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Abstract

A novel variant of decision theory is presented. The basic idea is that one should ask, at each point in
time: What would I do if the reprogrammable parts of my brain were reprogrammed by a superintelligent
Master Programmer with the goal of supplying me with a program that would mazximize my utility averaged
over possible worlds? Problems such as the Prisoner’s Dilemma, the value of voting, Newcomb’s Problem
and the Psychopath Button are reviewed from this perspective and shown to be addressed in a satisfactory
way.

1 Introduction

Decision theory has proved a surprisingly thorny topic, with a number of approaches proposed and none
considered fully satisfactory. Evidential decision theory (EDT) [GH81], the most straightforward and tra-
ditional approach, gives problematically counterintuitive results in a number of situations [Lew81], and so
the field has shifted attention to a variant called causal decision theory (CDT) [Lew81], which solves some
of these issues. Conceptually, causal decision theory isolates certain actions as causally unrelated to certain
other events; there are various ways of formalizing this isolation, but none is yet widely accepted. And there
are some examples on which causal decision theory also gives counterintuitive results [Ega07], as well as
examples on which its recommendations seem less ethical, and no more rational, than those of EDT.

Here we present an alternate approach, which we call Counterfactual Reprogramming Decision Theory
(CRDT), which appears to avoid the problems with both EDT and CDT. The basic idea of CRDT is to ask,
at each point in time, what one would do if the reprogrammable parts of one’s brain were reprogrammed by
a superintelligent Master Programmer with the goal of supplying one with a program that would maximize
one’s utility averaged over possible worlds. Then, one carries out this action.

After outlining the CRDT idea in more detail, we review a series of decision-theoretic problems commonly
considered troublesome: the Prisoner’s Dilemma, related issues regarding voting, Newcomb’s Problem and
Nesov’s variation, and the Psychopath Button. In each case we explain how CRDT handles the problem
unproblematically.

The treatment here is only semi-formal; mathematical notation is used, and quantitative calculations are
done, but there are no theorems and proofs. The Appendix sketches a formalization of CRDT in terms of a
formal agents model, but a full formalization of CRDT is left for another paper.

2 Evidential and Causal Decision Theory

Contemporary decision theory involves the application of probability theory to estimate the utility of various
possible courses of action. The underlying mathematics is straightforward, setting aside issues of computa-

1Some interesting, albeit often confusing, discussion on CDT and hypothetical replacement decision theories may be found
online at the Less Wrong blog [Dea09]. The decision algorithm presented by Dai on that blog page bears some resemblance to
CRDT, but due to the rough and very informal exposition there, I’'m not sure what is the precise relationship.



tional complexity in complex situations. But the application and interpretation of the relevant formulas can
be subtle.

The classical approach is evidential decision theory, according to which the best action is the one which,
conditional on your having chosen it, gives you the best expectations for the outcome. But this gives rise to
some strange recommendations in cases where there are common historical factors underlying one’s actions
and the events in one’s environment. To work around these issues, causal decision theory has been introduced:
it requires a causal connection between your actions and the desirable outcome. However, the foundations
of causal decision theory are a thorny topic and the focus of continual debate in the philosophy literature
[Ega07]; and the approach also runs into trouble on some simple examples.

2.1 Evidential Decision Theory

Consider an agent Z deciding what action to take in a certain situation, and assume the action takes place
during a time interval T
Let

e {Uy,...,U,} = a partition of the set of states of the universe, which may be dependent on agent Z
e O; = the proposition that the universe has a state in partition element U; during time-interval T’

e A = the event that agent Z does an action in class Ac during time interval T

U(ANO;) = expected benefit if Z does Ac during T" and universe is in state-set U; during 7' = average
utility-to-Z of all specific universe-states within U, in which the agent does Ac

P(O;) = probability that the universe will be in state-set U; during interval T

P(A) = probability that Z takes an action in class Ac during interval T'
e P(X|A) denote conditional probability (the probability of X given A)

Then there is an elementary, familiar theorem telling us that the expected utility of the event A is

U(A) = U(ANO)P(O1|A) + ... + U(AN 0,)P(O,|A)

The subtle term in this formula is P(O;|A). Of course, since the agent Z has never before had the
opportunity to carry out (or not) an action in class Ac during time interval T, this probability must necessarily
be estimated based on indirect evidence. Making this sort of estimate is mathematically straightforward given
appropriate evidence, but various conceptual issues arise — all pertaining to the case where there are common
factors determining whether Z takes an action in Ac, and whether the universe is in state U;.

2.2 Causal Decision Theory

To see the motivation for proposing causal decision theory as an alternative to evidential decision theory,
consider the following example, presented by Gibbard and Harper in their original paper on CDT. Suppose
that King Solomon wants Bathsheba but fears that summoning her would provoke a revolt. Further, suppose
that Solomon
has studied works on psychology and political science which teach him the following: Kings have two
personality types, charismatic and uncharismatic. A king’s degree of charisma depends on his genetic make-
up and early childhood experiences, and cannot be changed in adulthood. Now, charismatic kings tend to
act justly and uncharismatic kings unjustly. Successful revolts against charismatic kings are rare, whereas
successful revolts against uncharismatic kings are frequent. Unjust acts themselves, though, do not cause
successful revolts; the reason uncharismatic kings are prone to successful revolts is that they have a sneaky,
ignoble bearing. Solomon does not know whether or not he is charismatic; he does know that it is unjust to
send for another man’s wife. (p. 164)
EDT tells us that Solomon should abstain from Bathsheba. But this seems wrong, since whether Solomon

is charismatic or uncharismatic cannot be changed. Intuitively, it seems Solomon should choose to send for
her.



To encompass this intuition, causal decision theory defines the expected utility U of an action A as

Ueansal(A) = U(ANO1)P(Oy < A) + ... + U(AN 0,)P(O,, < A)

where P(A > O;) is the counterfactual probability that, if A were done, then O; would hold.

The appropriate definition of this ”counterfactual probability” has proved a subtle and controversial
matter. Gibbard and Harper showed that if we accept two simple axioms, then the statistical independence
of the events A and A > O; suffices to yield P(A > O;) = P(O,|A). However, there are cases in which
actions and conditionals are not independent — and as noted above, these are precisely the situations where
EDT give intuitively strange results. David Lewis [Lew81] showed that, under one plausible definition, the
probability of a conditional P(A > O;) does not always equal the conditional probability P(O;|A).

In the Bathsheba example, we have four outcomes

e BR = have Bathsheba and get revolted against
e BR = not have Bathsheba, but get revolted against
e BR = have Bathsheba and not get revolved against

e BR = not have Bathsheba and not get revolted against

and

Ueausal(A) = U(BR)P(BR < A) + U(BR)P(BR < A) + U(BR)P(BR < A) + U(BR)P(BR < A)

The problem statement suggests that no action A Solomon can undertake will affect the choice of whether
he gets revolted against or not, which means we can write

P(BR < A)/P(R) = P(BR < A)/P(R) = P(B < A)

P(BR < A)/P(R) = P(BR < A)/P(R (B < A)

|
o)

and hence

Ucausal(A) =
U(BR)P(B < A) + U(BR)P(B < A) + U(BR)P(B < A) + U(BR)P(B < A) =
(U(BR) +U(BR))P(B < A) + (U(BR) + U(BR))P(B < A)

But since

U(BR) < U(BR)

U(BR) < U(BR)
it follows that Bathsheba should be summoned, i.e.

Ucausal (summon) > Ucauysal (ROt summon)

The key steps here of course are the reductions such as P(BR < A) = P(B < A)P(R). Tt is not the case
in this example that P(BR|A) = P(B|A)P(R) and so forth (because of the dependency between A and R,
considered from the perspective of statistical analysis over possible worlds), so this is a genuine difference
from evidential decision theory.



3 Counterfactual Reprogramming Decision Theory

We suggest a fundamentally different approach. Instead of thinking on the level of actions, we suggest to
think on the level of programs. At any given point T', we suggest, an agent may carry out the following
thought-experiment:

e Assume that the agent’s brain is partially reprogrammable, but also has certain immutable properties

e Imagine a Master Programmer (MP), able to replace the reprogrammable portion of the agent’s brain
with an arbitrary computer program of length < L and runtime < R, where L and R are large numbers.

e The goal of the Master Programmer is to replace the reprogrammable portion of the agent’s brain
with a program P having the property that, averaged over all possible worlds that are consistent with
the agent’s current world-knowledge (and with a weighting in the average, so that possible worlds
considered more likely by the agent are weighted higher), operating P will cause the agent to get
maximal utility

e Imagine that the Master Programmer replaces the reprogrammable portion of the agent’s brain with
a new program P right now, at time T’

e Figure out what action P would take, and then take that action

The theory that agents should follow this advice in choosing their actions, is what we call Counterfactual
Reprogramming Decision Theory or CRDT. A more formal version of CRDT is presented in the Appendix,
using a simple formal agents model drawn from [LHO07a].

Note that the subtleties mentioned above regarding P(O;|A) are irrelevant here. Because, the Master
Programmer is assumed to make his judgments by purely mathematical criteria, so there is no ”common
cause” between his choice of action and the outcome O;.

Of course, this decision strategy may be difficult to implement in many cases, because most agents are
not master self-programmers. However, the CRDT procedure described above at least serves as a ”gold
standard” for guiding decisions. And in many cases it’s possible to psych out what actions the Master
Programmer’s program would recommend, without actually being a Master Programmer.

For example, consider the case of Solomon and Bathsheba. It’s quite clear what the Master Programmer
would do. If given the opportunity to reprogram Solomon’s brain at the time point of the story, he would
reprogram Solomon to summon Bathsheba. Because this will give Solomon the greatest utility, going forward.
(We assume that the immutability of Solomon’s charisma or otherwise is given as a ”hard constraint” and
wired into the non-reprogrammable portion of the agent’s brain. So the Master Programmer isn’t able to
reprogram Solomon to be charismatic.) Thus, according to CRDT, Solomon should summon Bathsheba.

4 The Prisoner’s Dilemma

Now we review the application of EDT, CDT and CRDT to the (one-shot) Prisoner’s Dilemma. In this
context, CRDT leads to an immediate and simple explanation of the phenomenon Douglas Hofstadter called
”superrationality” [Hof79].

The Prisoner’s Dilemma (PD) is typically articulated as [Wik10b]:

Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and,
having separated both prisoners, visit each of them to offer the same deal. If one testifies (defects from the
other) for the prosecution against the other and the other remains silent (cooperates with the other), the
betrayer goes free and the silent accomplice receives the full 10-year sentence. If both remain silent, both
prisoners are sentenced to only six months in jail for a minor charge. If each betrays the other, each receives
a five-year sentence. Each prisoner must choose to betray the other or to remain silent. Each one is assured
that the other would not know about the betrayal before the end of the investigation. How should the prisoners
act?



4.1 One-Shot Prisoner’s Dilemma with Identical Players

Applying EDT to PD with identical players, for Player 1 we find:

uic)=u0({CnC,C)P(C,C|IC)+U(CNC,D)P(C,D|C) = payoff(C,C)
UMD)=U(DnD,D)P(D,D|D)+U(DND,C)P(D,C|D) = payoff(D, D)

So according to this, it is rational for Player 1 to cooperate.

CDT, on the other hand, tells a different story. In the CDT point of view, Player 1’s actions have no causal
impact on Player 2, during the course of the PD game. Thus, CDT advises Player 1 to defect. This is what
Hofstadter calls basic rationality, as opposed to the ”superrationality” suggested by EDT. The dichotomy
between EDT and CDT here suggests that, in some cases at least, EDT is ethically superior to CDT. One
may also observe that, in essence, CDT rejects the problem statement here. The problem statement tacitly
assumes a “non-causal” connection between the two players, which CDT cannot encompass.

What does CRDT say? The ”identical players” constraint may be taken to mean that the MP must
supply both players with the same program: i.e., the only possible worlds are the ones in which both players
have the same operating program. In this case, clearly, the MP would supply the players with a program
that would cause them to both cooperate, because this would maximize the utility of Player 1 (whose interest
the MP is supposed to be looking out for).

4.2 One-Shot Prisoner’s Dilemma with Nonidentical Players

Next, with nonidentical players that have probability p of agreeing, we may calculate

vC)y=u{CncC,C)P(C,C|C)+U(CNC,D)P(C,D|C) = p payoff(C, C) + (1 — p)payoff(C, D)
UMD)=U(DnD,D)P(D,D|D)+U(DND,C)P(D,C|D) = p payoff(D, D) + (1 — p)payoft(D, C)

So in this case, according to EDT, it is rational to cooperate if

U(C)>U(D)
which means (denoting e.g. pcp = payoff(C, D))

ppcc + (1 —=p)pep > pppp + (1 —p)ppe
p(pcc —ppp) > (1 —p)(ppc — pep)
(ppc —pep) < r(pec —ppp)
r=p/(1-p)

So for it to be rational to cooperate according to EDT,

X = the added utility obtained from being the offender rather than the victim

must be less than r times as big as

Y = the added utility obtained from both cooperating rather than both defecting

Note that if p = .5 then the two agents are independent, and in this case according to EDT one should
cooperate only if X <Y

CDT, again, counsels that each player’s choices have no impact on the other player during the course of
the one-shot PD game, so that defecting is the right option.



What does CRDT say? Here the MP may be assumed to be operating under the constraint that, whatever
program it supplies to Player 1, Player 2 will operate under some program that causes it to agree with Player
1 p of the time. The algebraic analysis given above applies perfectly well. Iff X < &Y then MP should
program Player 1 to cooperate. Thus, Player 1 should choose to cooperate.

5 When Is It Rational To Vote?

A similar analysis may be applied to the puzzle of deciding whether it’s worth one’s while to vote, via simply
giving different interpretations to the variables in the above analysis of the PD. Consider a voter deciding
whether to vote, in a situation where there is a group of voters who also have a decision whether or not to
vote, and who would vote the same way as him (and each other) if they voted. Then we have, in the above
algebra,

C = vote
D = don’t vote

Say, for example, that p = .9, so that p/(1 — p) = 9 (meaning, a "90% correlation” between the given
voters, and the other voter or set of voters). Then, in order for voting to be a rational decision,

X = The added utility obtained from not voting when others do, as opposed to voting when others do not ...

must be less than 9 times as big as ...

Y = The added utility obtained from both voting versus neither voting

Now, consider a voting situation involving one voter and set of M voters who are correlated with him,
out of a total of N voters. Then, if M << N, clearly Y is very small, and unlikely to outweigh even a
modest cost of voting (as incorporated in X). But, if M is close to N, then:

e X is very large (because if I don’t vote and others do, the election will almost certainly still be won,
since it’s very unlikely I will be the tiebreaker)

e Y is also very large, but is about equal to X

So applying EDT, in this case it is rational to vote. And applying CRDT, one concludes that in this case
the MP would reprogram the agent’s brain with the propensity to vote, because according to the given
constraints, this would result in a world in which everyone similar to the agent also had a propensity to vote.

For example, if one knows one is in a community of other CRDT fanatics, and believes they would take
the same action as one would in a certain (sufficiently high) percentage of elections, then it may make sense
to vote. Or, if one knows there is a group of people who

e tend to agree with one on the issues related to elections

e tend to vote as a group (for any reason, be it superrationality or just a herd mentality)

then it is also rational to vote. Of course, there is a tradeoff between the cost of voting (a cost in hassle,
generally) versus the level of similarity between the voter and the group. As similarity goes to 1, the tolerable
cost of voting becomes higher.

In order to apply this conclusion in practice, of course, one must determine how likely it is that the given
constraint holds. The ”voting may be useful” conclusion appears to hold up so long as one assumes the
statistics regarding one’s prior history are likely to govern one’s current behavior.



6 Newcomb’s Problem

This is perhaps the most vexing of all the decision-theoretic puzzles. The simplest version is as follows (lifted
with edits from [Wik10a)):

A person is playing a game operated by an alien entity who is exceptionally skilled at predicting people’s
actions.

The player of the game is presented with two opaque bozes, labeled A and B. The player is permitted to
take the contents of both bozes, or just of box B. Box A contains $1,000. The contents of box B, however,
are determined as follows: At some point before the start of the game, the alien makes a prediction as to
whether the player of the game will take just box B, or both boxes. If the alien predicts that both bozxes will
be taken, then box B will contain nothing. If the alien predicts that only box B will be taken, then box B will
contain $1,000,000.

By the time the game begins, and the player is called upon to choose which boxes to take, the prediction
has already been made, and the contents of box B have already been determined. That is, box B contains
either $0 or $1,000,000 before the game begins, and once the game begins even the alien is powerless to
change the contents of the boxes. Before the game begins, the player is aware of all the rules of the game,
including the two possible contents of box B, the fact that its contents are based on the alien’s prediction, and
knowledge of the alien’s infallibility. The only information withheld from the player is what prediction the
alien made, and thus what the contents of box B are.

(In fact the original presentation of Newcomb’s Problem was a little different than this — in it, the alien’s
predictions are only correct a certain percentage of the time; but this doesn’t change the fundamental nature
of the situation.)

EDT handles Newcomb’s Problem straightforwardly, though controversially: one has

U (look in twolalien predicted look in two) = 1000

U (look in two |alien predicted look in one) = 1001000
U (look in onelalien predicted look in two) = 0

U (look in onelalien predicted look in one) = 1000000
P(alien predicted look in two [look in two) =1
P(alien predicted look in one|look in one) =1
P(alien predicted look in twollook in one) =0

)=0

P(alien predicted look in one |look in two

and then

U(look in one) = 1000000
U (look in two) = 1000

There is not much subtlety here: if the agent really believes the alien’s predictions are correct, and he is
rational, then he will look in the closed box only.

This is somewhat similar to the PD situation with two clones; because exact cloning, like the predictive
alien, essentially eliminates the hypothesis of free will right away, in the problem formulation.

As with PD, CDT is generally interpreted to give a different answer here. The basic idea is that



P(alien predicted look in two > look in one
(

P(alien predicted look in one > look in one

)

)

P(alien predicted look in two > look in two) =
( )

P(alien predicted look in one > look in two

In other words, there is no causal relation between where one looks, and what the alien predicted, since the
prediction occurred before the looking. So CDT recommends to look in both boxes.

What about CRDT? This is a trickier case than the previous ones!

One must, of course, assume the alien foresaw that the agent would be using CRDT to make his decision.
So, the agent foresaw that the MP would be replacing the agent’s brain with a program potentially having
nothing to do with what came beforehand. Thus the game is between the MP and the alien, and is of the
form:

e alien has predicted what MP will guess alien has predicted MP will guess alien has predicted...

e MP guesses what alien has predicted MP will guess alien has predicted MP will guess...

If we assume that the alien and the MP both have infinite computational capability, we get the equations

X = predict4(Y)
Y = guessyp(X)

where X and Y are both Boolean variables. If we assume that the alien and the MP are both correct
in their predictions, then X and Y are unspecified by the above equation. Either X = Y =two-boxes or
X =Y =one-box are valid solutions. These recursive equations, while correct, are not useful.

A slightly different situation occurs if one assumes the MP has finite computational capacity, whereas
the alien is all-knowing. Then we have a finite situation of the form

e alien has predicted what MP will guess ... alien has predicted MP will guess alien has predicted

e MP guesses what alien has predicted MP will guess ... alien has predicted

and we may assume the alien’s predictions are correct, whereas the MP’s may or may not be. The MP knows
it does not know what the alien predicts it will do. Here we have something very similar to the standard
Newcomb’s Problem, with the MP taking the place of the agent.

However, the difference from the standard Newcomb’s Problem is that here the MP is assumed a rational
deterministic agent, albeit with resource limitations (which may be assumed not too severe), which is single-
mindedly dedicated to mazimizing the agent’s expected reward across possible worlds. The MP will estimate
that, averaged over all possible worlds, the agent will get more reward from one-boxing than from two-boxing
(because in each case the alien will correctly predict its doings). So the MP will choose to one-box.

What lets the MP escape the typical problems associated with Newcomb’s Problem is that we have made
very specific assumptions about its internal decision procedure. By assumption, the MP must work according
to its algorithm, and the alien must predict that the MP will work according to its algorithm. So if the agent
is following CRDT, it must obey the MP, which in this case will direct it to obey in an EDT-ish manner.

6.1 Nesov’s Problem

An interesting variant of Newcomb’s Problem was formulated by Vladimir Nesov [Nes10]:
Suppose the alien from Newcomb’s Problem (who is known to be honest about how it poses these sorts of
dilemmas) comes to you and says: "I just flipped a fair coin. I decided, before I flipped the coin, that if it



came up heads, I would ask you for $1000. And if it came up tails, I would give you $1,000,000 if and only
if I predicted that you would give me $1000 if the coin had come up heads. The coin came up heads - can I
have $10007”

This is interesting, but doesn’t pose any problems for the Master Programmer. The MP will assess that,
averaged over possible worlds, the agent would do better to operate using a program that would pay the
$1000.

7 The Psychopath Button

Finally, let us consider a problem due to [Ega07], which is known to be problematic for CDT.

Paul is debating whether to press the kill all psychopaths button. It would, he thinks, be much better to
live in a world with no psychopaths. Unfortunately, Paul is quite confident that only a psychopath would
press such a button. Paul very strongly prefers living in a world with psychopaths to dying. Should Paul
press the button?

CDT tells Paul to press the button. This seems wrong! In this case EDT does better, and counsels Paul
to keep himself alive and not press the button.

What does CRDT say? It says that, at the time referenced in the problem statement, the MP could
maximize Paul’s expected utility over possible worlds via supplying Paul with a control program that would
not cause him to press the button. Thus, Paul should obey the MP’s recommendation and not press the
button.

Turning the decision over to the MP neatly nullifies Paul’s inner debate over his potential psychopathy.

8 Conclusion

We have proposed Counterfactual Reprogramming Decision Theory, a novel alternative to evidential and
causal decision theory, which appears to bypass the conceptual problems associated with these other ap-
proaches. CRDT constitutes a more direct confrontation of the problem of ”choosing the action that will
incur the greatest expected reward.”

While we have shown CRDT to agree with human common sense in a variety of cases, we are not
proposing it as a general model of human decision making. Humans tend not to act like rational utility
maximizers according to any formal approach [GGK].

CRDT may be more plausible as a guide for AT decision making or automated decision support. In these
contexts, however, one issue with CRDT is that implementing it in practice, in any direct and general way,
would be computationally intractable. Here we have considered CRDT as a theoretical construct only, and
shown it to handle various theoretical problem cases. Applying CRDT in real life contexts would involve the
use of complex approximations to the posited Master Programmer, which leads into the domains of artificial
general intelligence, cognitive architecture and automated program learning [GP05], and will not be enlarged
upon further here.

A Toward a Formalization of CRDT

While this is only a semi-formal paper, in this brief Appendix we will outline a formalized version of CRDT,
just to make clear what sort of theory this is (as it’s a bit different on a mathematical-infrastructure level
from EDT and CDT), and that all the above talk of Master Programmers and so forth isn’t completely
fanciful. The reader who lacks taste for mathematical formalism may skip this Appendix without significant
loss; the above discussion does not depend on it in any particulars.

A.1 A Formal Model of Intelligent Agents

We will formalize CRDT within the formal agents framework used in [LHO7b], in the context of formalizing
the notion of general intelligence.



Consider a class of active agents which observe and explore their environment and also take actions in
it, which may affect the environment. Formally, the agent sends information to the environment by sending
symbols from some finite alphabet called the action space ¥; and the environment sends signals to the agent
with symbols from an alphabet called the perception space, denoted P. Agents can also experience rewards,
which lie in the reward space, denoted R, which for each agent is a subset of the rational unit interval.

The agent and environment are understood to take turns sending signals back and forth, yielding a history
of actions, observations and rewards, which may be denoted

a101710202T3...

or else

a1r1a2x2...

if  is introduced as a single symbol to denote both an observation and a reward. The complete interaction
history up to and including cycle t is denoted ax;.;; and the history before cycle t is denoted ax ¢ = axy.4—1.

The agent is represented as a function 7 which takes the current history as input, and produces an action
as output. Agents need not be deterministic, an agent may for instance induce a probability distribution over
the space of possible actions, conditioned on the current history. In this case we may characterize the agent
by a probability distribution 7(a;|ax<;). Similarly, the environment may be characterized by a probability
distribution p(xg|az<gar). Taken together, the distributions m and p define a probability measure over the
space of interaction sequences.

It’s interesting to specifically consider the class of environments that are reward-summable, meaning
that the total amount of reward they return to any agent is bounded by 1. Where r; denotes the reward
experienced by the agent from the environment at time ¢, the expected total reward for the agent 7 from the
environment u is defined as

Vi=E() rn)<1
1

Generally speaking, more intelligent agents will achieve greater reward; but different agents may be better
adapted to different environments.

A.2 Distributions over Possible Worlds

Next, introduce a second-order probability distribution v, which is a probability distribution over the space
of environments p. The distribution v assigns each environment a probability. One such distribution v is
the Solomonoff-Levin universal prior distribution in which one sets v = 25 but this is not the only
distribution v of interest.

Denote an alteration of an interaction sequence I, for an agent a by I <1, and the set of all such altered

interaction sequences for agent a by Z¢. It is interesting to look at those cases for which dr(I¢,, fgt) is small,
where dy(-, -) is some (perhaps rescaled version of ) some measure of sequence similarity, such as neighborhood
correlation or PSI-BLAST. Using this one may construct a probability distribution v over environments p
that tends to give larger probabilities to nearby sequences, as measured by the chosen similarity measure.
This is one way of constructing a set of probabilistically weighted ”possible worlds.”

These two approaches (prior based and similarity based) may of course be combined, as well. Given a
prior distribution v; over environments, and another distribution v defined based on dr(Iy  ;, I ¢1), one may
look at the conjunction v = v1 Nvy. Conceptually, this represents a distribution that values possible worlds
close to the given interaction sequence, but restricts attention to those possible worlds that are considered
viable according to the prior distribution.

A.3 A Partially Reprogrammable Agent

So far no commitment has been made about the internal structure of the intelligent agent. However, CRDT
deals with agents that are in some sense partially reprogrammable. For instance, we may assume that the
agent has associated with it some finite amount of memory, and some finite amount of processing time per
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cycle (where a cycle consists of a single perception, action and reward), that is reprogrammable, i.e. that
may be filled with arbitrary ”code” or computational content.

Qualitatively, when we say the agent is ”choosing” something, we may understand that this choice is
related to changes in the code in the agent’s reprogrammable sector. And in CRDT, the Master Programmer
is understood to modify the code in this sector.

A.4 The Master Programmer
The MP in CRDT, then, may be defined as a system that, at any given time,

e has access to the complete history of the agent a, including the agent’s internal state

e has the goal of finding code to put into the agent’s reprogrammable sector, that will maximize a’s
expected reward, as averaged over possible environments according to some distribution v (e.g. con-
structed as outlined above)

e has a very large amount of processing power and memory at its disposal (one may also consider the
case where the MP has infinite processing power and memory; but this is unnecessary for the points
to be made in this paper)

e pursues this goal according to the AIXT* algorithm [Hut05] (or something similar)

If all of the agent were reprogrammable, and the MP were actually allowed to reprogram the agent, and
the agent had a very large amount of processing power and memory — then as both the agent’s and MP’s
processing power and memory tended to infinity, the agent would tend toward optimal intelligence as defined
in [LHO7b].

But even if the agent doesn’t want to let the MP reprogram itself, or doesn’t have access to any MP, it
can still use the notion of an MP as a guide for its actions — asking what it would do in a given situation,
if it were to allow an MP to replace its reprogrammable sector with whatever code it wanted, based on its
goal of maximizing a’s expected reward. This is the basic idea of CRDT.
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