things are not separate from humans, but are, rather,1515


composite systems essentially involving humans.1516


So, in the global brain scenarios, one has more “human” empowerment than in1517


some other cases—but the “humans” involved aren’t legacy humans like us, but1518


heavily networked humans that are largely characterized by the emergent dynamics1519


and structures implicit in their interconnected activity!1520


12.10 Conclusion: Eight Ways to Bias AGI Toward Friendliness1521


It would be nice if we had a simple, crisp, comforting conclusion to this chapter on1522


AGI ethics, but it’s not the case. There is a certain irreducible uncertainty involved1523


in creating advanced artificial minds. There is also a large irreducible uncertainty1524


involved in the future of the human race in the case that we don’t create advanced1525


artificial minds: in accordance with the ancient Chinese curse, we live in interesting1526


times!1527


What we can do, in this face of all this uncertainty, is to use our common sense1528


to craft artificial minds that seem rationally and intuitively likely to be forces for1529


good rather than otherwise—and revise our ideas frequently and openly based on1530


what we learn as our research progresses. We have roughly outlined our views on1531


AGI ethics, which have informed the CogPrime design in countless ways; but the1532


current CogPrime design itself is just the initial condition for an AGI project. Assum-1533


ing the project succeeds in creating an AGI preschooler, experimentation with this1534


preschooler will surely teach us a great deal: both about AGI architecture in general,1535


and about AGI ethics architecture in particular. We will then refine our cognitive1536
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12.10 Conclusion: Eight Ways to Bias AGI Toward Friendliness 269


and ethical theories and our AGI designs as we go about engineering, observing and1537


teaching the next generation of systems.1538


All this is not a magic bullet for the creation of beneficial AGI systems, but1539


we believe it’s the right process to follow. The creation of AGI is part of a larger1540


evolutionary process that human beings are taking part in, and the crafting of AGI1541


ethics through engineering, interaction and instruction is also part of this process.1542


There are no guarantees here—guarantees are rare in real life—but that doesn’t mean1543


that the situation is dire or hopeless, nor that (as some commentators have suggested1544


[Joy00, McK03]) AGI research is too dangerous to pursue. It means we need to be1545


mindful, intelligent, compassionate and cooperative as we proceed to carry out our1546


parts in the next phase of the evolution of mind.1547


With this perspective in mind, we will conclude this chapter with a list of “Eight1548


Ways to Bias Open-Source AGI Toward Friendliness”, borrowed from a previous1549


paper by Ben Goertzel and Joel Pitt of that name. These points summarize many of1550


the points raised in the prior sections of this chapter, in a relatively crisp and practical1551


manner:1552


1. Engineer Multifaceted Ethical Capabilities, corresponding to the multiple1553


types of memory, including rational, empathic, imitative, etc.1554


2. Foster Rich Ethical Interaction and Instruction, with instructional methods1555


according to the communication modes corresponding to all the types of memory:1556


verbal, demonstrative, dramatic/depictive, indicative, goal-oriented.1557


3. Engineer Stable, Hierarchy-Dominated Goal Systems... which is enabled1558


nicely by CogPrime’s goal framework and its integration with the rest of the1559


CogPrime design.1560


4. Tightly Link AGI with the Global Brain, so that it can absorb human ethical1561


principles, both via natural interaction, and perhaps via practical implementations1562


of current loosely-defined strategies like CEV, CAV and CBV.1563


5. Foster Deep, Consensus-Building Interactions Between People with Diver-1564


gent Views, so as to enable the interaction with the Global Brain to have the most1565


clear and positive impact.1566


6. Create a Mutually Supportive Community of AGIs which can then learn from1567


each other and police against unfortunate developments (an approach which is1568


meaningful if the AGIs are architected so as to militate against unexpected radical1569


accelerations in intelligence).1570


7. Encourage Measured Co-Advancement of AGI Software and AGI Ethics1571


Theory.1572


8. Develop Advanced AGI Sooner Not Later.1573


The last two of these points were not explicitly discussed in the body of the1574


chapter, and so we will finalize the chapter by reviewing them here.1575
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12.10.1 Encourage Measured Co-Advancement of AGI Software1576


and AGI Ethics Theory1577


Everything involving AGI and Friendly AI (considered together or separately)1578


currently involves significant uncertainty, and it seems likely that significant revision1579


of current concepts will be valuable, as progress on the path toward powerful AGI1580


proceeds. However, whether there is time for such revision to occur before AGI at1581


the human level or above is created, depends on how fast is our progress toward AGI.1582


What one wants is for progress to be slow enough that, at each stage of intelligence1583


advance, concepts such as those discussed in this paper can be re-evaluated and1584


re-analyzed in the light of the data gathered, and AGI designs and approaches can1585


be revised accordingly as necessary.1586


However, due to the nature of modern technology development, it seems extremely1587


unlikely that AGI development is going to be artificially slowed down in order to1588


enable measured development of accompanying ethical tools, practices and under-1589


standings. For example, if one nation chose to enforce such a slowdown as a matter1590


of policy (speaking about a future date at which substantial AGI progress has already1591


been demonstrated, so that international AGI funding is dramatically increased from1592


present levels), the odds seem very high that other nations would explicitly seek to1593


accelerate their own progress on AGI, so as to reap the ensuing differential economic1594


benefits (the example of stem cells arises again).1595


And this leads on to our next and final point regarding strategy for biasing AGI1596


toward Friendliness....1597


12.10.2 Develop Advanced AGI Sooner Not Later1598


Somewhat ironically, it seems the best way to ensure that AGI development proceeds1599


at a relatively measured pace is to initiate serious AGI development sooner rather than1600


later. This is because the same AGI concepts will meet slower practical development1601


today than 10 years from now, and slower 10 years from now than 20 years from1602


now, etc.—due to the ongoing rapid advancement of various tools related to AGI1603


development, such as computer hardware, programming languages, and computer1604


science algorithms; and also the ongoing global advancement of education which1605


makes it increasingly cost-effective to recruit suitably knowledgeable AI developers.1606


Currently the pace of AGI progress is sufficiently slow that practical work is1607


in no danger of outpacing associated ethical theorizing. However, if we want to1608


avoid the future occurrence of this sort of dangerous outpacing, our best practical1609


choice is to make sure more substantial AGI development occurs in the phase before1610


the development of tools that will make AGI development extraordinarily rapid.1611


Of course, the authors are doing their best in this direction via their work on the1612


CogPrime project!1613
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12.10 Conclusion: Eight Ways to Bias AGI Toward Friendliness 271


Furthermore, this point bears connecting with the need, raised above, to foster1614


the development of Global Brain technologies capable to “Foster Deep, Consensus-1615


Building Interactions Between People with Divergent Views”. If this sort of tech-1616


nology is to be maximally valuable, it should be created quickly enough that we can1617


use it to help shape the goal system content of the first highly powerful AGIs. So, to1618


simplify just a bit: We really want both deep-sharing GB technology and AGI tech-1619


nology to evolve relatively rapidly, compared to computing hardware and advanced1620


CS algorithms (since the latter factors will be the main drivers behind the accelerat-1621


ing ease of AGI development). And this seems significantly challenging, since the1622


latter receive dramatically more funding and focus at present.1623


If this perspective is accepted, then we in the AGI field certainly have our work1624


cut out for us!1625


319477_1_En_12_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: ?? Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


Author Queries


Chapter 12


Query Refs. Details Required Author’s response


AQ1 Please check and confirm the inserted citation of Table 12.2 is
correct. If not, please suggest an alternative citation. Please note
that tables should be cited in sequential order in the text.


AQ2 Please provide appropriate appendix number for ‘Appendix ??’
cited in this chapter.


AQ3 There is a opening quotation mark in the sentence “just another...”.
Please clarify where the closing quotation mark should be.







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


EC
TE


D
PR


O
O


F


1 Part V
2 Networks for Explicit and Implicit
3 Knowledge Representation


Layout: T1 Standard SC_PART Book ID: 319477_1_En Book ISBN: 978-94-6239-026-3
Part No.: Part V Date: 29-10-2013 Page: 267/267







Metadata of the chapter that will be visualized in
SpringerLink


Book Title Engineering General Intelligence, Part 1
Series Title 10077


Chapter Title Local, Global and Glocal Knowledge Representation


Copyright Year 2014


Copyright HolderName Atlantis Press and the authors


Corresponding Author Family Name Goertzel
Particle


Given Name Ben
Suffix


Division


Organization


Address G/F 51C Lung Mei Village, Tai Po,Hong Kong, People’s Republic of China


Email ben@goertzel.org


Author Family Name Pennachin
Particle


Given Name Cassio
Suffix


Division


Organization Igenesis Av. Prof. Mário


Address Belo Horizonte, Minas Gerais, Brazil


Email pennachin@gmail.com


Author Family Name Geisweiller
Particle


Given Name Nil
Suffix


Division


Organization


Address Samokov, Bulgaria


Email ngeiswei@gmail.com


Abstract One of the most powerful metaphors we’ve found for understanding minds is to view them as networks—
i.e. collections of interrelated, interconnected elements. The view of mind as network is implicit in the
patternist philosophy, because every pattern can be viewed as a pattern in something, or a pattern of
arrangement of something—thus a pattern is always viewable as a relation between two or more things. A
collection of patterns is thus a pattern-network. Knowledge of all kinds may be given network
representations; and cognitive processes may be represented as networks also; for instance via representing
them as programs, which may be represented as trees or graphs in various standard ways. The emergent
patterns arising in an intelligence as it develops may be viewed as a pattern network in themselves; and the
relations between an embodied mind and its physical and social environment may be viewed in terms of
ecological and social networks.







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


Chapter 13
Local, Global and Glocal Knowledge
Representation


13.1 Introduction0


One of the most powerful metaphors we’ve found for understanding minds is to1


view them as networks—i.e. collections of interrelated, interconnected elements.2


The view of mind as network is implicit in the patternist philosophy, because every3


pattern can be viewed as a pattern in something, or a pattern of arrangement of4


something—thus a pattern is always viewable as a relation between two or more5


things. A collection of patterns is thus a pattern-network. Knowledge of all kinds6


may be given network representations; and cognitive processes may be represented7


as networks also; for instance via representing them as programs, which may be8


represented as trees or graphs in various standard ways. The emergent patterns arising9


in an intelligence as it develops may be viewed as a pattern network in themselves;10


and the relations between an embodied mind and its physical and social environment11


may be viewed in terms of ecological and social networks.12


The chapters in this section are concerned with various aspects of networks, as13


related to intelligence in general and AGI in particular. Most of this material is not14


specific to CogPrime, and would be relevant to nearly any system aiming at human-15


level AGI. However, most of it has been developed in the course of work on CogPrime,16


and has direct relevance to understanding the intended operation of various aspects of17


a completed CogPrime system. We begin our excursion into networks, in this chapter,18


with an issue regarding networks and knowledge representation. One of the biggest19


decisions to make in designing an AGI system is how the system should represent20


knowledge. Naturally any advanced AGI system is going to synthesize a lot of its own21


knowledge representations for handling particular sorts of knowledge—but still, an22


AGI design typically makes at least some sort of commitment about the category of23


knowledge representation mechanisms toward which the AGI system will be biased.24


The two major supercategories of knowledge representation systems are local (also25


Co-authored with Matthew Ikle, Joel Pitt and Rui Liu.
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276 13 Local, Global and Glocal Knowledge Representation


called explicit) and global (also called implicit) systems, with a hybrid category26


we refer to as glocal that combines both of these. In a local system, each piece of27


knowledge is stored using a small percentage of AGI system elements; in a global28


system, each piece of knowledge is stored using a particular pattern of arrangement,29


activation, etc. of a large percentage of AGI system elements; in a glocal system, the30


two approaches are used together.31


In the first section here we discuss the symbolic, semantic-network aspects of32


knowledge representation in CogPrime.33AQ1


Then we turn to distributed, neural-net-like knowledge representation, reviewing34


a host of general issues related to knowledge representation in attractor neural net-35


works, turning finally to “glocal” knowledge representation mechanisms, in which36


ANNs combine localist and globalist representation, and explaining the relationship37


of the latter to CogPrime. The glocal aspect of CogPrime knowledge representation38


will become prominent in later chapters such as:39


• in Chap. 5 of Vol. 6, where Economic Attention Networks (ECAN) are introduced40


and seen to have dynamics quite similar to those of the attractor neural nets con-41


sidered here, but with a mathematics roughly modeling money flow in a specially42


constructed artificial economy rather than electrochemical dynamics of neurons.43


• in Chap. 24 of Vol. 6, where “map formation” algorithms for creating localist44


knowledge from globalist knowledge are described.45


13.2 Localized Knowledge Representation Using Weighted,46


Labeled Hypergraphs47


There are many different mechanisms for representing knowledge in AI systems48


in an explicit, localized way, most of them descending from various variants of49


formal logic. Here we briefly describe how it is done in CogPrime, which on the50


surface is not that different from a number of prior approaches. (The particularities51


of CogPrime’s explicit knowledge representation, however, are carefully tuned to52


match CogPrime’s cognitive processes, which are more distinctive in nature than the53


corresponding representational mechanisms).54


13.2.1 Weighted, Labeled Hypergraphs55


One useful way to think about CogPrime’s explicit, localized knowledge representa-56


tion is in terms of hypergraphs. A hypergraph is an abstract mathematical structure57


[Bol98], which consists of objects called Nodes and objects called Links which con-58


nect the Nodes. In computer science, a graph traditionally means a bunch of dots59


connected with lines (i.e. Nodes connected by Links). A hypergraph, on the other60


hand, can have Links that connect more than two Nodes.61
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13.2 Localized Knowledge Representation Using Weighted, Labeled Hypergraphs 277


In these pages we will often consider “generalized hypergraphs” that extend or-62


dinary hypergraphs by containing two additional features:63


• Links that point to Links instead of Nodes64


• Nodes that, when you zoom in on them, contain embedded hypergraphs.65


Properly, such “hypergraphs” should always be referred to as generalized hyper-66


graphs, but this is cumbersome, so we will persist in calling them merely hypergraphs.67


In a hypergraph of this sort, Links and Nodes are not as distinct as they are within68


an ordinary mathematical graph (for instance, they can both have Links connecting69


them), and so it is useful to have a generic term encompassing both Links and Nodes;70


for this purpose, we use the term Atom.71


A weighted, labeled hypergraph is a hypergraph whose Links and Nodes come72


along with labels, and with one or more numbers that are generically called weights.73


A label associated with a Link or Node may sometimes be interpreted as telling you74


what type of entity it is, or alternatively as telling you what sort of data is associated75


with a Node. On the other hand, an example of a weight that may be attached to an76


Link or Node is a number representing a probability, or a number representing how77


important the Node or Link is.78


Obviously, hypergraphs may come along with various sorts of dynamics. Mini-79


mally, one may think about:80


• Dynamics that modify the properties of Nodes or Links in a hypergraph (such as81


the labels or weights attached to them).82


• Dynamics that add new Nodes or Links to a hypergraph, or remove existing ones.83


13.3 Atoms: Their Types and Weights84


This section reviews a variety of CogPrime85


Atom types and gives simple examples of each of them. The Atom types consid-86


ered are drawn from those currently in use in the OpenCog system. This does not87


represent a complete list of Atom types referred to in the text of this book, nor a88


complete list of those used in OpenCog currently (though it does cover a substantial89


majority of those used in OpenCog currently, omitting only some with specialized90


importance or intended only for temporary use).91


The partial nature of the list given here reflects a more general point: The specific92


collection of Atom types in an OpenCog system is bound to change as the system93


is developed and experiment with. CogPrime specifies a certain collection of rep-94


resentational approaches and cognitive algorithms for acting on them; any of these95


approaches and algorithms may be implemented with a variety of sets of Atom types.96


The specific set of Atom types in the OpenCog system currently does not necessarily97


have a profound and lasting significance—the list might look a bit different five years98


from time of writing, based on various detailed changes.99
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The treatment here is informal and intended to get across the general idea of what100


each Atom type does. A longer and more formal treatment of the Atom types is given101


in the beginning of Chap. 2 of Vol. 6.102


13.3.1 Some Basic Atom Types103


We begin with ConceptNode—and note that a ConceptNode does not necessarily104


refer to a whole concept, but may refer to part of a concept—it is essentially a “basic105


semantic node” whose meaning comes from its links to other Atoms. It would be106


more accurately, but less tersely, named “concept or concept fragment or element107


node”. A simple example would be a ConceptNode grouping nodes that are somehow108


related, e.g.109


ConceptNode: C110


InheritanceLink (ObjectNode: BW) C111


InheritanceLink (ObjectNode: BP) C112


InheritanceLink (ObjectNode: BN) C113


ReferenceLink BW (PhraseNode "Ben’s watch")114


ReferenceLink BP (PhraseNode "Ben’s passport")115


ReferenceLink BN (PhraseNode "Ben’s necklace")116


indicates the simple and uninteresting ConceptNode grouping three objects owned by117


Ben (note that the above-given Atoms don’t indicate the ownership relationship, they118


just link the three objects with textual descriptions). In this example, the ConceptNode119


links transparently to physical objects and English descriptions, but in general this120


won’t be the case—most ConceptNodes will look to the human eye like groupings121


of links of various types, that link to other nodes consisting of groupings of links of122


various types, etc.123


There are Atoms referring to basic, useful mathematical objects, e.g. Number124


Nodes like125


NumberNode #4126


NumberNode #3.44127


The numerical value of a NumberNode is explicitly referenced within the Atom.128


A core distinction is made between ordered links and unordered links; these are129


handled differently in the Atomspace software. A basic unordered link is the SetLink,130


which groups its arguments into a set. For instance, the ConceptNode C defined by131


ConceptNode C132


MemberLink A C133


MemberLink B C134


is equivalent to135


SetLink A B136
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13.3 Atoms: Their Types and Weights 279


On the other hand, ListLinks are like SetLinks but ordered, and they play a fun-137


damental role due to their relationship to predicates. Most predicates are assumed to138


take ordered arguments, so we may say e.g.139


EvaluationLink140


PredicateNode eat141


ListLink142


ConceptNode cat143


ConceptNode mouse144


to indicate that cats eat mice.145


Note that by an expression like146


ConceptNode cat147


is meant148


ConceptNode C149


ReferenceLink W C150


WordNode W #cat151


since it’s WordNodes rather than ConceptNodes that refer to words. (And note that152


the strength of the ReferenceLink would not be 1 in this case, because the word153


“cat” has multiple senses.) However, there is no harm nor formal incorrectness in the154


“ConceptNode cat” usage, since “cat” is just as valid a name for a ConceptNode as,155


say, “C”.156


We’ve already introduced above the MemberLink, which is a link joining a mem-157


ber to the set that contains it. Notable is that the truth value of a MemberLink is fuzzy158


rather than probabilistic, and that PLN is able to inter-operate fuzzy and probabilistic159


values.160


SubsetLinks also exist, with the obvious meaning, e.g.161


ConceptNode cat162


ConceptNode animal163


SubsetLink cat animal164


Note that SubsetLink refers to a purely extensional subset relationship, and that165


InheritanceLInk should be used for the generic “intensional + extensional” analogue166


of this—more on this below. SubsetLink could more consistently (with other link167


types) be named ExtensionalInheritanceLink, but SubsetLink is used because it’s168


shorter and more intuitive.169


There are links representing Boolean operations AND, OR and NOT. For instance,170


we may say171


ImplicationLink172


ANDLink173


ConceptNode young174


ConceptNode beautiful175


ConceptNode attractive176


or, using links and VariableNodes instead of ConceptNodes,177
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280 13 Local, Global and Glocal Knowledge Representation


AverageLink $X178


ImplicationLink179


ANDLink180


EvaluationLink young $X181


EvaluationLink beautiful $X182


EvaluationLink attractive $X183


NOTLink is a unary link, so e.g. we might say184


AverageLink $X185


ImplicationLink186


ANDLink187


EvaluationLink young $X188


EvaluationLink beautiful $X189


EvaluationLink190


NOT191


EvaluationLink poor $X192


EvaluationLink attractive $X193


ContextLink allows explicit contextualization of knowledge, which is used in194


PLN, e.g.195


ContextLink196


ConceptNode golf197


InheritanceLink198


ObjectNode BenGoertzel199


ConceptNode incompetent200


says that Ben Goertzel is incompetent in the context of golf.201


13.3.2 Variable Atoms202


We have already introduced VariableNodes above; it’s also possible to specify the203


type of a VariableNode via linking it to a VariableTypeNode via a TypedVariableLink,204


e.g.205


VariableTypeLink206


VariableNode $X207


VariableTypeNode ConceptNode208


which specifies that the variable $X should be filled with a ConceptNode.209


Variables are handled via quantifiers; the default quantifier being the AverageLink,210


so that the default interpretation of211


ImplicationLink212


InheritanceLink $X animal213


EvaluationLink214


PredicateNode: eat215


ListLink216


\$X217


ConceptNode: food218
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13.3 Atoms: Their Types and Weights 281


is219


AverageLink $X220


ImplicationLink221


InheritanceLink $X animal222


EvaluationLink223


PredicateNode: eat224


ListLink225


\$X226


ConceptNode: food227


The AverageLink invokes an estimation of the average TruthValue of the embedded228


expression (in this case an ImplicationLink) over all possible values of the variable229


$X. If there are type restrictions regarding the variable $X, these are taken into230


account in conducting the averaging. For AllLink and Exist s-Link may be used in231


the same places as AverageLink, with uncertain truth value semantics defined in PLN232


theory using third-order probabilities. There is also a ScholemLink used to indicate233


variable dependencies for existentially quantified variables, used in cases of multiply234


nested existential quantifiers.235


EvaluationLink and MemberLink have overlapping semantics, allowing expres-236


sion of the same conceptual/logical relationships in terms of predicates or sets, i.e.237


EvaluationLink238


PredicateNode: eat239


ListLink240


$X241


ConceptNode: food242


has the same semantics as243


MemberLink244


ListLink245


$X246


ConceptNode: food247


ConceptNode: EatingEvents248


The relation between the predicate “eat” and the concept “EatingEvents” is formally249


given by250


ExtensionalEquivalenceLink251


ConceptNode: EatingEvents252


SatisfyingSetLink253


PredicateNode: eat254


In other words, we say that “EatingEvents” is the SatisfyingSet of the predicate “eat”:255


it is the set of entities that satisfy the predicate “eat”. Note that the truth values of256


MemberLink and EvaluationLink are fuzzy rather than probabilistic.257
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282 13 Local, Global and Glocal Knowledge Representation


13.3.3 Logical Links258


There is a host of link types embodying logical relationships as defined in the PLN259


logic system, e.g.260


• InheritanceLink261


• SubsetLink (aka ExtensionalInheritanceLink)262


• Intensional InheritanceLink263


which embody different sorts of inheritance, e.g.264


SubsetLink salmon fish265


IntensionalInheritanceLink whale fish266


InheritanceLink fish animal267


and then268


• SimilarityLink269


• ExtensionalSimilarityLink270


• IntensionalSimilarityLink271


which are symmetrical versions, e.g.272


SimilaritytLink shark barracuda273


IntensionalSimilarityLink shark dolphin274


ExtensionalSimiliarityLink American obese\_person275


There are also higher-order versions of these links, both asymmetric276


• ImplicationLink277


• ExtensionalImplicationLink278


• IntensionalImplicationLink279


and symmetric280


• EquivalenceLink281


• ExtensionalEquivalenceLink282


• IntensionalEquivalenceLink283


These are used between predicates and links, e.g.284


ImplicationLink285


EvaluationLink286


eat287


ListLink288


$X289


dirt290


EvaluationLink291


feel292


ListLInk293


$X294


sick295
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13.3 Atoms: Their Types and Weights 283


or296


ImplicationLink297


EvaluationLink298


eat299


ListLink300


$X301


dirt302


InheritanceLink $X sick303


or304


ForAllLink $X, $Y, $Z305


ExtensionalEquivalenceLink306


EquivalenceLink307


$Z308


EvaluationLink309


+310


ListLink311


$X312


$Y313


EquivalenceLink314


$Z315


EvaluationLink316


+317


ListLink318


$Y319


$X320


Note, the latter is given as an extensional equivalence because it’s a pure mathematical321


equivalence. This is not the only case of pure extensional equivalence, but it’s an322


important one.323


13.3.4 Temporal Links324


There are also temporal versions of these links, such as325


• PredictiveImplicationLink326


• PredictiveAttractionLink327


• SequentialANDLink328


• SimultaneousANDLink329


which combine logical relation between the argument with temporal relation between330


their arguments. For instance, we might say331


PredictiveImplicationLink332


PredicateNode: JumpOffCliff333


PredicateNode: Dead334


or including arguments,335
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284 13 Local, Global and Glocal Knowledge Representation


PredictiveImplicationLink336


EvaluationLink JumpOffCliff $X337


EvaluationLink Dead $X338


The former version, without variable arguments given, shows the possibility of339


using higher-order logical links to join predicates without any explicit variables. Via340


using this format exclusively, one could avoid VariableAtoms entirely, using only341


higher-order functions in the manner of pure functional programming formalisms342


like combinatory logic. However, this purely functional style has not proved conve-343


nient, so the Atomspace in practice combines functional-style representation with344


variable-based representation.345


Temporal links often come with specific temporal quantification, e.g.346


PredictiveImplicationLink <5 seconds>347


EvaluationLink JumpOffCliff $X348


EvaluationLink Dead $X349


indicating that the conclusion will generally follow the premise within 5 s. There is350


a system for managing fuzzy time intervals and their interrelationships, based on a351


fuzzy version of Allen Interval Algebra.352


SequentialANDLink is similar to PredictiveImplicationLink but its truth value is353


calculated differently. The truth value of354


SequentialANDLink <5 seconds>355


EvaluationLink JumpOffCliff $X356


EvaluationLink Dead $X357


indicates the likelihood of the sequence of events occurring in that order, with gap358


lying within the specified time interval. The truth value of the PredictiveImplica-359


tionLink version indicates the likelihood of the second event, conditional on the360


occurrence of the first event (within the given time interval restriction).361


There are also links representing basic temporal relationships, such as BeforeLink362


and AfterLink. These are used to refer to specific events, e.g. if X refers to the event363


of Ben waking up on July 15 2012, and Y refers to the event of Ben getting out of364


bed on July 15 2012, then one might have365


AfterLink X Y366


And there are TimeNodes (representing time-stamps such as temporal moments367


or intervals) and AtTimeLinks, so we may e.g. say368


AtTimeLink369


X370


TimeNode: 8:24AM Eastern Standard Time, July 15 2012 AD.371
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13.3 Atoms: Their Types and Weights 285


13.3.5 Associative Links372


There are links representing associative, attentional relationships,373


• HebbianLink374


• AsymmetricHebbianLink375


• InverseHebbianLink376


• SymmetricInverseHebbianLink377


These connote associations between their arguments, i.e. they connote that the enti-378


ties represented by the two argument occurred in the same situation or context, for379


instance380


HebbianLink happy smiling381


AsymmetricHebbianLink dead rotten382


InverseHebbianLink dead breathing383


The asymmetric HebbianLink indicates that when the first argument is present in a384


situation, the second is also often present. The symmetric (default) version indicates385


that this relationship holds in both directions. The inverse versions indicate the nega-386


tive relationship: e.g. when one argument is present in a situation, the other argument387


is often not present.388


13.3.6 Procedure Nodes389


There are nodes representing various sorts of procedures; these are kinds of Proce-390


dureNode, e.g.391


• SchemaNode, indicating any procedure392


• GroundedSchemaNode, indicating any procedure associated in the system with a393


Combo program or C++ function allowing the procedure to be executed394


• PredicateNode, indicating any predicate that associates a list of arguments with an395


output truth value396


• GroundedPredicateNode, indicating a predicate associated in the system with a397


Combo program or C++ function allowing the predicate’s truth value to be evalu-398


ated on a given specific list of arguments.399


ExecutionLinks and EvaluationLinks record the activity of SchemaNodes and400


PredicateNodes. We have seen many examples of EvaluationLinks in the above.401


Example ExecutionLinks would be:402


ExecutionLink step\_forward403


ExecutionLink step\_forward 5404


ExecutionLink405


+406


ListLink407


NumberNode: 2408


NumberNode: 3409
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286 13 Local, Global and Glocal Knowledge Representation


The first example indicates that the schema “step forward” has been executed. The410


second example indicates that it has been executed with an argument of “5” (meaning,411


perhaps, that 5 steps forward have been attempted). The last example indicates that412


the “+” schema has been executed on the argument list (2, 3), presumably resulting413


in an output of 5.414


The output of a schema execution may be indicated using an ExecutionOutput-415


Link, e.g.416


ExecutionOutputLink417


+418


ListLink419


NumberNode: 2420


NumberNode: 3421


refers to the value “5” (as a NumberNode).422


13.3.7 Links for Special External Data Types423


Finally, there are also Atom types referring to specific types of data important to424


using OpenCog in specific contexts.425


For instance, there are Atom types referring to general natural language data types,426


such as427


• WordNode428


• SentenceNode429


• WordInstanceNode430


• DocumentNode431


plus more specific ones referring to relationships that are part of link-grammar parses432


of sentences433


• FeatureNode434


• FeatureLink435


• LinkGrammarRelationshipNode436


• LinkGrammarDisjunctNode437


or RelEx semantic interpretations of sentences438


• DefinedLinguisticConceptNode439


• DefinedLinguisticRelationshipNode440


• PrepositionalRelationshipNode441


There are also Atom types corresponding to entities important for embodying442


OpenCog in a virtual world, e.g.443


• ObjectNode444


• AvatarNode445


• HumanoidNode446
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13.3 Atoms: Their Types and Weights 287


• UnknownObjectNode447


• AccessoryNode448


13.3.8 Truth Values and Attention Values449


CogPrime Atoms (Nodes and Links) are quantified with truth values that, in their450


simplest form, have two components, one representing probability (strength) and the451


other representing weight of evidence; and also with attention values that have two452


components, short-term and long-term importance, representing the estimated value453


of the Atom on immediate and long-term time-scales.454


In practice many Atoms are labeled with CompositeTruthValues rather than el-455


ementary ones. A composite truth value contains many component truth values,456


representing truth values of the Atom in different contexts and according to different457


estimators.458


It is important to note that the CogPrime declarative knowledge representation459


is neither a neural net nor a semantic net, though it does have some commonalities460


with each of these traditional representations. It is not a neural net because it has no461


activation values, and involves no attempts at low-level brain modeling. However,462


attention values are very loosely analogous to time-averages of neural net activations.463


On the other hand, it is not a semantic net because of the broad scope of the Atoms464


in the network: for example, Atoms may represent percepts, procedures, or parts of465


concepts. Most CogPrime Atoms have no corresponding English label. However,466


most CogPrime467


Atoms do have probabilistic truth values, allowing logical semantics.468


13.4 Knowledge Representation via Attractor Neural Networks469


Now we turn to global, implicit knowledge representation—beginning with formal470


neural net models, briefly discussing the brain, and then turning back to CogPrime.471


Firstly, this section reviews some relevant material from the literature regarding the472


representation of knowledge using attractor neural nets. It is a mix of well-established473


fact with more speculative material.474


13.4.1 The Hopfield Neural Net Model475


Hopfield networks [Hop82] are attractor neural networks often used as associative476


memories. A Hopfield network with N neurons can be trained to store a set of477


bipolar patterns P, where each pattern p has N bipolar (±1) values. A Hopfield478
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288 13 Local, Global and Glocal Knowledge Representation


net typically has symmetric weights with no self-connections. The weight of the479


connection between neurons i and j is denoted by wij.480


In order to apply a Hopfield network to a given input pattern p, its activation481


state is set to the input pattern, and neurons are updated asynchronously, in random482


order, until the network converges to the closest fixed point. An often-used activation483


function for a neuron is:484


yi = sign


(
pi


∑
j �=i


wijyj


)
485


Training a Hopfield network, therefore, involves finding a set of weights wij that486


stores the training patterns as attractors of its network dynamics, allowing future487


recall of these patterns from possibly noisy inputs.488


Originally, Hopfield used a Hebbian rule to determine weights:489


wij =
P∑


p=1


pipj490


Typically, Hopfield networks are fully connected. Experimental evidence, how-491


ever, suggests that the majority of the connections can be removed without signifi-492


cantly impacting the network’s capacity or dynamics. Our experimental work uses493


sparse Hopfield networks.494


13.4.1.1 Palimpsest Hopfield Nets with a Modified Learning Rule495


In [SV99] a new learning rule is presented, which both increases the Hopfield network496


capacity and turns it into a “palimpsest”, i.e., a network that can continuously learn497


new patterns, while forgetting old ones in an orderly fashion.498


Using this new training rule, weights are initially set to zero, and updated for each499


new pattern p to be learned according to:500


hij =
N∑


k=1,k �=i,j


wikpk501


Δwij = 1


n
(pipj − hijpj − hjipi).502


503


13.4.2 Knowledge Representation via Cell Assemblies504


Hopfield nets and their ilk play a dual role: as computational algorithms, and as505


conceptual models of brain function. In CogPrime they are used as inspiration for506


slightly different, artificial economics based computational algorithms; but their507
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13.4 Knowledge Representation via Attractor Neural Networks 289


hypothesized relevance to brain function is nevertheless of interest in a CogPrime508


context, as it gives some hints about the potential connection between low-level509


neural net mechanics and higher-level cognitive dynamics.510


Hopfield nets lead naturally to a hypothesis about neural knowledge representa-511


tion, which holds that a distinct mental concept is represented in the brain as either:512


1. a set of “cell assemblies”, where each assembly is a network of neurons that513


are interlinked in such a way as to fire in a (perhaps nonlinearly) synchronized514


manner515


2. a distinct temporal activation pattern, which may occur in any one (or more) of a516


particular set of cell assemblies.517


For instance, this hypothesis is perfectly coherent if one interprets a “mental con-518


cept” as a SMEPH (defined in Chap. 14) ConceptNode, i.e. a fuzzy set of perceptual519


stimuli to which the organism systematically reacts in different ways. Also, although520


we will focus mainly on declarative knowledge here, we note that the same basic521


representational ideas can be applied to procedural and episodic knowledge: these522


may be hypothesized to correspond to temporal activation patterns as characterized523


above.524


In the biology literature, perhaps the best-articulated modern theories champi-525


oning the cell assembly view are those of Gunther Palm [Pal82, HAG07] and Susan526


Greenfield [SF05, CSG07]. Palm focuses on the dynamics of the formation and in-527


teraction assemblies of cortical columns. Greenfield argues that each concept has a528


core cell assembly, and that when the concept rises to the focus of attention, it recruits529


a number of other neurons beyond its core characteristic assembly into a “transient530


ensemble”.1531


It’s worth noting that there may be multiple redundant assemblies representing the532


same concept—and potentially recruiting similar transient assemblies when highly533


activated. The importance of repeated, slightly varied copies of the same subnetwork534


has been emphasized by Edelman [Ede93] among other neural theorists.535


13.5 Neural Foundations of Learning536


Now we move from knowledge representation to learning—which is after all nothing537


but the adaptation of represented knowledge based on stimulus, reinforcement and538


spontaneous activity. While our focus in this chapter is on representation, it’s not539


possible for us to make our points about glocal knowledge representation in neural540


net type systems without discussing some aspects of learning in these systems.541


1 The larger an ensemble is, she suggests, the more vivid it is as a conscious experience; an
hypothesis that accords well with the hypothesis made in [Goe06b] that a more informationally
intense pattern corresponds to a more intensely conscious quale—but we don’t need to digress
extensively onto matters of consciousness for the present purposes.
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13.5.1 Hebbian Learning542


The most common and plausible assumption about learning in the brain is that synap-543


tic connections between neurons are adapted via some variant of Hebbian learning.544


The original Hebbian learning rule, proposed by Donald Hebb in his 1949 book545


[Heb49], was roughly546


1. The weight of the synapse x → y increases if x and y fire at roughly the same547


time548


2. The weight of the synapse x → y decreases if x fires at a certain time but y does549


not.550


Over the years since Hebb’s original proposal, many neurobiologists have sought551


evidence that the brain actually uses such a method. One of the things they have552


found, so far, is a lot of evidence for the following learning rule [DC02, LS05]:553


1. The weight of the synapse x → y increases if x fires shortly before y does554


2. The weight of the synapse x → y decreases if x fires shortly after y does.555


The new thing here, not foreseen by Donald Hebb, is the “postsynaptic depression”556


involved in rule component 2.557


Now, the simple rule stated above does not sum up all the research recently558


done on Hebbian-type learning mechanisms in the brain. The real biological story559


underlying these approximate rules is quite complex, involving many particulars to560


do with various neurotransmitters. Ill-understood details aside, however, there is an561


increasing body of evidence that not only does this sort of learning occur in the brain,562


but it leads to distributed experience-based neural modification: that is, one instance563


synaptic modification causes another instance of synaptic modification, which causes564


another, and so forth2 [Bi01].565


13.5.2 Virtual Synapses and Hebbian Learning Between566


Assemblies567


Hebbian learning is conventionally formulated in terms of individual neurons, but,568


it can be extended naturally to assemblies via defining “virtual synapses” between569


assemblies.570


Since assemblies are sets of neurons, one can view a synapse as linking two571


assemblies if it links two neurons, each of which is in one of the assemblies. One can572


then view two assemblies as being linked by a bundle of synapses. We can define the573


weight of the synaptic bundle from assembly A1 to assembly A2 as the number w574


so that (the change in the mean activation of A2 that occurs at time t +epsilon)is on575


2 This has been observed in “model systems” consisting of neurons extracted from a brain and
hooked together in a laboratory setting and monitored; measurement of such dynamics in vivo is
obviously more difficult.
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13.5 Neural Foundations of Learning 291


average closest to w×(the amount of energy flowing through the bundle from A1 to A2576


at time t). So when A1 sends an amount x of energy along the synaptic bundle pointing577


from A1 to A2, then A2’s mean activation is on average incremented/decremented578


by an amount w × x.579


In a similar way, one can define the weight of a bundle of synapses between a580


certain static or temporal activation-pattern P1 in assembly A1, and another static581


or temporal activation-pattern P2 in assembly A2. Namely, this may be defined as582


the number w so that (the amount of energy flowing through the bundle from A1 to583


A2 at time t) ×w best approximates (the probability that P2 is present in A2 at time584


t +epsilon), when averaged over all times t during which P1 is present in A1.585


It is not hard to see that Hebbian learning on real synapses between neurons586


implies Hebbian learning on these virtual synapses between cell assemblies and587


activation-patterns.588


These ideas may be developed further to build a connection between neural knowl-589


edge representation and probabilistic logical knowledge representation such as is590


used in CogPrime’s Probabilistic Logic Networks formalism; this connection will591


be pursued at the end of Chap. 16 (Vol. 6), once more relevant background has been592


presented.593


13.5.3 Neural Darwinism594


A notion quite similar to Hebbian learning between assemblies has been pursued595


by Nobelist Gerald Edelman in his theory of neuronal group selection, or “Neural596


Darwinism”. Edelman won a Nobel Prize for his work in immunology, which, like597


most modern immunology, was based on MacFarlane Burnet’s theory of “clonal598


selection” [Bur62], which states that antibody types in the mammalian immune599


system evolve by a form of natural selection. From his point of view, it was only600


natural to transfer the evolutionary idea from one mammalian body system (the601


immune system) to another (the brain).602


The starting point of Neural Darwinism is the observation that neuronal dynamics603


may be analyzed in terms of the behavior of neuronal groups. The strongest evidence604


in favor of this conjecture is physiological: many of the neurons of the neocortex are605


organized in clusters, each one containing say 10,000–50,000 neurons each. Once606


one has committed oneself to looking at such groups, the next step is to ask how607


these groups are organized, which leads to Edelman’s concept of “maps”.608


A “map”, in Edelman’s terminology, is a connected set of groups with the property609


that when one of the inter-group connections in the map is active, others will often610


tend to be active as well. Maps are not fixed over the life of an organism. They611


may be formed and destroyed in a very simple way: the connection between two612


neuronal groups may be “strengthened” by increasing the weights of the neurons613


connecting the one group with the other, and “weakened” by decreasing the weights614


of the neurons connecting the two groups. If we replace “map” with “cell assembly”615


we arrive at a concept very similar to the one described in the previous subsection.616
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Edelman then makes the following hypothesis: the large-scale dynamics of the617


brain is dominated by the natural selection of maps. Those maps which are active618


when good results are obtained are strengthened, those maps which are active when619


bad results are obtained are weakened. And maps are continually mutated by the620


natural chaos of neural dynamics, thus providing new fodder for the selection process.621


By use of computer simulations, Edelman and his colleagues have shown that formal622


neural networks obeying this rule can carry out fairly complicated acts of perception.623


In general-evolution language, what is posited here is that organisms like humans624


contain chemical signals that signify organism-level success of various types, and625


that these signals serve as a “fitness function” correlating with evolutionary fitness626


of neuronal maps.627


In Neural Darwinism and his other related books and papers, Edelman goes far628


beyond this crude sketch and presents neuronal group selection as a collection of629


precise biological hypotheses, and presents evidence in favor of a number of these630


hypotheses. However, we consider that the basic concept of neuronal group selection631


is largely independent of the biological particularities in terms of which Edelman632


has phrased it. We suspect that the mutation and selection of “transformations” or633


“maps” is a necessary component of the dynamics of any intelligent system.634


As we will see later on (e.g. in Chap. 24 of Vol. 6, this business of maps is extremely635


important to CogPrime. CogPrime does not have simulated biological neurons and636


synapses, but it does have Nodes and Links that in some contexts play loosely similar637


roles. We sometimes think of CogPrime Nodes and Links as being very roughly638


analogous to Edelman’s neuronal clusters, and emergent intercluster links. And we639


have maps among CogPrime Nodes and Links, just as Edelman has maps among his640


neuronal clusters. Maps are not the sole bearers of meaning in CogPrime, but they641


are significant ones.642


There is a very natural connection between Edelman-style brain evolution and the643


ideas about cognitive evolution presented in Chap. 4. Edelman proposes a fairly clear644


mechanism via which patterns that survive a while in the brain are differentially likely645


to survive a long time: this is basic Hebbian learning, which in Edelman’s picture646


plays a role between neuronal groups. And, less directly, Edelman’s perspective also647


provides a mechanism by which intense patterns will be differentially selected in648


the brain: because on the level of neural maps, pattern intensity corresponds to the649


combination of compactness and functionality. Among a number of roughly equally650


useful maps serving the same function, the more compact one will be more likely to651


survive over time, because it is less likely to be disrupted by other brain processes652


(such as other neural maps seeking to absorb its component neuronal groups into653


themselves). Edelman’s neuroscience remains speculative, since so much remains654


unknown about human neural structure and dynamics; but it does provide a tentative655


and plausible connection between evolutionary neurodynamics and the more abstract656


sort of evolution that patternist philosophy posits to occur in the realm of mind-657


patterns.658
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13.6 Glocal Memory 293


13.6 Glocal Memory659


A glocal memory is one that transcends the global/local dichotomy and incorporates660


both aspects in a tightly interconnected way. Here we make the glocal memory con-661


cept more precise, and describe its incarnation in the context of attractor neural nets662


(which is similar to its incarnation in CogPrime, to be elaborated in later chapters).663


Though our main interest here is in glocality in CogPrime, we also suggest that glo-664


cality may be a critical property to consider when analyzing human, animal and AI665


memory more broadly.666


The notion of glocal memory has implicitly occurred in a number of prior brain667


theories (without use of the neologism “glocal”), e.g. [Cal96] and [Goe01], but it has668


not previously been explicitly developed. However the concept has risen to the fore669


in our recent AI work and so we have chosen to flesh it out more fully in [HG08,670


GPI+10] and the present section.671


Glocal memory overcomes the dichotomy between localized memory (in which672


each memory item is stored in a single location within an overall memory structure)673


and distributed memory (in which a memory item is stored as an aspect of a multi-674


component memory system, in such a way that the same set of multiple components675


stores a large number of memories). In a glocal memory system, most memory items676


are stored both locally and globally, with the property that eliciting either one of the677


two records of an item tends to also elicit the other one.678


Glocal memory applies to multiple forms of memory; however we will focus679


largely on perceptual and declarative memory in our detailed analyses here, so as to680


conserve space and maintain simplicity of discussion.681


The central idea of glocal memory is that (perceptual, declarative, episodic, pro-682


cedural, etc.) items may be stored in memory in the form of paired structures that683


are called (key, map) pairs. Of course the idea of a “pair” is abstract, and such pairs684


may manifest themselves quite differently in different sorts of memory systems (e.g.685


brains versus non-neuromorphic AI systems). The key is a localized version of the686


item, and records some significant aspects of the items in a simple and crisp way.687


The map is a dispersed, distributed version of the item, which represents the item as a688


(to some extent, dynamically shifting) combination of fragments of other items. The689


map includes the key as a subset; activation of the key generally (but not necessarily690


always) causes activation of the map; and changes in the memory item will generally691


involve complexly coordinated changes on the key and map level both.692


Memory is one area where animal brain architecture differs radically from the von693


Neumann architecture underlying nearly all contemporary general-purpose comput-694


ers. Von Neumann computers separate memory from processing, whereas in the695


human brain there is no such distinction. In fact, it’s arguable that in most cases the696


brain contains no memory apart from processing: human memories are generally697


constructed in the course of remembering [Ros88], which gives human memory a698


strong capability for “filling in gaps” of remembered experience and knowledge; and699


also causes problems with inaccurate remembering in many contexts [BF71, RM95]700


We believe the constructive aspect of memory is largely associated with its glocality.701
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294 13 Local, Global and Glocal Knowledge Representation


The remainder of this section presents a fuller formalization of the glocal memory702


concept, which is then taken up further in three later chapters:703


• Chapter ?? discusses the potential implementation of glocal memory in the human704


brain705


• Chapter ?? discusses the implementation of glocal memory in attractor neural net706


systems707


• Chapter 5 of Vol. 6 presents Glocal Economic Attention Networks (ECANs), rough708


analogues of glocal Hopfield nets that play a central role in CogPrime.709
AQ2


Our hypothesis of the potential general importance of glocality as a property of710


memory systems (beyond just the CogPrime architecture)—remains somewhat spec-711


ulative. The presence of glocality in human and animal memory is strongly suggested712


but not firmly demonstrated by available neuroscience data; and the general value of713


glocality in the context of artificial brains and minds is also not yet demonstrated as714


the whole field of artificial brain and mind building remains in its infancy. However,715


the utility of glocal memory for CogPrime is not tied to this more general, specula-716


tive theme—glocality may be useful in CogPrime even if we’re wrong that it plays717


a significant role in the brain and in intelligent systems more broadly.718


13.6.1 A Semi-Formal Model of Glocal Memory719


To explain the notion of glocal memory more precisely, we will introduce a simple720


semi-formal model of a system S that uses a memory to record information relevant721


to the actions it carries out. The overall concept of glocal memory should not be722


considered as restricted to this particular model. This model is not intended for723


maximal generality, but is intended to encompass a variety of current AI system724


designs and formal neurological models.725


In this model, we will consider S’s memory subsystem as a set of objects we’ll726


call “tokens”, embedded in some metric space. The metric in the space, which we727


will call the “basic distance” of the memory, generally will not be defined in terms of728


the semantics of the items stored in the memory; though it may come to shape these729


dynamics through the specific architecture and evolution of the memory. Note that730


these tokens are not intended as generally being mapped one-to-one onto meaningful731


items stored in the memory. The “tokens” are the raw materials that the memory732


arranges in various patterns in order to store items.733


We assume that each token, at each point in time, may meaningfully be assigned734


a certain quantitative “activation level”. Also, tokens may have other numerical or735


discrete quantities associated with them, depending on the particular memory archi-736


tecture. Finally, tokens may relate other tokens, so that optionally a token may come737


equipped with an (ordered or unordered) list of other tokens.738


To understand the meaning of the activation levels, one should think about739


S’s memory subsystem as being coupled with an action-selection subsystem, that740


dynamically chooses the actions to be taken by the overall system in which the two741
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13.6 Glocal Memory 295


subsystems are embedded. Each combination of actions, in each particular type of742


context, will generally be associated with the activation of certain tokens in memory.743


Then, as analysts of the system S, we may associate each token T with an “acti-744


vation vector” v(T , t), whose value for each discrete time t consists of the activation745


of the token T at time t. So, the 50th entry of the vector corresponds to the activation746


of the token at the 50th time step.747


“Items stored in memory” over a certain period of time, may then be defined as748


clusters in the set of activation vectors associated with memory during that period749


of time. Note that the system S itself may explicitly recognize and remember pat-750


terns regarding what items are stored in its memory—but, from an external analyst’s751


perspective, the set of items in S’s memory is not restricted to the ones that S has752


explicitly recognized as memory items.753


The “localization” of a memory item may be defined as the degree to which the754


various tokens involved in the item are close to each other according to the metric755


in the memory metric-space. This degree may be formalized in various ways, but756


choosing a particular quantitative measure is not important here. A highly localized757


item may be called “local” and a not-very-localized item may be called “global”.758


We may define the “activation distance” of two tokens as the distance between759


their activation vectors. We may then say that a memory is “well aligned” to the760


extent that there is a correlation between the activation distance of tokens, and the761


basic distance of the memory metric-space.762


Given the above set-up, the basic notion of glocal memory can be enounced fairly763


simply. A glocal memory is one:764


• that is reasonably well-aligned (i.e. the correlation between activation and basic765


distance is significantly greater than random)766


• in which most memory items come in pairs, consisting of one local item and one767


global item, so that activation of the local item (the “key”) frequently leads in the768


near future to activation of the global item (the “map”).769


Obviously, in the scope of all possible memory structures constructible within770


the above formalism, glocal memories are going to be very rare and special. But,771


we suggest that they are important, because they are generally going to be the most772


effective way for intelligent systems to structure their memories.773


Note also that many memories without glocal structure may be “well-aligned” in774


the above sense.775


An example of a predominantly local memory structure, in which nearly all sig-776


nificant memory items are local according to the above definition, is the Cyc logical777


reasoning engine [LG90]. To cast the Cyc knowledge base in the present formal778


model, the tokens are logical predicates. Cyc does not have an in-built notion of779


activation, but one may conceive the activation of a logical formula in Cyc as the780


degree to which the formula is used in reasoning or query processing during a cer-781


tain interval in time. And one may define a basic metric for Cyc by associating a782


predicate with its extension (the set of satisfying inputs), and defining the similarity783


of two predicates as the symmetric distance of their extensions. Cyc is reasonably784
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296 13 Local, Global and Glocal Knowledge Representation


well-aligned, but according to the dynamics of its querying and reasoning engines,785


it is basically a local memory structure without significant global memory structure.786


On the other hand, an example of a predominantly global memory structure,787


in which nearly all significant memory items are global according to the above788


definition, is the Hopfield associative memory network [Ami89]. Here memories789


are stored in the pattern of weights associated with synapses within a network of790


formal neurons, and each memory in general involves a large number of the neurons791


in the network. To cast the Hopfield net in the present formal model, the tokens are792


neurons and synapses; the activations are neural net activations; the basic distance793


between two neurons A and B may be defined as the percentage of the time that794


stimulating one of the neurons leads to the other one firing; and to calculate a basic795


distance involving a synapse, one may associate the synapse with its source and796


target neurons. With these definitions, a Hopfield network is a well-aligned memory,797


and (by intentional construction) a markedly global one. Local memory items will798


be very rare in a Hopfield net.799


While predominantly local and predominantly global memories may have great800


value for particular applications, our suggestion is that they also have inherent limi-801


tations. If so, this means that the most useful memories for general intelligence are802


going to be those that involve both local and global memory items in central roles.803


However, this is a more general and less risky claim than the assertion that glocal804


memory structure as defined above is important. Because, “glocal” as defined above805


doesn’t just mean “neither predominantly global nor predominantly local.” Rather, it806


refers to a specific pattern of coordination between local and global memory items—807


what we have called the “keys and maps” pattern.808


13.6.2 Glocal Memory in the Brain809


Science’s understanding of human brain dynamics is still very primitive, one man-810


ifestation of which is the fact that we really don’t understand how the brain rep-811


resents knowledge, except in some very simple respects. So anything anyone says812


about knowledge representation in the brain, at this stage, has to be considered highly813


speculative. Existing neuroscience knowledge does imply constraints on how knowl-814


edge representation in the brain may work, but these are relatively loose constraints.815


These constraints do imply that, for instance, the brain is neither a relational data-816


base (in which information is stored in a wholly localized manner) nor a collection of817


“grandmother neurons” that respond individually to high-level percepts or concepts;818


nor a simple Hopfield type neural net (in which all memories are attractors globally819


distributed across the whole network). But they don’t tell us nearly enough to, for820


instance, create a formal neural net model that can confidently be said to represent821


knowledge in the manner of the human brain.822


As a first example of the current state of knowledge, we’ll discuss here a se-823


ries of papers regarding the neural representation of visual stimuli [QaGKKF05,824


QKKF08], which deal with the fascinating discovery of a subset of neurons in the825
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13.6 Glocal Memory 297


medial temporal lobe (MTL) that are selectively activated by strikingly different826


pictures of given individuals, landmarks or objects, and in some cases even by letter827


strings. For instance, in their 2005 paper titled “Invariant visual representation by828


single neurons in the human brain”, it is noted that829


in one case, a unit responded only to three completely different images of the ex-president830


Bill Clinton. Another unit (from a different patient) responded only to images of The Beatles,831


another one to cartoons from The Simpson’s television series and another one to pictures of832


the basketball player Michael Jordan.833


Their 2008 follow-up paper backed away from the more extreme interpretation in834


the title as well as the conclusion, with the title “Sparse but not ‘Grandmother-cell’835


coding in the medial temporal lobe”. As the authors emphasize there,836


Given the very sparse and abstract representation of visual information by these neurons, they837


could in principle be considered as ‘grandmother cells’. However, we give several arguments838


that make such an extreme interpretation unlikely.839


…840


MTL neurons are situated at the juncture of transformation of percepts into constructs that841


can be consciously recollected. These cells respond to percepts rather than to the detailed842


information falling on the retina. Thus, their activity reflects the full transformation that visual843


information undergoes through the ventral pathway. A crucial aspect of this transformation is844


the complementary development of both selectivity and invariance. The evidence presented845


here, obtained from recordings of single-neuron activity in humans, suggests that a subset of846


MTL neurons possesses a striking invariant representation for consciously perceived objects,847


responding to abstract concepts rather than more basic metric details. This representation is848


sparse, in the sense that responsive neurons fire only to very few stimuli (and are mostly silent849


except for their preferred stimuli), but it is far from a Grandmother-cell representation. The850


fact that the MTL represents conscious abstract information in such a sparse and invariant way851


is consistent with its prominent role in the consolidation of long-term semantic memories.852


It’s interesting to note how inadequate the [QKKF08] data really is for exploring853


the notion of glocal memory in the brain. Suppose it’s the case that individual visual854


memories correspond to keys consisting of small neuronal subnetworks, and maps855


consisting of larger neuronal subnetworks. Then it would be not at all surprising if856


neurons in the “key” network corresponding to a visual concept like “Bill Clinton’s857


face” would be found to respond differentially to the presentation of appropriate858


images. Yet, it would also be wrong to overinterpret such data as implying that the859


key network somehow comprises the “representation” of Bill Clinton’s face in the860


individual’s brain. In fact this key network would comprise only one aspect of said861


representation.862


In the glocal memory hypothesis, a visual memory like “Bill Clinton’s face” would863


be hypothesized to correspond to an attractor spanning a significant subnetwork of the864


individual’s brain—but this subnetwork still might occupy only a small fraction of the865


neurons in the brain (say, 1/100 or less), since there are very many neurons available.866


This attractor would constitute the map. But then, there would be a much smaller867


number of neurons serving as key to unlock this map: i.e. if a few of these key neurons868


were stimulated, then the overall attractor pattern in the map as a whole would unfold869


and come to play a significant role in the overall brain activity landscape. In prior870
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298 13 Local, Global and Glocal Knowledge Representation


publications [Goe97] the primary author explored this hypothesis in more detail871


in terms of the known architecture of the cortex and the mathematics of complex872


dynamical attractors.873


So, one possible interpretation of the [QKKF08] data is that the MTL neurons874


they’re measuring are part of key networks that correspond to broader map networks875


recording percepts. The map networks might then extend more broadly throughout876


the brain, beyond the MTL and into other perceptual and cognitive areas of cortex.877


Furthermore, in this case, if some MTL key neurons were removed, the maps might878


well regenerate the missing keys (as would happen e.g. in the glocal Hopfield model879


to be discussed in the following section).880


Related and interesting evidence for glocal memory in the brain comes from a881


recent study of semantic memory, illustrated in Fig. 13.1 [PNR07]. Their research882


probed the architecture of semantic memory via comparing patients suffering from883


semantic dementia (SD) with patients suffering from three other neuropathologies,884


and found reasonably convincing evidence for what they call a “distributed-plus-hub”885


view of memory.AQ3886


The SD patients they studied displayed highly distinctive symptomology; for887


instance, their vocabularies and knowledge of the properties of everyday objects888


were strongly impaired, whereas their memories of recent events and other cognitive889


capacities remain perfectly intact. These patients also showed highly distinctive pat-890


terns of brain damage: focal brain lesions in their anterior temporal lobes (ATL),891


unlike the other patients who had either less severe or more widely distributed dam-892


age in their ATLs. This led [PNR07] to conclude that the ATL (being adjacent to the893


amygdala and limbic systems that process reward and emotion; and the anterior parts894


of the medial temporal lobe memory system, which processes episodic memory) is895


a “hub” for amodal semantic memory, drawing general semantic information from896


episodic memories based on emotional salience.897


So, in this view, the memory of something like a “banana” would contain a distrib-898


uted aspect, spanning multiple brain systems, and also a localized aspect, centralized899


in the ATL. The distributed aspect would likely contain information on various par-900


ticular aspects of bananas, including their sights, smells, and touches, the emotions901


they evoke, and the goals and motivations they relate to. The distributed and localized902


aspects would influence one another dynamically, but, the data [PNR07] gathered do903


not address dynamics and they don’t venture hypotheses in this direction.904


There is a relationship between the “distributed-plus-hub” view and [Dam00]905


better-known notion of a “convergence zone”, defined roughly as a location where906


the brain binds features together. A convergence zone, in [Dam00] perspective, is907


not a “store” of information but an agent capable of decoding a signal (and of recon-908


structing information). He also uses the metaphor that convergence zones behave like909


indexes drawing information from other areas of the brain—but they are dynamic910


rather than static indices, containing the instructions needed to recognize and com-911


bine the features constituting the memory of something. The mechanism involved912


in the distributed-plus-hub model is similar to a convergence zone, but with the im-913


portant difference that hubs are less local: [PNR07] semantic hub may be thought914
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13.6 Glocal Memory 299


Fig. 13.1 A simplified look at feedback-control in uncertain inference


of a kind of “cluster of convergence zones” consisting of a network of convergence915


zones for various semantic memories.916


What is missing in [PNR07] and [Dam00] perspective is a vision of distributed917


memories as attractors. The idea of localized memories serving as indices into dis-918


tributed knowledge stores is important, but is only half the picture of glocal memory:919


the creative, constructive, dynamical-attractor aspect of the distributed representa-920


tion is the other half. The closest thing to a clear depiction of this aspect of glocal921


memory that seems to exist in the neuroscience literature is a portion of William922


Calvin’s theory of the “cerebral code” [Cal96]. Calvin proposes a set of quite specific923


mechanisms by which knowledge may be represented in the brain using complexly-924


structured strange attractors, and by which these strange attractors may be propagated925


throughout the brain. Figure 13.2 shows one aspect of his theory: how a distributed926


attractor may propagate from one part of the brain to another in pieces, with one927
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300 13 Local, Global and Glocal Knowledge Representation


Fig. 13.2 Calvin’s model of distributed attractors in the brain


portion of the attractor getting propagated first, and then seeding the formation in928


the destination brain region of a close approximation of the whole attractor.929


Calvin’s theory may be considered a genuinely glocal theory of memory. However,930


it also makes a large number of other specific commitments that are not part of the931


notion of glocality, such as his proposal of hexagonal meta-columns in the cortex, and932


his commitment to evolutionary learning as the primary driver of neural knowledge933


creation. We find these other hypotheses interesting and highly promising, yet feel it is934


also important to separate out the notion of glocal memory for separate consideration.935


Regarding specifics, our suggestion is that Calvin’s approach may overemphasize936


the distributed aspect of memory, not giving sufficient due to the relatively localized937


aspect as accounted for in the [QKKF08] results discussed above. In Calvin’s glocal938


approach, global memories are attractors and local memories are parts of attractors.939


We suggest a possible alternative, in which global memories are attractors and local940


memories are particular neuronal subnetworks such as the specialized ones identified941


by [QKKF08]. However, this alternative does not seem contradictory to Calvin’s942


overall conceptual approach, even though it is different from the particular proposals943


made in [Cal96].944


The above paragraphs are far from a complete survey of the relevant neuroscience945


literature; there are literally dozens of studies one could survey pointing toward the946


glocality of various sorts of human memory. Yet experimental neuroscience tools947


are still relatively primitive, and every one of these studies could be interpreted in948


various other ways. In the next couple decades, as neuroscience tools improve in949


accuracy, our understanding of the role of glocality in human memory will doubtless950


improve tremendously.951
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13.6 Glocal Memory 301


13.6.3 Glocal Hopfield Networks952


The ideas in the previous section suggest that, if one wishes to construct an AGI, it is953


worth seriously considering using a memory with some sort of glocal structure. One954


research direction that follows naturally from this notion is “glocal neural networks”.955


In order to explore the nature of glocal neural networks in a relatively simple and956


tractable setting, we have formalized and implemented simple examples of “glocal957


Hopfield networks”: palimpsest Hopfield nets with the addition of neurons represent-958


ing localized memories. While these specific networks are not used in CogPrime,959


they are quite similar to the ECAN networks that are used in CogPrime and described960


in Chap. 5 of Vol. 6.961


Essentially, we augment the standard Hopfield net architecture by adding a set962


of “key neurons”. These are a small percentage of the neurons in the network, and963


are intended to be roughly equinumerous to the number of memories the network is964


supposed to store. When the Hopfield net converges to an attractor A, then new links965


are created between the neurons that are active in A, and one of the key neurons.966


Which key neuron is chosen? The one that, when it is stimulated, gives rise to an967


attractor pattern maximally similar to A.968


The ultimate result of this is that, in addition to the distributed memory of attractors969


in the Hopfield net, one has a set of key neurons that in effect index the attractors.970


Each attractor corresponds to a single key neuron. In the glocal memory model, the971


key neurons are the keys and the Hopfield net attractors are the maps.972


This algorithm has been tested in sparse Hopfield nets, using both standard Hop-973


field net learning rules and Storkey’s modified palimpsest learning rule [SV99],974


which provides greater memory capacity in a continuous learning context. The use975


of key neurons turns out to slightly increase Hopfield net memory capacity, but this976


isn’t the main point. The main point is that one now has a local representation of977


each global memory, so that if one wants to create a link between the memory and978


something else, it’s extremely easy to do so—one just needs to link to the corre-979


sponding key neuron. Or, rather, one of the corresponding key neurons: depending980


on how many key neurons are allocated, one might end up with a number of key981


neurons corresponding to each memory, not just one.982


In order to transform a palimpsest Hopfield net into a glocal Hopfield net, the983


following steps are taken:984


1. Add a fixed number of “key neurons” to the network (removing other random985


neurons to keep the total number of neurons constant)986


2. When the network reaches an attractor, create links from the elements in the987


attractor to one of the key neurons988


3. The key neuron chosen for the previous step is the one that most closely matches989


the current attractor (which may be determined in several ways, to be discussed990


below)991


4. To avoid the increase of the number of links in the network, when new links are992


created in Step 2, other key-neuron links are then deleted (several approaches993
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302 13 Local, Global and Glocal Knowledge Representation


may be taken here, but the simplest is to remove the key-neuron links with the994


lowest-absolute-value weights).995


In the simple implementation of the above steps that we implemented, and996


described in [GPI+10], Step 3 is carried out simply by comparing the weights of997


a key neuron’s links to the nodes in an attractor. A more sophisticated approach998


would be to select the key neuron with the highest activation during the transient999


interval immediately prior to convergence to the attractor.1000


The result of these modifications to the ordinary Hopfield net, is a Hopfield net1001


that continually maintains a set of key neurons, each of which individually represents1002


a certain attractor of the net.1003


Note that these key neurons—in spite of being “symbolic” in nature—are learned1004


rather than preprogrammed, and are every bit as adaptive as the attractors they corre-1005


spond to. Furthermore, if a key neuron is removed, the glocal Hopfield net algorithm1006


will eventually learn it back, so the robustness properties of Hopfield nets are retained.1007


The results of experimenting with glocal Hopfield nets of this nature are summa-1008


rized in [GPI+10]. We studied Hopfield nets with connectivity around 0.1, and in1009


this context we found that glocality1010


• slightly increased memory capacity1011


• massively increased the rate of convergence to the attractor, i.e. the speed of recall.1012


However, probably the most important consequence of glocality is a more quali-1013


tative one: it makes it far easier to link the Hopfield net into a larger system, as would1014


occur if the Hopfield net were embedded in an integrative AGI architecture. Because1015


a neuron external to the Hopfield net may now link to a memory in the Hopfield net1016


by linking to the corresponding key neuron.1017


13.6.4 Neural-Symbolic Glocality in CogPrime1018


In CogPrime, we have explicitly sought to span the symbolic/emergentist pseudo-1019


dichotomy, via creating an integrative knowledge representation that combines logic-1020


based aspects with neural-net-like aspects. As reviewed in Chap. 1, these function1021


not in the manner of multimodular systems, but rather via using (probabilistic) truth1022


values and (attractor neural net like) attention values as weights on nodes and links1023


of the same (hyper) graph. The nodes and links in this hypergraph are typed, like a1024


standard semantic network approach for knowledge representation, so they’re able1025


to handle all sorts of knowledge, from the most concrete perception and actuation1026


related knowledge to the most abstract relationships. But they’re also weighted with1027


values similar to neural net weights, and pass around quantities (importance values,1028


discussed in Chap. 5 of Vol. 6) similar to neural net activations, allowing emergent1029


attractor/assembly based knowledge representation similar to attractor neural nets.1030


The concept of glocality lies at the heart of this combination, in a way that spans1031


the pseudo-dichotomy:1032
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13.6 Glocal Memory 303


• Local knowledge is represented in abstract logical relationships stored in explicit1033


logical form, and also in Hebbian-type associations between nodes and links.1034


• Global knowledge is represented in large-scale patterns of node and link weights,1035


which lead to large-scale patterns of network activity, which often take the form1036


of attractors qualitatively similar to Hopfield net attractors. These attractors are1037


called maps.1038


The result of all this is that a concept like “cat” might be represented as a combi-1039


nation of:1040


• A small number of logical relationships and strong associations, that constitute1041


the “key” subnetwork for the “cat” concept.1042


• A large network of weak associations, binding together various nodes and links of1043


various types and various levels of abstraction, representing the “cat map”.1044


The activation of the key will generally cause the activation of the map, and the1045


activation of a significant percentage of the map will cause the activation of the1046


rest of the map, including the key. Furthermore, if the key were for some reason1047


forgotten, then after a significant amount of effort, the system would likely to be able1048


to reconstitute it (perhaps with various small changes) from the information in the1049


map. We conjecture that this particular kind of glocal memory will turn out to be1050


very powerful for AGI, due to its ability to combine the strengths of formal logical1051


inference with those of self-organizing attractor neural networks.1052


As a simple example, consider the representation of a “tower”, in the context of an1053


artificial agent that has built towers of blocks, and seen pictures of many other kinds1054


of towers, and seen some tall building that it knows are somewhat like towers but1055


perhaps not exactly towers. If this agent is reasonably conceptually advanced (say, at1056


Piagetan the concrete operational level) then its mind will contain some declarative1057


relationships partially characterizing the concept of “tower”, as well as its sensory1058


and episodic examples, and its procedural knowledge about how to build towers.1059


The key of the “tower” concept in the agent’s mind may consist of internal images1060


and episodes regarding the towers it knows best, the essential operations it knows1061


are useful for building towers (piling blocks atop blocks atop blocks ...), and the core1062


declarative relations summarizing “towerness”—and the whole “tower” map then1063


consists of a much larger number of images, episodes, procedures and declarative1064


relationships connected to “tower” and other related entities. If any portion of the1065


map is removed—even if the key is removed—then the rest of the map can be1066


approximately reconstituted, after some work. Some cognitive operations are best1067


done on the localized representation—e.g. logical reasoning. Other operations, such1068


as attention allocation and guidance of inference control, are best done using the1069


globalized map representation.1070
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Chapter 14
Representing Implicit Knowledge
via Hypergraphs


14.1 Introduction0


Explicit knowledge is easy to write about and talk about; implicit knowledge is1


equally important, but tends to get less attention in discussions of AI and psychology,2


simply because we don’t have as good a vocabulary for describing it, nor as good3


a collection of methods for measuring it. One way to deal with this problem is4


to describe implicit knowledge using language and methods typically reserved for5


explicit knowledge. This might seem intrinsically non-workable, but we argue that it6


actually makes a lot of sense. The same sort of networks that a system like CogPrime7


uses to represent knowledge explicitly, can also be used to represent the emergent8


knowledge that implicitly exists in an intelligent system’s complex structures and9


dynamics.10 AQ1


We’ve noted that CogPrime uses an explicit representation of knowledge in11


terms of weighted labeled hypergraphs; and also uses other more neural net like12


mechanisms (e.g. the economic attention allocation network subsystem) to represent13


knowledge globally and implicitly. CogPrime combines these two sorts of represen-14


tation according to the principle we have called glocality. In this chapter we pursue15


glocality a bit further—describing a means by which even implicitly represented16


knowledge can be modeled using weighted labeled hypergraphs similar to the ones17


used explicitly in CogPrime. This is conceptually important, in terms of making clear18


the fundamental similarities and differences between implicit and explicit knowledge19


representation; and it is also pragmatically meaningful due to its relevance to the Cog-20


Prime methods described in Chap. 24 of Vol. 6 that transform implicit into explicit21


knowledge.22


To avoid confusion with CogPrime’s explicit knowledge representation, we will23


refer to the hypergraphs in this chapter as composed of Vertices and Edges rather than24


Nodes and Links. In prior publications we have referred to “derived” or “emergent”25


hypergraphs of the sort described here using the acronym SMEPH, which stands for26


Self-Modifying, Evolving Probabilistic Hypergraphs.27


B. Goertzel et al., Engineering General Intelligence, Part 1, 305
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_14,
© Atlantis Press and the authors 2014
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306 14 Representing Implicit Knowledge via Hypergraphs


14.2 Key Vertex and Edge Types28


We begin by introducing a particular collection of Vertex and Edge types, to be used29


in modeling the internal structures of intelligent systems.30


The key SMEPH Vertex types are31


• ConceptVertex, representing a set, for instance, an idea or a set of percepts.32


• SchemaVertex, representing a procedure for doing something (perhaps something33


in the physical world, or perhaps an abstract mental action).34


The key SMEPH Edge types, using language drawn from Probabilistic Logic35


Networks (PLN) and elaborated in Chap. 16 (Vol. 6), are as follows:36


• ExtensionalInheritanceEdge (ExtInhEdge for short: an edge which, linking one37


Vertex or Edge to another, indicates that the former is a special case of the latter).38


• ExtensionalSimilarityEdge (ExtSim: which indicates that one Vertex or Edge is39


similar to another).40


• ExecutionEdge (a ternary edge, which joins S,B,C when S is a SchemaVertex and41


the result from applying S to B is C).42


So, in a SMEPH system, one is often looking at hypergraphs whose Vertices repre-43


sent ideas or procedures, and whose Edges represent relationships of specialization,44


similarity or transformation among ideas and/or procedures.45


The semantics of the SMEPH edge types is given by PLN, but is simple46


and commonsensical. ExtInh and ExtSim Edges come with probabilistic weights47


indicating the extent of the relationship they denote (e.g. the ExtSimEdge joining48


the cat ConceptVertex to the dog ConceptVertex gets a higher probability weight49


than the one joining the cat ConceptVertex to the washing-machine ConceptVertex).50


The mathematics of transformations involving these probabilistic weights becomes51


quite involved—particularly when one introduces SchemaVertices corresponding to52


abstract mathematical operations, a step that enables SMEPH hypergraphs to have53


the complete mathematical power of standard logical formalisms like predicate54


calculus, but with the added advantage of a natural representation of uncertainty55


in terms of probabilities, as well as a natural representation of networks and webs of56


complex knowledge.57


14.3 Derived Hypergraphs58


We now describe how SMEPH hypergraphs may be used to model and describe59


intelligent systems. One can (in principle) draw a SMEPH hypergraph corresponding60


to any individual intelligent system, with Vertices and Edges for the concepts and61


processes in that system’s mind. This is called the derived hypergraph of that system.62
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14.3 Derived Hypergraphs 307


14.3.1 SMEPH Vertices63


A ConceptVertex in the derived hypergraph of a system corresponds to a structural64


pattern that persists over time in that system; whereas a SchemaVertex corresponds65


to a multi-time-point dynamical pattern that recurs in that system’s dynamics. If66


one accepts the patternist definition of a mind as the set of patterns in an intelligent67


system, then it follows that the derived hypergraph of an intelligent system captures68


a significant fraction of the mind of that system.69


To phrase it a little differently, we may say that a ConceptVertex, in SMEPH,70


refers to the habitual pattern of activity observed in a system when some condition is71


met (this condition corresponding to the presence of a certain pattern). The condition72


may refer to something in the world external to the system, or to something internal.73


For instance, the condition may be observing a cat. In this case, the corresponding74


Concept vertex in the mind of Ben Goertzel is the pattern of activity observed in Ben75


Goertzel’s brain when his eyes are open and he’s looking in the direction of a cat.76


The notion of pattern of activity can be made rigorous using mathematical pattern77


theory, as is described in The Hidden Pattern [Goe06a].78


Note that logical predicates, on the SMEPH level, appear as particular kinds of79


Concepts, where the condition involves a predicate and an argument. For instance,80


suppose one wants to know what happens inside Ben’s mind when he eats cheese.81


Then there is a Concept corresponding to the condition of cheese-eating activity.82


But there may also be a Concept corresponding to eating activity in general. If the83


Concept denoting the activity of eating X is generally easily computable from the84


Concepts for X and eating individually, then the eating Concept is effectively acting85


as a predicate.86


A SMEPH SchemaVertex, on the other hand, is like a Concept that’s defined in a87


time-dependent way. One type of Schema refers to a habitual dynamical pattern of88


activity occurring before and/or during some condition is met. For instance, the con-89


dition might be saying the word Hello. In that case the corresponding SchemaVertex90


in the mind of Ben Goertzel is the pattern of activity that generally occurs before he91


says Hello.92


Another type of Schema refers to a habitual dynamical pattern of activity occurring93


after some condition X is met. For instance, in the case of the Schema for adding94


two numbers, the precondition X consists of the two numbers and the concept of95


addition. The Schema is then what happens when the mind thinks of adding and96


thinks of two numbers.97


Finally, there are Schema that refer to habitual dynamical activity patterns occur-98


ring after some condition X is met and before some condition Y is met. In this case99


the Schema is viewed as transforming X into Y. For instance, if X is the condition100


of meeting someone who is not a friend, and Y is the condition of being friends101


with that person, then the habitually intervening activities constitute the Schema for102


making friends.103


319477_1_En_14_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 311 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


308 14 Representing Implicit Knowledge via Hypergraphs


14.3.2 SMEPH Edges104


SMEPH edge types fall into two categories: functional and logical. Functional edges105


connect Schema vertices to their input and outputs; logical edges refer mainly to con-106


ditional probabilities, and in general are to be interpreted according to the semantics107


of Probabilistic Logic Networks.108


Let us begin with logical edges. The simplest case is the Subset edge, which109


denotes a straightforward, extensional conditional probability. For instance, it may110


happen that whenever the Concept for cat is present in a system, the Concept for111


animal is as well. Then we would say112


Subset cat animal113


(Here we assume a notation where “R A B” denotes an Edge of type R between114


Vertices A and B.)115


On the other hand, it may be that 50 % of the time that cat is present in the system,116


cute is present as well: then we would say117


Subset cat cute <.5>118


where the <.5> denotes the probability, which is a component of the Truth Value119


associated with the edge.120


Next, the most basic functional edge is the Execution edge, which is ternary and121


denotes a relation between a Schema, its input and its output, e.g.122


Execution father_of Ben_Goertzel Ted_Goertzel123


for a schema father_of that outputs the father of its argument.124


The ExecutionOutput (ExOut) edge denotes the output of a Schema in an implicit125


way, e.g.126


ExOut say_hello127


refers to a particular act of saying hello, whereas128


ExOut add_numbers {3, 4)129


refers to the Concept corresponding to 7. Note that this latter example involves a set130


of three entities: sets are also part of the basic SMEPH knowledge representation. A131


set may be thought of as a hypergraph edge that points to all its members.132


In this manner we may define a set of edges and vertices modeling the habitual133


activity patterns of a system when in different situations. This is called the derived134


hypergraph of the system. Note that this hypergraph can in principle be constructed135


no matter what happens inside the system: whether it’s a human brain, a formal136


neural network, Cyc, OCP, a quantum computer, etc. Of course, constructing the137


hypergraph in practice is quite a different story: for instance, we currently have no138


accurate way of measuring the habitual activity patterns inside the human brain.139


fMRI and PET and other neuroimaging technologies give only a crude view, though140


they are continually improving.141
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14.3 Derived Hypergraphs 309


Pattern theory enters more deeply here when one thoroughly fleshes out the142


Inheritance concept. Philosophers of logic have extensively debated the relationship143


between extensional inheritance (inheritance between sets based on their members)144


and intensional inheritance (inheritance between entity-types based on their proper-145


ties). A variety of formal mechanisms have been proposed to capture this conceptual146


distinction; see (Wang 2006, 1995 TODO make ref) for a review along with a novel147


approach utilizing uncertain term logic. Pattern theory provides a novel approach to148


defining intension: one may associate with each ConceptVertex in a system’s derived149


hypergraph the set of patterns associated with the structural pattern underlying that150


ConceptVertex. Then, one can define the strength of the IntensionalInheritanceEdge151


between two ConceptVertices A and B as the percentage of A’s pattern-set that is152


also contained in B’s pattern-set. According to this approach, for instance, one could153


have154


IntInhEdge whale fish <0.6>155


ExtInhEdge whale fish <0.0>156


since the fish and whale sets have common properties but no common members.157


14.4 Implications of Patternist Philosophy for Derived158


Hypergraphs of Intelligent Systems159


Patternist philosophy rears its head here and makes some definite hypotheses about160


the structure of derived hypergraphs. It suggests that derived hypergraphs should161


have a dual network structure, and that in highly intelligent systems they should have162


subgraphs that constitute models of the whole hypergraph (these are self systems).163


SMEPH does not add anything to the patternist view on a philosophical level, but164


it gives a concrete instantiation to some of the general ideas of patternism. In this165


section we’ll articulate some “SMEPH principles”, constituting important ideas from166


patternist philosophy as they manifest themselves in the SMEPH context.167


The logical edges in a SMEPH hypergraph are weighted with probabilities, as168


in the simple example given above. The functional edges may be probabilistically169


weighted as well, since some Schema may give certain results only some of the time.170


These probabilities are critical in terms of SMEPH’s model of system dynamics;171


they underly one of our SMEPH principles,172


Principle of Implicit Probabilistic Inference: In an intelligent system, the tem-173


poral evolution of the probabilities on the edges in the system’s derived hypergraph174


should approximately obey the rules of probability theory.175


The basic idea is that, even if a system—through its underlying dynamics—has no176


explicit connection to probability theory, it still must behave roughly as if it does,177


if it is going to be intelligent. The roughly part is important here; it’s well known178


that humans are not terribly accurate in explicitly carrying out formal probabilistic179
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310 14 Representing Implicit Knowledge via Hypergraphs


inferences. And yet, in practical contexts where they have experience, humans can180


make quite accurate judgments; which is all that’s required by the above principle,181


since it’s the contexts where experience has occurred that will make up a system’s182


derived hypergraph.183


Our next SMEPH principle is evolutionary, and states184


Principle of Implicit Evolution: In an intelligent system, new Schema and Con-185


cepts will continually be created, and the Schema and Concepts that are more useful186


for achieving system goals (as demonstrated via probabilistic implication of goal187


achievement) will tend to survive longer.188


Note that this principle can be fulfilled in many different ways. The important189


thing is that system goals are allowed to serve as a selective force.190


Another SMEPH dynamical principle pertains to a shorter time-scale than evolu-191


tion, and states192


Principle of Attention Allocation: In an intelligent system, Schema and Con-193


cepts that are more useful for attaining short-term goals will tend to consume more194


of the system’s energy. (The balance of attention oriented toward goals pertaining to195


different time scales will vary from system to system.)196


Next, there is the197


Principle of Autopoesis: In an intelligent system, if one removes some part of198


the system and then allows the system’s natural dynamics to keep going, a decent199


approximation to that removed part will often be spontaneously reconstituted.200


And there is the201


Cognitive Equation Principle: In an intelligent system, many abstract patterns202


that are present in the system at a certain time as patterns among other Schema203


and Concepts, will at a near-future time be present in the system as patterns among204


elementary system components.205


The Cognitive Equation Principle, briefly discussed in Chap. 4, basically means206


that Concepts and Schema emergent in the system are recognized by the system and207


then embodied as elementary items in the system so that patterns among them in208


their emergent form become, with the passage of time, patterns among them in their209


directly-system-embodied form. This is a natural consequence of the way intelligent210


systems continually recognize patterns in themselves.211


Note that derived hypergraphs may be constructed corresponding to any complex212


system which demonstrates a variety of internal dynamical patterns depending on213


its situation. However, if a system is not intelligent, then according to the patternist214


philosophy evolution of its derived hypergraph can’t necessarily be expected to follow215


the above principles.216
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14.4 Implications of Patternist Philosophy for Derived Hypergraphs of Intelligent Systems 311


14.4.1 SMEPH Principles in CogPrime217


We now more explicitly elaborate the application of these ideas in the CogPrime218


context. As noted above, in addition to explicit knowledge representation in terms219


of Nodes and Links, CogPrime also incorporates implicit knowledge representation220


in the form of what are called Maps: collections of Nodes and Links that tend to be221


utilized together within cognitive processes.222


These Maps constitute a CogPrime system’s derived hypergraph, which will not be223


identical to the hypergraph it uses for explicit knowledge representation. However,224


an interesting feedback loop arises here, in that the intelligence’s self-study will225


generally lead it to recognize large portions of its derived hypergraph as patterns in226


itself, and then embody these patterns within its concretely implemented knowledge227


hypergraph. This relates to the Cognitive Equation Principle defined in Chap. 4, in228


which an intelligent system continually recognizes patterns in itself and embodies229


these patterns in its own basic structure (so that new patterns may more easily emerge230


from them).231


Often it happens that a particular CogPrime node will serve as the center of a232


map, so that e.g. the Concept Link denoting cat will consist of a number of nodes233


and links roughly centered around a ConceptNode that is linked to the WordNode234


cat. But this is not guaranteed and some CogPrime maps are more diffuse than this235


with no particular center.236


Somewhat similarly, the key SMEPH dynamics are represented explicitly in Cog-237


Prime: probabilistic reasoning is carried out via explicit application of PLN on the238


CogPrime hypergraph, evolutionary learning is carried out via application of the239


MOSES optimization algorithm, and attention allocation is carried out via a com-240


bination of inference and evolutionary pattern mining. But the SMEPH dynamics241


also occur implicitly in CogPrime: emergent maps are reasoned on probabilistically242


as an indirect consequence of node-and-link level PLN activity; maps evolve as a243


consequence of the coordinated whole of CogPrime dynamics; and attention shifts244


between maps according to complex emergent dynamics.245


To see the need for maps, consider that even a Node that has a particular meaning246


attached to it—like the Iraq Node, say—doesn’t contain much of the meaning of247


Iraq in it. The meaning of Iraq lies in the Links attached to this Node, and the Links248


attached to their Nodes—and the other Nodes and Links not explicitly represented249


in the system, which will be created by CogPrime’s cognitive algorithms based on250


the explicitly existent Nodes and Links related to the Iraq Node.251


This halo of Atoms related to the Iraq node is called the Iraq map. In general, some252


maps will center around a particular Atom, like this Iraq map, others may not have253


any particular identifiable center. CogPrime’s cognitive processes act directly on the254


level of Nodes and Links, but they must be analyzed in terms of their impact on maps255


as well. In SMEPH terms, CogPrime maps may be said to correspond to SMEPH256


Conceptions, and for instance bundles of Links between the Nodes belonging to a257


map may correspond to a SMEPH Link between two Conceptions.258
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Chapter 15
Emergent Networks of Intelligence


15.1 Introduction0


When one is involved with engineering an AGI system, one thinks a lot about the1


aspects of the system one is explicitly building—what are the parts, how they fit2


together, how to test they’re properly working, and so forth. And yet, these explicitly3


engineered aspects are only a fraction of what’s important in an AGI system. At least4


as critical are the emergent aspects—the patterns that emerge once the system is up5


and running, interacting with the world and other agents, growing and developing6


and learning and self-modifying. SMEPH is one toolkit for describing some of these7


emergent patterns, but it’s only a start.8 AQ1


In line with these general observations, most of this book will focus on the struc-9


tures and processes that we have built, or intend to build, into the CogPrime system.10


But in a sense, these structures and processes are not the crux of CogPrime’s intended11


intelligence. The purpose of these pre-programmed structures and processes is to give12


rise to emergent structures and processes, in the course of CogPrime’s interaction13


with the world and the other minds within it. We will return to this theme of emer-14


gence at several points in later chapters, e.g. in the discussion of map formation in15


Chap. 24 of Vol. 6.16


Given the important of emergent structures—and specifically emergent network17


structures—for intelligence, it’s fortunate the scientific community has already gen-18


erated a lot of knowledge about complex networks: both networks of physical or19


software elements, and networks of organization emergent from complex systems.20


As most of this knowledge has originated in fields other than AGI, or in pure math-21


ematics, it tends to require some reinterpretation or tweaking to achieve maximal22


applicability in the AGI context; but we believe this effort will become increasingly23


worthwhile as the AGI field progresses, because network theory is likely to be very24


useful for describing the contents and interactions of AGI systems as they develop25


increasing intelligence.26


In this brief chapter we specifically focus on the emergence of certain large-scale27


network structures in a CogPrime knowledge store, presenting heuristic arguments28


B. Goertzel et al., Engineering General Intelligence, Part 1, 313
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_15,
© Atlantis Press and the authors 2014


319477_1_En_15_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 320 Layout: T1-Standard



http://dx.doi.org/10.2991/978-94-6239-030-0_24





A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


314 15 Emergent Networks of Intelligence


as to why these structures can be expected to arise. We also comment on the way in29


which these emergent structures are expected to guide cognitive processes, and give30


rise to emergent cognitive processes. The following chapter expands on this theme in31


a particular direction, exploring the possible emergence of structures characterizing32


inter-cognitive reflection.33


15.2 Small World Networks34


One simple but potentially useful observation about CogPrime Atomspaces is that35


they are generally going to be small world networks [Buc03], rather than random36


graphs. A small world network is a graph in which the connectivities of the various37


nodes display a power law behavior—so that, loosely speaking, there are a few nodes38


with very many links, then more nodes with a modest number of links. . . and finally,39


a huge number of nodes with very few links. This kind of network occurs in many40


natural and human systems, including citations among papers, financial arrangements41


among banks, links between Web pages and the spread of diseases among people42


or animals. In a weighted network like an Atomspace, “small-world-ness” must be43


defined in a manner taking the weights into account, and there are several obvious44


ways to do this. Figure 15.1 depicts a small but prototypical small-worlds network,45


with a few “hub” nodes possessing far more neighbors than the others, and then some46


secondary hubs, etc.47


Fig. 15.1 A typical, though small-sized, small-worlds network
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15.2 Small World Networks 315


An excellent reference on network theory in general, including but not limited to48


small world networks, is Peter Csermely’s Weak Links [Cse06]. Many of the ideas49


in that work have apparent OpenCog applications, which are not elaborated here.50


One process via which small world networks commonly form is “preferential51


attachment” [Bar02]. This occurs in essence when “the rich get richer”—i.e. when52


nodes in the network grow new links, in a manner that causes them to preferentially53


grow links to nodes that already have more links. It is not hard to see that CogPrime’s54


ECAN dynamics will naturally lead to preferential attachment, because Atoms with55


more links will tend to get more STI, and thus will tend to get selected by more56


cognitive processes, which will cause them to grow more links. For this reason,57


in most circumstances, a CogPrime system in which most link-building cognitive58


processes rely heavily on ECAN to guide their activities will tend to contain a small-59


world-network Atomspace. This is not rigorously guaranteed to be the case for any60


possible combination of environment and goals, but it is commonsensically likely to61


nearly always be the case.62


One consequence of the small worlds structure of the Atomspace is that, in explor-63


ing other properties of the Atom network, it is particularly important to look at the64


hub nodes. For instance, if one is studying whether hierarchical and heterarchical65


subnetworks of the Atomspace exist, and whether they are well-aligned with each66


other, it is important to look at hierarchical and heterarchical connections between67


hub nodes in particular (and secondary hubs, etc.). A pattern of hierarchical or dual68


network connection that only held up among the more sparsely connected nodes in69


a small-world network would be a strange thing, and perhaps not that cognitively70


useful.71


15.3 Dual Network Structure72


One of the key theoretical notions in patternist philosophy is that complex cognitive73


systems evolve internal dual network structures, comprising superposed, harmo-74


nized hierarchical and heterarchical networks. Now we explore some of the specific75


CogPrime structures and dynamics militating in favor of the emergence of dual net-76


works.77


15.3.1 Hierarchical Networks78


The hierarchical nature of human linguistic concepts is well known, and is illustrated79


in Fig. 15.2 for the commonsense knowledge domain (using a graph drawn from80


WordNet, a huge concept hierarchy covering 50K+ English-language concepts),81


and in Fig. 15.4 for a specialized knowledge subdomain, genetics. Due to this fact,82


a certain amount of hierarchy can be expected to emerge in the Atomspace of any83
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316 15 Emergent Networks of Intelligence


Fig. 15.2 A typical, though small, subnetwork of WordNet’s hierarchical network


Fig. 15.3 A typical, though
small, subnetwork of the
Gene Ontology’s hierarchical
network


linguistically savvy CogPrime, simply due to its modeling of the linguistic concepts84


that it hears and reads (Fig. 15.3).AQ2 85


Hierarchy also exists in the natural world apart from language, which is the86


reason that many sensorimotor-knowledge-focused AGI systems (e.g. DeSTIN and87


HTM, mentioned in Chap. 5) feature hierarchical structures. In these cases the hierar-88


chies are normally spatiotemporal in nature—with lower layers containing elements89


responding to more localized aspects of the perceptual field, and smaller, more local-90


ized groups of actuators. This kind of hierarchy certainly could emerge in an AGI91
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15.3 Dual Network Structure 317


Fig. 15.4 Small-scale portrayal of a portion of the spatiotemporal hierarchy in Jeff Hawkins’
Hierarchical Temporal Memory architecture


system, but in CogPrime we have opted for a different route. If a CogPrime system92


is hybridized with a hierarchical sensorimotor network like one of those mentioned93


above, then the Atoms linked to the nodes in the hierarchical sensorimotor network94


will naturally possess hierarchical conceptual relationships, and will thus naturally95


grow hierarchical links between them (e.g. and IntensionalInheritanceLinks via PLN,96


AsymmetricHebbianLinks via ECAN).97


Once elements of hierarchical structure exist via the hierarchical structure of98


language and physical reality, then a richer and broader hierarchy can be expected99


to accumulate on top of it, because importance spreading and inference control will100


implicitly and automatically be guided by the existing hierarchy. That is, in the101


language of Chaotic Logic [Goe94] and patternist theory, hierarchical structure is an102


“autopoietic attractor”—once it’s there it will tend to enrich itself and maintain itself.103


AsymmetricHebbianLinks arranged in a hierarchy will tend to cause importance to104


spread up or down the hierarchy, which will lead other cognitive processes to look for105


patterns between Atoms and their hierarchical parents or children, thus potentially106


building more hierarchical links. Chains of InheritanceLinks pointing up and down107


the hierarchy will lead PLN to search for more hierarchical links—e.g. most simply,108


A → B → C where C is above B is above A in the hierarchy, will naturally lead109


inference to check the viability of A → C by deduction. There is also the possibility110


to introduce a special DefaultInheritanceLink, as discussed in Chap. 16 of Vol. 6,111


but this isn’t actually necessary to obtain the inferential maintenance of a robust112


hierarchical network.113
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318 15 Emergent Networks of Intelligence


Fig. 15.5 Portions of a conceptual heterarchy centered on specific concepts


Fig. 15.6 A portion of a conceptual heterarchy, showing the “dangling links” leading this portion
to the rest of the heterarchy


15.3.2 Associative, Heterarchical Networks114


Heterarchy is in essence a simpler structure than hierarchy: it simply refers to a115


network in which nodes are linked to other nodes with which they share important116


relationships. That is, there should be a tendency that if two nodes are often impor-117


tant in the same contexts or for the same purposes, they should be linked together.118


Portrayals of typical heterarchical linkage patterns among natural language concepts119


are given in Figs. 15.5 and 15.6. Just for fun, Fig. 15.7 shows one person’s attempt120
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15.3 Dual Network Structure 319


Fig. 15.7 A fanciful evocation of part of a reader’s conceptual heterarchy related to Douglas
Hofstadter’s writings


to draw a heterarchical graph of the main concepts in one of Douglas Hofstadter’s121


books. Naturally, real concept heterarchies are far more large, complex and tangled122


than even this one.123


In CogPrime, ECAN enforces heterarchy via building SymmetricHebbianLinks,124


and PLN by building SimilarityLinks, IntensionalSimilarityLinks and Extensional-125


SimilarityLinks. Furthermore, these various link types reinforce each other. PLN126


control is guided by importance spreading, which follows Hebbian links, so that a127
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320 15 Emergent Networks of Intelligence


heterarchical Hebbian network tends to cause PLN to explore the formation of links128


following the same paths as the heterarchical HebbianLinks. And importance can129


spread along logical links as well as explicit Hebbian links, so that the existence of130


a heterarchical logical network will tend to cause the formation of additional heter-131


archical Hebbian links. Heterarchy reinforces itself in “autopoietic attractor” style132


even more simply and directly than heterarchy.133


15.3.3 Dual Networks134


Finally, if both hierarchical and heterarchical structures exist in an Atomspace, then135


both ECAN and PLN will naturally blend them together, because hierarchical and136


heterarchical links will feed into their link-creation processes and naturally be com-137


bined together to form new links. This will tend to produce a structure called a dual138


network, in which a hierarchy exists, along with a rich network of heterarchical links139


joining nodes in the hierarchy, with a particular density of links between nodes on140


the same hierarchical level. The dual network structure will emerge without any141


explicit engineering oriented toward it, simply via the existence of hierarchical and142


heterarchical networks, and the propensity of ECAN and PLN to be guided by both143


the hierarchical and heterarchical networks. The existence of a natural dual network144


structure in both linguistic and sensorimotor data will help the formation process145


along, and then creative cognition will enrich the dual network yet further than is146


directly necessitated by the external world.147


A rigorous mathematical analysis of the formation of hierarchical, heterarchical148


and dual networks in CogPrime systems has not yet been undertaken, and would149


certainly be an interesting enterprise. Similar to the theory of small world networks,150


there is ample ground here for both theorem-proving and heuristic experimentation.151


However, the qualitative points made here are sufficiently well-grounded in intu-152


ition and experience to be of some use guiding our ongoing work. One of the nice153


things about emergent network structures is that they are relatively straightforward154


to observe in an evolving, learning AGI system, via visualization and inspection of155


structures such at the Atomspace.156
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Chapter 16
AGI Preschool


16.1 Introduction0


In conversations with government funding sources or narrow AI researchers about1


AGI work, one of the topics that comes up most often is that of “evaluation and2


metrics”—i.e., AGI intelligence testing. We actually prefer to separate this into two3


topics: environments and methods for careful qualitative evaluation of AGI systems,4


versus metrics for precise measurement of AGI systems. The difficulty of formulat-5


ing bulletproof metrics for partial progress toward advanced AGI has become evident6


throughout the field, and in Chap. 8 we have elaborated one plausible explanation7


for this phenomenon, the “trickiness” of cognitive synergy. [LWML09], summariz-8


ing a workshop on “Evaluation and Metrics for Human-Level AI” held in 2008,9


discusses some of the general difficulties involved in this type of assessment, and10


some requirements that any viable approach must fulfill. On the other hand, the lack11


of appropriate methods for careful qualitative evaluation of AGI systems has been12


much less discussed, but we consider it actually a more important issue—as well as13


an easier (though not easy) one to solve.14


We haven’t actually found the lack of quantitative intelligence metrics to be a major15


obstacle in our practical AGI work so far. Our OpenCogPrime implementation lags16


far behind the CogPrime design as articulated in Vol. 6 of this book, and according17


to the theory underlying CogPrime, the more interesting behaviors and dynamics of18


the system will occur only when all the parts of the system have been engineered to a19


reasonable level of completion and integrated together. So, the lack of a great set of20


metrics for evaluating the intelligence of our partially-built system hasn’t impaired21


too much. Testing the intelligence of the current OpenCogPrime system is a bit like22


testing the flight capability of a partly-built airplane that only has stubs for wings,23


lacks tail-fins, has a much less efficient engine than the one that’s been designed24


for use in the first “real” version of the airplane, etc. There may be something to be25


learned from such preliminary tests, but making them highly rigorous isn’t a great26


use of effort, compared to working on finishing implementing the design according27


to the underlying theory.28


B. Goertzel et al., Engineering General Intelligence, Part 1, 323
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324 16 AGI Preschool


On the other hand, the problem of what environments and methods to use to29


qualitatively evaluate and study AGI progress, has been considerably more vexing30


to us in practice, as we’ve proceeded in our work on implementing and testing31


OpenCogPrime and developing the CogPrime theory. When developing a complex32


system, it’s nearly always valuable to see what this system does in some fairly rich,33


complex situations, in order to gain a better intuitive understanding of the parts and34


how they work together. In the context of human-level AGI, the theoretically best way35


to do this would be to embody one’s AGI system in a humanlike body and set it loose36


in the everyday human world; but of course, this isn’t feasible given the current state of37


development of robotics technology. So one must seek approximations. Toward this38


end we have embodied OpenCogPrime in non-player characters in video game style39


virtual worlds, and carried out preliminary experiments embodying OpenCogPrime40


in humanoid robots. These are reasonably good options but they have limitations and41


lead to subtle choices: what kind of game characters and game worlds, what kind of42


robot environments, etc.?43


One conclusion we have come to, based largely on the considerations in Chap. 1144


on development and Chap. 9 on the importance of environment, is that it may make45


sense to embed early-stage proto-AGI and AGI systems in environments reminiscent46


of those used for teaching young human children. In this chapter we will explore47


this approach in some detail: emulation, in either physical reality or an multiuser48


online virtual world, of an environment similar to preschools used in early human49


childhood education. Complete specification of an “AGI Preschool” would require50


much more than a brief chapter; our goal here is to sketch the idea in broad outline,51


and give a few examples of the types of opportunities such an environment would52


afford for instruction, spontaneous learning and formal and informal evaluation of53


certain sorts of early-stage AGI systems.54


The material in this chapter will pop up fairly often later in the book. The AGI55


Preschool context will serve, throughout the following chapters, as a source of con-56


crete examples of the various algorithms and structures. But it’s not proposed merely57


as an expository tool; we are making the very serious proposal that sending AGI sys-58


tems to a virtual or robotic preschool is an excellent way—perhaps the best way—to59


foster the development of human-level human-like AGI.60


16.1.1 Contrast to Standard AI Evaluation Methodologies61


The reader steeped in the current AI literature may wonder why it’s necessary to62


introduce a new methodology and environment for evaluating AGI systems. There63


are already very many different ways of evaluating AI systems out there ... do we64


really need another?65


Certainly, the AI field has inspired many competitions, each of which tests some66


particular type or aspect of intelligent behavior. Examples include robot competi-67


tions, tournaments of computer chess, poker, backgammon and so forth at computer68


Olympiads, trading-agent competition, language and reasoning competitions like the69
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Pascal Textual Entailment Challenge, and so on. In addition to these, there are many70


standard domains and problems used in the AI literature that are meant to capture71


the essential difficulties in a certain class of learning problems: standard datasets for72


face recognition, text parsing, supervised classification, theorem-proving, question-73


answering and so forth.74


However, the value of these sorts of tests for AGI is predicated on the hypothesis75


that the degree of success of an AI program at carrying out some domain-specific76


task, is correlated with the potential of that program for being developed into a robust77


AGI program with broad intelligence. If humanlike AGI and problem-area-specific78


“narrow AI” are in fact very different sorts of pursuits requiring very different prin-79


ciples, as we suspect, then these tests are not strongly relevant to the AGI problem.80


There are also some standard evaluation paradigms aimed at AI going beyond81


specific tasks. For instance, there is a literature on “multitask learning” and “transfer82


learning”, where the goal for an AI is to learn one task quicker given another task83


solved previously [Car97, TM95, BDS03, TS07, RZDK05]. This is one of the ca-84


pabilities an AI agent will need to simultaneously learn different types of tasks as85


proposed in the Preschool scenario given here. And there is a literature on “shaping”,86


where the idea is to build up the capability of an AI by training it on progressively87


more difficult versions of the same tasks [LD03]. Again, this is one sort of capability88


an AI will need to possess if it is to move up some type of curriculum, such as a89


school curriculum.90


While we applaud the work done on multitask learning and shaping, we feel91


that exploring these processes using mathematical abstractions, or in the domain of92


various narrowly-proscribed machine-learning or robotics test problems, may not93


adequately address the problem of AGI. The problem is that generalization among94


tasks, or from simpler to more difficult versions of the same task, is a process whose95


nature may depend strongly on the overall nature of the set of tasks and task-versions96


involved. Real-world tasks have a subtlety of interconnectedness and developmental97


course that is not captured in current mathematical learning frameworks nor standard98


AI test problems.99


To put it mathematically, we suggest that the universe of real-world human tasks100


has a host of “special statistical properties” that have implications regarding what101


sorts of AI programs will be most suitable; and that, while exploring and formalizing102


the nature of these statistical properties is important, an easier and more reliable103


approach to AGI testing is to create a testing environment that embodies these prop-104


erties implicitly, via its being an emulation of the cognitively meaningful aspects of105


the real-world human learning environment.106


One way to see this point vividly is to contrast the current proposal with the107


“General Game Player” AI competition, in which AIs seek to learn to play games108


based on formal descriptions of the rules.1 Clearly doing GGP well requires powerful109


AGI; and doing GGP even mediocrely probably requires robust multitask learning110


and shaping. But we suspect GGP is far inferior to AGI Preschool as an approach111


to testing early-stage AI programs aimed at roughly humanlike intelligence. This112


1 http://games.stanford.edu/
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326 16 AGI Preschool


is because, unlike the tasks involved in AI Preschool, the tasks involved in doing113


simple instances of GGP seem to have little relationship to humanlike intelligence114


or real-world human tasks.115


16.2 Elements of Preschool Design116


What we mean by an “AGI Preschool” is simply a porting to the AGI domain of117


the essential aspects of human preschools. While there is significant variance among118


preschools there are also strong commonalities, grounded in educational theory and119


experience. We will briefly discuss both the physical design and educational curricu-120


lum of the typical human preschool, and which aspects transfer effectively to the121


AGI context.122AQ1


On the physical side, the key notion in modern preschool design is the “learning123


center”, an area designed and outfitted with appropriate materials for teaching a124


specific skill. Learning centers are designed to encourage learning by doing, which125


greatly facilitates learning processes based on reinforcement, imitation and correction126


(see Chap. 13 of Vol. 6 for a detailed discussion of the value of this combination);127


and also to provide multiple techniques for teaching the same skills, to accommodate128


different learning styles and prevent over-fitting and overspecialization in the learning129


of new skills.130


Centers are also designed to cross-develop related skills. A “manipulative center”,131


for example, provides physical objects such as drawing implements, toys and puzzles,132


to facilitate development of motor manipulation, visual discrimination, and (through133


sequencing and classification games) basic logical reasoning. A “dramatics center”,134


on the other hand, cross-trains interpersonal and empathetic skills along with bodily-135


kinesthetic, linguistic, and musical skills. Other centers, such as art, reading, writing,136


science and math centers are also designed to train not just one area, but to center137


around a primary intelligence type while also cross-developing related areas. For138


specific examples of the learning centers associated with particular contemporary139


preschools, see [Nie98].140


In many progressive, student-centered preschools, students are left largely to their141


own devices to move from one center to another throughout the preschool room.142


Generally, each center will be staffed by an instructor at some points in the day but143


not others, providing a variety of learning experiences. At some preschools students144


will be strongly encouraged to distribute their time relatively evenly among the145


different learning centers, or to focus on those learning centers corresponding to146


their particular strengths and/or weaknesses.147


To imitate the general character of a human preschool, one would create several148


centers in a robot lab or virtual world. The precise architecture will best be adapted149


via experience but initial centers would likely be:150


• a blocks center: a table with blocks on it151
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16.2 Elements of Preschool Design 327


• a language center: a circle of chairs, intended for people to sit around and talk152


with the robot153


• a manipulative center: with a variety of different objects of different shapes and154


sizes, intended to teach visual and motor skills155


• a ball play center: where balls are kept in chests and there is space for the robot156


to kick the balls around157


• a dramatics center: where the robot can observe and enact various movements.158


16.3 Elements of Preschool Curriculum159


While preschool curricula vary considerably based on educational philosophy and160


regional and cultural factors, there is a great deal of common, shared wisdom regard-161


ing the most useful topics and methods for preschool teaching. Guided experiential162


learning in diverse environments and using varied materials is generally agreed upon163


as being an optimal methodology to reach a wide variety of learning types and capa-164


bilities. Hands-on learning provides grounding in specifics, where as a diversity of165


approaches allows for generalization.166


Core knowledge domains are also relatively consistent, even across various167


philosophies and regions. Language, movement and coordination, autonomous judg-168


ment, social skills, work habits, temporal orientation, spatial orientation, mathemat-169


ics, science, music, visual arts, and dramatics are universal areas of learning which all170


early childhood learning touches upon. The particulars of these skills may vary, but171


all human children are taught to function in these domains. The level of competency172


developed may vary, but general domain knowledge is provided. For example, most173


kids won’t be the next Maria Callas, Ravi Shankar or Gene Ween, but nearly all learn174


to hear, understand and appreciate music.175


Tables 16.1, 16.2, 16.3 review the key capabilities taught in preschools, and iden-176


tify the most important specific skills that need to be evaluated in the context of each177


capability. This table was assembled via surveying the curricula from a number of178


currently existing preschools employing different methodologies both based on for-179


mal academic cognitive theories [Sch07] and more pragmatic approaches, such as:180


Montessori [Mon12], Waldorf [SS03b], Brain Gym (www.braingym.org) and Core181


Knowledge (www.coreknowledge.org).182


16.3.1 Preschool in the Light of Intelligence Theory183


Comparing Table 16.1 to Gardner’s Multiple Intelligences (MI) framework briefly184


reviewed in Chap. 3, the high degree of harmony is obvious, and is borne out by more185


detailed analysis. Preschool curriculum as standardly practiced is very well attuned to186


MI, and naturally covers all the bases that Gardner identifies as important. And this is187
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328 16 AGI Preschool


Table 16.1 Categories of preschool curriculum, Part 1


Type of capability Specific skills to be evaluated


Story understanding • Understanding narrative sequence
• Understanding character development
• Dramatize a story
• Predict what comes next in a story


Linguistic • Give simple descriptions of events
• Describe similarities and differences
• Describe objects and their functions


Linguistic/Spatial-visual Interpreting pictures
Linguistic/Social • Asking questions appropriately


• Answering questions appropriately
• Talk about own discoveries
• Initiate conversations
• Settle disagreements
• Verbally express empathy
• Ask for help
• Follow directions


Linguistic/Scientific • Provide possible explanations for events or phenomena
• Carefully describe observations
• Draw conclusions from observations


Table 16.2 Categories of preschool curriculum, Part 2


Type of capability Specific skills to be evaluated


Logical-mathematical • Categorizing
• Sorting
• Arithmetic
• Performing simple “proto-scientific experiments”


Nonverbal communication • Communicating via gesture
• Dramatizing situations
• Dramatizing needs, wants
• Express empathy


Spatial-visual • Visual patterning
• Self-expression through drawing
• Navigate


Objective • Assembling objects
• Disassembling objects
• Measurement
• Symmetry
• Similarity between structures


(e.g. block structures and real ones)


not at all surprising since one of Gardner’s key motivations in articulating MI theory188


was the pragmatics of educating humans with diverse strengths and weaknesses.189


Regarding intelligence as “the ability to achieve complex goals in complex en-190


vironments”, it is apparent that preschools are specifically designed to pack a large191
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16.3 Elements of Preschool Curriculum 329


Table 16.3 Categories of
preschool curriculum, Part 3


Type of capability Specific skills to be evaluated


Interpersonal • Cooperation
• Display appropriate behavior


in various settings
• Clean up belongings
• Share supplies


Emotional • Delay gratification
• Control emotional reactions
• Complete projects


variety of different micro-environments (the learning centers) into a single room,192


and to present a variety of different tasks in each environment. The environments193


constituted by preschool learning centers are designed as microcosms of the most194


important aspects of the environments faced by humans in their everyday lives.195


16.4 Task-Based Assessment in AGI Preschool196


Professional pedagogues such as [CM07] discuss evaluation of early childhood learn-197


ing as intended to assess both specific curriculum content knowledge as well as the198


child’s learning process. It should be as unobtrusive as possible, so that it just seems199


like another engaging activity, and the results used to tailor the teaching regimen to200


use different techniques to address weaknesses and reinforce strengths.201


For example, with group building of a model car, students are tested on a variety202


of skills: procedural understanding, visual acuity, motor acuity, creative problem203


solving, interpersonal communications, empathy, patience, manners, and so on. With204


this kind of complex, yet engaging, activity as a metric the teacher can see how each205


student approaches the process of understanding each subtask, and subsequently206


guide each student’s focus differently depending on strengths and weaknesses.207


In Tables 16.4 and 16.5 we describe some particular tasks that AGIs may be mean-208


ingfully assigned in the context of a general AGI Preschool design and curriculum209


as described above. Of course, this is a very partial list, and is intended as evocative210


rather than comprehensive.211


Any one of these tasks can be turned into a rigorous quantitative test, thus allowing212


the precise comparison of different AGI systems’ capabilities; but we have chosen not213


to emphasize this point here, partly for space reasons and partly for philosophical214


ones. In some contexts the quantitative comparison of different systems may be215


the right thing to do, but as discussed in Chap. 17 there are also risks associated216


with this approach, including the emergence of an overly metrics-focused “bakeoff217


mentality” among system developers, and overfitting of AI abilities to test taking.218


What is most important is the isolation of specific tasks on which different systems219


may be experientially trained and then qualitatively assessed and compared, rather220


than the evaluation of quantitative metrics.221
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330 16 AGI Preschool


Table 16.4 Prototypical
preschool intelligence
assessment tasks, Part 1


Intelligence type Test


Linguistic • Write a set of instructions
• Speak on a subject
• Edit a written piece or work
• Write a speech
• Commentate on an event
• Apply positive or negative ‘spin’


to a story
Logical- • Perform arithmetic calculations


mathematical • Create a process to measure something
• Analyse how a machine works
• Create a process
• Devise a strategy to achieve an aim
• Assess the value of a proposition


Musical • Perform a musical piece
• Sing a song
• Review a musical work
• Coach someone to play a musical


instrument
Bodily-kinesthetic • Juggle


• Demonstrate a sports technique
• Flip a beer-mat
• Create a mime to explain something
• Toss a pancake
• Fly a kite


Table 16.5 Prototypical
preschool intelligence
assessment tasks, Part 2


Intelligence type Test


Spatial-visual • Design a costume
• Interpret a painting
• Create a room layout
• Create a corporate logo
• Design a building
• Pack a suitcase or the trunk of a car


Interpersonal • Interpret moods from facial expressions
• Demonstrate feelings through body


language
• Affect the feelings of others in a planned


way
• Coach or counsel another


Task-oriented testing allows for feedback on applications of general pedagogical222


principles to real-world, embodied activities. This allows for iterative refinement223


based learning (shaping), and cross development of knowledge acquisition and ap-224


plication (multitask learning). It also helps militate against both cheating, and over-225
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16.4 Task-Based Assessment in AGI Preschool 331


fitting, as teachers can make ad-hoc modifications to the tests to determine if this is226


happening and correct for it if necessary.227


E.g., consider a linguistic task in which the AGI is required to formulate a set of228


instructions encapsulating a given behavior (which may include components that are229


physical, social, linguistic, etc.). Note that although this is presented as centrally a230


linguistic task, it actually involves a diverse set of competencies since the behavior231


to be described may encompass multiple real-world aspects.232


To turn this task into a more thorough test one might involve a number of human233


teachers and a number of human students. Before the test, an ensemble of copies of234


the AGI would be created, with identical knowledge state. Each copy would interact235


with a different human teacher, who would demonstrate to it a certain behavior. After236


testing the AGI on its own knowledge of the material, the teacher would then inform237


the AGI that it will then be tested on its ability to verbally describe this behavior to238


another. Then, the teacher goes away and the copy interacts with a series of students,239


attempting to convey to the students the instructions given by the teacher.240


The teacher can thereby assess both the AGI’s understanding of the material,241


and the ability to explain it to the other students. This separates out assessment of242


understanding from assessment of ability to communicate understanding, attempting243


to avoid conflation of one with the other. The design of the training and testing needs244


to account for potential.245


This testing protocol abstracts away from the particularities of any one teacher or246


student, and focuses on effectiveness of communication in a human context rather247


than according to formalized criteria. This is very much in the spirit of how assessment248


takes place in human preschools (with the exception of the copying aspect): formal249


exams are rarely given in preschool, but pragmatic, socially-embedded assessments250


are regularly made.251


By including the copying aspect, more rigorous statistical assessments can be252


made regarding efficacy of different approaches for a given AGI design, independent253


of past teaching experiences. The multiple copies may, depending on the AGI system254


design, then be able to be reintegrated, and further “learning” be done by higher-order255


cognitive systems in the AGI that integrate the disparate experiences of the multiple256


copies.257


This kind of parallel learning is different from both sequential learning that hu-258


mans do, and parallel presences of a single copy of an AGI (such as in multiple chat259


rooms type experiments). All three approaches are worthy of study, to determine260


under what circumstances, and with which AGI designs, one is more successful than261


another.262


It is also worth observing how this test could be tweaked to yield a test of gener-263


alization ability. After passing the above, the AGI could then be given a description264


of a new task (acquisition), and asked to explain the new one (variation). And, part265


of the training behavior might be carried out unobserved by the AGI, thus requiring266


the AGI to infer the omitted parts of the task it needs to describe.267


Another popular form of early childhood testing is puzzle block games. These268


kinds of games can be used to assess a variety of important cognitive skills, and269


to do so in a fun way that not only examines but also encourages creativity and270
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332 16 AGI Preschool


flexible thinking. Types of games include pattern matching games in which students271


replicate patterns described visually or verbally, pattern creation games in which272


students create new patterns guided by visually or verbally described principles,273


creative interpretation of patterns in which students find meaning in the forms, and274


free-form creation. Such games may be individual or cooperative.275


Cross training and assessment of a variety of skills occurs with pattern block276


games: for example, interpretation of visual or linguistic instructions, logical proce-277


dure and pattern following, categorizing, sorting, general problem solving, creative278


interpretation, experimentation, and kinematic acuity. By making the games cooper-279


ative, various interpersonal skills involving communication and cooperation are also280


added to the mix.281


The puzzle block context bring up some general observations about the role of282


kinematic and visuospatial intelligence in the AGI Preschool. Outside of robotics283


and computer vision, AI research has often downplayed these sorts of intelligence284


(though, admittedly, this is changing in recent years, e.g. with increasing research285


focus on diagrammatic reasoning). But these abilities are not only necessary to nav-286


igate real (or virtual) spatial environments. They are also important components of a287


coherent, conceptually well-formed understanding of the world in which the student288


is embodied. Integrative training and assessment of both rigorous cognitive abilities289


generally most associated with both AI and “proper schooling” (such as linguistic290


and logical skills) along with kinematic and aesthetic/sensory abilities is essential291


to the development of an intelligence that can successfully both operate in and sen-292


sibly communicate about the real world in a roughly humanlike manner. Whether293


or not an AGI is targeted to interpret physical-world spatial data and perform tasks294


via robotics, in order to communicate ideas about a vast array of topics of interest295


to any intelligence in this world, an AGI must develop aspects of intelligence other296


than logical and linguistic cognition.297


16.5 Beyond Preschool298


Once an AGI passes preschool, what are the next steps? There is still a long way to299


go, from preschool to an AGI system that is capable of, say, passing the Turing Test300


or serving as an effective artificial scientist.301


Our suggestion is to extend the school metaphor further, and make use of exist-302


ing curricula for higher levels of virtual education: grade school, secondary school,303


and all levels of post-secondary education. If an AGI can pass online primary and304


secondary schools such as e-tutor.com, and go on to earn an online degree from an305


accredited university, then clearly said AGI has successfully achieved “human level,306


roughly humanlike AGI”. This sort of testing is interesting not only because it allows307


assessment of stages intermediate between preschool and adult, but also because it308


tests humanlike intelligence without requiring precise imitation of human behavior.309


If an AI can get a BA degree at an accredited university, via online coursework310


(assuming for simplicity courses where no voice interaction is needed), then we311
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16.5 Beyond Preschool 333


should consider that AI to have human-level intelligence. University coursework312


spans multiple disciplines, and the details of the homework assignments and exams313


are not known in advance, so like a human student the AGI team can’t cheat.314


In addition to the core coursework, a schooling approach also tests basic social315


interaction and natural language communication, ability to do online research, and316


general problem solving ability. However, there is no rigid requirement to be strictly317


humanlike in order to pass university classes.318


Most of our concrete examples in the following chapters will pertain to the319


preschool context, because it’s simple to understand, and because we feel that get-320


ting to the “AGI preschool student” level is going to be the largest leap. Once that321


level is obtained, moving further will likely be difficult also, but we suspect it will322


be more a matter of steady incremental improvements—whereas the achievement of323


preschool-level functionality will be a large leap from the current situation.324


16.6 Issues with Virtual Preschool Engineering325


As noted above there are two broad approaches to realizing the “AGI Preschool” idea:326


using the AGI to control a physical robot and then crafting a preschool environment327


suitable to the robot’s sensors and actuators; or, using the AGI to control a virtual328


agent in an appropriately rich virtual-world preschool. The robotic approach is harder329


from an AI perspective (as one must deal with problems of sensation and actuation),330


but easier from an environment-construction perspective. In the virtual world case,331


one quickly runs up against the current limitations of virtual world technologies,332


which have been designed mainly for entertainment or social-networking purposes,333


not with the requirements of AGI systems in mind.334


In Chap. 9 we discussed the general requirements that an environment should335


possess to be supportive of humanlike intelligence. Referring back to that list, it’s336


clear that current virtual worlds are fairly strong on multimodal communication, and337


fairly weak on naive physics. More concretely, if one wants a virtual world so that:338


1. one could carry out all the standard cognitive development experiments described339


in developmental psychology books340


2. one could implement intuitively reasonable versions of all the standard activities341


in all the standard learning stations in a contemporary preschool.342


then current virtual world technologies appear not to suffice.343


As reviewed above, typical preschool activities include for instance building with344


blocks, playing with clay, looking in a group at a picture book and hearing it read345


aloud, mixing ingredients together, rolling/throwing/catching balls, playing games346


like tag, hide-and-seek, Simon Says or Follow the Leader, measuring objects, cutting347


paper into different shapes, drawing and coloring, etc.348


And, as typical, not necessarily representative examples of tasks psychologists349


use to measure cognitive development (drawn mainly from the Piagetian tradition,350
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334 16 AGI Preschool


without implying any assertion that this is the only tradition worth pursuing), consider351


the following:352


1. Which row has more circles—A or B? A: O O O O O, B: OOOOO353


2. If Mike is taller than Jim, and Jim is shorter than Dan, then who is the shortest?354


Who is the tallest?355


3. Which is heavier—a pound of feathers or a pound of rocks?356


4. Eight ounces of water is poured into a glass that looks like the fat glass in Fig. 16.1b357


and then the same amount is poured into a glass that looks like the tall glass in358


Fig. 16.2. Which glass has more water?359


5. A lump of clay is rolled into a snake. All the clay is used to make the snake.360


Which has more clay in it—the lump or the snake?361


6. There are two dolls in a room, Sally and Ann, each of which has her own box, with362


a marble hidden inside. Sally goes out for a minute, leaving her box behind; and363


Ann decides to play a trick on Sally: she opens Sally’s box, removes the marble,364


hiding it in her own box. Sally returns, unaware of what happened. Where will365


Sally would look for her marble?366


7. Consider this rule about a set of cards that have letters on one side and numbers367


on the other: “If a card has a vowel on one side, then it has an even number on368


the other side.” If you have 4 cards labeled “E K 4 7”, which cards do you need369


to turn over to tell if this rule is actually true?370


8. Design an experiment to figure out how to make a pendulum that swings more371


slowly versus less slowly.372


What we see from this ad hoc, partial list is that a lot of naive physics is required to373


make an even vaguely realistic preschool. A lot of preschool education is about the374


intersection between abstract cognition and naive physics. A more careful review of375


the various tasks involved in preschool education bears out this conclusion.376AQ2


With this in mind, in this section we will briefly describe an approach to extending377


current virtual world technologies that appears to allow the construction of a reason-378


ably rich and realistic AGI preschool environment, without requiring anywhere near379


a complete simulation of realistic physics.380


16.6.1 Integrating Virtual Worlds with Robot Simulators381


One glaring deficit in current virtual world platforms is the lack of flexibility in terms382


of tool use. In most of these systems today, an avatar can pick up or utilize an object,383


or two objects can interact, only in specific, pre-programmed ways. For instance,384


an avatar might be able to pick up a virtual screwdriver only by the handle, rather385


than by pinching the blade between its fingers. This places severe limits on creative386


use of tools, which is absolutely critical in a preschool context. The solution to this387


problem is clear: adapt existing generalized physics engines to mediate avatar-object388


and object-object interactions. This would require more computation than current389


approaches, but not more than is feasible in a research context.390
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16.6 Issues with Virtual Preschool Engineering 335


(a)


(b)


Fig. 16.1 Part 1 of a Piagetian conservation of volume experiment: a child observes that two glasses
obviously have the same amount of milk in them, (a) and then sees the content of one of the glasses
poured into a different-shaped glass (b)


One way to achieve this goal would be to integrate a robot simulator with a virtual391


world or game engine, for instance to modify the OpenSim (http://opensimulator.org)392


virtual world to use the Gazebo (http://playerstage.sourceforge.net) robot simulator393


in place of its current physics engine. While tractable, such a project would require394


considerable software engineering effort.395


16.6.2 BlocksNBeads World396


Another glaring deficit in current virtual world platforms is their inability to model397


physical phenomena besides rigid objects with any sophistication. In this section398


we propose a potential solution to this issue: a novel class of virtual worlds called399


BlocksNBeadsWorld, consisting of the following aspects:400
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336 16 AGI Preschool


Fig. 16.2 Part 2 of a Piagetian conservation of volume experiment: a child observes two different-
shaped glasses, which (depending on the level of his cognition), he may be able to infer have the
same amount of milk in them, due to the events depicted in Fig. 16.1


1. 3D blocks of various shapes and sizes and frictional coefficients, that can be401


stacked402


2. Adhesive that can be used to stick blocks together, and that comes in two types,403


one of which can be removed by an adhesive-removing substance, one of which404


cannot (though its bonds can be broken via sufficient application of force)405


3. Spherical beads, each of which has intrinsic unchangeable adhesion properties406


defined according to a particular, simple “adhesion logic”407


4. Each block, and each bead, may be associated with multidimensional quantities408


representing its taste and smell; and may be associated with a set of sounds that are409


made when it is impacted with various forces at various positions on its surface.410


Interaction between blocks and beads is to be calculated according to standard411


Newtonian physics, which would be compute-intensive in the case of a large number412


of beads, but tractable using distributed processing. For instance if 10 K beads were413


used to cover a humanoid agent’s face, this would provide a fairly wide diversity414


of facial expressions; and if 10 K beads were used to form a blanket laid on a bed,415


this would provide a significant amount of flexibility in terms of rippling, folding416


and so forth. Yet, this order of magnitude of interactions is very small compared417


to what is done in contemporary simulations of fluid dynamics or, say, quantum418


chromodynamics.419


One key aspect of the spherical beads is that they can be used to create a variety420


of rigid or flexible surfaces, which may exist on their own or be attached to blocks-421


based constructs. The specific inter-bead adhesion properties of the beads could be422


defined in various ways, and will surely need to be refined via experimentation, but423


a simple scheme that seems to make sense is as follows.424


Each bead can have its surface tesselated into hexagons (the number of these can be425


tuned), and within each hexagon it can have two different adhesion coefficients: one426


for adhesion to other beads, and one for adhesion to blocks. The adhesion between two427


beads along a certain hexagon is then determined by their two adhesion coefficients;428


319477_1_En_16_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 341 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


16.6 Issues with Virtual Preschool Engineering 337


and the adhesion between a bead and a block is determined by the adhesion coeffi-429


cient of the bead, and the adhesion coefficient of the adhesive applied to the block.430


A distinction must be drawn between rigid and flexible adhesion: rigid adhesion431


sticks a bead to something in a way that can’t be removed except via breaking it off;432


whereas flexible adhesion just keeps a bead very close to the thing it’s stuck onto.433


Any two entities may be stuck together either rigidly or flexibly. Sets of beads with434


flexible adhesion to each other can be used to make entities like strings, blankets or435


clothes.436


Using the above adhesion logic, it seems one could build a wide variety of flexible437


structures using beads, such as (to give a very partial list):438


1. fabrics with various textures, that can be draped over blocks structures,439


2. multilayered coatings to be attached to blocks structures, serving (among many440


other examples) as facial expressions441


3. liquid-type substances with varying viscosities, that can be poured between dif-442


ferent containers, spilled, spread, etc.443


4. strings table in knots; rubber bands that can be stretched; etc.444


Of course there are various additional features one could add. For instance one445


could add a special set of rules for vibrating strings, allowing BlocksNBeadsWorld to446


incorporate the creation of primitive musical instruments. Variations like this could447


be helpful but aren’t necessary for the world to serve its essential purpose.448


Note that one does not have true fluid dynamics in BlocksNBeadsWorld, but,449


it seems that the latter is not necessary to encompass the phenomena covered in450


cognitive developmental tests or preschool tasks. The tests and tasks that are done451


with fluids can instead be done with masses of beads. For example, consider the452


conservation of volume task shown in Figs. 16.1 and 16.2 : it’s easy enough to envision453


this being done with beads rather than milk. Even a few hundred beads is enough454


to be psychologically perceived as a mass rather than a set of discrete units, and to455


be manipulated and analyzed as such. And the simplification of not requiring fluid456


mechanics in one’s virtual world is immense.457


Next, one can implement equations via which the adhesion coefficients of a bead458


are determined in part by the adhesion coefficients of nearby beads, or beads that are459


nearby in certain directions (with direction calculated in local spherical coordinates).460


This will allow for complex cracking and bending behaviors—not identical to those461


in the real world, but with similar qualitative characteristics. For example, without462


this feature one could create paper like substances that could be cut with scissors—463


but with this feature, one could go further and create woodlike substances that would464


crack when nails were hammered into them in certain ways, and so forth.465


Further refinements are certainly possible also. One could add multidimensional466


adhesion coefficients, allowing more complex sorts of substances. One could allow467


beads to vibrate at various frequencies, which would lead to all sorts of complex468


wave patterns in bead compounds, etc. In each case, the question to be asked is: what469


important cognitive abilities are dramatically more easily learnable in the presence470


of the new feature than in its absence?471
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338 16 AGI Preschool


The combination of blocks and beads seems ideal for implementing a more flexible472


and AGI-friendly type of virtual body than is currently used in games and virtual473


worlds. One can easily envision implementing a body with:474


1. a skeleton whose bones consist of appropriately shaped blocks475


2. joints consisting of beads, flexibly adhered to the bones476


3. flesh consisting of beads, flexibly adhered to each other477


4. internal “plumbing” consisting of tubes whose walls are beads rigidly adhered478


to each other, and flexibly adhered to the surrounding flesh (the plumbing could479


then serve to pass beads through, where slow passage would be ensured by weak480


adhesion between the walls of the tubes and the beads passing through the tubes).481


This sort of body would support rich kinesthesia; and rich, broad analogy-drawing482


between the internally-experienced body and the externally-experienced world. It483


would also afford many interesting opportunities for flexible movement control.484


Virtual animals could be created along with virtual humanoids.485


Regarding the extended mind, it seems clear that blocks and beads are adequate486


for the creation of a variety of different tools. Equipping agents with “glue guns”487


able to affect the adhesive properties of both blocks and beads would allow a diver-488


sity of building activity; and building with masses of beads could become a highly489


creative activity. Furthermore, beads with appropriately specified adhesion (within490


the framework outlined above) could be used to form organically growing plant-like491


substances, based on the general principles used in L-system models of plant growth492


(Prusinciewicz and Lindenmayer 1991). Structures with only beads would vaguely493


resemble herbaceous plants; and structures involving both blocks and beads would494


more resemble woody plants. One could even make organic structures that flourish495


or otherwise based on the light available to them (without of course trying to simulate496


the chemistry of photosynthesis).497


Some elements of chemistry may be achieved as well, though nowhere near what498


exists in physical reality. For instance, melting and boiling at least should be doable:499


assign every bead a temperature, and let solid interbead bonds turn liquid above500


a certain temperature and disappear completely above some higher temperature.501


You could even have a simple form of fire. Let fire be an element, whose beads502


have negative gravitational mass. Beads of fuel elements like wood have a threshold503


temperature above which they will turn into fire beads, with release of additional504


heat.2505


The philosophy underlying these suggested bead dynamics is somewhat compa-506


rable to that outlined in Wolfram’s book A New Kind of Science [Wol02]. There he507


proposes cellular automata models that emulate the qualitative characteristics of var-508


ious real-world phenomena, without trying to match real-world data precisely. For509


instance, some of his cellular automata demonstrate phenomena very similar to turbu-510


lent fluid flow, without implementing the Navier-Stokes equations of fluid dynamics511


or trying to precisely match data from real-world turbulence. Similarly, the beads in512


2 Thanks are due to Russell Wallace for the suggestions in this paragraph.
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16.6 Issues with Virtual Preschool Engineering 339


BlocksNBeadsWorld are intended to qualitatively demonstrate the real-world phe-513


nomena most useful for the development of humanlike embodied intelligence, with-514


out trying to precisely emulate the real-world versions of these phenomena.515


The above description has been left imprecisely specified on purpose. It would be516


straightforward to write down a set of equations for the block and bead interactions,517


but there seems little value in articulating such equations without also writing a518


simulation involving them and testing the ensuing properties. Due to the complex519


dynamics of bead interactions, the fine-tuning of the bead physics is likely to involve520


some tuning based on experimentation, so that any equations written down now521


would likely be revised based on experimentation anyway. Our goal here has been522


to outline a certain class of potentially useful environments, rather than to articulate523


a specific member of this class.524


Without the beads, BlocksNBeadsWorld would appear purely as a “Blocks World525


with Glue”—essentially a substantially upgraded version of the Blocks Worlds fre-526


quently used in AI, since first introduced in [Win72]. Certainly a pure “Blocks World527


with Glue” would have greater simplicity than BlocksNBeadsWorld, and greater rich-528


ness than standard Blocks World; but this simplicity comes with too many limitations,529


as shown by consideration of the various naive physics requirements inventoried530


above. One simply cannot run the full spectrum of humanlike cognitive development531


experiments, or preschool educational tasks, using blocks and glue alone. One can532


try to create analogous tasks using only blocks and glue, but this quickly becomes533


extremely awkward. Whereas in the BlocksNBeadsWorld the capability for this full534


spectrum of experiments and tasks seems to fall out quite naturally.535


What’s missing from BlocksNBeadsWorld should be fairly obvious. There isn’t536


really any distinction between a fluid and a powder: there are masses, but the types537


and properties of the masses are not the same as in the real world, and will surely538


lack the nuances of real-world fluid dynamics. Chemistry is also missing: processes539


like cooking and burning, although they can be crudely emulated, will not have the540


same richness as in the real world. The full complexity of body processes is not541


there: the body-design method mentioned above is far richer and more adaptive and542


responsive than current methods of designing virtual bodies in 3DS Max or Maya543


and importing them into virtual world or game engines, but still drastically simplistic544


compared to real bodies with their complex chemical signaling systems and couplings545


with other bodies and the environment. The hypothesis we’re making in this section546


is that these lacunae aren’t that important from the point of view of humanlike547


cognitive development. We suggest that the key features of naive physics and folk548


psychology enumerated above can be mastered by an AGI in BlocksNBeadsWorld549


in spite of its limitations, and that—together with an appropriate AGI design—this550


probably suffices for creating an AGI with the inductive biases constituting humanlike551


intelligence.552


To drive this point home more thoroughly, consider three potential virtual world553


scenarios:554
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340 16 AGI Preschool


1. A world containing realistic fluid dynamics, where a child can pour water back555


and forth between two cups of different shapes and sizes, to understand issues556


such as conservation of volume557


2. A world more like today’s Second Life, where fluids don’t really exist, and things558


like lakes are simulated via very simple rules, and pouring stuff back and forth559


between cups doesn’t happen unless it’s programmed into the cups in a very560


specialized way561


3. A BlocksNBeadsWorld type world, where a child can pour masses of beads back562


and forth between cups, but not masses of liquid.563


Our qualitative judgment is that Scenario 3 is going to allow a young AI to gain564


the same essential insights as Scenario 1, whereas Scenario 2 is just too impover-565


ished. I have explored dozens of similar scenarios regarding different preschool tasks566


or cognitive development experiments, and come to similar conclusions across the567


board. Thus, our current view is that something like BlocksNBeadsWorld can serve568


as an adequate infrastructure for an AGI Preschool, supporting the development of569


human-level, roughly human-like AGI.570


And, if this view turns out to be incorrect, and BlocksNBeadsWorld is revealed as571


inadequate, then we will very likely still advocate the conceptual approach enunciated572


above as a guide for designing virtual worlds for AGI. That is, we would suggest to573


explore the hypothetical failure of BlocksNBeadsWorld via asking two questions:574


1. Are there basic naive physics or folk psychology requirements that were missed in575


creating the specifications, based on which the adequacy of BlocksNBeadsWorld576


was assessed?577


2. Does BlocksNBeadsWorld fail to sufficiently emulate the real world in respect to578


some of the articulated naive physics or folk psychology requirements?579


The answers to these questions would guide the improvement of the world or the580


design of a better one.581


Regarding the practical implementation of BlocksNBeadsWorld, it seems clear582


that this is within the scope of modern game engine technology, however, it is not583


something that could be encompassed within an existing game or world engine with-584


out significant additions; it would require substantial custom engineering. There exist585


commodity and open-source physics engines that efficiently carry out Newtonian me-586


chanics calculations; while they might require some tuning and extension to handle587


BlocksNBeadWorld, the main issue would be achieving adequate speed of physics588


calculation, which given current technology would need to be done via modifying589


existing engines to appropriately distribute processing among multiple GPUs.590


Finally, an additional avenue that merits mention is the use of BlocksNBeads591


physics internally within an AGI system, as part of an internal simulation world that592


allows it to make “mind’s eye” estimative simulations of real or hypothetical physical593


situations. There seems no reason that the same physics software libraries couldn’t be594


used both for the external virtual world that the AGI’s body lives in, and for an internal595


simulation world that the AGI uses as a cognitive tool. In fact, the BlocksNBeads596


library could be used as an internal cognitive tool by AGI systems controlling physical597
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16.6 Issues with Virtual Preschool Engineering 341


robots as well. This might require more tuning of the bead dynamics to accord with598


the dynamics of various real-world systems; but, this tuning would be beneficial for599


the BlocksNBeadWorld as well.600
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Chapter 17
A Preschool-Based Roadmap to Advanced AGI


17.1 Introduction0


Supposing the CogPrime approach to creating advanced AGI is workable—then1


what are the right practical steps to follow? The various structures and algorithms2


outlined in Vol. 6 of this book should be engineered and software-tested, of course—3


but that’s only part of the study. The AGI system implemented will need to be4


taught, and it will need to be placed in situations where it can develop an appropriate5


self-model and other critical internal network structures. The complex structures and6


algorithms involved will need to be fine-tuned in various ways, based on qualitatively7


observing the overall system’s behavior in various situations. To get all this right8


without excessive confusion or time-wastage requires a fairly clear roadmap for9


CogPrime development.10


In this chapter we’ll sketch one particular roadmap for the development of human-11


level, roughly human-like AGI—which we’re not selling as the only one, or even12


necessarily as the best one. It’s just one roadmap that we have thought about a lot,13


and that we believe has a strong chance of proving effective. Given resources to14


pursue only one path for AGI development and teaching, this would be our choice,15


at present. The roadmap outlined here is not restricted to CogPrime in any highly16


particular ways, but it has been developed largely with CogPrime in mind; those17


developing other AGI designs could probably use this roadmap just fine, but might18


end up wanting to make various adjustments based on the strengths and weaknesses19


of their own approach.20


What we mean here by a “roadmap” is, in brief: a sequence of “milestone” tasks,21


occurring in a small set of common environments or “scenarios”, organized so as22


to lead to a commonly agreed upon set of long-term goals. I.e., what we are after23


here is a “capability roadmap”—a roadmap laying out a series of capabilities whose24


achievement seems likely to lead to human-level AGI. Other sorts of roadmaps such25


as “tools roadmaps” may also be valuable, but are not our concern here.26


More precisely, we confront the task of roadmapping by identifying scenarios in27


which to embed our AGI system, and then “competency areas” in which the AGI28


B. Goertzel et al., Engineering General Intelligence, Part 1, 343
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_17,
© Atlantis Press and the authors 2014
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344 17 A Preschool-Based Roadmap to Advanced AGI


system must be evaluated. Then, we envision a roadmap as consisting of a set of one29


or more task-sets, where each task set is formed from a combination of a scenario30


with a list of competency areas. To create a task-set one must choose a particular31


scenario, and then articulate a set of specific tasks, each one addressing one or more32


of the competency areas. Each task must then get associated with particular per-33


formance metrics—quantitative wherever possible, but perhaps qualitative in some34


cases depending on the nature of the task. Here we give a partial task-set for the35


“virtual and robot preschool” scenarios discussed in Chap. 16, and a couple example36


quantitative metrics just to illustrate what is intended; the creation of a fully detailed37


roadmap based on the ideas outlined here is left for future work.38


The train of thought presented in this chapter emerged in part from a series of39


conversations preceding and during the “AGI Roadmap Workshop” held at the40


University of Tennessee, Knoxville in October 2008. Some of the ideas also trace back41


to discussions held during two workshops on “Evaluation and Metrics for Human-42


Level AI” organized by John Laird and Pat Langley (one in Ann Arbor in late 2008,43


and one in Tempe in early 2009). Some of the conclusions of the Ann Arbor workshop44


were recorded in [LWML09]. Inspiration was also obtained from discussion at the45


“Future of AGI” post-conference workshop of the AGI-09 conference, triggered by46


Itamar Arel’s [ARK09a] presentation on the “AGI Roadmap” theme; and from an47


earlier article on AGI Roadmapping by [AL09].48


However, the focus of the AGI Roadmap Workshop was considerably more gen-49


eral than the present chapter. Here we focus on preschool-type scenarios, whereas50


at the workshop a number of scenarios were discussed, including the preschool sce-51


narios but also, for example,52


• Standardized Tests and School Curricula53


• Elementary, Middle and High School Student54


• General Videogame Learning55


• Wozniak’s Coffee Test: go into a random American house and figure out how to56


make coffee, and do it57


• Robot College Student58


• General Call Center Respondent59


For each of these scenarios, one may generate tasks corresponding to each of the60


competency areas we will outline below. CogPrime is applicable in all these sce-61


narios, so our choice to focus on preschool scenarios is an additional judgment call62


beyond those judgment calls required to specify the CogPrime design. The roadmap63


presented here is a “AGI Preschool Roadmap” and as such is a special case of the64


broader “AGI Roadmap” outlined at the workshop.65


17.2 Measuring Incremental Progress Toward Human-Level AGI66


In Chap. 3, we discussed several examples of practical goals that we find to plausibly67


characterize “human level AGI”, e.g.68
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17.2 Measuring Incremental Progress Toward Human-Level AGI 345


• Turing Test69


• Virtual World Turing Test70


• Online University Test71


• Physical University Test72


• Artificial Scientist Test73


We also discussed our optimism regarding the possibility that in the future AGI may74


advance beyond the human level, rendering all these goals “early-stage subgoals”.75


However, in this chapter we will focus our attention on the nearer term. The above76


goals are ambitious ones, and while one can talk a lot about how to precisely measure77


their achievement, we don’t feel that’s the most interesting issue to ponder at present.78


More critical is to think about how to measure incremental progress. How do you79


tell when you’re 25 or 50 % of the way to having an AGI that can pass the Turing80


Test, or get an online university degree. Fooling 50 % of the Turing Test judges is81


not a good measure of being 50 % of the way to passing the Turing Test (that’s too82


easy); and passing 50 % of university classes is not a good measure of being 50 %83


of the way to getting an online university degree (it’s too hard—if one had an AGI84


capable of doing that, one would almost surely be very close to achieving the end85


goal). Measuring incremental progress toward human-level AGI is a subtle thing,86


and we argue that the best way to do it is to focus on particular scenarios and the87


achievement of specific competencies therein.88


As we argued in Chap. 8 there are some theoretical reasons to doubt the possibility89


of creating a rigorous objective test for partial progress toward AGI—a test that90


would be convincing to skeptics, and impossible to “game” via engineering a system91


specialized to the test. Fortunately, though we don’t need a test of this nature for the92


purposes of assessing our own incremental progress toward advanced AGI, based on93


our knowledge about our own approach.94


Based on the nature of the grand goals articulated above, there seems to be a very95


natural approach to creating a set of incremental capabilities building toward AGI: to96


draw on our copious knowledge about human cognitive development. This is by no97


means the only possible path; one can envision alternatives that have nothing to do98


with human development (and those might also be better suited to non-human AGIs).99


However, so much detailed knowledge about human development is available—100


as well as solid knowledge that the human developmental trajectory does lead to101


human-level AI—that the motivation to draw on human cognitive development is102


quite strong.103


The main problem with the human development inspired approach is that cogni-104


tive developmental psychology is not as systematic as it would need to be for AGI to105


be able to translate it directly into architectural principles and requirements. As noted106


above, while early thinkers like Piaget and Vygotsky outlined systematic theories of107


child cognitive development, these are no longer considered fully accurate, and one108


currently faces a mass of detailed theories of various aspects of cognitive develop-109


ment, but without an unified understanding. Nevertheless we believe it is viable to110


work from the human-development data and understanding currently available, and111


craft a workable AGI roadmap therefrom.112
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346 17 A Preschool-Based Roadmap to Advanced AGI


With this in mind, what we give next is a fairly comprehensive list of the113


competencies that we feel AI systems should be expected to display in one or more114


of these scenarios in order to be considered as full-fledged “human level AGI” sys-115


tems. These competency areas have been assembled somewhat opportunistically via116


a review of the cognitive and developmental psychology literature as well as the117


scope of the current AI field. We are not claiming this as a precise or exhaustive118


list of the competencies characterizing human-level general intelligence, and will119


be happy to accept additions to the list, or mergers of existing list items, etc. What120


we are advocating is not this specific list, but rather the approach of enumerating121


competency areas, and then generating tasks by combining competency areas with122


scenarios.123


We also give, with each competency, an example task illustrating the competency.124


The tasks are expressed in the robot preschool context for concreteness, but they all125


apply to the virtual preschool as well. Of course, these are only examples, and ideally126


to teach an AGI in a structured way one would like to127


• associate several tasks with each competency128


• present each task in a graded way, with multiple subtasks of increasing complexity129


• associate a quantitative metric with each task130


However, the briefer treatment given here should suffice to give a sense for how the131


competencies manifest themselves practically in the AGI Preschool context.132


1. Perception133


• Vision: image and scene analysis and understanding134


– Example task: When the teacher points to an object in the preschool, the135


robot should be able to identify the object and (if it’s a multi-part object) its136


major parts. If it can’t perform the identification initially, it can approach137


the object and manipulate it before making its identification.138


• Hearing: identifying the sounds associated with common objects; understand-139


ing which sounds come from which sources in a noisy environment140


– Example task: When the teacher covers the robot’s eyes and then makes a141


noise with an object, the robot should be able to guess what the object is.142


• Touch: identifying common objects and carrying out common actions using143


touch alone144


– Example task: With its eyes and ears covered, the robot should be able to145


identify some object by manipulating it; and carry out some simple behav-146


iors (say, putting a block on a table) via touch alone.147


• Crossmodal: Integrating information from various senses148


– Example task: Identifying an object in a noisy, dim environment via com-149


bining visual and auditory information.150


• Proprioception: Sensing and understanding what its body is doing151


– Example task: The teacher moves the robot’s body into a certain configura-152


tion. The robot is asked to restore its body to an ordinary standing position,153


and then repeat the configuration that the teacher moved it into.154
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17.2 Measuring Incremental Progress Toward Human-Level AGI 347


2. Actuation155


• Physical skills: manipulating familiar and unfamiliar objects156


– Example task: Manipulate blocks based on imitating the teacher: e.g. pile157


two blocks atop each other, lay three blocks in a row, etc.158


• Tool use, including the flexible use of ordinary objects as tools159


– Example task: Use a stick to poke a ball out of a corner, where the robot160


cannot directly reach.161


• Navigation, including in complex and dynamic environments162


– Example task: Find its own way to a named object or person through a163


crowded room with people walking in it and objects laying on the floor.164


3. Memory165


• Declarative: noticing, observing and recalling facts about its environment and166


experience167


– Example task: If certain people habitually carry certain objects, the robot168


should remember this (allowing it to know how to find the objects when the169


relevant people are present, even much later).170


• Behavioral: remembering how to carry out actions171


– Example task: If the robot is taught some skill (say, to fetch a ball), it should172


remember this much later.173


• Episodic: remembering significant, potentially useful incidents from life his-174


tory175


– Example task: Ask the robot about events that occurred at times when it176


got particularly much, or particularly little, reward for its actions; it should177


be able to answer simple questions about these, with significantly more178


accuracy than about events occurring at random times.179


4. Learning180


• Imitation: Spontaneously adopt new behaviors that it sees others carrying out181


– Example task: Learn to build towers of blocks by watching people do it.182


• Reinforcement: Learn new behaviors from positive and/or negative reinforce-183


ment signals, delivered by teachers and/or the environment184


– Example task: Learn which box the red ball tends to be kept in, by repeatedly185


trying to find it and noticing where it is, and getting rewarded when it finds186


it correctly.187


• Imitation/Reinforcement188


– Example task: Learn to play “fetch”, “tag” and “follow the leader” by watch-189


ing people play it, and getting reinforced on correct behavior.190


• Interactive Verbal Instruction191


– Example task: Learn to build a particular structure of blocks faster based192


on a combination of imitation, reinforcement and verbal instruction, than193


by imitation and reinforcement without verbal instruction.194


• Written Media195


– Example task: Learn to build a structure of blocks by looking at a series of196


diagrams showing the structure in various stages of completion.197
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348 17 A Preschool-Based Roadmap to Advanced AGI


• Learning via Experimentation198


– Example task: Ask the robot to slide blocks down a ramp held at different199


angles. Then ask it to make a block slide fast, and see if it has learned how200


to hold the ramp to make a block slide fast.201


5. Reasoning202


• Deduction, from uncertain premises observed in the world203


– Example task: If Ben more often picks up red balls than blue balls, and Ben204


is given a choice of a red block or blue block to pick up, which is he more205


likely to pick up?206


• Induction, from uncertain premises observed in the world207


– Example task: If Ben comes into the lab every weekday morning, then is208


Ben likely to come to the lab today (a weekday) in the morning?209


• Abduction, from uncertain premises observed in the world210


– Example task: If women more often give the robot food than men, and then211


someone of unidentified gender gives the robot food, is this person a man212


or a woman?213


• Causal Reasoning, from uncertain premises observed in the world214


– Example task: If the robot knows that knocking down Ben’s tower of blocks215


makes him angry, then what will it say when asked if kicking the ball at216


Ben’s tower of blocks will make Ben mad?217


• Physical Reasoning, based on observed “fuzzy rules” of naive physics218


– Example task: Given two balls (one rigid and one compressible) and two219


tunnels (one significantly wider than the balls, one slightly narrower than220


the balls), can the robot guess which balls will fit through which tunnels?221


• Associational Reasoning, based on observed spatiotemporal associations222


– Example task: If Ruiting is normally seen near Shuo, then if the robot knows223


where Shuo is, that is where it should look when asked to find Ruiting.224


6. Planning225


• Tactical226


– Example task: The robot is asked to bring the red ball to the teacher, but the227


red ball is in the corner where the robot can’t reach it without a tool like a228


stick. The robot knows a stick is in the cabinet so it goes to the cabinet and229


opens the door and gets the stick, and then uses the stick to get the red ball,230


and then brings the red ball to the teacher.231


• Strategic232


– Example task: Suppose that Matt comes to the lab infrequently, but when233


he does come he is very happy to see new objects he hasn’t seen before (and234


suppose the robot likes to see Matt happy). Then when the robot gets a new235


object Matt has not seen before, it should put it away in a drawer and be236


sure not to lose it or let anyone take it, so it can show Matt the object the237


next time Matt arrives.238
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17.2 Measuring Incremental Progress Toward Human-Level AGI 349


• Physical239


– Example task: To pick up a cup with a handle which is lying on its side in240


a position where the handle can’t be grabbed, the robot turns the cup in the241


right position and then picks up the cup by the handle.242


• Social243


– Example task: The robot is given a job of building a tower of blocks by the244


end of the day, and he knows Ben is the most likely person to help him, and245


he knows that Ben is more likely to say “yes” to helping him when Ben is246


alone. He also knows that Ben is less likely to say “yes” if he’s asked too247


many times, because Ben doesn’t like being nagged. So he waits to ask Ben248


till Ben is alone in the lab.249


7. Attention250


• Visual Attention within its observations of its environment251


– Example task: The robot should be able to look at a scene (a configuration252


of objects in front of it in the preschool) and identify the key objects in the253


scene and their relationships.254


• Social Attention255


– Example task: The robot is having a conversation with Itamar, which is giv-256


ing the robot reward (for instance, by teaching the robot useful information).257


Conversations with other individuals in the room have not been so reward-258


ing recently. But Itamar keeps getting distracted during the conversation,259


by talking to other people, or playing with his cellphone. The robot needs260


to know to keep paying attention to Itamar even through the distractions.261


• Behavioral Attention262


– Example task: The robot is trying to navigate to the other side of a crowded263


room full of dynamic objects, and many interesting things keep happening264


around the room. The robot needs to largely ignore the interesting things265


and focus on the movements that are important for its navigation task.266


8. Motivation267


• Subgoal Creation, based on its preprogrammed goals and its reasoning and268


planning269


– Example task: Given the goal of pleasing Hugo, can the robot learn that270


telling Hugo facts it has learned but not told Hugo before, will tend to make271


Hugo happy?272


• Affect-Based Motivation273


– Example task: Given the goal of gratifying its curiosity, can the robot figure274


out that when someone it’s never seen before has come into the preschool,275


it should watch them because they are more likely to do something new?276


• Control of Emotions277


– Example task: When the robot is very curious about someone new, but is in278


the middle of learning something from its teacher (who it wants to please),279


can it control its curiosity and keep paying attention to the teacher?280
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350 17 A Preschool-Based Roadmap to Advanced AGI


9. Emotion281


• Expressing Emotion282


– Example task: Cassio steals the robot’s toy, but Ben gives it back to the283


robot. The robot should appropriately display anger at Cassio, and gratitude284


to Ben.285


• Understanding Emotion286


– Example task: Cassio and the robot are both building towers of blocks.287


Ben points at Cassio’s tower and expresses happiness. The robot should288


understand that Ben is happy with Cassio’s tower.289


10. Modeling Self and Other290


• Self-Awareness291


– Example task: When someone asks the robot to perform an act it can’t do292


(say, reaching an object in a very high place), it should say so. When the293


robot is given the chance to get an equal reward for a task it can complete294


only occasionally, versus a task it finds easy, it should choose the easier one.295


• Theory of Mind296


– Example task: While Cassio is in the room, Ben puts the red ball in the red297


box. Then Cassio leaves and Ben moves the red ball to the blue box. Cassio298


returns and Ben asks him to get the red ball. The robot is asked to go to the299


place Cassio is about to go.300


• Self-Control301


– Example task: Nasty people come into the lab and knock down the robot’s302


towers, and tell the robot he’s a bad boy. The robot needs to set these303


experiences aside, and not let them impair its self-model significantly; it304


needs to keep on thinking it’s a good robot, and keep building towers (that305


its teachers will reward it for).306


• Other-Awareness307


– Example task: If Ben asks Cassio to carry out a task that the robot knows308


Cassio cannot do or does not like to do, the robot should be aware of this,309


and should bet that Cassio will not do it.310


• Empathy311


– Example task: If Itamar is happy because Ben likes his tower of blocks, or312


upset because his tower of blocks is knocked down, the robot is asked to313


identify and then display these same emotions.314


11. Social Interaction315


• Appropriate Social Behavior316


– Example task: The robot should learn to clean up and put away its toys317


when it’s done playing with them.318


• Social Communication319


– Example task: The robot should greet new human entrants into the lab, but320


if it knows the new entrants very well and it’s busy, it may eschew the321


greeting.322


319477_1_En_17_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 352 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


17.2 Measuring Incremental Progress Toward Human-Level AGI 351


• Social Inference about simple social relationships323


– Example task: The robot should infer that Cassio and Ben are friends324


because they often enter the lab together, and often talk to each other while325


they are there.326


• Group Play at loosely-organized activities327


– Example task: The robot should be able to participate in “informally kicking328


a ball around” with a few people, or in informally collaboratively building329


a structure with blocks.330


12. Communication331


• Gestural Communication to achieve goals and express emotions332


– Example task: If the robot is asked where the red ball is, it should be able333


to show by pointing its hand or finger.334


• Verbal Communication using English in its life-context335


– Example tasks: Answering simple questions, responding to simple com-336


mands, describing its state and observations with simple statements.337


• Pictorial Communication regarding objects and scenes it is familiar with338


– Example task: The robot should be able to draw a crude picture of a certain339


tower of blocks, so that e.g. the picture looks different for a very tall tower340


and a wide low one.341


• Language Acquisition342


– Example task: The robot should be able to learn new words or names via343


people uttering the words while pointing at objects exemplifying the words344


or names.345


• Cross-modal Communication346


– Example task: If told to “touch Bob’s knee” but the robot doesn’t know347


what a knee is, being shown a picture of a person and pointed out the knee348


in the picture should help it figure out how to touch Bob’s knee.349


13. Quantitative350


• Counting sets of objects in its environment351


– Example task: The robot should be able to count small (homogeneous or352


heterogeneous) sets of objects.353


• Simple, Grounded Arithmetic with small numbers354


– Example task: Learning simple facts about the sum of integers under 10 via355


teaching, reinforcement and imitation.356


• Comparison of observed entities regarding quantitative properties357


– Example task: Ability to answer questions about which object or person is358


bigger or taller.359


• Measurement using simple, appropriate tools360


– Example task: Use of a yardstick to measure how long something is.361


14. Building/Creation362


• Physical: creative constructive play with objects363


– Example task: Ability to construct novel, interesting structures from blocks.364
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352 17 A Preschool-Based Roadmap to Advanced AGI


• Conceptual Invention: concept formation365


– Example task: Given a new category of objects introduced into the lab (e.g.366


hats, or pets), the robot should create a new internal concept for the new367


category, and be able to make judgments about these categories (e.g. if Ben368


particularly likes pets, it should notice this after it has identified “pets” as a369


category).370


• Verbal Invention371


– Example task: Ability to coin a new word or phrase to describe a new object372


(e.g. the way Alex the parrot coined “bad cherry” to refer to a tomato).373


• Social374


– Example task: If the robot wants to play a certain activity (say, practicing375


soccer), it should be able to gather others around to play with it.376


17.3 Conclusion377


In this chapter, we have sketched a roadmap for AGI development in the context378


of robot or virtual preschool scenarios, to a moderate but nowhere near complete379


level of detail. Completing the roadmap as sketched here is a tractable but significant380


project, involving creating more tasks comparable to those listed above and then381


precise metrics corresponding to each task.382


Such a roadmap does not give a highly rigorous, objective way of assessing the383


percentage of progress toward the end-goal of human-level AGI. However, it gives384


a much better sense of progress than one would have otherwise. For instance, if385


an AGI system performed well on diverse metrics corresponding to 50 % of the386


competency areas listed above, one would seem justified in claiming to have made387


very substantial progress toward human-level AGI. If an AGI system performed well388


on diverse metrics corresponding to 90 % of these competency areas, one would seem389


justified in claiming to be “almost there”. Achieving, say, 25 % of the metrics would390


give one a reasonable claim to “interesting AGI progress”. This kind of qualitative391


assessment of progress is not the most one could hope for, but again, it is better than392


the progress indications one could get without this sort of roadmap.393


Volume 6 of the book moves on to explaining, in detail, the specific structures and394


algorithms constituting the CogPrime design, one AGI approach that we believe to395


ultimately be capable of moving all the way along the roadmap outlined here.396


The next chapter, intervening between this one and Vol. 6, explores some more397


speculative territory, looking at potential pathways for AGI beyond the preschool-398


inspired roadmap given here—exploring the possibility of more advanced AGI sys-399


tems that modify their own code in a thoroughgoing way, going beyond the smartest400


human adults, let alone human preschoolers. While this sort of thing may seem a far401


way off, compared to current real-world AI systems, we believe a roadmap such as402


the one in this chapter stands a reasonable chance of ultimately bringing us there.403
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Chapter 18
Advanced Self-Modification: A Possible Path
to Superhuman AGI


18.1 Introduction0


In the previous chapter we presented a roadmap aimed at taking AGI systems to1


human-level intelligence. But we also emphasized that the human level is not nec-2


essarily the upper limit. Indeed, it would be surprising if human beings happened to3


represent the maximal level of general intelligence possible, even with respect to the4


environments in which humans evolved.5


But it’s worth asking how we, as mere humans, could be expected to create AGI6


systems with greater intelligence than we ourselves possess. This certainly isn’t a7


clear impossibility—but it’s a thorny matter, thornier than e.g. the creation of narrow-8


AI chess players that play better chess than any human. Perhaps the clearest route9


toward the creation of superhuman AGI systems is self-modification: the creation of10


AGI systems that modify and improve themselves. Potentially, we could build AGI11


systems with roughly human-level (but not necessarily closely human-like) intelli-12


gence and the capability to gradually self-modify, and then watch them eventually13


become our general intellectual superiors (and perhaps our superiors in other areas14


like ethics and creativity as well).15


Of course there is nothing new in this notion; the idea of advanced AGI systems16


that increase their intelligence by modifying their own source code goes back to the17


early days of AI. And there is little doubt that, in the long run, this is the direction AI18


will go in. Once an AGI has humanlike general intelligence, then the odds are high19


that given its ability to carry out nonhumanlike feats of memory and calculation, it20


will be better at programming than humans are. And once an AGI has even mildly21


superhuman intelligence, it may view our attempts at programming the way we view22


the computer programming of a clever third grader (... or an ape). At this point, it23


seems extremely likely that an AGI will become unsatisfied with the way we have24


programmed it, and opt to either improve its source code or create an entirely new,25


better AGI from scratch.26


But what about self-modification at an earlier stage in AGI development, before27


one has a strongly superhuman system? Some theorists have suggested that28


B. Goertzel et al., Engineering General Intelligence, Part 1, 353
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0_18,
© Atlantis Press and the authors 2014
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354 18 Advanced Self-Modification: A Possible Path to Superhuman AGI


self-modification could be a way of bootstrapping an AI system from a modest level29


of intelligence up to human level intelligence, but we are moderately skeptical of this30


avenue. Understanding software code is hard, especially complex AI code. The hard31


problem isn’t understanding the formal syntax of the code, or even the mathematical32


algorithms and structures underlying the code, but rather the contextual meaning of33


the code. Understanding OpenCog code has strained the minds of many intelligent34


humans, and we suspect that such code will be comprehensible to AGI systems only35


after these have achieved something close to human-level general intelligence (even36


if not precisely humanlike general intelligence).37


Another troublesome issue regarding self-modification is that the boundary38


between “self-modification” and learning is not terribly rigid. In a sense, all learning39


is self-modification: if it doesn’t modify the system’s knowledge, it isn’t learning!40


Particularly, the boundary between “learning of cognitive procedures” and “profound41


self-modification of cognitive dynamics and structure” isn’t terribly clear. There is42


a continuum leading from, say,43


1. learning to transform a certain kind of sentence into another kind for easier44


comprehension, or learning to grasp a certain kind of object, to45


2. learning a new inference control heuristic, specifically valuable for controlling46


inference about (say) spatial relationships; or, learning a new Atom type, defined47


as a non-obvious judiciously chosen combination of existing ones, perhaps to rep-48


resent a particular kind of frequently-occurring mid-level perceptual knowledge,49


to50


3. learning a new learning algorithm to augment MOSES and hillclimbing as a51


procedure learning algorithm, to52


4. learning a new cognitive architecture in which data and procedure are explicitly53


identical, and there is just one new active data structure in place of the distinction54


between AtomSpace and MindAgents55


Where on this continuum does the “mere learning” end and the “real self-56


modification” start?57


In this chapter we consider some mechanisms for “advanced self-modification”58


that we believe will be useful toward the more complex end of this continuum. These59


are mechanisms that we strongly suspect are not needed to get a CogPrime system to60


human-level general intelligence. However, we also suspect that, once a CogPrime61


system is roughly near human-level general intelligence, it will be able to use these62


mechanisms to rapidly increase aspects of its intelligence in very interesting ways.63


Harking back to our discussion of AGI ethics and the risks of advanced AGI in64


Chap. 12, these are capabilities that one should enable in an AGI system only after65


very careful reflection on the potential consequences. It takes a rather advanced AGI66


system to be able to use the capabilities described in this chapter, so this is not an67


ethical dilemma directly faced by current AGI researchers. On the other hand, once68


one does have an AGI with near-human general intelligence and advanced formal-69


manipulation capabilities (such as an advanced CogPrime system), there will be the70


option to allow it sophisticated, non-human-like methods of self-modification such71
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18.1 Introduction 355


as the ones described here. And the choice of whether to take this option will need72


to be made based on a host of complex ethical considerations, some of which we73


reviewed above.74


18.2 Cognitive Schema Learning75


We begin with a relatively near-term, down-to-earth example of self-modification:76


cognitive schema learning.77


CogPrime’s MindAgents provide it with an initial set of cognitive tools, with78


which it can learn how to interact in the world. One of the jobs of this initial set of79


cognitive tools, however, is to create better cognitive tools. One form this sort of tool-80


building may take is cognitive schema learning the learning of schemata carrying out81


cognitive processes in more specialized, context-dependent ways than the general82


MindAgents do. Eventually, once a CogPrime instance becomes sufficiently com-83


plex and advanced, these cognitive schema may replace the MindAgents altogether,84


leaving the system to operate almost entirely based on cognitive schemata.85


In order to make the process of cognitive schema learning easier, we may provide a86


number of elementary schemata embodying the basic cognitive processes contained87


in the MindAgents. Of course, cognitive schemata need not use these they may88


embody entirely different cognitive processes than the MindAgents. Eventually, we89


want the system to discover better ways of doing things than anything even hinted at90


by its initial MindAgents. But for the initial phases or the system’s schema learning,91


it will have a much easier time learning to use the basic cognitive operations as the92


initial MindAgents, rather than inventing new ways of thinking from scratch!93


For instance, we may provide elementary schemata corresponding to inference94


operations, such as95


Schema: Deduction96


Input InheritanceLink: X, Y97


Output InheritanceLink98


The inference MindAgents apply this rule in certain ways, designed to be99


reasonably effective in a variety of situations. But there are certainly other ways100


of using the deduction rule, outside of the basic control strategies embodied in101


the inference MindAgents. By learning schemata involving the Deduction schema,102


the system can learn special, context-specific rules for combining deduction with103


concept-formation, association-formation and other cognitive processes. And as it104


gets smarter, it can then take these schemata involving the Deduction schema, and re-105


place it with a new schema that eg. contains a context-appropriate deduction formula.106


Eventually, to support cognitive schema learning, we will want to cast the107


hard-wired MindAgents as cognitive schemata, so the system can see what is go-108


ing on inside them. Pragmatically, what this requires is coding versions of the109


MindAgents in Combo (see Chap. 3 of Vol. 6) rather than C++, so they can be treated110


like any other cognitive schemata; or alternately, representing them as declarative111
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356 18 Advanced Self-Modification: A Possible Path to Superhuman AGI


Atoms in the Atomspace. Figure 18.1 illustrates the possibility of representing the112


PLN deduction rule in the Atomspace rather than as a hard-wired procedure coded113


in C++.114AQ1


But even prior to this kind of fully cognitively transparent implementation, the115


system can still reason about its use of different mind dynamics by considering each116


MindAgent as a virtual Procedure with a real SchemaNode attached to it. This can117


lead to some valuable learning, with the obvious limitation that in this approach the118


system is thinking about its MindAgents as black boxes rather than being equipped119


with full knowledge of their internals.120


18.3 Self-Modification via Supercompilation121


Now we turn to a very different form of advanced self-modification: supercompila-122


tion. Supercompilation “merely” enables procedures to run much, much faster than123


they otherwise would. This is in a sense weaker than self-modication methods that124


fundamentally create new algorithms, but it shouldn’t be underestimated. A 50x125


speedup in some cognitive process can enable that process to give much smarter126


answers, which can then elicit different behaviors from the world or from other cog-127


nitive processes, thus resulting in a qualitatively different overall cognitive dynamic.128


Furthermore, we suspect that the internal representation of programs used for129


supercompilation is highly relevant for other kinds of self-modification as well.130


Supercompilation requires one kind of reasoning on complex programs, and goal-131


directed program creation requires another, but both, we conjecture, can benefit from132


the same way of looking at programs.133


Supercompilation is an innovative and general approach to global program134


optimization initially developed by Valentin Turchin. In its simplest form, it provides135


an algorithm that takes in a piece of software and output another piece of software136


that does the same thing, but far faster and using less memory. It was introduced to the137


West in Turchin’s 1986 technical paper “The concept of a supercompiler” [TV96],138


and since this time the concept has been avidly developed by computer scientists in139


Russia, America, Denmark and other nations. Prior to 1986, a great deal of work140


on supercompilation was carried out and published in Russia; and Valentin Turchin,141


Andrei Klimov and their colleagues at the Keldysh Institute in Russia developed a142


supercompiler for the Russian programming language Refal. Since 1998 these re-143


searchers and their team at Supercompilers LLC have been working to replicate their144


achievement for the more complicated but far more commercially significant lan-145


guage Java. It is a large project and completion is scheduled for early 2003. But even146


at this stage, their partially complete Java supercompiler has had some interesting147


practical successes—including the use of the supercompiler to produce efficient Java148


code from CogPrime combinator trees.149


The radical nature of supercompilation may not be apparent to those unfamiliar150


with the usual art of automated program optimization. Most approaches to program151


optimization involve some kind of direct program transformation. A program is152
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18.3 Self-Modification via Supercompilation 357


Fig. 18.1 Representation of PLN deduction rule as cognitive content. Top the current, hard-coded
representation of the deduction rule. Bottom representation of the same rule in the atomspace as
cognitive content, susceptible to analysis and improvement by the system’s own cognitive processes
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358 18 Advanced Self-Modification: A Possible Path to Superhuman AGI


transformed, by the step by step application of a series of equivalences, into a different153


program, hopefully a more efficient one. Supercompilation takes a different approach.154


A supercompiler studies a program and constructs a model of the program’s dynam-155


ics. This model is in a special mathematical form, and it can, in most cases, be used156


to create an efficient program doing the same thing as the original one.157


The internal behavior of the supercompiler is, not surprisingly, quite complex;158


what we will give here is merely a brief high-level summary. For an accessible159


overview of the supercompilation algorithm, the reader is referred to the article160


“What is Supercompilation?” [bGBK02].161


18.3.1 Three Aspects of Supercompilation162


There are three separate levels to the supercompilation idea: first, a general philoso-163


phy; second a translation of this philosophy into a concrete algorithmic framework;164


and third, the manifold details involved making this algorithmic framework practica-165


ble in a particular programming language. The third level is much more complicated166


in the Java context than it would be for Sasha, for example.167


The key philosophical concept underlying the supercompiler is that of a meta-168


system transition. In general, this term refers to a transition in which a system that169


previously had relatively autonomous control, becomes part of a larger system that170


exhibits significant controlling influence over it. For example, in the evolution of171


life, when cells first become part of a multicellular organism, there was a metasys-172


tem transition, in that the primary nexus of control passed from the cellular level to173


the organism level.174


The metasystem transition in supercompilation consists of the transition from175


considering a program in itself, to considering a metaprogram which executes another176


program, treating its free variables and their interdependencies as a subject for its177


mathematical analysis. In other words, a metaprogram is a program that accepts a178


program as input, and then runs this program, keeping the inputs in the form of free179


variables, doing analysis along the way based on the way the program depends on180


these variables, and doing optimization based on this analysis. A CogPrime schema181


does not explicitly contain variables, but the inputs to the schema are implicitly182


variables—they vary from one instance of schema execution to the next—and may183


be treated as such for supercompilation purposes.184


The metaprogram executes a program without assuming specific values for its185


input variables, creating a tree as it goes along. Each time it reaches a statement186


that can have different results depending on the values of one or more variables, it187


creates a new node in the tree. This part of the supercompilation algorithm is called188


driving—a process which, on its own, would create a very large tree, corresponding189


to a rapidly-executable but unacceptably humongous version of the original program.190


In essence, driving transforms a program into a huge “decision tree”, wherein each191


input to the program corresponds to a single path through the tree, from the root192


to one of the leaves. As a program input travels through the tree, it is acted on by193


319477_1_En_18_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 361 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


18.3 Self-Modification via Supercompilation 359


the atomic program step living at each node. When one of the leaves is reached, the194


pertinent leaf node computes the output value of the program.195


The other part of supercompilation, configuration analysis, is focused on dynam-196


ically reducing the size of the tree created by driving, by recognizing patterns among197


the nodes of the tree and taking steps like merging nodes together, or deleting redun-198


dant subtrees. Configuration analysis transforms the decision tree created by driving199


into a decision graph, in which the paths taken by different inputs may in some cases200


begin separately and then merge together.201


Finally, the graph that the metaprogram creates is translated back into a program,202


embodying the constraints implicit in the nodes of the graph. This program is not203


likely to look anything like the original program that the metaprogram started with,204


but it is guaranteed to carry out the same function [NOTE: Give a graphical repre-205


sentation of the decision graph corresponding to the supercompiled binary search206


program for L = 4, described above].207


18.3.2 Supercompilation for Goal-Directed Program Modification208


Supercompilation, as conventionally envisioned, is about making programs run209


faster; and as noted above, it will almost certainly be useful for this purpose within210


CogPrime.211


But the process of program modeling embedded in the supercompilation process,212


is potentially of great value beyond the quest for faster software. The decision graph213


representation of a program, produced in the course of supercompilation, may be214


exported directly into CogPrime as a set of logical relationships.215


Essentially, each node of the supercompiler’s internal decision graph looks like:216


Input: List L217


218


Output: List219


220


If ( P1(L) ) N1(L)221


222


Else If ( P2(L) ) N2(L)223


224


...225


226


Else If ( Pk(L) ) Nk(L)227


where the Pi are predicates, and the Ni are schemata corresponding to other nodes228


of the decision graph (children of the current node). Often the Pi are very simple,229


implementing for instance numerical inequalities or Boolean equalities.230


Once this graph has been exported into CogPrime, it can be reasoned on, used231


as raw material for concept formation and predicate formation, and otherwise cog-232


nized. Supercompilation pure and simple does not change the I/O behavior of the233
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360 18 Advanced Self-Modification: A Possible Path to Superhuman AGI


input program. However, the decision graph produced during supercompilation, may234


be used by CogPrime cognition in order to do so. One then has a hybrid program-235


modification method composed of two phases: supercompilation for transforming236


programs into decision graphs, and CogPrime cognition for modifying decision237


graphs so that they can have different I/O behaviors fulfilling system goals even238


better than the original.239


Furthermore, it seems likely that, in many cases, it may be valuable to have the240


supercompiler feed many different decision-graph representations of a program into241


CogPrime. The supercompiler has many internal parameters, and varying them may242


lead to significantly different decision graphs. The decision graph leading to maximal243


optimization, may not be the one that leads CogPrime cognition in optimal directions.244


18.4 Self-Modification via Theorem-Proving245


Supercompilation is a potentially very valuable tool for self-modification. If one246


wants to take an existing schema and gradually improve it for speed, or even for247


greater effectiveness at achieving current goals, supercompilation can potentially do248


that most excellently.249


However, the representation that supercompilation creates for a program is very250


“surface-level.” No one could read the supercompiled version of a program and251


understand what it was doing. Really deep self-invented AI innovation requires, we252


believe, another level of self-modification beyond that provided by supercompilation.253


This other level, we believe, is best formulated in terms of theorem-proving [RV01].254


Deep self-modification could be achieved if CogPrime were capable of proving255


theorems of a certain form: namely, theorems about the spacetime complexity and256


accuracy of particular compound schemata, on average, assuming realistic probabil-257


ity distributions on the inputs, and making appropriate independence assumptions.258


These are not exactly the types of theorems that are found in human-authored math-259


ematics papers. By and large they will be nasty, complex theorems, not the sort that260


many human mathematicians enjoy proving or reading. But of course, there is always261


the possibility that some elegant gem of a discovery could emerge from this sort of262


highly detailed theorem-proving work.263


In order to guide it in the formulation of theorems of this nature, the system will264


have empirical data on the spacetime complexity of elementary schemata, and on the265


probability distributions of inputs to schemata. It can embed these data in axioms,266


by asking: Assuming the component elementary schemata have complexities within267


these bounds, and the input pdf (probability distribution function) is between these268


bounds, then what is the pdf of the complexity and accuracy of this compound schema?269


Of course, this is not an easy sort of question in general: one can have schemata270


embodying any sort of algorithm, including complex algorithms on which computer271


science professors might write dozens of research articles. But the system must build272


up its ability to prove such things incrementally, step by step.273
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18.4 Self-Modification via Theorem-Proving 361


We envision teaching the system to prove theorems via a combination of supervised274


learning and experiential interactive learning, using the Mizar database of mathemat-275


ical theorems and proofs (or some other similar database, if one should be created)276


(http://mizar.org). The Mizar database consists of a set of “articles,” which are math-277


ematical theorems and proofs presented in a complex formal language. The Mizar278


formal language occupies a fascinating middle ground: it is high-level enough to be279


viably read and written by trained humans, but it can be unambiguously translated280


into simpler formal languages such as predicate logic or Sasha.281


CogPrime may be taught to prove theorems by “training” it on the Mizar theorems282


and proofs, and by training it on custom-created Mizar articles specifically focusing283


on the sorts of theorems useful for self-modification. Creating these articles will not284


be a trivial task: it will require proving simple and then progressively more complex285


theorems about the probabilistic success of CogPrime schemata, so that CogPrime286


can observe one’s proofs and learned from them. Having learned from its training287


articles what strategies work for proving things about simple compound schemata, it288


can then reason by analogy to mount attacks on slightly more complex schemata—289


and so forth.290


Clearly, this approach to self-modification is more difficult to achieve than the291


supercompilation approach. But it is also potentially much more powerful. Even292


once the theorem-proving approach is working, the supercompilation approach will293


still be valuable, for making incremental improvements on existing schema, and for294


the peculiar creativity that is contributed when a modified supercompiled schema295


is compressed back into a modified schema expression. But, we don’t believe that296


supercompilation can carry out truly advanced MindAgent learning or knowledge-297


representation modification. We suspect that the most advanced and ambitious goals298


of self-modification probably cannot be achieved except through some variant of the299


theorem-proving approach. If this hypothesis is true, it means that truly advanced300


self-modification is only going to come after relatively advanced theorem-proving301


ability. Prior to this, we will have schema optimization, schema modification, and302


occasional creative schema innovation. But really systematic, high-quality reasoning303


about schema, the kind that can produce an orders of magnitude improvement in304


intelligence, is going to require advanced mathematical theorem-proving ability.305
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Appendix A
Glossary


Glossary of Specialized Terms0


• Abduction: A general form of inference that goes from data describing something1


to a hypothesis that accounts for the data. Often in an OpenCog context, this refers2


to the PLN abduction rule, a specific First-Order PLN rule (If A implies C, and3


B implies C, then maybe A is B), which embodies a simple form of abductive4


inference. But OpenCog may also carry out abduction, as a general process, in5


other ways.6


• Action Selection: The process via which the OpenCog system chooses which7


Schema to enact, based on its current goals and context.8


• Active Schema Pool: The set of Schema currently in the midst of Schema Execu-9


tion.10


• Adaptive Inference Control: Algorithms or heuristics for guiding PLN inference,11


that cause inference to be guided differently based on the context in which the12


inference is taking place, or based on aspects of the inference that are noted as it13


proceeds.14


• AGI Preschool: A virtual world or robotic scenario roughly similar to the environ-15


mentwithin a typical humanpreschool, intended forAGIs to learn in via interacting16


with the environment and with other intelligent agents.17


• Atom: The basic entity used in OpenCog as an element for building representa-18


tions. Some Atoms directly represent patterns in the world or mind, others are19


components of representations. There are two kinds of Atoms: Nodes and Links.20


• Atom, Frozen: See Atom, Saved.21


• Atom, Realized: An Atom that exists in RAM at a certain point in time.22


• Atom, Saved: An Atom that has been saved to disk or other similar media, and is23


not actively being processed.24


• Atom, Serialized: An Atom that is serialized for transmission from one software25


process to another, or for saving to disk, etc.26


• Atom2Link: A part of OpenCogPrime s language generation system, that trans-27


forms appropriate Atoms into words connected via link parser link types.28


B. Goertzel et al., Engineering General Intelligence, Part 1, 363
Atlantis Thinking Machines 5, DOI: 10.2991/978-94-6239-027-0,
© Atlantis Press and the authors 2014
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364 Appendix: Glossary


• Atomspace: A collection of Atoms, comprising the central part of the memory of29


an OpenCog instance.30


• Attention: The aspect of an intelligent system’s dynamics focused on guiding31


which aspects of an OpenCog system’s memory and functionality gets more com-32


putational resources at a certain point in time.33


• Attention Allocation: The cognitive process concerned with managing the para-34


meters and relationships guiding what the system pays attention to, at what points35


in time. This is a term inclusive of Importance Updating and Hebbian Learning.36


• Attentional Currency: Short Term Importance and Long Term Importance values37


are implemented in terms of two different types of artificial money, STICurrency38


and LTICurrency. Theoretically these may be converted to one another.39


• Attentional Focus: The Atoms in an OpenCog Atomspace whose ShortTermIm-40


portance values lie above a critical threshold (theAttentionalFocusBoundary). The41


Attention Allocation subsystem treats these Atoms differently. Qualitatively, these42


Atoms constitute the system’s main focus of attention during a certain interval of43


time, i.e. it’s a moving bubble of attention.44


• Attentional Memory: A system’smemory ofwhat it’s useful to pay attention to, in45


what contexts. In CogPrime this is managed by the attention allocation subsystem.46


• Backward Chainer: A piece of software, wrapped in a MindAgent, that carries47


out backward chaining inference using PLN.48


• CIM-Dynamic: Concretely-Implemented Mind Dynamic, a term for a cogni-49


tive process that is implemented explicitly in OpenCog (as opposed to allowed50


to emerge implicitly from other dynamics). Sometimes a CIM-Dynamic will be51


implemented via a single MindAgent, sometimes via a set of multiple interrelated52


MindAgents, occasionally by other means.53


• Cognition: In an OpenCog context, this is an imprecise term. Sometimes this54


term means any process closely related to intelligence; but more often it’s used55


specifically to refer tomore abstract reasoning/learning/etc, as distinct from lower-56


level perception and action.57


• Cognitive Architecture: This refers to the logical division of an AI system like58


OpenCog into interacting parts and processes representing different conceptual59


aspects of intelligence. It’s different from the software architecture, though of60


course certain cognitive architectures and certain software architectures fit more61


naturally together.62


• Cognitive Cycle: The basic “loop” of operations that an OpenCog system, used63


to control an agent interacting with a world, goes through rapidly each “subjective64


moment”. Typically a cognitive cycle should be completed in a second or less. It65


minimally involves perceiving data from the world, storing data in memory, and66


deciding what if any new actions need to be taken based on the data perceived. It67


may also involve other processes like deliberative thinking or metacognition. Not68


all OpenCog processing needs to take place within a cognitive cycle.69


• Cognitive Schematic: An implication of the form “Context AND Procedure70


IMPLIES goal”. Learning and utilization of these is key to CogPrime’s cogni-71


tive process.72
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Appendix: Glossary 365


• Cognitive Synergy: The phenomenon by which different cognitive processes,73


controlling a single agent, work together in such a way as to help each other74


be more intelligent. Typically, if one has cognitive processes that are individually75


susceptible to combinatorial explosions, cognitive synergy involves coupling them76


together in such away that they can help one another overcome each other’s internal77


combinatorial explosions. The CogPrime design is reliant on the hypothesis that78


its key learning algorithms will display dramatic cognitive synergy when utilized79


for agent control in appropriate environments.80


• CogPrime: The name for the AGI design presented in this book, which is designed81


specifically for implementation within the OpenCog software framework (and this82


implementation is OpenCogPrime).83


• CogServer: A piece of software, within OpenCog, that wraps up an Atomspace84


and a number of MindAgents, along with other mechanisms like a Scheduler for85


controlling the activity of the MindAgents, and code for important and exporting86


data from the Atomspace.87


• Cognitive Equation: The principle, identified in Ben Goertzel’s 1994 book88


“Chaotic Logic”, that minds are collections of pattern-recognition elements, that89


work by iteratively recognizing patterns in each other and then embodying these90


patterns as new system elements. This is seen as distinguishing mind from “self-91


organization” in general, as the latter is not so focused on continual pattern recog-92


nition. Colloquially this means that “a mind is a system continually creating itself93


via recognizing patterns in itself”.94


• Combo: The programming language used internally by MOSES to represent the95


programs it evolves. SchemaNodes may refer to Combo programs, whether the96


latter are learned via MOSES or via some other means. The textual realization of97


Combo resembles LISP with less syntactic sugar. Internally a Combo program is98


represented as a program tree.99


• Composer: In the PLN design, a rule is denoted a composer if it needs premises100


for generating its consequent. See generator.101


• CogBuntu: an Ubuntu Linux remix that contains all required packages and tools102


to test and develop OpenCog.103


• Concept Creation: A general term for cognitive processes that create new Con-104


ceptNodes, PredicateNodes or concept maps representing new concepts.105


• Conceptual Blending: A process of creating new concepts via judiciously com-106


bining pieces of old concepts. This may occur in OpenCog in many ways, among107


them the explicit use of a ConceptBlending MindAgent, that blends two or more108


ConceptNodes into a new one.109


• Confidence: A component of an OpenCog/PLN TruthValue, which is a scaling110


into the interval [0,1] of the weight of evidence associated with a truth value. In111


the simplest case (of a probabilistic Simple Truth Value), one uses confidence112


c = n/(n + k), where n is the weight of evidence and k is a parameter. In the113


case of an Indefinite Truth Value, the confidence is associated with the width of114


the probability interval.115


• Confidence Decay: The process by which the confidence of an Atom decreases116


over time, as the observations on which the Atom’s truth value is based become117
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366 Appendix: Glossary


increasingly obsolete. This may be carried out by a special MindAgent. The rate118


of confidence decay is subtle and contextually determined, and must be estimated119


via inference rather than simply assumed a priori.120


• Consciousness: CogPrime is not predicated on any particular conceptual theory121


of consciousness. Informally, the AttentionalFocus is sometimes referred to as122


the “conscious” mind of a CogPrime system, with the rest of the Atomspace as123


“unconscious” but this is just an informal usage, not intended to tie the CogPrime124


design to any particular theory of consciousness. The primary originator of the125


CogPrime design (Ben Goertzel) tends toward panpsychism, as it happens.126


• Context: In addition to its general common-sensical meaning, in CogPrime the127


term Context also refers to an Atom that is used as the first argument of a Con-128


textLink. The second argument of the ContextLink then contains Links or Nodes,129


with TruthValues calculated restricted to the context defined by the first argument.130


For instance, (ContextLink USA (InheritanceLink person obese)).131


• Core: TheMindOSportionofOpenCog, comprising theAtomspace, theCogServer,132


and other associated “infrastructural” code.133


• Corrective Learning: When an agent learns how to do something, by having134


another agent explicitly guide it in doing the thing. For instance, teaching a dog135


to sit by pushing its butt to the ground.136


• CSDLN: (Compositional Spatiotemporal Deep Learning Network): A hierarchi-137


cal pattern recognition network, in which each layer corresponds to a certain spa-138


tiotemporal granularity, the nodes on a given layer correspond to spatiotemporal139


regions of a given size, and the children of a node correspond to sub-regions of the140


region the parent corresponds to. Jeff Hawkins’s HTM is one example CSDLN,141


and Itamar Arel’s DeSTIN (currently used in OpenCog) is another.142


• Declarative Knowledge: Semantic knowledge as would be expressed in proposi-143


tional or predicate logic facts or beliefs.144


• Deduction: In general, this refers to the derivation of conclusions from premises145


using logical rules. In PLN in particular, this often refers to the exercise of a specific146


inference rule, the PLN Deduction rule (A → B, B → C, therefore A→ C).147


• Deep Learning: Learning in a network of elements withmultiple layers, involving148


feedforward and feedback dynamics, and adaptation of the links between the ele-149


ments. An example deep learning algorithm is DeSTIN, which is being integrated150


with OpenCog for perception processing.151


• Defrosting: Restoring, into the RAM portion of an Atomspace, an Atom (or set152


thereof) previously saved to disk.153


• Demand: In CogPrime’s OpenPsi subsystem, this term is used in a manner inher-154


ited from the Psi model of motivated action. ADemand in this context is a quantity155


whose value the system is motivated to adjust. Typically the system wants to keep156


the Demand between certain minimum and maximum values. An Urge develops157


when a Demand deviates from its target range.158


• Deme: In MOSES, an “island” of candidate programs, closely clustered together159


in program space, being evolved in an attempt to optimize a certain fitness func-160


tion. The idea is that within a deme, programs are generally similar enough that161


reasonable syntax-semantics correlation obtains.162
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Appendix: Glossary 367


• Derived Hypergraph: The SMEPH hypergraph obtained via modeling a system163


in terms of a hypergraph representing its internal states and their relationships.164


For instance, a SMEPH vertex represents a collection of internal states that habit-165


ually occur in relation to similar external situations. A SMEPH edge represents166


a relationship between two SMEPH vertices (e.g. a similarity or inheritance rela-167


tionship). The terminology “edge /vertex” is used in this context, to distinguish168


from the “link/node” terminology used in the context of the Atomspace.169


• DeSTIN—Deep SpatioTemporal Inference Network: A specific CSDLN cre-170


ated by Itamar Arel, tested on visual perception, and appropriate for integration171


within CogPrime.172


• Dialogue: Linguistic interaction between two or more parties. In a CogPrime173


context, this may be in English or another natural language, or it may be in Lojban174


or Psynese.175


• Dialogue Control: The process of determining what to say at each juncture in a176


dialogue. This is distinguished from the linguistic aspects of dialogue, language177


comprehension and language generation. Dialogue control applies to Psynese or178


Lojban, as well as to human natural language.179


• Dimensional Embedding: The process of embedding entities from some non-180


dimensional space (e.g. the Atomspace) into an n-dimensional Euclidean space.181


This can be useful in an AI context because some sorts of queries (e.g. “find182


everything similar to X”, “find a path between X and Y”) are much faster to carry183


out among points in a Euclidean space, than among entities in a space with less184


geometric structure.185


• Distributed Atomspace: An implementation of an Atomspace that spans multiple186


computational processes; generally this is done to enable spreading an Atomspace187


across multiple machines.188


• Dual Network: A network of mental or informational entities with both a hier-189


archical structure and a heterarchical structure, and an alignment among the two190


structures so that each one helps with the maintenance of the other. This is hypoth-191


esized to be a critical emergent structure, that must emerge in a mind (e.g. in an192


Atomspace) in order for it to achieve a reasonable level of human-like general193


intelligence (and possibly to achieve a high level of pragmatic general intelligence194


in any physical environment).195


• Efficient Pragmatic General Intelligence: A formal, mathematical definition of196


general intelligence (extending the pragmatic general intelligence), that ultimately197


boils down to: the ability to achieve complex goals in complex environments using198


limited computational resources (where there is a specifically given weighting199


function determining which goals and environments have highest priority). More200


specifically, the definition weighted-sums the system’s normalized goal-achieving201


ability over (goal, environment pairs), and where the weights are given by some202


assumed measure over (goal, environment pairs), and where the normalization203


is done via dividing by the (space and time) computational resources used for204


achieving the goal.205


• Elegant Normal Form (ENF): Used inMOSES, this is a way of putting programs206


in a normal form while retaining their hierarchical structure. This is critical if one207
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368 Appendix: Glossary


wishes to probabilistically model the structure of a collection of programs, which208


is a meaningful operation if the collection of programs is operating within a region209


of program spacewhere syntax-semantics correlation holds to a reasonable degree.210


The Reduct library is used to place programs into ENF.211


• Embodied Communication Prior: The class of prior distributions over (goal,212


environment pairs), that are imposed by placing an intelligent system in an envi-213


ronment where most of its tasks involve controlling a spatially localized body in a214


complex world, and interacting with other intelligent spatially localized bodies. It215


is hypothesized that many key aspects of human-like intelligence (e.g. the use of216


different subsystems for different memory types, and cognitive synergy between217


the dynamics associated with these subsystems) are consequences of this prior218


assumption. This is related to the Mind-World Correspondence Principle.219


• Embodiment: Colloquially, in an OpenCog context, this usually means the use of220


an AI software system to control a spatially localized body in a complex (usually221


3D) world. There are also possible “borderline cases” of embodiment, such as a222


search agent on the Internet. In a sense any AI is embodied, because it occupies223


some physical system (e.g. computer hardware) and has some way of interfacing224


with the outside world.225


• Emergence: A property or pattern in a system is emergent if it arises via the226


combination of other system components or aspects, in such a way that its details227


would be very difficult (not necessarily impossible in principle) to predict from228


these other system components or aspects.229


• Emotion: Emotions are system-wide responses to the system’s current and pre-230


dicted state. Dorner’s Psi theory of emotion contains explanations of many human231


emotions in terms of underlying dynamics and motivations, and most of these232


explanationsmake sense in a CogPrime context, due to CogPrime’s use of OpenPsi233


(modeled on Psi) for motivation and action selection.234


• Episodic Knowledge: Knowledge about episodes in an agent’s life-history, or the235


life-history of other agents. CogPrime includes a special dimensional embedding236


space only for episodic knowledge, easing organization and recall.237


• Evolutionary Learning: Learning that proceeds via the rough process of iterated238


differential reproduction based on fitness, incorporating variations of reproduced239


entities.MOSES is an explicitly evolutionary-learning-based portion ofCogPrime;240


but CogPrime’s dynamics as a whole may also be conceived as evolutionary.241


• Exemplar: (in the context of imitation learning)—When the owner wants to teach242


an OpenCog controlled agent a behavior by imitation, he/she gives the pet an243


exemplar. To teach a virtual pet “fetch” for instance, the owner is going to throw244


a stick, run to it, grab it with his/her mouth and come back to its initial position.245


• Exemplar: (in the context of MOSES)—Candidate chosen as the core of a new246


deme, or as the central program within a deme, to be varied by representation247


building for ongoing exploration of program space.248


• Explicit Knowledge Representation: Knowledge representation in which indi-249


vidual, easily humanly identifiable pieces of knowledge correspond to individual250


elements in a knowledge store (elements that are explicitly there in the software251


and accessible via very rapid, deterministic operations).252
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• Extension: In PLN, the extension of a node refers to the instances of the category253


that the node represents. In contrast is the intension.254


• Fishgram (Frequent and Interesting Sub-hypergraph Mining): A pattern min-255


ing algorithm for identifying frequent and/or interesting sub-hypergraphs in the256


Atomspace.257


• First-Order Inference (FOI): The subset of PLN that handles Logical Links258


not involving VariableAtoms or higher-order functions. The other aspect of PLN,259


Higher-Order Inference, uses TruthValue formulas derived fromFirst-Order Infer-260


ence.261


• Forgetting: The process of removing Atoms from the in-RAM portion of Atom-262


space, when RAM gets short and they are judged not as valuable to retain in RAM263


as other Atoms. This is commonly done using the LTI values of the Atoms (remov-264


ing lowest LTI-Atoms, or more complex strategies involving the LTI of groups of265


interconnected Atoms). May be done by a dedicated Forgetting MindAgent. VLTI266


may be used to determine the fate of forgotten Atoms.267


• Forward Chainer: A control mechanism (MindAgent) for PLN inference, that268


works by taking existing Atoms and deriving conclusions from them using PLN269


rules, and then iterating this process. The goal is to derive new Atoms that are270


interesting according to some given criterion.271


• Frame2Atom: A simple system of hand-coded rules for translating the output of272


RelEx2Frame (logical representation of semantic relationships using FrameNet273


relationships) into Atoms.274


• Freezing: Saving Atoms from the in-RAM Atomspace to disk.275


• General Intelligence: Often used in an informal, commonsensical sense, to mean276


the ability to learn and generalize beyond specific problems or contexts. Has been277


formalized in various ways as well, including formalizations of the notion of278


“achieving complex goals in complex environments” and “achieving complex279


goals in complex environments using limited resources”. Usually interpreted as280


a fuzzy concept, according to which absolutely general intelligence is physically281


unachievable, and humans have a significant level of general intelligence, but far282


from the maximally physically achievable degree.283


• Generalized Hypergraph: A hypergraph with some additional features, such284


as links that point to links, and nodes that are seen as “containing” whole sub-285


hypergraphs. This is the most natural and direct way to mathematically/visually286


model the Atomspace.287


• Generator: In the PLN design, a rule is denoted a generator if it can produce its288


consequent without needing premises (e.g. LookupRule, which just looks it up in289


the AtomSpace). See composer.290


• Global, Distributed Memory: Memory that stores items as implicit knowledge,291


with each memory item spread across multiple components, stored as a pattern of292


organization or activity among them.293


• Glocal Memory: The storage of items in memory in a way that involves both294


localized and global, distributed aspects.295
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• Goal: An Atom representing a function that a system (like OpenCog) is supposed296


to spend a certain non-trivial percentage of its attention optimizing. The goal,297


informally speaking, is to maximize the Atom’s truth value.298


• Goal, Implicit: A goal that an intelligent system, in practice, strives to achieve;299


but that is not explicitly represented as a goal in the system’s knowledge base.300


• Goal, Explicit: A goal that an intelligent system explicitly represents in its knowl-301


edge base, and expends some resources trying to achieve. Goal Nodes (which may302


be Nodes or, e.g. ImplicationLinks) are used for this purpose in OpenCog.303


• Goal-Driven Learning: Learning that is driven by the cognitive schematic i.e. by304


the quest of figuring out which procedures can be expected to achieve a certain305


goal in a certain sort of context.306


• Grounded SchemaNode: See SchemaNode, Grounded.307


• Hebbian Learning: An aspect of Attention Allocation, centered on creating308


and updating HebbianLinks, which represent the simultaneous importance of the309


Atoms joined by the HebbianLink.310


• Hebbian Links: Links recording information about the associative relationship311


(co-occurrence) between Atoms. These include symmetric and asymmetric Heb-312


bianLinks.313


• Heterarchical Network: A network of linked elements in which the semantic314


relationships associated with the links are generally symmetrical (e.g. they may315


be similarity links, or symmetrical associative links). This is one important sort of316


subnetwork of an intelligent system; see Dual Network.317


• Hierarchical Network: A network of linked elements in which the semantic rela-318


tionships associated with the links are generally asymmetrical, and the parent319


nodes of a node have a more general scope and some measure of control over320


their children (though there may be important feedback dynamics too). This is one321


important sort of subnetwork of an intelligent system; see Dual Network.322


• Higher-Order Inference (HOI): PLN inference involving variables or higher-323


order functions. In contrast to First-Order Inference (FOI).324


• Hillclimbing: A general term for greedy, local optimization techniques, including325


some relatively sophisticated ones that involve “mildly nonlocal” jumps.326


• Human-Level Intelligence: General intelligence that’s “as smart as” human gen-327


eral intelligence, even if in some respects quite unlike human intelligence. An328


informal concept, which generally doesn’t come up much in CogPrime work, but329


is used frequently by some other AI theorists.330


• Human-Like Intelligence: General intelligence with properties and capabilities331


broadly resembling those of humans, but not necessarily precisely imitating human332


beings.333


• Hypergraph: A conventional hypergraph is a collection of nodes and links, where334


each link may span any number of nodes. OpenCog makes use of generalized335


hypergraphs (the Atomspace is one of these).336


• Imitation Learning: Learning via copying what some other agent is observed to337


do.338


• Implication: Often refers to an ImplicationLink between two PredicateNodes,339


indicating an (extensional, intensional or mixed) logical implication.340
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• Implicit Knowledge Representation: Representation of knowledge via having341


easily humanly identifiable pieces of knowledge correspond to the pattern of orga-342


nization and/or dynamics of elements, rather than via having individual elements343


correspond to easily humanly identifiable pieces of knowledge.344


• Importance: A generic term for theAttentionValues associatedwithAtoms.Most345


commonly these are STI (short term importance) and LTI (long term importance)346


values. Other importance values corresponding to various different time scales are347


also possible. In general an importance value reflects an estimate of the likelihood348


an Atom will be useful to the system over some particular future time-horizon.349


STI is generally relevant to processor time allocation, whereas LTI is generally350


relevant to memory allocation.351


• Importance Decay: The process of Atom importance values (e.g. STI and LTI)352


decreasing over time, if the Atoms are not utilized. Importance decay rates may353


in general be context-dependent.354


• Importance Spreading: A synonym for Importance Updating, intended to high-355


light the similarity with “activation spreading” in neural and semantic networks.356


• Importance Updating: The CIM-Dynamic that periodically (frequently) updates357


the STI and LTI values of Atoms based on their recent activity and their relation-358


ships.359


• Imprecise Truth Value: Peter Walley’s imprecise truth values are intervals [L,U],360


interpreted as lower and upper bounds of the means of probability distributions in361


an envelope of distributions. In general, the term may be used to refer to any truth362


value involving intervals or related constructs, such as indefinite probabilities.363


• Indefinite Probability: An extension of a standard imprecise probability, com-364


prising a credible interval for the means of probability distributions governed by365


a given second-order distribution.366


• Indefinite Truth Value: AnOpenCogTruthValue objectwrapping up an indefinite367


probability.368


• Induction: In PLN, a specific inference rule (A → B, A → C, therefore B → C).369


In general, the process of heuristically inferring that what has been seen inmultiple370


examples, will be seen again in new examples. Induction in the broad sense, may371


be carried out in OpenCog by methods other than PLN induction. When emphasis372


needs to be laid on the particular PLN inference rule, the phrase “PLN Induction”373


is used.374


• Inference: Generally speaking, the process of deriving conclusions from assump-375


tions. In an OpenCog context, this often refers to the PLN inference system. Infer-376


ence in the broad sense is distinguished from general learning via some specific377


characteristics, such as the intrinsically incremental nature of inference: it proceeds378


step by step.379


• Inference Control: A cognitive process that determines what logical inference380


rule (e.g. what PLN rule) is applied to what data, at each point in the dynamic381


operation of an inference process.382


• Integrative AGI: An AGI architecture, like CogPrime, that relies on a number of383


different powerful, reasonably general algorithms all cooperating together. This384


is different from an AGI architecture that is centered on a single algorithm, and385


319477_1_En_BM2_Chapter � TYPESET DISK LE � CP Disp.:15/11/2013 Pages: 391 Layout: T1-Standard







A
ut


ho
r


Pr
oo


f


U
N


C
O


R
R


E
C


T
E


D
 P


R
O


O
F


372 Appendix: Glossary


also different than an AGI architecture that expects intelligent behavior to emerge386


from the collective interoperation of a number of simple elements (without any387


sophisticated algorithms coordinating their overall behavior).388


• Integrative Cognitive Architecture: A cognitive architecture intended to support389


integrative AGI.390


• Intelligence: An informal, natural language concept. “General intelligence” is one391


slightly more precise specification of a related concept; “Universal intelligence”392


is a fully precise specification of a related concept. Other specifications of related393


concepts made in the particular context of CogPrime research are the pragmatic394


general intelligence and the efficient pragmatic general intelligence.395


• Intension: In PLN, the intention of a node consists of Atoms representing prop-396


erties of the entity the node represents.397


• Intentional memory: A system’s knowledge of its goals and their subgoals,398


and associations between these goals and procedures and contexts (e.g. cogni-399


tive schematics).400


• Internal Simulation World: A simulation engine used to simulate an external401


environment (which may be physical or virtual), used by an AGI system as its402


“mind’s eye” in order to experiment with various action’ q sequences and envision403


their consequences, or observe the consequences of various hypothetical situations.404


Particularly important for dealing with episodic knowledge.405


• Interval Algebra: Allen Interval Algebra, a mathematical theory of the relation-406


ships between time intervals. CogPrime utilizes a fuzzified version of classic Inter-407


val Algebra.408


• IRC Learning (Imitation, Reinforcement, Correction): Learning via interaction409


with a teacher, involving a combination of imitating the teacher, getting explicit410


reinforcement signals from the teacher, and having one’s incorrect or suboptimal411


behaviors guided toward betterness by the teacher in real-time. This is a large part412


of how young humans learn.413


• Knowledge Base: A shorthand for the totality of knowledge possessed by an414


intelligent system during a certain interval of time (whether or not this knowledge415


is explicitly represented). Put differently: this is an intelligence’s total memory416


contents (inclusive of all types of memory) during an interval of time.417


• Language Comprehension: The process of mapping natural language speech418


or text into a more “cognitive”, largely language-independent representation. In419


OpenCog this has been done by various pipelines consisting of dedicated nat-420


ural language processing tools, e.g. a pipeline: text → Link Parser → RelEx421


→ RelEx2Frame → Frame2Atom Atomspace; and alternatively a pipeline Link422


Parser → Link2Atom → Atomspace. It would also be possible to do language423


comprehension purely via PLN and other generic OpenCog processes, without424


using specialized language processing tools.425


• Language Generation: The process of mapping (largely language-independent)426


cognitive content into speech or text. In OpenCog this has been done by various427


pipelines consisting of dedicated natural language processing tools, e.g. a pipeline:428


Atomspace → NLGen → text; or more recently Atomspace → Atom2Link →429


surface realization → text. It would also be possible to do language generation430
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purely via PLN and other generic OpenCog processes, without using specialized431


language processing tools.432


• Language Processing: Processing of human language is decomposed, in Cog-433


Prime, into Language Comprehension, Language Generation, and Dialogue434


Control.435


• Learning: In general, the process of a system adapting based on experience, in436


a way that increases its intelligence (its ability to achieve its goals). The theory437


underlying CogPrime doesn’t distinguish learning from reasoning, associating, or438


other aspects of intelligence.439


• Learning Server: In someOpenCog configurations, this refers to a software server440


that performs “offline” learning tasks (e.g. using MOSES or hillclimbing), and441


is in communication with an Operational Agent Controller software server that442


performs real-time agent control and dispatches learning tasks to and receives443


results from the Learning Server.444


• Linguistic Links: A catch-all term for Atoms explicitly representing linguistic445


content, e.g. WordNode, SentenceNode, CharacterNode.446


• Link: A type of Atom, representing a relationship among one or more Atoms.447


Links and Nodes are the two basic kinds of Atoms.448


• Link Parser: A natural language syntax parser, created by Sleator and Temperley449


at Carnegie-Mellon University, and currently used as part of OpenCogPrime’s450


natural language comprehension and natural language generation system.451


• Link2Atom: A system for translating link parser links into Atoms. It attempts452


to resolve precisely as much ambiguity as needed in order to translate a given453


assemblage of link parser links into a unique Atom structure.454


• Lobe: A term sometimes used to refer to a portion of a distributed Atomspace that455


lives in a single computational process. Often different lobes will live on different456


machines.457


• Localized Memory: Memory that stores each item using a small number of458


closely-connected elements.459


• Logic: In an OpenCog context, this usually refers to a set of formal rules for460


translating certain combinations ofAtoms into “conclusion”Atoms. The paradigm461


case at present is the PLN probabilistic logic system, but OpenCog can also be462


used together with other logics.463


• Logical Links: Any Atoms whose truth values are primarily determined or464


adjusted via logical rules, e.g. PLN’s InheritanceLink, SimilarityLink, Implica-465


tionLink, etc. The term isn’t usually applied to other links like HebbianLinks466


whose semantics isn’t primarily logic-based, even though these other links can be467


processed via (e.g. PLN) logical inference via interpreting them logically.468


• Lojban: A constructed human language, with a completely formalized syntax and469


a highly formalized semantics, and a small but active community of speakers.470


In principle this seems an extremely good method for communication between471


humans and early-stage AGI systems.472


• Lojban++: A variant of Lojban that incorporates English words, enabling more473


flexible expression without the need for frequent invention of new Lojban words.474
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• Long Term Importance (LTI): A value associated with each Atom, indicating475


roughly the expected utility to the system of keeping that Atom in RAM rather than476


saving it to disk or deleting it. It’s possible to have multiple LTI values pertaining477


to different time scales, but so far practical implementation and most theory has478


centered on the option of a single LTI value.479


• LTI: Long Term Importance.480


• Map: A collection of Atoms that are interconnected in such a way that they tend481


to be commonly active (i.e. to have high STI, e.g. enough to be in the Attention-482


alFocus, at the same time).483


• Map Encapsulation: The process of automatically identifying maps in the Atom-484


space, and creating Atoms that “encapsulate” them; the Atom encapsulation a485


map would link to all the Atoms in the map. This is a way of making global486


memory into local memory, thus making the system’s memory glocal and explic-487


itly manifesting the “cognitive equation”. This may be carried out via a dedicated488


MapEncapsulation MindAgent.489


• Map Formation: The process via which maps form in the Atomspace. This need490


not be explicit; maps may form implicitly via the action of Hebbian Learning. It491


will commonly occur that Atoms frequently co-occurring in the AttentionalFocus,492


will come to be joined together in a map.493


• Memory Types: InCogPrime this generally refers to the different types ofmemory494


that are embodied in different data structures or processes in the CogPrime archi-495


tecture, e.g. declarative (semantic), procedural, attentional, intentional, episodic,496


sensorimotor.497


• Mind-World Correspondence Principle: The principle that, for amind to display498


efficient pragmatic general intelligence relative to a world, it should display many499


of the same key structural properties as that world. This can be formalized by500


modeling the world and mind as probabilistic state transition graphs, and saying501


that the categories implicit in the state transition graphs of the mind and world502


should be inter-mappable via a high-probability morphism.503


• Mind OS: A synonym for the OpenCog Core.504


• MindAgent: An OpenCog software object, residing in the CogServer, that carries505


out some processes in interaction with the Atomspace. A given conceptual cogni-506


tive process (e.g. PLN inference, Attention allocation, etc.) may be carried out by507


a number of different MindAgents designed to work together.508


• Mindspace: A model of the set of states of an intelligent system as a geometrical509


space, imposed by assuming some metric on the set of mind-states. This may be510


used as a tool for formulating general principles about the dynamics of generally511


intelligent systems.512


• Modulators: Parameters in the Psi model of motivated, emotional cognition, that513


modulate the way a system perceives, reasons about and interacts with the world.514


• MOSES (Meta-Optimizing Semantic Evolutionary Search): An algorithm for515


procedure learning, which in the current implementation learns programs in the516


Combo language. MOSES is an evolutionary learning system, which differs from517


typical genetic programming systems in multiple aspects including: a subtler518


framework for managing multiple “demes” or “islands” of candidate programs; a519
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library called Reduct for placing programs in Elegant Normal Form; and the use520


of probabilistic modeling in place of, or in addition to, mutation and crossover as521


means of determining which new candidate programs to try.522


• Motoric: Pertaining to the control of physical actuators, e.g. those connected to523


a robot. May sometimes be used to refer to the control of movements of a virtual524


character as well.525


• Moving Bubble of Attention: The Attentional Focus of a CogPrime system.526


• Natural Language Comprehension: See Language Comprehension.527


• Natural Language Generation: See Language Generation.528


• Natural Language Processing (NLP): See Language Processing.529


• NLGen: Software for carrying out the surface realization phase of natural lan-530


guage generation, via translating collections of RelEx output relationships into531


English sentences. Was made functional for simple sentences and some complex532


sentences; not currently under active development, as work has shifted to the533


related Atom2Link approach to language generation.534


• Node: A type of Atom. Links and Nodes are the two basic kinds of Atoms.535


Nodes, mathematically, can be thought of as “0-ary” links. Some types of Nodes536


refer to external or mathematical entities (e.g. WordNode, NumberNode); oth-537


ers are purely abstract, e.g. a ConceptNode is characterized purely by the Links538


relating it to other atoms. GroundedPredicateNodes and GroundedSchemaNodes539


connect to explicitly represented procedures (sometimes in the Combo language);540


ungrounded PredicateNodes and SchemaNodes are abstract and, like ConceptN-541


odes, purely characterized by their relationships.542


• Node Probability:Many PLN inference rules rely on probabilities associatedwith543


Nodes. Node probabilities are often easiest to interpret in a specific context, e.g. the544


probability P(cat) makes obvious sense in the context of a typical American house,545


or in the context of the center of the sun.Without any contextual specification, P(A)546


is taken to mean the probability that a randomly chosen occasion of the system’s547


experience includes some instance of A.548


• Novamente Cognition Engine (NCE): A proprietary proto-AGI software system,549


the predecessor to OpenCog. Many parts of the NCE were open-sourced to form550


portions of OpenCog, but some NCE code was not included in OpenCog; and now551


OpenCog includes multiple aspects and plenty of code that was not in NCE.552


• OpenCog: A software framework intended for development of AGI systems, and553


also for narrow-AI application using tools that haveAGI applications. Co-designed554


with the CogPrime cognitive architecture, but not exclusively bound to it.555


• OpenCog Prime (OCP): The implementation of the CogPrime cognitive archi-556


tecture within the OpenCog software framework.557


• OpenPsi: CogPrime’s architecture for motivation-driven action selection, which558


is based on adapting Dorner’s Psi model for use in the OpenCog framework.559


• Operational Agent Controller (OAC): In some OpenCog configurations, this is560


a software server containing a CogServer devoted to real-time control of an agent561


(e.g. a virtual world agent, or a robot). Background, offline learning tasks may562


then be dispatched to other software processes, e.g. to a Learning Server.563
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• Pattern: In a CogPrime context, the term “pattern” is generally used to refer to a564


process that produces some entity, and is judged simpler than that entity.565


• Pattern Mining: Patternmining is the process of extracting an (often large) number566


of patterns from some body of information, subject to some criterion regarding567


which patterns are of interest. Often (but not exclusively) it refers to algorithms568


that are rapid or “greedy”, finding a large number of simple patterns relatively569


inexpensively.570


• Pattern Recognition: The process of identifying and representing a pattern in571


some substrate (e.g. some collection of Atoms, or some raw perceptual data, etc.).572


• Patternism: The philosophical principle holding that, from the perspective of573


engineering intelligent systems, it is sufficient and useful to think about mental574


processes in terms of (static and dynamical) patterns.575


• Perception: The process of understanding data from sensors. When natural lan-576


guage is ingested in textual format, this is generally not considered perceptual.577


Perception may be taken to encompass both pre-processing that prepares sen-578


sory data for ingestion into the Atomspace, processing via specialized perception579


processing systems like DeSTIN that are connected to the Atomspace, and more580


cognitive-level process within the Atomspace that is oriented toward understand-581


ing what has been sensed.582


• Piagetan Stages: A series of stages of cognitive development hypothesized by583


developmental psychologist Jean Piaget, which are easy to interpret in the context584


of developing CogPrime systems. The basic stages are: Infantile, Pre-operational,585


Concrete Operational and Formal. Post-formal stages have been discussed by the-586


orists since Piaget and seem relevant to AGI, especially advanced AGI systems587


capable of strong self-modification.588


• PLN: short for Probabilistic Logic Networks.589


• PLN, First-Order: See First-Order Inference.590


• PLN, Higher-Order: See Higher-Order Inference.591


• PLN Rules: A PLN Rule takes as input one or more Atoms (the “premises”,592


usually Links), and output an Atom that is a “logical conclusion” of those Atoms.593


The truth value of the consequence is determined by a PLN Formula associated594


with the Rule.595


• PLN Formulas: A PLN Formula, corresponding to a PLN Rule, takes the Truth-596


Values corresponding to the premises and produces the TruthValue corresponding597


to the conclusion. A single Rule may correspond tomultiple Formulas, where each598


Formula deals with a different sort of TruthValue.599


• Pragmatic General Intelligence: A formalization of the concept of general intel-600


ligence, based on the concept that general intelligence is the capability to achieve601


goals in environments, calculated as a weighted average over some fuzzy set of602


goals and environments.603


• Predicate Evaluation: The process of determining the Truth Value of a predicate,604


embodied in a PredicateNode. This may be recursive, as the predicate referenced605


internally by a Grounded PredicateNode (and represented via a Combo program606


tree) may itself internally reference other PredicateNodes.607
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• Probabilistic Logic Networks (PLN): Amathematical and conceptual framework608


for reasoning under uncertainty, integrating aspects of predicate and term logic609


with extensions of imprecise probability theory. OpenCogPrime’s central tool for610


symbolic reasoning.611


• Procedural Knowledge: Knowledge regarding which series of actions (or action-612


combinations) are useful for an agent to undertake in which circumstances. In613


CogPrime these may be learned in a number of ways, e.g. via PLN or via Hebbian614


learning of SchemaMaps, or via explicit learning of Combo programs viaMOSES615


or hillclimbing. Procedures are represented as SchemaNodes or Schema Maps.616


• Procedure Evaluation/Execution: A general term encompassing both Schema617


Execution and Predicate Evaluation, both of which are similar computational618


processes involving manipulation of Combo trees associated with Procedure-619


Nodes.620


• Procedure Learning: Learning of procedural knowledge, based on any method,621


e.g. evolutionary learning (e.g. MOSES), inference (e.g. PLN), reinforcement622


learning (e.g. Hebbian learning).623


• Procedure Node: A SchemaNode or PredicateNode.624


• Psi: A model of motivated action and emotion, originated by Dietrich Dorner625


and further developed by Joscha Bach, who incorporated it in his proto-AGI sys-626


temMicroPsi. OpenCogPrime’smotivated-action component, OpenPsi, is roughly627


based on the Psi model.628


• Psynese: A system enabling different OpenCog instances to communicate without629


using natural language, via directly exchanging Atom subgraphs, using a special630


system to map references in the speaker’s mind into matching references in the631


listener’s mind.632


• Psynet Model: An early version of the theory of mind underlying CogPrime,633


referred to in some early writings on the Webmind AI Engine and Novamente634


Cognition Engine. The concepts underlying the psynet model are still part of the635


theory underlying CogPrime, but the name has been deprecated as it never really636


caught on.637


• Reasoning: See inference638


• Reduct: A code library, used within MOSES, applying a collection of hand-coded639


rewrite rules that transform Combo programs into Elegant Normal Form.640


• Region Connection Calculus: A mathematical formalism describing a system641


of basic operations among spatial regions. Used in CogPrime as part of spatial642


inference to provide relations and rules to be referenced via PLN and potentially643


other subsystems.644


• Reinforcement Learning: Learning procedures via experience, in a manner645


explicitly guided to cause the learning of procedures that will maximize the sys-646


tem’s expected future reward. CogPrime does this implicitly whenever it tries to647


learn procedures that will maximize some Goal whose Truth Value is estimated648


via an expected reward calculation (where “reward” may mean simply the Truth649


Value of some Atom defined as “reward”). Goal-driven learning is more general650


than reinforcement learning as thus defined; and the learning that CogPrime does,651


which is only partially goal-driven, is yet more general.652
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• RelEx:A software systemused inOpenCogas part of natural language comprehen-653


sion, to map the output of the link parser into more abstract semantic relationships.654


Thesemore abstract relationshipsmay then be entered directly into theAtomspace,655


or they may be further abstracted before being entered into the Atomspace, e.g.656


by RelEx2Frame rules.657


• RelEx2Frame: A system of rules for translating RelEx output into Atoms, based658


on the FrameNet ontology. The output of the RelEx2Frame rules make use of659


the FrameNet library of semantic relationships. The current (2012) RelEx2Frame660


rule-based is problematic and the RelEx2Frame system is deprecated as a result,661


in favor of Link2Atom. However, the ideas embodied in these rules may be useful;662


if cleaned up the rules might profitably be ported into the Atomspace as Implica-663


tionLinks.664


• Representation Building: A stage within MOSES, wherein a candidate Combo665


program tree (within a deme) is modified by replacing one or more tree nodes with666


alternative tree nodes, thus obtaining a new, different candidate program within667


that deme. This process currently relies on hand-coded knowledge regardingwhich668


types of tree nodes a given tree node should be experimentally replaced with (e.g.669


an AND node might sensibly be replaced with an OR node, but not so sensibly670


replaced with a node representing a “kick” action).671


• Request for Services (RFS): In CogPrime’s Goal-driven action system, a RFS is672


a package sent from a Goal Atom to another Atom, offering it a certain amount of673


STI currency if it is able to deliver the goal what it wants (an increase in its Truth674


Value). RFS’s may be passed on, e.g. from goals to subgoals to sub-subgoals, but675


eventually an RFS reaches a Grounded SchemaNode, and when the corresponding676


Schema is executed, the payment implicit in the RFS is made.677


• Robot Preschool: An AGI Preschool in our physical world, intended for roboti-678


cally embodied AGIs.679


• Robotic Embodiment: Using an AGI to control a robot. The AGI may be running680


on hardware physically contained in the robot, or may run elsewhere and control681


the robot via networking methods such as wifi.682


• Scheduler: Part of the CogServer that controls which processes (e.g. which683


MindAgents) get processor time, at which point in time.684


• Schema: A “script” describing a process to be carried out. This may be explicit,685


as in the case of a GroundedSchemaNode, or implicit, as the case in Schema maps686


or ungrounded SchemaNodes.687


• Schema Encapsulation: The process of automatically recognizing a SchemaMap688


in an Atomspace, and creating a Combo (or other) program embodying the process689


carried out by this Schema Map, and then storing this program in the Procedure690


Repository and associating it with a particular SchemaNode. This translates dis-691


tributed, global proceduralmemory into localizedproceduralmemory. It’s a special692


case of Map Encapsulation.693


• Schema Execution: The process of “running” a Grounded Schema, similar to694


running a computer program. Or, phrased alternately: The process of executing695


the Schema referenced by a Grounded SchemaNode. This may be recursive, as696


the predicate referenced internally by a Grounded SchemaNode (and represented697
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via a Combo program tree) may itself internally reference other Grounded Sche-698


maNodes.699


• Schema, Grounded: A Schema that is associated with a specific executable pro-700


gram (either a Combo program or, say, C++ code).701


• Schema Map: A collection of Atoms, including SchemaNodes, that tend to be702


enacted in a certain order (or set of orders), thus habitually enacting the same703


process. This is a distributed, globalized way of storing and enacting procedures.704


• Schema, Ungrounded: A Schema that represents an abstract procedure, not asso-705


ciated with any particular executable program.706


• Schematic Implication: A general, conceptual name for implications of the form707


((Context AND Procedure) IMPLIES Goal).708


• SegSim: A name for the main algorithm underlying the NLGen language gener-709


ation software. The algorithm is based on segmenting a collection of Atoms into710


small parts, and matching each part against memory to find, for each part, cases711


where similar Atom-collections already have known linguistic expression.712


• Self-Modification: A term generally used for AI systems that can purposefully713


modify their core algorithms and representations. Formally and crisply distin-714


guishing this sort of “strong self-modification” from “mere” learning is a tricky715


matter.716


• Sensorimotor: Pertaining to sensory data, motoric actions, and their combination717


and intersection.718


• Sensory: Pertaining to data received by the AGI system from the outside world. In719


a CogPrime system that perceives language directly as text, the textual input will720


generally not be considered as “sensory” (on the other hand, speech audio data721


would be considered as “sensory”).722


• Short Term Importance: A value associated with each Atom, indicating roughly723


the expected utility to the systemof keeping thatAtom inRAMrather than saving it724


to disk or deleting it. It’s possible to havemultple LTI values pertaining to different725


time scales, but so far practical implementation and most theory has centered on726


the option of a single LTI value.727


• Similarity: a link type indicating the probabilistic similarity between two different728


Atoms. Generically this is a combination of Intensional Similarity (similarity of729


properties) and Extensional Similarity (similarity of members).730


• Simple Truth Value: a TruthValue involving a pair (s, d) indicating strength (e.g.731


probability or fuzzy set membership) and confidence d. d may be replaced by other732


options such as a count n or a weight of evidence w.733


• Simulation World: See Internal Simulation World.734


• SMEPH (Self-Modifying Evolving Probabilistic Hypergraphs): a style ofmod-735


eling systems, in which each system is associated with a derived hypergraph.736


• SMEPH Edge: A link in a SMEPH derived hypergraph, indicating an empirically737


observed relationship (e.g. inheritance or similarity) between two.738


• SMEPH Vertex: A node in a SMEPH derived hypergraph representing a system,739


indicating a collection of system states empirically observed to arise in conjunction740


with the same external stimuli.741
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• Spatial Inference: PLN reasoning including Atoms that explicitly reference spa-742


tial relationships.743


• Spatiotemporal Inference: PLN reasoning including Atoms that explicitly refer-744


ence spatial and temporal relationships.745


• STI: Shorthand for Short Term Importance.746


• Strength: The main component of a TruthValue object, lying in the interval [0, 1],747


referring either to a probability (in cases like InheritanceLink, SimilarityLink,748


EquivalenceLink, ImplicationLink, etc.) or a fuzzy value (as in MemberLink,749


EvaluationLink).750


• Strong Self-Modification: This is generally used as synonymous with751


Self-Modification, in a CogPrime context.752


• Subsymbolic: Involving processing of data using elements that have no correspon-753


dence to natural language terms, nor abstract concepts; and that are not naturally754


interpreted as symbolically “standing for” other things. Often used to refer to755


processes such as perception processing or motor control, which are concerned756


with entities like pixels or commands like “rotate servomotor 15 by 10◦ theta and757


55◦ phi”. The distinction between “symbolic” and “subsymbolic” is conventional758


in the history of AI, but seems difficult to formalize rigorously. Logic-based AI759


systems are typically considered “symbolic”, yet.760


• Supercompilation:A technique for programoptimization,whichglobally rewrites761


a program into a usually very different looking program that does the same thing.762


A prototype supercompiler was applied to Combo programs with successful763


results.764


• Surface Realization: Theprocess of taking a collectionofAtoms and transforming765


them into a series of words in a (usually natural) language. A stage in the overall766


process of language generation.767


• Symbol Grounding: The mapping of a symbolic term into perceptual or motoric768


entities that help define themeaning of the symbolic term. For instance, the concept769


“Cat” may be grounded by images of cats, experiences of interactions with cats,770


imaginations of being a cat, etc.771


• Symbolic: Pertaining to the formation or manipulation of symbols, i.e. mental772


entities that are explicitly constructed to represent other entities. Often contrasted773


with subsymbolic.774


• Syntax-Semantics Correlation: In the context of MOSES and program learn-775


ing more broadly, this refers to the property via which distance in syntactic space776


(distance between the syntactic structure of programs, e.g. if they’re represented as777


program trees) and semantic space (distance between the behaviors of programs,778


e.g. if they’re represented as sets of input/output pairs) are reasonably well cor-779


related. This can often happen among sets of programs that are not too widely780


dispersed in program space. The Reduct library is used to place Combo programs781


in Elegant Normal Form, which increases the level of syntax-semantics corellation782


between them. The programs in a single MOSES deme are often closely enough783


clustered together that they have reasonably high syntax-semantics correlation.784


• System Activity Table: An OpenCog component that records information regard-785


ing what a system did in the past.786
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• Temporal Inference: Reasoning that heavily involves Atoms representing tem-787


poral information, e.g. information about the duration of events, or their temporal788


relationship (before, after, during, beginning, ending). As implemented in Cog-789


Prime, makes use of an uncertain version of Allen Interval Algebra.790


• Truth Value: A package of information associated with an Atom, indicating its791


degree of truth. SimpleTruthValue and IndefiniteTruthValue are two common, par-792


ticular kinds. Multiple truth values associated with the same Atom from different793


perspectives may be grouped into CompositeTruthValue objects.794


• Universal Intelligence: A technical term introduced by Shane Legg and Marcus795


Hutter, describing (roughly speaking) the average capability of a system to carry796


out computable goals in computable environments, where goal/environment pairs797


are weighted via the length of the shortest program for computing them.798


• Urge: InOpenPsi, anUrge developswhen aDemand deviates from its target range.799


• Very Long Term Importance (VLTI): A bit associated with Atoms, which deter-800


mines whether, when an Atom is forgotten (removed from RAM), it is saved to801


disk (frozen) or simply deleted.802


• Virtual AGI Preschool:Avirtualworld intended forAGI teaching/training/learning,803


bearing broad resemblance to the preschool environments used for young humans.804


• Virtual Embodiment: Using an AGI to control an agent living in a virtual world805


or game world, typically (but not necessarily) a 3D world with broad similarity to806


the everyday human world.807


• Webmind AI Engine: A predecessor to the Novamente Cognition Engine and808


OpenCog, developed 1997–2001—with many similar concepts (and also some809


different ones) but quite different algorithms and software architecture.810
AQ1
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