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Abstract. Inspired by a broader perspective viewing intelligent system
dynamics in terms of the geometry of ”cognitive spaces,” we conduct
a preliminary investigation of the application of information-geometry
based learning to ECAN (Economic Attention Networks), the component
of the integrative OpenCog AGI system concerned with attention allo-
cation and credit assignment. We generalize Amari’s ”natural gradient”
algorithm for network learning to encompass ECAN and other recurrent
networks, and apply it to small example cases of ECAN, demonstrat-
ing a dramatic improvement in the effectiveness of attention allocation
compared to prior (Hebbian learning like) ECAN methods. Scaling up
the method to deal with realistically-sized ECAN networks as used in
OpenCog remains for the future, but should be achievable using sparse
matrix methods on GPUs.

Keywords: information geometry, recurrent networks, economic atten-
tion allocation, ECAN, OpenCog

1 Introduction

The AGI field currently lacks any broadly useful, powerful, practical theoretical
and mathematical framework. Many theoretical and mathematical tools have
been important in guiding the design of various aspects of various AGI systems;
and there is a general mathematical theory of AGI [17], which has inspired
some practical work [18] [22], but has not yet been connected with complex AGI
architectures in any nontrivial way. But it is fair to say that AGI is in deep need
of unifying ideas.

One possibility in this regard it information geometry [3], the theory of the
geometric structure of spaces of probability distributions. Given the recent rise of
probabilistic methods in AI and the success of geometric methods in other disci-
plines such as physics, this seems a natural avenue to explore. A companion paper
[10] outlines some very broad ideas in this regard; here we present some more
concrete and detailed experiments in the same direction. Continuing our prior
work with the OpenCog [16] integrative AGI architecture, we model OpenCog’s
Economic Attention Networks (ECAN) component using information geometric
language, and then use this model to propose a novel information geometric
method of updating ECAN networks (based on an extension of Amari’s ANGL
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algorithm). Tests on small networks suggest that information-geometric methods
have the potential to vastly improve ECAN’s capability to shift attention from
current preoccupations to desired preoccupations. However, there is a high com-
putational cost associated with the simplest implementations of these methods,
which has prevented us from carrying out large-scale experiments so far. We are
exploring the possibility of circumventing these issues via using sparse matrix
algorithms on GPUs.

2 Brief Review of OpenCog

Now we briefly describe the OCP (OCP) AGI architecture, implemented within
the open-source OpenCog AI framework. OCP provides the general context for
the very specific novel algorithmic research presented here.

Conceptually founded on the ”patternist” systems theory of intelligence out-
lined in [12], OCP combines multiple AI paradigms such as uncertain logic,
computational linguistics, evolutionary program learning and connectionist at-
tention allocation in a unified architecture. Cognitive processes embodying these
different paradigms interoperate together on a common neural-symbolic knowl-
edge store called the Atomspace. The interaction of these processes is designed
to encourage the self-organizing emergence of high-level network structures in
the Atomspace, including superposed hierarchical and heterarchical knowledge
networks, and a self-model network enabling meta-knowledge and meta-learning.

The OpenCog software (incorporating elements of the OCP architecture) has
been used for commercial applications in the area of natural language processing
and data mining [14], and for the control of virtual agents in virtual worlds [13]
(see http://novamente.net/example for some videos of these virtual dogs in
action).

The high-level architecture of OCP involves the use of multiple cognitive pro-
cesses associated with multiple types of memory to enable an intelligent agent
to execute the procedures that it believes have the best probability of work-
ing toward its goals in its current context. OCP handles low-level perception
and action via an extension called OpenCogBot, which integrates a hierarchical
temporal memory system, DeSTIN [4].

OCP’s memory types are the declarative, procedural, sensory, and episodic
memory types that are widely discussed in cognitive neuroscience [23], plus –
most relevantly for the current paper – attentional memory for allocating system
resources generically, and intentional memory for allocating system resources in
a goal-directed way. Table 1 overviews these memory types, giving key references
and indicating the corresponding cognitive processes, and also indicating which
of the generic patternist cognitive dynamics each cognitive process corresponds
to (pattern creation, association, etc.). The essence of the OCP design lies in
the way the structures and processes associated with each type of memory are
designed to work together in a closely coupled way, the operative hypothesis
being that this will yield cooperative intelligence (”cognitive synergy”) going
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beyond what could be achieved by an architecture merely containing the same
structures and processes in separate “black boxes.”

Memory
Type

Specific Cognitive Processes
General Cognitive

Functions

Declarative
Probabilistic Logic Networks (PLN) [11];

concept blending [7]
pattern creation

Procedural
MOSES (a novel probabilistic

evolutionary program learning algorithm)
[20]

pattern creation

Episodic internal simulation engine [13]
association, pattern

creation

Attentional
Economic Attention Networks (ECAN)

[15]
association, credit

assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured according to
Psi

credit assignment, pattern
creation

Sensory Supplied by DeSTIN integration
association, attention

allocation, pattern creation,
credit assignment

Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

Declarative knowledge representation is handled by a weighted labeled hy-
pergraph called the Atomspace, which consists of multiple types of nodes and
links, generally weighted with probabilistic truth values and also attention val-
ues (ShortTermImportance (STI) and LongTermImportance values, regulating
processor and memory use).

OCP’s dynamics has both goal-oriented and “spontaneous” aspects. The ba-
sic goal-oriented dynamic , is driven by “cognitive schematics”, which take the
form

Context ∧ Procedure→ Goal < p >

(summarized C ∧P → G), roughly interpretable as “If the context C appears to
hold currently, then if I enact the procedure P , I can expect to achieve the goal
G with certainty p.”

On the other hand, the spontaneous dynamic is driven by the ECAN com-
ponent (the subject of the present paper), which propagates STI values in a
manner reminiscent of an attractor neural network; cognitive processes or knowl-
edge items that get more importance spread to them are then used to trigger
action or cognition or to guide perception. Goal-oriented dynamics also utilizes
STI, in that the system’s top-level goals are given STI to spend on nominating
procedures for execution or to pass to subgoals.
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3 Brief Review of Economic Attention Networks

Now we review the essential ideas underlying Economic Attention Networks
(ECAN), which is the central process controlling attention allocation and credit
assignment within OpenCog. ECAN is a specific approach to resource allocation
and associative memory and may be considered a nonlinear dynamical system
in roughly the same family as attractor neural networks such as Hopfield nets.
As we describe in detail in [19] ECAN is a graph, consisting of generically-typed
nodes and links (which may have any of OpenCog’s node or link types, but the
point is that the type semantics is irrelevant to ECAN even though it may be
relevant to other OpenCog modules), and also links that may be typed either
HebbianLink or InverseHebbianLink. Each Hebbian or InverseHebbian link is
weighted with a probability value.

Each node or link in an ECAN is also weighted with two numbers, represent-
ing short-term importance (STI) and long-term importance (LTI). STI values
represent the immediate importance of an Atom to ECAN at a particular instant
in time, while LTI values represent the value of retaining atoms in memory. The
ECAN equations dynamically update these values using an economic metaphor
in which both STI and LTI can be viewed as artificial currencies.

The ECAN equations also contain the essential notion of an AttentionalFocus
(AF), consisting of those Atoms in the ECAN with the highest STI values. The
probability value of a HebbianLink from A to B is the odds that if A is in the AF,
so is B; and correspondingly, the InverseHebbianLink from A to B is weighted
with the odds that if A is in the AF, then B is not. The main concept here is
the following: Suppose there is a high HebbianLink probability between A and
B and that A is in the AF. Then A can be viewed as trying to “pull” B into the
AF. There is an obvious corresponding but opposite reaction if the nodes share
instead a high InverseHebbianLink.

As an associative memory, the ECAN process involves both training and
retrieval processes. The entire ECAN training dynamics can be described as a
nonlinear function H : [0, 1]L −→ RM , where L is the number of nodes, and
M = L2, mapping a given set of binary patterns into a connection matrix C of
Hebbian weights. The specific ECAN Hebbian updating equations are somewhat
complex, and are described in detail in [10]. What is important in our current
context, is this view of the process as a nonlinear function on the space of input
patterns into the space of weight parameters.

4 Brief Review of Information Geometry

”Information geometry” is a branch of applied mathematics concerned with the
application of differential geometry to spaces of probability distributions. In [10]
we have suggested some extensions to traditional information geometry aimed
at allowing it to better model general intelligence. However for the concrete
technical work in the present paper, the traditional formulation of information
geometry will suffice.
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One of the core mathematical constructs underlying information geometry,
is the Fisher Information, a statistical quantity which has a a variety of appli-
cations ranging far beyond statistical data analysis, including physics [8], psy-
chology and AI [3]. Put simply, FI is a formal way of measuring the amount of
information that an observable random variable X carries about an unknown
parameter θ upon which the probability of X depends. FI forms the basis of the
Fisher-Rao metric, which has been proved the only Riemannian metric on the
space of probability distributions satisfying certain natural properties regarding
invariance with respect to coordinate transformations. Typically θ in the FI is
considered to be a real multidimensional vector; however, [6] has presented a FI
variant that imposes basically no restrictions on the form of θ. Here the multi-
dimensional FI will suffice, but the more general version is needed if one wishes
to apply FI to AGI more broadly, e.g. to declarative and procedural as well as
attentional knowledge.

In the set-up underlying the definition of the ordinary finite-dimensional
Fisher information, the probability function for X, which is also the likelihood
function for θ ∈ Rn, is a function f(X; θ); it is the probability mass (or probabil-
ity density) of the random variable X conditional on the value of θ. The partial
derivative with respect to θi of the log of the likelihood function is called the
score with respect to θi. Under certain regularity conditions, it can be shown that
the first moment of the score is 0. The second moment is the Fisher information:

I(θ)i = IX(θ)i = E

[((
∂

∂θi
ln f(X; θ)

)2
)
|θ

]
where, for any given value of θi, the expression E[..|θ] denotes the conditional
expectation over values for X with respect to the probability function f(X; θ)
given θ. Note that 0 ≤ I(θ)i < ∞. Also note that, in the usual case where the
expectation of the score is zero, the Fisher information is also the variance of
the score.

One can also look at the whole Fisher information matrix

I(θ)i,j = E

[(
∂lnf(X, θ)

∂θi

∂lnf(X, θ)
∂θj

)
|θ
]

which may be interpreted as a metric gij , that provably is the only ”intrinsic”
metric on probability distribution space. In this notation we have I(θ)i = I(θ)i,i.

Dabak [6] has shown that the geodesic between two parameter vectors θ and
θ′ is given by the exponential weighted curve (γ(t)) (x) = f(x,θ)1−tf(x,θ′)tR

f(y,θ)1−tf(y,θ′)tdy
,

under the weak condition that the log-likelihood ratios with respect to f(X, θ)
and f(X, θ′) are finite. Also, along this sort of curve, the sum of the Kullback-
Leibler distances between θ and θ′, known as the J-divergence, equals the integral
of the Fisher information along the geodesic connecting θ and θ′.

This suggests that if one is attempting to learn a certain parameter vector
based on data, and one has a certain other parameter vector as an initial value,
it may make sense to use algorithms that try to follow the Fisher-Rao geodesic
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between the initial condition and the desired conclusion. This is what Amari
[1] [3] calls ”natural gradient” based learning, a conceptually powerful approach
which subtly accounts for dependencies between the components of θ.

5 From Information Geometry to Mind Geometry

While here we will formally require only traditional ideas from information ge-
ometry, it is worth noting that the present paper was inspired by a companion
paper [10] in which information geometry is extended in various ways and con-
jecturally applied to yield a broad conceptual model of cognitive systems. A
family of alternative metrics based on algorithmic information theory is pro-
posed, to complement the FisherRao metric – very roughly speaking, the algo-
rithmic distance between two entities represents the amount of computational
effort required to transform between the two. Multi-modular memory systems
like OpenCog are then modeled in terms of multiple ”mindspaces”: each memory
system, and the composite system, are geometrized using both Fisher-Rao and
algorithmic metrics. Three hypotheses are then proposed:

1. a syntax-semantics correlation principle, stating that in a successful AGI
system, these two metrics should be roughly correlated

2. a cognitive geometrodynamics principle, stating that on the whole intelligent
minds tend to follow geodesics in mindspace

3. a cognitive synergy principle, stating that shorter paths may be found through
the composite mindspace formed by considering multiple memory types to-
gether, than by following the geodesics in the mindspaces corresponding to
individual memory types.

The results presented in this paper do not depend on any of these broader
notions, however they fit in with them naturally. In this context, the present
paper is viewed as an exploration of how to make ECAN best exploit the Fisher-
Rao geometric structure of OpenCog’s ”attentional mindspace.”

6 Information-Geometric Learning for Recurrent
Networks: Extending the ANGL Algorithm

Now we move on to discuss the practicalities foinformation-geometric learning
within OpenCog’s ECAN component. As noted above, Amari [1, 3] introduced
the natural gradient as a generalization of the direction of steepest descent on
the space of loss functions of the parameter space. Issues with the original im-
plementation include the requirement of calculating both the Fisher information
matrix and its inverse. To resolve these and other practical considerations, Amari
[2] proposed an adaptive version of the algorithm, the Adaptive Natural Gra-
dient Learning (ANGL) algorithm. Park, Amari, and Fukumizu [21] extended
ANGL to a variety of stochastic models including stochastic neural networks,
multi-dimensional regression, and classification problems.
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In particular, they showed that, assuming a particular form of stochastic
feedforward neural network and under a specific set of assumptions concern-
ing the form of the probability distributions involved, a version of the Fisher
information matrix can be written as

G(θ) = Eξ

[(
r′

r

)2
]
Ex

[
∇H (∇H)T

]
.

Although Park et al considered only feedforward neural networks, their result
also holds for more general neural networks, including the ECAN network. What
is important is the decomposition of the probability distribution as

p (y|x; θ) =
L∏
i=1

ri (yi −Hi (x, θ) )

where

y = H(x; θ) + ξ, y = (y1, · · · , yL)T , H = (H1, · · · , HL)T , ξ = (ξ1, · · · , ξL)T ,

where ξ is added noise. If we assume further that each ri has the same form as a
Gaussian distribution with zero mean and standard deviation σ, then the Fisher
information matrix simplifies further to

G(θ) =
1
σ2
Ex

[
∇H (∇H)T

]
.

The adaptive estimate for Ĝ−1
t+1 is given by

Ĝ−1
t+1 = (1 + εt)Ĝ−1

t − εt(Ĝ−1
t ∇H)(Ĝ−1

t ∇H)T .

and the loss function for our model takes the form

l(x,y; θ) = −
L∑

i=1

log r(yi −Hi(x, θ)).

The learning algorithm for our connection matrix weights θ is then given by

θt+1 = θt − ηtĜ−1
t ∇l(θt).

7 Information Geometry for Economic Attention
Allocation: A Detailed Example
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Fig. 1. Results from Experiment 1

We now present the re-
sults of a series of small-
scale, exploratory exper-
iments comparing the orig-
inal ECAN process run-
ning alone with the ECAN
process coupled with ANGL.
We are interested in de-
termining which of these
two lines of processing re-
sult in focusing attention
more accurately.

The experiment started
with base patterns of var-
ious sizes to be deter-
mined by the two algo-
rithms. In the training stage, noise was added, generating a number of instances
of noisy base patterns. The learning goal is to identify the underlying base pat-
terns from the noisy patterns as this will identify how well the different algo-
rithms can focus attention on relevant versus irrelevant nodes.

Next, the ECAN process was run, resulting in the determination of the con-
nection matrix C. In order to apply the ANGL algorithm, we need the gradient,
∇H, of the ECAN training process, with respect to the input x. While calculat-
ing the connection matrix C, we used Monte Carlo simulation to simultaneously
calculate an approximation to ∇H.
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Fig. 2. Results from Experiment 2

After ECAN training
was completed, we bi-
furcated the experiment.
In one branch, we ran
fuzzed cue patterns through
the retrieval process. In
the other, we first applied
the ANGL algorithm, op-
timizing the weights in
the connection matrix,
prior to running the re-
trieval process on the
same fuzzed cue pat-
terns. At a constant value
of σ = 0.8 we ran
several samples through
each branch with pattern
sizes of 4×4, 7×7, 10×10,
15 × 15, and 20 × 20. The results are shown in Figure 1. We also ran several
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experiments comparing the sum of squares of the errors to the input training
noise as measured by the value of σ.; see Figures 2 and 3.

These results suggest two major advantages of the ECAN+ANGL combina-
tion compared to ECAN alone. Not only was the performance of the combination
better in every trial, save for one involving a small number of nodes and little
noise, but the combination clearly scales significantly better both as the number
of nodes increases, and as the training noise increases.

8 Conclusion

Inspired by a broader geometric conception of general intelligence, we have ex-
plored a relatively simple concrete application of information-geometric ideas to
the ECAN component of the OpenCog integrative AGI system. Roughly speak-
ing, the idea explored is to have OpenCog shift its attention from current preoc-
cupations toward desired preoccupations, based on following geodesic paths in
the Fisher-Rao space of the space of ”attentional probability distributions”.
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Fig. 3. Results from Experiment 3

The results presented
here are highly success-
ful but also quite pre-
liminary, involving small
numbers of nodes in iso-
lation rather than inte-
grated into an entire AGI
system. We still have
much work ahead to de-
termine whether the dra-
matic improvements re-
ported here continue to
scale with millions of
nodes in a complete inte-
grative system. Nonethe-
less, the results from our
experiment tantalizingly
suggest that incorporat-
ing ANGL into the ECAN process can lead to vastly more accurate results,
especially as system size and noise increases. The main open question is whether
this improvement, can be achieved for large ECAN networks without dramati-
cally increased processing time. To address this problem, we plan to experiment
with implementing ECAN+ANGL on many-core GPU machines, using opti-
mized sparse matrix algorithms [9, 5].

We also plan to pursue similar approaches to improving the learning capa-
bility of other OpenCog components. For instance, OpenCog’s PLN inference
framework utilizes a statistically-guided inference control mechanism, which
could benefit from information-geometric ideas. And OpenCog’s MOSES sys-
tem for probabilistic program induction (procedure learning) could potentially
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be modified to more closely follow geodesics in program space. There is no lack
of fertile ground for further, related experimentation.
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