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We introduce a discrete probabilistic model of motion in special and general
relativity that is shown to be compatible with the standard model in the statis-
tical limit.
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1. INTRODUCTION

Anyone familiar with the fundamental principles of the differential calcu-
lus may have wondered at times whether the assumption of continuity in
space and time, on which so many of our mathematical models are ele-
gantly based, is indeed a true reflection of physical reality. Is it not con-
ceivable that our common notion of temporal and spacial continuity is
just as illusory as the impression of seamless change created by the rapid
succession of discrete static images on a movie screen? The question is not
new, and fairly detailed attempts to develop nontemporal discrete models
of physical reality have been made (see, e.g., Ref. 1), but what we hope
to offer in the present paper is a novel approach to the problem of dis-
cretizing special and general relativity that perhaps adds another facet to
already existing interpretative schemes.

For the most part, our discussion will focus on specific mathematical
derivations, but in order to provide the reader with an adequate concep-
tual framework, a few introductory remarks of a more general philosoph-
ical nature are no doubt appropriate.

To begin with, we will revisit the familiar twin “paradox” of spe-
cial relativity: the proper times associated with two paths that connect the
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Fig. 1. Nonsymmetric paths in space–time.

same starting and endpoints P and Q in Minkowski space (see Fig. 1)
are in general not equal. The mathematical explanation for this surprising
fact is, of course, well known, and all protests of common sense are eas-
ily countered by pointing out that the human cognitive apparatus, formed
under the essentially nonrelativistic conditions of earthly life, is most likely
ill equipped to intuitively grasp the properties of space–time in its more
extreme manifestations. It may therefore appear that the twin “paradox” is
perfectly well understood—and in a sense it certainly is—but upon further
reflection we quickly find ourselves confronted with some perplexing ques-
tions. Consider for instance the problem of how the difference in proper
time along the paths A and B in Fig. 1 is encoded. If the paths are traced
out by human observers, this difference may come to light in a simple
comparison of clocks carried by these observers, but what if we exam-
ine instead two elementary particles, say, two electrons? Which of them is
younger and which is older2 by the time they arrive at Q? (Note: whether,
in fact, quantum mechanics allows us to speak of an electron tracing out
a particular path shall be of no concern to us for the moment.) More
generally, we may ask how the passing of time manifests itself, not only
with regard to phenomena involving relative motion, but universally, as
the ordering principle underlying all reality.

To explore this issue, we first observe that any measurement of time,
commonly performed, is indirect. What we record are certain material
changes happening in time, such as the changes in the position of a hand
on a stopwatch, rather than time itself. It is by no means obvious what
kind of metaphysical essence we should hope to discover in a purely

2 It must be emphasized that in raising the question of determining the “age of an electron” we
are not trying in any way to put in doubt the rich empirical evidence in favor of relativistic
time dilation that exists especially in the realm of elementary particles. Our intent is rather to
probe the twin “paradox” at a somewhat deeper, more philosophical level.
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abstract conception of time absent any perception of change. Is it mean-
ingful to speak of the passing of time if nothing is happening and nothing
is perceived? Faced with questions such as these that pertain to the ulti-
mate nature of reality, we cannot expect to find final conclusive answers,
but for the sake of the present argument, we will assume that the notions
of time and change are indeed synonymous.

Having thus identified our point of departure, we now return to the
image of two electrons following the world lines A and B, respectively, in
the space–time diagram in Fig. 1. If, as predicted by special relativity, the
proper time associated with A is greater than that associated with B, and
if any progression in time requires the occurrence of some sort of change,
then what exactly are the changes happening to the electron on path A

that are not happening to the one on path B, or at least are not happen-
ing at the same rate? Since the diagram in Fig. 1 is of little use as we try
to address this question, we boldly—and, perhaps, insanely—propose to
replace the smooth world lines A and B by erratic random walks traced
out at the speed of light (see Fig. 2 for a rather crude illustration). More
specifically, we suggest that any uniform linear motion at velocity v is
to be represented by a random walk which in turn is represented by a
sequence of independent identically distributed (i.i.d.) binomial random
variables x1, . . . , xn such that

P(xi = 1) = p and P(xi = −1) = 1 − p for all i ∈ {1, . . . , n}. (1)

Given this setup, the average change in position over a time interval of
length 1 (as measured in the inertial frame of reference in which the ran-
dom walk is recorded) is the sample mean

x̄ = 1
n

n∑

i=1

xi, (2)

A

B

light cone

P Q
t

x

R

Fig. 2. Random walks corresponding to the paths A and B.
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and the expected value of x̄ or, equivalently, of any one of the random
variables xi is therefore the velocity v, i.e.,

v = E(x̄) = E(xi) = 2p − 1. (3)

Consequently, the probability p is to be defined by the equation

p = 1 + v

2
. (4)

The model that we are in the process of developing here is, of course,
highly simplistic and not entirely convincing, but for the purpose of illus-
trating certain fundamental concepts that underlie also the more adequate
mathematical constructions in Secs. 2 and 3 it actually is well suited. The
idea, for example, that time is synonymous with change finds its natural
expression in the identification of proper time with randomness. To estab-
lish this link we consider the sample variance

S2 = 1
n − 1

n∑

i=1

(xi − x̄)2 (5)

which is commonly used as a measure of statistical spread. Elementary
probability theory teaches us that the expectation of S2 is equal to the
variance σ 2 of the individual random variables xi , which in our case is
given by the equation

σ 2 = Var(xi) = E((xi − E(xi))
2) = E(x2

i ) − E(xi)
2 = 1 − v2. (6)

Since the proper time associated with a uniform linear motion at velocity
v over a time interval of length n is known to be

τ = n
√

1 − v2, (7)

and since the term on the right is equal to

nσ = n
√

Var(xi), (8)

we may infer that a good approximate measure of proper time is the sam-
ple standard deviation S multiplied by n (at least in the special case of a
uniform linear motion).

As far as our earlier problem of comparing the age of the two
electrons upon arrival at Q is concerned, we can now offer an elegant
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solution. Since the velocities along the segments PR and RQ that make
up path B are both different from zero, and since the velocity along path
A is equal to zero, it follows that the value of the sample standard devi-
ation S can be expected to be greater for A than for either one of the
segments PR and RQ. In other words, of the two given paths, A is most
likely the one with a higher incidence of random changes in the direction
of travel, and where there is more change, more time is passing. By impli-
cation, the electron on path A may indeed be expected to “grow older”
more rapidly, and the difference in “age” is encoded in the structures of
the corresponding random walks.

Having thus reduced time to a measure of randomness we may, if we
wish, dispose of it altogether and adopt a genuinely nontemporal point
of view. Such an interpretative shift appears plausible also in light of the
fact that in our model random walks are always traced out at the speed of
light (see Fig. 2) and that the standard computation of proper time (via an
integral of

√
1 − v(t)2) therefore yields the value zero. However, the ques-

tion of whether time does or does not exist is by no means essential to the
mathematical derivations that will be the focus of our discussion in Secs.
2 and 3. In the end it is up to the reader to decide which mode of inter-
pretation—temporal or nontemporal—seems more plausible.

Another interesting aspect of our probabilistic scheme is the fact
that the speed of light c = 1 is naturally found to be the largest attain-
able speed. This fact, which in standard treatments of special relativity is
adopted as an axiom, is a direct consequence of Eq. (3) because the min-
imal and maximal probabilities p = 0 and p = 1 are here easily seen to
correspond to the minimal and maximal velocities v = −1 and v = 1.
As trivial as this observation may seem, it nevertheless highlights a cru-
cial distinction between classical and relativistic kinematics in that it shows
the feasibility of our probabilistic approach to be dependent upon the exis-
tence of a universal upper bound for |v|. We would be overstating our case
if we now asserted that special relativity is intrinsically probabilistic, but
to say that our model is well adjusted to the structure of special relativity
seems fair.

Given the outline provided in the preceding paragraphs, we will now
discuss some possible objections. First of all, there is the problem that
special relativity does not allow for an object with a nonvanishing rest
mass to travel at the speed of light. In particular, the requirement that
all moves in a given random walk be performed at exactly the speed of
light is apparently impossible to satisfy. To this we reply that the proposed
probabilistic picture will be essentially indistinguishable from the standard
continuous picture if only the unit step length |xi | = 1 is sufficiently
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small (the Planck length comes here to mind). In other words, we sim-
ply evade the question by demanding a level of resolution that is beyond
the reach of empirical verification. To readers who fail to be impressed by
this retreat into an inaccessible microrealm we would like to point out that
our intent is not to genuinely revise the theory of relativity or to formulate
new experimentally verifiable hypotheses, but only to suggest a few alter-
native interpretations.

A more serious objection concerns the transformation of random
walks as we pass from one inertial frame of reference to another. When
we introduced the idea that uniform linear motions are to be represented
by sequences of random variables xi with |xi | = 1 there was no mention
of transformations to different coordinate frames at all. This suggests that
the proposed representation was intended to be universally valid. How-
ever, distances in special relativity are not absolute and, in particular, mea-
surements of step lengths in a given random walk cannot, so it seems,
yield the value |xi | = 1 independent of an observer’s state of motion. Our
response in this case is of central importance for everything that follows:

The very nature of our probabilistic model is such that a
a direct spatiotemporal correspondence between random
walks is given up in favor of a mere statistical correlation.

(9)

In other words, an observer’s experience of the world is essentially subjec-
tive, and a coherent picture emerges only at the level of statistical averages.
Perhaps the best way to interpret this principle is by way of analogy to
quantum mechanics where probabilities are known, but individual paths
are essentially ficticious. So we may want to assume that observers can
predict approximate positions but are not able to trace each individual
step in a given random walk.

Keeping this fundamental idea in mind, we are now ready to engage
in a more serious discussion of the mathematical structure of a probabi-
listic theory of relativity.

2. PROBABILITY DENSITIES IN SPECIAL RELATIVITY

The main reason why the probabilistic model developed in the Intro-
duction was so utterly simple is that in one spatial dimension there are
only two possible directions of motion—the positive and the negative. By
contrast, the number of available directions in two- or three-dimensional
space is infinite. In order to describe motion in a higher-dimensional
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setting, it will therefore be necessary to work with continuous rather than
discrete random variables.

Considering first the case of two spatial dimensions, we assume that
we are given a probability density function p on the unit circle

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} (10)

such that the probability for a move in a random walk to fall within an
angular range from θ to θ + dθ is

p(h(θ))dθ (11)

where

h(θ) =
(

cos(θ)
sin(θ)

)
(12)

for all θ ∈ [−π,π ].
To simulate a uniform linear motion in the xy-plane we further

assume that θ1, . . . , θn is a sequence of i.i.d. random variables such that
for each index i the density of θi is p(h(θ)). Setting

xi := cos(θi ),
yi := sin(θi ),

(13)

the two-dimensional random walk that we associate with the motion in
question is described by the displacement vectors

(
xi

yi

)
= h(θi ). (14)

Since each move in a random walk is supposed to be performed at the
speed of light, and since each displacement vector has length 1, we may
infer that the expected velocity is

v :=
(

E(xi)
E(yi)

)
=
(

E(cos(θi ))
E(sin(θi ))

)
(independent of i) (15)

where

E(cos(θi )) =
∫ π

−π
cos(θ)p(h(θ)) dθ,

E(sin(θi )) =
∫ π

−π
sin(θ)p(h(θ)) dθ .

(16)
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Furthermore, just as in the one-dimensional case, the proper time corre-
sponding to a particular move is again found to be a natural measure of
randomness because

√
1 − ‖v‖2 =

√
1 − (E(xi)2 + E(yi)2)

=
√

E(x2
i + y2

i ) − (E(xi)2 + E(yi)2)

=
√

Var(xi) + Var(yi)

(17)

for all i ∈ {1, . . . , n}.
Since the probabilistic model outlined above is still too general to be

of any use, it is advisable that we now discuss transformations of density
functions as we pass from one inertial frame of reference to another. So
suppose that two observers, A and B, are moving relative to each other
at the constant velocity v, as measured by A. The space–time coordinates
of the inertial systems associated with these two observers are denoted by
t, x, y and τ, ξ, η, respectively. Given this setup, our objective is to
determine how a probability density q on the unit circle {(ξ, η) | ξ2 +η2 =
1} that describes the random walk of an object C, as viewed by B, would
have to be transformed in order to describe the corresponding random
walk in the inertial system of A. Considering the very general case where
two coordinate frames are rotated but not shifted relative to each other
(see Fig. 3), we may infer the existence of a 2 × 2 orthogonal matrix A
(i.e., AtA = I) such that the Lorentz transformation is described by the
equations

τ = γ (t − r · v),(
ξ
η

)
= A(r + (γ − 1)Pv(r) − γ tv) (18)

v

A

x

y

B

C

ξ

w

η

Fig. 3. Relative motion of two inertial observers.
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where

r =
(

x
y

)
, γ = 1

√
1 − ‖v‖2

, and Pv(r) = (r · v)v
‖v‖2 . (19)

Furthermore, if A observes a spatial displacement by a vector r at the
speed of light, then the corresponding time coordinate is t = ‖r‖ and,
according to (18), the spatial displacement observed by B (which, of
course, also occurs at the speed of light) is

(
ξ
η

)
= A(r + (γ − 1)Pv(r) − γ ‖r‖v) =: g(r). (20)

Note: unlike the Lorentz transformation, g is not linear, but it does satisfy
the equation g(λr) = λg(r) for all λ ! 0.

With the introduction of g we actually are going to restore the sort
of direct spatiotemporal correspondence that we claimed to have given up
with the principle stated in (9), but the reader may rest assured that the
restoration is only temporary (despite the fact that time does not exist, but
that’s a different matter) and that in the end our precious principle will
not be violated.

In order to determine the probability p(h(θ))dθ associated with a
move in the random walk of C, as observed by A, we notice that the
angular width dθ , when viewed by B, assumes the value

∥∥∥∥
g(h(θ + dθ))

‖g(h(θ + dθ))‖
− g(h(θ))

‖g(h(θ))‖

∥∥∥∥ =
∥∥∥∥

d

dθ

g(h(θ))

‖g(h(θ))‖

∥∥∥∥ dθ . (21)

Thus, it appears that p(h(θ))dθ ought to be equal to, or at least propor-
tional to

q

(
g(h(θ))

‖g(h(θ))‖

)∥∥∥∥
d

dθ

g(h(θ))

‖g(h(θ))‖

∥∥∥∥ dθ . (22)

However, we need to be careful, because in the inertial frame of B the
probability above is associated with a random displacement of length
‖g(h(θ))‖, which in general is different from 1. To compensate for this rel-
ativistic spatial distortion and to thereby reinstate the principle in (9), we
must divide by ‖g(h(θ))‖ the term in (22). Consequently, in normalizing
the function

f (θ) :=
q
(

g(h(θ))
‖g(h(θ))‖

) ∥∥∥ d
dθ

g(h(θ))
‖g(h(θ))‖

∥∥∥

‖g(h(θ))‖
(23)
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to unity (unit probability, that is) we may assert the density p to be given
by the equation

p(h(θ)) = f (θ)∫ π
−π f (θ) dθ

. (24)

Since the definition of g in (20) readily implies that

‖g(r)‖ = γ (‖r‖ − r · v), (25)

we may infer that the derivative of F := g/‖g‖ is

DF(r) = Dg(r)
‖g(r)‖

−
g(r)

(
rt

‖r‖ − vt
)

γ (‖r‖ − r · v)2

=
A
(

I + (γ−1)vvt

‖v‖2 − γ vrt

‖r‖

)

γ (‖r‖ − r · v)
−

g(r)
(

rt

‖r‖ − vt
)

γ (‖r‖ − r · v)2

= A
γ (‖r‖ − r · v)

+ A((r · v)vrt − ‖r‖2vvt )

(γ + 1)‖r‖(‖r‖ − r · v)2 + A(‖r‖rvt − rrt )

γ ‖r‖(‖r‖ − r · v)2 .

(26)

Since ‖h(θ)‖ = 1 and h(θ)th ′(θ) = 0, it follows that

d

dθ

g(h(θ))

‖g(h(θ)))‖
= DF(h(θ))h ′(θ)

= Ah ′(θ)

γ (1 − h(θ) · v)
+ h ′(θ) · v

(1 − h(θ) · v)2

(
Ah(θ)

γ
− Av
γ + 1

)

(27)

and, in taking the square root of the dot product of this vector with itself,
we obtain

∥∥∥∥
d

dθ

g(h(θ))

‖g(h(θ)))‖

∥∥∥∥ = ‖DF(h(θ))h ′(θ)‖

= ‖h ′(θ)‖
γ (1 − h(θ) · v)

= 1
γ (1 − h(θ) · v)

. (28)

Combining this result with (23) and (25), we may conclude that

f (θ) = q(F(h(θ)))

γ 2(1 − h(θ) · v)2 . (29)
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In order to evaluate the integral of f from −π to π , we introduce the sub-
stitution

h(ψ) = F(h(θ)). (30)

This yields
∣∣∣∣
dθ

dψ

∣∣∣∣ = ‖h ′(ψ)‖
‖DF(h(θ))h ′(θ)‖

= 1
‖DF(h(θ))h ′(θ)‖

, (31)

and therefore,
∫ π

−π
f (θ) dθ =

∫ π

−π

q(h(ψ))

‖g((F |S1)−1(h(ψ)))‖
dψ

=
∫ π

−π

q(h(ψ))

γ (1 − (F |S1)−1(h(ψ)) · v)
dψ.

(32)

Since the inverse of the restriction of F to S1 is easily seen to be given by
the equation

(F |S1)−1(r) = At r + (γ − 1)P−v(At r) + γ v
γ (1 + At r · v)

, (33)

we may infer that
∫ π

−π
f (θ) dθ =

∫ π

−π
γ (1 + Ath(ψ) · v)q(h(ψ)) dψ

= γ

(
1 +

∫ π

−π
h(ψ) · Avq(h(ψ)) dψ

)
= γ (1 + Eq(r) · Av),

(34)

where

Eq(r) :=
(

Eq(x)
Eq(y)

)
=
(

Eq(cos(ψ))
Eq(sin(ψ))

)
. (35)

Note: the index “q” is inserted here to indicate that the expected values
are computed with respect to the distribution described by q (in contra-
distinction to the distribution described by p).

According to (24) and (34), our transformation equation for proba-
bility densities thus assumes the following form:

p(h(θ)) = q(F(h(θ)))

γ 3(1 + Eq(r) · Av)(1 − h(θ) · v)2 . (36)
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In order to convince ourselves that this equation is indeed correct, we
will now demonstrate how it can be used to derive the familiar law for the
relativistic addition of velocities. Returning again to the situation in Fig. 3
where w is the velocity of C relative to B, special relativity predicts that
the velocity of C, as measured by A, is

v ⊕ w = γ v + (γ − 1)Pv(Atw) + Atw
γ (1 + Atw · v)

. (37)

In light of the general representation of velocities in (15) and (16), we
therefore need to show that

Ep(r) = γ v + (γ − 1)Pv(Atw) + Atw
γ (1 + Atw · v)

. (38)

Since

Ep(r) =





∫ π

−π
cos(θ)p(h(θ)) dθ

∫ π

−π
sin(θ)p(h(θ)) dθ



 =
∫ π

−π
h(θ)p(h(θ)) dθ

=
∫ π

−π

h(θ)q(F(h(θ)))

γ 3(1 + Eq(r) · Av)(1 − h(θ) · v)2 dθ, (39)

we may use the substitution in (30) in conjunction with (31) and (33) to
infer that

Ep(r) =
∫ π

−π

(F |S1)−1(h(ψ))q(h(ψ))

γ 2(1 + Eq(r) · Av)(1 − (F |S1)−1(h(ψ)) · v)
dψ

=
∫ π

−π

(Ath(ψ) + (γ − 1)P−v(Ath(ψ)) + γ v))q(h(ψ))

γ (1 + Eq(r) · Av)
dψ

=
AtEq(r) + (γ − 1)P−v(AtEq(r)) + γ v)

γ (1 + AtEq(r) · v)
. (40)

The desired result in (38) is now an immediate consequence of the fact that
Eq(r) = w and that P−v(u) = Pv(u) for all u. Given this successful appli-
cation of our formalism, it seems justified to assert that our probabilistic
model correctly describes relativistic motion in two spatial dimensions.

Interestingly, in our derivation of (38) we never had to actually find
an explicit formula for either p or q—the transformation equation (36) in
itself was sufficient. However, an explicit formula is easily obtained if we
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make the entirely plausible assumption that q describes a uniform distri-
bution in the case where w is zero. In other words, for w = 0 we set

q(h(θ)) := 1
2π

(41)

for all θ ∈ [−π,π ].

Remark. The condition w = 0 does not imply with necessity that the dis-
tribution described by q is uniform, for there obviously are infinitely
many probability densities on the unit circle that satisfy the equations
E(cos(θ)) = E(sin(θ)) = 0 (see (15) and (16)). In fact, it is one of the
strengths of our model that it provides this freedom, because flexibility in
choosing densities is potentially useful when adjustments to external con-
straints are needed.

Since the definition of q in (41) clearly implies that Eq(r) = 0, we may
apply (36) with 1/(2π) in place of q to infer that the probability density
associated with a uniform linear motion in the xy-plane is

p(h(θ)) = 1
2πγ 3(1 − h(θ) · v)2 =

√
1 − ‖v‖2 3

2π(1 − h(θ) · v)2 . (42)

That the velocity associated with p is indeed v = (v1, v2) is easily verified:
using elementary methods of integration, we find that

Ep(r) =





∫ π

−π

cos(θ)
2πγ 3(1 − v1 cos(θ) − v2 sin(θ))2 dθ

∫ π

−π

sin(θ)

2πγ 3(1 − v1 cos(θ) − v2 sin(θ))2 dθ



 =
(

v1
v2

)
, (43)

as desired. Furthermore, using the polar representation v = vh(α) for some
α ∈ [−π,π ], the decrease in randomness (that is, in proper time) as v

approaches the speed of light c = 1 is nicely expressed in the fact that

lim
v→1

p(h(θ)) = lim
v→1

√
1 − v2

3

2π(1 − vh(θ) · h(α))2 =
{

0 for θ )= α,
∞ for θ = α.

(44)

In other words, for v = 1, the density p contracts to the Dirac delta func-
tion centered at α, and the variance of both cos(θ) and sin(θ) is zero. A
graphical illustration of this limiting behavior for the special case α = 0 is
shown in Fig. 4.
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Fig. 4. Graphs of the density p for increasing values of v.

As further evidence for the adequacy of our formalism, we also wish
to mention that the form of the density function in (42) is Lorentz invari-
ant. For considering again the situation in Fig. 3, and assuming that the
density which B associates with the motion of C is

q(h(ψ)) =
√

1 − ‖w‖2 3

2π(1 − h(ψ) · w)2 , (45)

we may apply (36), (20), (25), and (37) to infer that the corresponding
density in the inertial frame of A is

p(h(θ)) =
√

1 − ‖w‖2 3

2πγ 3(1 + Eq(r) · Av)(1 − h(θ) · v)2(1 − F(h(θ)) · w)2

=
√

1 − ‖w‖2 3

2πγ 3(1 + Atw · v)3(1 − h(θ) · v ⊕ w)2

=
√

1 − ‖v ⊕ w‖2 3

2π(1 − h(θ) · v ⊕ w)2 . (46)

In other words, the density observed by A is of exactly the same form as
the one observed by B except that w is replaced by v ⊕ w as it should be.

To continue our discussion we will now extend our model to the case
of three spatial dimensions. Proceeding in a manner completely analogous
to the two-dimensional case, we assume that we are given a probability
density p on the unit sphere

S2 = {(x, y, z) | x2 + y2 + z2 = 1} (47)

such that in spherical coordinates the probability for a move in a random
walk to fall into the angular rectangle [θ, θ + dθ ] × [φ,φ + dφ] is

p(h(θ,φ)) sin(φ) dθdφ (48)
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where

h(θ,φ) :=




x(θ,φ)
y(θ,φ)
z(θ,φ)



 :=




cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)



 (49)

for all (θ,φ) ∈ [−π,π ] × [0,π ]. Given this setup, the velocity associated
with p is

v =




E(x)
E(y)
E(z)



 =





∫ π

0

∫ π

−π
x(θ,φ)p(h(θ,φ)) sin(φ) dθdφ

∫ π

0

∫ π

−π
y(θ,φ)p(h(θ,φ)) sin(φ) dθdφ

∫ π

0

∫ π

−π
z(θ,φ)p(h(θ,φ)) sin(φ) dθdφ




, (50)

and the random measure of proper time is
√

1 − ‖v‖2 =
√

Var(x) + Var(y) + Var(z). (51)

To address the problem of transforming densities in three dimensions,
as we pass from one inertial frame to another, we simply add a z-axis and
a ζ -axis to the frames of A and B in Fig. 3, respectively. The correspond-
ing transformation equation for displacement vectors in random walks is
the same as in (20), except for the fact that all vectors are now in R3 and
that A is a 3 × 3 matrix:




ξ
η
ζ



 = A(r + (γ − 1)Pv(r) − γ ‖r‖v) =: g(r). (52)

Again denoting by q the density that B associates with the motion of C,
it is not difficult to see that, in strict analogy to (24), the density p in the
inertial frame of A is given by the equation

p(h(θ,φ)) sin(φ) = f (θ,φ)∫ π
0
∫ π
−π f (θ,φ) dθdφ

(53)

where

f (θ,φ) : =
q

(
g(h(θ,φ))

‖g(h(θ,φ))‖

)∥∥∥∥
∂

∂θ

g(h(θ,φ))

‖g(h(θ,φ))‖
× ∂

∂φ

g(h(θ,φ))

‖g(h(θ,φ))‖

∥∥∥∥

‖g(h(θ,φ))‖

=
q(F(h(θ,φ)))‖DθF(h(θ,φ)) × DφF(h(θ,φ))‖

γ (1 − h(θ,φ) · v)
. (54)
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Given the results in (27) and (28), it follows that

DθF(h(θ,φ)) = ADθh(θ,φ)

γ (1 − h(θ,φ) · v)
+ Dθh(θ,φ) · v

(1 − h(θ,φ) · v)2

(
Ah(θ,φ)

γ
− Av
γ + 1

)
,

DφF(h(θ,φ)) =
ADφh(θ,φ)

γ (1 − h(θ,φ) · v)
+

Dφh(θ,φ) · v
(1 − h(θ,φ) · v)2

(
Ah(θ,φ)

γ
− Av
γ + 1

)
,

(55)

and

‖DθF(h(θ,φ))‖ = ‖Dθh(θ,φ)‖
γ (1 − h(θ,φ) · v)

= sin(φ)

γ (1 − h(θ,φ) · v)
,

‖DφF(h(θ,φ))‖ =
‖Dφh(θ,φ)‖

γ (1 − h(θ,φ) · v)
= 1
γ (1 − h(θ,φ) · v)

. (56)

Consequently,

‖DθF(h(θ,φ)) × DφF(h(θ,φ))‖2

= ‖DθF(h(θ,φ))‖2‖DφF(h(θ,φ))‖2 − (DθF(h(θ,φ)) · DφF(h(θ,φ)))2

= ‖DθF(h(θ,φ))‖2‖DφF(h(θ,φ))‖2 − 0

= sin2(φ)

γ 4(1 − h(θ,φ) · v)4 (57)

and, by implication,

f (θ,φ) = q(F(h(θ,φ))) sin(φ)

γ 3(1 − h(θ,φ) · v)3 . (58)

In order to evaluate the integral of f (θ,φ), we introduce the substitution

h(ψ,ϕ) = F(h(θ,φ)) (59)

so that

(Dψh(ψ,ϕ), Dϕh(ψ,ϕ)) = Dh(ψ,ϕ)

= DF(h(θ,φ))Dh(θ,φ)

(
∂θ/∂ψ ∂θ/∂ϕ
∂φ/∂ψ ∂φ/∂ϕ

)

= (DθF(h(θ,φ)), DφF(h(θ,φ)))

(
∂θ/∂ψ ∂θ/∂ϕ
∂φ/∂ψ ∂φ/∂ϕ

)
.

(60)
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Since this equation, in conjunction with (57), is easily seen to imply3 that

∣∣∣∣det
(
∂θ/∂ψ ∂θ/∂ϕ
∂φ/∂ψ ∂φ/∂ϕ

)∣∣∣∣ =
‖Dψh(ψ,ϕ) × Dϕh(ψ,ϕ)‖

‖DθF(h(θ,φ)) × DφF(h(θ,φ))‖

= γ 2(1 − h(θ,φ) · v)2 sin(ϕ)

sin(φ)
, (61)

we may again use (33) (which is valid in two as well as in three spatial
dimensions) to infer that

∫ π

0

∫ π

−π
f (θ,φ) dθdφ =

∫ π

0

∫ π

−π

q(h(ψ,ϕ)) sin(ϕ)

γ (1 − (F |S2)−1(h(ψ,ϕ)) · v)
dψdϕ

=
∫ π

0

∫ π

−π
γ (1+ Ath(ψ,ϕ) · v)q(h(ψ,ϕ)) sin(ϕ) dψdϕ

= γ (1 + Eq(r) · Av). (62)

Combining this result with (53) and (58), we obtain

p(h(θ,φ)) = q(F(h(θ,φ)))

γ 4(1 + Eq(r) · Av)(1 − h(θ,φ) · v)3 . (63)

As we apply this formula to the uniform density q(h(ψ,ϕ)) = 1/4π , we
arrive at the conclusion that a uniform linear motion in three spatial
dimensions is described by the density function

p(h(θ,φ)) = 1
4πγ 4(1 − h(θ,φ) · v)3 . (64)

In analogy to Fig. 4, the decrease in randomness as ‖v‖ approaches
the speed of light is illustrated in Figs. 5, 6, and 7 where three graphs of
p(h(θ,φ)) sin(φ) are shown on [−π,π ] × [0,π ] for v = (0.5, 0, 0), v =
(0.7, 0, 0), and v = (0.9, 0, 0), respectively. Furthermore, just as in the two-
dimensional case, the law stated in (37) concerning the relativistic addition
of velocities can be easily derived from the transformation equation (63),
and the form of the density function in (64) can be shown to be Lorentz
invariant in essentially the same manner as in (46).

3 If B is a 2×2 matrix and v, w, x, y are column vectors in R3, then the matrix equation
(v, w) = (x, y)B implies that ‖v × w‖2 = ‖x × y‖2 det(B)2.
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Fig. 5. Graph of p(h(θ,φ)) sin(φ) for v = (0.5, 0, 0).

Fig. 6. Graph of p(h(θ,φ)) sin(φ) for v = (0.7, 0, 0).

Fig. 7. Graph of p(h(θ,φ)) sin(φ) for v = (0.9, 0, 0).

3. COMPATIBILITY WITH GENERAL RELATIVITY

As we now move on to discuss general relativity, we need to make a
few adjustments. To begin with, an observer’s proper time will no longer
be identical with the process index i that signifies the different stages in
a random walk. Instead we will adopt the familiar four-dimensional for-
malism whereby events in space–time are identified by generalized coordi-
nates q = (q1, q2, q3, q4) ∈ R4. In order to describe a random walk in such
a setting, we further assume that for each triple (k, j, l) ∈ {1, 2, 3, 4}3 we
are given a continuously differentiable function /k

j l : R4 → R. Since this
choice of notation is obviously highly suggestive, it is important to point
out, that we are not operating within the conceptual framework of differ-
ential geometry at this stage—manifolds, tangent spaces, or geodesics are
nowhere in sight. As a matter of course, the functions /k

j l will eventually
assume the role of the familiar Christoffel symbols, but for the moment,
our sole concern is to create a framework within which generalized ran-
dom walks can be described.
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With this purpose in mind, let us suppose we are given two sequences
of i.i.d. random variables θ0, . . . , θn−1 ∈ [−π,π ] and φ0, . . . ,φn−1 ∈ [0,π ]
such that the joint density of each pair (θi ,φi ) is

p(h(θ,φ)) sin(φ) = sin(φ)

4πγ 4(1 − h(θ,φ) · v)3 (65)

for some fixed vector v = (v1, v2, v3) ∈ R3 with ‖v‖ " 1. Setting

xi := cos(θi ) sin(φi ),
yi := sin(θi ) sin(φi ),
zi := cos(φi ),

(66)

we observe that each of the sequences x0, . . . , xn−1, y0, . . . , yn−1, and
z0, . . . , zn−1 consists of i.i.d. random variables as well. (Note: indepen-
dence is here asserted only for random variables with pairwise distinct
indices.) Moreover, according to (50), we may infer that

v =




E(xi)
E(yi)
E(zi)



 =:




µx

µy

µz



 . (67)

In order to construct a random walk in the qk-coordinate system, we
choose a step-length parameter 0t > 0, an initial point q0, and a set
of vectors {T0, X0, Y0, Z0}. Since random walks in the current context are
most appropriately described recursively, we also assume that we are given
a point qi and vectors Ti = (T k

i ), Xi = (Xk
i ), Yi = (Y k

i ), and Zi = (Zk
i )

for some i ∈ {0, . . . , n − 1}. Then, using Einstein’s summation convention
(with respect to the indices j and l), we set

qi+1 := qi + (Ti + xiXi + yiYi + ziZi )0t, (68)

T k
i+1 := T k

i − /k
j l(qi )(T

l
i + xiX

l
i + yiY

l
i + ziZ

l
i )T

j
i 0t,

Xk
i+1 := Xk

i − /k
j l(qi )(T

l
i + xiX

l
i + yiY

l
i + ziZ

l
i )X

j
i 0t,

Y k
i+1 := Y k

i − /k
j l(qi )(T

l
i + xiX

l
i + yiY

l
i + ziZ

l
i )Y

j
i 0t,

Zk
i+1 := Zk

i − /k
j l(qi )(T

l
i + xiX

l
i + yiY

l
i + ziZ

l
i )Z

j
i 0t.

(69)

Remark. The random walks of special relativity, as discussed in Sec. 2, are
obtained from these defining equations if we set

0t = 1, /k
j l(q) = 0, T0 = (1, 0, 0, 0),

X0 = (0, 1, 0, 0), Y0 = (0, 0, 1, 0), Z0 = (0, 0, 0, 1). (70)
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Furthermore, in light of the anticipated interpretation of the functions
/k

j l as the Christoffel symbols of a space–time manifold, the equations
listed in (69) are easily seen to describe the discrete “parallel shifts” (intu-
itively speaking) of the vectors T0, X0, Y0, and Z0 along the random
walk given by the points q0, . . . , qn. To understand why this is so, let us
consider the first step from q0 to q1 and the corresponding shift of T0
to T1. The step itself consists of the “spatial” and “temporal” displace-
ments (x0X0 + y0Y0 + z0Z0)0t and T00t , respectively. Writing the parallel
transport equation

dV k

dt
+ /k

j lV
j dql

dt
= 0 (71)

as a difference equation yields

V k(t +0t) = V k(t) − /k
j lV

j (t)0ql. (72)

Replacing in this order V k(t +0t), V k(t), and 0ql with T k
1 , T k

0 , and (T l
0 +

x0X
l
0 +y0Y

l
0 +z0Z

l
0)0t , we notice that the approximate parallel shift of the

vector T0 along the step from q0 to q1 is given by the equation

T k
1 = T k

0 − /k
j l(q0)(T

l
0 + x0X

l
0 + y0Y

l
0 + z0Z

l
0)T

j
0 0t. (73)

In other words, it is given by the first equation in (69) for i = 0.
Our goal for the remainder of this section will be to demonstrate that

(i) any random walk consisting of a sequence of points q0, . . . , qn, as
described in (68) and (69), contracts with probability 1 to a curve
in the qk-coordinate system as 0t approaches zero (and as n tends
to infinity), and that

(ii) this curve is a geodesic if the functions /k
j l are defined to be the

Christoffel symbols of a space–time manifold.

It is our view that in establishing the validity of these claims, our probabi-
listic model of motion will have been shown to be compatible—at least in
a very basic sense—with the standard continuous model in the statistical
limit.

Before we proceed with the proof of (i), it is appropriate that we sim-
plify our notation: for all i ∈ {0, . . . , n− 1} we define a 4 × 4 matrix Bi by
the equation

Bi := −(/k
j l(qi )(T

l
i + xiX

l
i + yiY

l
i + ziZ

l
i ))

4
k,j=1 (74)
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where k is the row index and j the column index. Given this definition, it
is easy to verify that

Ti =
(

i−1∏

m=0

(I + Bm0t)

)

T0,

Xi =
(

i−1∏

m=0

(I + Bm0t)

)

X0,

Yi =
(

i−1∏

m=0

(I + Bm0t)

)

Y0,

Zi =
(

i−1∏

m=0

(I + Bm0t)

)

Z0 (75)

for all i ∈ {1, . . . , n − 1}. Since clearly

qn = q0 +
n−1∑

i=0

(Ti + xiXi + yiYi + ziZi )0t, (76)

it will be helpful to take a closer look at the vector

n−1∑

i=0

Ti = T0 +
n−1∑

i=1

(
i−1∏

m=0

(I + Bm0t)

)

T0. (77)

Setting

Di :=
i−1∏

m=0

(I + Bm0t) − I, (78)

we obtain

n−1∑

i=0

Ti = nT0 +
n−1∑

i=1

DiT0. (79)

In order to find an estimate for the operator norms4 of the matrices Di , we
will now discuss some technical details that are of little interest in them-
selves but are necessary if we wish to maintain an adequate level of rigor.

4 As usual, the operator norm of an n×n matrix A is defined as ‖A‖ = sup{‖Ax‖ | ‖x‖ = 1}
where ‖x‖ denotes the Euclidean norm (

∑n
k=1 x2

k )1/2.
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To begin with, we will require that all random walks are contained in some
large compact set M ⊂ R4 such as a closed ball with a giant radius. Then
the assumed continuous differentiability of the functions /k

j l implies in par-
ticular that these functions are universally bounded on M (mere continuity
would be sufficient for this conclusion, but continuous differentiability will
be needed later). Since, as we saw, the vectors Ti , Xi , Yi , and Zi are to be
thought of as discrete approximations of parallel shifts along random walks,
and since the functions /k

j l are bounded, it is reasonable to assume that for
all random walks considered from here on the Euclidean norms of the vec-
tors Ti , Xi , Yi , and Zi are universally bounded as well. More precisely, we
assume that there is a constant ν > 0 such that

‖Ti‖ + ‖Xi‖ + ‖Yi‖ + ‖Zi‖ " ν (80)

for all indices i in all random walks. Given the definition of the matrices
Bi in (74) in terms of the functions /k

j l and the components T k
i , Xk

i , Y k
i ,

Zk
i , we may thus infer that there also exists a constant λ > 0 such that

universally

‖Bi‖ " λ. (81)

A more rigorous approach whereby the existence of ν and λ is proven
to be a consequence of the boundedness of the functions /k

j l and of the
assumed existence of a bound for the initial lengths ‖T0‖, ‖X0‖, ‖Y0‖, and
‖Z0‖ is feasible but very tedious.

Using (81), it is now easy to see that

‖Di‖ "
i∑

m=1

(
i

m

)
λm0tm = (1 + λ0t)i − 1, (82)

and therefore,
∥∥∥∥∥

n−1∑

i=1

DiT0

∥∥∥∥∥ "
n−1∑

i=1

((1 + λ0t)i − 1)‖T0‖

= ((1 + λ0t)n − 1 − nλ0t)‖T0‖
λ0t

. (83)

Similarly, we find that

n−1∑

i=0

xiXi =
n−1∑

i=0

xiX0 +
n−1∑

i=1

xiDiX0 (84)
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and
∥∥∥∥∥

n−1∑

i=1

xiDiX0

∥∥∥∥∥ " ((1 + λ0t)n − 1 − nλ0t)‖X0‖
λ0t

(because |xi | " 1). (85)

Since completely analogous estimates are valid for the Y- and Z-compo-
nents as well, we may apply (76) to infer that the distance of qn from the
vector

rn := q0 + n(T0 + v1X0 + v2Y0 + v3Z0)0t

= q0 + n(T0 + µxX0 + µyY0 + µzZ0)0t (86)

satisfies the following inequality:

‖qn − rn‖ "
∥∥∥∥∥qn − q0 −

n−1∑

i=0

(T0 + xiX0 + yiY0 + ziZ0)0t

∥∥∥∥∥

+
∥∥∥∥∥q0 +

n−1∑

i=0

(T0 + xiX0 + yiY0 + ziZ0)0t − rn

∥∥∥∥∥

=
∥∥∥∥∥

n−1∑

i=1

(DiT0 + xiDiX0 + yiDiY0 + ziDiZ0)0t

∥∥∥∥∥

+
∥∥∥∥∥q0 +

n−1∑

i=0

(T0 + xiX0 + yiY0 + ziZ0)0t − rn

∥∥∥∥∥

" ((1 + λ0t)n − 1 − nλ0t)(‖T0‖ + ‖X0‖ + ‖Y0‖ + ‖Z0‖)
λ

+n(|x̄ − µx |‖X0‖ + |ȳ − µy |‖Y0‖ + |z̄ − µz|‖Z0‖)0t

" ν((1 + λ0t)n − 1 − nλ0t)

λ
+νn(|x̄ − µx | + |ȳ − µy | + |z̄ − µz|)0t (87)

where x̄, ȳ, and z̄ are the respective sample means of the random variables
xi , yi , and zi (i.e., x̄ =

∑n−1
i=0 xi/n, etc.). Setting

σx :=
√

Var(xi), σy :=
√

Var(yi), and σz :=
√

Var(zi), (88)

the pairwise independence and pairwise identical distribution of the ran-
dom variables xi implies that Var(x̄) = σ 2

x /n. Consequently, Chebyshev’s
inequality allows us to conclude that the probability for x̄ to differ from
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E(x̄) = E(xi) = µx by no more than ε (for any ε > 0) is greater than or
equal to 1 − σ 2

x /(ε2n), i.e.,

P(|x̄ − µx | " ε) ! 1 − σ 2
x

ε2n
. (89)

Similarly, Chebyshev’s inequality also implies that

P(|ȳ − µy | " ε) ! 1 −
σ 2

y

ε2n
,

P (|z̄ − µz| " ε) ! 1 −
σ 2

z

ε2n
.

(90)

Combining these estimates with (87) yields

P(‖qn − rn‖ " ρ(n,0t, ε)) ! 1 −
σ 2

x + σ 2
y + σ 2

z

ε2n
(91)

where

ρ(n,0t, ε) := ν((1 + λ0t)n − 1 − nλ0t)

λ
+ 3νnε0t. (92)

In order to examine how the estimate in (91) is affected as 0t decreases
to zero, we choose a fixed value t > 0 and set

0t := t

n
. (93)

This choice of 0t guarantees that the position vector rn remains constant
as n increases to infinity (or, equivalently, as 0t decreases to zero), because
the definition in (86) implies that

rn = q0 + t (T0 + v1X0 + v2Y0 + v3Z0) =: r. (94)

Furthermore, with regard to the estimate in (91) we observe that

lim
n→∞

ρ(n,0t, ε) = lim
n→∞

(
ν((1 + λt/n)n − 1 − λt)

λ
+ 3νεt

)

= ν(eλt − 1 − λt)

λ
+ 3νεt. (95)

Using Taylor’s theorem, we obtain

lim
n→∞

ρ(n,0t, ε) " νλt2eλt + 3νεt, (96)
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and therefore,

1 ! lim
n→∞

P
(
‖qn − r‖ " νλt2eλt + 3νεt

)

! lim
n→∞

P(‖qn − r‖ " ρ(n,0t, ε))

! lim
n→∞

(

1 −
σ 2

x + σ 2
y + σ 2

z

ε2n

)

= 1. (97)

Consequently, we arrive at the following conclusion:

lim
n→∞

P
(
‖qn − r‖ " νλt2eλt + 3νεt

)
= 1. (98)

Having thus found an upper estimate for the statistical uncertainty in the
position of qn, it is crucially important that we now derive similar estimates
for the vectors Tn, Xn, Yn, and Zn. Considering Tn first, we define a matrix V0
for the approximate “parallel transport” of T0 in the direction of the vector
T0 + v1X0 + v2Y0 + v3Z0 = T0 + µxX0 + µyY0 + µzZ0 via the equation

V0 := −(/k
j l(q0)(T

l
0 + µxX

l
0 + µyY

l
0 + µzZ

l
0))

4
k,j=1. (99)

Then it follows that

‖Tn − (T0 + nV0T00t)‖ =
∥∥∥∥∥

n−1∑

i=0

(Ti+1 − Ti ) − nV0T00t

∥∥∥∥∥

=
∥∥∥∥∥

n−1∑

i=0

BiTi − nV0T0

∥∥∥∥∥0t

"
∥∥∥∥∥

n−1∑

i=0

Bi (Ti − T0)

∥∥∥∥∥0t +
∥∥∥∥∥

n−1∑

i=0

(Bi − V0)T0

∥∥∥∥∥0t

" λ

n−1∑

i=0

‖Ti − T0‖0t + ν

∥∥∥∥∥

n−1∑

i=0

(Bi − V0)

∥∥∥∥∥0t

= λ

n−1∑

i=0

∥∥∥∥∥

i−1∑

m=0

(Tm+1 − Tm)

∥∥∥∥∥0t + ν

∥∥∥∥∥

n−1∑

i=0

(Bi − V0)

∥∥∥∥∥0t

" λ

n−1∑

i=0

i−1∑

m=0

‖BmTm‖0t2 + ν

∥∥∥∥∥

n−1∑

i=0

(Bi − V0)

∥∥∥∥∥0t

" n2νλ20t2 + ν

∥∥∥∥∥

n−1∑

i=0

(Bi − V0)

∥∥∥∥∥0t. (100)
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In order to find an estimate for the remaining norm on the right, we
define

Cm(i) := −(/k
j l(qm)(T l

m + xiX
l
m + yiY

l
m + ziZ

l
m))4

k,j=1 (101)

for all m ∈ {0, . . . , i} and all i ∈ {0, . . . , n − 1}. In other words, Cm(i) is
equal to Bm except that the coefficients xm, ym, and zm in Bm are replaced
with xi , yi , and zi , respectively. Given this definition, we see that
∥∥∥∥∥

n−1∑

i=0

(Bi − V0)

∥∥∥∥∥ =
∥∥∥∥∥

n−1∑

i=1

i−1∑

m=0

(Cm+1(i) − Cm(i)) +
n−1∑

i=0

(C0(i) − V0)

∥∥∥∥∥

"
n−1∑

i=1

i−1∑

m=0

‖Cm+1(i) − Cm(i)‖ +
∥∥∥∥∥

n−1∑

i=0

(C0(i) − V0)

∥∥∥∥∥. (102)

Denoting by bl
m,j the elements of Bm, we obtain

|T l
m+1 − T l

m| = |bl
m,j T

j
m0t | " νλ0t,

|xi(X
l
m+1 − Xl

m)| = |xib
l
m,jX

j
m0t | " νλ0t,

|yi(Y
l
m+1 − Y l

m)| = |yib
l
m,jY

j
m0t | " νλ0t,

|zi(Z
l
m+1 − Zl

m)| = |zib
l
m,jZ

j
m0t | " νλ0t,

(103)

and therefore, the definition in (101), implies that

‖Cm+1(i) − Cm(i)‖
" ‖(/k

j l(qm+1)(T
l
m+1 − T l

m))4
k,j=1‖

+‖(/k
j l(qm+1)xi(X

l
m+1 − Xl

m))4
k,j=1‖

+‖(/k
j l(qm+1)yi(Y

l
m+1 − Y l

m))4
k,j=1‖

+‖(/k
j l(qm+1)zi(Z

l
m+1 − Zl

m))4
k,j=1‖

+‖((/k
j l(qm+1) − /k

j l(qm))(T l
m + xiX

l
m + yiY

l
m + ziZ

l
m))4

k,j=1‖

"
4∑

l=1

‖(/k
j l(qm+1))

4
k,j=1‖|T

l
m+1 − T l

m|

+
4∑

l=1

‖(/k
j l(qm+1))

4
k,j=1‖|xi(X

l
m+1 − Xl

m)|

+
4∑

l=1

‖(/k
j l(qm+1))

4
k,j=1‖|yi(Y

l
m+1 − Y l

m)|
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+
4∑

l=1

‖(/k
j l(qm+1))

4
k,j=1‖|zi(Z

l
m+1 − Zl

m)|

+
4∑

l=1

‖(/k
j l(qm+1) − /k

j l(qm))4
k,j=1‖|T

l
m + xiX

l
m + yiY

l
m + ziZ

l
m|

" 4νλ0t

4∑

l=1

‖(/k
j l(qm+1))

4
k,j=1‖ + ν

4∑

l=1

‖(/k
j l(qm+1) − /k

j l(qm))4
k,j=1‖.

(104)

Since the functions /k
j l are continuously differentiable, and since M is

compact, the derivative of each /k
j l must be bounded on M. Therefore, the

mean value theorem for multivariable functions allows us to infer the exis-
tence of a constant D > 0 such that

‖(/k
j l(p) − /k

j l(q))4
k,j=1‖ " D‖p − q‖ (105)

for all p, q ∈ M. Furthermore, since the functions /k
j l themselves are

bounded on M as well, we may assume the constant D to be so large that
also

‖(/k
j l(q))4

k,j=1‖ " D (106)

for all q ∈ M and all indices j , l, and k. Hence

‖Cm+1(i) − Cm(i)‖ " 16Dνλ0t + 4Dν‖qm+1 − qm‖
= 16Dνλ0t + 4Dν‖Tm + xmXm + ymYm + zmZm‖0t

" 16Dν(λ+ ν)0t. (107)

Looking back at (102), we further observe that
∥∥∥∥∥

n−1∑

i=0

(C0(i) − V0)

∥∥∥∥∥

=
∥∥∥∥∥

n−1∑

i=0

(/k
j l(q0)((xi − µx)X

l
0 + (yi − µy)Y

l
0 + (zi − µz)Z

l
0))

4
k,j=1

∥∥∥∥∥

=
∥∥∥(/k

j l(q0)(n(x̄ − µx)X
l
0 + n(ȳ − µy)Y

l
0 + n(z̄ − µz)Z

l
0))

4
k,j=1

∥∥∥

" n

4∑

l=1

∥∥∥(/k
j l(q0))

4
k,j=1

∥∥∥ |(x̄ − µx)X
l
0 + (ȳ − µy)Y

l
0 + (z̄ − µz)Z

l
0|

" 4nνD(|x̄ − µx | + |ȳ − µy | + |z̄ − µz|). (108)
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Combining this result with (100), (102), and (107), we finally conclude that

‖Tn − (T0 + nV0T00t)‖ " n2νλ20t2 + 16n2ν2D(λ+ ν)0t2

+4nν2D(|x̄ − µx | + |ȳ − µy | + |z̄ − µz|)0t. (109)

Completely analogous estimates are valid for Xn, Yn, and Zn as well:

‖Xn − (X0 + nV0X00t)‖ " n2νλ20t2 + 16n2ν2D(λ+ ν)0t2

+4nν2D(|x̄ − µx | + |ȳ − µy | + |z̄ − µz|)0t,

‖Yn − (Y0 + nV0Y00t)‖ " n2νλ20t2 + 16n2ν2D(λ+ ν)0t2

+4nν2D(|x̄ − µx | + |ȳ − µy | + |z̄ − µz|)0t,

‖Zn − (Z0 + nV0Z00t)‖ " n2νλ20t2 + 16n2ν2D(λ+ ν)0t2

+4nν2D(|x̄ − µx | + |ȳ − µy | + |z̄ − µz|)0t.

(110)

As we now turn our attention to the problem of establishing the
validity of claim (i), we will assume that in speaking of the contraction of
a random walk to a curve in the qk-coordinate system we are by defini-
tion asserting the statistical uncertainty in the position of qn for n = t/0t

to converge to zero. More precisely, we are asserting that

lim
n→∞

P (‖qn − r(t)‖ " δ) = 1 for all δ > 0 and some r(t) ∈ R4. (111)

In order to prove this statement, we will break up a given random walk of
length n into a finite number of segments and iteratively apply the result in
(98) to each of them. To begin with, we pick an integer k > 0 and a value
ε > 0 such that for a given δ > 0 the following conditions are satisfied:

νλt2eλt/k

k
+ 3νεt < δ,

4t2νλ2 + 64t2ν2(λ+ ν)

k
< δ. (112)

Having thus chosen k and ε, we will now define a discrete approxi-
mation for the curve that r(t) supposedly is located on. Proceeding in a
manner analogous to (68) and (69), we set q̃0 := q0, T̃0 := T0, X̃0 := X0,
Ỹ0 := Y0, Z̃0 := Z0, and

q̃i+1 := q̃i + t

k
(T̃i + v1X̃i + v2Ỹi + v3Z̃i ),

T̃ h
i+1 := T̃ h

i − t

k
/h

jl (̃qi )(T̃
l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )T̃
j
i ,
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X̃h
i+1 := X̃h

i − t

k
/h

jl (̃qi )(T̃
l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )X̃
j
i ,

Ỹ h
i+1 := Ỹ h

i − t

k
/h

jl (̃qi )(T̃
l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )Ỹ
j
i ,

Z̃h
i+1 := Z̃h

i − t

k
/h

jl (̃qi )(T̃
l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )Z̃
j
i (113)

for all i ∈ {0, . . . , k − 1}. The purpose of the defining equations listed in
(113) is to guarantee that, as k tends to ∞, the points q̃0, . . . , q̃k form an
increasingly accurate approximation of a curve r(t) = (̃q h(t)) that satisfies
the “geodesic” equation

d2q̃ h

dt2 + /h
jl

dq̃ j

dt

dq̃ l

dt
= 0. (114)

(Remember that we are not working within the conceptual framework of
differential geometry as yet. So our use of the term “geodesic” is at this
point merely symbolic.) Given that our main emphasis in this paper is on
physical interpretation rather than complete mathematical rigor, we will be
content to provide an intuitively convincing argument for the validity of
the assertion above rather than a detailed proof (which would not be diffi-
cult but tedious). Since the defining equations listed in (113) essentially
represent a second order version of Euler’s method of approximation, it is
permissible to conclude that the limit of q̃k exists as the number of subdi-
vision points k along the fixed interval [0, t ] increases to ∞. Thus, setting

r(t) := (̃q h(t)) := lim
k→∞

q̃k, (115)

we may infer that for all sufficiently large values of k we have

d2q̃ h

dt2

∣∣∣∣
it/k

≈

q̃ h((i + 2)t/k) − q̃ h((i + 1)/k)

t/k
− q̃ h((i + 1)t/k) − q̃ h(it/k)

t/k

t/k

≈

q̃ h
i+2 − q̃ h

i+1

t/k
−

q̃ h
i+1 − q̃ h

i

t/k

t/k

≈
(T̃ h

i+1 + v1X̃h
i+1 + v2Ỹ h

i+1 + v3Z̃h
i+1) − (T̃ h

i + v1X̃h
i + v2Ỹ h

i + v3Z̃h
i )

t/k
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= −/h
jl (̃qi )(T̃

l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )T̃
j
i

−v1/h
jl (̃qi )(T̃

l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )X̃
j
i

−v2/h
jl (̃qi )(T̃

l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )Ỹ
j
i

−v3/h
jl (̃qi )(T̃

l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i )Z̃
j
i

= −/h
jl (̃qi )

q̃ l
i+1 − q̃ l

i

t/k
T̃

j
i − v1/h

jl (̃qi )
q̃ l
i+1 − q̃ l

i

t/k
X̃

j
i

−v2/h
jl (̃qi )

q̃ l
i+1 − q̃ l

i

t/k
Ỹ

j
i − v3/h

jl (̃qi )
q̃ l
i+1 − q̃ l

i

t/k
Z̃

j
i

= −/h
jl (̃qi )

q̃ l
i+1 − q̃ l

i

t/k
(T̃

j
i + v1X̃

j
i + v2Ỹ

j
i + v3Z̃

j
i )

= −/h
jl (̃qi )

(
q̃ l
i+1 − q̃ l

i

t/k

)(
q̃

j
i+1 − q̃

j
i

t/k

)

≈ −/h
jl (̃q(it/k))

dq̃ l

dt

∣∣∣∣
it/k

dq̃ j

dt

∣∣∣∣
it/k

. (116)

Consequently, the parameterization defined in (115) does indeed satisfy the
“geodesic” equation (114).

To continue with the proof of (111), we pick a presumably large inte-
ger m and define

n := km, 0t := t

n
, (117)

and

Vi (m) := −(/k
j l(qim)(T l

im + v1Xl
im + v2Y l

im + v3Zl
im))4

k,j=1,

Ṽi := −(/k
j l (̃qi )(T̃

l
i + v1X̃l

i + v2Ỹ l
i + v3Z̃l

i ))
4
k,j=1 (118)

for all i ∈ {0, . . . , k − 1}. The initial segment of the random walk that we
are now going to consider begins at q0 and ends at qm, and in general,
the ith segment begins at qim and ends at q(i+1)m for i ∈ {0, . . . , k − 1}. In
order to apply (98) to the ith segment, we replace q0 (in our derivation of
(98)) by qim, qn by q(i+1)m, t by t/k, n by m, T0 by Tim, X0 by Xim, Y0
by Yim, Z0 by Zim, and r, as defined in (94), by

si (m) := qim + t

k
(Tim + v1Xim + v2Yim + v3Zim). (119)
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Given these substitutions, (98) and (112) imply that

lim
m→∞

P
(
‖q(i+1)m − si (m)‖ " δ/k

)

! lim
m→∞

P
(
‖q(i+1)m − si (m)‖ " νλ(t/k)2eλt/k + 3νεt/k

)
= 1

(120)

for all i ∈ {0, . . . , k − 1}. Setting

ai(m) := ‖qim − q̃i‖,
bi(m) := ‖Tim − T̃i‖ + ‖Xim − X̃i‖ + ‖Yim − Ỹi‖ + ‖Zim − Z̃i‖,

(121)

we may apply the definitions of q̃i and si (m) to infer that

ai+1(m) " ‖q(i+1)m − si (m)‖ + ‖si (m) − q̃i − (̃qi+1 − q̃i )‖
" ‖q(i+1)m − si (m)‖ + ‖qim − q̃i‖

+ t

k
(‖Tim − T̃i‖ + ‖Xim − X̃i‖ + ‖Yim − Ỹi‖ + ‖Zim − Z̃i‖)

= ‖q(i+1)m − si (m)‖ + ai(m) + t

k
bi(m). (122)

Moreover, according to (109) and (112) (with m = t/(k0t), T(i+1)m, Tim,
and Vi (m) in place of n, Tn, T0, and V0, respectively), we have

‖T(i+1)m − T̃i+1‖ " ‖T(i+1)m − (Tim + mVi (m)Tim0t)‖
+‖Tim − T̃i‖ + ‖mVi (m)Tim0t − (T̃i+1 − T̃i )‖

" δ

4k
+ 4tν2D

k
(|x̄i − µx | + |ȳi − µy | + |z̄i − µz|)

+‖Tim − T̃i‖ + t

k
‖Vi (m)Tim − ṼiT̃i‖, (123)

where the sample means x̄i , ȳi and z̄i are taken over indices ranging from
im to (i + 1)m − 1. Given the definitions of Ṽi and Vi (m) in (118), the
inequalities (105) and (106) allow us to conclude that

‖Vi (m)Tim−ṼiT̃i‖
"‖(/k

j l(qim)−/k
j l (̃qi ))(T

l
im+v1Xl

im+v2Y l
im+v3Zl

im)T
j
im‖

+‖/k
j l (̃qi )(T

l
im+v1Xl

im+v2Y l
im+v3Zl

im)(T
j
im− T̃

j
i )‖

+‖/k
j l (̃qi )(T

l
im− T̃i +v1(Xl

im−X̃l
i)+v2(Y l

im−Ỹ l
i )+v3(Zl

im−Z̃l
i ))T̃

j
i ‖

"4ν2D‖qim− q̃i‖+4νD‖Tim−T̃i‖
+4νD(‖Tim−T̃i‖+‖Xim−X̃i‖+‖Yim−Ỹi‖+‖Zim−Z̃i‖)

"4ν2Dai(m)+8νDbi(m). (124)
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Hence

‖T(i+1)m − T̃i+1‖ " δ

4k
+ 4tν2D

k
(|x̄i − µx | + |ȳi − µy | + |z̄i − µz|)

+‖Tim − T̃i‖ + t

k
(4ν2Dai(m) + 8νDbi(m)). (125)

Using the inequalities in (110), it can be shown that a completely analo-
gous estimate is valid for ‖X(i+1)m − X̃i+1‖ as well, i.e.,

‖X(i+1)m − X̃i+1‖ " δ

4k
+ 4tν2D

k
(|x̄i − µx | + |ȳi − µy | + |z̄i − µz|)

+‖Xim − X̃i‖ + t

k
(4ν2Dai(m) + 8νDbi(m)), (126)

and similarly for ‖Y(i+1)m − Ỹi+1‖ and ‖Z(i+1)m − Z̃i+1‖. Adding up these
four estimates yields

bi+1(m) " δ

k
+ α

k
(|x̄i − µx | + |ȳi − µy | + |z̄i − µz|)

+
(

1 + α

k

)
bi(m) + α

k
ai(m) (127)

where

α := max{16tν2D, 32tνD, 2, t}. (128)

(Note: the last two elements—2 and t—in the set above are not needed
for (127), but they will be useful in deriving (130) and (131) below.) Using
Chebyshev’s inequality, as we did earlier, it is easy to see that

lim
m→∞

P(α(|x̄i − µx | + |ȳi − µy | + |z̄i − µz|) " δ) = 1 (129)

and therefore,

lim
m→∞

P

(
bi+1(m) " δα

k
+
(

1 + α

k

)
bi(m) + α

k
ai(m)

)

! lim
m→∞

P

(
bi+1(m) " 2δ

k
+
(

1 + α

k

)
bi(m) + α

k
ai(m)

)
= 1 (130)
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for all i ∈ {0, . . . , k − 1}. Moreover, according to (120) and (122), we also
have

lim
m→∞

P

(
ai+1(m) " δα

k
+
(

1 + α

k

)
ai(m) + α

k
bi(m)

)

! lim
m→∞

P

(
ai+1(m) " δ

k
+ ai(m) + t

k
bi(m)

)
= 1 (131)

for all i ∈ {0, . . . , k − 1}. To proceed, we will use (130) and (131) to prove
by induction that

1 = lim
m→∞

P

(
ai(m) " δ((1 + 2α/k)i − 1)

2

)
,

1 = lim
m→∞

P

(
bi(m) " δ((1 + 2α/k)i − 1)

2

)
. (132)

for all i ∈ {0, . . . , k}. Since a0(m) = b0(m) = 0, the equalities above
are obviously valid for i = 0, and if they are valid for some index i ∈
{0, . . . , k − 1}, then, according to (131), we have

lim
m→∞

P

(

ai+1(m)" δ((1+2α/k)i+1 −1)

2

)

! lim
m→∞

P

(
δα

k
+
(

1+ α

k

)
ai(m)+ α

k
bi(m)" δ((1+2α/k)i+1 −1)

2

)

! lim
m→∞

P

(
δα

k
+
(

1+ 2α
k

)
δ((1+2α/k)i −1)

2
" δ((1+2α/k)i+1 −1)

2

)

= lim
m→∞

P

(
δ((1+2α/k)i+1 −1)

2
" δ((1+2α/k)i+1 −1)

2

)

=1, (133)

as desired. Using (130) instead of (131), the proof with bi+1(m) in place
of ai+1(m) is easily seen to be completely analogous. Consequently, the
equalities in (132) are indeed valid for all i ∈ {0, . . . , k}. Setting i equal
to k yields

lim
m→∞

P

(
ak(m) " δ((1 + 2α/k)k − 1)

2

)
= 1. (134)

Since

(1 + 2α/k)k − 1
2

" αe2α (135)
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for all k ! 1, it follows that

lim
m→∞

P(‖qkm − q̃k‖ " δαe2α) = 1 (136)

for all k that are large enough to satisfy the conditions in (112). Further-
more, according to (115), it is also true that for all sufficiently large k we
have

‖̃qk − r(t)‖ " δαe2α, (137)

and therefore,

lim
m→∞

P(‖qmk − r(t)‖ " 2δαe2α)

! lim
m→∞

P(‖qmk − q̃k‖ + ‖̃qk − r(t)‖ " 2δαe2α)

! lim
m→∞

P(‖qmk − q̃k‖ " δαe2α) = 1. (138)

Since δ was initially chosen to be an arbitrary positive number, this result
implies that

lim
n→∞

P(‖qn − r(t)‖ " δ) = lim
m→∞

P(‖qmk − r(t)‖ " δ) = 1 (139)

for all δ > 0. Thus the proof of (111) is complete.

Remark. The assertion of equality in the concluding equation above with
regard to the limits of P(‖qn−r(t)‖ " δ) and P(‖qmk −r(t)‖ " δ) as n and
m tend to ∞ hardly needs any justification, but perhaps we should men-
tion that for large values of k the positions of q(k−1)m, qn, and qkm are
almost identical whenever (k − 1)m " n " km because the lengths ‖Ti‖,
‖Xi‖, ‖Yi‖, ‖Zi‖ are universally bounded. Consequently, if the positions
of q(k−1)m ≈ r((k − 1)t/k) and qkm ≈ r(t) are statistically stable, then the
same must be true for the position of qn.

In order to put the preceding discussion in a proper perspective, we
now assume that the functions /k

j l are the Christoffel symbols associated
with a space–time metric tensor G = (gjl) defined on M (or R4). Then,
at any point q0 ∈ M we can find a set of basis vectors {T0, X0, Y0, Z0}
in the tangent space at q0 such that the Minkowski inner product in that
particular tangent space satisfies the equation

(tT0 + xX0 + yY0 + zZ0)
tG(tT0 + xX0 + yY0 + zZ0) = t2 − x2 − y2 − z2

(140)
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for all t, x, y, z ∈ R. Given this setup, the arguments presented above allow
us to infer that, as 0t approaches zero, a random walk starting at q0 con-
tracts with probability 1 to a geodesic r(t) in space–time that satisfies the
initial conditions r(0) = q0 and r ′(0) = T0 + v1X0 + v2Y0 + v3Z0 (the lat-
ter equality follows from the observation that for all sufficiently large val-
ues of k we have r ′(0) ≈ (̃q1 − q̃0)/(t/k) = T̃0 + v1X̃0 + v2Ỹ0 + v3Z̃0 =
T0 + v1X0 + v2Y0 + v3Z0).

Remark. It is understood that the tangent space to the qk-coordinate sys-
tem (that is, to R4) at q0 is here identified with R4 itself. Such an iden-
tification makes no sense within the conceptual framework of differential
geometry, but it is perfectly legal as far as our description of random walks
is concerned because, in essence, our proof of (111) only depended on the
topological structure induced by the Euclidean norm on R4 rather than the
differential structure of the space–time manifold that G is associated with.

In order to show that even in a general relativistic setting proper time
can be measured in terms of statistical spread, we set

S2
x := 1

n − 1

n−1∑

i=0

(xi − x̄)2,

S2
y := 1

n − 1

n−1∑

i=0

(yi − ȳ)2,

S2
z := 1

n − 1

n−1∑

i=0

(zi − z̄)2. (141)

Given these definitions, a good approximate measure of the proper time
corresponding to the first n steps of a random walk starting at q0 is the
quantity

n0t
√

S2
x + S2

y + S2
z . (142)

To understand why this is so, we observe that the expected value of the
sum S2

x + S2
y + S2

z is

E(S2
x + S2

y + S2
z ) = Var(xi) + Var(yi) + Var(yi)

= E(x2
i + y2

i + z2
i ) − E(xi)

2 − E(yi)
2 − E(zi)

2

= 1 − µ2
x − µ2

y − µ2
z

= 1 − ‖v‖2. (143)
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Consequently, for large values of n, the expression in (142) will be approx-
imately equal to

n0t

√
1 − ‖v‖2 = t

√
1 − ‖v‖2. (144)

This result is in perfect agreement with the prediction of the standard con-
tinuous model, because along any geodesic the Minkowski inner product
of the derivative vector is known to remain constant, and, according to
(140), the proper time over the interval [0, t ] is therefore equal to

∫ t

0

√
r ′(τ )tG(r(τ ))r ′(τ ) dτ = t

√
r ′(0)tG(r(0))r ′(0)

= t

√
(T0 + v1X0 + v2Y0 + v3Z0)tG(q0)(T0 + v1X0 + v2Y0 + v3Z0)

= t

√
1 − ‖v‖2, (145)

as desired. Thus it appears that the notions of proper time and random-
ness are indeed equivalent.

4. A GENUINELY PROBABILISTIC MODEL?

What we accomplished in Sec. 3 was to demonstrate that the com-
pletely coherent world of general relativity emerges from a discrete model
of motion in the statistical limit. What we did not establish is the coher-
ence of a genuinely probabilistic world in itself. In particular, we did not
show how the expected position of the endpoint qn of a random walk
can be computed or how recordings of such expected positions in differ-
ent coordinate systems can be harmonized. It is true that for small values
of 0t different observers will locate the endpoint of a random walk with
high probability in close proximity to the same geodesic, but the actual
expected positions may still differ slightly.

To create a genuinely discrete model of general relativity in the case
where a positive lower bound for 0t (such as the Planck length) does exist
may require a more radical departure from spatial and temporal continu-
ity than the one proposed in the present paper. However, if we allow the
values of 0t to be arbitrarily small, then a consistent probabilistic model
can be constructed if we take an approach similar to Feynman’s path inte-
gral formulation of quantum mechanics whereby the motion of a parti-
cle between two points is analyzed with reference to the totality of all
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paths that connect these two points. To see this, we only need to iden-
tify the motion along a geodesic r(t) over an interval [0, t ] with an infi-
nite sequence of random walks Wn = (q0(n), . . . , q2n(n)) each of which
has its own step length 0tn := t/2n. If q0 = q0(n) is the common start-
ing point of these random walks, v the common “velocity vector,” and
{T0, X0, Y0, Z0} the common set of initial basis vectors, then, as n tends
to ∞, the sequence q2n−mk(n) converges with probability 1 to r(kt/2m) for
all m ∈ N and all k ∈ {0, . . . , 2m}. In other words, the geodesic r(t) is
uniquely determined by the sequence (Wn)

∞
n=1 on the dense set {kt/2m|

m ∈ N, 0 " k " 2m} ⊂ [0, t ], and by continuous extension it is uniquely
determined on the entire interval [0, t ]. It is in this sense then that we may
consider a probabilistic model of motion to be equivalent to the standard
continuous model even in a general relativistic setting.
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